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Summary

Our society depends more strongly than ever on large networks such as transportation
networks, the Internet and power grids. Engineers are confronted with fundamental
questions such as “how to evaluate the robustness of networks for a given service?”,
“how to design a robust network?”, because networks always affect the functioning
of a service. Robustness is an important issue for many complex networks, on which
various dynamic processes or services take place. In this work, we define robustness as
follows: a network is more robust if the service on the network performs better, where
performance of the service is assessed when the network is either (a) in a conventional
state or (b) under perturbations, e.g. failures, virus spreadings etc. In this thesis, we
survey a particular line of network robustness research within our general framework:
robustness quantification, optimization and the interplay between service and network.
Significant progress has been made in understanding the relationship between the

structural properties of networks and the performance of the dynamics or services tak-
ing place on these networks. We assume that network robustness can be quantified by
a topological measure of the network. A brief overview of the topological measures is
presented. Each measure may represent the robustness of a network with respect to a
certain performance aspect of a service. We focus on the measure known as algebraic
connectivity. Evidence collected from literature shows that the algebraic connectivity
characterizes network robustness with respect to synchronization of dynamic processes
at nodes, random walks on graphs and the connectivity of a network. Moreover, we
illustrate that, on a given diameter, graphs with large algebraic connectivity tend to be
dense in the core and sparse at the border. Such structures distribute traffic homoge-
neously and are thus robust in terms of traffic engineering.
How do we design a robust network with respect to the metric algebraic connectiv-

ity? First, the complete graph has the maximal algebraic connectivity, while its high
link density makes it impractical to use due to the cost of constructing links. Constraints
on other network features are usually set up to incorporate realistic requirements. For
example, constraint on the diameter may guarantee certain end-to-end quality of service
levels such as the delay. We propose a class of clique chain structures which optimize
the algebraic connectivity and many other robust features among all graphs with di-
ameter D and size N . The optimal graph within the class can be determined either

xi



xii SUMMARY

analytically or numerically. Second, complete replacement of an existing infrastruc-
ture is expensive. Thus, we design strategies for robustness optimization using minor
topological modifications. These strategies are evaluated in various classes of graphs.
The robustness quantification, or equivalently, the association of the performance

of a service with a topological measure, may be implicit. In this case, we explore
the interplay between topology and service in determining the overall performance.
Many services on communications and transportation networks are based on shortest
path routing. The weight of a link, such as delay or bandwidth, is generally a metric
optimized via shortest path routing. Thus, link weight tuning, a mechanism to control
traffic, is also considered as part of the service. The interplay between service (shortest
path routing and link weight tuning) and topology is investigated for the following
performance aspects: (a) the structure of the transport overlay network, which is the
union of shortest paths between all node pairs and (b) the traffic distribution in the
overlay network. Important new findings are (i) the universal phase transition in overlay
structures as we tune the link weight structure over different classes of networks and
(ii) the power law traffic distribution in the overlay networks when link weights vary
strongly in various classes of networks. Furthermore, we consider the service that
measures a network topology as the union of shortest paths among a set of testboxes
(nodes). The measured topology is a subgraph of the overlay network, which is again
a subgraph of the actual network. The performance in terms of the sampling bias
of measuring a network topology is investigated. Our work contributes substantially
to a better understanding of the effect of the service (testbox selection) and the actual
network structure on the performance with respect to sampling bias. Our investigations
on the interplay between service and network reveal again the association between the
performance of a service and certain topological feature, and thus, contribute to the
quantification of network robustness.
The multidisciplinary nature of this research lies not only in the presence of robust-

ness issues in many complex networks, but also in that advances in other disciplines
such as graph theory, combinatorics, linear algebra and statistical physics are widely
applied throughout the thesis to study optimization problems and the performance of
large networks.



Chapter 1

Introduction

1.1 Robustness of complex networks

A network specifies how items, called nodes, are interconnected or related to other
nodes by links. Many complex systems can be modeled by networks to capture the
possibly inhomogeneous patterns of interactions within complex systems. The brain,
where billions (1011) of neurons are interconnected by synapses, is perhaps the most
challenging network [85]. In a metabolic reaction network, nodes are molecular com-
pounds, which play a role as educts or products in metabolic reactions. Directed links
connect educts and products in a metabolic reaction. The Internet, one of the most
booming communication networks, is generally a network of interconnected computers.
Upon the Internet, The World Wide Web, the largest artificial network, has developed
as billions1 (2005) of documents connected by hyperlinks, which are mutual references
in these documents. Humans have the inborn desire to be sociable. Collaborator net-
works range widely from acquaintance networks, movie actor networks to coauthorship
networks, where people are connected through the acts of being friends, playing in a
same movie, and writing a paper together, respectively. Topologies of networks [34]
range from biological networks such as gene regulatory networks, metabolic networks,
artificial networks like the Internet, the WWW to social networks, such as paper ci-
tations, collaboration networks, etc. Correspondingly, the study of networks pervades
many fields of science.
The terminology ‘complex networks’ was initially employed to address the non-

trivial topological features of networks. One research area that studies the complexity of
network topologies is the network modeling. Traditionally, networks have been modelled
as random graphs [36], where nodes are linked in a randommanner (Erdös-Rényi, 1959).

1In 2005 Yahoo! announced that its search engine index contained more than 19.2 billion documents.
Given that Yahoo! does not cover all documents on the Web, it is reasonable to expect that the real
number is higher.

1
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The availability of powerful computers has made it possible to explore the structures
of large-scale empirical networks. Two important discoveries of modern network theory
are the small-world [99] and scale-free [8] characteristics, exhibited by many real-world
networks. The corresponding small-world model by Watts and Strogatz (1998) and the
scale-free network model by Barabási and Albert (1999) have promoted a tremendous
amount of research activity in various disciplines. In a small-world network, any two
nodes can be reached from each other via a small number of links despite the large size
of the network, just as in a random graph. However, a small world network is much
more highly clustered than a random graph, in the sense that direct neighbors of a node
are more likely to be mutually connected. In a scale-free network, some nodes (hubs)
are connected with a higher number of links than the others. Although the Erdös-
Rényi random graph fails to capture the small-world and scale-free features displayed
by empirical networks, it is still being extensively investigated due to its analytical
beauty. Network modeling is, naturally, the first research issue that has been faced. It
is also driven by our desire to further understand the dynamical or functional behavior
of networks, because the network structure always affects its functioning.
Upon each network, various services, or more generally, dynamic processes are de-

ployed. In communication networks, a dynamic process refers to a service provided by
the network. For example, a communication service like email transports a message
from a source to a destination node over the Internet. Synchronization is a process
where systems (the nodes) adjust a given property of their motion due to a suitable
coupling configuration, or to an external force. The synchronization phenomena that
two pendulum clocks hanging at the same beam were able to perfectly synchronize
their phase oscillations, was discovered by Christian Huygens in the 17th century [51].
This synchronization process is carried out over a network, that simply consists of two
nodes (the pendulum clocks) connected by a link (the coupling between clocks). Other
examples are neuron transport in the brain, financial transactions on a stock market,
interactions in social networks, etc. Later, we will use the terminology ‘service’ for the
general term ‘dynamic process’, to emphasize communications networks.
The topology has important influence on the service. A fundamental research ques-

tion is “Given a network, is it robust for a given service?” Such question is, however,
ill-posed, because, what is the robustness of a network? While humans intuitively have
a notion of robustness, it remains vague and difficult to quantify. Robustness rooted
in the Latin word robur, meaning “strength” or “hard wood” like oak, a symbol of
strength. (a) When designing a network from scratch, robustness can be defined with
respect to the final purpose of the network. For example, for a live stream service,
the network should transport the data in real time (bearing small delay), and the loss
of some data can be tolerated. (b) Furthermore, we can also define robustness as the
capability of a network to withstand perturbations like failures, viruses and attacks.
For biologists, robustness is the survivability of a cell under extreme conditions and
frequent internal errors. In the view of a sociologist, it is the stability of the human
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society in face of war and changes of policy. In this thesis, we generalize the definition of
robustness to “a network is more robust if the service on the network performs better”.
Hence, the network robustness is evaluated by the performance of the service in (a)
at a conventional condition and in (b) when the network is perturbed by all kinds of
challenges, such as failures and malicious attacks.
The interplay between the network topology and service causes much more complex-

ity than the topology itself. From this perspective, our study of network robustness for
a service belongs to the broader research on complex systems. In fact, an accurate and
complete description of complex systems is the greatest challenge today in all science
[102]. Therefore, different fields have suppressed certain complications while emphasiz-
ing others [87]. For example, network modeling highlights the complication in structure
while neglecting the dynamics on the network. In nonlinear dynamics, simplified struc-
tures, like geometrically regular networks, are favored, which allows us to sidestep the
complication in topology and to concentrate on the complexity of the dynamics. The
network robustness for a given service, incorporates both topology and service. Thus,
our methodology is a compromising approach between network modeling and nonlinear
dynamics. In the next section, we will explain our framework, which systematically
investigates the network robustness.

1.2 Framework for network robustness

The goal of this framework is, for a given service, how to evaluate the robustness of a
network and how to design a robust network. This framework, as shown in Figure 1.1,
investigates three aspects of network robustness: robustness quantification, optimiza-
tion and the interplay between network and service.
A network is more robust if the service performs better. Hence, the quantification of

robustness is tightly coupled to the specific performance aspects of a particular service.
We assume that the performance of a service can be characterized by or strongly related
to a topology related metric R(G) of the network G. Thus, the network robustness can
be quantified by a topological metric R(G). For example, communications networks
require certain efficiency in resource usage. The resource consumed by a flow between
a node pair is equal to the amount of the traffic times the number of links that the flow
traverses. Accordingly, the average hopcount, the average number of links in a path, is
able to characterize the network robustness in terms of the efficiency in resource usage.
The service determines which topological metric R can quantify the network robustness.
Given the metric R that characterizes the network robustness, we investigate the

following optimization problems: (a) design a robust network that maximizes the met-
ric R, or furthermore, determine the network that maximizes the metric R given the
constraints on other metrics; (b) how to optimize the robustness of an existing network
via a minor topology modification, e.g. the addition of links? Practical network design
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service

Network

R(G)Interplay

Optimization

Quantificationservice

NetworkNetwork

R(G)InterplayInterplay

OptimizationOptimization

QuantificationQuantification

Figure 1.1: The framework to investigate network robustness.

requirements, such as the economical concerns on the number of links, can be taken
into account via the constraints on other metrics in (a) and on the minor topology
modification in (b).
For complicated services, however, the association of the performance of the service

with a topology measure R(G) may be non-trivial. Thus, we investigate the interplay
between network and service in determining the performance of the service. This inter-
play study, in turn, may reveal the relation between the performance of the service and
a topological metric R. Thus, the robustness quantification can be better understood.

1.3 Positioning of the framework

We first generally define network robustness in relation to the performance of a service,
when the network is either in a normal condition or under disruptions. Many criteria
to compare network robustness exist in literature. Complex ones take into account the
performance of a service under different levels of disruptions. They are, however, not
discussed in this thesis, mainly because analytic computations are basically intractable
[94].
Second, we assume that the performance of a service can be approximated by a

certain topological metric R, which, thus, quantifies network robustness. The robust-
ness of networks can be, actually, more precisely evaluated by directly computing a
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performance measure2 such as a stochastic measure (average, minimum, 95% quantile,
variance, etc.) of the delay, available capacity and so on. For example, a real-time
communication service can tolerate only a short end-to-end delay. The performance
measure, the average delay, represents the network robustness more precisely than its
approximation, the topological measure, the average hopcount. We prefer a topological
metric R to quantify the network robustness, because of the following reasons. (a) It
is difficult to optimize the performance of a service via system modifications, if both
the network topology and the service aspects can be modified. We emphasize the role
of the network topology in the performance of a service. The quantification via R(G)
provides a direct criterion of network structure optimization. (b) Stochastic measures
of the performance, like the average delay, are difficult to obtain due to the highly
dynamic nature of the service. For example, the delay over each link, is unknown and
widely varying over both time and the links in the network. (c) Significant progress
has been made in understanding the relationship between the structural properties of
networks and the nature of the dynamics or services taking place on these networks.
For instance, the ‘synchronizability’ of complex networks of coupled oscillators is shown
to be determined by a topological measure in graph spectral analysis.
Finally, we relate the performance of a service to only one topological metricR in the

quantification of network robustness. However, each metric reflects partially the feature
of a network. It is more precise to characterize network robustness by

Xm

k=1
skRk, a set

of topological metrics [R1, R2, ..., Rm] coupled by a weighing vector [s1, s2, ..., sm]. The
components of the weighing vector s reflect the importance of the corresponding topol-
ogy metrics for the service. The weighing vector has to be unique and stable such that
the comparisons of networks in terms of robustness are fair. However, the correlations
of topological metrics are topology dependent, which may potentially modulate the
weighing vector when different networks are evaluated. For example, we consider three
metrics [R1, R2, R3] and a weighing vector [s1, s2, s3]. Suppose that the three metrics are
independent in graph G1. Thus, the robustness can be quantified by s1R1+s2R2+s3R3.
However, in graph G2, the metric R3 is dependent on R1 and R2, R3 = aR1+ bR2. The
robustness of G2 becomes (s1 + a)R1 + (s2 + b)R2. This shows that m is effectively 2,
instead of 3, and that the weighing vector s is modified by the topology. The depen-
dence between metrics, which is topology dependent, seems a hard, inherent challenge
of the robustness problem. Our framework chooses an elementary start, only one metric
R. This limitation is partially compensated (see Section 1.2), by the optimization (a),
where we are looking for a network maximizing metric R, subject to constraints on
other metrics R1, R2... The correlation of metrics is also addressed in the optimization
(b), where the strategy of topology modification to optimize robustness R is based on
certain topology features. The correlation between the metric R and these topology fea-
tures of a network are dependent on topology. Thus, a strategy may perform differently

2In this thesis, the word “measure” and “metric” are used interchangeably.
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for distinct networks.

1.4 Thesis outline

We first introduce in Chapter 1 our framework to study the network robustness for a
given service.
The main body of this thesis consists of 7 chapters and is structured into 3 parts:

robustness quantification, optimization and the interplay between network and service.
The last chapter of this thesis, Chapter 9 highlights the main conclusions drain from
this thesis.

1.4.1 Part I: Quantification of Network Robustness

Chapter 2 introduces the essential aspects that describe a network: topology, link
weight, and service. Network models, link weight structures and services, that will be
investigated throughout this thesis, especially in Part III, are elaborated in this chapter.
Chapter 3 first presents a brief overview of practically important topological measures.
Without losing generality, any of the topological measures may possibly represent cer-
tain network robustness for a service. Thus, the robustness represented by each metric
is not discussed in detail. Instead, we exemplify what kind of network robustness can
be represented by two metrics: the hopcount and the algebraic connectivity.
In addition, the robustness quantification with respect to specific performance as-

pects of a service is also revealed in Part III.

1.4.2 Part II: Robustness Optimization

In this part, we focus on the case where network robustness is quantified by the algebraic
connectivity.
Chapter 4 examines the graph maximizing the algebraic connectivity, subject to the
constraint on the diameter. We propose a class of graphs, which can achieve many ro-
bust features: the maximal number of links, the minimum average hopcount, and more
interestingly, the maximal of any Laplacian eigenvalue (including the algebraic connec-
tivity) among all graphs with N nodes and diameter D. The graph optimizing a given
robustness measure, e.g. algebraic connectivity, can be either analytically determined
or be searched out of the class of graphs. Features of these optimal graphs as well as of
the extreme (maximal or minimal) values of the robust measures are further explored.
Chapter 5 investigates how to refine a network to optimize its robustness. In par-
ticular, where should we add a link to a network such that the algebraic connectivity
can be increased the most? Exhaustive searching for the optimal link addition is com-
putationally infeasible in large networks. Hence, we propose two strategies, which are
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compared with random link addition and with the optimal link addition if the network
is not too large. The investigation on adding one link will provide insights on how to
dynamically add a set of links one by one for robustness optimization.

1.4.3 Part III: Interplay between network and service

When the quantification of network robustness by a topological metric is not straightfor-
ward, we investigate the interplay between network structure and service in determining
the overall performance. We focus on the fundamental service in communications net-
works, where traffic is routed along the shortest paths. The link weight structure,
which is also regarded as part of the service, can be tuned. Our work is motivated
by three potential applications: overlay networks, Internet topology interference and
traffic engineering.
Chapter 6 examines the structure of the overlay network, the union of shortest paths
between all node pairs, which is the maximally observable part of a network. As we
tune the link weight structure, a universal phase transition in the overlay structure has
been observed for various networks.
Chapter 7 inspects the bias phenomenon of sampling a network by shortest paths
among a set of m testboxes. The sampling bias is shown to depend on both the network
characteristics like the link density as well as the service (the measurement), such as
the selection of the m testboxes.
Chapter 8 investigates the traffic distribution as we tune the link weight structure
over different networks.
Therefore, the performance explored in this part is the structure of the overlay

network, the sampling bias of measuring a network topology and the traffic distribution.

1.5 List of publications

In this section, we give the list of papers presented in this thesis.

• H. Wang and P. Van Mieghem, Graphs with given diameter maximizing the alge-
braic connectivity, submitted to COMBINATORICA, 2008. (Chapter 3, 4)

• P. Van Mieghem and H. Wang, Spectra of a new class of graphs with extremal
properties, submitted to SIAM Journal on Discrete Mathematics, 2008. (Chapter
4)

• H. Wang and P. Van Mieghem, Algebraic connectivity optimization via link addi-
tion, Bionetics 2008, Japan, November, 2008. (Chapter 5)

• P. Van Mieghem and H. Wang, The observable part of a network, IEEE/ACM
Transaction on Networking, vol. 17, No. 1, pp. 93-105, 2009. (Chapter 6)



8 CHAPTER 1. INTRODUCTION

• H. Wang and P. Van Mieghem, Sampling networks by the union of m shortest
path trees, submitted to Computer Networks, 2008. (Chapter 7)

• H. Wang, J. Martin Hernandez and P. Van Mieghem, Betweenness centrality in
weighted networks, Physical Review E, vol. 77 (046105), April, 2008. (Chapter 8)
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Chapter 2

Networks: topology, link weight and
service

Before examining the set of topological measures that may characterize the network ro-
bustness in Chapter 3, we firstly introduce the essential aspects that describe a network:
the topology, the link weight structure, and the service. Notations and terminologies
in this thesis are based on graph theory and communications networking. We mainly
elaborate the network models, the link weight structures and the services that will
be investigated throughout this thesis. For a more general view about topology and
dynamics, we refer to the review of Boccaletti et al. [12].

2.1 Network topology

The topology, structure or interconnection pattern of a network can be represented by
a graph G (N,L), in short G, which consists of a set N of N nodes interconnected
by a set L of L links. For example, a complete graph KN , or a clique consists of N
nodes and L = Lmax =

N(N−1)
2

links, where every node has a link to every other node.
The topology of a network with N nodes can be represented by an adjacency matrix
A, a N × N matrix consisting of elements aij that are either one or zero depending
on whether there is a link between node i and j or not. We consider only undirected
networks. Hence, the adjacency matrix is symmetric, i.e. aij = aji. Throughout this
thesis, we will consider both network models which capture certain topological features
observed in empirical networks as well as a set of real-world networks which represent
the topology of various complex systems.

11
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2.1.1 Erdös-Rényi random graphs

Traditionally, complex networks have been modeled as Erdös-Rényi random graphs
Gp(N), which can be generated from a set of N nodes by randomly assigning a link
with probability p to each pair of nodes. The Erdös-Rényi random graph was initiated
by Erdös and Rényi [36][37] in 1959. Due to their pioneering work, the random graph
has become one of the most studied graphs [13]. Besides their analytic tractability, the
Erdös-Rényi random graphs have also served as idealized structures for peer-to-peer
networks [17], ad-hoc networks [50], gene networks, ecosystems [63] and the spread of
disease or computer viruses [55].
The degree dj of a node j in a graph is the number of links that connect with that

node. The probability density function (pdf) of the degree Drg of an arbitrary node in
an Erdös-Rényi random graph Gp(N) equals

Pr[Drg = k] =

µ
N − 1
k

¶
pk(1− p)N−1−k

When the link density is smaller than the disconnectivity threshold, i.e. p < pc ∼ logN
N

for large graph size N , the random graph Gp(N) is almost surely disconnected, whereas
Gp(N) is almost surely connected if p > pc. The transition around pc ∼ logN

N
has a

width of O( 1
N
).

2.1.2 Lattices

In D-dimensional lattices, all interior nodes have the same degree 2D, where D is the
dimension. Here, we confine ourselves to the hyper-cube D-lattices in which each edge
is of equal size. In this case, a 2D-lattice becomes a square lattice and a 3D-lattice
equals a cubic lattice. Examples of a square lattice and a cubic lattice are shown in
Figure 2.1. The lattice is the basic model of a transport network (Manhattan grid)
and is crucial in percolation theory [84]. Moreover, it is frequently used to study the
network traffic [79].

2.1.3 Small-world graphs

The small-world model proposed by Watts and Strogatz [99] encompasses the following
two structural features as observed in real-world networks. Any two nodes can be
reached within a small number of links despite the large size of networks. Nodes are
well clustered in the sense that two direct neighbors of a node are more likely to be
connected compared to those in random graphs. The small-world model starts by
building a ring with N nodes and by joining each node with 2s nearest neighbors (s
on either side of the ring). Upon the resulted ring lattice, each link connected to a
clockwise neighbor is rewired to a randomly chosen node with a probability pr, and
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(a) (b)(a) (b)

Figure 2.1: (a) The square lattice with N = 9 and (b) the cubic lattice with N = 27.

is preserved with a probability 1 − pr. The small-world graph interpolates between a
ring or lattice (pr = 0) and a random graph with the constraint that each node has
the minimal degree s (pr = 1). The small-world model is not discussed in this thesis.
Instead, we consider the two extremes: the lattices and the random graphs.

2.1.4 Power law graphs

Power law graphs are random graphs specified by a power law degree distribution
Pr[D = i] = ci−τ , where c is a constant

c =
1PN−1

i=1 i−τ

The power law degree distribution is followed by many natural and artificial networks
such as the scientific collaborations, the world-wide web and the Internet with exponents
varying within the range 2 < τ < 3. Power law graphs are also called scale-free graphs,
because the power law function f(i) = ci−τ has the same functional form at all scales of
i, namely, f(αi) = βf(i). We introduce two types of power law graphs: the Barabási-
Albert (BA) [4] and Havel-Hakimi power law graphs [19][18].

Barabási-Albert power law graphs

The BA power law graph, we generated, starts with m nodes. At every time step, we
add a new node with m links that connect the new node to m different nodes already
present in the graph. The probability that a new node will be connected to node i in
step t is proportional to the degree di(t) of that node

Pi(t) =
di(t)P
jdj(t)

=
di(t)

2Lt
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where Lt is the number of links in step t. Figure 2.2 displays a BA power law graph with
m = 1 and N = 100. The degree of a node is reflected by the size of the node. Hence, a
BA graph contains a few highly connected nodes (hubs) compared to the others. The

Figure 2.2: A Barabási-Albert power law graph with m = 1 and N = 1000.

degree distribution of a BA power law graph follows Pr[D = i] = ci−τ , where τBA = 3.
This power law behavior in the Barabási-Albert model is observed for large N .

Havel-Hakimi power law graphs

In a Havel-Hakimi graph, the degree of all the nodes are assigned according to the power
law distribution. A Havel-Hakimi graph is constructed by successively connecting the
node of highest degree to other nodes of highest degree, resorting nodes by remaining
degree, and repeating the process. The resulting graph has a high degree-associativity.
Hence, the Havel-Hakimi power law graph has a relatively “dense core”. Different
from the BA power law graphs where τBA = 3, the Havel-Hakimi graphs can be built
according to power law degree distributions with various exponent τ . Moreover, it
shows already power law behavior for small N .

2.1.5 Real-world complex networks

We also consider the real-world networks which represent the topology of various com-
plex systems. Most of the data sets we have used are available publicly. They are
complex networks from a wide range of systems in nature and society:
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• the file sharing network Gnutella [10] snapshots (Crawl2) retrieved from firewire.com;

• the air transportation network representing the world-wide airport connections,
documented at the Bureau of Transportation Statistics (http://www.bts.gov)
database, and the connection between United States airports [24];

• the Western States Power Grid of the United States[100];

• the coauthorship network [77] between scientists posting preprints on the High-
Energy Theory E-Print Archive between Jan 1, 1995 and December 31, 1999;

• the citation network1 created using the Web of Science database: Kohonen and
SciMet;

• the coauthorship network [78] of scientists working on network theory and exper-
iment;

• the network representing soccer players association to Dutch soccer team [52],
where a link exists between two players if they used to play in a same match;

• the adjacency network [78] of common adjectives and nouns in the novel David
Copperfield by Charles Dickens.

• the Internet network at the level of autonomous systems [80];

• the network of American football games between Division IA colleges during reg-
ular season Fall 2000 [44];

A network is connected if there exists a path between each pair of nodes. We
consider only the networks formed by the largest connected component of our real-
world networks.

2.2 Link weight structure

Apart from the topological structure specified via the adjacency matrix A, the link
between node i and j is further characterized by a link weight w(i→ j), a non-negative
real number, which quantifies a property of that link such as the delay incurred when
traveling over that link, the distance, the capacity, etc. The link weight structure refers
to the characteristics of link weights in a network. On one hand, the link weight can
be considered as the intrinsic feature of the network, like the distance between two
airports in the air transportation network. On the other hand, the link weights can
be set up by a service provider, as a means to control or steer transport in man-made

1V. Batagelj and A. Mrvar (2006): Pajek datasets.
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infrastructures such as the Internet. For example, from a traffic engineer’s perspective,
an Internet Service Provider (ISP) may want to tune the weight of each link such that
the resulting path between a particular set of in- and egresses follow the desirable routes
in its network. Here, we consider the latter, where the link weight structure is regarded
as part of the services.
A path from node A to node B with k − 1 hops or links is the node list PA→B

= n1 → n2 → · · ·nk−1 → nk where n1 = A and nk = B and where nj 6= ni ∈ N for each
index i and j. We confine ourselves to additive and strict positive link weight measures
such that the weight of a path P is w(P ) =

P
(i→j)∈P w(i→ j). Thus, w(P ) equals the

sum of the weights of the constituent links of P . Multiplicative measures (e.g. packet
loss) can be transformed into additive weights by using the logarithm. The link weights
are chosen independently of the topology. Although in some biological networks, the
link weight or strength of a link is coupled to the structure of the underlying topology, in
many man-made large infrastructures such as the Internet and WWW, the link weight
structure can be chosen independently. The latter allows us to control or steer transport
in the network. Therefore, we deem the undirected, independent identically distributed
(i.i.d.) and additive link weights as a reasonable approximation in many large networks,
with the exceptions of wireless networks2. Two types of link weights or two ways of link
weight tuning are investigated: one-dimensional and multi-dimensional link weights.

2.2.1 One-dimensional link weights

Current best-effort routing simply computes appropriate paths based on a single, rel-
atively static measure (e.g. the delay, the monetary cost, etc.). Each link is specified
by a single weight measure, an i.i.d. random variable. The shortest path (SP) routing,
which appears in many communications networks and is discussed in Section 2.3, is
mainly sensitive to the smaller, non-negative link weights.
A regular link weight distribution Fw(x) = Pr[w ≤ x] has a Taylor series expansion

around x = 0,
Fw(x) = fw(0)x+O(x2)

since Fw(0) = 0 and F 0
w(0) = fw(0) exists. A regular link weight distribution is thus lin-

ear around zero. Both the uniform distribution within [0, 1], Fw(x) = x1x∈[0,1)+1x∈[1,∞)
and the exponential distribution, Fw(x) = 1− exp(−λx), are regular link weight distri-
butions. Apart from being attractive in a theoretical analysis, the uniform distribution
on [0, 1] is the underlying distribution to generate an arbitrary other distribution and is
especially interesting for computer simulations. Hence, this distribution appears most
often in network simulations and deserves — for this reason alone perhaps — to be studied.
The uniformly distributed link weights will be frequently investigated in Part III.

2All nodes in the radio-range of some sending node (or base-station) are correlated by (a) the nature
of electromagnetic waves and (b) wireless MAC protocols.
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The simplest distribution of the link weight w with a distinct different behavior for
small values is the polynomial distribution,

Fw(x) = xα1x∈[0,1) + 1x∈[1,∞), α > 0, (2.1)

where the indicator function 1x is one if x is true else it is zero. More motivations
to select a polynomial distribution is given earlier [72]. The corresponding density is
fw(x) = αxα−1, 0 < x < 1. The exponent

α = lim
x↓0

logFw (x)

log x

is called the extreme value index of the probability distribution. As shown in Figure 2.3,

Fw(x)

x0

α = 1 α > 1

α < 1

1ε larger scale

1
Fw(x)

x0

α = 1 α > 1

α < 1

1ε larger scale

1

Figure 2.3: A schematic drawing of the polynomial distribution for three different α
regimes. The scaling invariant property of the shortest path allows us to divide all link
weights by the largest possible such that Fw(1) = 1 holds for all link weight distributions.

the link weight structure can be controlled by the extreme value index α. If α → ∞,
it follows from (2.1) that w = 1 almost surely for all links. The α → ∞ regime is
entirely determined by the topology of the graph because the link weight structure
does not differentiate between links. The network can be considered as unweighted.
When α → 0, all links will be close to 0, but, relatively, they differ significantly with
each other. When α = 1, the polynomial distribution becomes a uniform distribution
where link weights are regular. Small link weights around zero, w ∈ [0, ε] in Figure 2.3
dominantly influence the property of the shortest paths. The remainder link weights
(denoted by the arrow with larger scale) only plays a second order role.
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2.2.2 Multi-dimensional link weights

Several quality-of-service (QoS) based networking frameworks (e.g., IntServ, DiffServ,
MPLS) have been extensively investigated. QoS routing takes into account multiple
measures including both the applications’ requirements and the availability of network
resources. We confine ourselves to the case that each link is specified by a 2-dimensional
link weight vector −→w (u → v) = [w1(u → v), w2(u → v)], where the component wi is a
QoS measure such as delay, jitter, cost, etc. The importance of uniformly distributed
link weights is discussed in Section 2.2.1. Furthermore, specific dependencies or cor-
relations exist between QoS measures due to e.g. Weighted Fair Queueing scheduling.
Hence, we investigate the link weight structure where the two vector components are
correlated uniformly distributed random variables ∈ [0, 1] with correlation coefficient ρ
[58]. We tune the correlation coefficient ρ ∈ [−1, 1] to vary the link weight structure.

2.3 Service

We investigate an elementary service, where the traffic is routed along the shortest
path. The shortest path problem on networks is of importance since the purpose of
many real networks is to provide efficient traffic route between nodes. Routing in
communication networks is based on shortest paths (or the best approximation due to
e.g. the distracting influence of BGP) between any two nodes of the network. Even for
the Internet, it is a reasonable assumption, since roughly 80% of the routes seems to
correspond to shortest paths.
The shortest path from a source to a destination is the path that minimizes the

sum of the weights of its constituent links. For one-dimensional link weights, powerful
shortest path algorithm like that of Dijkstra [30] exist. When 2-dimensional link weights
are considered, we use SAMCRA [69], a Self-Adapting Multiple Constraints Routing
Algorithm to find the shortest or optimal path that satisfies the constraint3 [L1, L2]
such that wi(P) =

X
(u→v)∈P

wi(u → v) ≤ Li and minimizes the path length function

l(P) = max
1≤i≤2

h
wi(P)
Li

i
.

Both the topology and link weight structure seriously influence the path properties,
and so the performance of the service. In Part III, we investigate the interplay between
service (including link weight tuning) and topology in determining the performance of
the shortest path routing.

3Actually, we choose loose constraints such that an optimal path can always be found via SAMCRA.



Chapter 3

Quantify Robustness by topological
measure

The robustness of a network for a given service can usually be characterized by a
topological measure. Without losing generality, any topological metric may possibly
represent a certain network robustness for a service. Therefore, we will elaborate on
the basic topological measures (graph metrics), that are frequently used throughout
this thesis. Over the past several years, a variety of measures in both the structural
domain and the spectral domain have been proposed to capture different features of a
network topology as well as to classify graphs. We refer to [27] for a quite extensive
survey of metrics. Actually, the ‘network topology’ is the same as ‘network structure’.
Here, structural measures refer to those measures such as degree and clustering coeffi-
cient, that represent topological properties more directly compared to spectral measures,
which always involve in an eigenvalue computation. Finally, we exemplify what kind of
network robustness can be represented by two metrics: the hopcount and the algebraic
connectivity.

3.1 Structural measures

In general, topological measures are function of the topology or graph G(N,L). The
number of nodes N and the number of links L are mostly regarded as parameters of a
graph, not metrics. Many measures are highly correlated with the size of the graph N
and the number of links L.
The degree dj of a node j in a graph is the number of links that incident with that

node. The degree is an important characteristic of a node. For example, it may reflect
the traffic capacity, the popularity of the node. The degree distribution of a graph,
Pr[D = k] expresses the fraction of nodes in the graph with degree k. In other words, it
is the probability that a randomly chosen node possesses degree k. The average degree

19
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is purely a function the number of nodes N and the number of links L,

E[D] =
Xk=dmax

k=1
k · Pr[D = k] =

2L

N

where dmax is the maximum degree in a graph.
The link density p is equal to the number of links L in the graph divided by the

maximal possible number of links
¡
N
2

¢
that may exist in a graph with the same size

p =
2L

N(N − 1) =
E[D]

N − 1

The clustering coefficient of a node cG(v) characterizes the density of connections
in the environment of a node v and is defined as the ratio of the number of links y
connecting the dv > 1 neighbors of v over the total possible dv(dv−1)

2
, thus cG(v) =

2y
dv(dv−1) . The clustering coefficient C(G) of a graph is the average clustering coefficient
of nodes whose degree is larger than 1, given as

C(G) =
1

N − |N (1)|
X

v∈N−N (1)
cG(v)

where N is the set of all nodes and N (1) is the set of degree 1 nodes.
The hopcount HN of a shortest path is the number of links contained in that path.

The hopcount distribution Pr[HN = k] is the histogram of the hopcount between all
possible node pairs in the graph. The average E[HN ] and the variance Var[HN ], some-
times, can be used to characterize the hopcount distribution. The largest hopcount
hmax between any pair of nodes is also referred to as the diameter of a graph.
A good measure for “link/node importance” is the betweenness Bl(Bn) of a link

(node), which is defined as the number of shortest paths between all possible pairs of
nodes in the network that traverse the link (node). The betweenness Bl(Bn) which
incorporates global information is a simplified quantity to assess the maximum possi-
ble traffic. Assuming that a unit packet is transmitted between each node pair, the
betweenness Bl is the total amount of packets passing through a link.
The node connectivity κ(G) and the link connectivity λ(G) are the minimal number

of nodes and links that have to be removed in order to disconnect a network. They
seem natural quantifiers for robustness, but difficult to compute for large networks.

3.2 Spectral measures

Let G be a graph and let N denote the set of nodes and L the set of links, with
N = |N | nodes and L = |L| links, respectively. The graph G can be represented by
the adjacency matrix A, a N × N matrix, consisting of elements aij that are either
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one or zero depending on whether there is a link between node i and j. The Laplacian
matrix of G with N nodes is a N × N matrix Q = ∆ − A, where ∆ = diag(di) and
di is the degree of node i ∈ N . The set of N eigenvalues of the Laplacian matrix
μN = 0 ≤ μN−1 ≤ ... ≤ μ1 is called the Laplacian spectrum of G. The second
smallest eigenvalue μN−1, also called after Fiedler’s seminal paper [42], the algebraic
connectivity, can be denoted as μN−1 = a(G) for simplicity. We denote the set of
eigenvalues of the adjacency matrix, λN ≤ λN−1 ≤ · · · ≤ λ1, where λ1 is called the
spectral radius. The smaller the spectral radius is, the more robust a network is against
the spread of viruses [71]. The eigenvalues of the adjacency matrix are real while the
eigenvalues of the Laplacian matrix are real and non-negative [75]. The information of
the adjacency matrix A can be equally represented by the set of (either Laplacian or
adjacency) eigenvalues and the corresponding eigenvectors.

3.3 Example: the hopcount

The world is becoming more dependent on computer and communication networks,
ranging from the traditional telephony network to the Internet. An issue of significant
theoretical and practical interest for both consumers and service providers is the path
stability (or route stability), where a path refers to the routing path determined by
the specific routing protocol. The path stability can be quantitatively measured by
the probability that a routing path is still available when the network is prone to link
failures. In fact, the path stability quantifies the effect of link failures on the current
routing path and characterizes the end-to-end performance of a communication network.
For example, links break frequently in ad-hoc networks due to the mobility or the lack
of energy of nodes. Once a routing path is unavailable because of the failures of one or
more links on the path, the corresponding route rediscovery broadcasts would lead to
significant delays and energy consumptions in a dynamic network with a large diameter.
Here, we are going to illustrate how a robustness aspect of a network, the path stability,
can be characterized by the topological metric hopcount.
We concentrate on the following problem: two arbitrary nodes are communicating

via a given routing path in a network G of size N . At some time later, each link has
an independent probability pR to fail. Other link failure patterns can be envisaged,
but most of them will complicate the analysis. Moreover, in practice, it is difficult to
obtain accurate information of possible other correlated link failures. We define two
status of a link: the working status (colored by blue) and the failed status (colored by
red). The status of a link is independent of other links. A link can be either working
or failed. The link capacity is assumed to be infinite. Hence, the path is stable if none
of its links fail. What is then the path stability Pr[Y = 0], i.e. the probability that no
red links (link failures) appear in the routing path, where Y is the number of red links
(failed links) appearing in the path. More general, what is the probability distribution



22 CHAPTER 3. QUANTIFY ROBUSTNESS BY TOPOLOGICAL MEASURE

Pr[Y = k] of the number of red links (failed links) encountered by a path.
We start with a general analysis with the only assumption of independent link

failures. Applying the law of total probability, the probability that k red links appear
in a path is

Pr[Y = k] =
N−1X
j=1

Pr[Y = k|HN = j] Pr[HN = j]

where HN is the hopcount or number of links of the path. In case of a random dis-
tribution of red links and given the hopcount HN of the shortest path, the probability
distribution of the number of red/blue links that appear in the shortest path has the
binomial distribution,

Pr[Y = k|HN = j] =

µ
j

k

¶
pkR(1− pR)

j−k

Hence,

Pr[Y = k] =
N−1X
j=1

µ
j

k

¶
pkR(1− pR)

j−k Pr[HN = j]

=
pkR

(1− pR)k

N−1X
j=1

µ
j

k

¶
Pr[HN = j](1− pR)

j (3.1)

which depends purely on the hopcount distribution. Based on the definition of a prob-
ability generating function

ϕH(z) =
N−1X
j=1

Pr[HN = j] zj

we find that

dk

dzk
ϕH(z) =

N−1X
j=1

j(j − 1) · · · (j − k + 1)Pr[HN = j] zj−k

=
k!

zk

N−1X
j=1

µ
j

k

¶
Pr[HN = j] zj

Using this expression in that of Pr[Y = k] yields

Pr[Y = k] =
pkR
k!

dk

dzk
ϕH(z)

¯̄̄̄
z=1−pR

(3.2)



3.4. EXAMPLE: THE ALGEBRAIC CONNECTIVITY A (G) 23

The path stability follows
Pr [Y = 0] = ϕH(1− pR) (3.3)

According to (3.1), (3.2) and (3.3), the path stability Pr [Y = 0] as well as the distri-
bution Pr[Y = k] of link failures in a path depend purely on the hopcount distribution
Pr[HN = j] or equivalently, on the probability generating function of the hopcount
ϕH(z) in the graph. This exemplifies the relation between a robustness aspect of a
network, namely, the path stability, and the topological metric hopcount.

3.4 Example: the algebraic connectivity a (G)

The algebraic connectivity can characterize network robustness regarding to the fol-
lowing two dynamic processes: synchronization of dynamic processes at the nodes of a
network and random walks on graphs. Random walks on graphs model, for example, the
dispersion phenomena or exploring graph properties [31]. A network has a more robust
synchronized state if the algebraic connectivity of the network is large [98][97]. Random
walks move and disseminate efficiently in topologies with large algebraic connectivity.
Besides, the algebraic connectivity is also widely studied in various areas of math-

ematics [28], mainly discrete mathematics and combinatorial optimization, with inter-
pretation in several physical and chemical problems. In this section, we present those
mathematical results, which may reveal the topological implications of the algebraic
connectivity or imply the robustness characterized by the algebraic connectivity.

3.4.1 Advantages

The algebraic connectivity characterizes the robustness with respect to the connectivity
of a network, as follows from two properties:

• Fiedler [42] showed that the algebraic connectivity is only equal to zero if G is
disconnected and that the multiplicity of zero as an eigenvalue of the Laplacian
matrix Q is equal to the number of disconnected components of G.

• Over many years, network properties as connectivity and “the ease to tear a net-
work apart” have been studied in graph theory. A commonly agreed metric to
reflect these properties is the algebraic connectivity. The higher the algebraic
connectivity is, the more difficult it is to break up the network in separate com-
ponents.

Other metrics, like the minimum degree dmin(G), node κ(G) and link λ(G) con-
nectivity, may characterize the network robustness against node or link removal, with
respect to the most vulnerable part of a network. The algebraic connectivity is upper
bounded by these metrics and is illustrated to be a better robustness measure, because
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• Fielder [42] proved that in an incomplete graph, a (G) ≤ κ(G) ≤ λ(G) ≤ dmin(G),
where the node κ(G) and the link λ(G) connectivity are the minimal number of
nodes and links that have to be removed in order to disconnect a network. The
algebraic connectivity is a more useful robustness measure with respect to the
connectivity than the node and link connectivity. For example, all trees have
the minimum node and link connectivity 1, while the star has a larger algebraic
connectivity than a path. A star is more robust than a path in the sense that
only the removal of the highest degree node in a star will disconnect the network,
while the removal of any node (except the two degree 1 node) always disconnects
the path.

• The algebraic connectivity is non-decreasing by adding links. Let G+ e denotes
a graph obtained from G by adding a link e between two nodes that are not
connected. The following interlacing property is well known (see, for example
[38])

Theorem 1 Let G be a general graph of N nodes. Let G+ e be the graph obtained by
adding the edge e in G. Then the eigenvalues of G interlace those of G+ e, that is,

μN(G) ≤ μN(G+ e) ≤ μN−1(G) ≤ μN−1(G+ e)

≤ μN−2(G)... ≤ μ1 ≤ μ1(G+ e)

Since XN

i=1
μi(G) = 2LXN

i=1
(μi(G+ e)− μi(G)) = 2

at least one inequality in Theorem 1 must be strict and

0 ≤ μN−1(G+ e)− μN−1(G) ≤ 2 (3.4)

This is a fundamental feature expected for any good robustness metric of transportation
networks, because the traffic capacity is generally non-decreasing after adding links.

• Finally, we demonstrate in Section 4.3 that compared to other Laplacian eigen-
values, the algebraic connectivity better quantifies the network robustness with
respect to traffic engineering. A network with large algebraic connectivity tends
to possess a dense core and sparse border structure. Hence, the traffic is more
uniformly distributed, when traffic is injected between each node pair.
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3.4.2 Disadvantages

According to Theorem 1, if the third smallest Laplacian eigenvalue is equal to the second
smallest (the algebraic connectivity), μN−2(G) = μN−1(G), then μN−1(G) = μN−1(G+e)
the algebraic connectivity remains the same wherever a link is added. This is observed
in graphs such as the d-lattice, the ring, or the star. Hence, the algebraic connectivity
is sometimes not sensitive to link addition. Furthermore, many real-world networks
possess degree 1 nodes, such as stubs or end-users. For these networks a (G) ≤ 1,
and thus small, since a (G) ≤ dmin(G). Hence, the algebraic connectivity seems a less
suitable robustness quantifier. However, a properly designed robust network does not
contain these obvious weaknesses. The extreme example is adding one link and one node
to a complete graph (that is maximally “robust” in the sense that a (G) ≤ a(KN) =
N). That resulting graph suddenly features a low algebraic connectivity. But, this
is intuitively quite obvious: no network designer that aims to create a robust network
would allow for these weak links, especially in the design of the core of a communications
network.
In summary, the algebraic connectivity characterizes the network robustness regard-

ing to the synchronization of dynamic processes at the nodes of a network and random
walks on graphs. It quantifies the network robustness in terms of connectivity, the con-
nection of the weakest part of a network and traffic engineering. Although the algebraic
connectivity is not a sensitive measure to compare the robustness of current real-world
networks, it is a good robustness metric to optimize, at least when designing the core
of a network.
Significant progress has been made in understanding the quantification of network

robustness, in terms of the relationship between the structural properties of networks
and the performance of the services. The robustness quantification with respect to
specific performance aspects of a service is also discussed in Part III of the thesis.
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Part II

Robustness Optimization
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Chapter 4

Graphs with given diameter
maximizing a(G)

Dependent on the specific performance aspect that a service requires, a metric R can
be selected to characterize the network robustness. The next questions are “what is
the optimal network topology G that maximizes the robustness measure R(G)?” and
“Given the network infrastructure, how can we improve its robustness via structure
modification like adding links?” Such robustness optimization problems, that will be
investigated in Chapter 4 and Chapter 5, are not only of great interest for practical
network design and development, but also of theoretical importance in graph theory,
discrete mathematics and combinatorial optimization. We confine to the spectral met-
ric, the algebraic connectivity, in view of its wealthy robustness implications presented
in Section 3.4.
The diameter D of a graph is the maximum distance in terms of the number of

hops or links over all pairs of nodes in G. The diameter is one of the graph metrics
that is not only of theoretical interest but that also has many practical applications.
In communication networks, the diameter plays a key role in network design when the
network performance, such as the delay or signal degradation, is proportional to the
number of links that a packet traverses [21]. In order to guarantee certain quality of
service, the diameter should be, somehow, limited. The complete graph or clique KN

has the maximal algebraic connectivity a(KN) = N . However, real-world networks are
always far sparser and their diameters are mostly larger. In order to construct a certain
relative large diameter, links have to be removed, but this reduces the algebraic con-
nectivity. It is essential to understand the relationship between the maximal algebraic
connectivity amax(N,D) and the diameter D, at constant N .
In this chapter, we propose a class of graphs G∗D(n1, n2, ..., nD, nD+1), contain-

ing a chain of D + 1 cliques Kn1,Kn2 , ..., KnD+1 , where neighboring cliques are fully-
interconnected. The class of graphs has diameter D and size N =

P
1≤i≤D+1ni. This

structure was employed by Van Dam [91] to determine the graphs with the maximal

29
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spectral radius λ1 among those on N nodes and diameter D. Here, we prove that
this class of graphs can achieve the maximal number of links, the minimum average
hopcount, and more interestingly, the maximal of any Laplacian eigenvalue among all
graphs with N nodes and diameter D. We determine analytically the graph with the
largest algebraic connectivity amax(N,D) among graphs with N nodes and diameter
D < 4. For other diameters, numerically searching for the maximum of any Laplacian
eigenvalue is feasible, because (a) the searching within the class G∗D(n1, n2, ..., nD+1) is
much smaller than within all graphs with N nodes and diameter D; (b) we reduce the
calculation of the Laplacian spectrum from a N×N to a (D+1)× (D+1) Jacobian ma-
trix. These maximal Laplacian eigenvalues as well as the corresponding optimal graphs,
obtained either theoretically or by numerical searching, are applied to (1) investigate
the topological features of graphs that maximize different Laplacian eigenvalues; (2)
study the correlation between the maximum algebraic connectivity amax(N,D) and N
as well as D and (3) evaluate two upper bounds of the algebraic connectivity that are
proposed in the literature.

4.1 The class of graphs G∗D
4.1.1 Definition

Definition 2 The class of graphs G∗D(n1, n2, ..., nD+1) is composed of D + 1 cliques
Kn1, Kn2 , ...,KnD and KnD+1, where the variable ni ≥ 1 with 1 ≤ i ≤ D + 1 is the size
or the number of nodes in the i− th clique. Each clique Kni is fully connected with its
neighboring cliques Kni−1 and Kni+1 for 2 ≤ i ≤ D. Two graphs G1 and G2 are fully
connected if each node in G1 is connected to all the nodes in G2.

Two examples, G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and G
∗
D=4(n1 = 1, n2 =

3, n3 = 2, n4 = 2, n5 = 1), are shown in Figure 4.1. Obviously, the class of graphs
G∗D(n1, n2, ..., nD+1) has diameter D, which equals the distance between nodes in clique
Kn1 and nodes in KnD+1 . The size of each clique must be larger than or equal to one,
i.e. ni ≥ 1 for 1 ≤ i ≤ D + 1, else, the diameter of the graph is smaller than D. The
degree of any node in Kni is ni−1+ni+1+ni−1 for 2 ≤ i ≤ D. The degree is n1−1+n2
for any node in Kn1 and is nD+1 − 1 + nD for nodes in clique KnD+1 .

4.1.2 Properties

Each node in the class of graphs G∗D(n1, n2, ..., nD+1) is fully connected within the clique
and with neighboring cliques. We now define a node shifting action performed on a
graph of the class G∗D(n1, n2, ..., nD+1). The resultant graph also belongs to this class
and differs from the initial graph in that one node is shifted to a neighboring clique.
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(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 2n = 4 2n = 5 1n =1 1n = 2 3n =

(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 2n = 4 2n = 5 1n =1 1n = 2 3n =

Figure 4.1: The graph (a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b)
G∗D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 = 1).

Definition 3 Node shifting within the class G∗D(n1, ..., ni−1, ni, ni+1, ..., nD+1): Any node
in clique Kni for 2 ≤ i ≤ D can be shifted to its neighboring clique Kni+1 (or Kni−1) by
removing links between this node and all the nodes in clique Kni−1 (or Kni+1) and by
adding links between this node and all the nodes in clique Kni+2 (Kni−2), if ni > 1. The
resultant graph after one of such node shifting actions is G∗D(n1, ..., ni−1, ni − 1, ni+1 +
1, ..., nD+1) or G∗D(n1, n2, ..., ni−1 + 1, ni − 1, ni+1, ..., nD+1). A node in clique Kn1 (or
KnD+1) can only be shifted to clique Kn2 (or KnD) by adding links between it and all
nodes in clique Kn3 (or KnD−1), which results in G∗D(n1 − 1, n2 + 1, ..., nD−1, nD, nD+1)
(or G∗D(n1, n2, ..., nD−1, nD + 1, nD+1 − 1)).

Figure 4.2 illustrates an example of node shifting. From (a) G∗D=4(n1 = 3, n2 =
1, n3 = 2, n4 = 1, n5 = 2) to (b) G∗D=4(n1 = 3, n2 = 1, n3 = 1, n4 = 2, n5 = 2), a node
(red) in Kn3 is shifted to Kn4 by removing the link (marked with cross) between that
node and nodes in clique Kn2 and by adding links (the blue dotted line) between the



32 CHAPTER 4. GRAPHS WITH GIVEN DIAMETER MAXIMIZING A(G)

(a)

(b)
1 3n = 2 1n =

3 2n = 4 1n =

5 2n =

5 2n =

4 2n =3 1n =

1 3n = 2 1n =
(a)

(b)
1 3n = 2 1n =

3 2n = 4 1n =

5 2n =

5 2n =

4 2n =3 1n =

1 3n = 2 1n =

Figure 4.2: The graph (a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b)
G∗D=4(n1 = 3, n2 = 1, n3 = 1, n4 = 2, n5 = 2). The line with cross mark is to be
removed and the dotted blue links are added.

node and all nodes in Kn5. In fact, any two graphs in the class G
∗
D(n1, n2, ..., nD, nD+1)

with the same number N of nodes can be transformed from one to the other by a set of
node shifting actions. For example, Figure 4.1(b) can be obtained from Figure 4.1(a)
by shifting two nodes from Kn1 to Kn2 and one node from Kn5 to Kn4 . When a node
in clique Kni, where 2 ≤ i ≤ D and ni > 1, is shifted to clique Kni+1, ni−1 links are
removed and ni+2 links are added. Hence, if we shift m < ni nodes from clique Kni

to clique Kni+1, ni−1 · m links are removed and ni+2 · m links are added. This node
shifting operation will be frequently used to prove several interesting properties of the
class G∗D(n1, n2, ..., nD, nD+1).

Based on the sizes of the first and last clique, the class of graphsG∗D(n1, n2, ..., nD, nD+1)
can be divided into two sets: 1) n1 = nD+1 = 1, e.g. Figure 4.1(b), and 2) at least one
of n1, nD+1 is larger than 1, e.g. Figure 4.1(a). The set 1 is generally denser than the
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set 2, in the sense that

Lemma 4 A graph G∗D(n1, n2, ..., nD, nD+1), where at least one of n1 and nD+1 is larger
than one, is a subgraph of G∗D(1, n1 − 1 + n2, ..., nD−1, nD + nD+1 − 1, 1).

Proof. According to the definition of node shifting, links are only added and not
removed, when a node is shifted from Kn1 to Kn2 or from KnD+1 to KnD . G

∗
D(1, n1 −

1 + n2, ..., nD−1, nD + nD+1 − 1, 1) can be obtained from G∗D(n1, n2, ..., nD−1, nD, nD+1)
by shifting n1 − 1 nodes from Kn1 to Kn2 and by shifting nD+1 − 1 nodes from KnD+1

to KnD by purely adding links. Hence, G
∗
D(n1, n2, ..., nD−1, nD, nD+1) is a subgraph of

G∗D(1, n1−1+n2, ..., nD−1, nD+nD+1−1, 1), when either n1 or nD+1 is larger than one.

Figure 4.1 gives an example of Lemma 4, i.e. G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 =
1, n5 = 2) is a subgraph of G∗D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 = 1). Both graphs
contain the same set of nodes, while the latter consists of more links, the blue dotted
ones.
The motivation to study the set of graphs G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) lies in

the following properties.

Theorem 5 Any graph G(N,D) with N nodes and diameter D is a subgraph of at least
one graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

Proof. There is at least one node pair in G(N,D) that is D hops away from each
other, because the diameter of G(N,D) is D. We select a node s from one such node
pair and denote it as cluster C1 = s. We define the set of clusters Ci (2 ≤ i ≤ D + 1)
as the set of |Ci| nodes that is i hops away from s or cluster C1. There can be more
than one node that is D hops away from s, when |CD+1| ≥ 1. First, G(N,D) is a
subgraph of the graph G∗D(n1 = 1, n2, ..., nD, nD+1) when ni = |Ci| for 1 ≤ i ≤ D + 1,
because of two reasons: (a) Within each cluster Ci of G(N,D), for 1 ≤ i ≤ D + 1,
these |Ci| nodes are at best fully connected as in the corresponding clique Kni with
size ni = |Ci| in G∗D(n1 = 1, n2, ..., nD, nD+1). (b) in G(N,D), nodes in cluster Ci

(2 ≤ i ≤ D) can not be connected to nodes in other clusters except for Ci−1 and Ci+1,
or else, the distance between C1 = s and nodes in CD+1 is smaller than D. Similarly,
each clique Kni is only but fully connected to its neighboring cliques Kni−1 and Kni+1

in G∗D(n1 = 1, n2, ..., nD, nD+1).
Based on Lemma 4, G∗D(n1 = 1, n2, ..., nD, nD+1) is a subgraph of G

∗
D(1, n2, ..., nD−1,

nD + nD+1 − 1, 1). Hence, any graph G(N,D) with N nodes and diameter D is a
subgraph of at least one graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

Since
XD+1

i=1
ni = N and n1 = nD+1 = 1 always hold, the graph G∗D(1, n2, ..., nD, 1)

contains D − 2 variables: the sizes of the cliques and ni > 0 for 1 ≤ i ≤ D + 1.
Fiedler [42] showed that, if G1 is a subgraph of G with the same size, then a(G1) ≤

a(G). Hence, by virtue of Theorem 5, we have:
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Corollary 6 The maximum algebraic connectivity of the graphs in the class G∗D(n1 =
1, n2, ..., nD, nD+1 = 1) is also the maximum among all the graphs with the same size N
and diameter D, i.e. amax(G∗D(n1 = 1, n2, ..., nD, nD+1 = 1)) = amax(N,D).

However, given size N and diameter D, the graph that has the maximum algebraic
connectivity amax(N,D) may not be unique. For example, the graph in G∗D(n1 =
1, n2, ..., nD, nD+1 = 1) maximizing the algebraic connectivity amax(N,D) may possess
the same algebraic connectivity after a set of links is deleted. In other words, different
graphs may have the same algebraic connectivity amax(N,D).

Theorem 7 The maximum of any eigenvalue μi(G1), i ∈ [1, N ] achieved in the class
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) is also the maximum among all the graphs with N
nodes and diameter D.

Proof. Based on the well-known interlacing property introduced in Theorem 1, if G1

is a subgraph of G with the same size N, μi(G1) ≤ μi(G), for i ∈ [1, N ]. Together with
Theorem 5, the proof can be completed.

Theorem 8 The maximum number of links in a graph with given size N and di-
ameter D is Lmax(N,D) =

¡
N−D+2

2

¢
+ D − 3, which can only be obtained by either

G∗D(1, ..., 1, nj = N −D, 1, ..., 1) with j ∈ [2,D], where only one clique has size larger
than one, or by G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1) with j ∈ [2, D− 1] where only two
cliques have size larger than one and they are next to each other.

Proof. First, according to Theorem 5, the maximum number of links Lmax(N,D) can
only be achieved within the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1). Second, any other
graph G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), where more than one clique has size larger than
one, can be transformed into G∗D(1, ..., 1, nj = N −D, 1, ..., 1) by a set of node shifting
operations. (a) When progressing from clique Kn2 to clique KnD−1, we label the first
encountered clique that has size larger than one as Knr such that ni = 1 for i < r.
(b) We shift all but one (i.e. nr − 1) nodes in clique Knr to clique Knr+1 by deleting
(nr−1) ·nr−1 = (nr−1) links and by adding (nr−1) ·nr+2 links. The process (a and b)
is repeated until there is only one clique having size larger than 1. Since ni ≥ 1 for i ∈
[1,D+1] according to the definition of the classG∗D(n1, n2, ..., nD, nD+1), (nr−1)·nr+2 ≥
nr − 1. The inequality holds when nr+2 > 1, which happens at least one time during
the recursive node shifting except for G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1), j ∈ [1,D−2]
where only two cliques have size larger than one and they are next to each other. Hence,
G∗D(1, ..., 1, nj = N−D, 1, ..., 1), j ∈ [2, D] and G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1), j ∈
[2,D− 1] possess the maximum number of links among graphs of size N and diameter
D. The maximum number of links is Lmax(N,D) =

¡
N−D
2

¢
+ 2(N − D) + D − 2 =¡

N−D+2
2

¢
+D − 3.
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Theorem 9 The minimum average hopcount in graphs with size N and diameter D
can be only obtained by G∗D(1, ..., 1, nD

2
+1 = N −D, 1, ..., 1) when D is even, or when D

is odd, by G∗D(1, ..., 1, nbD2 c+1 ≥ 1, ndD2 e+1 ≥ 1, 1, ..., 1), where only the two cliques in
the middle have size larger than one. The minimum average hopcount is

min
G∈G(N,D)

E[H(G)] =

⎧⎪⎪⎨⎪⎪⎩
N−D−1
N(N−1)

³
D2

2
+N

´
+

PD
i=1i(D−i+1)
(N2)

, when D is even

N−D−1
N(N−1)

³
2
¥
D
2

¦2
+N +D

´
+

PD
i=1i(D−i+1)
(N2)

, when D is odd

Proof. First, according to Theorem 5 and the fact that adding links can always reduce
the average hopcount, the minimum average hopcount in graphs with given size N and
diameter D can be only be achieved within the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).
Second, within the set G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), any graph can be trans-
formed into G∗D(1, ..., 1, nD

2
+1 = N−D, 1, ..., 1) for evenD, or intoG∗D(1, ..., 1, nbD2 c+1 ≥

1, ndD2 e+1 ≥ 1, 1, ..., 1) for oddD via the following node shifting, where the average hop-
count can always be reduced. We consider first the case that D is odd. We repeat the
node shifting process (a) and (b) in the proof of Theorem 8 for r ≤

¥
D
2

¦
, until ni = 1 for

i <
¥
D
2

¦
+1 and all the remaining nodes are shifted into clique

¥
D
2

¦
+1. When a node is

shifted from Knr to Knr+1, its distance to any node in clique i < r is increased by one,
while its distance to any node in clique i > r + 1 is reduced by one. Hence, via such
a node shifting operation, the sum of the hopcounts between all nodes pairs is reduced

by
PD+1

j=r+2nj −
Pr−1

j=1nj ≥
PD+1

j=dD2 e+1nj −
PbD2 c−1

j=1 1 > 0, because r ≤
¥
D
2

¦
and nj ≥ 1

for j ∈ [1,D + 1]. Similarly, from clique KnD to clique KdD2 e+2, we denote the first
encountered clique that has size larger than one as Knr . The nr− 1 nodes in clique Knr

are shifted to clique Knr−1. This shifting process is recursively carried out until ni = 1
for i >

§
D
2

¨
+1 and all other nodes are shifted to the clique KdD2 e+1. Shifting one node

from clique Knr to clique Knr−1, where
§
D
2

¨
+ 1 < r ≤ D, reduces the sum of the hop-

counts between all nodes pairs by
Pr−2

j=1nj −
PD+1

j=r+1nj ≥
PdD2 e

j=1 nj −
PD+1

j=dD2 e+21 > 0.

The average hopcount can always be reduced as long as a node is shifted. Therefore,
G∗D(1, ..., 1, nbD2 c+1 ≥ 1, ndD2 e+1 ≥ 1, 1, ..., 1) has the minimum average hopcount. The

size of clique
¥
D
2

¦
+ 1 and clique

§
D
2

¨
+ 1 have no effect on the average hopcount due
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to the symmetry of G∗D. Taking nbD2 c+1 = N −D and ndD2 e+1 = 1, we have

min
G∈G(N,D)

E[H(G)] =
(N −D − 1)

µPbD2 c
i=1 i+

PdD2 e
i=1 i

¶
+
¡
N−D
2

¢
+
PD

i=1i(D − i+ 1)¡
N
2

¢
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N −D − 1
N(N − 1)

Ã
2

¹
D

2

º2
+N +D

!
+

PD
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N
2

¢
When D is even, the clique KbD2 c+1 = KdD2 e+1 are the same. Similarly, any other
graph G∗D(1, n2, ..., nD, 1) can be transformed into G∗D(1, ..., 1, nD

2
+1 = N −D, 1, ..., 1)

by nodes shifting, which can only decrease the average hopcount. When D is even, we
have

min
G∈G(N,D)

E[H(G)] =
2 (N −D − 1)

PD
2
i=1i+

¡
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¢
In summary, the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) can achieve the maximum of

any Laplacian eigenvalue μi, 1 ≤ i ≤ N − 1, the maximum link density, the minimum
average hopcount among all graphs with given size N and diameter D. The graphs that
possess the maximum link density and the minimum average hopcount are rigorously
determined in Theorem 8 and 9. In the sequel, we focus on the Laplacian spectrum of
the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

4.2 Laplacian Eigenvalues of G∗D
Theorem 10 The characteristic polynomial of the Laplacian QG∗D

= ∆G∗D
− AG∗D

of
G∗D(n1, n2, ..., nD−1, nD, nD+1) equals

det
¡
QG∗D

− μI
¢
= pD (μ)

QD+1
j=1 (dj + 1− μ)nj−1 (4.1)

where dj denotes the degree of a node in clique j. The polynomial pD (μ) =
QD+1

j=1 θj is
of degree D + 1 in μ and the function θj = θj (D;μ) obeys the recursion

θj = (dj + 1− μ)−
µ
nj−1
θj−1

+ 1

¶
nj (4.2)

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0.
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Proof. See Appendix A.1.
Theorem 10 shows that the LaplacianQG∗D

has eigenvalues at nj−1+nj+nj+1 = dj+1
with multiplicity nj − 1 for 1 ≤ j ≤ D + 1, with the convention that n0 = nD+2 = 0.
The less trivial zeros are solutions of the polynomial pD (μ) =

QD+1
j=1 θj, where θj is

recursively defined via (4.2). Since all the explicit eigenvalues μj = dj + 1 are larger
than zero and since μ = 0 is an eigenvalue of any Laplacian, the polynomial

QD+1
j=1 θj

must have a zero at μ = 0. Thus, the polynomial of interest is

pD (μ) =
QD+1

j=1 θj (D;μ) =
D+1X
k=0

ck (D)μ
k =

D+1Y
k=1

(zk − μ) (4.3)

where the dependence of θj on the diameter D and on μ is explicitly written and where
the product with the zeros zD+1 ≤ zD ≤ · · · ≤ z1 follows from the definition of the
eigenvalue equation (see [67, p. 435-436]). Moreover, each zj ∈ [0, N ] because each
Laplacian eigenvalue of any graph is contained in the interval [0, N ].

Corollary 11 The three Laplacian eigenvalues of G∗D, the two smallest Laplacian eigen-
values μN = 0 and the algebraic connectivity a = μN−1 and the largest one μ1, are equal
to the zero zD+1 = 0, zD and z1 of the polynomial pD (μ), respectively.

Proof. Since all the explicit Laplacian eigenvalues dj + 1 of G∗D in (4.1) are larger
than zero and since μ = 0 is an eigenvalue of any Laplacian, the polynomial pD (μ)
must have a zero at μ = 0. Grone and Merris [48] succeeded to improve Fiedler’s
lower bound and proved that, for any graph, μN−1 ≤ dmin, where dmin is the minimum
degree in the graph. All trivial eigenvalues are larger than the minimum degree since
dj +1 > dj ≥ dmin, which implies that the algebraic connectivity is a = μN−1 = zD, the
smallest positive zero of pD (μ). The largest Laplacian eigenvalue obeys μ1 ≥ dmax + 1.
Brouwer and Haemers [15] further show that the equality holds if and only if there is
a node connecting to all the other nodes in the graph, i.e. D = 2. Hence, when the
diameter D > 2, the largest eigenvalue is always a nontrivial eigenvalue, i.e. μ1 = z1.
When D = 2, the zeros of

pD (μ) = μ
¡
μ2 − (N + n2)μ+Nn2

¢
= μ (μ−N) (μ− n2)

are z3 = 0, z2 = n2 and z1 = N . Since the largest eigenvalue μ1 ∈ [0, N ] , μ1 = z1.
Furthermore, pD (μ) is shown in Appendix B to belong to a set of orthogonal polyno-

mials. All the non-trivial eigenvalues of QG∗D
are also eigenvalues of the (much simpler

and smaller) Jacobian matrix -fM , where
fM =

⎡⎢⎢⎢⎢⎢⎣
−n2

√
n1n2√

n1n2 − (n1 + n3)
√
n2n3

. . . . . . . . .√
nD−1nD − (nD−1 + nD+1)

√
nDnD+1√

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎦
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Therefore, exhaustively numerical searching for the maximum of any Laplacian eigen-
value is feasible because of two reasons: (a) the searching space within G∗D(n1 =
1, n2, ..., nD, nD+1 = 1) is much smaller than the searching within all graphs with N
nodes and diameter D. (b) the calculation of the Laplacian spectrum is reduced from
a N ×N matrix to a (D + 1)× (D + 1) tri-diagonal matrix.

4.3 The maximum of any Laplacian eigenvalue

Theorem 7 shows that the maximum of any eigenvalue among all graphs with size N
and diameter D can be achieved within the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).
What is the topological implication when different eigenvalues are optimized? Table
4.1 presents the different topologies with D = 6 that optimize the i-th largest Laplacian
eigenvalue μi and the spacing μi − μi+1, for i ∈ [N − 1, N − 7].

Table 4.1: Graphs with D = 6 that optimize the i-th largest Laplacian eigenvalue μi or
the spacing μi − μi+1.

N = 50 N = 100
value to optimize n2 n3 n4 n5 n6 value to optimize n2 n3 n4 n5 n6
μN−1 = μN−1 − μN 6 11 14 11 6 μN−1 = μN−1 − μN 13 22 28 22 13

μN−2 16 15 1 1 15 μN−2 32 32 1 1 32
μN−2 − μN−1 16 15 1 1 15 μN−2 − μN−1 32 32 1 1 32

μN−3 1 22 1 1 23 μN−3 1 47 1 1 48
μN−3 − μN−2 1 22 1 1 23 μN−3 − μN−2 1 47 1 1 48

μN−4 1 22 1 23 1 μN−4 1 48 1 47 1
μN−4 − μN−3 1 22 1 23 1 μN−4 − μN−3 1 48 1 47 1

μN−5 1 1 44 1 1 μN−5 1 1 94 1 1
μN−5 − μN−4 1 1 44 1 1 μN−5 − μN−4 1 1 94 1 1

μN−6 1 1 1 30 15 μN−6 1 1 34 61 1
μN−6 − μN−5 1 1 43 1 2 μN−6 − μN−5 2 1 93 1 1

μN−7 1 1 1 35 10 μN−7 1 1 1 38 57
μN−7 − μN−6 2 1 42 1 2 μN−7 − μN−6 2 1 92 1 2

The graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that optimizes μi for i ≤
N − 5 possesses the maximal number of links, i.e. only one or two adjacent cliques
have size larger than one, according to Theorem 8. In fact, μi for i = N − 6, N − 7
can be optimized by any graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that has
the maximal number of links, not only the graph listed in the table. Theorem 10 shows
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that the Laplacian QG∗D
has eigenvalues at nj−1 + nj + nj+1 = dj + 1 with multiplicity

nj − 1 for 1 ≤ j ≤ D+1. Graphs that maximize the number of links have the maximal
trivial eigenvalue N −D + 2 with the maximal multiplicity N −D + 1. Hence, a large
set of eigenvalues, but not the largest one1 μ1, can be optimized by graphs possessing
the maximal number of links. Graph that optimizes the eigenvalue μi, at the same
time, maximizes the corresponding spacing μi − μi+1, for i ≥ N − 5. However, when
i < N − 5, the graph that optimizes the eigenvalue μi, has spacing μi−μi+1 = 0, which
is far from the maximal spacing.
The graph that maximizes the algebraic connectivity μN−1, has larger sizes for

cliques in the middle. It is dense in the core and sparse at borders. Such structure
is robust for information transportation in the sense that traffic is more uniformly
distributed, when traffic is injected between each node pair. Contrary, graphs that
maximize other eigenvalues or spacing, have cliques with small size (nj = 1) around
the middle, which have to carry much more traffic and become the bottleneck for
transportation. Graphs with many cliques of size one are vulnerable, because removal
of such clique - which is in fact a node - disconnects the rest of the graph. Hence, the
comparison of topologies in table 4.1 provides us with an extra motivation to quantify
network robustness by the algebraic connectivity. Since G∗D(n1, n2, ..., nD, nD+1) has

L =
XD

i=2

µ
ni
2

¶
+
XD

i=1
nini+1

links, the number of links in the graph that maximizes the algebraic connectivity is far
smaller than the maximum for D > 3 according to Theorem 8. Therefore, graphs that
maximize the algebraic connectivity are robust for transportation, while, at the same
time, efficient in the number of links.

4.4 The maximum algebraic connectivity amax(N,D)

4.4.1 Exact computation of amax (N,D) for diameter D = 2, 3

Before we start the D = 2, 3 cases, it should be mentioned that the graph G(N,D =
N − 1) with N nodes and diameter N − 1 is unique: a line graph. The algebraic
connectivity of a line graph [28] is well-known: amax(N,D = N − 1) = 2

¡
1− cos π

N

¢
.

The complete Laplacian spectrum of G∗D=2(n1, n2, n3) follows from Theorem 10 and
the polynomial pD (μ), as the zeros at μ1 = n1 + n2 with multiplicity n1 − 1, μ2 =
n1 + n2 + n3 = N with multiplicity n2 − 1, μ3 = n2 + n3 with multiplicity n3 − 1 and
the simple zeros of

pD (μ) = μ
¡
μ2 − (N + n2)μ+Nn2

¢
= μ (μ−N) (μ− n2)

1The largest eigenvalue μ1 is always a nontrivial one according to Theorem 10. Hence, a lower
bound for the maximal possible μ1 follows μ1max ≥ N −D + 2.
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which are z3 = 0, z2 = n2 and z1 = N . Clearly, since n1 + n2 + n3 = N , the largest
possible algebraic connectivity amax(N,D = 2) = n2 is N − 2.
This result is more directly found from Corollary 6. The maximum algebraic

connectivity in graphs with N nodes and diameter D can be achieved in the class
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), which is unique, i.e. G

∗
D=2(n1 = 1, n2 = N−2, n3 = 1)

for D = 2. The graph G∗D=2(n1 = 1, n2 = N − 2, n3 = 1) is a clique of size N without
one link KN−{(i, j)}, which is the complementary graph of a path (or a clique) {(i, j)}
of two nodes. The sum of the algebraic connectivity of two complementary graphs is N
[28]. Hence, G∗D=2(1, N−2, 1) = KN −{(i, j)} has the maximum algebraic connectivity
N − 2 among graphs with N nodes and diameter D = 2, i.e. amax(N,D = 2) = N − 2.

Theorem 12 For graphs with N nodes and diameter D = 3, the graph
G∗D=3

¡
1,
¥
N−2
2

¦
, N − 2−

¥
N−2
2

¦
, 1
¢
has the maximum algebraic connectivity with

¥
N−2
2

¦
−

1 ≤ amax(N,D = 3) ≤
¥
N−2
2

¦
.

Proof. Theorem 10 shows that the characteristic polynomial of the corresponding
Laplacian matrix of G∗D=3(n1 = 1, n2, n3, n4 = 1) satisfies (4.1). The algebraic connec-
tivity of G∗D=3(n1 = 1, n2, n3, n4 = 1) is the smallest zero z3 of the polynomial,

q3 (μ) = p3 (μ) /μ =μ
3 − (2N − n1 − n4)μ

2 + (n22 + n23 + n1n2 + n1n3 + n1n4 + 3n2n3+

n2n4 + n3n4)μ−Nn2n3

that, here with n1 = n4 = 1, n2 = m and n3 = N − 2−m reduces to

q3 (μ) = μ3−2(N−1)μ2+((N−2)(N+1)+(m−1)(N−m−3))μ−Nm(N−m−2) (4.4)

Second, we only need to consider the case m ≤
¥
N−2
2

¦
because the m >

¥
N−2
2

¦
can

be reduced to the case m ≤
¥
N−2
2

¦
by swapping the clique Kn1 and Kn4 . We will now

show that, for m ≤
¥
N−2
2

¦
, the smallest zero z3 of (4.4) satisfies m− 1 < z3 < m.

All zeros of the orthogonal polynomial pD (μ) are simple and non-negative. The sign
of q3 (μ) for μ = m, μ = N − 1 and for μ = N follows from

q3(m) = −m < 0 (4.5)

q3(N − 1) = m(N − 2−m) > 0 (4.6)

q3(N) = −N < 0 (4.7)

Likewise, we find that

q3(m− 1) = −2m+ 2m2 − 3Nm+N2 (4.8)



4.4. THE MAXIMUM ALGEBRAIC CONNECTIVITY AMAX(N,D) 41

which obtains, as a function ofm, a minimum atm0 =
2+3N
4
. Thus, for 0 ≤ m ≤ m0, the

function q3(m− 1) is decreasing in m. Because m ≤
¥
N−2
2

¦
, it follows m ≤ N−2

2
= m∗

and that q3(m∗ − 1) = 4. Finally, because m ≤ m∗ < m0 it follows that

q3(m− 1) > 0 (4.9)

From (4.5), (4.9), (4.6) and (4.7), it follows that q3(μ) has simple zeros z3 < z2 < z1
satisfying m − 1 < z3 < m, m < z2 < N − 1 and N − 1 < z1 < N . Hence,
among the class G∗D(1, n2, n3, 1), the largest algebraic connectivity can be obtained by
G∗D=3

¡
1,
¥
N−2
2

¦
, N − 2−

¥
N−2
2

¦
, 1
¢
,where m is maximized.

Finally, according to Corollary 6, the algebraic connectivity of G∗D=3
¡
1,
¥
N−2
2

¦
,

N − 2−
¥
N−2
2

¦
, 1
¢
is also the maximum amax(N,D = 3) of all the graphs with N nodes

and diameter D = 3, and
¥
N−2
2

¦
− 1 ≤ amax(N,D = 3) ≤

¥
N−2
2

¦
.

4.4.2 amax(N,D) in relation to N and D

The maximum algebraic connectivity amax(N,D) used in this section is obtained via
exhaustive searching in G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) for D ≥ 4. We study first the
amax(N,D) in relation toN . As shown in Figure 4.3, the maximal algebraic connectivity

300
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0

a m
ax

(N
,D

)

400300200100

N

 amax(N,D  = 6)
 -1.62+0.116N
 amax(N,D  = 5)
 -2.3+0.184N
 amax(N,D  = 4)
 -3.0 + 0.3N
 amax(N,D  = 3)
 -1.9 + 0.5N  
 amax(N,D  = 2)
 -2 + N

Figure 4.3: The amax(N,D) (marker) for 2 ≤ D ≤ 6 and the corresponding linear fitting
(dotted line).

seems linear in N for constant D, i.e. amax(N,D) ∼= b + � · N . The slope � decreases
fast from � = 1 to � = 0.12 when the diameter increases from D = 2 to D = 6. When
D = 2, amax(N,D = 2) = N − 2, which is determined in Section 4.4.1. When D = 3,
we have that � = 0.5, which follows from Theorem 12, i.e.

¥
N−2
2

¦
− 1 ≤ amax(N,D =

3) ≤
¥
N−2
2

¦
. Moreover,
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Theorem 13 For a constant diameter D and large N , all non-trivial eigenvalues of
the Laplacian matrix of any graph in the class G∗D(n1, n2, ..., nD, nD+1) scale linearly
with N , the number of nodes.

Proof. Each non-trivial eigenvalue μ of the Laplacian satisfies the eigenvalue equation
−fMy = μy, where y is the corresponding normalized eigenvector such that the Euclidian
norm yTy = kyk22 = 1. We now define the rational number αj =

nj
N
, for each 1 ≤ j ≤

D + 1. It follows N =
PD+1

j=1 nj and nj ≥ 1 that 0 < αj < 1 and
PD+1

j=1 αj = 1. The

Jacobian matrix then becomes fM = N. eR, where
eR =

⎡⎢⎢⎢⎢⎢⎣
−α2

√
α1α2√

α1α2 − (α1 + α3)
√
α2α3

. . . . . . . . .√
αD−1αD − (αD−1 + αD+1)

√
αDαD+1√

αDαD+1 −αD

⎤⎥⎥⎥⎥⎥⎦
For small N , the dependence2 of αj on N will influence μ. For large N , on the
other hand, since the norm of eR is bounded for a constant D independent of N ,
and the eigenvector y is normalized, we observe from the eigenvalue equation that
μ = −NyT eRy = N (c+ o (1)), where c is only dependent on D. This means that, for
large N , the eigenvalue μ scales linearly with N .
Combining Theorem 13 and 6 and Corollary 11 implies that, for large N , the highest

possible achievable algebraic connectivity in networks G (N,D) is a linear function of
N , provided the diameter D is independent from N .
We start the investigation of the relation between amax(N,D) and diameter D

by proving that the maximum of any eigenvalue μimax(G(N,D)), i ∈ [1, N ] is non-
increasing as the diameter D increases. The proof is based on the following clique
merging operation.

Definition 14 Clique merging: In any graph with diameterD of the class G∗D(n1, n2, ...,
ni, ni+1, ..., nD+1), any two adjacent cliques Kniand Kni+1 can be merged into one clique,
resulting into a graph with diameter D−1, i.e. G∗D−1(n1, n2, ..., ni+ni+1, ..., nD+1). The
merging of clique Kniand Kni+1 is obtained by adding nini+2 links such that clique Kni

is fully meshed with clique Kni+2 (if i+ 2 ≤ D + 1) and by adding ni−1ni+1 links such
that the clique Kni+1 is fully meshed with clique Kni−1 (if 1 ≤ i− 1).

Figure 4.4 presents an example of clique merging. Clique Kn3 and Kn4 in Figure
4.4(a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) are merged into one clique, which
results in Figure 4.4(b) G∗D=3(n1 = 3, n2 = 1, n3 + n4 = 3, n5 = 2). The clique merging
consists of purely adding links (the blue dotted line).

2In particular, for n1 = nD+1 = 1, the dependence on N is obvious because α1 = αD+1 =
1
N .
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(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 4 3n n+ = 5 2n =1 3n = 2 1n =

(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 4 3n n+ = 5 2n =1 3n = 2 1n =

Figure 4.4: (b) G∗D=4(n1 = 3, n2 = 1, n3+n4 = 3, n5 = 2) is obtained by merging clique
Kn3 and Kn4 in (a) G

∗
D=3(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) via adding the blue

dotted links.

Theorem 15 Given the network size N , the maximum of any eigenvalue μimax(G(N,D)),
i ∈ [1, N ] is non-increasing as the diameter D increases, i.e. μimax(G(N,D + 1)) ≤
μimax(G(N,D)).

Proof. Assume that the graph G∗D+1(n
0
1 = 1, n02, ..., n

0
i, ..., n

0
D+1, n

0
D+2 = 1) possesses

the maximum eigenvalue μimax(G(N,D + 1)), i ∈ [1, N ] among all graphs with size N
and diameter D + 1. Any two adjacent cliques can be merged by only adding links,
which results in G∗D(n

0
1 = 1, n02, ..., n

0
i + n0i+1, ..., n

0
D+1, n

0
D+2 = 1). Hence, the graph

G∗D+1(n
0
1 = 1, n02, ..., n

0
i, ..., n

0
D+1, n

0
D+2 = 1) is a subgraph of G∗D(n

0
1 = 1, n02, ..., n

0
i +

n0i+1, ..., n
0
D+1, n

0
D+2 = 1). According to the interlacing property in the proof of Theo-

rem 7, we have μimax(G(N,D + 1)) ≤ μi(G
∗
D(n

0
1 = 1, n

0
2, ..., n

0
i + n0i+1, ..., n

0
D+1, n

0
D+2 =

1)). Furthermore, G∗D(n
0
1 = 1, n02, ..., n

0
i + n0i+1, ..., n

0
D+1, n

0
D+2 = 1) does not neces-

sarily possess the maximum eigenvalue μimax(G(N,D)), i.e. μi(G∗D(n
0
1 = 1, n

0
2, ..., n

0
i +

n0i+1, ..., n
0
D+1, n

0
D+2 = 1)) ≤ μimax(G(N,D)).Thus, μimax(G(N,D+1)) ≤ μimax(G(N,D)).
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Figure 4.5: The scaled maximal algebraic connectivity amax(G(N,D))/N (marker) as a
function of the diameter D in log-log scale.

In view of the linear relation between amax(N,D) and N , we present in Figure
4.5 the scaled maximal algebraic connectivity amax(G(N,D))/N in relation with the
diameter D, when 10 ≤ N ≤ 122. The maximal algebraic connectivity amax(G(N,D))
is presented for all possible diameters, i.e. 1 ≤ D ≤ N − 1 when 10 ≤ N ≤ 35 and
for D < 10 when N is large. The decrease of amax(G(N,D))/N as a function of D is
always slower than an exponential b exp(−�N) and close to (but faster than) a power
law bN−�. For large N , the scaled algebraic connectivity amax(G(N,D))/N is expected
to follow a universal function of diameter D.

The corresponding clique sizes of G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that maximizes
the algebraic connectivity are partially given in Appendix C and completely documented
in [96]. A symmetric clique size (n1, n2, ..., nD+1) or a symmetric structure seems to be
necessary to maximize the algebraic connectivity amax(N,D). The graphs that achieve
the maximum algebraic connectivity in G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) have relative
large sizes for cliques close to the middle.
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4.4.3 Two proposed upper bounds for a(N,D)

Here, we discuss two upper bounds that are proposed in the literature [60][76]. Based
on the upper bound

D ≤

⎢⎢⎢⎣cosh−1(N − 1)
cosh−1

³
μ1+a
μ1−a

´
⎥⎥⎥⎦+ 1

given by Chung [21], where μ1 is the largest eigenvalue of the Laplacian Q and a is the
algebraic connectivity, Lin and Zhan [60] obtain an upper bound on a

μ1

a

μ1
≤
cosh

³
cosh−1(N−1)

D−1

´
− 1

cosh
³
cosh−1(N−1)

D−1

´
+ 1

Combining a simple upper bound on μ1

μ1 ≤ N (4.10)

Lin and Zhan [60] arrive at an upper bound of the algebraic connectivity in relation to
D and N

a(G(N,D)) ≤ aup(N,D) = N
cosh

³
cosh−1(N−1)

D−1

´
− 1

cosh
³
cosh−1(N−1)

D−1

´
+ 1

(4.11)

For D = 2, amax(N,D = 2) = N − 2, which is equal to the upper bound (4.11).
Figure 4.6 illustrates that aup(N,D) loosely bounds the largest possible algebraic

connectivity amax(N,D). The upper bound aup(N,D) increases approximately linearly
with N for 3 ≤ D ≤ 6 and the corresponding slope is much higher than that of
amax(N,D). When D = 3, each node in clique Kn2 and Kn3 of G

∗
D=3(1, n2, n3, 1) pos-

sesses the maximum degree dmax = N − 2. When D = 4, the maximum degree of
G∗D=4(1, n2, n3, n4, 1) is dmax = N − 3, which corresponds to a node in clique Kn3.
Since, μ1 ≥ dmax+1 [48][64], the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) has μ1 ≈ N, for
D = 3, 4. Therefore, the relative loose bound of (4.11) is not introduced by the μ1 ≈ N
approximation of (4.10), when D = 3, 4.
Alon and Milman [76] present another upper bound of the algebraic connectivity in

relation to diameter D and the maximum degree dmax

a(G) ≤ 2dmax
D2

¡
log2N

2
¢2

(4.12)

Hence,
G∗D=3(1, n2, n3, 1) ≤

2(N−2)
9

(log2N
2)
2

G∗D=4(1, n2, n3, n4, 1) ≤
2(N−3)
16

(log2N
2)
2
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Figure 4.6: Comparison of amax(N,D) and the upper bound of a(N,D)when 3 ≤ D ≤ 6.

which bounds the amax(N,D) even loser, especially for large N .
However, we should mention that the two upper bounds (4.11) and (4.12) may be

tight in other cases. In view of the relative loose upper bounds, at least for smaller
diameter D ≤ 6, the largest possible algebraic connectivity amax(N,D) or its approxi-
mations derived from data fitting is of great interest. We refer to [96], where amax(N,D)
as well as its the corresponding topology are presented for a wide range of diameter D
and size N.

4.5 Conclusion

We propose a class of graphs G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), within which the largest
number of links, the minimum average hopcount, and more interestingly, the maximum
of any Laplacian eigenvalue among all graphs with N nodes and diameter D can be
achieved. The largest possible algebraic connectivity amax (N,D) is rigorously deter-
mined for diameter D = 2, 3 and D = N−1. For other diameters, the maximum of any
Laplacian eigenvalue can be searched within G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), which is
feasible due to the reduction in the Laplacian eigenvalue computation from a N ×N to
a (D + 1)× (D + 1) matrix.
Combining both the theoretical and numerical results, we have (1) illustrated the

different topological features of graphs that maximize different Laplacian eigenvalues,
which provides an evidence that graphs with large algebraic connectivity are robust with
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respect to traffic engineering; (2) presented the relation between the maximum algebraic
connectivity amax(N,D) and the size N as well as the diameter D; (3) compared two
upper bounds of the algebraic connectivity proposed in literature with the largest possi-
ble amax(N,D) for small diameter. This is a first step to explore the application of these
maximal possible Laplacian eigenvalues via the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).
Rich mathematical results related to the characteristic polynomial of both the Laplacian
and adjacency matrix are documented in [73], which is, however, still far from being
able to analytically determine the graph optimizing a given eigenvalue. More numerical
results about the amax(N,D) as well as the corresponding graph are being collected and
updated in [96].

D large

D = 4

D = 661114116

18 1515

D large

D = 4

D = 661114116

18 1515

Figure 4.7: The optimal graphs G∗D with N = 50 and diameter D.

By choosing the algebraic connectivity as the metric for network robustness, the
resulting optimal graphs G∗D with given number of node N and diameter D are mostly
symmetric and the cliques in the middle have a larger size than cliques close to the bor-
ders. If D is sufficiently long, the optimal structure is homogeneous and only deviations
occur at the ends, as shown in Figure 4.7. These features are also observed in those long
molecules in nature [6] represented by remarkable homogeneous strings which suggest
extremal properties. We may regard evolution as an optimization process over years.
Then, the homogeneous string structure in proteins, DNA structures and our optimal
graphs seem the results of optimizations in a same direction. Thus, the importance of
algebraic connectivity may be far beyond the current understanding.
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Chapter 5

Optimize a(G) via link addition

To improve the performance of an existing large real-world network, instead of substi-
tuting the infrastructure for the optimal one that maximizes the robustness metric R(G)
as discussed in Chapter 4, a minor modification on the current network, i.e. adding
a small number of links, is usually required due to economic concerns. An important
question is how can we refine the network to improve its robustness. In this chapter,
we confine our problem as the following: “where should we add a link to a network G
such that the algebraic connectivity a(G) can be increased the most?” The investigation
on adding one link to improve the algebraic connectivity will also provide insights on
how to dynamically add a set of links one by one so that the algebraic connectivity is
maximally increased.

The number of possibilities of adding a link to a network G(N,L) with N nodes
and L links is

¡
N
2

¢
− L. For large realistic (hence sparse) networks, it is infeasible

to compare all these possibilities and find the optimal one. Hence, we propose two
strategies of adding a link to optimize the algebraic connectivity. The node pair (i, j)
where a link can be added, can be characterized by various topological metrics such
as the node degree, or the distance between the node pair. We propose two strategies
based on these topological metrics. Strategies are compared together with random link
addition in various classes of networks.

5.1 Strategies of adding a link to optimize a(G)

In this section, we investigate the increase of the algebraic connectivity due to the
addition of a link between {i, j} in relation to the topological characteristics of {i, j}.
We propose link addition strategies based on structural metrics as well as on spectral
metrics of {i, j}, respectively.

49
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5.1.1 Structural metrics based strategy

Since μN−1(G) ≤ μN−1(G + e) ≤ μN−2(G) according to Theorem 1, we define the
normalized increase of the algebraic connectivity as 0 ≤ μ∗ = μN−1(G+e)−μN−1(G)

μN−2(G)−μN−1(G) ≤ 1.
A link e = (i, j) can be added if i and j are not yet connected in G. We start with a
specific network to explore all possible realizations of adding a link to a graph in order
to gain some insights in the relationship between μ∗ and the topological characteristics
of {i, j} such as the degree, the clustering coefficient and the node betweenness of node
i and j, and the hopcount between node i and j.
The correlation between μ∗ introduced by the addition of link (i, j) and topological

metrics of the node pair {i, j} is supposed to be topology dependent. We consider
the following topologies: the Erdös-Rényi random graph Gp(N) and the BA power law
graph.

Erdös-Rényi random graph Gp(N)

Given one Erdös-Rényi random graphG = G0.6(100), in each realization, a link e = (i, j)
is added toG provided it does not exist inG, and we calculate μ∗ and topological metrics
of {i, j}. All possible realizations of adding a link to G are considered. Figure 5.1(a)
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Figure 5.1: The increase of the algebraic connectivity μ∗ (the z axis) due to the addition
of link {i, j} in relation with (a) the degree of node i and j; (b) the clustering coefficient
of node i and j (c) the betweenness of node i and j separately in x and y axis in an
Erdös-Rényi random graph G0.6(100).

shows that μ∗ is large if and only if one node of the pair{i, j} has small degree. A
similar correlation between μ∗ and the node betweenness is observed in Figure 5.1(c).
Furthermore, Figure 5.2 illustrates that the node betweenness is positively correlated
with the degree of the node. Hence, the degree will be considered instead of the node
betweenness whose computational complexity is much higher. The correlation between
μ∗ and the clustering coefficient is relatively weak as illustrated in Figure 5.1(b). There
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Figure 5.2: The degree and the betweenness of a node in an Erdös-Rényi random graph
G0.6(100).

exists hardly correlation between μ∗ and the hopcount between i and j, which is mostly
equal to 2 in such a dense graph.

BA power law graph

We perform the same experiment in a BA power law graph with N = 100 and m = 3.
A small m is selected such that the power law degree distribution can be observed for
N = 100.
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Figure 5.3: The increase of the algebraic connectivity μ∗ (the z axis) due to the addition
of link {i, j} in relation with (a) the degree of node i and j; (b) the clustering coefficient
of node i and j (c) the betweenness of node i and j seperately in x and y axis in a BA
power law graph with N = 100 and m = 3.

As shown in Figure 5.3, different from an Erdös-Rényi random graph, an relative
high increase in μ∗ implies low degree of both node i and j. However, the inverse
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does not hold. Adding a link to two low degree nodes only modestly increases μ∗. In
fact, many nodes in a BA power law graph possess a low degree. Again, the positive
correlation between betweenness and degree of a node observed in Figure 5.4, persuades
us to consider the node degree which is simpler to compute than the node betweenness.
Similarly, no clear correlation between μ∗ and the clustering coefficient as well as the
hopcount between i and j appear in Figure 5.3 (b) and 5.5.
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Figure 5.4: The degree and the node betweenness of a node in a BAmodel withN = 100
and m = 3.

In view of the correlation between μ∗ and the topological metrics regarding to node
i and j where a link is added in both the Erdös-Rényi random graph and the BA power
law graph, we propose a structural metric based strategy that adds a link between a
minimum degree node and a random other node, which are not originally connected.
This strategy is also motivated by the upper bound a (G) ≤ dmin(G), where the algebraic
connectivity is shown to be limited by the lowest degree nodes. Finally, the metric
degree is the simplest to calculate and it can be obtained only from the node and its
neighbors, i.e. local information.

5.1.2 Fiedler vector based strategy

Maas [61] showed that after inserting an edge between node i and j, the upper and
lower bounds of the algebraic connectivity μN−1(G+ e)

min

½
μN−1(G) +

εη2

ε+ (2− η2)
, μN−2(G)− ε

¾
≤

μN−1(G+ e) ≤ min
©
η2 + μN−1(G), μN−2(G)

ª
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Figure 5.5: The increase of the algebraic connectivity μ∗ due to the addition of link
(i, j) in relation with the hopcount between i and j in a BA model with N = 100 and
m = 3.

are related to η = |ui − uj| , the absolute difference between the i−th and j−th elements
of the Fiedler vector u of G. The Fiedler vector u is the eigenvector corresponding to
the second smallest eigenvalue (i.e., the algebraic connectivity) of the Laplacian matrix
of a graph. In the lower bound, the first term increases with increasing ε whereas the
second one decreases. The highest lower bound can be achieved by a choice of ε that
makes both terms equal:

ε =
β − 2
2

+

Ã
(β − 2)2

4
+ β

¡
2− η2

¢! 1
2

≥ 0

where β = μN−2−μN−1 ≥ 0. The higher η is, the lower is ε, and the higher the highest
lower bound is. Higher η also contributes possibly to a higher upper bound. Hence,
μN−1(G+ e) tends to be large if η = |ui − uj| is large.
This is further illustrated by Figure 5.6, where all realizations of adding a link are

performed in both an Erdös-Rényi random graph G0.6(100) and a BA power law graph
with N = 100 and m = 3. The μ∗ is positively correlated with η = |ui − uj| .
Therefore, we propose the strategy of adding a link to the node pair {i, j} with the

highest η = |ui − uj|, such that the algebraic connectivity can be increased the most.
As shown in Figure 5.6, if we apply the strategy of adding a link to the node pair with
the highest |ui − uj|, i.e. |ui − uj|max = 0.986 and |ui − uj|max = 0.468 in these two
graphs, the algebraic connectivity is increased by μ∗ = 0.859 and μ∗ = 0.293, which is
close to the corresponding maximal possible increase μ∗max = 0.917 and μ∗max = 0.301,
respectively.
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Figure 5.6: The increase of the algebraic connectivity μ∗ due to the addition of link
{i, j} in relation with |ui − uj| in (a) an Erdös-Rényi random graph G0.6(100) (b) a BA
power law graph with N = 100 and m = 3.

5.2 Strategy evaluation

The strategies proposed are based on the correlation study in specific graphs. Since
correlations between metrics are topology dependent, a strategy, that works in one
topology, may not work in another network. Hence, in this section, we examine the
validity of these two strategies in the class of the Erdös-Rényi random graphs, BA
power law graphs and k-ary tree, where each node is connected to k children. From the
Erdös-Rényi random graph, over the BA model to the k-ary tree, both the randomness
of node interconnections and link density decrease.
We carried out 104 iterations for each simulation. In each iteration, an Erdös-Rényi

random graphGp(N) or a BA power law graph is generated and the second and the third
smallest Laplacian eigenvalues are calculated. First, we add a link between a random
non-connected node pair without any strategy and obtain the normalized increase of
the algebraic connectivity μ∗(0). Second, we perform strategy 1: add a link between the
node with the minimum degree and a random non-connected node. The corresponding
increase of the algebraic connectivity is μ∗(1). Third, we perform strategy 2: add a link
to the node pair {i, j} with the highest η = |ui − uj| and obtain μ∗(2).

5.2.1 Erdös-Rényi random graph Gp(N)

Simulations are carried out for Erdös-Rényi random graph with p = 0.6, N = 50, 100,
200, 400, 800. Besides, with fixed N = 200, we perform simulations for p = 0.2, 0.4, 0.6
and 0.8. We evaluate the gain of the strategy by comparing with the link addition
without any strategy, i.e. Pr[μ∗(s) − μ∗(0) ≥ x], s = 1 and 2 for strategy 1 and 2,
respectively. Any link addition, including the optimal one follows μ∗ ≤ 1. Hence,
μ∗(s) − μ∗(0) < 1. Figure 5.7 and 5.8 show that both strategies perform better than
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random link addition, with probability larger than 0.9, i.e. Pr[μ∗(s) − μ∗(0) ≥ 0] > 0.9.
Both strategies work better for smaller networks as shown in Figure 5.7. Strategy 2
performs better than strategy 1 in Erdös-Rényi random graphs with various network
size N and link density p. The effect of the link density is not obvious in Erdös-Rényi
random graphs which are generally dense.
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Figure 5.7: Gain Pr[μ∗(s) − μ∗(0) ≥ x] of strategy 1 (s = 1) and strategy 2 (s = 2) in the
Erdös-Rényi random graph Gp(N), where p = 0.6.

As shown in Table 5.1, the effect of strategy 1 and 2 is evident in E[μ∗(1)] and E[μ
∗
(2)]

compared to E[μ∗(0)] when no strategy is applied. Strategy 2 performs better, but it
requires the knowledge of the whole network topology. Only local information, the
degree, is needed in strategy 1.

Table 5.1: Strategies comparison in Erdös-Rényi random graphs.

p = 0.6 N = 50 N = 100 N = 200 N = 400 N = 800
E[μ∗(2)] 0.644 0.594 0.532 0.469 0.401

E[μ∗(1)] 0.407 0.387 0.364 0.340 0.303

E[μ∗(0)] 0.049 0.0214 0.00951 0.0042 0.00169

N = 200 p = 0.2 p = 0.4 p = 0.6 p = 0.8
E[μ∗(2)] 0.588 0.544 0.532 0.579

E[μ∗(1)] 0.481 0.396 0.364 0.391

E[μ∗(0)] 0.012 0.0092 0.0095 0.011
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Figure 5.8: Gain Pr[μ∗(s) − μ∗(0) ≥ x] of strategy 1 (s = 1) and strategy 2 (s = 2) in the
Erdös-Rényi random graph Gp(N), where N = 200.

5.2.2 BA power law graph

The same simulations are carried out in the BA model with N = 100, 200,400 and
m = 3, 4, 5. As illustrated in Figure 5.9, strategy 1 behaves the same as link addition
without strategy, while, strategy 2 performs better with probability round 0.9 than
random link addition, i.e. Pr[μ∗(s) ≥ μ∗(0)] ≈ 0.9. Furthermore, m (or equivalently the
link density) has no effect on the performance of both strategies. Figure 5.10 shows
that strategy 2 works slightly better on BA power law graphs with smaller size N.
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Figure 5.9: Gain Pr[μ∗(s) − μ∗(0) ≥ x] of strategy 1 (s = 1) and strategy 2 (s = 2) in the
BA model with (a) N = 100 (b) N = 200 and (c) N = 400.



5.2. STRATEGY EVALUATION 57

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[(

μ (2
)*

 -
 μ

(0
)* ) 

≥ 
x]

0.80.60.40.20.0-0.2-0.4-0.6

x

 N = 100
 N = 200
 N = 400

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[(

μ (1
)*

 -
 μ

(0
)* ) 

≥ 
x]

-1.0 -0.5 0.0 0.5

x

 N = 100
 N = 200
 N = 400

(a) (b)

Figure 5.10: (a) Gain Pr[μ∗(1) − μ∗(0) ≥ x] of strategy 1 and (b) gain Pr[μ∗(2) − μ∗(0) ≥ x]
of strategy 2 in the BA model with m = 3.

Table 5.2: Strategies comparison in BA power law graphs.

m = 3 N = 100 N = 200 N = 400
E[μ∗(2)] 0.558 0.521 0.477

E[μ∗(1)] 0.153 0.146 0.142

E[μ∗(0)] 0.170 0.161 0.148

5.2.3 K-ary tree

We investigate the k-ary tree [67] of depth1 d where each node has exactly k children.
In a k-ary tree the total number of nodes is

N(d) = 1 + k + k2 + · · ·+ kd =

½
kd+1−1
k−1 , k 6= 1
1 + d, k = 1

Since the interconnections of nodes in a k-ary tree is determined, we examine one specific
k-ary tree with k = 2, d = 7 and try all the possibilities of adding a link. On average,
the algebraic connectivity can be increased by E[μ∗(0)] = 0.137. On average, strategy 1
improves the algebraic connectivity by E[μ∗(1)] = 0.129 < E[μ∗(0)], which is not better
than random link addition. Given the level of the node pair, where a link is added, μ∗

is found to be higher if these two nodes share fewer common parents. The optimal link
addition is between two nodes both in level 2. Hence, none of them has degree 1. As
shown in Figure 5.11, the positive correlation between μ∗ and |ui − uj| still remains,
but weaker than in the Erdös-Rényi random graph and the BA power law graph. The
increase of algebraic connectivity achieved by strategy 2 is μ∗(2) = 0.24, round half of
the maximal possible increase μ∗max = 0.51.

1The depth d is the number of hops (or links) from the root to a node at the leaves.
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Figure 5.11: The increase of the algebraic connectivity μ∗ due to the addition of link
{i, j} in relation with |ui − uj| in a k-ary tree with k = 2, d = 7.

5.2.4 Comparison with optimal link addition

Our strategies are evaluated via Pr[μ∗(s) − μ∗(0) ≥ x], s = 1 and 2 for strategy 1 and 2
respectively, by comparing them with the random link addition. One may be curious to
know how far our strategies are from the optimal link addition. The maximal possible
increase or optimal increase of the algebraic connectivity μ∗max can be obtained by trying
all possible ways of adding a link to a network. Due to the computational complexity,
we compare our strategies with the optimal link addition in 104 Erdös-Rényi random
graphs G0.6(100) and in 104 BA power law graphs with N = 100, 200 and m = 5. As

Table 5.3: Strategies comparison with optimal link addition

G0.6(100)
BA model
N = 100,m = 5

BA model
N = 200,m = 5

E[μ∗max] 0.62 0.87 0.88
E[μ∗(2)] 0.59 0.56 0.52

E[μ∗(1)] 0.39 0.15 0.14

E[μ∗(0)] 0.021 0.17 0.16

shown in Table 5.3, strategy 2 performs generally better than strategy 1, and is close
to the optimal link addition, especially in Erdös-Rényi random graphs.
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5.3 Conclusion

The difficulty of applying strategies to optimize the algebraic connectivity (or in general
a topological metric R) by adding a link e = (i, j) based on topological characteristics
of node pair {i, j} is due to the fact that the correlation between metrics (e.g. between
μ∗ and degrees of the node pair) is topology dependent. In other words, a strategy, that
works for a given type of graphs, may not work in other classes of networks.
Strategy 1 seems to perform better in the class of dense graphs such as the Erdös-

Rényi random graphs, although the effect of the specific link density of Erdös-Rényi
random graph is not obvious. However, strategy 1 looses its effect in sparse networks
like the BA power law graph and the k-ary tree, where many nodes possess the minimal
degree. Another extreme example is G = KN\{i, j}, the complete graph except one
link. Each node has the maximal degree N − 1 except that node i and j have the
minimal degree N − 2. Adding a link between i and j leads to the maximal increase of
the algebraic connectivity μN−1(G+ e) = μN−1(G) + 2 and μ∗ = 1 according to Barik
and Pati [82].
Strategy 2 seems to be applied better in graphs with more randomness in intercon-

nections of nodes. From the Erdös-Rényi random graph, over the BAmodel to the k-ary
tree, the randomness of node interconnections decreases. Strategy 2 performs better in
Erdös-Rényi random graphs and BA power law graphs than in the k-ary tree, which
is regular in node interconnections. In other words, the positive correlation between
μ∗ and |ui − uj| is weaker in the k-ary tree. The worst case is the lattice. A lattice is
even more regular than a k-ary tree in the sense that more nodes have the same degree
except nodes in the border. The second and third smallest eigenvalue of a lattice are the
same. The algebraic connectivity remains the same wherever a link is added. Hence,
the correlation between μ∗ and |ui − uj| disappears completely.
Strategy 2 performs generally better than strategy 1 in Erdös-Rényi random graph,

BA model and k-ary tree. However, strategy 2 requires the Fiedler vector, or the whole
network topology, while only the node degree is needed in strategy 1, which can be
applied even when the network is partially known. The computational complexity2 is
reduced from O(N5) of the optimal link addition searching to O(N3) by strategy 2 and
to O(N) by strategy 1. Finally, strategy 2 is shown to be close to the optimal link
addition, especially in Erdös-Rényi random graphs.

2The computational complexity of eigenvalues is O(N3).
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Chapter 6

The observable part of a Network

In communications networks, traffic is usually carried along the shortest paths such
that resources of a network are most efficiently used. In this chapter, we study the
structure of the overlay G∪spt formed by the union of all shortest path trees SPT in a
graph G (N,L) with N nodes and L links, where a SPT is the union of the shortest
paths from one node to all the other nodes. The relation between the overlay G∪spt and
the underlying graph or substrate G (N,L) is shown in Figure 6.1. The overlay G∪spt,

Underlying Topology G(N,L)

Overlay Network GUspt

Link weight distribution
e.g. 

iw

[0,1) [1, )( ) 1 1w x xF x xα
∈ ∈ ∞= +

Figure 6.1: The relation between the overlay network and the underlying topology.

which is also the union of the shortest paths between all possible pairs of nodes, can be
regarded as the “transport overlay network” on top of the network or substrateG (N,L).
In the Internet, for example, traffic is carried along the overlay G∪spt, composed of a
fraction of the links in the underlying network, which is just the maximal part of the
Internet that we can actually observe by traceroute measurements [86]. We discuss
three potential applications that motivate a study of G∪spt: performance or robustness
characterization, traffic engineering and Internet topology interference.
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The importance of overlay networks is believed to grow in the future. One example
of an overlay network is peer-to-peer networks [7] with n distributed systems sharing
resources such as content, CPU cycles and storage, where n is smaller than the number
of nodesN in the underlying network. The peer-to-peer overlay network can be regarded
as a union of paths connecting these n nodes. Another type of overlay network is a
virtual private network (VPN), a private network that uses a public network (usually
the Internet or the telephony network) to connect remote sites or users together. The
physical networks traversed by both the peer-to-peer and the VPN overlay networks
are a subgraph of G∪spt. The overlay G∪spt, not the substrate, determines the network’s
performance, because any link removed in G∪spt will definitely impact at least those
flows of traffic that pass over that link.
The topology of the overlay G∪spt is determined by the underlying graph G(N,L) as

well as the link weight structure. Link weight tuning is regarded as part of the routing
in the service. In this chapter, we investigate how the topology of the overlay network
G∪spt changes by tuning the link weight structure. Current best-effort routing simply
computes appropriate paths based on a single, relatively static measure (e.g. the delay,
the monetary cost, etc.). QoS routing takes into account multiple measures including
both the applications’ requirements and the availability of network resources. Hence,
we investigate two approaches of link weight tuning as given in Section 2.2: (a) the link
weight of each link is an i.i.d. polynomial random variable

Fw(x) = xα1x∈[0,1] + 1x∈(1,∞), α > 0

which can be tuned via the extreme value index α and (b) each link is specified by
a 2-dimensional link weight vector −→w (u → v) = [w1(u → v), w2(u → v)], where the
component w1 and w2 are correlated uniformly distributed random variables ∈ [0, 1]
with correlation coefficient ρ. We tune the correlation coefficient ρ ∈ [−1, 1] to vary
the link weight structure. The α→∞ regime is entirely determined by the topology of
the graph because the link weight structure does not differentiate between links. The
overlay network is equal to the underlying graph. In the α → 0 regime, all flows are
transported the minimum spanning tree (MST), a tree spanning over all the nodes and
whose total weight is minimum. Any failure in a node or link disconnects the MST
into two parts and may result in obstruction of transport in the network. The α → 0
regime may constitute a weak regime although it is highly efficient: only N−1 links are
used which means that a minimum of links need to be controlled and/or secured. From
a traffic engineering point of view, choosing α around 1 will lead to the use of more
paths and, hence, a more balanced overall network load than in the α→ 0 regime. The
precise traffic distribution among these links in the overlay will be explored in Chapter
8.
The final motivation applies to interfering the Internet topology. Recently, Lakhina

et al. [59] have pointed to the effect of biases when trying to construct the Internet
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topology from a few source trees that span a huge number of destinations, basically be-
cause the links close to the source have a substantially higher probability to be detected
than links close to the destination. The potential dramatic effect of biases was recently
rigorously analyzed in a mathematical analysis first by Clauset and Moore [22], and
later extended by Achlioptas et al. [2]. They showed that, irrespective of the degree
distribution of the substrate, the inferred topology deduced from only a few source trees
to many destinations is likely to possess a power law degree distribution. For example, a
random network with a Poisson degree distribution and a regular graph (with constant
degrees) all lead to an observed power law degree distribution. These analyses place
doubt on the believed power law degree structure of the Internet. Biases can be circum-
vented if sources and destinations are regarded as equally important. By constructing
the union of all paths betweenm < N testboxes, a sampled overlay network G∪mspt that
is a subgraph of G∪spt is obtained. An interesting issue, how large needs m to be such
that G∪mspt sufficiently resembles properties of G∪spt, will be addressed in Chapter 7.
In this chapter, we shed some light on how different G∪spt can be compared to the un-
derlying network and also show measurement results in Section 6.6 of a partial overlay
G∪mspt.
As we tune the index α of the polynomial link weights, we investigate the properties

of the overlay networks G∪spt(α) on top of the complete graphs KN , lattices and power
law graphs. Structural properties of the overlay networks are examined by (a) the
number of links, (b) the degree distribution, and (c) the spectrum. The effect of one
and two dimensional link weight tuning on the overlay networks G∪spt are compared in
the dense substrates, i.e. the Erdös-Rényi random graphs.

6.1 The union of the shortest path trees G∪spt: The-
ory

Any set of links l (i→ j), l (j → k) and l (i→ k) between three nodes i, j and k in the
union G∪spt of the shortest path trees obeys the triangle inequality,

w (i→ k) ≤ w (i→ j) + w (j → k)

otherwise the link l (i→ k) is not the shortest path from i to k and, consequently, does
not belong to G∪spt. Hence, if l (i→ j), l (j → k), l (i→ k) ∈ LGUspt

where LGUspt
is

the set of links of the graph G∪spt, then

Pr [w (i→ j) + w (j → k) ≥ w (i→ k)] = 1

A tree is a graph without cycles. Similarly as for a path, the weight of a tree T is
w(T ) =

P
(i→j)∈T w(i → j). A spanning tree TG is a tree that contains or spans all

N nodes of the graph G. A minimum spanning tree (MST) T ∗G is a minimum weight



66 CHAPTER 6. THE OBSERVABLE PART OF A NETWORK

spanning tree in G such that w (T ∗G) ≤ w (TG) for all TG inG. Since we assume networks
are equipped with undirected i.i.d. link weights, the probability to have more than one
shortest path or more than one MST is negligibly small. Algorithms to compute a
shortest path (such as Dijkstra’s) and a MST (such as Prim’s and Krushkal’s) are
nicely explained in [25] and applied to data communication networks in [66]. If the
MST does not exist, the graph is disconnected.

Theorem 16 A minimum spanning tree belongs to G∪spt.

Proof. The proof is by contradiction. Suppose that a MST does not belong to G∪spt.
This means that there is at least one link l (i→ j) ∈ MST which does not belong to
the union of shortest path trees, l (i→ j) /∈ G∪spt. Hence, the link l (i→ j) is not the
shortest path P ∗i→j from node i to node j implying that

w
¡
P ∗i→j

¢
< w (i→ j)

In that case, we can lower the weight of the MST which equals

w(MST ) =
X

(k→l)∈MST

w (k → l)

= w (i→ j) +
X

k→l∈MST ;k→l 6=i→j

w (k → l)

by changing1 w (i→ j) for w
¡
P ∗i→j

¢
. However, this is impossible since wMST is, by

definition, the tree that minimizes the above sum. This proves the theorem.
Any link l (i→ j) with link weight w(i→ j) in the G∪spt must be the shortest path

P ∗i→j between i and j because a link in the G∪spt must belong to a shortest path and
a subsection of a shortest path is also a shortest path. Conversely, if a link l (i→ j)
is the shortest path P ∗i→j between i and j, it must belong to the G∪spt, because the
G∪spt is the union of shortest paths between all possible source and destination nodes.
Therefore, the event that a link l (i→ j) is observed in (i.e. belongs to) the G∪spt is
equivalent to the event {P ∗i→j = l (i→ j)} that the link l (i→ j) is the shortest path
P ∗i→j between i and j. Hence, Pr[P ∗i→j = l (i→ j)] is also the probability that a link
can be observed.

Theorem 17 In any graph with positive i.i.d. link weights w specified by the probability
density function fw (x), the probability that a link l (i→ j) between node i and j is the
shortest path P ∗i→j between i and j is

Pr[P ∗i→j = l (i→ j)] =

Z ∞

0

fw(x) Pr[w(P
∗
i→j) > x]

Pr[w(i→ j) > x] +
1−pij
pij

dx (6.1)

where pij = Pr[l (i→ j) exists].
1Actually, since P ∗i→j must consist of at least two links, only those that are necessary to obtain a

tree are needed in the MST such that we can further lower wMST .
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Proof. See Appendix A.3.
Since Pr[P ∗i→j = l (i→ j)] ≤ 1 and

R∞
0

fw(x)dx = 1, we see in (6.1) that

Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] +
1−pij
pij

≤ 1

A slightly tighter bound follows from the probability Pc in (A.8) and the left hand side
of (A.11), that is bounded by pij, such that

Pr[w(P ∗i→j) > x] ≤ pij Pr[w(i→ j) > x] + 1− pij (6.2)

In words, the probability that the weight of the shortest path exceeds x is always less
than or equal to the probability that an arbitrary link weight exceeds x (because of the
assumption of i.i.d. link weights) multiplied by the probability of the existence of the
link plus the probability 1 − pij. The bound (6.2) is sharpest in case pij = 1, thus, in
case the direct link i→ j exists surely.

Corollary 18 In any graph with N nodes and with positive i.i.d. link weights, we can
write

Pr[P ∗i→j = l (i→ j)] = Pr [HN = 1]

= −
Z ∞

0

fw(P∗i→j)
(x) log (1− pijFw (x)) dx (6.3)

where HN denotes the hopcount of a shortest path and Fw (x) = Pr[w(i → j) ≤ x] is
the link weight distribution.

Proof. See Appendix A.4.
Corollary 18 establishes a relation between the probability that the hopcount of the

shortest path equals 1 in terms of the distribution of the link weights and of the weight
of the shortest path.
When multiplying all the link weights by a factor 1

b
where b > 0, relation (6.1)

remains unchanged. For, since fw
b
(x) = bfw (bx), we have

Z ∞

0

fw
b
(x)

Pr
h
w(P∗i→j)

b
> x

i
Pr
h
w(i→j)

b
> x

i
+A

dx

=

Z ∞

0

fw (bx)
Pr
£
w(P ∗i→j) > bx

¤
Pr [w(i→ j) > bx] +A

d (bx)

and substitution of u = bx leads to (6.1). This fact is, of course, natural because the
shortest path does not change in structure and in the number of hops when all links
are scaled or expressed in a different unit.
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6.1.1 Example

If link weights are exponentially distributed,

Pr[w(i→ j) > x] = exp(−λx)

where E [w] = 1
λ
and Pr[l (i→ j) exists] = pij is the link density, then (6.3) gives with

WN = w(P ∗i→j)

Pr [HN = 1] = −
Z ∞

0

fWN
(x) log

¡
1− pij + pije

−λx¢ dx (6.4)

Applied to the complete graph KN where pij = 1 leads to

Pr [HN = 1] = λ

Z ∞

0

xfWN
(x) dx = λE [WN ]

Invoking [67, Chapter 15]

E [WN ] =
1

λ(N − 1)

N−1X
n=1

1

n

we find that

Pr[P ∗i→j = l (i→ j)] =
E [WN ]

E [w]
=

1

N − 1

N−1X
n=1

1

n
(6.5)

Alternatively, the probability density function of hopcount of the shortest path in KN

with exponential link weights is [67, Chapter 15]

Pr[HN = k] =
N

N − 1
(−1)N−(k+1)S(k+1)N

N !

where S(k)N is the Stirling number of the first kind [1]. The second Stirling number of
the first kind can be explicitly written as

S
(2)
N = (−1)N(N − 1)!

N−1X
n=1

1

n

we obtain

Pr[P ∗i→j = l (i→ j)] = Pr[HN = 1] =
1

N − 1

N−1X
n=1

1

n

which is, indeed, the same as (6.5).
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6.1.2 The number of observable links in a network

The number of observable links, or the number of links in G∪spt, denoted by Lo, in any
network G is, by definition,

Lo =
X

(i→j)∈L

1{l(i→j)=P∗i→j |l(i→j) exists} ≤ L (6.6)

where L is the number of links in the substrate network G. If all links in G have equal
probability to exist (pij = p), by taking the expectation in (6.6), the average number of
observable links is

E [Lo] =
X

(i→j)∈L

Pr[P ∗i→j = l (i→ j)]

p

=

µ
N

2

¶
Pr[P ∗i→j = l(i→ j)] =

µ
N

2

¶
Pr[HN = 1] (6.7)

Hence, the probability of link observability, Pr[P ∗i→j = l(i→ j)], is equal to the average
number of links in G∪spt divided by the total number of node pairs

¡
N
2

¢
in the substrate

network G.
Clearly, since G∪spt is connecting all nodes and the number of links in a tree — which

is the minimum number of links to connect all nodes — is N − 1, we have

N − 1 ≤ Lo ≤ L (6.8)

The total number of links in a square lattice with N nodes is L = 2(N −
√
N).

Applying the bounds (6.8) for Lo to a square lattice,

N − 1 ≤ Lo ≤ 2N − 2
√
N (6.9)

which shows that Lo = cN is linear to first order in N . An estimate of c is given in
Section 6.3.1.
For exponential link weights, the average number of observable links in the complete

graph KN , or equivalently in large Erdös-Rényi random graphs, equals

E [Lo] =
N

2

N−1X
n=1

1

n
' N

2
(γ + lnN) (6.10)

which follows from (6.5), (6.7) and where γ = 0.57721... is the Euler constant. For a
polynomial link weight distribution (2.1), we have approximately [68] to highest order
in N and for α around 1 only, that

Pr[HN = k] ' 1

N

(lnαN)αk

Γ(αk + 1)
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and, hence, for α around 1 and large N ,

E [Lo (α)] '
N

2

(lnαN)α

Γ(α+ 1)

If α → ∞, all link weights are the same and equal to 1, Lo = L, which shows that
equality in (6.8) can occur. For that extreme case, (6.7) tells us that any link is a
shortest path between its end nodes.

6.1.3 The degree distribution and beyond

Theorem 19 The degree distribution of a node in the overlay G∪spt is equal to its
degree distribution when that node is the root of a SPT .

Proof. We construct G∪spt in two steps. First, the SPT rooted at a particular node,
say node 1, is calculated. Second, the SPT rooted at each other node is computed.
Since G∪spt is the union of the SPT s rooted at all the nodes, the union of shortest paths
obtained in these two steps is just G∪spt. All the links in G∪spt connected to node 1 are
found in the first step. For, assume that the link 1 → j is only found in the second
step. Since 1→ j ∈ G∪spt, it must be the shortest path between 1 and j. Thus, it must
belong to the SPT rooted at 1 in the first step. Hence, the degree of a node in G∪spt is
equal to its degree when it is the root of a SPT .
A direct consequence of this proof is

Corollary 20 A link l (i→ j) ∈ G∪spt if and only if l (i→ j) is a first hop link in the
SPT rooted at node i ∈ G∪spt.

Theorem 21 The degree distribution in the overlay G∪spt on top of the complete graph
KN equipped with exponentially distributed link weights is

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! (6.11)

Proof. In [67, Section 16.6.3], it is shown that the degree distribution of the root in
the SPT in the complete graph with exponential link weights is given by the right hand
side of (6.11). Application of Theorem 19 proves this Theorem 21.
Recall that a regular link weight distribution is linear around zero and the uniform

and exponential distributions belong to the regular link weight distribution according
to Section 2.2.1.

Corollary 22 For large N , the degree distribution in the overlay G∪spt on top of the
Erdös-Rényi random graph Gp(N) with link density p above the disconnectivity threshold
pc and equipped with i.i.d. regular link weights is

Pr[DG∪spt = k] ∼
(−1)N−1−kS(k)N−1

(N − 1)! (6.12)
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Proof. In [67, Chapter 16], it is shown that the SPT in the complete graph KN

with exponential link weights is precisely a uniform recursive tree2 URT for any N .
In [92], a URT is shown to be asymptotically the SPT in the Erdös-Rényi random
graph Gp(N) (see e.g. [13]) with any link density p above the disconnectivity threshold
pc ∼ logN

N
and with exponential links weights. The exponential distribution is a regular

distribution and the shortest path is mainly determined by small link weights in the
substrate graph. For sufficiently large and dense, connected graphs, and in view of the
i.i.d. assumption, there are enough small link weights very near zero. Hence, under
these assumptions, any regular link weight distribution will lead asymptotically to the
same SPT. In conclusion, with regular link weights and large N , we have, structurally,
that SPTKN

' SPTGp(N) ' URT . Therefore, the degree distribution of G∪spt in KN

or Gp(N) with regular link weights, is asymptotically equal to the degree distribution
of the root in the URT [67], which is equal to (6.11).

Conjecture 23 For large N , the overlay G∪spt on top of a connected Erdös-Rényi
random graph Gp(N) with link density p ∈ (pc, 1] and equipped with i.i.d. regular link
weights is a connected Erdös-Rényi random graph Gpc(N) where pc the disconnectivity
threshold.

Arguments: First, relation (6.5) states that each link in the underlying complete
graph KN has a probability to appear in the overlay G∪spt equal to 1

N−1
PN−1

n=1
1
n
∼ pc,

for large N .
Second, for large N and p = logN

N
, the binomial degree distribution of the Erdös-

Rényi random graph Gp(N) tends to a Poisson distribution with mean logN . Hence,
for large N ,

Pr

∙
DG logN

N

= k

¸
=

µ
N − 1
k

¶
pk (1− p)N−1−k

¯̄̄̄
p= logN

N

∼ (logN)
k

Nk!

In addition, in [67, Section 16.3.1], it is shown that also (6.11) tends to a same Poisson
distribution,

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! ∼ (logN)
k

Nk!

In summary, for large N , the URT is also asymptotically the shortest path tree in a
connected Erdös-Rényi random graph Gp(N) with link density p ∈ (pc, 1]. Thus, since

2A URT of size N is a random tree rooted at some source node and where at each stage a new node
is attached uniformly to one of the existing nodes until the total number of nodes is equal to N .
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G∪spt is surely connected3, for large N , each link in the substrate Gp(N) has a same
probability of appearing in G∪spt equal to p ∼ pc and the degree distribution of G∪spt
equals that of Gpc(N).
In contrast to the Erdös-Rényi random graphGp(N) where all links are independent

for any N , the links in G∪spt on top of the complete graph KN are not independent
because each of them is a shortest path link, a fact that correlates all these links. It
still remains to prove that links in the overlay G∪spt are asymptotically independent.
Lemma’s 25, 26, and 27 on the uncorrelation of links in G∪spt are presented in Appendix
A.5 as partial arguments. If the asymptotic independence of links can be proved (which
would turn the conjecture into a theorem), then, for large N , the three properties (a link
density pc, a Poissonean degree distribution and asymptotic independence of the links)
together with the connectedness of G∪spt will demonstrate that G∪spt is a connected
Erdös-Rényi random graph with p = pc. ¤
Simulations in Section 6.4 further illustrate this Conjecture. We expect that Con-

jecture 23 may hold for a broader class than Erdös-Rényi random graphs: namely all
substrate topologies that are homogeneous (i.e. the SPT rooted at any node has a
same structure or any node perceives, views the network in a same way) and dense
(i.e. "enough" link). Conjecture 23 explains why the role of the simple Erdös-Rényi
random graph Gp(N) is more important in overlay networks, such as e.g. peer-to-peer
networks (see also Figures 6.14, 6.15), than in substrate topologies, where only a few
complex networks belong to the class of Erdös-Rényi random graphs. Finally, the as-
ymptotic results in this section motivate why a confinement to the complete graph (in
later sections) is much less restrictive than it appears at first glance.

6.2 Simulation scenarios

Both the underlying topology and the link weight structure, as introduced in Chapter
2, are key determinants of the overlay networks G∪spt. Three classes of topologies are
considered: the complete graphs KN , lattices and power law graphs. Power law graphs
are generated according to both the Havel-Hakimi algorithm and the Barabási-Albert
model. The Havel-Hakimi graphs are more attractive because (a) different from the BA
power law graphs where τBA = 3, the Havel-Hakimi graphs can be built according to
power law degree distributions with various exponent τ . (b) they show already power
law behavior for small N .
For each simulation, 104 iterations are carried out. Within each iteration, the spec-

ified underlying topology is generated randomly and the polynomial link weights with
parameter α or the 2-dimensional uniform link weights with correlation ρ ∈ [−1, 1] are
assigned independently to each link in the graph. The G∪spt is found by calculating the

3By definition, Pr [Gpc is connected] =
1
2 when N → ∞. Hence, roughly half of the Erdös-Rényi

random graphs Gp(N) are connected if p ∼ pc for large N .
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shortest paths between all pairs of nodes. For one dimensional link weight, the shortest
path can be calculated by Dijkstra’s algorithm [30] or the high precision Dijkstra algo-
rithm [70] when α is small, i.e. link weights are close to 0 but they differ significantly
with each other. For 2-dimensional link weight, the shortest path or optimal path can
be found via algorithm SAMCRA [69], as introduced in Section 2.3. Properties of the
overlay networks are examined by (a) the number of links, (b) the degree distribution,
and (c) the spectrum.

6.3 Properties of G∪spt with α = 1

For α = 1 in (2.1), we obtain the uniform distribution on [0, 1]. In both the simulation
and the analysis, the average number of links E[Lo] and the degree distribution of G∪spt
is examined. Exact results exist for the complete graph KN .

6.3.1 The average number of links
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Figure 6.2: Average number of links in the G∪spt on top of complete graphs, square
lattices and Havel-Hakimi power law graphs.

Figure 6.2 shows that the simulation and the theory (6.5) of the average number of
links E[Lo] in G∪spt of the complete graph KN nicely match.
Simulations in Figure 6.2 also show that, in square lattices, the average number of

the observed links via G∪spt is linear with the number of nodes N . Hence, with (6.7)

Pr[P ∗i→j = l (i→ j)] · L = cN (6.13)
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Figure 6.3: Link Observability in a square lattice.

where fitting the simulations yields c = 1.79, while (6.9) implies that 1 ≤ c ≤ 2.
We will further determine the constant c in (6.13). As shown in Figure 6.3, the

link l((x3, y2), (x3, y3)) can be observed via G∪spt, if it is the shortest path between
node (x3, y2) and node (x3, y3). The link l can be dominated by a shorter path such as
P 1
h=3 = P(x3,y2)→(x2,y2)→(x2,y3)→(x3,y3) or P

2
h=3 = P(x3,y2)→(x4,y2)→(x4,y3)→(x3,y3) which are the

only three hops paths between (x3, y2) and (x3, y3). Furthermore, each link in these two
paths can again be dominated by a three hops path, which is shown in bold line in Figure
6.3. Recursively, these links can also be dominated further. Each level of domination
results in a longer hopcount of the shortest path between two adjacent nodes. If we
define w (Ph=3) as the weight of a three hops path, then w (Ph=3) is the sum of three
independent uniform random variables and its pdf [67] is

fw(Ph=3)(x) =
3X

j=0

µ
3

j

¶
· (−1)j · (x− j)2

2
1(x−j)≥0

and

Pr[w (Ph=3) ≤ x] =

Z x

0

fw(Ph=3)(y)dy =
x3

6

Since the two 3 hops paths are independent, the probability that one of these two three
hops paths is smaller than x is

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ x] = 1− (1− Pr[w (Ph=3) ≤ x])2

=
x3

3
− x6

36
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For any link, the probability that there exists a three hops path shorter than this direct
link w(l) ∈ [0, 1] is

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ w(l)]

=

Z 1

0

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ x]dx = 0.08

If there exists a three hops path shorter than the direct link, the direct link is definitely
not observed. However, the hopcount of the shortest path between these two adjacent
nodes can be longer than 3, since links in the three hops path can be dominated on
their turn. When both the three hops paths are longer than the direct link, the direct
link is not necessary the shortest, because paths with hopcount larger than 3 can be
even shorter, which is, however, very unlikely to happen for uniform i.i.d. link weights.
Hence, the probability that a link can be observed can be approximated by the upper
bound:

lim
N→∞

Pr[P ∗i→j= l(i→ j)] ≤ 1−Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ w(l)]=0.92 (6.14)

where N → ∞ means that each node has four neighbors and links at the border are
not taken into account. Combining (6.14) and (6.13) results in

lim
N→∞

Pr[P ∗i→j = l(i→ j)] = lim
N→∞

c ·N
L

= lim
N→∞

c

2
·
√
N√

N − 1
=

c

2

and, in c = 1.84 which is close to the simulation result c = 1.79. In addition, (6.14)
also shows that Lo ' L. In other words, the observable square lattice is very near to
the substrate, in contrast to KN as observed from (6.10).
In Figure 6.2, the underlying Havel-Hakimi power law graph with τ = 2.4 is shown

to be sparse and E[Lo] of the corresponding G∪spt approaches N − 1. It is natural that
the G∪spt is close to a tree, because the sparse underlying power law graph is already
tree-like.

6.3.2 The degree distribution

The simulation result of the degree distribution of G∪spt in KN is shown in Figure
6.4 together with the result calculated by Theorem 21. As N increases, the degree
distribution of G∪spt tends to that of the URT root. These simulations support that
SPTKN

' URT with any regular link weights as explained in Section 6.1.3.
The degree distribution of G∪spt in a square lattice is shown in Figure 6.5. The

good approximation (6.14) encourages us to further simplify the analysis for the degree
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Figure 6.4: Degree distribution of G∪spt in KN and degree distribution of the root of
the corresponding URT .

distribution in a finite square lattice. There are three kinds of nodes in a lattice:
n2 = 4 nodes with degree D = 2; n3 = 4 ∗ (

√
N − 2) nodes with degree D = 3;

n4 = N − 4 ∗ (
√
N − 1) nodes with degree D = 4. Two kinds of links exist: (a) links at

the border, that have a probability p2 ≈ 1−
R 1
0
Pr[Ph=3 ≤ x]dx = 0.96 to be observed

via G∪spt and (b) central links, that have a probability p1 ≈ 0.92 to be the shortest
path between its end nodes. We assume that the observation of one link via G∪spt will
not influence the probability of other links being observed, since the hopcount of the
shortest path in a square lattice is usually large and a link with small link weight is
unlikely to attract the other shortest paths to pass through it. Then the following can
be obtained:

Pr[D = 1] = 1− Pr[d = 2]− Pr[d = 3]− Pr[d = 4]
Pr[D = 2] = 1

N

¡
4
2

¢
· n4 · p21(1− p1)

2+
1
N
(n3 · (p22(1− p1) + 2p1p2(1− p2)) + n2 · p22)

Pr[D = 3] = 1
N

¡
n3 · p1p22 +

¡
4
1

¢
· n4 · p31(1− p1)

¢
Pr[D = 4] = 1

N
· n4 · p41

(6.15)

We explain Pr[D = 3]. A node with degree 3 in the G∪spt is either a node with degree
3 in the square lattice with all three links being observed, or a node with degree 4 in
the square lattice with three of its four links being observed. With the set (6.15), we
calculate the degree distribution of G∪spt in a square lattice with N = 400 nodes and
compare those values with the simulation result in Table 6.1, which, again, shows a
good agreement.
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Table 6.1: Degree distribution of G∪spt in a square lattice with N = 400.

Pr[D = 1] Pr[D = 2] Pr[D = 3] Pr[D = 4]
Simulation 0.003 0.063 0.36 0.57
theory 0.004 0.062 0.354 0.580

The degree distribution of G∪spt in Havel-Hakimi power law graph substrates with
τ = 2.4 is shown in Figure 6.6. The degree distribution of a power law graph is
Pr[D = i] = ci−τ (by definition) which is shown in bold line in the figure for N = 100.
Nodes with degree 1 in the underlying graph must remain the same in the G∪spt in order
for G∪spt to be connected. A node with higher degree in the underlying graph may have
only one link in G∪spt, thus, degree 1 in G∪spt. Hence, as shown in Figure 6.6, compared
to the degree distribution of the underlying topology, Pr[D = 1] in the G∪spt increases
while Pr[D = i] for i > 1 decreases. However, such difference is not substantial. The
overlay network exhibits a degree distribution visually similar to the underlying graph,
because as shown in Section 6.3.1, the underlying topology is sparse and already tree-
like. A similar conclusion is reached for the Barabási-Albert preferential attachment
model as illustrated in Figure 6.7, where we have chosen a larger number of m = 4
links that is attached at each time which is equivalently to a large link density. This
demonstrates that the overlay on top of a power law graph is very close to the substrate
in terms of degree distribution, even for m = 4. These observations are consistent with
results in [59], where even a subgraph of G∪spt has similar degree distribution as that
of the underlying power law graph with w = 1 or α→∞ [3].



78 CHAPTER 6. THE OBSERVABLE PART OF A NETWORK

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P
r[

D
 =

 k
]

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2 3 4

degree (k)

 N = 25 GUspt

 N = 50 GUspt

 N = 100 underlying graph
 N = 100 GUspt

 N = 200 GUspt

 N = 400 GUspt
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6.4 Properties of G∪spt with varying α

When α → 0, all links will be close to 0, but, relatively, they differ significantly with
each other. If α → ∞, it follows from (2.1) that w = 1 almost surely for all links.
Hence, the overlay G∪spt is the same as the underlying topology, since the link weight
structure does not differentiate between links. Hence, the α→∞ regime is not further
considered. Van Mieghem and Magdalena [70] have found that, by tuning the extreme
value index α of the polynomial link weight distribution, a phase transition occurs
around a critical extreme value index αc. The critical extreme value index αc is defined
as FT (αc) =

1
2
where FT (α) = Pr

£
G∪spt(α) =MST

¤
. When α > αc, the overlayG∪spt(α)

contains more than N − 1 links whereas for α < αc, all transport traverses a critical
backbone consisting of N − 1 links, which is the MST , as follows from Theorem 16.
Here, we extend the analysis of [70] in two ways: (a) we include, besides the complete
graphs KN and square lattices, also cubic lattices and Havel-Hakimi power law graphs;
(b) by a spectral analysis, we further obtain insights in the structure of the overlay
G∪spt(α).

6.4.1 Phase transition in the G∪spt(α) structure

Instead of the number of links in G∪spt(α), when α is small, we study the probability
that the overlay G∪spt(α) is a tree. As shown in Figure 6.8, normalized by αc, the same
phase transition curve is observed for all these three types of topologies. As α increases,
the transport is more likely to traverse over more links and the overlay G∪spt(α) will less
likely become a tree. These additional simulations over those reported in [70] strengthen
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the belief that the curve FT (α) ≈ 2−(
α
αc
)
2

is universal for all graphs that are not trees.
For each substrate topology, the critical extreme value αc is shown in Figure 6.9 as

a function of N on a log-log scale. Each curve is fitted with a line and indicates that
αc ' bN−β where b and β depend on the underlying substrate. In spite of the fact
that this phase transition is constructed, the exponent β seems to lie in the interval
[1
2
, 2
3
], which agrees surprisingly well with critical exponents observed in nature (see e.g.

[11]). As explained in [70], it is computationally difficult to determine αc for large N .
This limits the extent to which a seemingly power law can be observed. In [20], on the
other hand, the characteristics — basically hopcount and weight — of the shortest path
between an arbitrary source and destination are different above and below a cross-over
point αco = cN−γ, where γ = 1

3
for Erdös-Rényi random graphs. The scaling laws for

αc and αco are, however, different4, which may point, at first glance, to an anomaly.
The inconsistency may be due to either the finite size of networks in our numerical
simulations or the approximations in the analysis of [20]. The link density does not
influence properties of the shortest paths as discussed in Section 6.1. Thus, we carry
out simulations to determine the critical extreme value αc on Erdös-Rényi random
graphs till N = 800 nodes. The critical point scales as αc = bN−β, where β ' 0.61 is

4The αco corresponds to the cross-over from the weak disorder regime to the strong disorder limit.
In the weak disorder regime, all links contribute to the total weight of a shortest path. In the strong
disorder limit, a single link weight dominates the sum of the weights along the paths. All shortest
paths belong the the MST in the stronge disorder limit. Thus, the scaling laws for αc and αco should
be the same.
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still far above γ = 1
3
and close to β ' 0.63 for complete graphs as shown in Figure 6.9.

The higher the αc-curve in Figure 6.9, the fasterG∪spt(α) tends to a tree if α decreases.
The power law graphs seem to possess the highest αc because they are already tree-like.
Although when α = 1, the overlay G∪spt(α) of the complete graph KN contains more
links than that of the square lattice (compare (6.10) with (6.9)), Figure 6.9 illustrates
that, since αc (KN) > αc (square lattice), the overlay G∪spt(α) of KN will tend faster to
a tree if α decreases. We can only give a speculative explanation. When α is very small
around the αc, link weights are small, but they differ significantly from each other. In

fact, if α→ 0, the ratio
√
Var[w]
E[w] ∼ 1√

α
diverges which means that, in this limit, the link

weights possess extremely strong fluctuations. Since the number of possible trees in KN

is much larger than that in the square lattice, it is more probable to find a spanning
tree only composed of these extremely small links and that tree is the MST.

6.4.2 The spectrum of the adjacency matrix of G∪spt(α)
The spectrum, the eigenvalues of the adjacency matrix, of G∪spt(α) in the complete
graph K50 are displayed in Figure 6.10. For K50, the critical extreme value index
is αc = 0.09. Figure 6.8 shows that the onset of the phase transition is somewhere
between 3αc and 4αc. Figure 6.10 (a) shows that, for α ∈ [0.01, 0.3], the corresponding
G∪spt(α) have almost the same spectrum, except that, the peaks at ±1.4 diminish as α
increases. The nodes with small degrees are most likely responsible [32] for the delta
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peak at5 λ = 0. For example, the local configurations with two and more dead-end
nodes produce eigenvalues λ = 0, where the dead-end node is a node with degree 1.
The corresponding eigenvectors have non-zero components only at the dead-end nodes
[49][95]. The spectrum of a tree is symmetric [26], because any tree is a bi-partite
graph and any bi-partite graph is symmetric around λ = 0. In Figure 6.10 (b) when
α = 0.4, these two peaks at ±1.4 are smoothed out and the spectrum is not symmetric.
It indicates that when α is smaller than the onset value of the phase transition (case
(a) in Figure 6.10), the G∪spt(α) seem to possess similar topological, tree-like structure.
Since very few trees can be uniquely specified by their spectrum [90], the spectrum is
not well suited to reveal the specifics of the MST. The spectrum of the G∪spt(α=1) in
K50 with regular link weights illustrated in Figure 6.10 (c) is close to the spectrum of
a random graph according to the Wigner’s Semicircle Law [101][67, Appendix B]. This
correspondence is an additional illustration of Conjecture 23. When α is large, link
weights are ineffective in that limα→∞G∪spt(α) = Gsubstrate. The spectrum of G∪spt(α)
in Figure 6.10 (d) is, indeed, close to the spectrum of substrate KN , that has N − 1
eigenvalues at −1 and 1 eigenvalue at N − 1. While peaks in the spectrum reflect
structure and regularity in the graph, a bulk almost symmetrical around zero, which

5In general, each time when two rows in the adjacency matrix A are the same, the rank of A
decreases with 1, which is equivalent to an increase in the multiplicity of the eigenvalue λ = 0, since

detA =
NY
j=1

λj .
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ultimately tends to a semicircle, points to uncorrelated randomness. The latter is a
characteristic property of an Erdös-Rényi random graph. Figure 6.10 thus shows, as a
function of α, transitions of G∪spt(α) between two graph types, a tree and the complete
graph, with apparent maximum randomness for regular link weights (α = 1).
The spectrum of the G∪spt(α) in a square lattice with 49 nodes are displayed in

Figure 6.11. When α is small, as shown in Figure 6.11 (a) and (b), the transition of
the spectrum of G∪spt(α) is similar to that in the complete graph. As studied in Section
6.3.1, on average, 92% of the links in the underlying square lattice can be observed via
the overlay G∪spt when α = 1. The spectrum of a square lattice with N nodes [26]
comprises the eigenvalues

λij = 2cos
2π√
N
i+ 2cos

2π√
N
j i, j ∈ {1, . . . ,

√
N}

which correspond to the peaks in the spectrum of G∪spt(α≥2). Compared to the complete
graph, in a square lattice, the overlay G∪spt approaches the underlying topology at a
smaller α-values, α ≥ 2 for the square lattice while α ≥ 5 for KN .
The spectrum of the G∪spt(α) in a Havel-Hakimi power law graph is almost the same

as that of the underlying graph for any α, because the underlying graph is already close
to a tree. For the spectrum of a Barabási-Albert power law graph, we refer to [39].
As mentioned before, since the spectrum for most trees is not unique [90], a spectral
analysis of tree-like graphs is not the best way to deduce specific properties.
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6.5 Two dimensional link weight tuning

We assign two uniformly distributed link weights with correlation ρ to each link in
the underlying graph and the correlation coefficient ρ can be varied within [−1, 1].
When ρ = 1, the two link weights of each link are the same, which reduces to the one
dimensional uniformly distributed link weight analyzed in Section 6.3. When ρ = −1,
−→w (u → v) = [w1(u → v), w2(u → v)] = [w1(u → v), 1 − w1(u → v)]. We recall the

definition [69] of the path length function l(P) = max
1≤i≤2

h
wi(P)
Li

i
. We assume the same

constraint for these two link weight measures L1 = L2, which are large such that the
shortest path always satisfies the constraints. Hence, the path length function to find the
optimal path can be reduced to l(P) = max

¡
w1(P)
w2(P)

¢
, where wi(P) =

X
(u→v)∈P

wi(u→ v).

The path length of a h ≥ 2 hop path is

lh(P) = max
µ
w1(P)
w2(P)

¶
= max

µ
w1(P)

h− w1(P)

¶
≥ h

2
≥ 1

while the path length of a one hop path

l1(P = u→ v) = max

µ
w1(u→ v)

1− w1(u→ v)

¶
< 1 ≤ lh(P)

Hence, when ρ = −1, the link between the source and destination, if exists, is always
the shortest path. All links in the underlying graph will appear in the overlay G∪spt. In
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other words, the overlay G∪spt(ρ=−1) is the same as the substrate, which corresponds to
G∪spt(α→∞).
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Figure 6.12: Degree distribution and spectrum of the overlay G∪spt in K100 with 2-
dimensional correlated uniformly distributed link weights.

When the underlying topology is the complete graph, the degree distribution of the
overlay G∪spt displayed in Figure 6.12(a) is close to the binomial distribution, the degree
distribution of an Erdös-Rényi random graph. The dotted line is the degree distribution
of the Erdös-Rényi random graph Pr[D = k] =

¡
N−1
k

¢
pk(1− p)N−1−k where p is set as

the link density6 of the corresponding overlay G∪spt(ρ). As shown in Figure 6.12(b), the
spectrum of the overlay G∪spt(ρ) with different correlation coefficient ρ is close to the
spectrum of an Erdös-Rényi random graph according to the Wigner’s Semicircle Law.
Both the degree distribution and the spectrum indicate that the overlay G∪spt(ρ) on top
of K100 with 2-dimension correlated uniform link weights is close to an Erdös-Rényi
random graph. The same behavior has been observed when the substrate is not the
complete graph but the Erdös-Rényi random graph: the overlay G∪spt(ρ) is also always
close to an Erdös-Rényi random graph.
The link density of the overlay G∪spt, the number of links Lo in the overlay G∪spt

divided by the maximum number of links in a graph N(N−1)
2

, is plotted in Figure 6.13.
When ρ = −1, the overlay G∪spt(ρ=−1) is equal to the substrate Gp(N). The link
density of the overlay is then determined by the link density of the underlying topology.
According to conjecture 23, when ρ = 1, the overlay G∪spt is a connected Erdös-Rényi
random graph Gpc(N) with link density pc, which is independent of the link density of
the substrate. The link density of the overlay G∪spt(ρ) decreases exponentially from the
link density p of the substrate to pc ∼ logN

N
as a function of the correlation coefficient

ρ.

6It is the average link density E[ 2Lo
N(N−1) ] of the 10

4 generated overlay G∪spt in each simulation,
where Lo is the number of links in the overlay G∪spt.
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6.6 Conclusion

The union of all shortest path trees G∪spt constitutes the observable part of a network
provided traffic flows follow shortest paths. We focus on the one dimensional link weight
tuning and we have studied two properties of the G∪spt, the average number of links
E[Lo] and the degree distribution, and simulated the spectrum of the adjacency matrix
ofG∪spt(α) as a function of the extreme value index of the link weight structure. Different
underlying topologies and the link weight structure were treated independently. The
minimum spanning tree belongs to the G∪spt. Any link l (i→ j) with link weight w(i→
j) in theG∪spt must be the shortest path between i and j and if a link is the shortest path
between its end nodes, it must belong to the G∪spt. Most of the theory is based on these
two points. Apart from the Theorems and Corollaries presented, the Conjecture 23 and

the seemingly universality of FT (α) ≈ 2−(
α
αc
)
2

in the phase transition appearing in the
structure of G∪spt are considered important new findings. For example, Conjecture 23
which has assumed an i.i.d. link weight structure, claims the appearance of the random
graph Gp(N) in many application such as, for example, peer-to-peer networks [7] and
ad-hoc networks [50]. The universality of FT (α) in the phase transition points to the
possibility to control the network structure or to steer or balance transport by tuning
the link weight structure.
The overlay G∪spt is, actually, themaximally measurable part of the substrate topol-

ogy. For example, the RIPE traceroute measurement configuration7 only measures the

7RIPE Test Traffic Measurements, http://www.ripe.net/ripencc/mem-services/ttm/.
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union G∪mspt of shortest paths between each pair of a small group of m << N nodes,
while the number of nodes in the underlying graph N is much larger. Considerable
attention has been devoted to the properties of graphs derived from Internet measure-
ments. But how accurate does the measured subgraph reflect the underlying graph
[59]?
The spectrum of the topology GRIPE measured by RIPE [53] is shown in Figure 6.14,

and is very akin to that measured on Planet lab8 in Figure 6.15. More details are given
in Table 6.2.

Table 6.2: Measurement description.

RIPE PlanetLab
date 9-18-2005 11-10-2004
m 70 79
#spts in union 67 76
N 4058 4214
L 6151 6994
Pr [D = k] ∼ e−0.39k ∼ e−0.44k

Each of the m testboxes acts as a source and sends traffic to other testboxes. After
8http://www.planet-lab.org
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removing error measurements in the trace-routes, the overlay GRIPE and GPlanetLab are
constructed as the union of (only) #spts trees. BothGRIPE andGPlanetLab are subgraphs
of G∪spt on top of the underlying Internet topology.
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Figure 6.15: The spectrum of the overlay measured on PlanetLab. The deep tail region
can be fitted both by an exponential fλ(x) = 2.5e−1.3x and a power law fλ(x) = 1.5λ

−5.2.
Applying the conversion fλ(x) ' 2xfD(x

2) from [32] to the power law results in a
degree pdf fD(x) ∼ x−3.1. The power exponent τ = 3.1 exceeds the commonly accepted
2.2 ≤ τInternet ≤ 2.5.

The spectra of GRIPE and GPlanetLab seem to give support for the Conjecture 23,
since the partial overlay G∪mspt (m << N) seems approximately close to G∪spt (see
Figure 6.10 (c)) and reveals more features of the overlay than that of the underlying
topology, which is overwhelmingly shown in the literature to belong to the class of
power law or scale free graphs. The spectrum of scale-free networks exhibit a power
law tail in the region of large eigenvalues [39][32]. The spectra of GRIPE and GPlanetLab,
however, may possess an exponential tail, most likely because the value of m is still
not large enough to cover G∪spt sufficiently and to observe the power law behavior [54].
The relationship between a partial overlay G∪mspt, the complete overlay G∪Nspt and the
underlying topology or substrate will be studied in Chapter 7.
Conjecture 23 implies that the observed network will have a low maximum degree

and a Poisson degree distribution, contrary to the view, promoted by some papers
[59][22][2], claiming that the bias may lead to an observed power law degree distribu-
tion irrespective of the degree distribution of the substrate. Most published work on
sampling bias focuses on unweighted graphs and the bias originates purely from the
sampling methods (such as the union of paths from a small set of sources to a relatively
larger set of destinations). Here, we study the “bias” introduced by the link weight
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structure of the substrate. The overlay constructed as the union of shortest paths be-
tween all node pairs is exactly the same as the substrate if the substrate is unweighted
(α→∞ case). In weighted graphs, links with high weight rarely appear in the observed
network.
Finally, the differences between one and two dimensional link weight tuning in dense

substrate, i.e. the Erdös-Rényi random graph Gp(N), is summarized in table 6.3.

Table 6.3: The structure of the overlay G∪spt on top of Gp(N) via one and two dimen-
sional link weight tuning.

one dimensional α ∈ [0,∞) two dimensional ρ ∈ [−1, 1]
G∪spt(α<αc) =MST
G∪spt(α=1) ' Gpc(N) G∪spt(ρ=1) ' Gpc(N)
G∪spt(1<α<∞) 6= ER G∪spt(−1<ρ<1) ' ER
G∪spt(α→∞) = Gp(N) G∪spt(ρ=−1) = Gp(N)

With one dimensional link weight tuning, the overlay G∪spt(α) varies from the sparsest
structure, the MST , to the densest, the substrate Gp(N). Via two dimensional link
weight tuning, the overlay G∪spt(ρ) is always close to the Erdös-Rényi random graph.
The link density of G∪spt(ρ) varies within [

logN
N

, p], which is smaller than the link density
range of G∪spt(α): [ 2N , p].



Chapter 7

Sampling networks by G∪mspt

Topologies of complex networks ranging from biological networks, artificial networks to
social networks have been accumulated by active investigation in recent years. However,
many surveyed networks to date are, in fact, subnets of the actual network, which we
call the “underlying network”. For example, only a subset of the molecular entities in a
cell have been sampled in protein interaction, gene regulation and metabolic networks.
The topology of the Internet is inferred by aggregating paths or traceroutes [86], which
reveals only a part of the whole Internet. Thus, these identified networks are sam-
pled networks of the underlying networks according to different mapping or sampling
methods.
In this work, we study the bias phenomenon of a sampling method that originated

from the Internet. The topology of the Internet has typically been measured by the
union of sampling traceroutes, which are approximately shortest paths. Mainly two
sampling methods exist: (a) The topology is built from the union of traceroutes from
a small set of sources to a larger set of destinations as in the CAIDA skitter project1.
The sampled map can be modeled as the union of the spanning trees rooted at the
sources. (b) The traceroute measurements are carried out between each pair of a set
M of m testboxes or testbeds. The sampled network, denoted as G∪mspt, is the union
of m shortest paths trees SPTs, where each SPT is the union of shortest paths from
the root ∈M to the other m− 1 testboxes ∈M. Equivalently, G∪mspt is the union of
shortest paths between each node pair in the setM of m testboxes. The RIPE NCC
and the PlanetLab measurement architectures, as discussed in Section 6.6, are examples
of this type. The methodology in (a) has been argued and even proved to introduce
such intrinsic biases that statistical properties of the sampled topology may sharply
differ from that of the underlying graph (see e.g. [59][2][22]). While most related works
on Internet exploration have been devoted to the sampling method (a), we investigate
the other sampling method (b). Although the number of destinations may be limited

1http://www.caida.org
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to the number m of measurement boxes, the spurious effects in (a), where nodes and
links closer to the sources are more likely to be sampled than those surrounding the
destinations, can be reduced.
With statistical and graph theory methodologies, we investigate this sampling method

(m shortest path trees) on a wide class of networks: the weighted Erdös-Rényi ran-
dom graphs, which represent dense and homogeneous networks, and the unweighted
real-world complex networks which are generally sparse and inhomogeneous graphs.
Various underlying networks are investigated, because network sampling is a generic
problem residing in various disciplines and the actual underlying network topology is
mostly uncertain. Here, we focus on the sampling bias (the incompleteness of the net-
work mapping) introduced purely by the sampling method. Technical limitations in
the topology measurements may also introduce significant sampling bias. For example,
the network measured by traceroute represents the interconnections of IP addresses.
The bias in mapping the router level Internet topology depends highly on the alias
resolution technique, which maps IP addresses to the corresponding routers [83]. Such
specific technical concerns, which vary in the measuring of different complex networks,
are not explored in this chapter.
The sampled network G∪mspt depends on the set M of m boxes as well as the

underlying network. In this work, we focus on the effect of the testboxes, in particular,
1) the subgraph GM of the underlying network, consisting of the setM and the direct
links between nodes of set M, and 2) the relative size m/N of set M, where N is
the size of the underlying network. With a given set of testboxes, the sampling bias
varies for different networks. The kind of networks with small sampling bias will also
be briefly mentioned.
The main contributions of this study can be summarized as follows.

1. Introduction of a general framework for network sampling on both weighted and
unweighted complex networks.

2. Establishment of the correlation between the interconnections of setM, i.e. the
subgraph GM, and the sampled network G∪mspt.

3. Illustration of the detection/measuring effort (the relative size m/N of setM) to
obtain an increasingly accurate view of a given network.

4. Characterization of networks bearing small sampling bias when m/N is small
and the corresponding proposal of testbox placement for good network topology
measurements.
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Figure 7.1: The relation between the sampled overlay network, the overlay network and
the underlying graph.

7.1 Modeling the sampling process of large networks

Assuming that traceroutes used in RIPE NCC and the PlanetLab are shortest paths,
the sampled topology is then the union G∪mspt of shortest paths between each pair of a
small group of m¿ N nodes, while the number of nodes in the underlying graph N is
much larger. When m = N , the graph G∪mspt becomes G∪spt, the union of all shortest
paths between any node pair. G∪spt is thus the maximal measurable or observable part
of a network by traceroute measurements, which has been extensively investigated in
Chapter 6. An example to represent the relation between the sampled overlay network
G∪mspt, the overlay network G∪spt and the underlying graph (or substrate) is shown in
Figure 7.1. The performance of the network for a given service can be characterized
by the structural properties of G∪spt. Hence, the sampling bias refers to the difference
between the sampled overlay G∪mspt and the overlay network G∪spt. We show in Section
7.3 that the sampling bias can be quantitatively characterized by E[Lmspt]

E[Lo]
, where Lmspt

and Lo are the number of links in G∪mspt and G∪spt. When the underlying graph is
an unweighted network, the overlay network is equal to the underlying graph G∪spt =
G(N,L), because each link (i, j) in G(N,L) is the shortest path between node i and j.
We consider two classes of substrates: the Erdös-Rényi random graphs Gp(N)

equipped with i.i.d. uniform link weight within [0, 1] as motivated in Chapter 2 and
the unweighted real-world complex networks that are enumerated in Section 2.1.5. Fur-
thermore, other network models, such as power law graphs are usually sparse. The
sampling via G∪mspt of a sparse network is the same no matter this network is weighted
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Figure 7.2: Sketch of the sampled overlay G∪mspt and the overlay G∪spt(N) on top of
the underlying graph G(N,L) and the overlay G∪spt(m) on the subgraph GM.

or not, because paths between any node pair are likely unique. Hence, in the class of
the weighted networks, we consider the Erdös-Rényi random graph Gp(N), which is
dense. And some of the unweighted real-world networks possess a power law degree
distribution.

7.2 Effect of GM on the sampled overlay G∪mspt

Recall that a network is mapped as G∪mspt, the union of shortest paths between each
pair of a setM of m testboxes. The overlay network G∪spt is the union of the shortest
paths between all node pairs. We examine first the effect of GM on the sampled overlay
G∪mspt when the underlying network or substrate is a weighted Erdös-Rényi random
graph. As shown in Figure 7.2, the subgraphGM of a underlying networkG(N,L) is the
setM and the direct links between nodes of setM. The maximal observable part of the
subgraph GM is the overlay network G∪spt upon GM. It is now denoted as G∪spt(m)
to include the number of nodes in the overlay network and G∪spt(m) ⊂ GM. The
sampled overlay G∪mspt and the overlay G∪spt(N) are constructed based on the shortest
paths computed in the underlying network G(N,L) while the overlay G∪spt(m) on the
subgraph GM is based on the shortest path computation in the subgraph GM. Similar
to the overlay G∪spt(m), the sampled network G∪mspt is also the union of shortest path
between each node pair of the setM, however, upon the underlying network G(N,L)
instead of upon the subgraph GM. We now examine the similarity or difference between
G∪spt(m) and G∪mspt.



7.2. EFFECT OF GM ON THE SAMPLED OVERLAY G∪MSPT 93

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

 =
 j]

1412108642
degree j

 set M  in Gmspt on top of  G p(N)
 set I in  G msp t on top  of Gp(N )
 Gusp t(m) on top  of subgraph G M
 Gusp t(N ) on  top of G p(N )
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Each simulation on Erdös-Rényi random graphs consists of 104 iterations. Within
each iteration, a set M of m = 40 nodes is uniformly chosen out of the generated
substrate G0.6(200) and an i.i.d. uniform link weight is assigned to each link. We
compute three networks (a) the sampled overlay G∪mspt and (b) the overlay G∪spt(N)
on top of the underlying graph G(N,L) and (c) the overlay G∪spt(m) on the subgraph
GM. The degree distributions of these three networks are displayed in Figure 7.3.
We denote DM as the degree of set M in the sampled overlay G∪mspt. The degree
distribution of DM is much closer to the degree distribution of the overlay G∪spt(m) on
top of GM than that of the overlay G∪spt(N). Beside the setM, the other nodes in the
sampled overlay G∪mspt belong to set I. The degree distribution DI of set I performs
even worse to represent the overlay G∪spt(N) as compared to setM.
We further investigate the resemblance in degree distribution between DM and the

overlayG∪spt(m) on the subgraphGM over more Erdös-Rényi random graphs: G0.2(400)
and G0.2(800) with different size m of the setM. Figure 7.4 illustrates that the setM
in the sampled overlay G∪mspt and the overlay G∪spt(m) upon GM possess almost the
same degree distribution. The degree distribution of the overlay G∪spt(m = 10, 20, 50)
upon GM is calculated based on Corollary 22, using

Pr[DG∪spt(m) = k] =
(−1)m−1−kS(k)m−1

(m− 1)!
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It seems that Pr [DM = k] = Pr[DG∪spt(m) = k]. The degree distribution of the setM
in the sampled overlay G∪mspt is independent of the size N of the underlying network:
the set M follows a same degree distribution in G∪mspt(N = 400), G∪mspt(N = 800)
and G∪mspt(N = m) = G∪spt(m). Hence, we claim the following conjecture:

Conjecture 24 Consider the sampled overlay graph G∪mspt on top of an Erdös-Rényi
random graph Gp(N) with link density p above the disconnectivity threshold pc and
equipped with i.i.d. regular link weights. The degree distribution of DM of setM in the
sampled overlay graph G∪mspt is independent of the size N of the network and

Pr [DM = k] = Pr[DG∪spt(m) = k] =
(−1)m−1−kS(k)m−1

(m− 1)!

As presented in Appendix A.6, two extreme cases Pr [DM = 1] and Pr [DM = m− 1]
can be proved. The Conjecture 24 states that the degree distribution of the set M
is independent of the size of the underlying topology, but only of the number m of
measurement nodes inM. This “intermediate node invariant” degree property could
be used, in principle, to reduce or infer G(N,L) and the link weight structure. In other
words, if the so measured G∪spt(m) statistically has the same degree distribution as the
setM of G∪mspt, the network is possibly homogeneous and equipped with i.i.d. regular
link weights.
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On top of a dense homogeneous network equipped with i.i.d. regular link weights,
the set M of the sampled overlay network well reflects the local overlay G∪spt(m) on
top of a subgraph GM in the degree distribution, although m¿ N . It seems that the
testboxes, i.e. the subgraph GM (or, equivalently, G∪spt(m) upon the subgraph GM) do
effect the sampled overlay G∪mspt in the degree distribution of setM. The Erdös-Rényi
random graph is homogenous and so is the subgraph GM. Hence, the resemblance in
degree distribution between DM and the overlay G∪spt(m) may originate from the fact
that both G∪spt(m) and G∪mspt take into account the union of m(m − 1)/2 shortest
paths.
In a real-world unweighted network, the overlay network G∪spt(N) is equal to the

substrate G(N,L) and the overlay network G∪spt(m) on top of subgraph GM is GM
itself. For unweighted networks, we have

GM = G∪spt(m) ⊂ G∪mspt ⊂ G∪spt(N) = G(N,L)

where G∪spt(m) ⊂ G∪mspt is due to the fact that any link (i, j) in an unweighted graph is
the shortest path between its end nodes i and j. The structure of G∪mspt varies between
GM and the substrate G(N,L). Hence, the subgraphGM is correlated with the sampled
network G∪mspt, in the sense that GM = G∪spt(m) ⊂ G∪mspt. As a larger proportion of
the substrate is observed, the sampled overlay G∪mspt resembles the underlying network
G∪spt(N) = G(N,L) more.

7.3 Effect of the relative size m/N of the testboxes

In this section, we first explain why E[Lmspt]/E[Lo] quantifies the sampling bias well.
Then, we investigate the effect of the relative sizem/N of the testboxes on the sampling
bias. Given the ratio m/N , the sampling bias differs for various networks depending on
their topologies. We will briefly discuss which type of network tends to possess small
sampling bias.

7.3.1 Characterizing the sampling bias by E[Lmspt]/E[Lo]

The sampling bias refers to the difference between the sampled overlay G∪mspt and the
overlay network G∪spt. The relation G∪mspt ⊂ G∪spt(N) holds for both weighted Erdös-
Rényi random graphs and unweighted networks. Hence, the ratio of the average number
of links in the G∪mspt and G∪spt, E[Lmspt]/E[Lo] can reasonably well characterize2 the
sampling bias of a network, where E[Lo] = L in case the network is unweighted.
First, Figure 7.5 shows that the probability distribution of the normalized number of

links L∗mspt =
Lmspt−E[Lmspt]

σ[Lmspt]
and the normalized number of nodes N∗

mspt =
Nmspt−E[Nmspt]

σ[Nmspt]

2E[Lmspt]/E[Lo] is a statistical property which takes into account different realizations of the set
M selection as well as the link weight assignment.
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Figure 7.5: Probability distribution of the normalized number of links(left) L∗mspt and
nodes(right) N∗

mspt in G∪mspt on top of G0.2(800) and m = 10, 20, ..., 60.

in G∪mspt are both close to the Gaussian distribution N(0, 1). Moreover, their average
and standard deviation, which determine the distribution, follow σ(Lmspt) ¿ E[Lmspt]
and σ(Nmspt) ¿ E[Nmspt] as illustrated in Figure 7.6 and 7.7. Hence, the random
variables Lmspt and Nmspt are close to their mean E[Lmspt] and E[Nmspt], which are
thus the appropriate quantities to be studied.
Furthermore, we investigate the sampling bias via E[Lmspt]/E[Lo] instead of the

number of nodes E[Nmspt]/N . The relation between E[Nmspt] and E[Lmspt] follows
from the basic law of the degree:

mX
j=1

dj∈M +

NmsptX
j=m+1

dj∈I = 2Lmspt

Taking the expectation yields

m · E[DM] +E[

NmsptX
j=m+1

dj∈I ] = 2E[Lmspt]

Assume that Nmspt and dj∈I are only weakly dependent such that we may apply Wald’s
identity [67, Chapter 1],

2E[Lmspt] ' m · E[DM] + (E[Nmspt]−m) · E[DI (Nmspt)]

or

E[Lmspt] '
1

2
E[DI (Nmspt)] · E[Nmspt] +

m

2
(E[DM]−E[DI (Nmspt)]) (7.1)



7.3. EFFECT OF THE RELATIVE SIZE M/N OF THE TESTBOXES 97

2500

2000

1500

1000

500

E
[L

m
sp

t]

10
2 3 4 5 6 7 8 9

100
2 3 4 5 6 7 8

m

80

70

60

50

40

30

20

St
an

da
rd

 d
ev

ia
tio

n 
σ[

L m
sp

t]

10
2 3 4 5 6 7 8 9

100
2 3

m

Figure 7.6: Average and standard deviation of the number of links in G∪mspt on top of
G0.2(800).

Under the assumption of weakly dependence between Nmspt and dj∈I, a linear rela-
tion exists between E[Lmspt] and E[Nmspt] with slope equal to E[DI (Nmspt)]/2, where
E[DI (Nmspt)] is a function of m. For example, we consider the substrate G0.2(800)
equipped with i.i.d. uniformly distributed link weights. The left and right sides of (7.1)
are shown to be almost the same in the table below, which justifies the weak dependency
assumption.

m 10 20 30 40 50 60 100 300
left side of (7.1) 124.4 308.3 479.6 630.6 762.6 881.4 1242.6 2111.7
right side of (7.1) 124.6 308.6 479.6 630.6 763.4 881.1 1244 2117.2

7.3.2 Sampling of the weighted Erdös-Rényi random graph

The average number of links in the SPT rooted at a source tom uniformly chosen nodes
in the complete graph KN , or approximately in Gp(N), with uniform link weights is
given in [67, Chapter 17],

gN(m) =
mN

N −m

NX
k=m+1

1

k
' mN

N −m
log

N

m
(7.2)

Hence, the number of links in each of the m SPTs of G∪mspt is, on average, equal to
gN(m − 1). The maximum number of links that can be detected in case m = N via
G∪spt is E [Lo] given by (6.10). Since Lmspt is not decreasing in m, we have that

gN(m− 1) ≤ E[Lmspt] ≤ E [Lo]

and
E[Lmspt] ≤ m · gN(m− 1)
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Figure 7.7: The average and standard deviation of the number of nodes Nmspt in G∪mspt

on top of G0.2(800).

Hence, for large N ,

(m− 1)N
N −m+ 1

log
N

m− 1 ≤ E[Lmspt] ≤
N

2
(γ + lnN)

where γ = 0.57721... is the Euler constant. The ratio E[Lmspt]/E[Lo] quantifies the
sampling bias, while the ratio E[Lmspt]/(m · gN(m − 1)) reflects the extent of overlap
between these m SPTs. As shown in Figure 7.8, for the substrate G0.2(800) and
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Figure 7.8: The ratio E[Lmspt]/E[Lo] and the power exponent β in the corresponding
fitting E[Lmspt]/E[Lo] = O(mβ), where the substrate is G0.2(N).

m = 60, 30% of links inG∪spt have already been observed. Form = 120, about 40% links
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are discovered. Indeed, for any network, the largerm is, the smaller the sampling bias is,
because limm→N G∪mspt = G∪spt(N). For N = 800, the ratio E[Lmspt]/E[Lo] = O(mβ)
with β ≈ 0.23, which implies that “the discovering rate of new links” decreases with
m. In other words, to obtain an increasingly accurate view of the network, a higher
detection/measuring effort is needed, in fact, much higher than proportional. Since
E[Lmspt]/E[Lo] = O(mβ), we found via simulation that the exponent β increases with
N . When A = m

N
→ 0, the shortest paths between nodes of setM seldom overlap,

E[Lmspt] '
µ
m

2

¶
E[HN ] =

A2N2

2
E[HN ]

Using (6.7) and [67, Section 16.3], we have

E[Lmspt]

E[Lo]
'

A2N2

2
E[HN ]

N(N−1)
2

po
'

A2N2

2
(lnN + γ)

N
2
(lnN + γ)

= A2N

where po is the link density of the overlay G∪spt. Hence, for a smallm/N , large networks
tend to have a small sampling bias or large E[Lmspt]/E[Lo]. Moreover, a sparse overlay
network characterized by a small po tends to have a small sampling bias, as observed
in real-world complex network sampling in Section 7.3.3.

7.3.3 Sampling of the real-world complex networks

On top of each real-world network, we increase the size of the setM from m
N
= 5% to

m
N
= 35% with a step of 5%. Given m

N
, each simulation consists of 40 realizations3 of

the random selection of setM. The average proportion of links E[Lmspt]/L discovered
in the corresponding sampled overlay G∪mspt is plotted as a function of m

N
in Figure 7.9.

Similar to the weighted Erdös-Rényi random graph, to obtain an increasingly accurate
view of the network, a higher than linear detection/measuring effort m/N is needed.
With a given proportion m/N of uniformly distributed testboxes in a network, the

sampling bias E[Lmspt]/L depends purely on the topology of the network. We compare
the real-world complex networks (the first 8 networks) mentioned in Section 2.1.5 to see
which kind of network tends to possess small sampling bias. We examined the following
topological metrics which are considered relevant in the networking literature [62]:

• number of nodes N and links L.

• Average degree E[D] = 2L/N and link density p = L

(N2)
.

320 or 10 iterations are carried out for large networks with N > 3000.
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Figure 7.9: The average proportion of links E[Lmspt]/L discovered via G∪mspt as a
funtion of the relative size m/N of setM.

• The average hopcount E[HN ] of the shortest path between each node pair and the
largest hopcount hmax or the diameter of a graph. Actually, we assign indepen-
dently to each link a unit link weight plus a small uniform random variable within
[− 1

N
, 1
N
], such that a unique shortest path is found between each node pair.

• The clustering coefficient C(G) of a graph.

Table 7.1 presents the topological metrics of the real complex networks, in the
decreasing order of their corresponding E[Lmspt]/L at m/N = 5% shown in Figure 7.9.
Recall that a larger proportion E[Lmspt]/L of the substrates observed via G∪mspt implies
a lower sampling bias. Figure 7.9 and Table 1 show that a network tends to have a
small sampling bias if its link density p is low and the average hopcount E[HN ] is large,
especially for small m/N . Indeed, when A = m

N
→ 0, the shortest paths between set

M seldom overlap and

E[Lmspt]

L
'

A2N2

2
E[HN ]

N(N−1)
2

p
' A2E[HN ]

p
(7.3)

For any m, the proportion of observed links E[Lmspt]
L

can be upper bounded by (7.3).
When m is larger, the shortest paths between setM overlap more, and E[Lmspt]

L
is far
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Table 7.1: Topological metrics of the real complex networks

Table 1 N L C E[HN ] hmax E[D] p

Power grid 4941 6594 0.11 18.99 46 2.67 0.00054
Gnutella Crawl2 1568 1906 0.04 6.10 21 2.43 0.0016

Web of Science Citations(koh) 3704 12673 0.30 3.67 12 6.84 0.0018
Science coauthorship network 379 914 0.80 6.03 17 4.82 0.0128

Air Transportation 2179 31326 0.59 3.02 8 28.75 0.0132
Word adjacencies 112 425 0.19 2.51 5 7.59 0.068
Dutch soccer 685 10310 0.75 4.45 11 30.10 0.044

Food web(Florida) 128 2075 0.33 1.76 3 32.42 0.26

smaller than its upper bound (7.3). For largerm/N , the sampling bias of these networks
may have a different order. No clear correlation between the sampling bias and other
metrics have been found.
In summary, in both the weighted Erdös-Rényi random graph and unweighted real-

world networks, to obtain an increasingly accurate view of the network, a higher than
linear detection/measuring effort m/N is needed. When m/N is small, the sampling
bias depends purely on the average hopcount E[HN ] and the link density p (or po) of
an unweighted network (or of the overlay G∪spt upon a weighted network). Indeed, a
larger average hopcount E[HN ] and a small p or po imply a small sampling bias. For
small m/N , the sampling bias of the weighted Erdös-Rényi random graph is positively
correlated with N.

7.4 Conclusions

In this chapter, we study a network sampling method originated from the Internet,
namely G∪mspt the union of m shortest path trees, or equivalently, the union of shortest
paths between each pair of a set M of m testboxes. The analysis covers a wide class
of networks, ranging from real-world unweighted complex networks to the weighted
Erdös-Rényi random graphs.
The interconnections of setM, i.e. the subgraph GM, are correlated with the sam-

pled networkG∪mspt as follows: When the underlying network is a real-world unweighted
network G(N,L), GM is a subgraph of the sampled overlay G∪mspt. Surprisingly, when
the underlying network is an Erdös-Rényi random graph equipped with i.i.d. regular
link weights, the setM in the sampled overlay graph G∪mspt follows the same degree
distribution as the overlay G∪spt(m) upon GM. The degree distribution of DM of the
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setM in the sampled overlay graph G∪mspt is independent of the size N of the network.
To obtain an increasingly accurate view of a given network, a higher detection/measuring

effort (the size m of setM) is needed, in fact, higher than proportional.
When m/N is small, as in RIPE NCC and the PlanetLab measurement where the

numberm of testboxes (hundreds) is much smaller the number of routers in the Internet
(hundreds of thousands), the sampling bias tends to be small if the average hopcount
E[HN ] is large and the link density p, or link density po of the overlay network G∪spt,
is small. Hence, a large number of testboxes placed far from each other is preferable
for good network topology measurements. Furthermore, the sampled overlay network
consists of a large number, m, of shortest paths that either start or end at each testbox.
Links connected to the testboxes are more likely to be sampled than the other links.
Hence, placing testboxes at hubs (nodes with a high degree in the underlying network)
may contribute to a small sampling bias. In the sampled overlay G∪mspt, the set of m
textboxes tend to possess a higher average degree than the other (intermediate) nodes,
if the underlying network is dense4, as observed in Figure 7.3.

4When the underlying network is sparse, the uniformly distributed testboxes tend to possess a small
degree in the underlying network, which limites the number of links incident to the testboxes to be
sampled. On the other hand, those few high degree nodes in the underlying network are likely to
appear in the sampled overlay as the intermediate nodes. Hence, in the sampled overlay network, the
average degree of the intermediate nodes may be higher than that of the testboxes.



Chapter 8

Betweenness centrality in a
weighted network

In large complex networks, not all links have equal importance. For example, if two
clusters are connected by one link, the removal of this link will disable all the traffic
flowing between these two clusters. In contrast, the removal of a link connecting to a
dead-end whose degree is one, will have no effect on the other parts of the network.
The importance of links is of primary interest for network resilience to attacks [5][23]
and immunization against epidemics [81]. A good measure for “link/node importance”
is the betweenness Bl(Bn) of a link (node), which is defined as the number of shortest
paths between all possible pairs of nodes in the network that traverse the link (node).
The betweenness Bl(Bn) which incorporates global information is a simplified quantity
to assess the maximum possible traffic. Assuming that a unit packet is transmitted
between each node pair, the betweenness Bl is the total amount of packets passing
through a link.
Recall that the overlay network G∪spt is the union of the shortest paths between

all possible node pairs. The importance and structure features of the overlay network
have been extensively studied in Chapter 6. Since all the traffic traverses only the
overlay G∪spt and all the nodes in the substrate also appear in the overlay G∪spt, the
betweenness of a node in the substrate is equal to the betweenness of that node in the
overlay G∪spt. A link in the substrate has betweenness 0 if it does not belong to the
overlay G∪spt. Otherwise, its link betweenness is the same as that in the overlay G∪spt.
In this chapter, the traffic through the network is examined by the betweenness Bl

of links in the overlay G∪spt. The study of betweenness usually deals with scale-free
trees [14, 40, 41, 88] or scale-free networks [57, 45] whose degree distribution follow
a power law, i.e. Pr[D = k] ∼ k−τ . However, the overlay G∪spt that we are going
to examine possesses different degree distribution e.g. uniform, exponential or power
law distribution. The structure of the overlay network G∪spt can be controlled e.g.
by tuning the extreme value index α of the i.i.d. polynomial link weights defined in

103
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(2.1). In the strong disorder limit (α → 0, or α < αc for large networks), the overlay
G∪spt(α → 0) becomes the MST. The betweenness of the MST for various network
models and real-world complex networks follow surprisingly a power law. This power
law betweenness distribution for MST holds more generally than in Erdös-Rényi random
graph and scale-free networks as found in [46]. Besides, the relationship between the
structural characteristics and its betweenness distribution is investigated. We study the
correlation between the link weights and the corresponding link betweenness when the
system is in weak disorder, instead of the correlation between the node betweenness
and the node degree as in [9, 46].

8.1 Simulation scenarios

Here, we explore the betweenness distribution of the overlay network GUspt, when the
i.i.d. polynomial link weights are tuned via the index α. When α → 0 (or in the
α < αc regime for large networks), all flows are transported over the MST. Hence,
G∪spt(α→0) =MST is also called an overlay tree. When α > αc, transport in the network
traverses many links. The α → 0 (or α < αc for large networks) regime corresponds
to the strong disorder limit, where the total weight of a path is characterized by the
maximum link weight along the path. The shortest path in this case is the path with
the minimum value of the maximum link weight. When all links contributes to the total
weight of the shortest path, the system is weak disordered, e.g. α > αc. In fact, other
distributions that could lead to strong disorder [20] would arrive at similar betweenness
behavior, because the MST is probabilistically the same for various i.i.d. link weights
distributions [72].
For the underlying topology, or the substrate, we consider the following complex

network models: the Erdös-Rényi random graph Gp(N), the square and the cubic lat-
tice and the Barabási-Albert (BA) power law model. We carried out 104 iterations for
each simulation. Within each iteration, we randomly generate an underlying topology.
Polynomial link weights with parameter α are assigned independently to each link. The
overlay G∪spt as well as its betweenness is found by calculating the shortest paths be-
tween all node pairs with Dijkstra’s algorithm for weak disorder regime. For the strong
disorder limit α → 0, G∪spt(α→0) =MST is found by Kruskal’s algorithm [25] on the
corresponding network with uniform link weights, because with i.i.d. link weights, the
structure of the MST is probabilistically the same for various link weights distributions
[72]. The betweenness distribution of the overlay tree G∪spt(α→0) is determined totally
by the structure of the overlay tree. Furthermore, we also perform the same statistical
analysis of the overlay trees G∪spt(α→0) on top of real-world networks that are enumer-
ated in Section 2.1.5. On top of each, usually large network, 100 realizations of i.i.d.
uniform link weights assignments are carried out.



8.2. LINK WEIGHT VERSUS LINK BETWEENNESS 105

8.2 Link weight versus link betweenness

Does a low link weight implies a high link betweenness Bl? When polynomial link
weights are independently assigned to links in the substrate, we randomly choose a link
in each overlay network G∪spt. The betweenness of this link and the corresponding link
weight are plotted in Figure 8.1. According to [74], αc = 0.2 for Erdös-Rényi random
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Figure 8.1: The link weight w (cross) versus its link betweenness j and E[w|Bl = j]
(square) the average link weight of links with given betweenness j in the overlay G∪spt
on top of Erdös-Rényi random graph G0.4(100).

graph with N = 100 nodes1. When the system is weakly disordered, i.e. α > αc

(Figure 8.1 b-d), a link with lower link weight is more likely to have higher betweenness.
However, when α = 0.2 (Figure 8.1(a)), where link weights possess relatively strong
fluctuations, the correlation between link weight and betweenness disappears. Hence,
a negative correlation exists between the link weight and its betweenness for the weak
disorder regime. The correlation becomes stronger as α increases, as illustrated in table
8.1 where the linear correlation coefficient is equal to the covariance between the two
random variables divided by the product of their standard deviations. The increasing
strength of the correlation for larger α is also reflected by Figure 8.1, where as α
increases, the plot of link weights become narrower.
The correlation between the weight and the betweenness of the link is shown to

be dependent on the underlying graph as well as on the extreme value index α of

1αc depends on the network topology as well as the size N of the network



106CHAPTER 8. BETWEENNESS CENTRALITY IN A WEIGHTED NETWORK

Table 8.1: The correlation coefficient between weight and betweenness of a link.

α 0.2 1.0 2.0 4.0 8.0 16.0
G∪spt on G0.4(100) −0.06 −0.61 −0.70 −0.78 −0.84 −0.84

G∪spt on square lattice N = 100 −0.22 −0.53 −0.54 −0.53 −0.53 −0.53
G∪spt on cubic lattice N = 125 −0.18 −0.60 −0.66 −0.67 −0.68 −0.68
G∪spt on BA N = 100,m = 3 −0.12 −0.53 −0.66 −0.60 −0.50 −0.49

the polynomial link weight distribution. For homogeneous network such as the Erdös-
Rényi random graph and lattice, the correlation coefficient increases monotonically
as α increases. However, in a the nonhomogeneous topology like the BA power law
substrate, the correlation coefficient decreases after a maximum has been reached. In
a homogeneous network, when α is large, a link with lower link weight tends to attract
more traffic. While in a non-homogeneous topology, the relative importance of a link or
its connectivity in substrate is also a determinant factor for its betweenness. In short,
both the nonhomogeneity of the underlying topology and the link weight disorder (e.g.
a smaller α) contribute to the nonhomogeneity of the overlay G∪spt, which reduces the
correlation between link weight and betweenness.

8.3 Link betweenness distribution of the overlayG∪spt
The link betweenness represents the total traffic passing through a link if a unit packet
is transmitted between each node pair. Hence, the link betweenness distribution reflects
how the traffic is distributed over the network.

8.3.1 Overlay G∪spt on top of complex network models

As shown in Figure 8.2 (a), the traffic on the overlay G∪spt on top of G0.4(100) varies
less for large α, because the betweenness is distributed within a small range. When
α is small, as shown in Figure 8.2 (b), the betweenness is ranging approximately over
[1, 2500] for N = 100 and peaks appear on the betweenness at n(N − n), where 1 ≤
n ≤ N − 1.
A link is called critical if its removal will disconnect the overlay G∪spt into two

clusters with n and N − n nodes. The betweenness of such critical link is n(N − n),
because all the traffic with source and destination separated in these two clusters will
traverse this link. However, if a link has betweenness n(N −n), the removal of this link
does not necessarily disconnect the overlay graph.
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Figure 8.2: Pdf of link betweenness Bl in the overlay G∪spt on top of G0.4(100). The
pdf for α = 0.02 is linear fitted by the dashed line.

As we decrease the extreme value index α, the overlay G∪spt contains less links and
it becomes tree-like or even an exact tree. Any link in a tree is critical. We consider for
example, the Erdös-Rényi random graph G0.4(100).When α = 0.2, the average number
of links in the overlay is 107.2. Within such a sparse overlay topology, a link is very
likely to be critical, which contributes to the peaks in Figure 8.2(b). A sparse overlay
G∪spt is composed of the minimum spanning tree and few shortcuts, that direct a small
part of the traffic. The largest link betweenness 2500 comes from the critical link which
could separate the overlay network into two clusters each with N

2
= 50 nodes. A link

has higher betweenness if it is critical and the maximal link betweenness is achieved
when n =

¥
N
2

¦
. Hence, the betweenness of any link in a graph with N nodes obeys

Bl ≤
¹
N

2

ºµ
N −

¹
N

2

º¶
(8.1)

When the overlay becomes a tree, the magnitude of peaks at n(N − n) depends on
the structure of the tree. For example, if the overlay network is a star withN nodes, the
link betweenness is always N −1. And if G∪spt is a line graph, the betweenness of a link
is n(N −n) with n uniformly distributed over [1, N − 1].We find that the betweenness
distribution of the overlay tree G∪spt(α→0) on top of the Erdös-Rényi random graph
Gp(N) follows a power law

Pr[Bl = j] = c0j
−�, N − 1 ≤ j ≤

¹
N

2

ºµ
N −

¹
N

2

º¶
(8.2)

with exponent c = 1.6. Further, we observe that the overlay tree G∪spt(α→0) on top
of other complex network models such as the lattice, cubic lattice or a BA model also
seems to possess a power law betweenness distribution as illustrated in Figure 8.3. The
lower boundN−1 of the betweenness in a tree is attained at a link connected to a degree
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1 node while the upper bound obeys (8.1). The exponent c we found for Erdös-Rényi
(c = 1.6) lattice (c = 1.33) and BA model (c = 1.7) with N ∼ 100 are the same as
observed in [103] with N ∼ 8100. The scaling exponent c seems insensitive to the size
N of the network. Additional simulations for Erdös-Rényi random graph suggest that
the exponent c is independent of the size N of the underlying graph as well as the link
density p, if p is larger than the disconnectivity threshold pc ∼ lnN/N . For example,
the power exponent c = 1.6 remains the same for the substrate G0.4(100), G0.4(50),
G0.8(100) and the Erdös-Rényi random graph in [46] with N = 104 nodes and L = 2N
links.

8.3.2 Overlay tree G∪spt(α→0) on top of real networks

As found in section 8.3.1 and Figure 8.3, an overlay tree G∪spt(α→0) follow a power law
betweenness distribution when the substrate is an Erdös-Rényi random graph, a square
or cubic lattice or a BA power law graph. It would be especially interesting to examine
whether the power law link betweenness distribution still holds for the overlay trees
G∪spt(α→0) on top of real-world networks. Hence, we perform a statistical analysis of
the real-world networks that are listed in Section 2.1.5.
As shown in Figure 8.4, 8.5 and 8.6, the betweenness distribution of these overlay

trees on top of real networks follows, surprisingly, for almost all a power law, while
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Figure 8.4: Betweenness distribution (+) of G∪spt(α→0) on top of real network topologies.
The line is the linear curve fitting.

their corresponding degree distribution of the tree (see Figure 8.7 to 8.9) may differ
significantly.
The power law betweenness distribution of the overlay tree G∪spt(α→0) or MST im-

plies that a set of links in the MST possess a much higher betweenness. In [103], it is
found that the infinite incipient percolation cluster (IIC), a subgraph of the MST has
a significantly higher average betweenness than the entire MST, and the betweenness
distribution of the IIC also satisfies a power law. But why does the betweenness distri-
bution of a MST follow a power law? Is that due to the network topology, a particular
link weight distribution function or the fact that link weights are independently and
identically distributed? The betweenness of the overlay tree follows a power law distrib-
ution no matter the substrate is a traditional complex network model or a real network,
provided the substrate is denser than a tree. When the substrate is close to a tree,
the overlay tree is almost the same as the substrate and the corresponding betweenness
distribution does not necessarily follow a power law. Hence, the power law betweenness
distribution does not hold for any tree structure but seems to hold for the overlay tree
G∪spt(α→0) on top of a substrate which is not too sparse. With i.i.d. link weights, the
structure of the overlay tree or MST is probabilistically the same for various link weight
distributions, because the ranking of the link weights suffices to construct the MST.
Therefore, the i.i.d. link weights compared to the network topology and link weight
distribution, contribute more to the power law betweenness distribution of the MST
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Figure 8.5: Betweenness distribution (+) of G∪spt(α→0) on top of real network topologies.
The line is the linear curve fitting.

for various networks. In fact, with i.i.d. link weights, the equivalent Kruskal growth
process of the MST starts from N individual nodes and in each step an arbitrary link in
the substrate is added while links generating loops are forbidden. However, the power
exponent c of the betweenness distribution of a MST is determined by the network
topology, due to the exclusion of links that generating loops in the growth process of
the MST. The relationship between the topological characteristics of a network and
the exponent c of the betweenness distribution of the corresponding MST is studied in
Section 8.4.2.

8.4 Betweenness distribution of trees

Since the path between each node pair is unique in a tree and is independent of link
weights, the betweenness of a tree depends purely on its tree structure. In the strong dis-
order limit (α→ 0), the betweenness distribution depends on the structure of G∪spt(α→0)
or MST. In this way, we are able to compare the tree structure of overlay G∪spt(α→0) to
other classes of trees via the link betweenness distribution. Although trees are special
graphs, real-world networks like the Autonomous Systems in the Internet [16] can be
modeled by trees or tree-like graphs with a negligible number of shortcuts.
In this section we compare the following trees: (a) the three tree models: the k-
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Figure 8.6: Betweenness distribution (+) of G∪spt(α→0) on top of real network topologies.
The line is the linear curve fitting.

ary tree, the scale-free trees and the uniform recursive tree URT; (b) the overlay tree
G∪spt(α→0) on top of complex network models: the Erdös-Rényi random graph, the
square or cubic lattice, and the BA power law model; (c) the overlay tree G∪spt(α→0) on
top of real complex networks. The class (b) and (c) have been shown to possess power
law betweenness distribution. Hence, it is interesting to first examine whether the class
(a) has such power law betweenness distribution.
A link l in any tree connects two clusters with size 1 ≤ |Cl| ≤ N

2
and N − |Cl|. The

betweenness of a link l is Bl = |Cl| (N − |Cl|), because traffic traverses the link l if and
only if the source and destination lie in the two clusters separated by l. If |Cl| = o(N),
which holds for all but a few large clusters, then we have Bl ∼ |Cl| ·N for large N.

8.4.1 Betweenness distribution of tree models

k-ary tree

In a k-ary tree the total number of nodes is

N(d) = 1 + k + k2 + · · ·+ kd =

½
kd+1−1
k−1 , k 6= 1
1 + d, k = 1
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Figure 8.7: Degree distribution of G∪spt(α→0) on top of real network topologies.

A link is called the j − th level link if it connects two nodes which is j and j − 1 hops
away from the root. The removal of a j − th level link disconnect the graph into two
clusters: one is a k-ary tree of depth d− j with N(d− j) nodes and the other cluster
has N(d)−N(d− j) nodes. Since there are kj j − th (1 ≤ j ≤ d) level links

Pr[|Cl| = N(d− j)] =
kj

N(d)− 1
Hence,

Pr[|Cl| = n] =
kd+1

(N(d)− 1)(kn− n+ 1)
, n = N(d− j) and 1 ≤ j ≤ d

The approximate betweenness distribution

Pr[Bl ∼ n ·N ] = kd+1

(N(d)− 1)(kn− n+ 1)
, n = N(d− j) and 1 ≤ j ≤ d

follows an inverse power law with exponent c = 1. Two exceptions are: the line graph
where k = 1,Pr[Bl = n(N − n)] = 1

N−1 , 1 ≤ n ≤ N − 1 and the star where k =
N − 1,Pr[Bl = N − 1] = 1.
A rigorous analysis based on

Pr[Bl = N(d− j) (N(d)−N(d− j))] =
kj

N(d)− 1 , 1 ≤ j ≤ d (8.3)

is given in Appendix A.8.
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Figure 8.8: Degree distribution of G∪spt(α→0) on top of real network topologies.

Scale-free trees

A scale-free tree contains initially only one node, the root. Then, at each step a new
node is attached to one of the existing nodes. The probability that a new node connects
to a certain existing node is proportional to the attractiveness of the old node, defined
as

A(v) = a+ q

where a > 0 denotes the initial attractiveness and q is the in-degree of node v, the
number of links connected to the node. The corresponding in-degree distribution [33]
is

Pr[Din = q] = (q + a)−(2+a)

Early in 2002, the power law betweenness distribution with c = 2 for the scale-free trees
is solved analytically by Goh et al. [47]. Here, we relate the betweenness distribution
to the subtree size distribution, which is derived by Fekete and Vattay [40]. In our
notation, the probability distribution of the size of a subtree rooted at a random node
in a scale-free tree with N nodes is:

Pr
£¯̄
T (N)

¯̄
= k

¤
=

N − β

N − 1 ·
1− β

(k − β)(k + 1− β)
(8.4)

≈ (1− β)
1

k2
(8.5)
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Figure 8.9: Degree distribution of G∪spt(α→0) on top of real network topologies.

where β = 1
1+a
∈ [0, 1]. When β = 1

2
, the scale-free tree is exactly the BA tree, with

m = 1 in the BA model. When β = 0, the tree becomes a uniform recursive tree URT.
Hence, the probability that a link has load approximately kN will be

Pr[Bl = kN ] ≈ (1− β)
1

k2

The inverse square power law betweenness distribution with c = 2 holds for the class
of scale-free trees where the scaling property of the degree can be finely tuned by the
initial attractiveness a. Further as shown in [41], if N ¿ Bl ¿

¡
N
2

¢2
, its complementary

distribution can be approximated by power law Pr[Bl ≥ x] = (1−α)N 1
Bl
which leads to

our c = 2 scaling for the probability distribution of Bl. The link and node betweenness
distribution is considered to be same in a tree [56]. Szabó et al. [88] found the scaling
exponent c = 2 for node betweenness in a BA tree with a “mean-field” approximation.
The rigorous proof of the heuristic result of [88] has been provided by Bollobás and
Ridordan in [14].

An URT (β = 0) possesses in fact exponential degree distribution. A rigorous deriva-
tion of link betweenness distribution for URT is given in Appendix A.7.
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8.4.2 Comparison of betweenness distribution of overlay trees
and tree models

All the three classes of trees have been shown to follow approximately a power law
betweenness distributions. The power law betweenness distribution has been proved
for class (a) tree models in section 8.4.1, while for class (b) overlay tree on top of
network models and (c) overlay tree on top of real networks. It seems to arise from the
random sampling of the overlay tree (caused by the i.i.d. link weights) as explained in
section 8.3.2.
The slope of the betweenness distribution in log-log scale, or equivalently, the power

exponent c of the corresponding power law distribution (8.2), characterizes the variance
of the traffic carried along links in the network. High values of c can be interpreted as a
high concentration of traffic on the most important links. The betweenness distribution
of a tree depends purely on the structure of the tree. Hence, we further examine the
relationship between the scaling exponent c and the corresponding tree structure which
can be partially characterized by the average hopcount E[H] of the shortest path and
the standard deviation sdev[D] of the degree, because the average degree in any tree is
E[D] = 2(N − 1)/N = 2− 2

N
.

Table 8.2: Topological characteristics of tree models and overlay tree on top of network
models.

N c E[H] sdev[D]

BA tree 100 2.3 4.7 2.38
URT 100 2.1 6.6 1.36

G∪spt(α<αc) on BA model (m = 3) 100 1.7 9.6 1.04
G∪spt(α<αc) on G0.8(100) 100 1.6 9.8 1.04

G∪spt(α<αc) on cubic lattice 125 1.5 12.8 0.92
G∪spt(α<αc) on square lattice 100 1.3 13.4 0.81
G∪spt(α<αc) on square lattice 144 1.3 16.8 0.82

k-ary tree, 1 < k < N − 1 100 1 E[H(k)]
√
k − 1

We compare class (a) and (b) in Table 8.2 and class (c) in Table 8.3. With a similar
number of nodes in Table 8.2:

• The scaling exponent c seems to be negatively correlated with the E[H] except
for the k-ary tree.

• The scaling exponent c seems to be positively correlated with the sdev[D] standard
deviation of the degree except for the k-ary tree. The higher the variance of the
degree is, the more traffic among links varies.
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• The scaling exponent c seems to be insensitive to the size N of the tree. A
same slope c is obtained for different substrate size, e.g. the k-ary tree, and the
G∪spt(α→0) on top of network models as mentioned in Section 8.3.1. However, the
E[H] behaves as a function of N and the sdev[D] can slightly depend on N with
the fixed average E[D] ≈ 2. Hence, the correlation between c and E[H] as well as
sdev[D] may become weaker or even disappear when networks with different sizes
are considered, which will be further examined for real-world networks in Table
8.3.

• The URT and the class of scale-free trees (e.g. the BA tree) discussed in Section
8.4.1, have c → 2.0 for large N and N ¿ Bl ¿

¡
N
2

¢2
. Compared to URT,

the degree of the BA tree varies more and has higher scaling exponent c (see
Table 8.2), when the complete range Bl ∈

¡
N − 1,

¥
N
2

¦ ¡
N −

¥
N
2

¦¢¤
is taken into

account.

The scaling exponent c of betweenness distribution varies from c = 1 for the k-ary
tree to c = 2 for scale-free trees.

Table 8.3: Topological characteristics of overlay tree on top of real-world networks.
The overlay tree of networks that are marked with a star possesses a power law degree
distribution.

Table2 N L c E[H] sdev[D]

Internet As topology* 12254 25319 1.9 12.2 16
Web of Science Citations(koh)* 3704 12673 1.9 14.6 6.0
Gnutella Crawl2* 1568 1906 1.9 11.6 4.3
Science coauthorship network 379 914 1.8 14.1 1.6
Word adjacencies 112 850 1.8 7.7 1.6
Air Transportation* 2179 31326 1.7 17.9 2.8
Web of Science Citations(scimet)* 2678 10385 1.7 22.18 1.9
High Energy Collaborations 5835 13815 1.7 31.1 1.5
Dutch soccer 685 10310 1.7 22.7 1.4
Power grid 4941 6594 1.6 58.9 1.2
American football 115 613 1.5 11.8 1.0

For overlay trees on top of real networks G(N,L) with N nodes and L links in Table
8.3:
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• The exponent c ranges from 1.5 to 1.9, while the network size varies fromN = 112
to N = 12254. The scaling exponent c does not seem to be dependent on the size
N of the topology.

• The negative correlation between hopcount E[H] and c disappear because E[H]
is positively correlated with N.

• The positive correlation between sdev[D] and c still holds for most of the consid-
ered networks.

• The overlay trees possess different degree distributions as plotted in Figure 8.7
to 8.9. The overlay tree of networks that are marked with a star in Table 8.3
possesses a power law degree distribution. Hence, the betweenness distribution
of scale-free networks does not necessarily follow the same power law exponent
c, while a similar exponent c can be obtained in networks with different degree
distributions.
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Figure 8.10: Relationship between the power exponent c of the betweenness and the
standard deviation sdev[D] and the average hopcount E[H] of the tree.

The relationship between the sdev[D] as well as the E[H] and the scaling exponent
c of betweenness distribution is given in Figure 8.10. Points lying on the line are for
networks listed in Table 8.2 with similar topology size N . The approximately positive
correlation between sdev[D] and c can be observed for all the three classes. Since the
average degree E[D] = 2(N − 1)/N ≈ 2 in a tree is almost constant, a higher degree
variance implies more nodes with higher degree or/and more nodes with degree 1. The
betweenness of links connected to a degree 1 node is always the minimum N − 1 while
the traffic passing through a high degree node is splited by links connected to this node.
Both contribute to a higher scaling exponent c.
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8.5 Conclusion

In this chapter, we examine the traffic in a weighted network via the link betweenness
distribution of the corresponding transport overlay network G∪spt(α), the union of all
shortest paths. In the strong disorder regime, all transport flows over the overlay tree
G∪spt(α→0) =MST. Important new findings are the power law betweenness distribution
specified in (8.2) of trees: tree models such as scale-free trees and k-ary trees; overlay
trees on top of traditional network models; overlay trees on top of real-world complex
networks. The scaling exponent 1 < c ≤ 2 for large networks is shown to be positively
correlated with the sdev[D] of the corresponding tree and is insensitive to the network
sizeN . Equipped with i.i.d. link weights, the overlay tree is, in fact, a randomminimum
spanning tree (RMST). We conjecture that the scaling exponent c may be used to
characterize these tree structures and probably the underlying topology. First, recall
that any link in a tree connects two clusters with size 1 ≤ |Cl| ≤ N

2
andN−|Cl| andBl ∼

|Cl| ·N in Section 8.4. The power law betweenness distribution implies approximately a
same power law scaling for Pr[|Cl| = n] ∼ n−c the probability distribution of cluster size.
Second, for Internet As topology, our power law scaling of betweenness with c = 1.9
is the same as Pr[S = n] ∼ n−1.9±0.1 the probability of finding n points downhill [16],
a signature of the intrinsic fractal properties of webs. And recently, Kitsak et al. [57]
have brought fractal properties of networks into the betweenness analysis.
In the weak disorder regime, traffic flows over more links than that of the MST.

The negative correlation between link weight and betweenness also depends on α, the
strength of link weight disorder and the structure of the underlying topology. Both a
stronger disorder in link weights and the nonhomogeneity of the substrate reduce the
correlation.



Chapter 9

Conclusions

The fundamental question “how robust a network is for a given service?” pervades many
fields in science: biology, physics, sociology etc., because the performance of various
services or dynamic processes always depends on the network topology. We define
robustness as follows, a network is more robust if the service on the network performs
better. The performance of the service is assessed when the network is either in a
conventional state or under perturbations or challenges such as failures and malicious
attacks. In view of the interdisciplinary nature of this network robustness problem,
we investigate it according to our general framework: (1) robustness quantification in
Chapter 3 (2) optimization in Chapter 4, 5 and (3) the interplay between network and
service in Chapter 6, 7 and 8.
In this final chapter of the thesis, we provide for each direction of this framework an

overview of the obtained results. The descriptions in this chapter are at a higher level of
abstraction than the conclusion in each chapter. A wide range of research questions may
fit in this framework. Thus, we strive to depict the broad picture of network robustness,
by the line of the research performed in this thesis, together with the essential ongoing
work and potential extensions.

9.1 Robustness quantification

The quantification of network robustness is, actually, to associate or attribute the per-
formance of a service to a topological metric R(G). Due to the substantial diversity of
services, any topological metricR(G)may possibly represent certain network robustness
for a service. For example, the network robustness with respect to the path stability
subject to link failures is shown to be directly related to the metric hopcount. In this
thesis, we focus on a spectral measure, the algebraic connectivity. Literature shows
that the algebraic connectivity characterizes the network robustness regarding to (a)
the synchronization of dynamic processes at nodes of a network (b) random walks on

119
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graphs and (c) the connectivity of a network. Moreover, we illustrate that the algebraic
connectivity may quantify network robustness in terms of traffic engineering. A large
algebraic connectivity implies that the traffic tends to be homogeneously distributed
due to the corresponding dense core and sparse border structure. The algebraic con-
nectivity may be not a sensitive robustness measure because it is upper bounded by
the minimum degree of a network. However, it seems a suitable robustness metric from
the design point of view, because no network designer allow for these weak nodes with
very low degree, especially when designing the core of a communications network.
Significant research effort has been made to understand the relationship between

the structural properties of networks captured by certain topological measures and the
nature of the dynamics or services taking place on these networks. The most challenging
subject is probably the robustness quantification for human brain network, i.e. the
relation between the functioning of human brain and the topological features of the
brain network, the interconnections of billions of neurons.

9.2 Robustness optimization

If robustness is quantified by the algebraic connectivity, the complete graph is the most
robust network. However, when the diameter of a graph is constrained to guarantee
certain end-to-end quality of service, it is non-trivial to find out the graph optimizing
the algebraic connectivity. Only upper bounds of the algebraic connectivity have been
obtained in mathematics over the past fifteen years. We propose a class of graphs with
given diameter D and N nodes, within which the largest number of links, the minimum
average hopcount, and more important, the maximum of any Laplacian eigenvalue
(including the algebraic connectivity) among all graphs onN nodes and diameterD can
be achieved. The corresponding optimal graphs that achieve the maximum/minimum
values of these measures are not necessarily the same. They can be either analytically
determined or searched numerically out of the class of graphs, especially due to our
reduction in the eigenvalue computation. The importance of these results is three fold
(a) the maximal achievable algebraic connectivity is sharper than any upper bound
proposed in literature; (b) the relation between the maximum/minimum value of a
measure and the size N (or diameter D) provides insights on how to normalize this
measure such that networks with different sizes (or diameters) can be compared; (c)
features of the network optimizing the algebraic connectivity contribute directly to the
design of robust networks.
Furthermore, we investigate how to refine a network to optimize its robustness.

In particular, how to add a link to optimize the algebraic connectivity. We propose
a Fiedler vector based strategy and a degree based strategy. The former performs
generally better than the latter in various classes of graphs and is close to the optimal
link addition in Erdös-Rényi random graphs. The latter is, however, simple to compute.



9.3. INTERPLAY BETWEEN THE NETWORK AND SERVICE 121

In general, it is difficult to design strategies to optimize any topological measureR based
on topological features, because the correlations of topological metrics are dependent
on topology. Thus, the performance of a strategy varies for different types of networks.

9.3 Interplay between the network and service

Network and service are the key determinants of the overall performance. Many services
provided by communications and transportation networks are based on the shortest path
routing. Link weight tuning, a mechanism to control traffic, is also considered as part
of the service. We investigate the interplay between the network structure and the link
weight structure in a shortest path based service in determining the following perfor-
mance aspects: the structural features of the transport overlay network, the sampling
bias of measuring a network topology and the traffic distribution, motivated respec-
tively by potential applications in overlay networks, Internet topology interference and
traffic engineering.
The transport overlay network G∪spt, the union of shortest paths between all node

pairs, determines the network’s performance. Overlay networks such as peer-to-peer
networks or virtual private networks can be regarded as a subgraph of G∪spt. We show
that the overlay G∪spt in an Erdös-Rényi random graph Gp (N) equipped with regular
i.i.d. link weights or with 2-dimensional correlated uniform link weights, is a connected
Erdös-Rényi random graph, which emphasizes the important role of random graphs
in overlay networks. By tuning the power exponent α of polynomial link weights in
different graphs, a universal phase transition in the overlay structure occurs around a
critical extreme value index αc. If α > αc, transport in the network traverses many
links whereas for α < αc, all transport flows over a critical backbone: the Minimum
Spanning Tree. The existence of a controllable phase transition in networks may allow
network operators to steer and balance flows in their network.
Many network topology measurements capture or sample only a partial view of the

actual network structure, which we call the underlying network. In RIPE NCC and
the PlanetLab measurement architectures, the Internet is mapped as G∪mspt, the union
of shortest paths between each pair of a set M of m testboxes. The sampling bias
refers to the difference between the sampled overlay G∪mspt and the overlay network
G∪spt, the maximally observable part of a network. It depends on both the selection
of the testboxes, which can be regarded as the service, and the underlying networks.
We examine firstly the effect of the service, i.e. the set of testboxes, on G∪mspt: (a) the
interconnections of setM are demonstrated to be correlated with the sampled network
G∪mspt; (b) in order to obtain an increasingly accurate view of a given network, a higher
than linear detection/measuring effort (the relative size m/N of set M) is needed.
Finally, when the relative size m/N of setM is small, the sampling bias tends to be
small if the network possesses large average hopcount E[HN ] and small link density.
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Hence, a large number of testboxes placed far from each other is preferable for good
network topology measurements. Moreover, placing testboxes at hubs (nodes with a
high degree in the underlying network) may contribute to a small sampling bias, because
links connected to the testboxes are more likely to be sampled than the other links.
The traffic distribution in the network is examined by the link betweenness dis-

tribution in the overlay network G∪spt. An important new finding is the power law
betweenness distribution Pr[Bl = j] ∼ j−c followed by: tree models such as scale-free
trees and k-ary trees; overlay trees G∪spt(α<αc) on top of traditional network models;
overlay trees on top of real-world complex networks, as long as the underlying network
is not as sparse as a tree. The exponent c seems to be positively correlated with the
degree variance of the overlay tree and to be insensitive of the size N of a network.
In the weak disorder regime, where α > αc, we show that a link with smaller link
weight tends to carry more traffic. This negative correlation between link weight and
betweenness depends on α and the structure of the underlying topology.
Our investigation on the interplay between network and service, again, reveals the

relation between the performance of a service and network structural features, thus,
contributes to robustness quantifications. For example, the sampling bias is highly
related to the average hopcount E[HN ] and the link density p of a network. The
exponent c of the power law betweenness distribution, or equivalently, the variance of
the traffic, can be reasonably characterized by the degree variance of the overlay tree.
Finally, we would like to highlight the most important contributions of this thesis:

• The algebraic connectivity seems a suitable robustness metric from the design
point of view.

• We propose a class of graphs with given diameter D and N nodes, within which,
many robust features, i.e. the largest number of links, the minimum average
hopcount, and the maximum of any Laplacian eigenvalue (including the algebraic
connectivity) among all graphs on N nodes and diameter D, can be achieved.

• We propose a Fiedler vector based strategy and a degree based strategy to opti-
mize the algebraic connectivity by link addition and the former performs generally
better than the latter. We point out that the performance of a strategy varies
for different types of networks, because the correlations of topological metrics are
topology dependent.

• By tuning the power exponent α of polynomial link weights, a universal phase
transition in the structure of G∪spt, i.e. FT (α) = Pr[G∪spt is a tree], is observed
in various graphs. This may allow network operators to steer and balance flows
in their network.

• A power law betweenness distribution is followed by: tree models such as scale-
free trees and k-ary trees; overlay trees G∪spt(α<αc) on top of traditional network
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models; overlay trees on top of real-world complex networks, as long as the network
is not as sparse as a tree.

The importance of algebraic connectivity may be far beyond the current under-
standing. Our clique chain structures G∗D with N nodes and diameter D can optimize
the algebraic connectivity. The optimal graphs are mostly symmetric and the cliques in
the middle have a larger size than cliques close to the borders. If D is sufficiently long,
the optimal structure is homogeneous and only deviations occur at the ends. These
features are also observed in those long molecules in nature represented by remarkable
homogeneous strings which suggest extremal properties. We may regard evolution as an
optimization process over years. Then, the homogeneous string structure in proteins,
DNA structures and our optimal graphs seem the results of optimizations in a same
direction.
A challenge posed for robustness characterization is that the correlations between

topological metrics are topology dependent. In order to precisely quantify network
robustness, e.g. by multiple metrics coupled with a weighing vector, the correlations
among the set of topological measures are necessarily independent of network structures.
Furthermore, the comparison of networks with different sizes or number of links still
remains as an open question, because the scaling of a robustness measure even in
terms of the network size may depend on the properties of networks. This stresses
the importance to capture universal behaviors of robustness measures and to discover
generic features of complex networks.
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Appendix A

Proofs

A.1 Proof of Theorem 10

The adjacency matrix of G∗D(n1, n2, ..., nD+1) is

AG∗D
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eJn1×n1 Jn1×n2
Jn2×n1 eJn2×n2 Jn2×n3

. . .
Jni×ni−1

eJni×ni Jni×ni+1
. . .
JnD×nD−1

eJnD×nD JnD×nD+1
JnD+1×nD+1

eJnD+1×nD+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where eJ = J − I. The eigenvalues of corresponding Laplacian QG∗D
= ∆G∗D

− AG∗D
are

the solutions of det
¡
QG∗D

− μI
¢
= 0, where

det
¡
QG∗D

− μI
¢
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1I − J −Jn1×n2
−Jn2×n1 δ2I − J −Jn2×n3

. . .
−Jni×ni−1 δiI − J −Jni×ni+1

. . .
−JnD×nD−1 δDI − J −JnD×nD+1

−JnD+1×nD+1 δD+1I − J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
125
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where we have defined

δ1 =n1 + n2 − μ

δi =ni−1 + ni + ni+1 − μ for i ∈ [2, D]
δD+1 =nD + nD+1 − μ

The dimensions of the block diagonal matrix are ni × ni (and omitted to make the
matrix fit on the page). Clearly, the degree di of a node in clique i equals δi when
μ = 1. The submatrix of QG∗D

−μI consisting of the last D+2−j block rows and block
columns is denoted by Tj; thus, Tj is the right bottom

XD+1

i=j
ni×

XD+1

i=j
ni sub-matrix

of QG∗D
− μI, where 1 ≤ j ≤ D + 1 and T1 = QG∗D

− μI. Applying (A.6) yields

detT1 = det (δ1I − Jn1×n1) det

⎛⎝T2 −
"

Jn2×n1
0 Pi=D+1

i=3 ni ×n1

#
(δ1I − Jn1×n1)

−1

"
Jn2×n1

0 Pi=D+1
i=3 ni ×n1

#T⎞⎠
= det (δ1I − Jn1×n1) det

⎛⎜⎝T2 −

⎡⎢⎣ Jn2×n1 (δ1I − Jn1×n1)
−1 Jn1×n2 0

n1×
Pi=D+1

i=3 ni

0 Pi=D+1
i=3 ni ×n2

0 Pi=D+1
i=3 ni ×

Pi=D+1
i=3 ni

⎤⎥⎦
⎞⎟⎠

Using (A.2) and (A.4) results in

Jn2×n1 (δ1I − Jn1×n1)
−1 Jn2×n1 =

n1
δ1 − n1

Jn2×n2

while application of (A.5) yields

det (δ1I − Jn1×n1) = δn1−11 (δ1 − n1)

Thus, with the definition
θ1 = δ1 − n1

we obtain
detT1 = δn1−11 θ1 det eT2

where

eT2 = T2 −

⎡⎢⎣
n1
θ1
Jn2×n2 0

n2×
Pi=D+1

i=3 ni

0 Pi=D+1
i=3 ni ×n2

0 Pi=D+1
i=3 ni ×

Pi=D+1
i=3 ni

⎤⎥⎦
We observe that the matrix at the right hand side has the same structure as that of
T2, except that the first block row and block column is now δ2I −

³
1 + n1

θ1

´
Jn2×n2 =
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δ2I − δ1
δ1−n1Jn2×n2. We apply the same operations on

det eT2 = detµδ2I − δ1
δ1 − n1

Jn2×n2

¶
×

det

⎛⎝T3 −
"

Jn3×n2
0 Pi=D+1

i=4 ni ×n2

#µ
δ2I −

δ1
δ1 − n1

Jn2×n2

¶−1 " Jn3×n2
0 Pi=D+1

i=4 ni ×n2

#T⎞⎠
= δn2−12

µ
δ2 −

δ1n2
δ1 − n1

¶
det

⎛⎜⎝T3 −

⎡⎢⎣
n2

δ2− δ1n2
δ1−n1

Jn3×n3 0
n3×

Pi=D+1
i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎦
⎞⎟⎠

= δn2−12 θ2 det

⎛⎜⎝T3 −

⎡⎢⎣
n2
θ2
Jn3×n3 0

n3×
Pi=D+1

i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎦
⎞⎟⎠

where θ2 = δ2 − δ1n2
δ1−n1 = δ2 −

³
n1
θ1
+ 1
´
n2. Since the matrix

eT3 = T3 −

⎡⎢⎣
n2
θ2
Jn3×n3 0

n3×
Pi=D+1

i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎦
again possesses a similar structure, we claim that

eTj = Tj −

⎡⎢⎣
nj−1
θj−1

Jnj×nj 0
nj×

Pi=D+1
i=j+1 ni

0 Pi=D+1
i=j+1 ni ×nj

0 Pi=D+1
i=j+1 ni ×

Pi=D+1
i=j+1 ni

⎤⎥⎦
obeys the recursion

det eTj = δ
nj−1
j θj det eTj+1 (A.1)

where θj is defined by the recursion (A.1) with the convention that n0 = 0 and θ0 = 1,
because θ1 = δ1 − n1.

We have shown that (A.1) holds for j = 1 and j = 2. Assuming that (A.1) holds
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for j (induction argument), we compute det eTj+1 similarly,
det eTj+1 = detµδj+1I −µnj

θj
+ 1

¶
Jnj+1×nj+1

¶
×

det

⎛⎝Tj+2 −
"

Jnj+2×nj+1
0 Pi=D+1

i=j+3 ni ×nj+1

#µ
δj+1I −

µ
nj
θj
+ 1

¶
Jnj+1×nj+1

¶−1
×
"

Jnj+2×nj+1
0 Pi=D+1

i=j+3 ni ×nj+1

#T⎞⎠
= δ

nj
j+1

µ
δj+1 −

µ
nj
θj
+ 1

¶
nj+1

¶

× det

⎛⎜⎝Tj+2 −

⎡⎢⎣
nj+1

δj+1−
nj
θj
+1 nj+1

Jnj+2×nj+2 0
nj+2×

Pi=D+1
i=j+3 ni

0 Pi=D+1
i=j+3 ni ×nj+2

0 Pi=D+1
i=j+3 ni ×

Pi=D+1
i=j+3 ni

⎤⎥⎦
⎞⎟⎠

= δ
nj
j+1θj+1 det

⎛⎜⎝Tj+2 −

⎡⎢⎣
nj+1
θj+1

Jnj+2×nj+2 0
nj+2×

Pi=D+1
i=j+3 ni

0 Pi=D+1
i=j+3 ni ×nj+2

0 Pi=D+1
i=j+3 ni ×

Pi=D+1
i=j+3 ni

⎤⎥⎦
⎞⎟⎠

where θj+1 = δj+1 −
³
nj
θj
+ 1
´
nj+1. Hence, (A.1) holds also for j + 1, and by induction

for any 1 ≤ j ≤ D + 1. But,

eTD+1 = TD+1 −
nD
θD

JnD+1×nD+1

= δD+1I −
µ
1 +

nD
θD

¶
JnD+1×nD+1

such that, with (A.5),

det eTD+1 = δ
nD+1−1
D+1

µ
δD+1 −

µ
1 +

nD
θD

¶
nD+1

¶
= δ

nD+1−1
D+1 θD+1

Iterating (A.1) back finally yields

det
¡
QG∗D

− μI
¢
=
QD+1

j=1 δ
nj−1
j

QD+1
j=1 θj

which is (4.1).

A.2 Results from linear algebra

If
Xm×m = (J − (λ+ 1) I)m×m (A.2)
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then the inverse matrix of X is

X−1 = − 1

(λ+ 1) (λ+ 1−m)
(J + (λ+ 1−m) I)m×m (A.3)

We now compute

Y = J(N−m)×mX
−1
m×mJm×(N−m)

= − 1

(λ+ 1) (λ+ 1−m)
J(N−m)×m (Jm×m + (λ+ 1−m) Im×m)Jm×(N−m)

Using Jk×nJn×l = nJk×l gives

Y = − 1

(λ+ 1) (λ+ 1−m)

¡
mJ(N−m)×m + (λ+ 1−m)J(N−m)×m

¢
Jm×(N−m)

= − 1

(λ+ 1) (λ+ 1−m)

¡
m2J(N−m)×(N−m) +m (λ+ 1−m) J(N−m)×(N−m)

¢
hence

Y = − m

(λ+ 1−m)
J(N−m)×(N−m) (A.4)

Finally, it is shown in [67, p. 481] that,

det (J − xI)n×n = (−1)nxn−1 (x− n) (A.5)

and we will need [65]

det

∙
A B
C D

¸
= detAdet

¡
D − CA−1B

¢
(A.6)

where D − CA−1B is called the Schur complement of A.

A.3 Proof of Theorem 17

By the law of total probability, we can write

Pr[P ∗i→j = l (i→ j)] =

Z ∞

0

fw(i→j)(x)×

Pr[P ∗i→j = l(i→ j)|w(i→ j) = x]dx

(A.7)

where fw(i→j)(x) is the pdf of the weight of a link in the graph.
Let us assume that P ∗i→j,h>1 is the shortest path among paths with more than 1 hop

and let us denote the path weight by w(P ∗i→j,h>1). Provided that the direct link between
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i and j exists, then the shortest path equals the direct link if its weight is smaller than
any path with more than one hop and vice versa,

P ∗i→j = P ∗i→j,h>1 · 1{w(i→j)≥w(P∗i→j,h>1)}

+ l(i→ j) · 1{w(i→j)<w(P∗i→j,h>1)}

from which the conditional probability

lim
∆x→0

Pr[P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

∩{l(i→ j) exists}] = Pr[w(P ∗i→j,h>1) > x]

is immediate. Since the link weights are i.i.d. and also independent of a specific link,
the conditional probability Pc is

Pc = Pr[P
∗
i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

∩{l(i→ j) exists}]
=

Pr[P∗i→j=l(i→j)|{x≤w(i→j)≤x+∆x}]
Pr[l(i→j) exists]

(A.8)

where the last step follows from the fact that the event {P ∗i→j = i→ j} is contained in
the event {l(i→ j) exists}. Hence,

lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
= Pr [l(i→ j) exists] Pr[w(P ∗i→j,h>1) > x] (A.9)

The sample space Ω consists of four mutually exclusive events:

{w(P ∗i→j,h>1) ≤ x,w(i→ j) ≤ x ∩ l(i→ j) exists}
{w(P ∗i→j,h>1) > x,w(i→ j) ≤ x ∩ l(i→ j) exists}
{{w(i→ j) > x ∩ l(i→ j) exists}∪
{l(i→ j) does not exist}, w(P ∗i→j,h>1) ≤ x}
{{w(i→ j) > x ∩ l(i→ j) exists}∪
{l(i→ j) does not exist}, w(P ∗i→j,h>1) > x}

Therefore, the related probability measure is

Pr[w(P ∗i→j) ≤ x]

=Pr[w(P ∗i→j,h>1) ≤ x, {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}]

+Pr[w(P ∗i→j,h>1) ≤ x,w(i→ j) ≤ x ∩ l(i→ j) exists]

+Pr[w(P ∗i→j,h>1) > x,w(i→ j) ≤ x ∩ l(i→ j) exists]

=Pr[w(P ∗i→j,h>1) ≤ x, {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}]

+Pr[w(i→ j) ≤ x] Pr[l(i→ j) exists] (A.10)
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where in the last step, we have again used the law of total probability. Further, the
event

{{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}, w(P ∗i→j,h>1) ≤ x}

={w(P ∗i→j,h>1) ≤ x} ∩ {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}}

and the first two events are independent because link weights are independently and
identically distributed and l(i→ j) is different from P ∗i→j,h>1. Hence, (A.10) reduces to

Pr[w(P ∗i→j) ≤ x]

=(Pr[w(i→ j) > x] · Pr[l(i→ j) exists]

+ Pr[l(i→ j) does not exist]) · Pr[w(P ∗i→j,h>1) ≤ x]

+ Pr[w(i→ j) ≤ x] Pr[l(i→ j) exists]

from which

Pr[w(P ∗i→j,h>1) ≤ x]

=
Pr[w(P ∗i→j) ≤ x]− Pr[w(i→ j) ≤ x] · pij

Pr[w(i→ j) > x] · pij + 1− pij

where pij = Pr[l(i→ j) exists]. Finally, the conditional probability (A.9) becomes

lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
=

pij · Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] · pij + 1− pij
(A.11)

and substituted into (A.7) leads to (6.1). ¤

A.4 Proof of Corollary 18

The event {P ∗i→j = l(i → j)} is equivalent to the event {HN = 1} because the direct
link corresponds to a one hop shortest path. The second equality is demonstrated as
follows. Since d

dx
Pr[w(i→ j) > x] = −fw(i→j)(x), we can write (6.1) as

Pr[P ∗i→j = l(i→ j)]

= −
Z ∞

0

Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] +A
d(Pr[w(i→ j) > x] +A)
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where A = 1−pij
pij
. Partial integration yields,

Pr[P ∗i→j = l(i→ j)]

=− Pr[w(P ∗i→j) > x] log(Pr[w(i→ j) > x] +A)
¯̄x=∞
x=0

−
Z ∞

0

fw(P∗i→j)
(x) log(Pr[w(i→ j) > x] +A)dx

The limit x → 0 gives log(1 + A) = − log pij and it remains to show that the limit
x→∞ vanishes. Since for any x and any probability distribution w holds that

− log(Pr[w > x] +A) =

Z x

0

fw (u) du

Pr[w > u] +A

≤ 1

Pr[w > x] +A

Z x

0

fw (u) du

=
Pr[w ≤ x]

Pr[w > x] +A

we observe that

− log(Pr[w(i→ j) > x] +A) ≤ 1 +A

Pr[w(i→ j) > x] +A
− 1

such that

Pr[w(P ∗i→j) > x] log Pr[w(i→ j) > x] · (−1)

≤
(1 +A) Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] +A
− Pr[w(P ∗i→j) > x]

Using (A.11), we have

−Pr[w(P ∗i→j) > x] log Pr[w(i→ j) > x]

≤ lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
·

(1 +A)− Pr[w(P ∗i→j) > x]

For x→∞, the both probabilities at right hand side tend to zero. Hence,

Pr[P ∗i→j = l(i→ j)]

=−
Z ∞

0

fw(P∗i→j)
(x) log

µ
−Pr[w(i→ j) ≤ x] +

1

pij

¶
dx

− log pij
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After writing

log

µ
−Pr[w(i→ j) ≤ x] +

1

pij

¶
= − log pij + log (1− pijFw (x))

we arrive at (6.3). ¤

A.5 Asymptotic uncorrelation of links in G∪spt

Lemma 25 All first hop links in a same URT are independent.

Proof: see [67, p. 371]. ¤
This independence in the URT is only true for the first hop nodes, and not for higher

hop nodes since the latter depend on the specific structure of the URT.

Lemma 26 Two links in a same URT, of which only one is a first hop link, are as-
ymptotically (for large N) uncorrelated.

Proof. Drmota and Hwang [35] have, for large N , computed the asymptotic correlation
coefficient ρ

³
X
(k)
N ,X

(j)
N

´
of the number of nodes X(k)

N at hopcount k (called the k-th

level set of the URT) from the root in a URT, based on the exact probability generating

function E
h
xX

(k)
N yX

(j)
N

i
derived by van der Hofstad et al. in [93]. For large N and small

hopcounts k = o (logN) and k = o (j) where j can range over all levels, ρ
³
X
(k)
N ,X

(j)
N

´
tends to zero, which implies that the level set k and j are asymptotically uncorrelated1.
Since there is a one-to-one correspondence between nodes and links in a tree because
each node (apart from the root) has precisely one ancestor, the correlation between
nodes transfers to a correlation between links. Hence, all higher hop links in the URT
are asymptotically independent from the first hop links. This proves the Lemma.
The proof actually demonstrates more than necessary: instead of uncorrelation be-

tween two links, it shows uncorrelation between all higher hop links.

Lemma 27 Two different arbitrary links in the overlay G∪spt on top of the complete
graph KN are asymptotically (for large N) pairwise uncorrelated.

1The correlation coefficient
¯̄̄
ρ
³
X
(k)
N ,X

(j)
N

´¯̄̄
→ 1 if k = O (logN) and j = O (logN), implying

that levels around the average hopcount E [HN ] ∼ logN (containing most of the nodes) are strongly
correlated, and this is mainly a consequence of the growth rule of the URT [?, Sec. 16.2.2.] and of the
"conservation of nodes over the levels",

PN−1
k=0 X

(k)
N = N . Each URT of G∪spt thus contains highly

correlated level sets, but the individual links (not paths) in G∪spt seem far less correlated as suggested
by Conjecture 23.
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Proof. We denote two arbitrary links of G∪spt by l1 = l (n1 → x) and l2 = l (n2 → y)
where node x 6= y. We distinguish between two cases, n1 = n2 and n1 6= n2.
If n1 = n2, then both l1 and l2 are first hop links in the same URT and, by Lemma

25, independent.
If n1 6= n2, the links l1 and l2 do not share a common node and there are two cases:

(1) l2 does not belong to the URT rooted at n1 (and vice versa), in which case l1 and
l2 are either independent or at most asymptotically uncorrelated (see proof Lemma 26)
because both links l1 and l2 may appear in a URT rooted at another node n3. (2)
l2 ∈ URTn1, the URT rooted at node n1. Lemma 26 then shows that l2 and l1 are
asymptotically independent.
Recall that pairwise uncorrelation is weaker than pairwise independence, which in

turn does not necessarily imply independence.

A.6 Proof of extreme cases of conjecture 24

To simplify the proof, instead of DM, we use DN(m) to denote the degree of setM in
the overlay G∪mspt, where N is the number of nodes in the underlying graph and m is
the number of testboxes.

A.6.1 Proof of the Corollary for k = 1

Firstly, we prove the conjecture for Pr[DN(m) = 1]. Van der Hofstad et al. [29] have
shown that pn (i) = n−i

ni
is the probability that the paths from the root to i uniformly

chosen nodes that may include the root in a URT of size n share a common link. If
one of the i nodes equals the root, there is no link in common because there is no path
from the root to itself. Denote by ANo Root the event that the paths from the root to m
uniformly chosen nodes that do not include the root in a URT of size n share a common
link and by ARoot the event that the paths from the root to m uniformly chosen nodes
that may include the root in a URT of size n share a common link. The probability
that the root is one of the m nodes is Pr [root] = m

n
. Then

Pr [ANo Root] = Pr [ARoot|No root] =
Pr [ARoot ∩ {No root}]

Pr [No root]

If one of them nodes is the root, there is no link in common. That event is not included
in ARoot, which means that

Pr [ARoot ∩ {No root}] = Pr [ARoot] = pn (m)

and that

Pr [ANo Root] =
pn (m)

1− m
n

=
n−m
n·m
1− m

n

=
1

m
= p∗n (m)
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Finally, we arrive at p∗n (m), the probability that the paths from the root tom uniformly
chosen nodes that do not include the root in a URT of size n share a common link. If
these paths share a link, then the number of links connected to the root and traversed
by these paths must be one. Therefore, the probability Pr[D = 1] of the set M in a
underlying graph with N nodes is

Pr[DN(m) = 1] = p∗N (m− 1) =
1

m− 1
In the URT with m nodes, according to (6.11) the probability Pr[DG∪spt = 1] =

1
m−1 ,

which explain the match of the first node in Figure 7.4. ¤

A.6.2 Proof of the Corollary for k = m− 1
The extreme case Pr [DN (m) = m− 1] is proved by using the URTs separation theorem
[67, Theorem 16.2.1] and considering Figure 18.3 in [67]. A URT of size N can be
separated in a URT T1 of size k and a URT T2 of size N − k that incorporates the root
(see Figure 18.3 in [67, Theorem 16.2.1]). The maximum degree of the root is achieved
in two cases: (a) there is precisely 1 node ofM in T1 and m − 2 in T2 or (b) there is
none in T1 and all m− 1 are in T2. If there is more than 1 node ofM in T1, the degree
of the root DN (m) is smaller than m − 1, because we need to have m − 1 separate
clusters attached to the root that each contain precisely one node ofM. Thus,

Pr [DN (m) = m− 1] =
N−1X
k=1

Pr [DN−k (m− 1) = m− 2]
¡
k
1

¢¡
N−k−1
m−2

¢¡
N−1
m−1

¢ Pr [T1 = k] +

+
N−1X
k=1

Pr [DN−k (m) = m− 1]
¡
k
0

¢¡
N−k−1
m−1

¢¡
N−1
m−1

¢ Pr [T1 = k]

because the number of ways to distributem−1 nodes overN−1 places that are different
from the root such that there is 1 of the m in T1 and the otherm−2 in T2 is

¡
k
1

¢¡
N−k−1
m−2

¢
and there are

¡
N−1
m−1

¢
ways to distribute m − 1 nodes over N − 1 places. Further, the

URTs separation theorem implies that Pr [T1 = k] = 1
N−1 . This gives the recursion,

Pr [DN (m) = m− 1] = 1

(N − 1)
¡
N−1
m−1

¢ N−1X
k=1

½
kPr [DN−k (m− 1) = m− 2]

µ
N − k − 1
m− 2

¶
+Pr [DN−k (m) = m− 1]

µ
N − k − 1
m− 1

¶¾
=

1

(N − 1)
¡
N−1
m−1

¢ N−1X
q=m−1

½
(N − q) Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
+Pr [Dq (m) = m− 1]

µ
q − 1
m− 1

¶¾
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where, in the last line, we have incorporated that Pr [Dq (m− 1) = m− 2] = 0 if q <
m− 1. From (6.11), the initial condition is Pr [Dm (m) = m− 1] = 1

(m−1)! .
Further,

(N − 1)
µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1] = (N − 1)

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶

+
N−1X

q=m−1

½
Pr [Dq (m) = m− 1]

µ
q − 1
m− 1

¶
− (q − 1)Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶¾
After substitution of N → N +1 in the above and subtracting the above yields, for the
left-hand side,

L = N

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]− (N − 1)

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

and the right-hand side

R = Q+

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

− (N − 1)
µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

with

Q = N
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
− (N − 1)

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶

= N

"
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
−

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶#

+
N−1X

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶

= N Pr [DN (m− 1) = m− 2]
µ
N − 1
m− 2

¶
+

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶
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Simplified,

L&R = N

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]−N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

=

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+
N−1X

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶

Repeating the same procedure to remove the last remaining sum gives, for the left hand
side,

L = (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]− (N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

−N

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1] +N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

= (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]− (2N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

+N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

The right hand side becomes,

R =

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]−

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
−

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶
=

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]−

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

=

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]
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Combining both sides gives,µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2] = (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]

− (2N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

+N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

By defining

r [N,m] =

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

we arrive at the recursion,

r [N + 1,m− 1] = (N + 1) r [N + 2,m]− (2N + 1) r [N + 1,m] +Nr [N,m] (A.12)

with initial condition
r [m,m] =

1

(m− 1)!
What we claim is that Pr [DN (m) = m− 1] = Pr [Dm (m) = m− 1] for all N , which

means that

r [N,m] =

µ
N − 1
m− 1

¶
Pr [Dm (m) = m− 1] =

µ
N − 1
m− 1

¶
r [m,m] =

µ
N − 1
m− 1

¶
r [m,m]

Introduced in (A.12) givesµ
N

m− 2

¶
r [m− 1,m− 1] = (N + 1)

µ
N + 1

m− 1

¶
r [m,m]− (2N + 1)

µ
N

m− 1

¶
r [m,m]

+N

µ
N − 1
m− 1

¶
r [m,m]

or µ
N

m− 2

¶
(m− 1) = (N + 1)

µ
N + 1

m− 1

¶
− (2N + 1)

µ
N

m− 1

¶
+N

µ
N − 1
m− 1

¶
The relation is, indeed, an identity. ¤

A.7 Link betweenness distribution of URT

A URT [67] of size N is a random tree rooted at some node A. At each stage a node
is attached uniformly to one of the existing nodes until the total number of nodes is
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equal to N. When the j − th node is attached, the corresponding j − th attached link
is also added except that no link is added when we start from the root or the 1st
node. In a tree, the traffic traverses the link if and only if the source and destination
lies in different clusters separated by this link. In a URT, we define

¯̄̄
T (N)j

¯̄̄
as the

size of the subtree rooted at the j − th attached node. The removal of the j − th

(2 ≤ j ≤ N) attached link will separate the graph into two clusters with size
¯̄̄
T (N)j

¯̄̄
and N −

¯̄̄
T (N)j

¯̄̄
. Correspondingly, the betweenness of the j − th (2 ≤ j ≤ N) attached

link is
¯̄̄
T (N)j

¯̄̄
·
³
N −

¯̄̄
T (N)j

¯̄̄´
. The probability distribution of the size of the subtree [29]

equals:

Pr
h¯̄̄
T (N)j

¯̄̄
= k

i
=
(j − 1)(N − j)!(N − k − 1)!
(N − 1)!(N − j − k + 1)!

=

¡
N−k−1
j−2

¢¡
N−1
j−1
¢ (A.13)

Using the law of total probability [67], we have for the URT that

Pr [Bl = k(N − k)] =
NX
j=2

Pr [Bl = k(N − k) |l = j ] Pr [l = j] , 1 ≤ k ≤
¹
N

2

º
A random link l is the j-th attached link or attaches the j-th node to the URT with
probability Pr [l = j] = 1

N−1 .
For k ∈

£
1,
¥
N
2

¦¤
and k 6= N

2
, the conditional probability

Pr [Bl = k(N − k) |l = j ] = Pr
h¯̄̄
T (N)j

¯̄̄
= k

i
+Pr

h¯̄̄
T (N)j

¯̄̄
= N − k

i
because only if the size of the subtree rooted at node j is of size

¯̄̄
T (N)j

¯̄̄
= k or of size¯̄̄

T (N)j

¯̄̄
= N − k, the betweenness of the link l = j equals k (N − k). Combining both

yields

Pr[Bl = k(N − k)] =
1

N − 1

NX
j=2

Pr
h¯̄̄
T (N)j

¯̄̄
= k

i
+Pr

h¯̄̄
T (N)j

¯̄̄
= N − k

i
Substituting (A.13) gives

Pr[Bl = k(N−k)] = (N − k − 1)!
(N − 1) (N − 1)!

NX
j=2

(j − 1)(N − j)!

(N − j − k + 1)!
+

(k − 1)!
(N − 1)(N − 1)!

NX
j=2

(j − 1)(N − j)!

(k + 1− j)!

We use the identity
mX
j=n

j

µ
a− j

b− j

¶
= n

µ
a+ 1− n

b− n

¶
+

µ
a+ 1− n

b− 1− n

¶
−m

µ
a−m

b− 1−m

¶
−
µ
a+ 1−m

b− 1−m

¶
(A.14)
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and obtain

NX
j=2

(j − 1)(N − j)!

(N − j − k + 1)!
= (k − 1)!

N−1X
j=1

j

µ
N − 1− j

N − k − j

¶
= (k − 1)!

µµ
N − 1

N − k − 1

¶
+

µ
N − 1

N − k − 2

¶¶
= (k − 1)!

µ
N

N − k − 1

¶
=

(k − 1)!N !
(k + 1)!(N − k − 1)!

Similarly,

NX
j=2

(j − 1)(N − j)!

(k + 1− j)!
= (N − 1− k)!

N−1X
j=1

j

µ
N − 1− j

k − j

¶
= (N − 1− k)!

µµ
N − 1
k − 1

¶
+

µ
N − 1
k − 2

¶¶
= (N − 1− k)!

µ
N

k − 1

¶
=

(N − 1− k)!N !

(k − 1)!(N − k + 1)!

Hence,

Pr [Bl = k(N − k)] =
(N − k − 1)!

(N − 1) (N − 1)!
(k − 1)!N !

(k + 1)!(N − k − 1)!

+
(k − 1)!

(N − 1)(N − 1)!
(N − 1− k)!N !

(k − 1)!(N − k + 1)!

=
N

(N − 1)

µ
1

(k + 1)k
+

1

(N − k + 1)(N − k)

¶
=

N

(N − 1) k(N − k)

µ
N − k

k + 1
+

k

N − k + 1

¶
While for k =

¥
N
2

¦
= N

2
, the probability has to be halved,

Pr [Bl = k(N − k)] =
N

(N − 1) k(k + 1)

Hence,

Pr [Bl = k(N − k)] =

(
N

(N−1)k(N−k)
¡
N−k
k+1

+ k
N−k+1

¢
, k ∈

£
1,
¥
N
2

¦¤
and k 6= N

2
N

(N−1)k(k+1) , if k =
¥
N
2

¦
= N

2

(A.15)
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A.8 Link betweenness distribution of a k-ary tree

If the link betweenness distribution (8.3) of a k-ary tree follows a power law of the
form y = c0x

c, then for any two points (x1, y1) and (x2, y2) on this curve, we have
y1
y2
=
³
x1
x2

´c
. Two nodes are selected:

³
N(d)− 1, kd

N(d)−1

´
corresponding to j = d in

(8.3) and a random node
³
N(d− j) (N(d)−N(d− j)) , kj

N(d)−1

´
.

N(d− j) (N(d)−N(d− j))

N(d)− 1 =

¡
kd−j+1 − 1

¢ ¡
kd+1 − kd−j+1

¢
(kd+1 − 1− k + 1) (k − 1) =

¡
kd−j+1 − 1

¢ ¡
kd+1 − kd−j+1

¢
k (kd − 1) (k − 1)

=
kd
¡
kd−j+1 − 1

¢
(1− k−j)

(kd − 1) (k − 1)

For large networks with large k and d,

N(d− j) (N(d)−N(d− j))

N(d)− 1 '
¡
kd−j+1 − 1

¢
(1− k−j)

(k − 1) =
kd−j

¡
k − k−(j−1) − k−(j−d) + k−d

¢
(k − 1)

' kd−j =

Ã
kj

N(d)−1
kd

N(d)−1

!−1
Hence, the link betweenness distribution of a k-ary tree is not a precise power distrib-
ution, but it is close to a power law with exponent c = −1, especially for larger k and
d. The first and last point of link betweenness corresponds to j = 1 and j = N. Since

N(d− 1) (N(d)−N(d− 1))
N(d)− 1 =

kd
¡
kd−j+1 − 1

¢
(1− k−j)

(kd − 1) (k − 1)

¯̄̄̄
¯
j=1

= kd−1 =

⎛⎜⎝ kj

N(d)−1

¯̄̄
j=1

kd

N(d)−1

⎞⎟⎠
−1

The first and the last points always lie on a power law curve with exponent c = −1.
Hence, an exceptional case is for d = 2, which is an exact power law although d is small.
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Appendix B

Orthogonal polynomials

In the sequel, we will show that pD (μ) belongs to a set of orthogonal polynomials. We
refer to Szegö’s classical book [89] for the beautiful theory of orthogonal polynomials.

B.1 The recursive nature of (4.2)

Lemma 28 For all j ≥ 0, the functions θj (D;x) are rational functions

θj (D;x) =
tj (D;x)

tj−1 (D;x)
(B.1)

where tj (x) is a polynomial of degree j in x = −μ and t0 (D;x) = 1.

Proof: It holds for j = 1 as verified from (4.2) because θ0 (D;x) = 1. Let us assume
that (4.2) holds for j − 1 (induction argument). Substitution of (B.1) into the right
hand side of (4.2),

θj (D;x) =

(
(x+nj−1+nj+1)tj−1(D;x)−nj−1njtj−2(D;x)

tj−1(D;x)
1 ≤ j ≤ D

(x+nD)tD(D;x)−nDnD+1tD−1(D;x)
tD(D;x)

j = D + 1

indeed shows that the left hand side is of the form (B.1) for j. This demonstrates the
induction argument and proves the lemma. ¤
Introducing (B.1) into the definition (4.3) yields

pD (−x) =
QD+1

j=1 tj (D;x)QD+1
j=1 tj−1 (D;x)

= tD+1 (D;x)

143
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We rewrite (B.1) as tj (D;x) = θj (D;x) tj−1 (D;x) and with (4.2), we obtain the set of
polynomials⎧⎨⎩ tD+1 (D;x) = (x+ nD) tD (D;x)− nDnD+1tD−1 (D;x)

tj (D;x) = (x+ nj−1 + nj+1) tj−1 (D;x)− nj−1njtj−2 (D;x) for 1 ≤ j ≤ D
t1 (D;x) = (x+ n2) t0 (D;x)

(B.2)
where t0 (D;x) = 1. By iterating the equation upwards, we find that

tj (D; 0) =

⎧⎪⎨⎪⎩
j+1Y
m=2

nm 1 ≤ j ≤ D

0 j = D + 1

(B.3)

Thus, tD+1 (D; 0) = 0 (and thus θD+1 (D; 0) = 0) implies that pD (μ)must have a zero at
μ = 0, which is, indeed, a general property of any Laplacian as mentioned in Corollary
11. From (B.1), it then follows that

θj (D; 0) = nj+1 > 0

For a fixed D, the sequence {tj (D;x)}0≤j≤D+1 is an orthogonal set of polynomials
because it obeys Favard’s three-term recurrence relation (see e.g. [43]). The zeros of any
set of orthogonal polynomials are all simple, real and lying in the orthogonality interval
[a, b], which is here for the Laplacian equal to [0, N ]. Moreover, the zeros of tj (D;x)
and tj−1 (D;x) are interlaced. In other words, in between two zeros of tj−1 (D;x), there
is precisely one zero of tj (D;x) and between two zeros of tj (D;x) there is at least one
zero of tk (D;x) with k > j. This property shows that the set {tj (D;x)}0≤j≤D+1 is
finite and cannot be extended beyond D + 1, because the smallest zero of the highest
degree polynomial tD+1 (D;x) coincides with the lower boundary of the orthogonality
interval.

B.2 Jacobi Matrix of the set {tj (D,x)}1≤j≤D+1
As known in the theory of orthogonal polynomials [43], it is instructive to rewrite the
j-equation in (B.2) as

xtj−1 (D;x) = nj−1njtj−2 (D;x)− (nj−1 + nj+1) tj−1 (D;x) + tj (D;x)

and in matrix form by defining the vector

τ (D;x) =
£
t0 (D;x) t1 (D;x) · · · tD−1 (D;x) tD (D;x)

¤T
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we arrive at

x

⎡⎢⎢⎢⎢⎢⎣
t0
t1
...

tD−1
tD

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
−n2 1
n1n2 − (n1 + n3) 1

. . . . . . . . .
nD−1nD − (nD−1 + nD+1) 1

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
t0
t1
...

tD−1
tD

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0
0
...
0

tD+1

⎤⎥⎥⎥⎥⎥⎦
where tj = tj (D;x). Thus, the three-term recursion set of polynomials (B.2) is written
in matrix form as

xτ (D;x) =Mτ (D;x) + tD+1 (D;x) eD+1 (B.4)

where the basic vector eD+1 =
£
0 0 · · · 0 1

¤T
and the (D + 1)× (D + 1) Jacobi

matrix is

M =

⎡⎢⎢⎢⎢⎢⎣
−n2 1
n1n2 − (n1 + n3) 1

. . . . . . . . .
nD−1nD − (nD−1 + nD+1) 1

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎦ (B.5)

When x = zk is a zero of tD+1 (D;x) = pD (−x), then (B.4) reduces to the eigenvalue
equation

Mτ (D; zk) = zkτ (D; zk)

such that zk is an eigenvalue of M belonging to the eigenvector τ (D; zk). This eigen-
vector is never equal to the zero vector because the first component t0 (x;D) = 1. The
special case where zD+1 = 0 leads again to (B.3) and all components of τ (D; 0) are
positive.
There must be a similarity transform to make the matrix M symmetric (since all

eigenvalues are real). The simplest similarity transform is H = diag(h1, h2, . . . , hD+1)
such that

fM = HMH−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−n2 h1

h2
h2
h1
n1n2 − (n1 + n3)

h2
h3

. . . . . . . . .
hD

hD−1
nD−1nD − (nD−1 + nD+1)

hD
hD+1

hD+1
hD

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, in order to have fM = fMT , we need to require that

³fM´
i,i−1

=
³fM´

i−1,i
for all

2 ≤ i ≤ D + 1, implying that
hi
hi−1

ni−1ni =
hi−1
hi
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whence,
hi−1
hi

=
√
ni−1ni

and hi =
1√

ni−1ni
hi−1 for 2 ≤ i ≤ D + 1 and h1 = 1. Thus,

H = diag

⎛⎜⎜⎜⎜⎜⎝1,
1√
n1n2

, . . . ,
1

√
n1nj

j−1Y
k=2

nk

, . . . ,
1

√
n1nD+1

DY
k=2

nk

⎞⎟⎟⎟⎟⎟⎠
and the eigenvector belonging to zero equals

eτ (D; 0) = Hτ (D; 0) =
h
1
q

n2
n1

· · ·
q

nD−1
n1

q
nD
n1

iT
After the similarity transform H, the result is

fM = HMH−1 =

⎡⎢⎢⎢⎢⎢⎣
−n2

√
n1n2√

n1n2 − (n1 + n3)
√
n2n3

. . . . . . . . .√
nD−1nD − (nD−1 + nD+1)

√
nDnD+1√

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎦
In summary, all non-trivial eigenvalues of QG∗D

are also eigenvalues of the (much

simpler and smaller) matrix −M or −fM .
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The graph maximizing the algebraic
connectivity

We proved in Chapter 4 that the maximum algebraic connectivity of the class G∗D(n1 =
1, n2, ..., nD, nD+1 = 1) is also the maximum amax over all graphs G(N,D) with N nodes
and diameterD. The tables below present the clique sizes ofG∗D(n1 = 1, n2, ..., nD, nD+1 =
1), which achieves the maximal algebraic connectivity amax among all graphs with size
N and diameter D.

amax(G(N = 26,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
D = 2 24 1 24 1
D = 3 11.1345 1 12 12 1
D = 4 5.6834 1 7 10 7 1
D = 5 3.1264 1 5 7 7 5 1
D = 6 1.8566 1 3 6 6 6 3 1
D = 7 1.1555 1 2 5 5 5 5 2 1
D = 8 0.781781 1 2 3 5 4 5 3 2 1
D = 9 0.517162 1 1 3 4 4 4 4 3 1 1

amax(G(N = 50,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
D = 2 48 1 48 1
D = 3 23.074278 1 24 24 1
D = 4 12.641101 1 15 18 15 1
D = 5 7.080889 1 9 15 15 9 1
D = 6 4.290025 1 6 11 14 11 6 1
D = 7 2.764758 1 5 8 11 11 8 5 1
D = 8 1.859022 1 3 7 9 10 9 7 3 1
D = 9 1.320825 1 3 5 7 9 9 7 5 3 1
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amax(G(N = 100,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
D = 2 98 1 98 1
D = 3 48.0385 1 49 49 1
D = 4 27.6754 1 31 36 31 1
D = 5 15.8799 1 19 30 30 19 1
D = 6 9.7886 1 13 22 28 22 13 1
D = 7 6.3833 1 9 17 23 23 17 9 1
D = 8 4.358863 1 7 13 19 20 19 13 7 1
D = 9 3.098801 1 5 10 16 18 18 16 10 5 1

amax(G(N = 122,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
D = 2 120 1 120 1
D = 3 59.031762 1 60 60 1
D = 4 34.442561 1 39 42 39 1
D = 5 19.858188 1 24 36 36 24 1
D = 6 12.266200 1 16 27 34 27 16 1
D = 7 8.021537 1 11 20 29 28 21 11 1
D = 8 5.499296 1 8 16 23 26 23 16 8 1
D = 9 3.910465 1 6 13 18 23 22 19 13 6 1
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Symbols

α extreme value index of the polynomial distribution
γ Euler constant
λi i-th largest eigenvalue of the adjacency matrix
μi i-th largest eigenvalue of the Laplacian matrix
μ∗ normalized increase of algebraic connectivity
ρ correlation coefficient of 2-dimensional link weight
τ exponent of a power law degree distribution

a(G) = μN−1 algebraic connectivity of a graph G
A adjacency matrix
Bl betweenness of a link
cG(v) clustering coefficient of a node v
C(G) clustering coefficient of a graph
d depth of a k-ary tree
DG degree of a random node in a graph G
D diameter of a graph
E[X] statistical expectation of random variable X
Fw(x) probability distribution function Pr[w ≤ x] of link weight
G graph
Gp(N) Erdös-Rényi random graph with link density p and N nodes
HN hopcount of a shortest path
KN complete graph with N nodes
l(i→ j) link between node i and j
L set of L links
L number of links
M set of m testboxes
N set of N nodes
N number of nodes
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pc disconnectivity threshold
Pi→j a path between node pair i and j
P ∗i→j the shortest path between node pair i and j
Q Laplacian matrix
R(G) a robustness measure of network G
ui the i-th element of the Fiedler vector
w(i→ j) weight of link l(i→ j)
w(P ∗i→j) weight of the shortest path P ∗i→j

w(G) the total link weight of graph G
Y the number of link failures in a shortest path
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Samenvatting (Summary in Dutch)

Onze maatschappij hangt nu meer dan ooit afhankelijk van grote netwerken, zoals trans-
portnetwerken, het Internet en hoogspanningsnetwerken. Omdat netwerken altijd de
werking van de dienst beïnvloeden, worden ingenieurs geconfronteerd met fundamentele
kwesties als "hoe kunnen we de robuustheid van een netwerk voor een bepaalde dienst
evalueren?", "hoe ontwerpt men een robuust netwerk?". Robuustheid is een belangrijke
kwestie voor veel complexe netwerken, waarin diverse dynamische processen plaatsvin-
den. In dit werk defnieren we robuustheid als volgt: een netwerk is meer robuust indien
de dienst over het netwerk beter presteert, waar de prestatie wordt gemeten (a) in de
conventionele staat, of (b) tijdens perturbaties, bijv. tijdens uitval, virusverspreiding
etc. In dit proefschrift onderzoeken wij een bepaalde stroming van netwerkrobuustheid
binnen een generiek raamwerk: robuustheidkwantificering, optimalisatie en de interactie
tussen dienst en netwerk.
Significante vooruitgang is geboekt in het begrijpen van de relatie tussen de struc-

turele netwerkeigenschappen en de prestatie van dynamica of diensten die plaatsvinden
in deze netwerken. We nemen aan dat netwerkrobuustheid gekwantificeerd kan wor-
den door een topologische maat van het netwerk. Een kort overzicht van topologische
maten wordt gepresenteerd. Iedere maat kan de netwerkrobuustheid representeren met
betrekking tot een bepaald aspect van de prestatie van de dienst. Wij richten ons op de
maat die bekend staat als algebraische connectiviteit. Bewijs verzamelt uit de literatuur
toont aan dat de algebraische connectiviteit de netwerkrobuustheid karakteriseert met
betrekking tot het synchronizeren van dynamische processe in knooppunten, random
walks in grafen en de connectiviteit van een netwerk. Bovendien tonen we aan dat bij
een gegeven diameter, grafen met een grote algebraische connectiviteit geneigd zijn om
compact te zijn in de kern en opener aan de rand. Dergelijke structuren distribueren het
verkeer op homegene wijze en zijn derhalve robuust in termen van traffic engineering.
Hoe ontwerpen we een robuust netwerk met betrekking tot de maatstaf algebraische

connectiviteit? Ten eerste, de complete graaf heeft de maximale algebraische connec-
tiviteit, terwijl diens hoge linkdichtheid het gebruik onpraktisch maakt vanwege de hoge
kosten om een link te construeren. Normaal gesproken zijn er beperkingen opgesteld
voor andere netwerkeigenschappen om realistische eisen toe te voegen. Bijvoorbeeld,
een beperking voor de diameter kan garanderen dat bepaalde kwaliteitsnormen wor-
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den behaald met betrekking tot bijvoorbeeld vertragingen. We stellen een klasse voor
van gegroepeerde ketenstructuren welke de algebraische connectiviteit en vele andere
robuuste eigenschappen optimaliseren voor alle grafen met diameter D en grootte N.
De optimale graaf binnen deze klasse kan bepaald worden via analyse of simulatie.
Ten tweede, de volledige vervanging van een bepaalde infrastuctuur is kostbaar. Der-
halve ontwerpen we strategieën voor het optimaliseren van de robuustheid met gebruik
van kleine topologische aanpassingen. Deze strategieën worden geevalueerd in diverse
klassen van grafen.
De kwantificering van robuustheid, of evenzo, de associatie van de prestatie van

een dienst met een topologische maat, kan impliciet zijn. In dit geval verkennen we
de interactie tussen topologie en dienst bij het bepalen van de algemene prestatie.
Vele diensten in communicatie- en transportnetwerken zijn gebaseerd op kortste pad
routering. Het gewicht van een link, zoals vertraging of bandbreedte, is voornamelijk
een maat die geoptimaliseerd is via kortste pad routering. Dus, het fijnstellen van het
gewicht van de link, een mechanisme om het verkeer te controleren, wordt mede gezien
als een onderdeel van de dienst. De interactie tussen dienst (kortste pad routering en
gewicht aanpassing) en topologie wordt onderzocht voor de volgende prestatieaspecten:
(a) de structuur van het transport overlay netwerk, welke de vereniging is van de korste
paden tussen alle paren van knooppunten en (b) de verkeersverdeling in het overlay
netwerk. Belangrijke, nieuwe bevindingen zijn (i) de universele faseovergang in overlay
structuren als we de structuur van linkgewichten aanpassen voor verschillende klassen
van netwerken en (ii) de power-law verdeling van het verkeer in overlay netwerken
wanneer de gewichten van de links sterk variëren in verschillende klassen van netwerken.
Bovendien beschouwen we de dienst die de netwerktopologie meet als de unie van de
kortste paden van een set van testboxen (knooppunten). De gemeten topologie is een
subgraaf van het overlay netwerk, welke wederom een subgraaf is van het werkelijke
netwerk. De prestatie wordt onderzocht in termen van vertekeningen tijdens het meten
van de netwerktopologie. Ons werk voegt substantieel toe aan de kennis van de invloed
van de dienst (selectie van de testbox) en de werkelijke netwerkstructuur op de prestatie
met betrekking tot de vertekening van de metingen. Ons onderzoek naar de interactie
tussen dienst en netwerk openbaart wederom de associatie tussen de prestatie van een
dienst en een bepaald topologisch kenmerk, en dus, draagt bij aan de kwantificering
van netwerkrobuustheid.
De multidisciplinarie aard van dit onderzoek ligt niet alleen in de aanwezigheid van

robuustheidskwesties in vele complexe netwerken, maar ook in het feit dat vorderingen
in andere disciplines, zoals grafentheorie, combinatoriek, lineaire algebra en statistische
fysica op grote schaal worden toegepast in dit proefschrift om optimalisatieproblemen
en prestatie van grote netwerken te kunnen bestuderen.
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