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chip. The experimental results suggest that our work has achieved
high speed real-time processing with programmable video resolutions,
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marks also prove that this work delivers leading matching accuracy
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benchmark error rate. We have also achieved 60 frames per second
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Abstract

Stereo matching has been widely used in many fields, such as viewpoint interpolation,
feature detection system and free-view TV. However, the long processing time of stereo
matching algorithms has been the major bottleneck that limits their real-time appli-
cations. During the past decades, many implementation platforms and corresponding
algorithm adaptations are proposed to solve the processing time problem. Although
notable real-time performances have been achieved, these works rarely satisfy both
real-time processing and high stereo matching quality requirements.

In this thesis, we propose an improved stereo matching algorithm suitable for hardware
implementation based on the VariableCross and the MiniCensus algorithm. Further-
more, we provide parallel computing hardware design and implementation of the pro-
posed algorithm. The developed stereo matching hardware modules are instantiated in
an SoC environment and implemented on a single EP3SL150 FPGA chip. The experi-
mental results suggest that our work has achieved high speed real-time processing with
programmable video resolutions, while preserving high stereo matching accuracy. The
online benchmarks also prove that this work delivers leading matching accuracy among
declared real-time implementations, with only 8.2% averaged benchmark error rate. We
have also achieved 60 frames per second for 1024 × 768 high-definition stereo matching,
which is the fastest high-definition stereo matching to the best of our knowledge.
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Introduction 1
Stereo matching has been, and continues to be one of the most active research topics in
computer vision. The task of stereo matching algorithm is to analyze the images taken
from a stereo camera pair, and to estimate the displacement of corresponding points
existing in both images in order to extract depth information (inversely proportional
to the pixel displacement) of objects in the scene. The displacement is measured
in number of pixels and also called Disparity ; disparity values normally lie within a
certain range, the Disparity Range, and disparities of all the image pixels form the
disparity map, which is the output of a stereo matching processing. An example with
the Teddy benchmark image set is shown in Figure 1.1. In the figure the disparities
are visualized as grayscale intensities, and the brighter the grayscale, the closer (to the
stereo cameras) the object. Therefore the disparity map encodes the depth information

(a) (b) (c)

Figure 1.1: A disparity map example
(a): Image taken by the left camera. (b): Image taken by the right camera. (c): The ground

truth disparity map associated with the left image.

of each pixel, and once we infer the depth information by means of stereo matching, we
are able to obtain the 3D information and reconstruct the 3D scene using triangulation.
Since stereo matching provides depth information, it has great potential uses in 3D
reconstruction, stereoscopic TV, navigation systems, virtual reality and so on.

1.1 Motivation

The motivation of this thesis research and design work is to facilitate eye-gazing video
conferencing with the support of high quality and real-time stereo matching. As many
of the audience may have experienced, a common desktop video communication through
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Skype and a webcam often lacks natural eye contact. The reason is obvious: provid-
ing natural eye contact requires the communication participants looking directly into
the camera, but unfortunately, traditional video conferencing devices with a camera
positioned above the screen (as shown in Figure 1.2) fail to satisfy this requirement.
The angular displacement (noted as α in Figure 1.2) between the single camera and

 

Figure 1.2: The eye gazing angle problem

monitor center causes one participant cannot look at the camera simultaneously while
looking at the remote participant shown on the display. The lack of natural eye contact
leads to awkward and uncomfortable feelings, and sometimes causes distrust between
meeting participants. There are several approaches to correct the eye gazing problem,
one remarkable one is the Eye Contact Silhouette system provided by Digital Video
Enterprises (DVE). As shown in Figure 1.3, the camera is physically positioned behind

Figure 1.3: The Eye Contact Silhouette system

the display, which means that when the local participants look at the display showing
remote participants, they are also looking directly into the camera and providing true
eye contact (with zero gazing angle) to the far end sites. However, this arrangement is
bulky and expensive, and more importantly it does not fit well to our commodity com-
puter peripherals. A more elegant solution is to provide a computer-synthesized video
which looks as if it were captured from a camera directly behind the monitor screen.

2
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Our proposed solution is shown in Figure 1.4. It requires two cameras positioned on
the top and bottom (or left and right) of the display, which provide the computer with
stereo vision. The depth information in the computer’s vision (meeting participants)

Figure 1.4: IMEC proposed eye gazing solution

is therefore obtained by means of stereo matching, and the in-between view from the
virtually centered camera position is provided by a view interpolation algorithm. In
this thesis we consider the two cameras are horizontally aligned, i.e., left and right.
When the cameras are vertically aligned, they can also be considered as left and right
with image rotation processing.

The full proposed eye-gazing video pipeline contains image acquisition, camera calibra-
tion, image rectification, stereo matching, view interpolation and video display. This
thesis work focuses on the stereo matching part, which introduces the major processing
bottleneck as discussed in the following section.

1.2 Problem Definition

In the processing pipeline, stereo matching is normally the most time consuming part.
Due to high computational complexity, solutions that obtain satisfactory synthesizing
quality under the constraint of real-time execution are quite rare, e.g. a recent three-
camera viewpoint interpolation prototype system [32] proposed by Sharp Corporation
only reaches a couple of frames per second for low-resolution images. In order to provide
real-time and high-quality interpolation results, the stereo matching bottleneck must be
solved first, especially for high frame rate and high definition (e.g. 50 frames per second
with 1024 × 768 video size) applications such as business eye-gazing video conference
systems.

Recent stereo matching design and implementations utilize various processing platforms
such as high-performance multi-core CPU, GPU, DSP, FPGA and ASIC. Meanwhile,
many stereo matching algorithms and adaptations are also proposed for efficient imple-
mentations on these platforms. Nevertheless, these work rarely satisfies both real-time
and high matching accuracy requirements. For example, a recent implementation on a
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GeForce8800 GTX GPU proposed by Zhang et al. [50] preserves high matching quality
with an averaged benchmark error rate 7.65%, but only reaches 12 frames per second
with 450 × 375 image resolution. In contrast, the FPGA implementation proposed by
Jin et al. [23] achieves 230 frames per second stereo matching with VGA (640 × 480)
resolution, but the matching accuracy degrades a lot with averaged benchmark error
rate 17.24%.

Furthermore, frames to match in stereo matching come from two different cameras
and hence might exhibit very different luminance or radiometric variations, incurring
a severe matching cost bias to which some stereo matching cost functions are very
sensitive. Some of the recently proposed algorithms are not robust in this condition.

1.3 Solutions and Contributions

To satisfy both real-time and high-accuracy stereo matching requirements, especially
for high-definition view interpolation applications, we propose a hardware friendly
high-accuracy stereo matching algorithm and a dedicated hardware implementation ap-
proach. The prototyping and evaluation design are implemented on a single EP3SL150
FPGA, and the implemented algorithm is based on Adaptive Cross-Based Local Stereo
Matching (VariableCross) proposed by Zhang et al. [49] with our hardware friendly
adaptations. Compared with the other two kinds of implementations (on CPU and
GeForce8800 GTX GPU) of the same algorithm, this design has achieved significant
speedup regarding processing time (speedup factor ranges from 41 to 162 compared
with the CPU implementation), while preserving high matching accuracy.

Our main achievements are twofold: on one side, we improved the state-of-the-art
VariableCross [49] algorithm regarding its accuracy and robustness; on the other side,
we provided a high-performance and high-quality hardware design of the proposed
algorithm. Summarized contributions of this thesis work are listed below:

We proposed an improved algorithm that:

• Preserves high matching accuracy with 8.2% averaged benchmark error rate.

• Maintains robust to radiometric distortions and bias differences introduced by
stereo cameras. The robustness is obtained with the support of Mini-Census
Transform proposed by Chang et al. [4].

We implemented the algorithm in hardware that:

• Achieves real-time stereo matching with various and run-time programmable res-
olutions e.g., 450 × 375 @ 193FPS, 640 × 480 @ 105FPS and 1024 × 768 @
60FPS, independent on the disparity range.

• Proposes fully pipelined and scalable hardware structure. The hardware scales
with the maximum disparity range under consideration, and the scalability offers
hardware resource savings with small disparity range applications. On the FPGA
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EP3SL150 we have evaluated implementations with maximum disparity range of
16, 32 and 64.

• Implements industry standard on-chip interconnections (Avalon System Inter-
connect Fabric). This enables our design to work properly with other Avalon-
compatible processing modules, for example the Altera’s Video and Image Pro-
cessing (VIP) Suite.

• Provides fully functional SoC reference design with run-time configurable param-
eters and disparity map visualizations on a standard DVI monitor.

The whole design is implemented on the DE3 evaluation board, which contains the
EP3SL150 FPGA and rich peripherals e.g., DDR2 SDRAM, USB and camera interfaces.
A DVI extension board is also employed for the disparity map display. To verify the
hardware implementation on FPGA, the stereo matching hardware processing starts
with rectified stereo images from an external frame buffer (DDR2 SDRAM) and finally
output disparity maps to a result frame buffer. The disparity maps are uploaded to a
PC for verification and benchmarking. To visualize disparity maps, the result frame
buffer is removed and the disparity maps are output to a monitor. To enable follow-up
work and view interpolation prototyping, the complete setup is also proposed, as shown
in Figure 1.5.

JTAG UARTT

Figure 1.5: Proposed view interpolation setup with FPGA

1.4 Overview of Chapters

The content of the thesis text is organized as follows: Chapter 2 introduces the back-
ground knowledge of stereo matching computing flow, related work and our design

5



considerations. In Chapter 3, we present the proposed stereo matching algorithm and
corresponding hardware module design in a top-down approach. Chapter 4 provides
two reference SoC designs with the stereo matching modules on our selected FPGA
and corresponding hardware/software tasks. In chapter 4, we also estimate the exter-
nal memory storage and bandwidth utilizations. Chapter 5 evaluates the whole design
and implementation according to our design considerations, and provides comparison
to related work. Finally, Chapter 6 summarizes the thesis and suggests valuable opti-
mization techniques and interesting application developments as future work based on
our stereo matching results.
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Background and Related Work 2
In the past two decades, various stereo matching algorithms have been proposed and
they were summarized and evaluated by Scharstein and Szeliski [35]. In this notable
work, these proposed stereo matching algorithms are categorized into two major types:
local area based methods and global optimization based methods. In local methods,
the disparity evaluation at a given pixel is based on similarity measurement performed
in a finite window. The similarity metric is defined by a Matching Cost and all costs in
the local window are often aggregated to provide a more reliable and robust result. On
the other hand, global methods define global cost functions and solve an optimization
problem. Global algorithms typically do not perform an aggregation step, but rather
seek a disparity assignment that minimizes a global cost function.

In this thesis we are particularly interested in local stereo matching methods, which
generally have low computation complexity and less storage requirement; and there-
fore they are suitable for real-time and embedded implementations. In Section 2.1 we
introduce the image rectification required by efficient local stereo matching; In Sec-
tion 2.2 fundamental basis of the stereo matching computation flow and our chosen
algorithm are discussed. We present our design considerations and corresponding al-
gorithm adaptations in Section 2.4 and conclude this chapter with related work and
comparisons.

2.1 Epipolar Geometry and Image Rectification

For a given pixel in the left image, the stereo matching algorithm is to seek the corre-
sponding one in the right image, for example in Figure 2.1 the object point p appears
in both left and right views as pixel p(x, y) and p′(x′, y′), respectively. The two pixels
are defined as a correspondence pair, and the displacement of their locations in the
stereo view is the disparity; in this case the disparity is equal to (x−x′). In Figure 2.1,
the distance between the stereo cameras’ focal axis is defined as the Baseline. To en-
able efficient stereo matching, it is necessary that the two input images are Rectified,
fulfilling Epipolar Geometry. In epipolar geometry each pixel in the left image finds its
correspondence in the right image (if exists) on a specific line, called the Epipolar Line.
If the two images are rectified, the epipolar lines coincide with the image rows and run
parallel to the baseline; so that the correspondence search only needs to be performed
along a 1-dimension scanline. The concept is shown in Figure 2.2. Image rectification
according to epipolar geometry is an important processing step before the stereo match-
ing algorithm, enabling less complex implementation of the correspondence searching.
Detailed rectification algorithm and implementations are not further discussed in this
thesis, and we therefore assume in the sequel input stereo images are rectified.

7



Figure 2.1: Correspondences and the half occlusion problem

Left View Right View

Epipolar

Lines

Figure 2.2: Rectified images and epipolar lines

2.2 Stereo Matching Computation Flow

In general, stereo matching algorithms perform the following steps:

1. Matching cost computation.

2. Cost (support) aggregation.

3. Disparity computation / optimization

4. Disparity refinement.

The four steps are introduced in the following subsections. In local algorithms, emphasis
is on the matching cost computation and cost aggregation steps.

2.2.1 Matching Cost Computation

Thanks to image rectification, searching for correspondences is reduced to 1-
dimensional. In addition, the disparity values lie within a certain disparity range;
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so the basic matching method is performed pixel-to-pixel in a horizontal line segment,
as shown in Figure 2.3. In this example the disparity range is [0 ... dmax], and dmax = 7
in this figure. The disparity range is determined by the distance between the scene

x xdmaxx -

Left View Right View

Figure 2.3: Basic pixel-to-pixel matching method

objects and the camera baseline, and the length of the baseline itself. To determine the
matched correspondences in a stereo pair, the matching costs are defined to evaluate
the probability of a correct match; the smaller the costs, the higher the probability.
For pixel-to-pixel matching, the matching cost is commonly defined as Absolute Dif-
ference, Squared Difference, Hamming Distance etc., on both gray and color images.
The Equation 2.1 defines the matching cost measured by absolute intensity difference;
where I(·) returns the grayscale intensity of a pixel in the left image and I ′(·) returns
the intensity of a right image pixel. The two pixels under consideration are related by
a disparity hypothesis d.

Cost(x, y, d) = |I(x, y)− I ′(x− d, y)| (2.1)

In this simple case, the correspondence is determined by the minimum cost value, and
the associated d is the disparity of the pixel p(x, y) in the left image.

Hamming distance cost is normally computed based on transformed images. The trans-
form is a pre-processing (often a filter) step before the matching cost computation. In
our implementation we adopted the Mini-Census Transform proposed by Chang et
al.[4]. Details of this transform algorithm are introduced in Chapter 3.

To avoid ambiguity, in the following context we refer the matching cost between two
single pixels as the Raw Matching Cost. Raw matching costs in a restricted area are
often aggregated to improve the matching accuracy.

2.2.2 Area-Based Matching Cost Aggregation

Typically, to increase the reliability of cost evaluation and the robustness to image noise,
local stereo matching methods choose to aggregate (accumulate) raw matching costs
over a Support Region. The most basic support region is a square window, as shown
in Figure 2.4. In this example, a fixed 3× 3 support region is built for a given pixel in
the left image and all raw costs in this region are aggregated. The same computation
applies to each pixel in the disparity range in the right image.
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d = dmax

d = 0

dmaxx -

Figure 2.4: Cost aggregation over a fixed window

The well known challenge for area-base local stereo matching is that a local support
region should be large enough to contain sufficient intensity variation for reliable match-
ing, while it should be small enough to avoid disparity discontinuity inside the region.
Therefore state-of-the-art stereo matching algorithms often shape the support window
in order to include only pixels with the same (unknown) disparity. Veksler [42] found
a useful range of window sizes and shapes while evaluating the aggregated cost. Zhang
et al. [49] adaptively shaped a support window with variable crosses in order to bound
the pixels near arbitrarily shaped disparity discontinuities. Yoon and Kweon [48] also
assigned a support weight to the pixel in a support window based on color similarity
and geometric proximity. The Figure 2.5 illustrates a simple shaped support region
example. The support regions are built around the anchor pixel in the left image, and
the pixels in the disparity range in the right image. Normally for evaluating each hy-
pothetical pair, only the overlapped area of the two support windows is considered to
take both images into account.

Some local stereo matching algorithms simply sum up all the raw matching costs in a
support region, for example the Sum of Absolute Differences (SAD), Sum of Squared
Differences (SSD) and Sum of Hamming Distances. These algorithms are clearly bro-
ken down into step 1 and 2 as mentioned above. On the other hand, some of the
algorithms merge step 1 and 2 and define a new matching cost based on the support
region, such as Normalized Cross-Correlation (NCC). The Table 2.1 summarizes in-
volved computations for these commonly used matching cost aggregation. In the table,
the

∑
x,y(·) denotes aggregation over the (overlapped) support region; I(·) returns the

intensity of a pixel and BitV ec(·) gives the bit vector associated with a pixel after
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(a)

(b)

d = 1

Figure 2.5: Cost aggregation over an shaped window
(a): Shaped window for pixels in the left and right image. (b): Overlapped area of the

windows associated with a hypothetical pair.

Matching Cost Computations

Sum of Absolute Differences  | I(x, y) !  I"(x ! d, y) |
#,$

Sum of Squared Differences  ( I(x, y)!  I"(x! d, y) )#
$,%

Sum of Hamming Distances  Hamming( BitVec(x, y), BitVec!(x" d, y) )
#,$

Normalized Cross-Correlation

 ( I(x, y)  !  I"(x# d, y) )$,%
& ( I(x, y)'  ! I"(x# d, y)' )$,%

Table 2.1: Matching cost computations and aggregations

a certain transform, e.g. Census. More extensive discussions and evaluations about
state-of-the-art matching cost computations/aggregations are found in [19].
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2.2.3 Disparity Estimation

Disparity estimation is to choose at each pixel in the left image the disparity d associated
with the minimum cost value. Generally, this involves a local ”Winner-Takes-All”
(WTA) optimization at each anchor pixel p(x, y) in the left image and the pixels in
the disparity range in the right image. Therefore the basic concept of stereo matching
is explained by the pseudo code listed in Figure 2.6. Though straightforward, the

FOR (y IN 0 TO ImageHeight - 1)

     FOR (x IN 0 TO ImageWidth - 1)

        FOR (d IN 0 TO dmax)

            IF (Cost(x, y, d) < MinCost(x, y, d))

                MinCost(x, y, d) = Cost(x, y, d)

                dp(x, y) = d

            END IF

        END FOR

    END FOR

END FOR

Figure 2.6: Stereo matching pseudo code

embedded computing loops cause the major bottleneck for real-time implementations,
and one of the contributions of this thesis work is to solve this problem with parallel
and pipelined computing.

A limitation of this disparity estimation is that uniqueness of matches is only guaranteed
for one image (the left image), while pixels in the right image might get matched
to multiple points. To compensate for this problem, a similar matching process is
also performed based on the right image, and the disparity map of the right image is
also generated. The uniqueness and consistency tests are performed in the disparity
refinement step, combining both disparity maps.

2.2.4 Disparity Refinement

The correspondence may not exits for each pixel in one image due to Half-Occlusion, as
shown in Figure 2.1. Consistency Check (comparing left-to-right and right-to-left dis-
parity maps) is often employed to detect occluded areas and perform uniqueness tests,
and detected mismatches can be fixed by surface fitting or by distributing neighboring
valid disparity estimates [35].

If disparity results pass consistency check, some additional techniques are used to fur-
ther the disparity reliability and accuracy, for example Sub-Pixel Estimations [37] or
local high-confidence Disparity Voting [28] in a support region. After this step, a final
median filter is also helpful for removing speckle noises and smoothing the disparity
map.
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Disparity refinement normally contributes considerable improvements to the WTA-
estimated disparity map, so in our final implementation we applied consistency check,
local disparity voting and median filtering.

2.3 Related Work

To enable efficient stereo matching computation, especially for real-time applications,
various approaches have been developed during the past two decades. In recent years,
notable achievements have been made in either matching accuracy and processing
speed. We categorize them according to the implementation platforms.

General purpose CPUs are often used as the first algorithm prototyping platform, and
many efficient aggregation methods are proposed to accelerate the CPU processing.
Tombari et al. [39] proposed an efficient segmentation-based cost aggregation strategy,
which achieves a frame rate of 5 FPS for 384 × 288 images with 16 disparity range
on an Intel Core Duo clocked at 2.14 GHz. But it drops to only 1.67 FPS with 450
× 375 images and 60 disparity range. Later, Salmen et al. [34] optimized a dynamic
programming algorithm on a 1.8 GHz PC platform and achieved a frame rate of 5 fps
for 384 × 288 and 16 disparity range stereo matching. Kosov et al. [26] combined a
multi-level adaptive technique with a multi-grid approach that allows the variational
method to reach 3.5 FPS with 450 × 375 images and 60 disparity range. Zhang et
al. [49] proposed the VariableCross algorithm and orthogonal integral image technique
to accelerate the aggregation over irregularly shaped regions. This work achieves 7.14
FPS with 384 × 288 and 16 disparity range, but only 1.21 FPS with 450 × 375 and
60 disparity range. Though real-time performances are generally poor, CPU imple-
mentations often achieve very good accuracy with less than 10% averaged error rates.
Error rates of the above mentioned four implementations are 8.24%, 8.83%, 9.05% and
7.60%, respectively.

With GPU implementation, a global optimizing real-time algorithm was developed
by Yang et al. [46] on a GeForce 7900 GTX GPU. The authors used hierarchical
belief propagation and reached 16 FPS for 320 × 240 images with 16 disparities. This
work presented high matching accuracy with 7.69% averaged error rate, but clearly
its frame rates and image resolution are limited. Another GPU implementation was
introduced by Wang et al. [43]. It is based on an adaptive aggregation method and
dynamic programming and reaches a frame rate of 43 FPS for 320 × 240 images and
16 disparity levels on an ATI Radeon XL1800 graphics card. Compared with the
work by Yang et al. [46], it achieves higher frame rates, but its accuracy degrades
to 9.82%. Later, the authors of VariableCross algorithm [49] also implemented the
same algorithm on GeForce GTX 8800 [50], which achieves 100.9 FPS with 384 × 288
images and 16 disparity range. However, the frame rate drops to 12 FPS with 450 ×
375 resolution and 64 disparities. Most recently, Humenberger et al. [20] optimizes
the Census Transform on GeForce GTX 280 GPU, and reaches 105.4 FPS with 450 ×
375 resolution and 60 disparity range. This work also maintains high accuracy with
averaged error rate of 9.05%. Although notable performances have been achieved with
GPU implementations, GPUs are not efficient in power and memory consumption and
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hence not suitable for highly integrated embedded systems. Furthermore, these works
rarely report the performances with high-definition stereo matching.

Chang et al. [3] investigated the performance of using DSP as the implementation
platform. In this work, the authors proposed a 4 × 5 jigsaw matching template and the
dual-block parallel processing technique to enhance the stereo matching performance
on a VLIW DSP. The DSP implementation achieved 50 FPS with disparity range of 16
for 384 × 288 stereo matching. Nevertheless, its accuracy degrades a lot, with above
20% averaged error rate and its frame rate drops to 9.1 with 450 × 375 images and 60
disparity range.

Implementations with CPUs, GPUs and DSPs are all software based approaches. The
major problem with software is that the computing logic and data paths are fixed
and not configurable. As a result, they are not optimized for available algorithms.
Furthermore, their performances also require very high device clock frequency and
memory bandwidth. To overcome the software limit, recent works also investigated
the performance of dedicated hardware design. Chang et al. [4] proposed a high per-
formance stereo matching algorithm with Mini-Census and Adaptive Support Weight
(MCADSW) and also provided its corresponding real-time VLSI architecture. The de-
sign is implemented with UMC 90nm ASIC, and reaches 42 FPS with 352 × 288 images
and 64 disparity range. It also preserves high matching accuracy (unknown average)
with benchmark image sets. Jin et al. [23] proposed a fully pipelined hardware design
using Census Transform and Sum of Hamming Distances. This work has achieved 230
FPS with 640 × 480 resolution and 64 disparities. However, its averaged error rate is
17.24%. Though the two hardware implementations achieve remarkable performance,
the image resolutions are limited by the on-chip memories, due to relatively high storage
requirements or less efficient hardware design. In Chapter 5, we provide a comparison
between our implementation and all of the above mentioned references.

2.4 Design Considerations and Targets

In order to enable real-time processing speed while preserving high stereo matching
accuracy, we considered the following aspects to choose an algorithm and make adap-
tations for our implementation.

1. Matching accuracy

Our target implementation should achieve less than 10% averaged error rate.

2. Robustness

Frames to match in stereo matching come from two different cameras and hence
might exhibit very different luminance or radiometric variations, incurring a severe
matching cost bias to which some stereo matching cost functions are very sensitive.
Our implementation should also be robust, i.e., none or slight matching accuracy
variation in this situation.
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3. Real-time Implementations

Our design targets for at least 50 frames per second with programmable resolu-
tions, and high-definition stereo matching is desired.

4. Implementation Complexity

Our design should avoid complex computations such as divisions and square root
calculations.

5. Implementation Scalability

The proposed hardware structure should scale well with the maximum allowed
resolution and disparity range. Our desired target is HDTV resolution.

Compared with software approaches, the major benefit of using FPGA or ASIC is the
great flexibility in logic and data path design, which offers extreme parallelism in data
flow and pipelined processing. Therefore they enable highly efficient and optimized de-
signs and implementations. Based on the related work and our investigation, we believe
customized hardware design is the most suitable approach for our proposed algorithm.
Since FPGAs provide great resources for parallel computing and fast prototyping, we
choose FPGA to implement our algorithm. To achieve a fast prototyping and enable
future developments, we select Terasic DE3 development board as the development
platform. The board contains Altera EP3SL150 FPGA and rich peripherals like JTAG
UART port, DDR2-SDRAM, camera interfaces and DVI extension card and so on.
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Stereo Matching Algorithm:
Software-Hardware Co-Design 3
In this chapter, we introduce the proposed stereo matching algorithm which is modified
from Adaptive Cross-Based Local Stereo Matching proposed by Zhang et al. [49]. We
modify this algorithm in order to make it more robust and more hardware friendly.
Key to the best processing throughput is to fully pipeline all processing steps, i.e. with
source image pixels come progressively in scanline order, a new income pixel gets its
disparity at the end of the pipeline after a certain pipeline latency, and valid disparities
also come successively in scanline order, synchronized with the input pixel rate. To
enable fully pipelined implementation, parallelization is also important to provide all
required data at the entrance of a pipelined processing module.

Our proposed algorithm and corresponding hardware pipeline design are introduced
together in a top-down approach. Section 3.1 discusses the overview of the whole
stereo matching processing and proposed data-level parallelism. The full pipeline is di-
vided into three major processing blocks, i.e., pre-processing, stereo matching and post-
processing. In hardware their functions are performed by corresponding Pre-Processor,
Stereo-Matcher and Post-Processor, which are introduced in three subsections of this
chapter.

3.1 Overview of the Stereo Matching Pipeline

Overview of the stereo matching processing flow is presented in Figure 3.1, correspond-
ing to the aforementioned pseudo algorithm code (see Figure 2.6). Clearly the embed-
ded computing loops cause the major problem for efficient implementations. If design
follows this diagram, e.g., using state machines, raw stereo image data has to be read
repeatedly into the processing module, which not only prolongs processing time but
also exhausts external memory bandwidth.

According to our research, the disparity evaluation loop can be unrolled and all fol-
lowing processing modules are also parallelized accordingly. The parallelized data flow
is illustrated in Figure 3.2. In the parallelized computing, matching costs with dif-
ferent hypothetical disparities are computed and aggregated mutually independently.
As shown in the figure, multiple concurrent computing paths are employed to enable
the parallelization. In principle any number of parallel paths are supported by the
algorithm, but in practice this number is usually limited by the available hardware
resources.

Our proposed hardware design follows the parallelized data flow, with pipelined pro-
cessing at each algorithmic module. Although the cameras and image rectifications
are shown in the figure, they are not implemented with this thesis work. The purpose

17



Median Filter L Median Filter R

Support Region L

Hamming Dist.

Correlation Region

Cost Aggregation

Rectified Img L Rectified Img R

WTA (Min Cost)

Consistency Check

Disparity Voting

Disparity Map L Disparity Map R

Disparity: 0 ~ dmax

Mini-Census RMini-Census L
Cali. Map L

Camera L

Rectification L

Cali. Map R

Camera R

Rectification R

Support Region R

Loop

Final Disparity Map

Median Filter

Repeated Data Flow

One-pass Data Flow

Figure 3.1: Sequential stereo matching processing flow
Modified functions by this thesis work are shaded
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Figure 3.2: Parallelized stereo matching processing flow
Modified functions by this thesis work are shaded

of their presence is to show that the left and right images are processed indepen-
dently before the actual stereo matching starts; and their pixel coordinates must be
synchronized to ensure a valid stereo matching processing. Processing modules shown
in Figure 3.2 are categorized into three higher level modules, i.e., the Pre-Processor,
Stereo-Matcher and Post-Processor. Their functions and inputs/outputs are shown in
Figure 3.3. DMAs and Avalon interfaces are implemented for SoC integrations, which
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Figure 3.3: Stereo matching pipeline and functions

will be introduced in Chapter 4. The hardware pipeline processing sequence is explained
below.

1. The DMA transfers a pair of stereo frames to the Pre-Processor, with only lumi-
nance intensities. Synchronized luminance pixels from the left and right image
are packed into one 16-bit data word.

2. The Pre-Processor performs median filter, census transform and support region
construction on left and right frame independently and sends its transformed
images to the Stereo-Matcher.

3. The Stereo-Matcher first computes the raw matching cost and overlapped support
region at each pixel according to different hypothesis disparities. Then all the costs
in an overlapped support region are aggregated; costs with different hypothesis
disparities are processed independently in parallel.

4. Aggregated costs of all disparity hypothesis are presented to the WTA module by
the cost aggregation module, and the best disparity is selected by a tree-based
minimum value searching structure.

5. In the Stereo-Matcher, two disparity maps are generated for the left and right
image respectively, denoted as image A and B in Figure 3.3.
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6. The Post-Processor receives two disparity maps and support region data from
the Stereo-Matcher, performs L-R consistency check, local disparity voting and
median filter to detect occluded regions and improve the disparity map quality.
The Post-Processor outputs the final disparity maps.

Each processor also contains several control registers for run-time parameter configu-
ration, these parameters include image resolution, disparity range and some threshold
values. In the following sections, we present the proposed algorithm functions together
with the corresponding hardware design. We also provide the latency calculations based
on 100MHz operation clock with the selected EP3SL150 FPGA. If some functions be-
come critical paths with another device technology, it is required to implement more
pipeline stages.
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3.2 Design of the Pre-Processor Pipeline
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Figure 3.4: Pre-Processor internal processing pipeline

The internal processing pipeline of Pre-Processor is shown in Figure 3.4. Each data
word in the pipeline is comprised of several fields. Since most processing modules
require data from left and right video frames simultaneously for parallel computing,
the corresponding data word also contains both. In the Pre-Processor, left and right
frames are processed independently, and corresponding data words are marked with ’L’
or ’R’ subscripts.

3.2.1 Median Filter

We have applied a 3 × 3 median filter to each raw frame pixel to remove impulsive
noises. The function of a median filter is shown in Figure 3.5. Input (DataA) to
the median filter module is a systolic stream carrying a combined data word with
both left and right luminance pixels in progressive scanline order (see Figure 3.6).
Computations on the left and right frames (DataB) are performed independently in
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parallel, and the output from the median filter module is the filtered data stream
(DataC), in synchronization with the input pixel rate.
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Figure 3.6: Median filter data stream

To get the median value from a 3 × 3 array, we first prepare all the 9 pixels in a window
buffer and afterwards they are captured simultaneously by a follow-up sorting module,
which delivers the median value in a few pipeline cycles. The pixel buffer window slides
over the whole frame and provides a new 3 × 3 pixel array in every valid pipeline cycle,
therefore after the initial latency for preparing the first window content and sorting the
9 values, we get continuous filtered pixels synchronized with the input pixel rate.

Because the pixel stream comes in scanline order, and a 3 × 3 filter window is required
for each pixel, 2 horizontal lines and 3 shift register arrays of length 3 are used to
form a valid filter window. The structure and interconnections of line buffers and shift
registers are illustrated in Figure 3.7. In the implementation, each line buffer stores
one scanline of 8-bit luminance pixels, and each WinReg contains one 8-bit luminance
pixel. The Row Index Counter cyclically counts from 0 to (frame width - 1) and provides
read/write addresses for the line buffer memory blocks. Because the line buffer memory
has a 2-cycle read latency, its write address and write data are also delayed by 2 cycles
to match the processing sequence. This module prepares all the required pixels for
computing the median for the center pixel p(x, y), buffered in WinReg4.
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Figure 3.7: Line buffers and registers in a median filter

The depth of a line buffer is determined by the maximum allowed frame width. A 1024
× 8 SRAM block supports any frame width no larger than 1024. For an input pixel
p(x, y) from DataB stream, it has to wait for

2 (read latency) + frame width+ 2 (WinReg3 and WinReg4)

cycles to arrive in WinReg4. As pixels come in continuously, the 3 × 3 pixel window
also slides over the whole frame in scanline order (see Figure 3.8; the four boundary
pixel rows/columns are not filtered, by-passing the sorting module) and provides all
neighboring pixels of each center pixel simultaneously for the following sorting module.

The 9 luminance values in a filter window are captured by a sorting module to get the
median of them. We have adopted the median sorting structure proposed by Vega-
Rodrguez et al. [41] and implemented suitable pipeline stages. The implemented
median sorting module is shown in Figure 3.9. Each basic building block in this systolic
array is a combination of a comparator and two multiplexers, which performs a basic
sorting function on two unsigned values. The full array is divided in 3 pipeline stages
so the desired median is available after 3 valid pipeline cycles.

Median filtering is performed on the left and right frames independently in parallel,
and the output streams of this module are filtered stereo frames (DataC in Figure 3.4).
The pipeline latency of the median filter module is given by Equation 3.1.

Latencymf = frame width+ Cmf (3.1)

In the equation Cmf is a small constant value depending on the above mentioned
read latency, shift register cycles and actual implemented pipeline stages. Quantitative
reports of the latencies are presented in Chapter 5.
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Figure 3.8: Slide window for a median filter
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Figure 3.9: Median filter sorting array

3.2.2 Census Transform and Adaptive Support Region Construction

3.2.2.1 Census Transform

Census transform is a process extracting relative information for the center pixel from
its neighbors, and its output is a bit vector encoding the relative information. Census
transform has a few variants depending on different patterns of selected neighbor pixels;
the one we have adopted is the Mini-Census algorithm proposed by Chang et al. [4],
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and the transform is illustrated in Figure 3.10.
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Figure 3.10: Mini-Census transform

In the transform, each square in the census window represents a (median filtered) 8-bit
luminance pixel, but only the pixel locations marked with values are considered for the
two example center pixels. If the luminance of a neighbor pixel under consideration is
larger than that of the center pixel, the corresponding bit is set to ’0’, otherwise ’1’. All
of the comparison results form a 6-bit vector as the output of a mini-census transform.
In the later Raw Cost Scatter module, the cost function is to compute the hamming
distance between two hypothesis pixel’s mini-census vectors.

Using census transform and hamming distance as cost function has been proved to be
very robust to radiometric distortions [19], and much more hardware-friendly than other
methods e.g., Rank filter and Normalized cross-correlation (NCC). Another important
advantage of census transform is that it saves two valuable bits by converting an 8-
bit luminance pixel to a 6-bit census vector. In SAD based cost computation, the
maximum raw cost of two pixels is 255 (8-bit storage), while in hamming distance
calculations the maximum raw cost is only 6 (3-bit storage). If also consider the cost
aggregation over a support region, the mini-census transform significantly reduces the
memory requirements.

3.2.2.2 Adaptive Support Region Construction

Aggregating matching cost in an adaptive support region is the key idea of the Variable-
Cross algorithm. The approach of adaptive support region construction is to decide an
upright cross for each pixel p(xp, yp) in the input frame. As shown in Figure 3.11, this
pixel-wise adaptive cross consists of two orthogonal line segments, intersecting at the
anchor pixel p. The cross of each pixel is defined by a quadruple{h−

p , h
+
p , v

−
p , v

+
p } that

denotes the left, right, up, and bottom arm length, respectively (see Figure 3.12). Since
the cross-based support region is a general concept, there are a variety of approaches to

25



pp

(a) (b) (c)

q
H(q)

U(p)

ph
+

ph
−

pv
+

pv
−

qh
−

qh
+

( )U p

( )H p

( )H q

( )V p

Figure 3.11: Local adaptive cross and support regions on an image
(a) A pixel-wise adaptive cross defines a local support skeleton for the anchor pixel, e.g., p.
(b) A shape adaptive full support region U(p) is dynamically constructed for the pixel p,

integrating multiple horizontal line segments H(q) of neighboring crosses. (c) Sample shape
adaptive local support regions, approximating local image structures appropriately.
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Figure 3.12: Adaptive support region representation
It shows the configuration of a local upright cross H(p) ∪ V (p) for the anchor pixel p, and

the constructed full support region U(p). Pixel q is on the vertical segment V (p).

decide the four adaptive arm lengths. Here we implement an efficient approach based
on luminance similarity: for each anchor pixel p(xp, yp) in the frame, luminance dif-
ference evaluations are performed in the four directions on its consecutive neighboring
pixels in order to find out the largest span r∗ in each direction. The computation of r∗

is formulated in Equation 3.2.

r∗ = Max
r∈[1,L]

(
r
∏

i∈[1,r]

δ(p, pi)
)

(3.2)

In the equation pi = (xp − i, yp) and L is a preset maximum allowed directional arm
length; δ(p1, p2) is an indicator function evaluating the luminance difference between
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the pixel p1 and p2 based on a given threshold value τ .

δ(p1, p2) =

{
1, |Y (p1)− Y (p2)| ≤ τ
0, otherwise

(3.3)

The value of τ is a run-time configurable parameter that controls the confidence level
of luminance similarity. It is set empirically by the end user according to different
applications. Its effect on the benchmark images are discussed in Chapter 5.

Based on the four arms {h−
p , h

+
p , v

−
p , v

+
p }, the adaptive cross of pixel p are given by

Equation 3.4. {
H(p) = {(x, y)|x ∈ [xp − h−

p , xp + h+
p ], y = yp}

V (p) = {(x, y)|x = xp, y ∈ [yp − v−p , yp + v+p }
(3.4)

The shape adaptive full support region U(p) of each frame pixel is therefore built
by integrating all the horizontal segments H(p) of the pixels residing on the vertical
segment V (p).

The output of the support region construction module is a data word containing the
four arm lengths {h−

p , h
+
p , v

−
p , v

+
p }, which are used in the Cost Aggregation and Disparity

Voting modules.

3.2.2.3 Combined Hardware Processing

Because both of the mini-census transform and the adaptive support region construction
are window-based processing, and they all operate on the same data stream (filtered
stereo frames), they are designed to share the same line and window buffers. The left
and right frames are again processed independently in parallel.

In order to compute all the four arm lengths simultaneously, 2×Lmax lines of the filtered
frame are stored in line buffers and a shift register matrix of (2 ·Lmax+1)×(2 ·Lmax+1)
is used for providing all the neighboring pixels for the centered anchor pixel. The
configurations and interconnections of line buffer memory blocks are similar with these
in the median filter module (see Figure 3.7), with different number of blocks. One
important hardware parameter in this module is the maximum allowed arm length
Lmax, which is set to 15 in our implementation. Its effect on the matching accuracy is
duscussed in Chapter 5. To make clear illustrations in Figure 3.13 Lmax is set to 7.

In Figure 3.13, the centered pixel’s mini-census transform and support region are ready
to be computed. Computing the census transform is straightforward: the luminance
values of shaded pixels are compared with the center pixel’s luminance concurrently and
the census vector is obtained by packing the result bits in a certain order. The four arm
lengths in the center pixel’s adaptive cross are also computed in parallel; take the h+

p for
example, first all 7 pixels in the anchor pixel’s right direction are evaluated concurrently
and the corresponding δ(p, pi) values are obtained. Then the packed δ(p, pi) values are
sent to a priority encoder that performs the function of Equation 3.2.

Because the input data stream to this module carries consecutive video frames, pixels
in this window are possibly not form the same frame. To solve the problem, pixel row
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Figure 3.13: Census transform and adaptive support region construction window

and column counters are also implemented in this module. The outlier pixels in this
window are masked before computing the census vector and support regions.

The pipeline latency of the census transform and adaptive support region construction
module is given by Equation 3.5.

Latencyctsr = 15× frame width+ Cctsr (3.5)

3.2.3 Output Logic

The output logic packs all the data words produced by the Pre-Processor and prepare
additional data fields required by the following Stereo-Matcher processor. Content of
the 40-bit output data word is listed below, from most significant bit to least. A data
field followed by ’L’ indicates a value from the left frame, and ’R’ indicates a value from
the right frame, with the same pixel coordinates.

• 4-bit all ’0’

• 6-bit mini-census vector L

• 8-bit horizontal arms (h−
p and h+

p ) L

• 6-bit mini-census vector R

• 8-bit horizontal arms (h−
p′ and h+

p′) R

• 8-bit vertical support region segment (v−p and v+p ) L

Because we set the maximum allowed arm length to 15, a 4-bit word is sufficient to
represent any value in the quadruple{h−

p , h
+
p , v

−
p , v

+
p }. The 4-bit all ’0’ bits are simple

used to pad the data word width to a multiple of 8, as required by the Avalon bus.
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3.3 Design of the Stereo-Matcher Pipeline
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Figure 3.14: Stereo-Matcher processor internal processing pipeline

Overview of the internal processing pipeline of the Stereo-Matcher processor is shown
in Figure 3.14. The Stereo-Matcher processor operates on the data stream coming from
Pre-Processor (DataE). The data from the Pre-Processor is always associated with a
new stereo frame pair and passes through each pipeline stage in the Stereo-Matcher.
Once the final results (L-R disparity maps) are available, the Stereo-Matcher sends
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them to the Post-Processor. In the figure, before the vertical aggregation step there
are two major data paths, denoted by Front and Delay respectively. They work for
the data reuse technique implemented in the vertical aggregation. After the vertical
aggregation step, there are still two major data paths, but now they are associated with
the left and right disparity map respectively.

As a local stereo matching algorithm, the key emphasis of its processing is to find out
the best correspondence for a pixel p(x, y) in the left frame, from a local area in the
right frame. Because the stereo frames are already rectified, this local area shrinks to a
1-dimensional segment of pixels located on the same scanline (see Figure 3.15). Given

Search Direction

p(x, y) p'(x, y)p'(x - 1, y)p'(x - dmax, y)

Figure 3.15: 1-dimensional local search area
The number at each pixel location indicates the raw matching cost

a pair of hypothetical correspondences, i.e., p(x, y) in the left frame and p′(x′, y′) in the
right frame, we define the following variables before inferring the best correspondence.
Here the coordinates of p and p′ are correlated with a hypothetical disparity d ranging
from 0 to dmax(the maximum disparity under consideration), i.e., x′ = x−d and y′ = y.

• Raw Matching Cost: the Hamming distance between their Mini-Census vectors
i.e., HammingDist

(
cvp(x, y), cvp′(x

′, y′)
)

• Correlation Region: the overlapped area of the two pixels’ support regions

• Aggregated Matching Cost: the accumulated raw matching costs in their correla-
tion region i.e., AggCost(x, y, d)

• Aggregated Pixel Count: the total number of pixels in their correlation region
i.e., PixCount(x, y, d)

• Averaged Matching Cost: the aggregated cost divided by the aggregated pixel
count in their correlation region i.e.,

AvgCost(x, y, d) =
AggCost(x, y, d)

PixCount(x, y, d)
(3.6)

Therefore the best correspondence is defined by the hypothetical pair that gives the
minimum averaged matching cost. The hypothetical disparity d that leads to the
minimum averaged cost is recorded as the result disparity dp(x, y) for pixel p(x, y). All
the computed disparities form the disparity map for the left frame.

For a given pixel p(x, y) in the left frame, cost aggregations in correlation regions with
different hypothetical disparities are independent on each other; so it is possible to
compute them all in parallel, and all the aggregated costs and pixel counts are available
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simultaneously as the output of all parallel computing threads. Therefore the minimum
averaged cost is picked out using the Winner-Takes-All method. To make this parallel
computing successful, two key problems have to be solved:

1. Raw matching costs are provided for all computing threads simultaneously.

2. All computing threads are fully pipelined to match the input pixel data rate.

Solutions to the two problems are explained in Section 3.3.1 and Section 3.3.2 respec-
tively. The Stereo-Matcher processor provides disparity maps for both left and right
stereo frames, which are sent to the Post-Processor for L-R Consistency Check that
detects mismatched correspondences caused by occlusion. The modules for generat-
ing both disparity maps are introduced in Section 3.3.3. We also present a method
with aggregation data reuse technique in Section 3.3.2, which significantly reduces the
required line buffer memories.

3.3.1 Raw Cost Scatter and Correlation Region Builder

The task of this module is to provide raw matching costs for all hypothetical disparities
simultaneously. Input data stream to this module carries the census vectors cvp(x, y)
and cvp′(x

′, y′) for pixel p(x, y) in the left frame and pixel p′(x′, y′) in the right frame,
respectively. Because the x′ coordinate of pixel p′ ranges from x to x − dmax for all
hypothetical disparities, an array of shift registers are used to buffer the full disparity
range for pixel p. Assuming dmax = 3, as shown in Figure 3.16, in a certain pipeline

cvp(x, y)

cvp'(x, y) cvp'(x - 1, y) cvp'(x - 2, y) cvp'(x - 3, y)

Raw Cost d0 Raw Cost d2Raw Cost d1 Raw Cost d3

HammingDist

RegL

RegR0 RegR1 RegR2 RegR3

Left frame

Right frame

Figure 3.16: Scattering raw matching costs using shift register arrays

cycle t, the census vector cvp(x, y) arrives in the RegL while in the same cycle the
census vector cvp′(x, y) also arrives in RegR0; meanwhile all the census vectors stored
in the RegR array shift to the right for one position. Therefore the desired Hamming
distances HammingDist

(
cvp(x, y), cvp′(x−d, y)

)
, with d ranging from 0 to 3, are avail-

able simultaneously by comparing all registers’ content in RegR array with the content
in RegL.

Similarly, the horizontal arms (h−
p , h

+
p , h

−
p′ , h

+
p′) for both p and p′ are buffered using the

same technique. Since the correlation support region is defined as the overlapped area
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of two pixel’s support regions, the horizontal arms in each correlation support region
(h−

pc, h
+
pc) are obtained by selecting the shorter arm.

h−
pc =

{
h−
p , h−

p ≤ h−
p′

h−
p′ , otherwise

h+
pc =

{
h+
p , h+

p ≤ h+
p′

h+
p′ , otherwise

As a result, this module provides 4 parallel streams of data, carrying the raw matching
costs and horizontal arms in scanline order for 4 hypothetical disparities. The 4 streams
are scattered into 4 parallel data paths, which lead to the follow-up cost aggregation
modules. In the next cost aggregation step we use fixed vertical arms for correlation
region, i.e., v−pc = v+pc. The adaptive vertical arms v−p and v+p are used in the later
disparity voting step; they are put in the FIFO to bypass the cost aggregation modules.

The latency of this module is a small constant, depending on the implemented pipeline
stages.

Latencyrcs = Crcs (3.7)

3.3.2 Parallelized Cost Aggregations

After the raw cost scatter module, cost aggregations are able to be performed on all
raw cost streams in parallel, and mutually independently by (dmax + 1) parallel com-
puting threads. For each thread, aggregating all the raw costs in a correlation region
is achievable through the line buffer plus register matrix configuration used in the
Pre-Processor. But the arbitrarily shaped 2D support region makes this solution not
hardware friendly. We solve this problem by decomposing the 2D aggregation into
two orthogonal 1D aggregations, i.e., a horizontal step followed by a vertical one (see
Figure 3.17).

q

p

q

p

Sum in the horizontal segments

p 

Sum in the vertical segment

(a) (b) (c)

 

Figure 3.17: Two orthogonal 1D aggregations

Figure 3.17 (a) shows the correlation region of pixel p (shaded region), and q indicates
a pixel lying in the vertical segment of p. First we aggregate all the raw costs in the
horizontal segment of pixel q. As pixel q slides along the vertical segment of pixel p,
we obtain the aggregated cost in the horizontal segment of each q. Next we aggregate
all the horizontally aggregated costs along the vertical segment of pixel p, as shown in
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Figure 3.17 (b - c). The aggregated cost by this two orthogonal 1D process is exactly
identical with the aggregation result in the 2D region, and meanwhile this technique
also simplifies the hardware implementation.

Accordingly we divide one cost aggregation module into two sub-modules, namely Hor-
izontal Cost Aggregation and Vertical Cost Aggregation; they are introduced in the
following two sub-sections.

3.3.2.1 Horizontal Cost Aggregations

The input data stream to a horizontal aggregation module carries the raw matching cost
and horizontal arms (h−

pc, h
+
pc); and the output of this module is the partially aggregated

cost in the horizontal segment of each left frame pixel.

The horizontal partial aggregation for each pixel is performed using integral costs. As

0 a p b(c)

0 ac p b(a)

0 ac p b(b)

 (a, b) =  (0, b) -  (0, c)

Figure 3.18: Integral costs and horizontal cost aggregation

shown in Figure 3.18, assuming pixel p has horizontal arms h−
pc = 3, h+

pc = 5, we first
calculate the integral for each pixel in a scanline, and then the horizontally aggregated
cost of pixel p equals to the difference of the two integrals indicated by h−

pc and h+
pc.

Since the input raw costs come in scanline order, the integral computing unit is imple-
mented with an accumulator, which sends its output to an array of shift registers for
concurrently accessing the two integrals randomly chosen by h−

pc and h+
pc. The hardware

logic diagram is shown in Figure 3.19, assuming the maximum arm length Lmax is 15. A
shift register array of length (2×Lmax+1) is needed for buffering all possible integrals
to determine the horizontally aggregated cost. Once the raw cost of pixel p arrives in
Reg14, its horizontal arms h−

pc and h+
pc also come out from the delay line; therefore the

two boundary integrals indicated by the two arms are selected by the two (L + 1)-to-1
multiplexers. The difference of the two multiplexer outputs is the desired horizontally
aggregated cost, and the pixel count in the horizontal segment is obtained by h−

pc +
h+
pc.

The latency of this module is mainly determined by the maximum arm length Lmax,
because an incoming raw cost has to arrive in Reg14 before its associated aggregation
being able to be computed.

Latencyhagg = Lmax + Chagg (3.8)
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Figure 3.19: Horizontal cost aggregation logic

3.3.2.2 Vertical Cost Aggregations

The input data stream to a vertical aggregation module carries the horizontally aggre-
gated costs and pixel counts associated with a certain hypothetical disparity; and the
output of this module is the fully aggregated cost and pixel count in the correlation
region of each left frame pixel.

Because the input data still comes in scanline order, and the vertical aggregation re-
quires a vertical data vector for each pixel, line buffers are employed for converting the
input data stream into a vertical vector stream. In contrast with the horizontal aggre-
gation, vertical aggregation modules use fixed aggregation span for each pixel instead
of the adaptive vertical arms. This approach has significantly reduced the line buffers
needed for each vertical aggregation module, with negligible influence on the dispar-
ity map quality. Based on our experiments, a vertical aggregation span (Vspan) of 5
(see Figure 3.17 (b)) gives the best trade-off between matching accuracy and hardware
complexity. The vertical aggregation span covers the anchor pixel’s scanline and the
adjacent lines defined by v−pc and v+pc. For fixed aggregation span v−pc = v+pc = vpc and
we define Vspan with Equation 3.9.

Vspan = v−pc + v+pc + 1 = 2× vpc (3.9)

The Vspan is a hardware parameter that determines the depth of the Delay Buffer and
pipeline latency. The effect of Vspan on matching accuracy is introduced in Chapter 5.

Moreover, with fixed vertical aggregation span a more efficient data reuse technique is
applicable. The concept of this technique is illustrated in Figure 3.20. In the figure
the pixels p(x, y), q(x, y + 1) and r(x, y + 2) are located in the same vertical column.
And their correlation regions are shaded in the illustration. Obvioudly, the aggregated
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Figure 3.20: Aggregation data reuse in vertical aggregation
(a): pixel p(x, y) and its correlation region. (b): pixel q(x, y + 1) and its correlation region.

(c): pixel r(x, y + 2) and its correlation region

costs of pixel q(x, y + 1) and r(x, y + 2) fulfill the Equation 3.10.

AggCost(x, y + 1, d) = AggCost(x, y, d)

+AggCosth(x, y + 3, d)

−AggCosth(x, y − 2, d)

AggCost(x, y + 2, d) = AggCost(x, y + 1, d)

+AggCosth(x, y + 4, d)

−AggCosth(x, y − 1, d)

(3.10)

In Equation 3.10 the AggCosth(·) returns the horizontally aggregated cost in the bor-
dered region. Therefore the vertically aggregated cost is reused for vertically adjacent
pixels.

Without the data reuse method, each vertical aggregation module only requires 4 line
buffers to provide a vertical vector, and the fully aggregated cost in a correlation region
is given by summing up the values in the vertical vector. Figure 3.21 shows the line
buffers and aggregation logic configuration without data reuse.

With the data reuse method, the line buffer memories are required to store only one
line of data. The horizontal aggregations are provided by two data paths accordingly.
As shown in Figure 3.14, a Delay Buffer is applied to provide the delayed data flow. In
case the vertical aggregation span is 5, the delay buffer should be large enough to store 5
stereo image lines. In contrast with the distributed line buffers in vertical aggregation
modules, the delay buffer is not duplicated; as a result the overall on-chip memory
consumption is significantly reduced by applying the data reuse method. Figure 3.22
shows the line buffer and aggregation logic configuration with data reuse.

The expense coming with the data reuse method is that it requires two blanking lines
after each frame in order to generate the valid output of the two bottom lines in the
frame. Nevertheless two lines is trivial for common image sizes, especially for high-
definition images and videos. The latency of this module is given by Equation 3.11.

Latencyvagg = 2× frame width+ Cvagg (3.11)
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Figure 3.21: Vertical cost aggregation without data reuse
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Figure 3.22: Vertical cost aggregation with data reuse

After the initial pipeline latency, in each follow-up pipeline cycle an aggregation module
delivers aggregated cost and pixel count in a correlation region associated with a certain
disparity. The aggregation modules are fully pipelined so that in each cycle the result
is also associated with a new pixel, in scanline order. The data flow is illustrated in
Figure 3.23, assuming dmax = 4 and 4 parallel computing threads are implemented.
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Figure 3.23: Pipelined data flow

3.3.3 Winner-Takes-All and L-R Disparity Maps

The averaged cost AvgCost(x, y, d) associated with each hypothetical d is ready to be
computed with the input streams to this module. A straightforward approach to get
an averaged value is to implement a divider for each thread. However dividers are
quite expensive for FPGA in terms of occupied area and hardware resources; moreover,
a divider also causes result precision problems. So instead of using dividers in each
parallel thread, we propose usingmultiply-subtract functions to determine the minimum
averaged cost. The idea is based on the following equivalence.

AggCost(x, y, d0)

PixCount(x, y, d0)
<

AggCost(x, y, d1)

PixCount(x, y, d1)

⇔
AggCost(x, y, d0)× PixCount(x, y, d1) < AggCost(x, y, d1)× PixCount(x, y, d0)

So given (dmax + 1) pairs of AggCost(x, y, d) and PixCount(x, y, d), a tree
structure with multiply-subtract functions and multiplexors selects the minimum
AvgCost(x, y, d), as shown in Figure 3.24, assuming dmax = 4. Here each select

AggCost(x, y,0) PixCount(x, y, 0) AggCost(x, y,1) PixCount(x, y, 1) AggCost(x, y,2) PixCount(x, y, 2) AggCost(x, y,3) PixCount(x, y, 3)

×
Select Unit Select UnitSelect Unit

AggCost(x, y, dwin0) PixCount(x, y, dwin0) AggCost(x, y, dwin1) PixCount(x, y, dwin1)

Select Unit

AggCost(x, y, dwin) PixCount(x, y, dwin)

×

Mux

AggCost

-

Sign Bit

Mux

PixCount

dwin0 dwin1

dwin

Mux

d

(a) Select Unit (b) Select Tree

Figure 3.24: Winner-Takes-All select tree

unit is comprised of a multiply-subtract unit and three multiplexers that track the
WinnerAggCost, P ixCount and associated d respectively. The multiply-subtract unit
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maps perfectly to the dedicated DSP block in our FPGA, with a pipeline latency of
only 1 cycle.

In a certain pipeline cycle t, the computing threads give (dmax + 1) aggregated costs
and pixel counts based on pixel p(x, y) in the left frame and the set of pixels in the right
frame: p′(x − dmax, y) ... p′(x, y). In the next cycle t + 1, aggregated costs are given
by pixels p(x+ 1, y) and p′(x− dmax + 1, y) ... p′(x+ 1, y). As a result, the aggregated
costs based on pixel p′(x, y) in the right frame and the set of pixels in the left frame:
p(x, y) ... p(x + dmax, y) are available from cycle t to cycle t + dmax. This reversed

xx x + dmax

Left View Right View

Figure 3.25: Compute the disparity map of the right image

search (see Figure 3.25) provides the result disparity dp′(x, y) for pixel p′(x, y) in the
right frame. Similarly, dp′(x, y) is selected by the minimum averaged cost associated
with pixel p′(x, y) and the set of pixels p(x, y) ... p(x+dmax, y). The right disparity map
is generated for a L-R Consistency Check, i.e., if pixel p(x, y) in the left frame finds its
best correspondence p′(x−dp(x, y), y) in the right frame, then p′(x−dp(x, y), y) should
also map back to pixel p(x, y) with its disparity dp′

(
x− dp(x, y), y

)
. This relationship

is formulated by Equation 3.12.

dp′
(
x− dp(x, y), y

)
= dp(x, y) (3.12)

The consistency check is performed in the Post-Processor, and here it is important to
generate the right disparity map. Selecting the disparity for pixel p′(x, y) is similar
to the process of selecting the disparity for pixel p(x, y), only with different set of
aggregated costs and pixel counts. As discussed above, the required aggregated costs
and pixel counts for pixel p′(x, y) come consecutively in several pipeline cycles, so we
place a Lineup Buffer before the right winner-takes-all module to store them and provide
all the required ones simultaneously in a certain cycle. To keep the result disparities for
p(x, y) and p′(x, y) synchronized, we also use a similar lineup buffer for the left frame
data. Configuration of the lineup buffers are shown in Figure 3.26, with dmax = 4 and 4
parallel threads. In the configuration, each column is a small dual-port memory block
that buffers the aggregated costs and pixel counts generated in 4 consecutive cycles.
The aggregation results are written into them with a circular addressing pattern. After
4-cycle latency, all the required data for pixel p′(x, y) is available in the right lineup
buffer, with an incremental address pattern; meanwhile, all data for pixel p(x, y) is
also available in the left lineup buffer, but with the same read address. Read address
patterns for the left and right lineup buffers are shaded in Figure 3.26.
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Figure 3.26: Lineup buffers and read patterns

Readout data from the left and right lineup buffers are sent to left and right winner-
takes-all modules respectively, and the computed winner left-right disparities are syn-
chronized at the output ports of the two modules.

The latency of this winner-takes-all and L-R disparity map generator is a small constant,
depending on the implemented pipeline stages.

Latencywta = Cwta (3.13)

3.3.4 Output Logic

The final output of this Stereo-Matcher to the Post-Processor is a 32-bit data word,
including the following fields.

• 8-bit horizontal arms (h−
p and h+

p ) L

• 8-bit vertical arms (v−p and v+p ) L

• 8-bit disparity map result L i.e., dp(x, y)

• 8-bit disparity map result R i.e., dp′(x, y)

The right disparity map is used for checking mismatched correspondence in the L-R
Consistency Check module, and the support regions for the left frame pixels are used in
the Disparity Voting module to improve the disparity map quality. The L-R disparity
maps generated so far is shown in Figure 3.27.
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Left Error Rate = 10.8% 

Figure 3.27: L-R disparity maps generated by the Stereo-Matcher
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3.4 Design of the Post-Processor Pipeline
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Figure 3.28: Post-Processor internal processing pipeline

The internal processing pipeline of the Post-Processor is shown in Figure 3.28. It
takes the L-R disparity maps and support regions of the left frame pixels defined by
the quadruple{h−

p , h
+
p , v

−
p , v

+
p }. The right disparity map is used to check disparity

consistency, and correct mismatched correspondences in the left disparity map. The
double-checked left disparity map is sent to the following disparity voting modules to
further refine its quality. Finally the refined left disparity map passes through a median
filter to remove its speckles. The median filter gives the final disparity map associated
with the left frame, which is used for higher level applications such as view interpolation
or feature detection.

3.4.1 L-R Consistency Check

The task of the L-R consistency check module is to testify whether the two disparity
maps satisfy Equation 3.12 i.e.,

dp′
(
x− dp(x, y), y

)
= dp(x, y)

If dp(x, y) and the corresponding dp′
(
x − dp(x, y), y

)
satisfies this equation, dp(x, y) is

considered as a valid disparity; otherwise dp(x, y) is regarded as a mismatch caused by
occlusions. In the latter case dp(x, y) is replaced by a closest valid disparity.

The input data stream to this module contains synchronized disparities of the left and
right frame respectively, as shown in Figure 3.29. To check Equation 3.12 for each
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Figure 3.29: Synchronized L-R disparity data word

dp(x, y) in the left disparity map, we first buffer a series of both left-right disparities,
as shown in Figure 3.30. The depth of each disparity buffer should be no less than
(dmax + 1). When (dmax + 1) disparities are buffered, the Read Address Generator
provides the read address for dp′

(
x−dp(x, y), y

)
, according to dp(x, y). The Consistency

Check block checks whether the two disparities are identical; if so, dp(x, y) is considered
as valid, and registered as the latest valid disparity; otherwise, dp(x, y) is replaced by the
last registered value. The Delay Line is used to compensate for the address generator
and buffer read latency.
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Figure 3.30: L-R consistency check logic

The latency of this L-R consistency check module is determined by the maximum
allowed disparity range and a few constant pipeline stages.

Latencylrcheck = D + Clrcheck (3.14)

Output of this L-R consistency check module is the corrected left disparity map
dp,cc(x, y), and the right disparity map is discarded. The corrected left disparity map
is shown in Figure 3.31.

3.4.2 Disparity Voting

Disparity voting is to search for the most frequent disparity in a pixel’s support region
as the statistically optimized disparity for the pixel. Precisely, this corresponds to
build a histogram for all disparities dp,cc(x, y) in the support region of pixel p(x, y)
(see Figure 3.32), and pick out the disparity associated with the peak histogram bin.
The philosophy behind this computation is that pixels contained in a local support
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Error Rate = 9.53% 

Figure 3.31: Left disparity map after consistency check
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Figure 3.32: Disparity histogram and voted disparity

region mostly originate from the same scene patch, and hence they very likely share
similar disparities. Experiments show that this processing has considerably improved
the disparity map quality.

Like cost aggregations, the disparity voting also performs on an arbitrarily shaped
2D support region, which complicates the hardware design. To simplify this problem,
here we again decompose the voting in a 2D region into 2 × 1D voting processes (see
Figure 3.33); i.e., the Horizontal Disparity Voting module first searches for the most
frequent disparity in each horizontal segment in the support region of pixel p(x, y), then
the Vertical Disparity Voting picks out the most frequent one in the vertical segment.
This decomposing method does not necessarily provides the same result as the voting
in the 2D region, but it is able to give the same result in most cases. Experiments show
that it only provides a slightly different disparity map compared with the 2D voting
result.

3.4.2.1 Horizontal Disparity Voting

The horizontal disparity voting module is comprised of (dmax + 1) horizontal voting
units. Each of them is responsible for building the histogram bin for a certain dispar-
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Figure 3.33: 2 × 1D orthogonal voting method

ity. The voting unit for disparity 0 is shown in Figure 3.34, assuming the maximum
arm length Lmax = 15. The input to such a unit is a stream containing the consistency-

dp, cc(x, y) Reg0 Reg1 Reg14 Reg15 Reg30......

Compare each register value with 0

Support Region Mask

disparity 0 population vector

disparity 0 population vector

restricted by the horizontal arms

all possible disparities 

in a horizontal segment

Population Counter

...

...

...

...

...

...

histogram bin value of disparity 0

Delay Line
hp+ (x, y)

hp- (x, y)

dp, cc(x + 1, y)

hp+ (x + 1, y)

hp- (x + 1, y)

...

...

(2 x L + 1) shift register array

Figure 3.34: Horizontal voting unit for disparity 0

checked disparity dp,cc(x, y) and the corresponding horizontal arms (h−
p , h

+
p ). The dis-

parities are buffered in a shift register array that has the capacity to store all the
possible disparities in the horizontal segment specified by h−

p and h+
p , which are acces-

sible simultaneously when dp,cc(x, y) arrives in Reg15. In the voting unit for disparity
0, all shift register values are compared with 0, and the related result bit is set to ’1’ if
equal, otherwise ’0’. All outputs of the comparators form a population vector that has
the same number of ’1’ bits as the number of disparity 0. In the next Support Region
Mask stage, the ’1’ bits that do not belong to the h−

p ↔ h+
p segment are inverted by a

mask vector given by h−
p and h+

p . As a result, the mask unit outputs the population
vector for disparity 0 in the horizontal segment of pixel p(x, y); and the actual number
is obtained by the follow-up Population Counter that counts the number of ’1’ bits in
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the population vector.

Similarly, each of the (dmax + 1) horizontal voting units gives the histogram bin value
of the corresponding disparity. So the disparity associated with the histogram peak is
obtained using a comparator tree. The latency of this module is determined by the
maximum arm length Lmax and a few constant pipeline stages.

Latencyhvote = Lmax + Chvote (3.15)

The output of the horizontal disparity voting module is the stream that carries the
voted disparity in the horizontal segment of each pixel p(x, y).

3.4.2.2 Vertical Disparity Voting

The vertical disparity voting module employs the same voting units as the ones used
in the horizontal disparity voting unit, and each unit counts the number of a certain
disparity in the vertical segment of pixel p(x, y). Because the incoming data come in
scanline order, disparities in the vertical segment of pixel p(x, y) are presented using
line buffers instead of shift register array. The line buffer configurations and voting
logic are shown in Figure 3.35, assuming the maximum arm length Lmax = 15. The
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Figure 3.35: Vertical voting logic and line buffers

latency of the vertical voting module is given by Equation 3.16.

Latencyvvote = 15× frame width+ Cvvote (3.16)
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The vertical disparity voting module gives the result of the 2 × 1D voting method, and
the disparity map after this stage is considerably improved. The voted disparity map
is shown in Figure 3.36. To compare with the 2D voting method, the 2D voted result
is also presented.

2D Voting Error Rate= 7.54% 2 x 1D Voting Error Rate = 7.46% 

Figure 3.36: Voted disparity maps

3.4.3 Median Filter and Output

The final median filter, though not critical, is employed to to increase the reliability and
accuracy by removing some spike points in the disparity map. The median filter con-
cludes the whole pipeline of the Post-Processor and the final disparity map associated
with the left frame is output (See Figure 3.37).

Error Rate = 7.17% 

Figure 3.37: Final disparity map
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Stereo Matching SoC
Implementations on FPGA 4
We propose two SoC implementations to verify and evaluate the stereo matching
pipeline design. Their major difference is whether to use a result frame buffer to
store the final disparity maps in the external memory or not. Figure 4.1 illustrates the
implementation with result frame buffer and two Scatter-Gather DMAs (SG-DMA) to
transfer data between the FPGA and the external memory. Another implementation
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Figure 4.1: Proposed SoC with both source and result frame buffer
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Figure 4.2: Proposed SoC with source frame buffer and display

without the result frame buffer but with a DVI-display interface is shown in Figure 4.2.
Their functional differences are introduced in Section 4.2 and Section 4.3. The pro-
posed system is divided into two computing platforms, the PC and the FPGA board,
which will be introduced in Section 4.1. We also discuss the system interconnections,
memory and bandwidth usage estimations in this chapter.

4.1 Overview of the Proposed System

The communication between the PC and the FPGA is based on a JTAG UART link.
JTAG UART is a simplified version of the standard UART interface and implemented
over a USB connection. As a simplified UART, the JTAG UART does not provide
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adjustable baud rates and its data rate is limited. As a result, this link is not suitable
for real-time image and video communications; but due to its simplicity, we choose it
as a transceiver for non-real-time validation.

4.1.1 The PC Tasks

The desktop PC works as the host development and evaluation platform. In the devel-
opment phase, the EDA software e.g., Quartus-II and Nios-II IDE running on the PC
configures and debugs the FPGA hardware and software respectively. In the evaluation
phase, main tasks of the PC are shown in the top part of Figure 4.1 and Figure 4.2.

The first task of the PC is to calibrate the stereo cameras. A PC program receives a
sequence of stereo image pairs captured by the cameras through the JTAG UART link,
analyzes the images and extracts the required rectification data. The essential output
of the calibration program is the rectification matrices, which are used to rectify real-
time stereo videos to make them satisfy epipolar geometry. The rectification matrices
are downloaded to the DDR2-SDRAM on the FPGA board through the JTAG UART
link again. Since the focus of this design work is stereo matching, image acquisition
and rectification modules are not implemented.

Another task of the PC is to verify and evaluate the FPGA processing results. A
PC program downloads test image pairs to the FPGA board and retrieves the resulting
disparity maps, which are compared with the results produced by PC software algorithm
to verify the FPGA hardware development.

4.1.2 The FPGA Tasks

The FPGA chip contains the core subject of this design and implementation, which
is categorized into two parts: digital hardware and embedded software. The whole
design on FPGA is built into an Altera SOPC1 environment, which is a Nios-II soft
processor integrated with memories, peripherals and system interconnections. Altera
has provided abundance of SOPC component cores e.g., block memory, JTAG UART,
DMA and SDRAM controller together with its SOPC Builder tool. The SOPC compo-
nents are connected with each other through the Avalon System Interconnect Fabric [7].
Our proposed stereo matching hardware is also developed as SOPC Builder compatible
components connected with other SOPC peripherals as well as the Nios-II processor.

Most hardware IPs, including our stereo matching cores, provide a memory-mapped
interface that is accessible by software running on the Nios-II processor. Several internal
registers are employed to control each core and monitor its working status. The FPGA is
responsible for all the real-time processing including stereo matching and result display.

1System on a Programmable Chip
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4.2 Introduction to the SoC Hardware

As shown in Figure 4.1 and Figure 4.2, the FPGA hardware is split in two clock domains:
the CPU clock domain and the peripheral clock domain. In our implementation the
CPU clock domain is working at 100MHz, which contains more time-critical components
than those in the 50MHz peripheral clock domain. This split allows Quartus-II to
optimize the hardware placement and routing. Components in the two clock domains
communicate with each other through a clock crossing bridge.

In the peripheral clock domain, the push-button and LED interface are implemented
using Altera Parallel IO Core; they are responsible for receiving configuration signals
from the push-buttons and showing the system status on the LEDs. The JTAG UART
core is connected with the PC through a USB cable and exchanges non-real-time data
with the PC-side program. A timer is also implemented in this domain to work as a
performance evaluation tool. In our future developments, the camera interfaces and
rectification module will also be implemented in this domain. The rectified stereo
frames are written to the DDR2-SDRAM for the follow-up stereo matching processing.

The CPU clock domain contains the Nios-II soft processor that regulates the whole
system behavior. It is equipped with a dedicated on-chip memory block that contains
complete embedded software instructions and run-time program data. The DDR2-
SDRAM interface is implemented using Altera DDR2-SDRAM High-Performance Con-
troller Core, which is a memory-mapped slave component in the SOPC and provides
accesses for multiple masters. In addition, a PLL is also implemented in this controller
by SOPC Builder; the PLL works as the clock source for the CPU clock, peripheral
clock and DDR2 memory interface clock.

Our proposed stereo matching hardware pipeline lies in the CPU clock domain, com-
prised of the aforementioned three coprocessors: Pre-Processor, Stereo-Matcher and
Post-Processor. Each of them has one memory-mapped slave port and several uni-
directional streaming ports. The memory-mapped ports provide accesses for Nios-II
CPU to configure computing parameters e.g., frame resolution, thresholding values at
run-time. The streaming ports work as data highway for transporting image/video
data and processing results around these blocks.

The three coprocessors are not granted direct accesses to the DDR2-SDRAM controller,
but provided by the SG-DMAs. Since the stereo matching cores mostly require con-
tinuous pixel data reads/writes, implementing a random-addressing master interface
for them to access the external memory is not necessary, which complicates the stereo
matching hardware design and makes it more error-prone. Compared with traditional
DMA cores, which only queue one transfer command from the CPU at a time, the SG-
DMA is able to read a series of descriptors stored in the Descriptor Memory and execute
data transactions accordingly, without additional intervention from the CPU. The de-
scriptor series are organized as a linked list and created by the CPU at the beginning
of an automatic transaction sequence; each descriptor specifies the source, destination
and how much data to be transferred. Besides traditional memory-to-memory transfers,
an SG-DMA also supports memory-to-data stream, data stream-to-memory transfers,
which perfectly match the proposed continuous stereo matching data flow.
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In Figure 4.1, two SG-DMAs are implemented to transfer the stereo images and dis-
parity maps respectively. This implementation is used to measure the processing speed
with both source and result frame buffers. Since the stereo matching coprocessors are
all fully pipelined, they do not have internal processing bottlenecks; so their actual
performance depends on the availability of the data source or sink, which is determined
by the efficiency of SG-DMAs and the DDR2-SDRAM controller and possible external
memory accessing competitions. Once the data source or the sink is not ready for pro-
viding/receiving new data, the full stereo matching pipeline also has to stall in order
to wait for them.

The system shown in Figure 4.2 aims at showing the disparity maps directly on a
standard desktop monitor. Off-the-shelf DVI monitors support several standard refresh
rates e.g., 640 × 480 @ 75Hz and 1024 × 768 @ 60Hz with certain pixel clocks. Without
a disparity map frame buffer, the stereo matching processing must be synchronized
with the corresponding pixel clock. In practice the stereo matching cores still work
at 100MHz and the Clockd Video Output core is used for the synchronization with a
clock-domain crossing FIFO. It back-pressures the stereo matching pipeline when the
FIFO is full. This implementation removes the result frame buffer and as a result the
external memory accessing competitions are reduced. Potentially this implementation
is able to offer better processing throughput compared with the Figure 4.1 system, but
if the display refresh rate is less than the pipeline frame rate, the pipeline has to stall.

4.3 Introduction to the SoC Software

The embedded software runs on the Nios-II CPU, a general-purpose RISC processor
designed by Altera for FPGA implementations. Software in our proposed system is
responsible for the following tasks:

• Communicate with the PC program.

Communications with the PC program exchange non-real-time data between PC
and FPGA through the JTAG UART interface.

• Control and monitor the SOPC peripherals.

This is achieved by accessing peripheral registers through memory-mapped inter-
faces.

• Generate and update descriptor memories for corresponding SG-DMAs.

An Scatter-Gather DMA performs multiple transactions as specified by the de-
scriptors stored in its descriptor memory. After one descriptor is processed, or
after a linked list of descriptors are processed, the SG-DMA core generates an
interrupt request to Nios-II CPU, and the CPU calls the related Interrupt Service
Routine (ISR) to update its descriptor memory if necessary.

• Configure stereo matching parameters.

51



Stereo matching parameters e.g., frame resolution and thresholding values are
configurable at run-time. Control signals are specified by the user through push-
buttons and handled by the push-button interrupt service routine.

• Evaluate the system performance.

System performance e.g., stereo matching frame rates are measured by the timer
and analyzed by the embedded software.

The software footprint is small enough to be completely implemented on-chip, and
a dedicated memory block is employed for all the instruction and data storages. The
embedded software is implemented with a round-robin with interrupts architecture [36].
In this architecture, interrupt service routines deal with the most urgent requests of
the hardware and set flags; the main loop polls flags and does any follow-up processing
indicated by the flags.

In our system, interrupt service routines mainly serve for SG-DMAs and push-buttons.
Since SG-DMAs have to deal with the most urgent stereo matching data, their inter-
rupts are assigned with the highest priority. The 2 SG-DMAs all have the same priority
and they are served based on first-come, first-served policy. Other tasks in the main
loop all have the same priority which is lower than all interrupts; different tasks are
handled in a round-robin fashion. The flow chart of task code in the main loop is shown
in Figure 4.3.
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Figure 4.3: Flow chart of the main loop tasks
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4.4 System on a Chip Interconnections

We have chosen the Avalon System Interconnect Fabric as the SoC interconnections.
It is a collection of interconnect and logic resources defined by Altera, which connects
components in an SOPC Builder system. The interconnect fabric is comprised of two
standards [7]: Avalon memory-mapped (Avalon-MM) and Avalon streaming (Avalon-
ST). We have implemented both for different data transfer requirements. Their prop-
erties are introduced in the following subsections.

4.4.1 Avalon Memory Mapped Interconnect

The Avalon-MM interconnect is a partial crossbar switch connecting memory-mapped
slaves and masters. Unlike a full crossbar switch, which allows any number of masters
to connect any number of slaves, the partial crossbar only make connectivities between
masters and a selected number of slaves. Non-active connections in a full crossbar are
removed to reduce the usage of FPGA logic and routing resources. Also in contrast
with a shared bus structure, a partial crossbar allows concurrent transactions issued by
different masters, as long as they do not access the same slave. For masters accessing
the same slave simultaneously, the SOPC Builder generated arbiter logic performs
slave side arbitration. By default, the arbitration algorithm provides equal fairness
for all masters accessing a particular slave, and accesses are granted in a round robin
fashion. Prioritized arbitration is also supported by assigning more arbitration shares to
a particular master in the SOPC Builder. Avalon-MM interconnect employs Dynamic
Bus Sizing [7] to resolve data width differences between masters and slaves.

In our system, for example, the CPU Memory is connected with Nios-II processor
through a dedicated Avalon-MM link, which is always accessible for the processor re-
gardless of other going-on transactions. So during the stereo matching processing, the
CPU is still able to perform some tasks e.g., updating a descriptor memory, with-
out interfering the stereo matching flow. In contrast, the DDR2-SDRAM Controller
is accessed by many masters, sometimes concurrently; therefore the access has to be
granted according to masters’ priorities. In our current implementation, equal fairness
is applied for all masters.

Avalon-MM interconnections in our system mainly take the following responsibilities:

• Work as data and instruction buses between the Nios-II CPU and memories con-
nected to it.

• Allow Nios-II to access its peripherals and transfer control commands and status
information between them.

• Transfer non-real-time data, e.g., data from the JTAG UART link to DDR2-
SDRAM.
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4.4.2 Avalon Streaming Interconnect

An Avalon-ST link creates a point-to-point connection between a streaming source
and a streaming sink port to accommodate the requirements of high-bandwidth, low
latency, uni-directional traffic associated with networking, video and DSP applications.
Since Avalon-ST link carries continuous data streams, it does not require an address
signal on the sink port. Also because its data flow is always point-to-point and uni-
directional, there is no need to distinguish read or write requests. Minimally, an Avalon-
ST interconnect only requires two signals: data and valid, as shown in Figure 4.4; the
sink port only samples data from the source port when both data and valid signals are
asserted.

Figure 4.4: The minimum Avalon-ST interconnect

In our system, the ready signal is also implemented in Avalon-ST links to provide
back pressure. The ready signal is asserted by a sink port when it is ready to accept
data, otherwise ready is de-asserted to pause the data sending from its source port.
Each Avalon-ST link in our system is comprised of data, valid and ready signals (see
Figure 4.5). Because our stereo matching hardware is fully pipelined, it never stops
processing internally as long as its source is valid and sink is ready.

Figure 4.5: Avalon-ST interconnect in our system

Avalon-ST interconnects are responsible for transporting stereo frames , intermediate
stereo matching results and final disparity map frames between processing cores and the
DDR2-SDRAM. All Avalon-ST streams are transferred in progressive scanline order.

4.5 Storage System

Hierarchically, the storage system contains three levels: registers, on-chip SRAM and
off-chip SDRAM. Registers guarantee 0-cycle access latency for all operations, so they
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are responsible for holding the most time-critical data. In addition, since a group of
registers are accessible concurrently, they are also used for data to be processed in
parallel. The on-chip SRAMs are implemented as memory blocks (also called block
RAMs) in our Stratix-III FPGA and used for the following purposes:

• Cache, program and data memory for the Nios-II processor

• Descriptor memories for the SG-DMAs

• Scanline data buffers in the stereo matching coprocessors

• FIFOs for peripherals if necessary e.g., in the Clocked Video Output

The external DDR2-SDRAM is a 1GB DDR2-667 dual-rank SO-DIMM module, with
each rank organized as 64M × 64bit. The SDRAM core is clocked at same frequency
with the CPU clock (100MHz), therefore the data bus between FPGA and DDR2-
SDRAM is working at 200MHz. Because DDR2-SDRAM transfers data at both the
rising and falling clock edge, the local data width provided by the DDR2-SDRAM con-
troller is 256bits (2 × 2 × 64). However because there exists several masters in the
system accessing the only SDRAM, and also because SDRAM has internal access laten-
cies, the DDR2-SDRAM still works not as efficient as the on-chip block RAMs. Higher
efficiency of using the SDRAM is achieved when long read bursts or long write bursts
are issued to the same SDRAM row, which normally implies a continuous addressing
space. To use the SDRAM more efficiently, we pack data words to be processed con-
currently into one larger data word, and read/write them continuously as required by
scanline processing order. For example, the 16-bit data word read by Scatter-Gather
DMA-0 (see Figure 4.1) is comprised of 8-bit luminance pixel from the left video frame
and 8-bit luminance pixel with the same coordinates from the right frame, illustrated
in Figure 4.6.

YL(0, 0) YR(0, 0) YL(1, 0) YR(1, 0) YL(2, 0) YR(2, 0)

8bits 8bits

Start of storage

Figure 4.6: Packed stereo frame data storage

Utilization of the DDR2-SDRAM storage is listed below.

• Stereo frame buffer

Minimally this storage only requires space for 2 stereo frame pairs to provide al-
ternating accesses for the stereo cameras and stereo matching cores. The required
memory space is:

Stereo frame buffer size = 2×frame width×frame height×(2×8bits) (4.1)
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For a VGA resolution (640 × 480) video this amounts to 1.17M bytes. In case
that the raw stereo frames are not required to be preserved, the stereo cameras
directly feed packed stereo frame data to stereo matching blocks and this piece of
storage becomes zero. In another case if a sequence of continuous frame pairs is
required for evaluating the stereo matching performance, this storage also linearly
scales accordingly:

Stereo frame buffer size = N×frame width×frame height×(2×8bits) (4.2)

Where N indicates the desired number of frame pairs.

• Disparity map buffer

This storage, if exist, is similar to the stereo video source part, except that here
it only requires 1 frame of 8-bit disparities for each processed stereo frame pair.
The required memory space is:

Disparity map buffer size = N × frame width× frame height× 8bits (4.3)

Where N indicates the number of disparity map frames, which also equals to the
number of processed stereo frame pairs .

4.6 Bandwidth Utilization Estimations

Bandwidth of a DDR2 SDRAM module is given by Equation 4.4:

Bandwidth = 2 (double data rate)× data bus width× data bus frequency (4.4)

In our implementation, the DDR2-SDRAM data bus width is 64-bit and the data bus
frequency is 200MHz. Therefore the bandwidth of the DDR2-SDRAM is 2 × 64 ×
200MHz = 25.6Gbits/s. To avoid ambiguity, in the context of the thesis Bandwidth
refers to the maximum or theoretical bit rate of a communication channel, and Through-
put (or Bandwidth Utilization) indicates the average bit rate of actual data being trans-
ferred. Throughput of the DDR2-SDRAM is calculated by Equation 4.5:

Throughput = memory bandwidth× efficiency (4.5)

The efficiency is mainly determined by the DDR2-SDRAM controller and the accessing
pattern of applications. The worst-case efficiency happens when the application is
frequently switching between short reads and short writes and memory addressing is
forcing a row to be opened and closed on every transaction [6]. In contrast, the best-case
scenario arises with long read bursts and long write bursts, which implies a continuous
address space to be accessed. The following techniques are applied to improve the
memory accessing efficiency.

• Data words to be processed in parallel are packed into a larger word (e.g., Fig-
ure 4.6) to form a continuous addressing space.
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• All data words are stored and accessed in continuous scanline order to minimize
possible memory row breaks.

• The DDR2-SDRAM controller is implemented using Altera DDR2-SDRAM High-
Performance Controller Core and some parameters are configured to improve its
efficiency e.g., the maximum burst length and address bus ordering (chip select,
bank, row and column).

As shown in Figure 4.1, only the Nios-II processor and SG-DMAs have access to the
DDR2-SDRAM controller. Nios-II only uses the external memory for non-real-time
data, e.g., prepare the stereo frame buffer content at the beginning and upload dispar-
ity maps to the PC finally; so its influence on the real-time throughput is negligible.
In contrast stereo matching cores have to access the external memory for real-time
processing, and the required throughputs by different coprocessors are listed below:

• Pre-Processor

SG-DMA-0 reads stereo frame pairs from the external memory. Its throughput
requirement is given by

Stereo throughput = frame rate×frame width×frame height×16bits (4.6)

In the future developments, if stereo video directly comes from cameras, this
requirement becomes zero for external memory.

• Post-Processor

SG-DMA-1 writes disparity maps to the external memory. Its throughput re-
quirement is:

Disparity throughput = frame rate×frame width×frame height×8bits (4.7)

If disparity maps are directly output to display devices e.g., Figure 4.2, this re-
quirement also becomes zero for external memory.

• Stereo-Matcher

The Stereo-Matcher does not require the external memory as data storage.

The overall bandwidth utilization is therefore estimated by Equation 4.8 and Equa-
tion 4.9 for the two SoC implementations respectively.

Estimated throughput1 = frame rate× frame width× frame height× 24bits (4.8)

Estimated throughput2 = frame rate× frame width× frame height× 16bits (4.9)
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Design Evaluation and
Experimental Results 5
Corresponding to the design considerations discussed in Section 2.4, in this chapter we
evaluate our design in the following aspects.

• The proposed stereo matching algorithm

• FPGA implementation and scalability

• Real-time performance

For the proposed algorithm, we evaluate its accuracy with several hardware and software
design parameters and its robustness. We also evaluate our FPGA implementation
and the design scalability in this chapter. The real-time performance of our design is
evaluated based on both ModelSim simulation and FPGA implementation. Finally the
comparison between our implementation and related work is provided and discussed.

5.1 Evaluation of the Proposed Algorithm

As introduced in Section 3.2.2.3 and Section 3.3.2.2, there are two important hardware
parameters in our design, i.e., the maximum support region arm length Lmax and the
vertical aggregation span Vspan. The two parameters have impact on the logic resource
and memory usage, and should be determined at design time. One software parameter
that is programmable at run time is the support region threshold τ , which is configured
by the Nios-II software. Figure 5.1 and Figure 5.2 show their influence on the stereo
matching accuracy. In the two figures the support region threshold is set to 17. The
curve marked with Vspan = A indicates vertical aggregation with fully adaptive support
region. The figures show that the stereo matching algorithm produces high accuracy
with Lmax ranging from 15 to 20, and Vspan from 5 to fully adaptive; the error rate only
varies a little. Because larger Lmax and Vspan require more logic and memory resource,
we set the two hardware parameters to 15 and 5 respectively.

With Lmax and Vspan fixed, the software parameter τ is still programmable at run time;
its value is configured by the user with push-buttons on the FPGA board or control
commands sent from a host PC. Its effect on the stereo matching accuracy is shown by
Figure 5.3 and Figure 5.4. In the figures, we care most about the NonOcc error rates,
which should be less than 10% in out target implementation. From the figures we
notice that the matching accuracy varies with this software parameter and reaches the
minimum error rates when 15 ≤ τ ≤ 20. By default we set τ to 17. The benchmarked
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Figure 5.1: Lmax-Vspan and error rates with Tsukuba image set
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Figure 5.2: Lmax-Vspan and error rates with Teddy image set

results given in Section 5.4 are computed with the parameter configuration given by
Equation 5.1.

Lmax = 15, Vspan = 5, τ = 17. (5.1)

The left benchmark images, truth disparity maps and our resulted disparity maps are
shown together in Figure 5.5.

Our proposed algorithm is also very robust to luminance bias and radiometric differ-
ences. Figure 5.6(a - b) shows the stereo image set with a luminance bias of +50 on the
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Figure 5.3: Support region threshold and error rates with Tsukuba image set
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Figure 5.4: Support region threshold and error rates with Teddy image set

right camera and the resulted disparity map (Figure 5.6(c)) computed by the Variable-
Cross algorithm [49]. Obviously the stereo matching result severely degrades caused
by the bias. In contrast, Figure 5.6(d) is the disparity map computed by our proposed
algorithm, which is only a bit affected by the luminance bias. The robustness is ob-
tained by the adopted mini-census transform [4] and corresponding Hamming distance
raw cost function.
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Nonocc Error = 3.84% Nonocc Error = 1.20% Nonocc Error = 7.17% Nonocc Error = 5.41% 

Our Results

Left Image

Truth Disparity

Tsukuba Venus Teddy Cones

Figure 5.5: Truth disparity maps and our results

(a) (b)

(d) 

Error: 7.80%

(c)

Error: 98.4%

Figure 5.6: Luminance biased images and the resulted disparity maps
(a): Image taken by the left camera. (b): Image taken by the right camera with +50

luminance bias. (c): Resulted disparity map by the VariableCross algorithm. (d): Resulted
disparity map by the proposed algorithm
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5.2 Evaluation of the FPGA Implementation

5.2.1 Introduction to the FPGA Hardware Resource

FPGA EP3SL150 is chosen as our implementation platform; this FPGA belongs to
Altera 65-nm Stratix III L family that provides balanced logic, memory and multiplier
ratios for mainstream applications [11]. Unlike custom ASICs, the hardware resources
of an FPGA chip are determined at the time it leaves factory. Therefore, knowing the
features and amount of its programmable hardware is essential to any design work.
Its hardware resources that are essential to our design are introduced below, and their
availability is summarized in Table 5.3.

• Programmable logic array blocks (LABs)

The basic programmable logic array block if EP3SL150 is known as adaptive logic
module (ALM) that supports logic functions, arithmetic functions and registers.
The high-level block diagram of an ALM is shown in Figure 5.7. Each ALM

Figure 5.7: High-level block diagram of Stratix-III ALM

is equipped with a fracturable 8-input look-up table (LUT), two dedicated 1-bit
adders, two dedicated 1-bit registers and additional logic enhancements. One
ALM is equivalent to 2.5 traditional 4-input LUT based Logic Elements (LEs).
Utilization of ALMs is performed by Quartus-II software at compile time, and in
most cases users do not have to manually adjust them.

• Memory logic array blocks (MLABs)

MLAB, which adds SRAM memory to the above mentioned LAB, is a superset
of the LAB and includes all LAB features. Each ALM in an MLAB is also able
to work as a 320-bit SRAM block, and its possible aspect ratio configurations are
listed in Table 5.1 [8]. MLABs are distributed over the whole FPGA chip and
very suitable for implementing small delay lines and shift registers.

• Dedicated memory blocks (BRAMs)
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EP3SL150 contains two types of dedicated memory blocks: M9K and M144K. As
their names indicate, one M9K block contains 9K SRAM bits and one M144K
contains 144K bits. Each memory block supports single port, simple dual port1

or true dual port2 mode and multiple aspect ratio configurations (see Table 5.1);
different configurations also affect their achievable performances. BRAMs are
suitable for general purpose memory applications, and in our system they are
employed for processor memory, descriptor memory, FIFO, frame line buffer etc.

Feature MLABs M9K Blocks M144K Blocks

Maximum Performance 600 MHz 580 MHz 580 MHz

Aspect Ratios

16 × 8

16 × 9

16 × 10

16 × 16

16 × 18

16 × 20

8 K × 1

4 K × 2

2 K × 4

1 K × 8

1 K × 9

512 × 16

512 × 18

256 × 32

256 × 36

16 K × 8

16 K × 9

8 K × 16

8 K × 18

4 K × 32

4 K × 36

2 K × 64

2 K × 72

Table 5.1: EP3SL150 on-chip memory features

• Digital signal processing blocks (DSPs)

EP3SL150 has dedicated high-performance digital signal processing (DSP) blocks
optimized for DSP applications. The fundamental building block is a Two-
Multiplier Adder comprised of a pair of 18-bit× 18-bit multipliers followed by a 37-
bit addition/subtraction unit, as shown in Figure 5.8. Each Stratix III DSP block
contains four Two-Multiplier Adder units and other logic enhancements for differ-
ent computing configurations. Stratix III DSP blocks support various computa-

D Q

D Q

A0[17..0]

A1[17..0]

B1[17..0]

B0[17..0]

P[36..0]+/−

Figure 5.8: Basic Two-Multiplier Adder DSP unit

tion modes including multiplication, multiply-add/subtract, multiply-accumulate

1One read port and one write port
2Two read/write ports
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and so on. The available resources under different configurations are summa-
rized in Table 5.2. Among these configurations, we have widely implemented the

Two-Multiplier Adders

9 × 9 

Multipliers

12 × 12 

Multipliers

18 × 18 

Multipliers

36 × 36 

Multipliers
18 × 18 ± 18 × 18

Availability 48 384 288 192 96 192

Configuration DSP Blocks

Independent Input and Output Multiplication Operators

Table 5.2: EP3SL150 DSP block configurations

Two-Multiplier Adder mode to compute Equation 5.2, which is applied in the
Winner-Takes-All step.

Result[36..0] = A[17..0]×B[17..0]− C[17..0]×D[17..0] (5.2)

The overall available resources that are important to this design are summarized in
Table 5.3. To make our design fit the FPGA and scalable for higher-density devices,

ALMs LEs MLAB Blocks MLAB Kbits M9K Blocks M144K Blocks Dedicated RAM Kbits DSP Blocks Two-Multiplier Adders

Availability 57K 142.5K 2850 891 355 16 5499 48 192

Logic Array Blocks Memory Array Blocks Dedicated SRAMs Dedicated DSPs
Resource

Table 5.3: EP3SL150 hardware resource summary

one important principle is to properly map our algorithm to different functional units
and balance their consumption ratios. For example, general shift registers are achievable
using either normal ALMs or MALBs, but the synthesis tool Quartus-II is not intelligent
enough to make the optimal implementation all the time. In this case we have to clearly
specify which kind of resource to be used.

More available resources of the selected FPGA, e.g., phase-locked loops (PLLs), error
correction coding (ECC) and high-speed I/O support, are not introduced here. They
are either not used or automatically handled by Quartus-II.

5.2.2 FPGA Implementation Report

In the stereo matching pipeline implementation, the Pre-Processor is not aware of
any disparity range and the Post-Processor is only slightly affected by the maximum
allowed disparity range. In contrast, utilized hardware resource by the Stereo-Matcher
is mainly determined by the maximum allowed disparity range. As shown in Figure 3.14,
the number of processing modules in the Stereo-Matcher scales with the maximum
allowed disparity range. In practice, the disparity range is determined by the distance
between the scene objects and the stereo camera baseline, and the length of the baseline
itself. So it varies with the target application and corresponding camera setup. In our
implementation, the Post-Processor is set to deal with a maximum disparity range of
64, and the Stereo-Matcher is tested with maximum disparity range of 16, 32 and 64
respectively.

Besides disparity range, the image size also determines the hardware resource utiliza-
tion, especially for the data line buffers. As introduced in Section 5.2.1, the data
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line buffers are implemented with the M9K memory blocks, which are configured with
different data widths according to the computing requirements. With the EP3SL150
FPGA we target for videos with frame width no larger than 1024, so the depths of the
line buffer memories are also set to 1024 (1K). The line buffer depth only limits the
frame width; the frame height is not limited and it only affects the processing time.

Total: 113,600 Util. Total: Util. Total: Util. Total: 384 Util. Total: 5,630,976 Util.

Pre-Processor 3,310 3% 288 1% 2,075 2% 0 0% 417,792 7%

Post-Processor 12,211 11% 536 1% 10,263 9% 0 0% 393,216 7%

Stereo-Matcher 16 8,874 8% 4,864 9% 18,813 17% 60 16% 589,824 10%

Stereo-Matcher 32 17,136 15% 9,728 17% 37,245 33% 124 32% 884,736 16%

Stereo-Matcher 64 33,639 30% 19,456 34% 74,109 65% 252 66% 1,474,560 26%

Stereo-Matcher 64 SoC1 60,296 53% 20,288 36% 94,891 84% 257 67% 3,771,247 67%

Stereo-Matcher 64 SoC2 60,816 54% 20,288 36% 94,980 84% 257 67% 3,752,121 67%

SRAM BitsCombinational ALUTs Memory ALUTs Registers DSP Blocks

8%

15%

30%

9%

17%

34%

10%

16%

26%

17%

33%

65%

16%

32%

66%

Stereo-Matcher 16 Stereo-Matcher 32 Stereo-Matcher 64 

FPGA Resource Utilization

Combinational ALUTs Memory ALUTs SRAM Bits Registers DSP Blocks

Table 5.4: EP3SL150 hardware resource utilization summary

The FPGA hardware resources utilized by different processing modules are summarized
in Figure 5.4. The values following Stereo-Matcher indicate the number of parallel
computing threads implemented in the Stereo-Matcher processor, which equals the
maximum allowed disparity of corresponding implementation. It clearly shows that
the hardware utilization scales with the number of parallel computing threads. The
design scalability is illustrated in Figure 5.5. The scalability figure shows that the
implementation scales nearly linearly with the parallel computing threads, but there
are different scaling factors associated with the corresponding hardware resource. In
the current implementation the required registers (flip-flops) and dedicated DSP blocks
are limiting resources for a larger scale implementation. Balancing techniques include
replacing some dedicated hardware DSPs with LUTs, and reducing the usage of pipeline
registers.
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Design and Implementation Scalability
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Memory ALUTs
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Registers

DSP Blocks

Table 5.5: Design and implementation scalability

5.3 Evaluation of the Real-Time Performance

We evaluate the real-time performance with two approaches: ModelSim simulation and
FPGA implementation. The simulation verifies the functional correctness of our design
model and the implementation demonstrates its applicability and actual performance
in practice.

5.3.1 Performance Evaluation with Simulation

The ModelSim simulation provides the theoretical processing time and latencies. We
have already discussed the hardware processing latencies in Chapter 3, and they are
summarized in Table 5.6. The full pipeline requires a latency about 34 lines of valid

384 × 288 450 × 375 640 × 480 800 × 600 1024 × 768

Median Filter Frame Width + 6 390 456 646 806 1030

Census Transform and

Support Region Builder 
Frame Width × 15 + 19 5779 6769 9619 12019 15379

Output Logic 0 0 0 0 0 0

Raw Cost Scatter and

Correlation Region Builder
4 4 4 4 4 4

Horizontal Aggregation 17 17 17 17 17 17

Vertical Aggregation Frame Width × 2 + 3 771 903 1283 1603 2051

Lineup and WTA 72 72 72 72 72 72

Output Logic 2 2 2 2 2 2

L-R Consistency Check 69 69 69 69 69 69

Horizontal Voting 23 23 23 23 23 23

Vertical Voting Frame Width × 15 + 9 5769 6759 9609 12009 15369

Median Filter Frame Width + 6 390 456 646 806 1030

Frame Width × 34 + 230 13286 15530 21990 27430 35046

Post-Processor

Total

Frame Resolution
Pipeline LatencyProcessing Module

Pre-Processor

Stereo-Matcher

Table 5.6: Stereo matching pipeline latency summary
The latency is measured in cycles and targets for 100MHz with EP3SL150 FPGA

pixel cycles. For video processing, after the initial pipeline latency, valid disparity
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pixels continuously come out of the pipeline in progressive scanline order. Thus the
throughput of the full pipeline is determined by the frame resolution and the vertical
blanking lines required by the aforementioned vertical aggregation step. The pipeline
cycles for processing a full video frame is summarized in Table 5.7.

384 × 288 450 × 375 640 × 480 800 × 600 1024 × 768

Valid Area Frame Width  × Frame Height 110592 168750 307200 480000 786432

Vertical Blanking Frame Width × 2 768 900 1280 1600 2048

Total Frame Width × (Frame Height + 2) 111360 169650 308480 481600 788480

Frame Resolution
Pipeline Cycle Count

Table 5.7: Stereo matching processing speed summary
The speed is measured in cycles and targets for 100MHz with EP3SL150 FPGA

Our ModelSim simulation exactly verifies the latency and processing cycles. Therefore
the theoretical processing frame rate is calculated by dividing the pixel clock with the
total pipeline processing cycles, as shown in Table 5.8.

384 × 288 450 × 375 640 × 480 800 × 600 1024 × 768

111360 169650 308480 481600 788480

25M 224 147 81 51 31

50M 448 294 162 103 63

75M 673 442 243 155 95

100M 897 589 324 207 126

150M 1346 884 486 311 190

Theoretical Frame Rates (FPS)

Pixel Clock

Table 5.8: Theoretical frame rates (FPS) with different pixel clocks

5.3.2 Performance Evaluation with FPGA

We evaluate the real-time performance of our FPGA implementation with the two
proposed SoC architecture presented in Chapter 4. The first SoC (see Figure 4.1 SoC1)
accesses the external DDR2-SDRAM as both source and result frame buffer and the
whole stereo matching pipeline and corresponding DMAs work at 100MHz. To measure
the processing time with this implementation, we first download a pair of rectified stereo
frames to the DDR2-SDRAM through the JTAG UART link; then the Nios-II CPU
triggers the stereo matching processing, which repeatedly computes the same frame
pair for a certain number of times. The software control is illustrated in Figure 4.3.
The computing start and end times are recorded by the on-chip timer and therefore
the corresponding frame rates are obtained. The measured frame rates with SoC1 and
100MHz operating clock are summarized in Table 5.9. As discussed in Section 4.6,
in our implementation the DDR2-SDRAM bandwidth is 25.6Gbits/s; corresponding
throughput and external memory bandwidth utilization are computed by Equation 4.8
and Equation 4.5.
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384 × 288 450 × 375 640 × 480 800 × 600 1024 × 768

111360 169650 308480 481600 788480

Frame Rates 296 193 116 80 47

Throughput (Gbits/s) 0.791 0.786 0.859 0.925 0.889

Bandwidth Utilization 3.09% 3.07% 3.35% 3.61% 3.47%

Frame Sizes

FPGA Frame Rates (FPS) with SoC1 and 100MHz Clock

Table 5.9: FPGA frame rates (FPS) with SoC1 and 100MHz Clock

Comparing the data shown in Table 5.8 and Table 5.9, we notice that the measured
frame rates are about one third of the theoretical maximum attainable performance.
This is because the external memory accessing efficiency is not optimized, which is
determined by a number of factors, such as randomness of addresses, refresh rate,
turnaround times between reads and writes, and burst lengths. During the stereo
matching processing, the SG-DMA-0 in SoC1 (see Figure 4.1) continuously reads stereo
pixels from the DDR2-SDRAM and the SG-DMA-1 continuously writes pixel dispar-
ities back to it. Such back-to-back reads and writes are considered to be the most
inefficient way of using the DDR2-SDRAM. There are at least two approaches to solve
this problem, one is to increase the allowed burst transfer size of the DMAs, and the
other is to add FIFOs before and after the processing pipeline to avoid the frequent
switches between reading and writing the DDR2-SDRAM. Since the proposed stereo
matching pipeline requires continuous pixel reads and writes, FIFOs can be used to
pre-fetch data and buffer results for long burst transfers. We have put the first ap-
proach into practice and it contributes to the performance in Table 5.9. Other possible
optimizations will also be implemented in our future developments.

With SoC2 (see Figure 4.2) and a desktop DVI monitor, we have evaluated our design
and implementation with several standard display specifications. In this case, the stereo
matching pipeline and the SG-DMA-0 still work at 100MHz, but the output disparity
map is synchronized with various pixel clocks. This implementation does not need
a result frame buffer, therefore possible external memory accessing competitions are
relieved. This implementation has the potential to provide higher frame rates than the
SoC1. Our reported performance 1024 × 768 @ 60FPS is based on this implementation.
The implementation passes tests with all frame sizes and frame rates listed in Table 5.10;
corresponding throughput and external memory bandwidth utilization are computed
by Equation 4.9 and Equation 4.5.

640 × 480 640 × 480 800 × 600 800 × 600 1024 × 768

308480 308480 481600 481600 788480

Pixel Clock (MHz) 25.17 31.5 40 49.5 65

Frame Rates 60 75 60 75 60

Throughput (Gbits/s) 0.296 0.370 0.462 0.578 0.757

Bandwidth Utilization 1.15% 1.45% 1.81% 2.26% 2.95%

FPGA Frame Rates (FPS) with SoC2 and Standard Pixel Clocks

Frame Sizes

Table 5.10: FPGA frame rates (FPS) with SoC2 and standard pixel clocks

The performance evaluations show that the proposed implementation is able to deliver
real-time high-definition stereo matching with very low external memory bandwidth
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utilization. It is also flexibility adaptive to various standard pixel clocks. On one hand,
the external memory accessing efficiency can be improved to increase the achievable
frame rates; on the other hand, the reserved bandwidth can also be used for other
applications such as image rectification and viewpoint interpolation. To the best of our
knowledge, we have achieved the fastest processing speed (60 frames per second) for
high-definition (1024 × 768) stereo matching.

5.4 Comparison to Related Work

A well known stereo matching algorithm benchmarking metric is presented on the
Middlebury Stereo Evaluation website. A disparity map produced by a stereo matching
algorithm is compared with the ground truth disparity map; if the disparity values
are not identical in the two maps, it is regarded as a bad matched pixel. Besides
comparing all pixels in the image, two more additional metrics are also given in the
evaluation results i.e., nonocc and disc, which denotes non-occluded regions and near
occluded regions respectively. The near occluded regions are formerly referred to as near
discontinuities, and qualify as the most difficult areas for stereo matching algorithms
to solve.

The benchmarked performance of our implemented algorithm is shown and compared
with other work in Table 5.11. The algorithm is based on VariableCross [49] shown
in the table. Although the benchmark provides a fair comparison among error rates

Image Set

Image Size

Disparity Range

Evaluation Method nonocc all disc nonocc all disc nonocc all disc nonocc all disc

VariableCross [49] 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

RealtimeBFV [50] 1.71 2.22 6.74 0.55 0.87 2.88 9.90 15.0 19.5 6.66 12.3 13.4 7.65

RealtimeBP [46] 1.49 3.40 7.87 0.77 1.90 9.00 8.72 13.2 17.2 4.61 11.6 12.4 7.69

Chang et al. 2010 [4] N/A 2.80 N/A N/A 0.64 N/A N/A 13.7 N/A N/A 10.1 N/A N/A

Proposed 3.84 4.34 14.2 1.20 1.68 5.62 7.17 12.6 17.4 5.41 11.0 13.9 8.20

FastAggreg [39] 1.16 2.11 6.06 4.03 4.75 6.43 9.04 15.2 20.2 5.37 12.6 11.9 8.24

OptimizedDP [34] 1.97 3.78 9.80 3.33 4.74 13.0 6.53 13.9 16.6 5.17 13.7 13.4 8.83

RealtimeVar [26] 3.33 5.48 16.8 1.15 2.35 12.8 6.18 13.1 17.3 4.66 11.7 13.7 9.05

RTCensus [20] 5.08 6.25 19.2 1.58 2.42 14.2 7.96 13.8 20.3 4.10 9.54 12.2 9.73

RealTimeGPU [43] 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5 9.82

Jin et al. 2010 [23] 9.79 11.56 20.29 3.59 5.27 36.82 12.5 21.5 30.57 7.34 17.58 21.01 17.24

Chang et al. 2007 [3] 21.5 21.7 48.7 16.5 17.8 29.9 26.3 33.6 35.1 24.2 32.4 31.0 N/A

Stereo Matching Error Rates (Bad Matches%)

Average 

 Bad Pixel

Rate

Tsukuba Venus Teddy Cones

384 x 288 434 x 383 450 x 375 450 x 375

16 20 60 60

Table 5.11: Stereo matching algorithm error rate benchmark
The algorithms and corresponding implementations are ordered according to the averaged

bad pixel rate

of different algorithms, it still has some insufficiencies, e.g., it does not evaluate the
algorithm’s robustness to luminance bias and radiometric differences; and more im-
portantly, the processing speed is not evaluated in this benchmark. To improve the
robustness of VariableCross algorithm and enable efficient hardware implementations,
we make some trade-offs so the result is reasonably a bit worse than VariableCross.
Nevertheless, the modified algorithm still demonstrates even better performance than
VariableCross on the Teddy and Cones image sets, which feature higher resolution and
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disparity range. On the other hand, VariableCross is implemented on CPU and achieves
very limited frame rates; while the proposed algorithm with FPGA implementation has
significant improvement regarding processing speed.

Table 5.12 shows the processing speed comparisons between our implementation and
other reported real-time implementations. The processing speed of different systems is

Implementation Disparity Range Frame Rate MDE/s

Jin et al. 2010 [23]
1 x FPGA

Virtex-4 XC4VLX200-10
64 230 @ 640 x 480 4521

Proposed 
1 x FPGA

EP3SL150
64 60 @ 1024 x 768 3019

RTCensus [20] GPU GeForce GTX 280 60 105.4 @ 450 x 375 1067

Chang et al. 2010 [4] ASIC UMC 90nm 64 42 @ 352 x 288 272

RealtimeBFV [50] GPU GeForce GTX 8800 64 12 @ 450 x 375 129

Chang et al. 2007 [3] DSP TMS320C64x 60 9.1 @ 450 x 375 92

RealTimeGPU [43] GPU Radeon XL1800 16 43 @ 320 x 240 53

RealtimeVar [26] CPU Pentium 2.83GHz 60 3.5 @ 450 x 375 35

RealtimeBP [46] GPU GeForce GTX 7900 16 16 @ 320 x 240 20

FastAggreg [39] CPU  Core Duo 2.14GHz 60 1.67 @ 450 x 375 17

OptimizedDP [34] PC 1.8GHz 60 1.25 @ 450 x 375 13

VariableCross [49] CPU Pentium IV 3.0GHz 60 1.21 @ 450 x 375 13

Stereo Matching Frame Rates (Frames per second)

Table 5.12: Stereo matching algorithm frame rates
The algorithms and corresponding implementations are ordered according to the MDE/s

given in frames per second (FPS) and, more meaningfully, in million disparity evalua-
tions per second (MDE/s).

MDE/s = Image Width× Image Height×Disparity Range× FPS (5.3)

Clearly, our implementation demonstrates very high frame rates compared to other
implementations. Our implementation and the one proposed by Jin et al. [23] are both
fully pipelined design and the frame rates are not limited by the computing pipeline
itself. The frame rate difference between the two implementations is caused by differ-
ent measurement methods. In addition, our implementation achieves real-time high-
definition performance and higher matching accuracy compared with Jin’s work. For
FPGA implementations, the achievable resolution is usually limited by the available
on-chip memories, used as line buffers etc. Thanks to the mini-census transform, the
required on-chip matching cost storage is reduced a lot. Moreover, we have also ap-
plied data-reuse technique in the cost aggregation step to further reduce the memory
consumption. On the other hand, CPU and GPU based implementations do not have
resolution limitations, however, they hardly achieve real-time performance with high-
definition images. To the best of our knowledge, our implementation has achieved so
far the best processing speed on high-definition images.
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Conclusions and Future Work 6
This chapter summarizes the contributions of this thesis and concludes the thesis by
suggesting valuable optimizations and future research and development directions.

6.1 Conclusions

This thesis has proposed an improved stereo matching algorithm suitable for hardware
implementation based on the VariableCross and the MiniCensus algorithm. Further-
more, we provide parallel computing hardware design and implementation of the pro-
posed algorithm. The experimental results have proved that our work has achieved
high speed real-time processing with programmable video resolutions, while preserving
high stereo matching accuracy. The online benchmarks also suggest that this work has
achieved leading matching accuracy among declared real-time implementations. To the
best of our knowledge, we have achieved the fastest processing speed (60 frames per
second) for high-definition (1024 × 768) stereo matching.

The implementations have satisfied our design targets discussed in Section 2.4. Regard-
ing the algorithm, the experimental results suggest that the combination of Mini-Census
transform and the VariableCross stereo matching algorithm not only delivers very high
matching accuracy, but also remains robust to radiometric and luminance differences.
The hardware design proves that the cost aggregations with different disparity hypoth-
esis are suitable for parallelization and pipelined systolic array processing. We have also
proposed various modifications that are more hardware efficient than the VariableCross
algorithm, without degrading the matching accuracy. These modifications simplify the
hardware implementation so that more parallel computing threads and high-definition
processing are supported on a chosen FPGA chip.

6.2 Summary of Chapters and Contributions

The proposed stereo matching algorithm and real-time implementation are motivated
by a viewpoint interpolation application, which provides computer synthesized view-
point for eye-gazing video conferences. The concept and proposed setup for the eye-
gazing viewpoint interpolation are presented in Chapter 1. The focus and major con-
tribution of this thesis work is that we have solved the major computing bottleneck,
stereo matching, in the viewpoint interpolation processing pipeline.

Chapter 2 has introduced state-of-the-art stereo matching algorithms and various com-
puting platforms being used for efficient implementations, which include high perfor-
mance CPU, GPU, DSP, FPGA and ASIC. Nevertheless, these related work either
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suffers from low stereo matching accuracy or only partially meets real-time require-
ments, especially for high definition image/video processing. To achieve both high
speed and quality stereo matching, we have presented our design considerations and
proposed solutions for a more advanced implementation. Finally the Altera EP3SL150
FPGA and the Terasic DE3 development board are selected as our implementation plat-
form and we have successfully achieved the desired matching accuracy and real-time
performance. Comparisons with previously related work are presented in Section 5.4.

Chapter 3 has elaborated the algorithm-hardware co-design development scheme being
used in this thesis work. We first propose the data-level (also known as loop-level) par-
allel computing architecture for concurrently evaluating hypothetical disparities in the
disparity range. Then we present the proposed algorithm and corresponding hardware
pipeline design in a top-down approach. The full stereo matching pipeline is divided
into three major processing modules, i.e., pre-processing, stereo matching and post-
processing. In hardware their functions are performed by three co-processors i.e., Pre-
Processor, Stereo-Matcher and Post-Processor, respectively. Massive data-level paral-
lelizations are mainly implemented in the Stereo-Matcher processor, corresponding to
the maximum allowed disparity range. In the other two co-processors data and bit
level parallelism are also applied, for example the left and right images are processed in
parallel whenever possible. Besides parallel computing, all co-processors are also fully
pipelined in each processing step, which is the key to enable the highest throughput.

In Chapter 4 we have provided two reference SoC designs utilizing our stereo matching
co-processors, soft processor (Nios-II) and various on-chip peripherals including DMAs,
DDR2-SDRAM controller and block memories. The SoC1 design accesses the external
DDR2-SDRAM as both source and result frame buffer, which is a practical use case
with other higher level applications. The resulted disparity maps in DDR2-SDRAM
provides by SoC1 are also uploaded to the PC to verify the hardware processing results.
In contrast, the SoC2 design avoids the result frame buffer and directly outputs resulted
disparity maps on a standard desktop DVI monitor. Because of accessing competitions,
refresh time and turnaround between read and write problems, the external memory
bandwidth is hardly used very efficiently. So we try to use the SoC2 implementation to
achieve better real-time performance than SoC1. The SoC2 design and implementation
also prove that our stereo matching IPs is perfectly compatible with the Avalon system
interconnect standards and work properly with other Avalon-compatible components
such as the IPs provided by Altrea’s Video and Image Processing (VIP) Suite. In this
chapter we also estimated the memory and bandwidth utilizations with several derived
formula, which provide reference for future optimizations and application developments.

Chapter 5 evaluates the overall design and implementation in various aspects corre-
sponding to the design considerations proposed in Chapter 2. The evaluation results
show that this work has achieved our desired matching accuracy, robustness, real-time
performance and design scalability. It also shows several potential problems with the
current implementation, which will be solved or optimized in our future research and
developments.
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6.3 Future Work and Application Developments

Regarding the current FPGA implementation, there are at least two optimization plans
to further improve its real-time performance.

1. Add FIFOs between DMAs and DDR2-SDRAM controller to avoid frequent
switches between reads and writes.

As shown in Section 5.3.2, the DDR2-SDRAM bandwidth utilization is very low.
This accessing efficiency can be improved to increase the achievable frame rates;
alternatively, the reserved bandwidth can also be used for other applications such
as image rectification and viewpoint interpolation.

2. Balance the hardware resource utilizations

Although the proposed architecture is scalable, the FPGA implementation reports
in Section 5.2 expose that the consumed FPGA resources have different scaling
factors according the implemented parallel computing threads. Since the chosen
FPGA has fixed hardware resources, balanced resource utilizations are achiev-
able by replacing some dedicated hardware DSPs with LUTs, and reducing the
usage of pipeline registers. FPGA vendors also provide products with various
resource allocations, targeting different application types. So it is also possible to
choose a more suitable FPGA chip for this implementation or use ASIC design to
circumvent the hardware resource limitations.

To enable a more complete function set in a single chip, the image acquisition and cam-
era rectification modules are also suggested to be implemented together with the stereo
matching pipeline. If camera and rectification modules are also Avalon-compatible,
we believe the source frame buffer (in DDR2-SDRAM) can also be removed and the
processing pipeline including image acquisition, rectification and stereo matching does
not require any external memory access.

With real-time stereo matching processing, various applications are feasible with the
stereo matching results, the disparity maps. The eye-gazing viewpoint interpolation
is an potential application, which also motivates this thesis research. Other possible
applications include free-view TV, object tracking and gesture controlled devices and
video games.
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