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Abstract

Mutation testing is a way to test the effectiveness of a test suite for catching bugs
in a given piece of code. Writing these tests manually can be cumbersome and time-
consuming. Automated tools can be used to generate tests that achieve a high mutation
score. The output of these tools is often very hard to understand for humans, and
therefore rarely used as actual test suites for software programs. Because LLMs have
been shown to be able to generate programs that can be more easily understood by
humans, we ask if these LLMs can be used for improving or generating tests for the
purpose of mutation testing. Some LLMs run in the cloud, while others run locally.
Cloud-based LLMs such as ChatGPT or Copilot are not always an option because
of privacy concerns, speed, or regulations, but do not require possession of hardware.
Local LLMs do not have the privacy concerns, but sometimes require large amounts
of hardware to be available. This paper will focus on local LLMs that can be run in
a computationally restricted environment. We present an automated approach to use
a local LLM to improve the mutation score of existing test suites. We compare three
different models (DeepSeek Coder, Code Llama and Codestral), evaluated on publicly
available datasets. Using this approach, we were able to successfully generate unit
tests that, combined with the existing manually written tests, are able to increase the
mutation score around one third to half of the time depending on the model.

1 Introduction

As more and more of society becomes reliant on software, having proper tests for this
software becomes very important to assert its quality [4]. Writing tests for software can be
cumbersome and time consuming [I1], which often leads to developers not writing tests at
all [I5]. To solve this, Search Based Software Testing (SBST) tools such as EvoSuite [19] and
Randoop [34] have been created to automatically generate tests. SBST is an effective way to
automatically generate tests as shown in SBST competitions [29]. One downside of the tests
generated by these tools is that they are often very complex [30] and hard to understand
by humans [2| 23]. Furthermore, due to the oracle problem [8], these tests assume a correct
code base and therefore still have to be verified by a human developer.

Recent LLMs (Large Language Models) are able to generate comprehensible tests [21],
as well as generate tests from scratch [37]. Using LLMs to generate or improve tests has its
own problems however. Technical problems exist such as generating failing, flaky [27, [30], or
non-compiling tests [3]. The resources required to run LLMs can be prohibitively expensive.
For example, the LLAMA2-70B model already requires almost €100,000 in hardware to run
[41]. In cases where private source code is involved, it may not be an option to provide the
source code to external parties running the LLM. When using externally hosted models, the
data provided to these models is often stored and used for training purposes by the hosting
party [18]. In the past, private information has already leaked via inference or extraction
attacks [44]. When externally hosted models are an option, these services may become slow
or unrespousive due to increasing popularity and query volume [I7]. Running the LLM
locally ensures that any source code provided to the LLM will not end up in its training set,
preventing leaks via the aforementioned attacks.

This research aims to investigate the effectiveness of a solution using a local LLM running
in a computationally constrained environment to overcome these problems. In our approach
we compare three different models to answer the main research question:

e How effective are local LLMs running in constrained environments at increasing mu-
tation score?



For the models we use Deepseek Coder 6.7B|[26], |Code Llama 2 13B| [35] and Codestral 22B
[I]. This provides us with models of different sizes, which can still be run on commodity
consumer hardware. The largest model (Codestral) can run on systems with at least 20GB
of video memory. This includes consumer graphics cards such the single Nvidia RTX 3090
used for this research, or an Apple Macbook with at least 24GB of unified memory.

Our approach uses these models with a 1-shot approach to generate new test cases, given
the source code of the class under test. The resulting tests are extracted and added to the
test suite. We then run the new test suite, removing failing or non-compiling tests until a
working test suite is present. To calculate the mutation score of the resulting test suite, we
use [pitest. As a benchmark, we selected classes from GitHub, as well as the SF110 corpus
of classes [20] to form a representative set of classes. The classes under test are selected
based on cyclomatic complexity [31] and lines of code to avoid selecting classes that are too
simple or too large for the context size of the models. With this approach, we were able to
increase the mutation score compared to the manually written test cases for 4 to 6 out of
12 classes in the benchmark, depending on the model.

In the rest of this paper we present our method of using these models in more detail,
and provide a statistical analysis of its performance.

2 Background and Related Work

The concept of test generation is not new, going back to at least the late 1970’s [I3]. Since
then, multiple different ways of going about test generation have been developed such as
fuzzing [32]. Fuzzing aims to compromise a program by sending in random, unexpected
or invalid data. Other approaches are search based such as EvoSuite [19] and Randoop
[34]. These techniques can also be combined with Al Blasi et al. [9] were able to combine
Randoop with Natural Language Processing to improve unit test generation.

Most of this research, however, uses coverage metrics to evaluate the quality of the gen-
erated tests. Past research has shown that the ability of a test suite to detect bugs is only
loosely related to metrics such as line- or branch coverage [10, 22} 28]. Still, tools for gener-
ating tests with high mutation score already exist. EvoSuite, for example, has a parameter
setting to specifically search for tests that increase mutation score. The downside of such
tools is that the tests they generate are often very complex [30] and hard to understand by
humans [2, 23]. This is where LLMs could come in, as they have demonstrated the ability
to generate tests that are easily understandable by humans [21].

Using LLMs for test generation is far more novel, as it has only been recently that
LLMs have become adept at a variety of tasks. This has caused a surge in LLM-based
research, including software test generation. Tools that use LLMs for test generation have
been shown to be able to successfully generate tests that improve on the existing code base
[3]. Furthermore, large cloud-based models such as ChatGPT are able to produce unit tests
without errors or human intervention [24].

This is not to say that no research on LLMs with regards to mutation testing has been
done. It has been shown that LLMs can be effectively used to suggest mutations, which
results in being able to generate test suites that cover mutants which cannot be produced
using standard mutation operators [39]. Feeding surviving mutants into an LLM has also
been shown to be an effective way to increase mutation score [I6]. So far, no research has
been done on using publicly available LLMs which can run in computationally restricted
environments, specifically for increasing mutation score.
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3 Approach

We propose a flexible system, where the model used for test generation can be easily in-
terchanged. This enables the user to change to a different model, for instance depending
on the release of new models or hardware specific limitations. A high-level overview of the
workings of the model is given in Figure[l] The sytem takes as input some Java source code,
including manual tests. The source code of the class under test is provided to the model,
which is then prompted to generate extra tests. The tests are extracted from the model
output and added to the original code corpus. For every generated test, we run the new test
suite to find any compilation errors or failing tests. These are then removed, after which the
test suite is run again. This eventually yields a new test suite, with added tests generated
by the model. Mutation scores are then calculated for the manual tests, generated tests,
and a test suite containing both sets of tests.

Prompt model to
Extract class b Add tests -
— generate tests Run test suite
source code to corpus
from source code

Calculate Yes | Test suite passes| No | Remove
mutation scores and compiles? failing tests

Figure 1: Flowchart of the proposed system

For the models we selected three options with different hardware requirements:

e A “small” model: Deepseek Coder 6.7B [26] version 9e¢221e6 with 8-bit quantization
(approximately 8GB of video memory).

e a “medium” model: Code Llama 2 13B| [35] version [82f1dd9| with 8-bit quantization
(approximately 16GB of video memory).

o A “large” model: Codestral 22B [I] version OeGabel with 6-bit K-quantization (ap-
proximately 24GB of video memory).

These models were selected because of their high performance compared to other models of
the same size on benchmarks such as HumanEval [I2] and MBPP [7].

We use a simple prompt to generate the tests: “Generate junit 4 tests for the following
Java class: <source code here>”. This prompt does not contain any instructions for the LLM
to specifically target mutation score when generating tests. Preliminary testing showed that
the models do not seem to have a notion of mutation score or mutation testing. Including
this in the prompt made no difference to the generated tests, and was therefore omitted.

When the model has generated new source code, the tests are extracted and added to the
original corpus, yielding a test suite containing both the manually written and automatically
generated tests. These tests may contain false assertions or may not compile. Preliminary
testing was done to explore the effectiveness of a dynamic system, where the output of the
generated test suite is fed back to the model to make improvements or fix errors. During
testing, the models were found to not be suitable for this approach. Out of 15 attempts,
the models were able to fix a non-compiling test 2 times, although the test still did not pass
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after that point. The most common reason for this is the limited context length of these
models. Feeding back information into the model can quickly exceed this limit, causing
the model to “forget” the initial prompt or class under test. In the vast majority of cases,
the model started outputting random characters, only stopping when the generation was
manually terminated. We therefore opted to implement a static 1-shot approach and take
the corresponding speed benefits, foregoing a dynamic approach. In the static approach,
we only run the new test suite to discover which tests are problematic. Tests with failing
assertions and tests that cause compilation errors are then removed until a working test
suite is left.

4 Study Design

This section describes the methods and benchmark we will be using to evaluate the perfor-
mance of our system. This evaluation was chosen in such a way that it answers the main
research question:

e How effective are local LLMs running in constrained environments at increasing mu-
tation score?

4.1 Performance evaulation

To evaluate the performance of our approach, we will mainly be looking at the resulting
mutation score (higher is better). Multiple mutation scores are calculated. The mutation
score with only the manually written tests, the mutation score of only the generated tests,
and the mutation score achieved when combining both test suites. Afterwards, we will take
the mutation score of the manually written tests as a baseline, and the mutation score of
the combined test suites as the performance of the system.

Research has shown that weak mutation is sufficient for obtaining relevant results for
research purposes [33]. For calculating the mutation score, we use ppitest with the default
parameters and mutators, which covers weak mutation. This process is repeated for every
class in the corpus.

In order to be able to perform meaningful statistical analysis, we repeat the described
process 6 times for every model and class. To measure the statistical significance of the
results, it is important to provide suitable statistical evaluation. We will therefore provide
the results of Welch’s t-test as well as the Vargha-Delaney effect size [40], which have been
shown to be suitable for this research [6].

We also measure the runtime of the system. To remain consistent, we run all com-
putations on the same machine sequentially, keeping interfering processes to a minimum.
The system used for this research contains the following: AMD Ryzen 7 5800X 8-Core (16
threads) processor @3.8-4.7GHz, 32GB of memory @3200MHz, and a single Nvidia RTX
3090 with 24GB of video memory.

4.2 Benchmark

For the benchmark we want to use a sufficiently complex and representative set of classes.
Testing the system on very simple classes will give a misrepresentation of the performance
of the system, and testing on unrepresentative classes makes the results poorly generalizable
to other classes. To avoid selecting classes that are too simple, we only selected classes
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with a McCabe/cyclomatic complexity [31] above 10. To mimimize the risk of selecting
unrepresentative classes, we selected classes from multiple different projects. Furthermore,
code hosted on GitHub is almost certainly part of the training set of the models, while the
SF110 corpus of classes [20] is most likely not (it is available on SourceForge instead). Past
research has already shown that LLMs perform better when writing unit tests for Java code
that is posted on GitHub, versus Java code that is not (SF110) [38]. To avoid giving the
models an unfair advantage, we selected a combination of classes hosted on GitHub (Apache
Commons) and the SF110 corpus of classes [20].

Because local LLMs have a limited context length, we can not select classes that are too
large. Larger models generally support larger context sizes, but we want to avoid selecting
classes that can not be processed by all three models. Therefore, we also impose a line limit
of 250 lines to the classes in the benchmark. The collected corpus used as a benchmark can
be found in Figure 2]

Class Package Source CC | LOC
Util org.apache.commons.cli Apache Commons | 16 33
ArrayFill org.apache.commons.lang3 Apache Commons | 17 50
Distance org.jcvi.jillion.assembly.ca.frg SF110 23 95
IlluminaUtil org.jcvi.jillion.trace.fastq SF110 31 106
Vector jigl.math SF110 53 139
AbstractNFeAdaptadorBean | br.com.jnfe.base.adapter SF110 25 21
StringUtils org.jsecurity.util SF110 49 157
UnsyncBufferedInputStream | com.liferay.portal.kernel.io.unsync SF110 48 173
PrefixParser org.pdfsam.console.utils.perfix SF110 71 219
DateTime dk.statsbiblioteket.summa.plugins SF110 22 97
StringMap dk.statsbiblioteket.summa.common.util | SF110 25 80
OpMatcher org.templateit SF110 27 90

Figure 2: Overview of the corpus of classes used as a benchmark with cyclomatic complexity
(CC) and lines of code (LOC) per class.

5 Results

In this section we present the results of using our system to generate tests. We provide
an overview of the mutation score achieved on the benchmark corpus, the runtime of the
system, and a statistical evaluation.

5.1 Mutation score

In this section we peresent the mutation scores that were achieved with our approach.
Detailed results with exact mutation scores are available in Appendix [A] A mutation score
of 0% means that the model was not able to generate any compiling tests.
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Combined mutation scores for Deepseek Coder 6.7B
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Figure 3: Combined mutation scores for Deepseek Coder 6.7B. The blue bar indicates the
base mutation score, the orange bars indicate the mutation score for runs 1-6.

Combined mutation scores for Code Llama 13B
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Figure 4: Combined mutation scores for Code Llama 13B. The blue bar indicates the base
mutation score, the orange bars indicate the mutation score for runs 1-6.



Combined mutation scores for Codestral 22B
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Figure 5: Combined mutation scores for Codestral 22B. The blue bar indicates the base
mutation score, the orange bars indicate the mutation score for runs 1-6.

Combined mutation scores for Deepseek Coder 6.7B

100 A -8
-
_ 80- ! = o o
g = . O —
(0]
g 60 a1
g =
c [ ]
S i
5
= 20
0 o o
N e & & s e S <
R 4@"@ & &50\ @"b& & & S &
o & PSSP
& & T & ¢ A N
® &
QQ? ‘{\Q}
S S
o &
g N
W @
Class

Figure 6: Combined mutation scores for Deepseek Coder 6.7B. The solid blue dot indicates
the baseline.



Combined mutation scores for Code Llama 13B
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Figure 7: Combined mutation scores for Code Llama 13B. The solid blue dot indicates the
baseline.

Combined mutation scores for Codestral 22B
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Figure 8: Boxplot with combined mutation scores for Codestral 22B. The solid blue dot
indicates the baseline.



5.2 Runtime

Below we present the runtime of generating and running tests with our approach. The
runtime measures the time taken for generating the tests, inserting them into the test suite,
and running the test suite (possibly multiple times) to remove problematic tests.

Test generation and removal runtime for Deepseek Coder 6.7B

35
30
2 2
5 -
S °
E ?
. o)
320 = Iil l‘l‘l =
=
- = IEI ] o
o
o+ ° - o
D N [2 N < S R X e Q <
N 'zS(\ @(, »(\'2’& Aeéo & ¥ @@@ 'é& '\‘& §® &(\z
¥ @& SN I N
S @ o L & Q S Q
N b,bQ 6\(\ ]
Q@v (\Q}QI
S O
& S
< Q&
S 2
v N

Class

Figure 9: Test generation and removal runtime for Deepseek Coder 6.7B.



Test generation and removal runtime for Code Llama 13B
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Figure 10: Test generation and removal runtime for Code Llama 13B.

Test generation and removal runtime for Codestral 22B
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Figure 11: Test generation and removal runtime for Codestral 22B.
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5.3 Statistical analysis

Below we present the computed Welch’s t-test and Vargha-Delaney effect size [40)].

Model
Class Deepseek Coder 6.7B Code Llama 13B Codestral 22B
T-statistic | p-value Alg T-statistic | p-value Alz T-statistic | p-value Alg

Util -3.16 2.50e-02 L(0.83) -19.0 7.44e-06 L(1.00) -15.7 1.84e-05 L(1.00)
ArrayFill - - —(0.50) - - —(0.50) - - —(0.50)
Distance -1.58 0.175 | M(0.67) -1.58 0.175 | M(0.67) 5 4.10e-03 | L(0.08)
TlluminaUtil -4.58 5.95e-03 | L(0.92) -7.00 9.17e-04 | L(1.00) -10.3 1.48e-04 | L(1.00)
Vector -2.70 4.26e-02 | L(0.92) -2.24 7.53e-02 | L(0.83) -1.08 0.330 M(0.67)
AbstractNFeAdaptadorBean 1.00 0.363 S(0.42) - - —(0.50) 2.24 7.56e-02 | L(0.25)
StringUtils -5.89 2.00e-03 | L(1.00) 0.716 0.506 —(0.50) -10.1 1.63e-04 | L(1.00)
UnsyncBufferedInputStream 1.58 0.175 M(0.33) - - —(0.50) - - —(0.50)
PrefixParser -2.24 7.56e-02 | L(0.75) - - —(0.50) 0.897 0.411 M(0.67)
DateTime -2.24 7.56e-02 | L(0.75) -29.0 9.14e-07 | L(1.00) -2.24 7.56e-02 | L(0.75)
StringMap -1.27 0.259 M(0.67) -1.27 0.259 M(0.67) -1.00 0.363 S(0.58)
OpMatcher -1.66 0.158 L(0.83) -10.3 1.44e-04 L(1.00) -26.8 1.34e-06 L(1.00)

Figure 12: Welch’s t-test and Vargha-Delaney effect size calculated for the results of every
model and class. “” means that both result sets were constant.

6 Discussion

In this section we discuss the results of our study and answer the main research question
formulated in Section [4]

All three models were able to improve the mutation score to a varying degree. Across
all 12 classes, the models were able to increase mutation score in 4 to 6 cases depending on
the model. The measured increases range from as low as 5 percentage point as can be seen
in Figures [3] and [I3] to as high as 51 percentage point as shown in Figures [5] and

Interestingly, the difference in size between the models does not appear to have a large
impact on the performance. This suggests that the ability of a model to write unit tests for
a particular program is not closely related to its amount of parameters, or that this relation
requires more extreme values than the range of 6.7 to 22 billion parameters (say, 0.1B or
70B).

As can be seen in Figures and |5, some classes have results in a large range. This
can be attributed to a model not being able to generate a passing or compiling test, which
can cause either no improvement, or a 0% mutation score.

A good example of a class where the models were not able to generate any passing tests is
AbstractNFeAdaptadorBean. Upon further inspection, we discover that this class is written
in Spanish. LLMs can be thrown off by semantic-preserving changes [36], such as changing
the name of a variable [14], as shown in various studies [5, 43} 45]. Because the models
are most likely mainly trained on code written in English, we believe the same behaviour
is displayed in our study. A similar argument can be made for the Distance class, which
represents genomic library mate distances instead of euclidean distances or some other more
conventional distance metric, possibly confusing the model.
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We also notice that the classes from the Apache Commons project appear to perform
better than the classes from the SF110 project, which is in line with previous research [38].
For example the ArrayFill class already has 100% mutation score with only the manually
written tests, but even the generated tests by themselves can reach this score as can be seen
in Appendix [A] Figures and The models were not able to achieve this score on
any other class.

Another observation is that comments appear to be relevant relevant to the performance
of the LLM. Classes without comments such as UnsyncBufferedInputStream perform sig-
nificantly worse than classes with comments such as StringUtils.

The runtime of the models seems to be fairly consistent for most classes. Classes where
the range of runtimes is larger are classes where the model is not often able to produce
working classes. This causes the system to re-run the test suite multiple times until all
problematic tests have been removed, increasing the total runtime.

7 Threats to Validity

The prompts used for generating tests might not be optimal. Because of the black-box nature
of LLMs, one can not known which prompt will yield the best results. Because the quality
of the model output is heavily dependent on the quality of the prompt [42], this can have an
impact on the results. Even though prompt engineering is outside the scope of this research,
we performed preliminary testing to arrive at a prompt which yielded good results.

The test corpus used for evaluation might not be representative of the real world. Be-
cause testing all existing Java classes is not possible, we used a limited set of classes. This
means that the test corpus might not generalise to other classes. To minimise this risk, we
attempted to make the corpus as varied as possible, using classes of varying complexity, lan-
guage, and application. Additionally, we have used performance evaluation metrics which
have been shown to be suitable for this type of research [6]. We used the Vargha-Delaney
Ay effect size [40] and Welch’s t-test to determine the relevance of our results.

The classes may be part of the training set of the model, artificially increasing perfor-
mance. Previous research has shown that models perform better on classes which are part
of the training set [38]. This is also in line with the results of our study. We believe how-
ever, that the SF110 corpus of classes [20] is most likely not part of this training set [36].
Therefore, we assembled a benchmark that contains mostly classes from SF110 to minimise
this risk.

8 Responsible Research

In this section we reflect on the ethical aspects of this research, and discuss the reproducibil-
ity of the proposed system.

8.1 Resources

The resources used for this project are all publicly available. The classes under test were
mostly taken from the SF110 corpus [20], and a few from |Apache Commons. The SF110
was specifically chosen because it is most likely not part of the training set of the used
models. We know that public code on GitHub is part of the training set of these models,
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which can give an unfair advantage [38]. We used our own personal hardware for running
the experiments, no sponsorship or other hardware was provided.

8.2 Reproducibility

The code required for reproducing this research is lavailable/ on a GitLab instance hosted by
the Delft University of Technology. This is a private repository, but the code can be provided
upon request. This repository contains the prompts, source code, classes under test, and
code for calculating the performance of the models. For running the models, an OpenAl
compatible API server running the model is used. For this research we used the built-in
Local Server of LM Studio| through a proxy (also available in aforementioned repository) to
provide some basic authentication.

Because LLMs are innately nondeterministic, the results obtained by performing this
research may not be exactly the same. In order to make the research as reproducible as
possible, we ran the program multiple times for every class under test.

9 Conclusions and Future Work

The models were often able to improve the mutation score, being able to do so in 4 to 6
out of 12 cases depending on the model. For most classes classes, the models were also able
to reliably produce passing and compiling tests. We believe the success rate of a model
can be attributed to a few factors. Some classes have very brief or no comments, which
seemed to negatively impact the model performance. The language of the class also seems
to be important, as a class that is not written in English (AbstractNFeAdaptadorBean is
written in Spanish) performed very poorly across all models. This suggests that the LLMs
perform better if they are able to also understand the intention of the code instead of only
the semantic and syntactic meaning. The runtime of the models did not seem to be very
significantly different depending on what class is being tested. Finally, in line with previous
research [38], classes that are part of the training set appear to perform better than classes
which are not.

Future research could focus on (i) more extensive prompt engineering, which has been
shown to be able to yield significant improvements of the effectiveness of these models [42],
and (ii) exploring different models such as Microsoft’s Phi [25] or OpenAT’s Codex [12].
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A Detailed results from all runs of the system

This section contains a detailed result of all runs of the system with mutation scores per
model, per clas, per run. If the generated tests (“Generated only” column) have a score of
0%, this means no passing tests were generated. If the combined tests (“Combined score”
column) also have a score of 0%, this means no compiling tests were generated.
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Classname Mutants [ Baseline [ Run [ Combined score [ Generated only
1 88% 38%
2 88% 38%
. 3 88% 38%
Util 24 83% 1 3% 33,
5 83% 33%
6 88% 38%
1 100% 100%
2 100% 100%
. 3 100% 88%
ArrayFill 24 100% 1 100% 100%
5 100% 29%
6 100% 100%
1 73% 0%
2 73% 0%
. 3 78% 10%
Distance 49 73% 7] R 1%
5 73% 0%
6 73% 0%
1 79% 21%
2 85% 27%
. . 3 85% 18%
IlluminaUtil 33 67% 7l T 0%
5 82% 15%
6 79% 12%
1 64% 0%
2 79% 55%
3 66% 21%
Vector 97 64% 7 0%, 6%
5 68% 13%
6 1% 46%
1 94% 6%
2 94% 6%
3 94% 0%
AbstractNFeAdaptadorBean | 16 94% 1 94% 31%
5 0% 0%
6 94% 6%

Figure 13: Deepseek Coder 6.7B mutation scores per class over 6 runs per class.

Continued on next page in Figure

Both

with (combined) and without (generated) manually written tests. X/0: no passing tests
generated. 0/0: no compiling test generated.
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Classname Mutants [ Baseline [ Run [ Combined score [ Generated only

1 52% 21%
2 52% 21%
. . 3 76% 61%
StringUtils 67 36% 4 61% 25%
5 51% 19%
6 61% 30%
1 7% 2%
2 0% 0%
3 0% 0%
UnsyncBufferedInputStream | 95 7% 1 % 2%
5 7% 4%
6 7% 3%
1 2% 3%
2 1% 0%
3 2% 2%
PrefixParser 97 1% 4 72% 2%
5 1% 0%
6 1% 0%
1 90% 40%
2 50% 0%
. 3 90% 40%
DateTime 40 50% 4 90% 40%
5 50% 0%
6 50% 0%
1 58% 11%
2 53% 5%
. 3 58% 42%
StringMap 19 58% 7 537 42%
5 63% 32%
6 79% 9%
1 93% 72%
2 69% 48%
3 97% 72%
OpMatcher 29 48% 1 [ 90% 69%
5 93% 2%
6 0% 0%

Figure 14: Continuation of Deepseek Coder 6.7B mutation scores per class over 6 runs per
class. Both with (combined) and without (generated) manually written tests. X/0: no
passing tests generated. 0/0: no compiling test generated.

15



Classname Mutants [ Baseline [ Run [ Combined score [ Generated only

1 100% 92%
2 96% 79%
. 3 96% 88%
Util 24 83% 1 96% 79%
5 96% 88%
6 96% 88%
1 100% 67%
2 100% 50%
. 3 100% 100%
ArrayFill 24 100% 1 —T700% 100%
5 100% 67%
6 100% 67%
1 73% 0%
2 73% 0%
. 3 78% 6%
Distance 49 73% 4 73% 0%
5 73% 6%
6 8% 6%
1 79% 48%
2 73% 33%
. . 3 73% 36%
TlluminaUtil 33 67% 4 73% 64%
5 73% 33%
6 73% 6%
1 64% 9%
2 64% 9%
3 90% 70%
Vector 97 64% 4 78% 45%
5 90% 70%
6 66% 10%
1 94% 0%
2 94% 0%
3 94% 0%
AbstractNFeAdaptadorBean | 16 94% 1 04% 0%
5 94% 0%
6 94% 0%

Continued on next page in Figure

Figure 15: Code Llama 13B mutation scores per class over 6 runs per class. Both with
(combined) and without (generated) manually written tests. X/0: no passing tests gener-
ated. 0/0: no compiling test generated.
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Classname Mutants [ Baseline [ Run [ Combined score [ Generated only

1 52% 16%
2 0% 0%
. . 3 0% 0%
StringUtils 67 36% 1 527 37%
5 58% 13%
6 0% 0%
1 7% 26%
2 7% 0%
3 7% 32%
UnsyncBufferedInputStream | 95 7% 7 7% 0%
5 7% 31%
6 7% 32%
1 1% 0%
2 1% 0%
3 1% 0%
PrefixParser 97 1% 4 1% 0%
5 1% 0%
6 1% 0%
1 88% 38%
2 38% 38%
. 3 82% 32%
DateTime 40 50% 1 88% 38%
5 82% 32%
6 90% 40%
1 63% 63%
2 58% 0%
. 3 79% 79%
StringMap 19 58% 1 58% 58%
5 58% 37%
6 58% 58%
1 72% 18%
2 90% 66%
3 79% 55%
OpMatcher 29 48% 1 97% 72%
5 90% 41%
6 93% 69%

Figure 16: Continuation of Code Llama 13B mutation scores per class over 6 runs per class.
Both with (combined) and without (generated) manually written tests. X/0: no passing
tests generated. 0/0: no compiling test generated.
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Classname Mutants [ Baseline [ Run [ Combined score [ Generated only

1 96% 83%
2 100% 88%
. 3 96% 62%
Util 24 83% 1 100% 88%
5 96% 62%
6 96% 58%
1 100% 100%
2 100% 100%
. 3 100% 100%
ArrayFill 24 100% 1 —T700% 100%
5 100% 100%
6 100% 100%
1 0% 0%
2 73% 0%
. 3 0% 0%
Distance 49 73% 4 0% 0%
5 0% 0%
6 0% 0%
1 85% 85%
2 82% 21%
. . 3 82% 30%
TlluminaUtil 33 67% 4 85% 85%
5 38% 73%
6 94%, 94%
1 64% 0%
2 64% 0%
3 65% 21%
Vector 97 64% 4 64% 0%
5 64% 0%
6 79% 44%
1 0% 0%
2 0% 0%
3 94% 6%
AbstractNFeAdaptadorBean | 16 94% 1 94% 6%
5 0% 0%
6 94% 6%

Continued on next page in Figure

Figure 17: Codestral 22B mutation scores per class over 6 runs per class. Both with (com-
bined) and without (generated) manually written tests. X/0: no passing tests generated.
0/0: no compiling test generated.
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Classname Mutants [ Baseline [ Run [ Combined score [ Generated only
1 72% 40%
2 72% 61%
. . 3 87% 76%
StringUtils 67 36% 7 84% 52%
5 84% 0%
6 61% 30%
1 % 0%
2 7% 0%
3 7% 0%
UnsyncBufferedInputStream | 95 7% 1 % 0%
5 7% 0%
6 7% 0%
1 0% 0%
2 1% 1%
3 74% 24%
PrefixParser 97 1% 4 71% 35%
5 73% 23%
6 2% 3%
1 50% 5%
2 50% 5%
. 3 50% 20%
DateTime 40 50% 1 52% 8%
5 52% %
6 52% 8%
1 58% 0%
2 58% 11%
. 3 58% 0%
StringMap 19 58% 4 58% 0%
5 58% 0%
6 63% 47%
1 36% 62%
2 86% 62%
3 93% 72%
OpMatcher 29 48% 4 93% 72%
5 93% 2%
6 86% 62%

Figure 18: Continuation of Codestral 22B mutation scores per class over 6 runs per class.
Both with (combined) and without (generated) manually written tests. X/0: no passing
tests generated. 0/0: no compiling test generated.
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