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We study the evolution of the graph distance and weighted distance
between two fixed vertices in dynamically growing random graph models.
More precisely, we consider preferential attachment models with power-
law exponent T € (2, 3), sample two vertices u;, v; uniformly at random
when the graph has ¢ vertices and study the evolution of the graph dis-
tance between these two fixed vertices as the surrounding graph grows.
This yields a discrete-time stochastic process in ¢’ > ¢, called the dis-
tance evolution. We show that there is a tight strip around the function
4loglog(l)flog(log(t’/t)v1)

[log(z—2)]
high probability as ¢ tends to infinity. We extend our results to weighted dis-
tances, where every edge is equipped with an i.i.d. copy of a nonnegative

random variable L.

Vv 2 that the distance evolution never leaves with

1. Introduction. In 1999, Faloutsos, Faloutsos and Faloutsos studied the topology of the
early internet network, discovering power-laws in the degree distribution and short average
hopcounts between routers [29]. Undoubtedly, the internet has grown explosively in the last
two decades. It would be interesting to investigate what has happened to the graph structure
surrounding the early routers (or their direct replacements) that were already there in 1999,
ever since. Natural questions about the evolving graph surrounding these early routers are:

e How did the number of connections of the routers gradually change? Did the early routers
become important hubs in the network?

e Can we quantify the number of hops needed to connect two early routers? Particularly,
did the hopcount decrease or increase while their importance in the network changed, and
more and more connections arrived? If so, how did the distance gradually evolve?

These kinds of questions drive the mathematics in the present paper. We initiate a research
line that studies how certain graph properties defined on a fixed set of vertices evolve as
the surrounding graph grows. We consider the weighted-distance evolution in two classical
preferential attachment models (PAMs). Studying the evolution of a property on fixed vertices
may sound as a natural mathematical question. Yet, only the evolution of the degree of fixed
vertices has been addressed so far in the PAM literature [24, 41].

A realization of a classical preferential attachment graph can be constructed according
to an iterative procedure. One starts with an initial graph PA; = (Vj, E1) on the vertex set
V1 = {1} and edge set E| = &, after which vertices arrive sequentially at deterministic times
t €{2,3,...}. We denote the graph at time # by PA; and label all the vertices by their arrival
time, also called birth time. The arriving vertex ¢ connects to present vertices such that it is
more likely to connect to vertices with a high degree at time ¢. Let P({t — v} | PA;_1) denote
the probability that # connects to v < ¢. We consider two classical (nonspatial) variants of the
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model, the so-called (m, §)-model based on [8, 14] and the independent connection model
[24]. They are formally defined in Section 2. They both assume that there exists t € (2, 3)
such that

(1.1) P({t — v} |PA,_1):?EI(I—_11))+O(1/I),

where D, (¢ — 1) denotes the degree of vertex v directly after the arrival of vertex t — 1. As
a result, the asymptotic degree distribution has a power-law decay with exponent 7 [24, 45],
that we therefore call the power-law exponent.

The graph-distance evolution is a discrete-time stochastic process that we denote by
(a’(Gt,) (ur, v1))r>; and define formally in Definition 2.4 below. Here, u; and v, are two typ-
ical vertices, that is, they are sampled uniformly at random from the vertices in the largest
component in PA;. The graph distance dg/) (uy, vy) is the number of edges on the shortest path
between u; and v, that uses only vertices that arrived at latest at time ¢’. The distance evolu-
tion (dg/) (u;, v;))y>; is nonincreasing in ¢', since new edges arrive in the graph that may form
a shorter path between u; and v;. We will now state our main result for the graph-distance
evolution. To describe the graph distance, we define for t' > ¢, writing a v b := max{a, b},

loglog(z) —log(log(t'/t) v I)J v1
[log(t —2)| '

(1.2) Ky = 2{

THEOREM 1.1 (Graph-distance evolution). Consider the preferential attachment model
with power-law exponent T € (2, 3). Let u;, vs be two typical vertices in PA;. Then

(1.3) (supldg,)(ut, vr) — 2Kt,ﬂ|)

t'>t =1

is a tight sequence of random variables.

Here, a sequence of random variables (X,),> is called tight if limp_, o sup, P(| X, | >

M) = 0. Theorem 1.1 tracks the evolution of dg/) (us, vy) as time passes and the graph around
u; and v; grows, since in (1.3) the supremum is taken over ¢’. Below, in Theorem 2.5, we
extend Theorem 1.1 to a general setting and consider the so-called weighted-distance evolu-
tion (dg/) (us, v))p>. There, we equip every edge in the graph with a weight, an i.i.d. copy
of a random variable L. We consider the evolution of the weighted distance, the sum of the
weights along the least-weighted path from u;, to v, that is present at time 7’. We obtain results
for any nonnegative random variable L that serves as edge-weight distribution.

As a consequence of Theorem 1.1, we obtain a hydrodynamic limit, that is, a scaled version
of the distance evolution converges under proper time scaling uniformly in probability to a
nontrivial deterministic function.

COROLLARY 1.2 (Hydrodynamic limit for the graph-distance evolution). Consider
the preferential attachment model with power-law exponent t© € (2,3). Define T;(a) :=
texp(elog?(t)) for a > 0 and arbitrary ¢ > 0. Let u;, v; be two typical vertices in PA;.
Then

(Ti(a))
d : . 4
(1.4) sup M—(l—mm{a,l})— ;P>O ast — o0.
a>0l loglog() |log(t —2)|

This can be verified by computing the value of K; 7;,) using (1.2), substituting this value
into (1.3), and then dividing all terms by loglog(t).
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Observe that in Corollary 1.2 all loglog(#)-terms have vanished when a = 1. The following
consequence of Corollary 1.1 illustrates the rate at which smaller order terms appear and
vanish. In particular, the graph distance is of constant order as soon as '/t is of polynomial
orderin 7.

COROLLARY 1.3 (Lower-order terms). Consider the preferential attachment model with
power-law exponent t € (2,3). Let uy, v; be two typical vertices in PA;. Let g(t) be any

function that is bounded from above by 2K, ;, and set Ty(t) := {1+ a7 Then, for two
typical vertices u; and vy in PA;,

T,
@5, v0) = 8(0) 2,

is a tight sequence of random variables.

Indeed, setting any g(7) that tends to infinity with 7 results in a time scale T, (7) ~ t1+ee0
for some £4(;) — 0 as 7 tends to infinity.

REMARK 1.4. Using a similar martingale argument as in Lemma 4.3 below for the de-
gree of the vertices u; and vy, one can show that when ¢’ = O (% B~1), there will be a vertex
that connects to both u; and v;. Hence, the distance evolution settles on two.

1.1. Literature perspectives on PAMs.

1.1.1. Snapshot analysis. The two models studied in this paper are the most commonly
used pure PAMs in the literature, that is, in these models it is solely the preferential attachment
mechanism that drives the changes in the graph topology. These PAMs are mathematically
defined by Bollobds and Riordan [14] and Dereich and Morters [24]. For an overview of
rigorous results and references, we refer to [45], but also to recent works on these models [9,
17,23-25, 27, 37]. Since the original PAM, many variants with more involved dynamics and
connection functions have been introduced. In [36, 43], the vertex set is fixed and only edges
are formed dynamically. The variations introduced in [4, 21] allow for edges being formed
(or deleted in [20, 21]) between existing vertices. Dereich and Morters [24, 25] consider a
version where the attachment function can be sublinear in the degree. In [19, 22, 26, 30]
vertices are equipped with a fitness and in [38], the arriving vertices have a power of choice.
Spatial variants where vertices have a location in an underlying Euclidean space are studied in
[3, 34, 35]. Here, closeness in Euclidean distance is combined with preferential attachment.
The age-dependent random connection model [31, 32] is a recent spatial version. There the
connection probabilities are not governed by the degree of vertices, but by their relative age
compared to the arriving vertex. In these papers, several graph properties have been studied
in the large network limit, that is, as the number of vertices ¢ tends to infinity. Stochastic
processes on PAMs have been analyzed in [8, 15] for the contact process and in [1] for
bootstrap percolation.

The above mentioned results and papers provide statements about static snapshots of the
graph PA; in the large network limit: the network is considered at a single time t as t tends
to infinity. This snapshot analysis allows for comparison to (simpler) static random graph
models, such as the configuration model [12, 39], Chung-Lu model [18] and the Norros—
Reittu model [42], and strikes to classify properties of random graphs as either universal or
model-dependent. See [45, 46] and its references for universal properties. Due to the snapshot
analysis, temporal changes of the graph that are reflected in the statements of Theorem 2.5,
are absent in earlier works for graph properties other than the degree of fixed vertices [24,
41].
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1.1.2. Future directions: Evolving properties. This paper commences a research line by
studying an evolving graph property (other than the degree of fixed vertices [24, 41]). State-
ments involving the evolution of a property describe the structure of the graph during a time
interval, rather than at a single time. We consider the distance evolution in two classical
preferential attachment models. This requires a more fine-grained control of the entire graph
than the degree evolution of a fixed vertex, and also yields more insight in the evolution of the
structure of the graph. One of the main reasons to consider distances for these classical PAMs
is that they display a notable change over time. The growth terms decrease from log log-order
to constant order as the graph grows. This is in contrary to, for example, the local clustering
coefficient, a graph property related to the number of triangles, which a typical vertex is a
member of. The local clustering coefficient of a typical vertex is of constant order and tends
to zero for typical vertices due to the locally tree-like structure in classical PAMs.

A natural extension of the present paper would be to study the distance evolution in PAMs
where the asymptotic degree distribution has finite variance. For this regime, it is known that
the static typical graph distance is of order ® (log(¢)), but the precise constant has not been
determined. We expect that in this regime the time scaling of the growth is different from the
scaling of the hydrodynamic limit in Corollary 1.2 and to see the distance drop by a constant
factor when '/t is of polynomial order, rather than stretched exponential in the logarithm.

Distances in spatial preferential attachment (SPA) are studied in [33] for the regime where
T € (2, 3): Hirsch and Monch [33] prove an upper bound using a similar two-connector proce-
dure that we also use here. The lower bound for distances in SPA for t € (2, 3) and asymptotic
results for other parameter regimes remain interesting open problems.

In most PAMs, the graph and its edge set are increasing over time. In [20, 21], variations
of PAMs are introduced where edges can be deleted. As a result, the distance evolution is no
longer monotone and other behavior may be expected.

The variations of PAMs mentioned in Section 1.1.1 all have properties that can be con-
sidered from a nonstatic perspective. For instance, one could analyse the local clustering
coefficient in versions of PAMs that are not locally tree-like. Static analysis of the local clus-
tering coefficient on spatial variants of PAMs have been done in [31, 34]. Some frequently
studied global properties are the size of the giant component and its robustness against site or
edge percolation [25, 28, 32, 35], and condensation phenomena [11, 19, 22, 30, 38].

1.2. Methodology. The proof of Theorem 1.1 and Theorem 2.5 below consist of a lower
bound and an upper bound. For the upper bound, we prove that at all times ¢’ > ¢ there is a
path from u; to v; that has length at most 2K,  + M (from (1.2)) for some constant Mg
and contains only vertices born, that is, arrived, before time ¢'. We first heuristically argue
that the scaling for the graph distance in (1.4) is a natural scaling. After that, we turn to the
difficulties that arise in handling the dynamics. The degree D, (') of a vertex g, € {u;, v;} at
time ¢’ is of order (¢'/q;)'/"=D. Writing t' = T;(a) := t exp(log®(t)) and approximating the
birth time of the uniform vertex g, by ¢, we have that

Dy, (T;(a)) = exp(log® (1) /(r — 1)) =: 5.

Generally, a vertex of degree s is at graph distance two from many vertices that have degree
approximately s'/(*=2) This allows for an iterative two-connector procedure that starts from
an initial vertex with degree at least s and reaches in the kth iteration a vertex with degree

approximately (s(“))(f_z)_k Wecall k > (s@)T=27 the degree-threshold sequence. At each
iteration, we greedily extend the path by two edges, arriving to such a higher-degree vertex.
In the edge-weighted version, these two edges are chosen to minimize the total edge-weight
among all such two edges. This two-connector procedure to vertices with increasing degree
is iterated until the well connected inner core is reached. The inner core is the set of vertices
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with degree roughly T;(a)/C=D) at time T;(a). Hence, for a < 1, the total number of
iterations to reach the inner core is approximately

loglog(?)
|log(z —2)|

By construction, the graph distance from u; and v; to the inner core is two times the right-
hand side (rhs) in (1.5). The graph and weighted distance between vertices in the inner core
are negligible, yielding the scaling in (1.4), as well as the upper bounds in Theorems 1.1
and 2.5.

There are three main difficulties in the outlined procedure. First, it is not good enough
to start the two-connector procedure from u; (or v;) because the error terms coming from
controlling the growth of the degree of u; (or v;) at ¢’ close to ¢ are too large. To resolve
this, we start the procedure from a vertex—say g, o—that has degree at least s(()o) at time ¢ for
some large but universally bounded constant s(()o) . The segment between ¢g; and g, o is fixed
for all ¢ > t, so that we only have to account for a possible error once. Second, we need
to bound the degree of the vertex g; o from below over the entire time interval [¢, o), not
just at a specific time #'. For this, we employ martingale arguments. Lastly, to make the error
probabilities summable in ¢/, we argue that the two-connector procedure does not have be
executed for every time ¢ > ¢, but only along a specific subsequence of times (#;);>0, Where

f € [rexp((r —2)7 ), rexp((r —2)771)].

(1.5) min{k : (s“‘))(r_z)fk > Ty(a) /@D~ (1 — a)

This sequence is chosen such that at time #;,; one iteration less than at time #; is needed
to reach the inner core from the initial vertices, and these are exactly the times when K; ,/
crosses an integer, and hence a previously present path is no longer short enough. See Figure 1
for a sketch. On the time scale 7;(a), the number of iterations scales linearly in a € [0, 1].

For the lower bound, we first bound the probability that the graph distance dg/)(u;, V)
is ever too short and then extend it to weighted distances. To estimate the probability of
a too short path being ever present, we develop a refined truncated path-counting method
inspired by [23]. Let for a fixed ¢, (K;:,/)kzO,t/zz be an array of birth times, that is, arrival
times of vertices. The path-counting method first excludes possible paths from u; to v, that
are unlikely to be present in PA,/, called bad paths. A bad path of length k reaches a vertex
born before time E}{” . using only vertices born before #’. The longer a path is, the more likely

deg(o) deg(l) deg(2) deg(S)
Core®
qt,0
RO __ 3
‘\" S0
qt,0
s qt
[N
qt, ()
ot at
% 4

) SE—

F1G. 1. Construction of a path from q; to the inner core at the times (;); <3, where ty = t. The y-axis represents
the degree of vertices at time t; and the connected dots the vertices on the path segments from qr via q; ( to
the inner core. The x-axis represents graph distance from q; . The black dashed horizontal lines represent the
degree-threshold sequence, while the continuous black lines represent the maximal degree in the graph at time t;.
The degree of q; 0, the maximal degree in the graph and the degree threshold for the inner core all increase over
time. The degree of vertex q; ) satisfies the inner-core threshold at time t3. The red dashed segment from q; to q; o
is the same for all i, while the blue segment from q, ) is constructed at the times (1;);<3.
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FI1G. 2. Good and bad path decomposition for the lower bound. The y-axis represents arrival time of vertices
and the x-axis the graph distance from u;. Bad paths are displayed in red, good paths are green and dashed. The
blue dotted paths represent possible paths that are absent at time t|. Let tp > t| and k > j. The black tiny-dotted
horizontal lines represent the birth-threshold array (Z;(t? ¢ k=0,1'>¢> which is decreasing in t' at the times t1, t, and
also decreasing in k. At time t{ there is neither a bad path of length at most k present, nor a good path of length
2k that connects u and v. Then, if u and v are at time t, at graph distance 2k, there must be either a bad path
of length at most k emanating from u or v that traverses a vertex in (t1, ty] or there must be a short good path
traversing such a vertex. Observe that the good path is allowed to traverse a vertex in [@g? t Z;{'?tl ). In particular,
this holds for tp =t + 1.

it is that an old vertex can be reached. Moreover, as the graph grows, it becomes more likely
that there is a short path to an old vertex. The array of birth times (ZZ?I,) k>0.r'>¢ 15 therefore
nonincreasing in both parameters. Among the other possible paths that are too short, the good
paths, the method counts the expected number of paths from u; to v, that are present in PA,/.
More precisely, the expected number of these paths of length at most 2K,  — M is shown
to be much smaller than one for some Mg > 0. The decomposition of good and bad paths is
done for every t’ > ¢, in an interlinked way. The crucial observation is that if there is no too
short path present at time ¢/, but there is a too short path present at time ¢' + 1, then the vertex
labelled ¢’ + 1 must be on this connecting path, and thus it must be either on a bad path or on
a too short good path. This trick allows us to develop a first moment method much sharper
than a union bound simply over ¢’, since we only need to bound the expected number of bad
or too short good paths that are restricted to pass through the newly arrived vertex ¢’. These
bounds are a factor 1/¢’ smaller than similar bounds without the restriction. As a result, the
error bound is summable in ¢ and tends to zero as ¢ tends to infinity. See Figure 2 for a sketch
of the argument.

To extend the result from graph distances to weighted distances for Theorem 2.5 below,
we observe that if the graph distance between u; and v; is at least 2K, » — M /2, then the
graph neighborhoods of radius K; ; — M /2 must be disjoint. A path that connects u; to v,
must cross the boundaries of these graph neighborhoods. We bound the number of vertices
at distance precisely k from g; € {u;, v;} from above, for k < K, ;; — M /2. This allows to
bound the weight of the least-weight edge between vertices at distance k and k + 1 from ¢
from below. The sum of these minimal weight bounds is then a lower bound to reach the
boundary. However, the error probabilities are not summable in ¢’. To resolve this, we show
that it is sufficient to consider only a subsequence of times, similar to the upper bound.

Organization. In the next section, we rigorously define the models. The lower bound is
proven in Section 3. In Section 4, we present the proof of the upper bound.

Notation. For two functions f(x) and g(x), we say f(x) = o(g(x)) if limy_ o f(x)/
g(x) =0, and write f(x) = O(g(x)) if limy_~ f(x)/g(x) < co. For min{a, b} and
max{a, b}, we write a A b and a Vv b, respectively. We define [n] := {1,...,n}, while
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[n] :=max{x e N:x <n} and [n] := max{x € N:x >n}. Let (X;;)n>0 and (¥;),>0 be
two sequences of random variables. We say that Xy dominates Y if there exists a coupling of
the random variables such that P(X( > Y() = 1. Similarly, the sequence (X},),>0 dominates
(Yn)n>o0 if there exists a coupling of the sequences such that P(V,>o : X, > ¥,) = 1. A ran-
dom graph dominates a random graph H if there exists a coupling such that every edge in

H is also contained in G. If a random object X dominates Y, we write X > Y. We say that

(Xn)n>0 converges in probability to a random variable X, that is, X, g X oo, if for all
¢ > 0 it holds that P(| X, — Xoo| > €) = 0(1). A sequence of events (£,),>0 holds with high
probability (whp) if P(€,) = 1 — o(1), and abbreviate “with probability” by w/p. The comple-
ment of an event £ is denoted by —&. For a sequence of vertices in (7;); <, with birth times at
most ¢, we write {7t <> 71} for the event that 77 and 7| are connected by an edge in PA, for
t' > max{mg, m1}. Moreover, we define {mg < --- < m,} = {mog < w1} N---N{mu_1 < 7).
The sequence (or path) (7;); <, is called self-avoiding if 7r; % r; for all i # j.

2. Model definition and general results. The first model that we introduce is a classical
model where every arriving vertex connects to a fixed m € N vertices, and the edges are
created sequentially. It is often called the (m, §)-model, and appeared first in [8, 14]; for
variations, see [45], Chapter 8. Denote by D (¢, j) the number of incoming connections
of a vertex v after j edges have been formed at time ¢, for j = {1,..., m}. We abbreviate
D;(t) := D; (t,m), and denote by {r EN v} the event that the jth edge, for j € {1, ..., m},
of vertex ¢ connects to v < f.

DEFINITION 2.1 (Fixed-outdegree preferential attachment). Fix m € N, § € (—m, 00).
Let FPA|(m, §) be a single vertex without any edges. We define FPA(m, &) by the following
sequence of conditional connection probabilities corresponding to the attachment of the jth
edge

D (t,j—1)+m(l+46/m)
=2 +2m)+j—1+m+8’
where FPA; ;) denotes the graph right before the insertion of the jth edge of 7. An important
parameter of the model is

2.2) Tp,s:=3+6/m.

@1) Pt v} | FPA ) = velr—1],

The denominator in (2.1) is a normalizing constant. Definition 2.1 does not allow self-
loops, since v € [t — 1], but allows multiple edges between vertices.

More recently, a similar model has been introduced where the out-degree of arriving ver-
tices is variable, since the arriving vertex connects independently to existing vertices [24].
Again, D (¢) denotes the indegree of vertex v right after time ¢.

DEFINITION 2.2 (Variable out-degree preferential attachment). Let f : N — (0, c0) be
a concave function satisfying f(0) <1 and f(1) — f(0) < 1. We call f the attachment rule.
Let VPA[(f) be a single vertex without any edges. The model VPA(f) is defined by the
following sequence of conditional connection probabilities corresponding to the attachments
of the vertex arriving ¢, that is,
J(Dy (t—1)

P({t = v} | VPA1) = ==, velr 1],

where the connections to existing vertices are formed independently of each other. Important
parameters of the model are

(2.3) Yri= kll{l;o fk)/k, Tri=14+1/y,
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which are well defined by the concavity of f, assuming yy > 0. We call 74 the power-
law exponent. In this paper, we restrict ourselves to affine attachment rules, that is, f (k) =

vk + B.

Observe that in VPA(f), as in FPA(m, §), no self-loops are possible. However, un-
like FPA(m, &), VPA(f) does not allow for multiple edges between vertices. Generally,
FPA(m, 8) and VPA(f) show qualitatively the same behavior when 7,, 5 = 7. Therefore,
we often refer to preferential attachment (PA) with a power-law exponent T > 2, by which
we mean either 7, s in (2.2) or 77 in (2.3). Observe that (1.1) holds for both models.

We now formalize the notion of paths for a sequence of growing graphs, which is used to
define distances and distance evolutions.

DEFINITION 2.3 (Paths). We call a vertex tuple (g, ..., 7m,) =: & a g-path if 19 = ¢,
and we call it a (u, v)-path if 7o = u, 7, = v and u # v. The path & is called #’-possible if
max; <, 7r; <t and t’-present if it is t’-possible and all edges {(ro, 71), ..., (7Ty—1, 7,)} are
present in the graph at time #’.

For u;, v; € Vy, let Qu(uy, v;) := {m : @ is a t’-present (u,, v;)-path} denote the set of #'-
present paths. Since the edge set and vertex set are increasing in ¢’, new paths between u, and
v; emerge. Hence, we have that Qp (u;, v;) € Q7 (uy, v;) for r>t.

We equip every edge with a weight, an i.i.d. copy of a nonnegative random variable L.
The weight of an edge represents the time (for a fluid/information) to traverse an edge. The
model where weighted distances are studied in (random) graphs, is also called first-passage
percolation; see [5, 44] and their references for an overview of first-passage percolation on
(random) graphs.

DEFINITION 2.4 (Distances in graphs). Consider the graph PA; = (V;, E;) and let every
edge e be equipped with a weight L,. We define the graph distance and weighted distance
between u;, v; € V; at time t’ as

A= min Y1 d @)= _min YL

e, (Ur,vr) e, (Ur,vr)

eEm eEm

For a vertex v and a vertex set W C [¢'], we define
d(z,) v, W) := min d(t/) v, W), d(t/) v, W) := min d(t/) v, w).
G ( )wewg( ) 1 ( )weWL( )

If u; and v; are two typical vertices, that is, they are sampled uniformly at random from the

vertices in the largest component PA;, then we call (dg )(ut, V)= and (dg )(u,, V))i'>t
the graph-distance evolution and weighted-distance evolution, respectively.

To state our main result, we introduce two quantities to classify edge-weight distributions.
Let

o0 _ o l _
Q4 L) =Y F Yexp(—exp), I(L)=)Y %Fi_? (exp(—exp(k))).
k=0 k=0

where FL(_I)(y) :=inf,{x € R: Fr(x) > y} is the generalized inverse of Fr (x) :=P(L <x),
and b :=inf {x : F(x) > 0}. See Remark 2.6 below for comments on I{(L) and I,(L). The
following function will describe the weighted distance. Define for a, b € N,

b
2.5) Qa.b:= 3 F Vlexp(—(x =277,

k=a+1
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so that Q(a, b] is a sum consisting of b — a terms. Recall K; ; from (1.2) that describes the
graph distance. We define for t' > ¢ its weighted-distance counterpart

(2.6) Qz,z’ = Q(Kt,t - Kt,t/v Kt,l]-

THEOREM 2.5 (Main result). Consider the preferential attachment model with power-
law exponent t € (2, 3). Equip every edge upon creation with an i.i.d. copy of the nonnegative
random variable L. Let u;, vs be two typical vertices at time t. If I,(L) < 00, then

2.7 (SuPIdg/)(ut, vr) — 2Qt,ﬂ|)

>t =1

is a tight sequence of random variables. Regardless of the value of I,(L), for any §,& > 0,
there exists My > 0 such that

(2.8) PV > 1:20,0 — My <d (s, v) <2(1+€) 0y + Mp) <.

Theorem 2.5 tracks the evolution of dg/)(u, v) as time passes and the graph around « and
v grows, since in (2.7) the supremum is taken over ¢’ and ¢’ is inside the P-sign in (2.8). It is
the (1 4 ¢)-factor in the upper bound in (2.8) that makes (2.8) different from (2.7). Thus, the
lower bound is tight for any nonnegative weight distribution. A special case of Theorem 2.5
is when the edge-weight distribution L = 1. Then the weighted distance and graph distance
coincide, yielding Theorem 1.1, since I2(1) =0.

Observe that 20, » = 2Q(K;; — K; 1, K; ] in (2.6) could be seen as two sums, each
consisting of K,y terms: the number of terms in Q; y is equal to the number of edges on
the shortest graph-distance path. The additive constant My ensures that there will be many
almost-shortest paths, from which we are able to choose one with low edge-weight. As time
passes, the degrees of u; and v, increase, so that it becomes more likely that there are edges
close to u; and v; that have small edge-weights. Since the terms in Q;  are decreasing in
k, this intuitively explains that Q; ; consists of the smallest K; y terms of Q; ;, rather than
the largest K; ; terms of the sum defining Q; ;. However, if L =1+ X for some random
variable X that satisfies I1(X) < oo (e.g., X exponential, gamma or a power of uniform
on [0, 1]), then |K; ;» — Q; | < M for some constant M. Consequently, the graph distance
and weighted distance are of the same order (up to additive constants). This phenomenon
has also been observed for the configuration model [7]. As a result, for weight distributions
with I1(X) < oo the location of the summation interval in (2.6) does not influence the main
result: there exists a constant M such that Q(0, K; ] — Q(K;; — K; ¢, K; ;] < M for all
t' >t > 0. For the other case, if L =1 + X such that I1(X) = oo, such a constant does not
exist. For such distributions, the fact that the lower summation boundary in (2.6) is shifted to
K::— K; p from O matters and influences the growth rate. As an example, we set L such that
the terms in the sum in (2.5) are equal to 1 + 1/k, yielding Q(0, K; /]~ K, ; +1log(K; 1),
while for 7" large enough that K; ; — K; > 1:

QK — Kt v, Ki 1= Ky +10g(Ky 1) —log(Ky; — K; 1) K Q(0, Ky p].

We now recall the hydrodynamic limit for the graph-distance evolution in Corollary 1.2.
A similar limit can be derived for the weighted-distance evolution if the weight distribution
satisfies I1(L) = oo. The proper scaling and the constant prefactor, similar to (1.4), can be
determined through studying the main growth term of Q;, in (2.6) if F fl) is explicitly
known.

Like Remark 1.4, one can show that at the time scale ®(r%/3~7)) the weighted distance
between u; and v; tends to 2b where b := inf{x € R : F7 (x) > 0}. At this time scale, many
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vertices connect to both u; and v;, allowing to bound the weighted distance from above by
2(b + ¢) for arbitrarily small ¢ > 0.

Lastly, we recall the static counterpart of Theorem 2.5 by the authors in [37] that general-
izes earlier results on graph distances in PAMs [17, 23, 27]. In [37], Theorem 2.8, it is shown
that, for weight distributions satisfying I,(L) < oo,

(2.9) (d (s, v) = 204.4) 54

forms a tight sequence of random variables. Observe that Theorem 2.5 extends this result.
For the configuration model, similar results to (2.9) were derived subsequently in [2, 6, 10],
indicating universality of first-passage percolation: the scaling for the two models is the same
up to constant factors when t € (2, 3).

We now comment on the quantities I{(L) and I>(L) from (2.4) that are used to classify
edge-weight distributions.

REMARK 2.6 (Explosive and conservative weight distributions). If I1(L) < oo, we call
the weight distribution explosive, otherwise we call it conservative. I {(L) measures how flat
the edge-weight distribution F is around the origin. Many well-known distributions with
support starting at zero are explosive distributions, for example, Unif[0, ], Exp(%). On the
contrary, distributions that have support that is bounded away from zero automatically belong
to the conservative class. The second quantity, I,(L), measures flatness of F; around the
start of its support and is infinite only for distributions that are extremely flat near b. More
concretely, if F in the neighborhood of zero satisfies for some g > 1,

Fr(x) =exp(— exp(ex_ﬁ)),

then I,(L) = oo, while for 8 € (0, 1) it holds that I,(L) < co. We are mostly interested in
distributions that satisfy I1(L) = oo, as by [37], Theorem 2.8, the typical weighted distance
is already of constant order if I1(L) < oo, making Theorem 2.5 a trivial statement in this
case. Observe also that in this case Q;  in (2.6) is bounded from above by some constant.

3. Proof of the lower bound. Now we prove the lower bound of Theorem 2.5, that is,
we show that with probability close to one there is no foo short path between u; and v; for
any t" > t. The main contribution of this section versus existing literature, for example, [17,
23, 37], is the following proposition concerning the graph distance. In its proof, we develop
a path-decomposition technique that uses the dynamical construction of PA; in a refined way
to get strong error bounds that are summable over ¢’ > ¢. After the notational and conceptual
set-up of the argument, we state and prove some technical lemmas. At the end of the section,
we extend Proposition 3.1 to the edge-weighted setting, using refinements of the error bounds
in [37]. We abbreviate u := u; and v := v;, respectively.

PROPOSITION 3.1 (Lower bound graph distance). Consider the preferential attachment
model with power-law exponent t € (2, 3). Let u, v be two typical vertices in PA;. Then for
any 8 > 0, there exists Mg > 0 such that

3.1) P@EC > 1:d% (u,v) <2K,, —2Mg) <.

Observe that ¢’ is inside the P-sign. Hence, (3.1) tracks the evolution of dg,) (u,v) as time
passes, and the graph around u« and v grows. To estimate the probability of a too short path,
we use a truncated path-counting method similar to [23]. This method first excludes possible
paths that are unlikely to be present, called bad paths. Then, among the rest, the good paths,
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it counts the expected number of paths that are too short and present in PA;,. More precisely,
the expected number of paths between u and v of length at most

(3.2) 2K, :=2K,  —2Mg

is shown to be much smaller than one. We do this decomposition in an interlinked way that
ensures that paths are only counted once.

3.1. Set-up for the graph-distance evolution. Recall that the arrival time of a vertex is
also called birth time. The decomposition of good and bad paths is based on an array of birth
times (ZZ)I,) for which we make the following assumption throughout this section.

ASSUMPTION 3.2. The array of birth times (Zk ﬂ)k>0 t/>, 1s a positive integer-valued

array that is nonincreasing in both parameters and satisfies KO v < t. We call it the birth-
threshold array.

Recall the definition of paths in Definition 2.3.

DEFINITION 3.3. Let (el(;)t’)kZO,t’Zt be an array satisfying Assumption 3.2. A t'-possible
g-path (mo, ..., m) is called t'-good if t' > 7; > E(’) for all j < k, otherwise it is called
t’-bad. A t’-possible (u, v)-path (7, ..., m,) is called (n,t')-goodif wj Am,_; > Z”) for all
j < |n/2], otherwise it is called ¢’ —bad.

This definition calls any path bad if it has a too old vertex, where the threshold Z?l, de-

pends on the distance from mg. Thus, all vertices on a good path are sufficiently young. We
decompose t’-bad paths according to their first vertex violating the threshold.

DEFINITION 3.4. Let (Ez),/)k>0 > be an array satisfying Assumption 3.2. We say that

a wo-path (7o, ..., ;) of length n is (k, t’)-bad if the path is ¢'-possible and > E() for all

(1)

J <k,butmp <t;’,.

OBSERVATION 3.5. Let (El(gt,)t/)kZOyI/Zl be an array satisfying Assumption 3.2. Then:

if a path is t’-good, then it is 7-good for all 7 > ¢’.
if a path is #’-bad, it is possible that it turns 7-good for some 7 > t'.
if a path (7o, ..., m,) is ’-bad, then it is 7-bad for any 7 € [max{m;}, '].
4. if for all i <k no (i, — 1)-bad path is present in PA,/_, then a (k, t")-bad path can
only be present in PA if it passes through vertex #’.

W

All four observations follow directly from the definitions of good and bad paths, and the
fact that (ﬁg?t/)kzo,z/zt is decreasing in both parameters; see Figure 3(A-B). The fourth ob-
servation turns out to be crucial in our decomposition argument. We define the events whose
union implies the event between brackets in (3.1). We start with the event of having a bad
path emanating from g € {u, v} for k > 1, ¢’ > r, that is,

(3.3a) (q)( ) {3(k, 1)-bad g-path}, t=t,
33b) P |{3(k. o) -bad g-path, Vi< : (i, ¢’ — 1)-bad g-path}, ¢’ > 1.
Here, the sign 3 indicates that a path is present. For completeness, we define for ¢’ > 7, k =0,

(3.4) E0,7) = {g < £§),} S &L, 1),
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FI1G. 3. Good and bad path decomposition for the lower bound. Bad paths are displayed in red, the green dashed
lines are the good paths and the blue dotted lines represent possible paths that are absent. The y-axis represents
the birth time of the vertices and the x-axis the graph dtstance from q and u, respectively. In Figure (A) we see
that if a path is t|-good, then it is also tp-good since t' — Z k.t is decreasing. However, the red (k, t1)-bad path
turns (k, t2)-good. Figure (B) shows that if there is no (k, t})-bad path, a red (k, tp)-bad path must pass through
a vertex in (t1, tp]. Note that the green path in Figure (B) is ty-good. Although it violates a birth threshold valid at
time time t1, the path is not t|-bad because it is not t|-possible. Figure (C) shows that if there is neither a good,
nor a bad ty-present (u, v)-path of length 2k, then a ty-present (good) (u, v)-path must pass through a vertex in
(11, tr]. We apply the observations in these figures for tp =t + 1.

(1)

where the inclusion follows since " > £ 0./ 18 nonincreasing. By the additional restriction

on bad paths in (3.3b), the events bad(k t’ ) are disjoint in both parameters. For bad(k )
and ¢’ > ¢, as a result of Observation 3.5(4) and the restriction in the definition (3.3b) of not
having a bad path at time ¢ — 1, we only have to consider paths that pass through the vertex ¢'.
This motivates to decompose the (k, t')-bad paths passing through vertex ¢" according to the
number of edges between the initial vertex ¢ € {u, v} and ¢’. Indeed, consider a (k, t")-bad
g-path where ¢’ is the ith vertex, that is, it is of the form (g, 71, ..., i1, ¢, Tit1, ..., Tk)-
Then, by Definition 3.4, the constraints that this path satisfies is that for j < k, 7; > Z(Jf}z/. This
means that on the segment (7;41,..., %) =: (01, ...,0k—;) the indices of the constraints
have to be shifted by i, giving rise to o; > " Y for j <k — i. Hence, we introduce good
paths on a segment. Recall that {my <> --- <> 7,} means that (7o, ..., m,) is t'-present for
' = max; <, 7;.

DEFINITION 3.6. Given an array (Eg)ﬂ)kEO,t/zt satisfying Assumption 3.2, let

[i,n) C ..
(x %y = {disjoint(T;, ..., Tp—1) X =T <> -+ Tp_1 <>y |Vjp 17, € [E(]’)I,, '}

[,m)

If {x ~~'y}; # &, we say that there is a t'-good x-path on segment [i, n). We write

lir,n1) [i2,n2)
>

{x Yiro{y ~

for the set of self-avoiding (x, z)-paths that are ’-good on the segment [i1,n]) from x to y
and t'-good on the segment [i3, n7) from y to z.

47

Note that there is no birth restriction on the last vertex on the segment, explaining the
half-open interval superscript [i, n). Thus, if 73 < £\ x> then

a1 o (1 | 2 1
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precisely means that there is a (k, t')-bad g-path from ¢ to 7y that has ¢’ as its i th vertex. For
notational convenience, we omit the subscript ¢'.

Having set up the definitions for the bad paths, we define the events that allow to count the
expected number of too short good (u, v)-paths. Let, for n > 1,

(3.5 , )
(3.5b) gs(h(;;)t (n, 1) =

{3(n, 1)-good (u, v)-path}, t'=t,
{3(n, 1')-good (u, v)-path, ¥;_, : H(u, v)-path of length n}, ' > 1,

and set for completeness

L0, 1) = {u = v).

short

Observe that in (3.5b) we require that at previous times there was neither a good, nor a bad
path of length n between u and v. This is a stronger requirement than the one in (3.3b),
where we do not put any restrictions on good paths at a previous time, but there only one

endpoint of the path (# or v) is fixed. By definition, for a fixed n, the events Ss(hog) (n,t’) are
(u,v)

disjoint. Moreover, we observe that if £, /' (n, t') holds, then there is a #’-present (u, v)-path
of length n connecting u and v that traverses the vertex #’, which is a similar observation
to Observation 3.5(4); see Figure 3(C). Using the definitions of the events £yyq and Eshort,
we can bound the event between brackets in (3.1), and hence its probability of occurring, as
stated in the following lemma.

LEMMA 3.7. Let (Ez)ﬂ)kzO,t/zt be an array satisfying Assumption 3.2. Then

tt/

3.6) P@E'>1:d"w,v) <2K, ) <y Z Zﬂ{k>2m,_l}p>(gggg(k )
gel{u,v}t/=t k=0

2K[ i

3.7) +Z 3 Lz or e PESr (n.1')).

t'=t n=0

PROOF. To prove the assertions in the statement, we will first bound the event between
brackets on the left-hand side (lhs) in (3.6). Eventually, the bound then follows by a union
bound.

Bounding the events. We write o (u,v) := {(u,v), (v,u)}. We aim to show that if
(Zg)ﬂ)kzO,t’zt is an array satisfying Assumption 3.2, then

o) K!,t/ tt/

(38) {3'zr:df (w.v)<2K, ) S U((U U &alk.r) ) U Egront (1. )
t'=t k=0 ge{u,v}

Moreover, for k,n >2 and ¢’ > ¢,

()
Kk t/_lk 1

39 &Y%k | U)o (¢E0x) > 1),

x=1 i=1
=1 |n/2]-1

U R O U e e
(3.10) (611 q2) x=¢®

€o (u,v) ln/21,¢

Ufltgr™ = o {2 1),
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We first prove (3.10). Let & be any path of length n > 2 whose presence 1mphes thoft) (n,t)
for some t’ > t, so that  is a ¢/ good (u, v)-path by the definition of gshort (n,t") in (3.5b).
From (3.5b), it also follows that ¢’ is on 7, as there was neither a good, nor a bad (u, v)-path
of length n before time #’. Thus, the '-good (u, v)-path & can be decomposed in a t'-good u-
path of length |n/2] and a t’-good v-path of length [1/2]. Considering all possible positions
of ¢’ on the path, the presence of & implies the event on the rhs in (3.10). There, we denoted

by x # t’ the vertex at distance |n/2] from g; that satisfies the constraint x > Z(L) 1200 Thus,

x is at distance [n/2] from g1, and since j — E() is nonincreasing also x > Z( 210 So the
inclusion in (3.10) holds, since & was an arbitrary path.
Similarly, let # = (g, ..., ) be any path of length kK > 2 whose presence implies
ézﬂ)l(k t") for some ¢’ > t, g € {u, v}, so that m; < E}(’)t, By Observation 3.5(4), vertex ¢’
must be on ;r and by a similar reasoning as before we obtain (3.9).

Lastly, we prove (3.8) for which we rewrite the lhs as a union over time and paths, that is,

0o 2K, v
{Elt/zt:dg/)(u,v)SZKtt U U U (u<m < o m,_ < v}

[t ]n 1

disjoint
Let & := (mo, ..., ) be any self-avoiding path from mg := u to 7w, := v in this set. The
smallest time ¢" at which & can be present in the union on the rhs is at 7’ := ¢ v max; <, 7;.
Then, n < 2K, ,, must hold due to the fact that ¢ — K, ,, is nonincreasing. We will show
now that the event that z is #’-present is captured in either Sb(ffoft) (n,t) or Sézg(k, f) for some

i <t,k<n/2,q € {u,v}. Forany length n > 0, 1fu/\v<£mt,,then

{z present} € EX(0,1) U EL(O, 1),

since t’ > EE)),, is nonincreasing. From now on, we assume that u A v > EO pE If n <1, thatis
when {u = v} or {# <> v}, then = must already be present at time ¢, that is,

{m present} € | 5S(h”0;)t)(z 1).
i€{0,1)

From now on, we assume that the length n > 2. Moreover, if 7 is a t’-good path, then
{mr present} C Esnort(n, 1').

Assume 7 is not a t’-good (u, v)-path. Consequently, there is a #’-bad path emanating from
either u or v, which is a subpath of x. So, recalling Observation 3.5(1) and (2), the first time
that this bad subpath is present, that is,

fi= argmin{flmsn/z DU, Ty - TTny2)) OF (U, Tty o Tne|n/2)) 18 (7, m)-bad}
<t

is well defined and at most ¢. By Observation 3.5(3), 7 is bad at f, so that for some m < n/2,

{r present} C U Sb(ad(m f).
ge€{u,v}

Union bound. Having bounded the events between brackets on the lhs in (3.6) and (3.7),
the assertions follow directly from a union bound on the events in (3.8). We argue now that
the events where one of the indicators in (3.6) and (3.7) equals zero, happen with probability
zero. We start with (3.7): 1,52 or /=) = 0 when both ¢’ > ¢ and n € {0, 1}. Since no new paths



4370 J. JORRITSMA AND J. KOMJATHY

connecting # and v of length one, that is, a single edge, can be created after time u vV v <t
we have that for ¢’ > r and n € {0, 1},

8 (n.i) =2

short
as by its definition in (3.5b) we require that there was no path of length n before time ¢'.
Similarly, bad paths of length at most one must already be present at time ¢ since ¢’ +— Z;{”t,
is nonincreasing and starts at a value at most 7. So for g € {u, v}, t' > 1, k € {0, 1},

ED (k1) = 2. 0

3.2. Bounding the summands. The main goal of this section is to prove the following
lemma for two suitably chosen sequences k — «[o.k), Bjo,x), defined below in (3.21) and
(3.22). It obtains bounds on the individual summands in (3.6) and (3.7) in Lemma 3.7.

LEMMA 3.8. Let k — oo ), Bo.x), as in (3.21) and (3.22) below, respectively. Then
there exists C > 0 such that fork >2,n>2andt' > t, q € {u, v},

(1)
Zk,z’fl

(3.11) PED (K, 1) < Cr k= Daoy Y x77,

x=1

P(g(u,v) (n,1) < 2:3[20, (n/21)f/zy_2

short

(3.12) B _ _1y2
+Cnt > (oo x " + Boaonx? )

x:ELn/ZJ’t/
Fort'=t,k,n>1and q € {u, v}, it holds that

o1

(3.13) PED K, D) <apopy Y. x77,
x=1
d 2
(3.14) P(EGor D) = - (@, m2nx ™ + Biommanx” ).
=t

ln/2]).t

We prove the lemma at the end of this section after having established the necessary pre-
liminaries and identified the sequences k — oo k), Bjo,x). The decomposition method count-
ing paths that traverse the vertex t’ (for #’ > 1) yields a bound in (3.11) and (3.12) that are
a factor 1/¢’ smaller than their counterparts with " = ¢ in (3.13) and (3.14). By small re-
finements of the methods in [23], we obtain that the individual sums on the rhs in (3.11) and
(3.12) are of order 1/ log3 (). This is why the error terms are summable in ¢’. The extra factor
1/¢" illustrates the necessity of our decomposition method versus previous methods.

In order to prove Lemma 3.8, it is crucial to understand the probabilities on having self-
avoiding paths that are restricted to have specified vertices at some positions, by (3.9) and
(3.10). For this, we use the following proposition.

PROPOSITION 3.9 (PA(y) [23], Propositions 3.1, 3.2). We say that a preferential attach-
ment model satisfies the condition PA(y), if there is a constant v € (0, 0c0) such that for all
t' € N, and pairwise distinct vertices Ty, ..., € [t'],

k
(3.15) P(mo <> -+ < m) < [ [ v A me—) ™ (e vV me—)? ™! =t plono, - ).

i=1
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The above condition is satisfied for PA in Definitions 2.1 and 2.2 for y = 1/(v — 1). We set
p(mo, ..., ) := 0 if the vertices are not pairwise distinct.

For k > i > 0 and a vertex 7; > Z;”z, and another vertex 7y € [t'], we define

(3.16) oG my= > plm.....m),

where for a vertex set V C [t'], P(V x) denotes the set of pairwise disjoint Vertex tuples
(741, ..., mwk—1) such that 7; > > ¢ )z,, wj ¢V forall i < j < k. Intuitively, f[l 3 (n,-, k)
is an upper bound for the expected number of ¢'-good paths on the segment [i, k) from 7;
to .

We derive upper bounds for the summands in (3.6) and (3.7) in terms of f (l’,'()) .

CLAIM 3.10. Consider the preferential attachment model with power-law parameter
T > 2. Let (ZZ)I/)kz()J/Z[ be an array satisfying Assumption 3.2. Then for k,n >2 andt’ > t,

61k
G17) PEDK) < XY feia. ) fE0( %),
x=1 i=l1
o) -1 [n/2]-1
u,v ’/
P (1) = 22 XX fmen@n 0 ik a2 ) fili ()
(3.18) @ g€ ) g =]

(t.1) .t
+ f[([),rrn/zn(‘ﬁ’ f/)f[(;,[m/zj)(éh, 1),
while for any k,n > 1 andt' =1,

Z(t)

(3.19)  PEDK ) < Z 50 @20,

t
(320)  PEG )< Y > A @ ) f5 0y @2 %)
(q1,92)€0 (u,v) y_ (Z(Lt)/zj y

PROOF. Recall the set of paths {m; [iv’é)nk} from Definition 3.6. Then by Markov’s in-
equality, (3.16) and Proposition 3.9,

PO ) = D <EN"Ymin= Y Pawe-om)
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Now for concatenated paths, due to the product structure in (3.15), and by relaxing the dis-
jointness of sets, we have

[0,i) [i,k)
P(|{mo~mi}ofmi > m}| =1) < Y > pGro..... )P, ... )
(ﬂlinw”'iflg(ﬂwl{ ,,,,, 7Tk'—}l)
eP(O’?)’ 7k GP(L,?)""' !
< fioiey Gro, ) £ (i, 0.

Recall now (3.9), so that (3.17) follows by a union bound and choosing 7o = ¢, 7; =t’, and
7 = x. Similarly, (3.18) follows by union bounds over the rhs in (3.10). The bounds (3.19)
and (3.20) follow analogously from their definition in (3.3a) and (3.52). U

We establish recursive bounds on f; “ ” in the spirit of [23], Lemma 1. Let (gg)z')kz&t’zt

be an array satisfying Assumption 3.2 such that n; /1= (t//ﬁ(]f?[/) >eforall j>0and? >71.
Define for y :=1/(r — 1) and some ¢ > 1,

e ! ji=1
« ._ 0,¢/ > ’
(3.21) %0, = 1 %) Ry—1 o1
(a[OJ D Og(m 1,¢) +,30, 1)t )’ J>1,
vé_y j:1
! 0,1 s
(3.22) ,3(6). = -2 .
0 C(O‘EE))J nt - 1)/,/ +,3[0 i 1)10g(77j—1,z/)), j>1

similar to the recursions in [23], Lemma 1. The sequence (a&)’) j)) j>11s related to the expected
number of self-avoiding #’-good Raths (7o, ..., ;) of length j from my € {u, v} to 7; such
atmwi_1 > 7 e sequence ) j>1 is related to those paths where ;1 < ;. Observe
that 71 > ;. The seq (Bio.j)) = lated to those paths where 7; ;.0Ob
that since ¢ > 1, n; » > e and a(g 1) (8 H = 0, it follows that k — oz&)) K and k — ,8[(8’,() are
nondecreasing. We define for the same constant ¢ > 1 the nondecreasing sequences

(3.23) )= v, j=1
. ',‘+' o — .
i) (¢[ll+j l)log(nl""] 1[)+wll+j l)t/zy 1)’ J = L,
, 0, i=1
G249 Y= /
; ") =2 (@) ;
(B jmnlivs e T Vioejonl0g80isjm10). J > 1.

These sequences are related to the #’-good paths emanating from ¢’ that are good on the
segment [i, i + j). Observe that the recursions are identical to (3.21) and (3.22), except that
their initial values are different. This is crucial to give summable error bounds in ¢’ later on.
Below, we leave out the superscript (¢") for notational convenience, but we stress here that
these four sequences are dependent on both ¢" and ¢.

Cramm 3.11 (Recursive bounds for number of paths). Under the same assumptions as
Proposition 3.1, let (Ek t/)k>0 > be an array satisfying Assumption 3.2. Let nj y =t /E(')
and y =1/(t — 1). For sufficiently large ¢ = c(t), v = v(t) in (3.21), (3. 22) (3.23) and
(3.24), it holds that
(3.25) it (0 x) S X7 iy +1,, o

-1
X Wi )-
i+j—1,t

Moreover,

(3.26) £60@. %) < Lpeppx Vo ) + Lse X7 Bro. -
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We refer to the Appendix for the proof, which follows by induction from arguments anal-
ogous to [23], Lemma 1. As a consequence of (3.26), we have for g € {u, v},

— -1 -1
f[(étl))(q t ) < ]]-{l‘/<t’}t/ ya[o’j) + :H'{I/>Z(,t> 1 [,}l‘/y /3[0,]) = l’/]/ ﬂ[(),])
J—L

Moreover, since x < E,i’)t, implies that also x < K}(’)_l , since k > E;(’)t/ is nonincreasing, for

x <, it follows from (3.25) that
( — —
fio (@ x) <x7V iy + :H‘{x>g](:ll t/}W[i,k) =x"VPliit))-

Hence, we can bound the summands in (3.6) using Claim 3.11 to obtain for k > 2,1’ > 1,

b1 Gor=t
1 kA,t/ —

(327) PED(K.1) < Z Y@ ) o x) < T xS Bl
x=1 i=1 x=1 i=1

Similar to (3.27), we bound the summands in (3.7) from above using (3.18) and replacing the
first sum over the permutation o (u, v) in (3.18) by a factor two, that is, forn > 2 and ¢’ > 1,
PEon (1.1)

short

t/

<2770 Y (Lo fng2nx Y+ Blo.mmyanx? V)
(3.28) x=Cp, )0

ln/2)—1
'(1{X=t/}ﬁ[0,Ln/2J)+1{X<t/} > (5[o,i>¢[i,Ln/2J>x_V+ﬁ[o,i>1/f[i,tn/sz7_l)>-
i=1

Both (3.27) and (3.28) contain convolutions of the sequence Bjo ;) with ¢y; r) and ¥r; r). This
motivates to bound these convolutions in terms of the original sequences oo k) and Bjo ).

CLAIM 3.12. Let (b[,‘,k), l/f[l',k), o[0,k)> ,B[O,k) be asin (3.23), (3.24), (3.21), (3.22), respec-
tively. Then there exists C > 0 such that for k > 2,

k—1

(3.29) BY =" Bro.nviin < Ctk— 2ot ",
i=1
k—1

(3.30) BY =" Bo.iydiin < Ck — Dago syt ™.

i=1

PROOF. We prove by induction. We initialize the induction for k = 2, the smallest value
of k for which the sums in (3.30) and (3.29) are nonempty. Indeed, then (3.29) holds by the
initial value of Yr; ;1) = 0 in (3.24), that is,

Bé” = Bro.n¥r,2 =B, -0 <C-0- Bt 7.
For k =2 in (3.30), we substitute the recursion (3.21) on «[o,2). Thus, we have to show that
BY = Bo.nyéi1.2) < cCleqo.1y log(ni 1) + Bro.yt™> 1"
Using the initial values in (3.21), (3.22) and (3.23), this is indeed true for C > v/c, that is,

BY = vl b vt < cC(vKg;,l log(t'/€1.0)t" ™" + vZ&?t”’_]).
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Now we advance the induction. To this end, one can derive the following recursions using
(3.23) and (3.24):

1-2
(331) B), =cBlt, 7 +cB lognr),  BY =0,
(332) BY., =v1" " Bios +clogne)Bf + B 17, By =07l

The first term in (3.32) is a result of the nonzero initial value of ¢; ;1) in (3.23), while
Yii,i+1) =0, so that there is no such term in (3.31). Since the two recursions depend only on
each other’s previous values, we can carry out the two induction steps simultaneously. By the
two induction hypotheses (3.29) and (3.30), and the definition of B[ x+1) in (3.22), we have
that

B\ =cB ¢, 7 + B log(n.r) < Ce((k — Dagonyly 7 + (k —2)Bro. log(ne, )t~

< C(k—DBor+nt 7,

proving (3.31). For (3.32), we assume that cC > v so that using the induction hypotheses and
(3.21) the proof is completed, that is,

Bl?—i—l = Clog(nk,t/)Bl? +CB]1/II/2}/_1 + Vl/y_lﬂ[()’k)
< clog(i.)C (k — Dajot’ ™ 4t 71 Ck = 2) By + vt " Bk
<C(k— 1)Ot[()7k+1)t/_y. Il

We combine Claim 3.12 with (3.27) and (3.28) to arrive to the proof of Lemma 3.8.

PROOF OF LEMMA 3.8. We start with (3.11). Recall for g € {u, v} the bound on

]P’(c‘,’é;{gl (k,t")) in (3.27) and observe that (3.30) implies (3.11), since there is C > 0 such that
fork > 2,

(1) (1)
k—1 Ek,t/_l ek,r’_l

]P’(géz()i(k, l‘/)) < 1 Zﬂ[O,i)‘ﬁ[i,k) Z xV < Ck— l)t/_lol[o,k) Z x77V.
i=1 x=1 x=1

For (3.12), we recall the bound (3.28) and bound using (3.30) and (3.29) the factor on the

second line in (3.28) by

Lie=r Bio,1n/2)) + Liw <y Ct' ™7 ((Ln/2] = Detgo, pny2px " + (1n/2] = 2)Bo.njanx? ™).

Now (3.12) follows by distinguishing the summands in (3.28) between x < ¢’ and x = ¢/,
and using that j — «o,j) and j — B, ;) are nondecreasing so that we may round up their
indices to [n/2] to obtain the square. Lastly, the bounds (3.13) and (3.14) follow directly
from (3.19), (3.20) and (3.26), where we again round up the indices to obtain the square. [l

3.3. Setting the birth-threshold sequence. After the event decomposition in Lemma 3.7
and the bounds on the individual summands in Lemma 3.8, we are ready to choose the birth-
threshold array (Eg)t/)kzo,t/zt to ensure that the sums in (3.11), (3.12), (3.13) and (3.14) are
sufficiently small. The right choice of (ﬁz)ﬂ)kZO, > will make the error probabilities in (3.6)
and (3.7) arbitrarily small. Fix 8’ = §’(8§) > 0 that we choose later to be sufficiently small. We
define
(3.33a) [8t], k=0,

o ._

£ = (®) _
(3.33b) BT Nargmax {oopx 77 < (klog(f) ), k> 1.
xeN\{0,1}
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Since k > ajo,x) is nondecreasing and 1 —y > 0 by (3.33b), k — KZ,)[/ must be nonincreasing
in both indices. Using the upper bound on ¢’/ E;{’?t, in Lemma A.2 in the Appendix, one can
verify that E;{”)t, > 2 forall k < K, if 1 is sufficiently large. Hence, the array (Ezft/)kzo,t’zt
is well defined. The choice of (Zl(cl,)ﬂ)kz(), ¢>¢ 1n (3.33) is similar to the choice in [23], Proof of
Theorem 2, for ¢’ = ¢. The main difference is the extra log_3(t’ ) factor on the rhs in (3.33b).
This factor, in combination with the 1/¢'-factor from Lemma 3.8 yields a summable error in
' in (3.6) and (3.7). We comment that the additional log_3(t’ ) factor could be changed to
another slowly varying function, but the choice has to be o((¢')€) for all € > 0, otherwise the
entries of (E,((’?t/) would not be at least two, whence the array would be ill-defined.
We are ready to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. To prove (3.1), due to Corollary 3.7, we need to show that
the rhs in (3.6) and (3.7) is at most &, for ¢ sufficiently large. To keep notation light, we write
Ly = Zl(c)t/ First, we consider the terms in (3.6) where ¢’ = ¢. Recalling the definition of

Eéad(O t) from (3.4) and the upper bound on its probability in (3.13), we have for g € {u, v}

Ktt Ekr—l
(3.34) ZP ELKk,D) <8 +00/D)+ D apony Y x77,
k=1 x=1

where the term 8’ + O(1/t) comes from the probability that ¢, the uniform vertex in [¢], is
born before £(, = [§'t]. Now approximating the last sum in (3.34) by an integral and using
(®) in (3.33b), we have for some c¢; > 0, g € {u, v},

—tl‘ Ktt
S P(ED K )) <8 +o() +c1 Y il
k= k=
(3.35) 0 ! .
=8 +o(1)+crlog ()Y k2 =8 +o(l).
k=1

We move on to the terms on the rhs in (3.6) for ¢’ > ¢ and show that their sum is of order
0(8'). Recall for ¢ € {u, v} the bound on P(é’égé(k, t")) in (3.11), and observe that there is
C’ > 0 such that, approximating the sum over x in (3.11) by an integral gives for t' > ¢, k > 2,

C/

(@) / / /—1
P(Epaq (k. 1)) < (k= Doty m-

The last inequality follows from (®) in (3.33b). The rhs is summable in k and ¢’ so that, only
considering the tail of the sum,

(3.36) 3 _Z P& (k, ') = O (log~2(1)).
t'=t+1 k=2

Combining (3.35) and (3.36), this establishes that the rhs in (3.6) is at most 28’ + o(1) for ¢
sufficiently large, when summed over g € {u, v}.

We continue by proving that the summed error probability in (3.7) is small. First, we
consider the terms where ' > 7. Recall (3.12). We use now that (a 4+ b)? < 2(a® + b?) for
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a, b > 0, so that there exists C’ > 0 such that

/ t'—1
(u,v) 2y—2 p2 Cn o 2y-2
P(Egpont (n.1)) < 2% 2B, 1y, 2. 7
x=L, 0.1
(3.37) C'n !
“n o -2y
+ w2 x
x:£L11/2J,t/

= T11(n, t/) + T]2(l’l, t,) + Tz(n, t/).

Approximating the sums by integrals and using that k — {; , is nonincreasing, there exists a
different C’ > 2 such that, relaxing the first two terms in (3.37),

— 1-2 -
T]](n, t/) + T]z(l’l, t/) S Q,C'/”lﬂ[zo7 [n/z'l)tlzy 2, Tz(n, t/) S C’na[zov r”/z])gfn/;l,t’t/ 1

For Ty := Ty1 + Ty, by (3.21) it holds that cByo,x/27) < o0, (n/zpr])t/l_zy, yielding by (®)
in (3.33b)

Tl (n, t/) < 2C/7’l(1[207 |—n/2'|+1)t/_2y/cz

- 2 2.2 )
(3.38) =2C"n(@0.1n/2141)/L o 11,0) (¢ inpnirr)” 7 (')
2C'n , 2-2
< t' /e ’
< (rnm+1)6log6(t/)(cﬂ)2( /in/2+1.17)

Rewriting 7> similarly,

C'n ,
= 10210 logb (1)1 (/2.

Recall that £f,/2741, > 2 as mentioned after (3.33b). Thus, both (3.38) and (3.39) are
summable in 7 and n. They tend to zero as ¢ tends to infinity, using for (3.38) that 2 — 2y < 1.

It is left to verify that the terms where ¢ = ¢ in (3.7) are of order O(8’) when summed
over n. For this, the same reasoning holds as above, starting after (3.36), where the initial
bound is the one in (3.14) instead of (3.12). Here, all terms are a factor ' = ¢ larger than
before. This yields that

K[l‘ Ktt

Z PELY (n, 1)) = 0(1) + ——— 6( - (t/Ck, +1.) Y /2170 = O(log~5(1)) = o(1).
n=1

Recallmg the conclusions after (3.36) and (3.39), we conclude that the error terms in (3.6) and

(3.7) are of order O(8'), so that (3.1) follows by Corollary 3.7, when & is chosen sufficiently

small so that the error probabilities are at most 8, and 0o, = t/£o,; > e as required by the

definition of «yg, j) and Bo, j) before (3.21). [J

(3:39) Ta(n, ') < C'n(@o,1m/21) iy 0) (/€ puy)t 2

3.4. Extension to weighted distances. We extend the result on graph distances from
Proposition 3.1 to weighted distances, refining [37]. For this, we introduce the graph neigh-
borhood and its boundary.

DEFINITION 3.13 (Graph neighborhoods). Let x be a vertex in PA;. Its graph neigh-
borhood of radius R € N at time ¢, denoted by Bg) (x, R), and its neighborhood boundary,
E)Bg) (x, R), are defined as

BYx,R):={yelt]:dPx,y) <R},  0BY(x,R):={yelt]:d¥(x,y)=R).
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Recall Q; , from (2.6).

PROPOSITION 3.14 (Lower bound weighted distance). Consider the preferential attach-
ment model with power-law exponent T € (2, 3). Equip every edge upon creation with an i.i.d.
copy of the nonnegative random variable L. Let u, v be two typical vertices in PA;. Then for
any & > 0, there exists My > 0 such that

PR > 1:df (u,v) <20, —2M;) <.

PROOF. Fix &' sufficiently small. Define

Bt t v

Exo0a (1) = () ( N N &) ) ( M =& (v )
t'=t \k=0 ge{u,v}

for K, ;.= K; 4 — Mg, where Mg > 0 is such that the above event holds with probability

at least 1 — &’ by the proof of Proposition 3.1. Define the conditional probability measure

Py () := P(- | Egood(1)). On the event Egood (1), d (u, v) > 2K, for all ¢’ > 1. Hence, at all

times ¢’ > ¢ also the graph neighborhoods of u and v of radius K, ,/ are disjoint, that is,

o0

]P>g<ﬂ {BE w, K, N NBE (0, K, ) = @}) =1.
t'=t

Since any path connecting # and v has to pass through the boundary of the graph neighbor-

hoods, Pg-a.s. for all ¢/,

d" w,v) > > dg)(q,aBG(q,Km’))
g€{u,v}
(3.40)

K, -1

> Y Y d(9Balg. k). 0Bc (g, k+ 1),
qe{u v} k=0

where for two sets of vertices V, W C [t'] we define dg/) WV, W) := minyey wew dg/)(v, w).
This leaves to show that, for some My = M (8'), g € {u, v}, C >0,
Kt,t/_l
(3.41) Pg<3z’ >1: Y dY(0Bg(g, k), 0BG (g, k+ 1)) < Q; 1 — ML> <cs'.
k=0

We argue in three steps: we prove that it is sufficient to consider the error probabilities only
along a specific subsequence (f;);>¢ of times. This is needed to obtain a summable error
bound in #’. Similar to [37], Proposition 4.1, we prove along the subsequence (#;);>0 an
upper bound on the sizes of the graph neighborhood boundaries of « and v up to radius X, ;..
This allows to bound the minimal weight on an edge between vertices at distance k and k + 1
from g € {u, v}.

By the definition of Q; > and K, ;» in (1.2) and (2.6), due to the integer part, K, ,, and the
rhs between brackets in (3.41) decrease at the times

(3.42) ti:=min{t': K;; — K, p =2i} forie{0,...,K,/2},

while the lhs between brackets in (3.41) may decrease for any ¢’ > ¢. Because the addition of
new vertices can create new (shorter) paths, we have fori > 1,

{3t e ltim1, 1) :df )(61, 0BG (q. K, ) < Qry — ML}

(3.43) ]
C{d(q.9B6(q. K, +2)) < Qryi_, — ML},
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where K; y = K, ;; +2 fort’ € [t;_1, 1;) follows from (3.42). By construction of #; and Q;
in (2.6), where the summands are nonincreasing, there exists M > 0 such that for all ¢,

Q15 — Qrriy | < M.

This yields that we can bound (3.43) further to obtain

(3t € ltio1, 1) :d\ (g, 0B6(q, K, 1)) < Qup — My}
C {dy”(q.8Bg(q, K, +2)) < Oryy — M+ M)}

Hence, by a union bound over i, we can bound (3.41), that is,

P (aﬂ >1:dy(q,88c(q. K, 1) < Qry — Mp)

(3.44) /2
Z Py (dy”(q,0B6(q, K, ,, +2)) < Qryy — Mr + M)).

In Lemma A.3 in the Appendix, we show that a generalization of [37], Lemma 4.5, gives for
B sulfficiently large (depending on §”) and ml(.’fk(B) =exp(2B(1 Vviog(t; /1)) (T — 2)~k/2) that

K, . +2

(3.45) Pg( U {188 (q. 0| = mj”k(B)}) <2exp(—B(1Vvlog(ti/1))).
k=1

We denote the complement of the event inside the P-sign by £ elgh (q) for a fixed i. Define the

conditional probability measure ]P)gfn(-) =P | Ego0a NE (’)lgh(u) né& (’)lgh(v)) The number of
edges connecting a vertex at distance k from ¢ to a vertex at distance k + 1 from ¢ can then
be bounded for all k < K, ,. + 2, that is, Pg’)n—a.s.,

0BE (g, 6)| - |8BE (g, k + 1)

<m{}(B) -m{),(B) <exp(4B(1Vlog(t; /1)) (x —2)"**V/2) =in; .

(3.46)

Since all edges in the graph are equipped with i.i.d. copies of L, and as the minimum of
K i.i.d. random variables is nonincreasing in K, we have by Lemma A.1 for £ > 0 that for
k<K,,+1,

PO (d(0BE (q. k), 9BE (q.k+ D) < Fy P (n; %))
; . 1), —1- _
< Pfgfn(jg[l;?k] Lix=<Fy V(ny %)) <exp(=4BE(1 v log(t; /) (x — 2~ **D/2),

Recall (3.40). We apply the inequality in the event in the first row above for k < K, , + 1 to
obtain a bound on the lhs between brackets in the second row in (3.44), that is, by a union
bound

—t,tl'+1
i i =D —1-
Pgn(dé”(q,a&(q,g,,. i) 3 AV E))

k=0
(3.47) Koyt
< Y exp(—4BE(1vlog(si/n)(r =2~ D7)
k=0

<2exp(—4B&(1 v log(t; /1)) (r —2)7 ).
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‘We now bound the sum in the above event from below to relate it to the rhs between brackets
in (3.44). We do so by modifying [37], Proof of Proposition 4.1, after (4.31). Afterwards, we
bound the total error probability by taking a union bound over the times (#;);>0.

To bound F; = 1)(n ) from below, we need an upper bound on 7;; in (3.46) since

2= F; — (1/z) is nonincreasing. We first establish a lower and upper bound on ¢;. Recall
the integer K, ; defined in (1.2), so that we may write for ¢’ < K, /2

K; =2(loglog(t) — log(log(¢'/1) v 1))/[log(t — 2)| — ay
for some a, € (0, 1) being the fractional part of the expression. Using this notation, one can
verify that
(3.48) t € [texp((r —2) 7, texp((t —2) """ Y] =t 1, ii] fori < K. /2.

Substituting the upper bound on #; into n ; in (3.46) yields that there exists C = C(§, B) > 0
such that

n o € [exp((r —2)7 %2/ C), exp(C(x — 27 /)],

which implies that, recalling K, 4= Kiy — Mg for some constant Mg > 0 by (3.2),

K” +1 K,Ji—Mg—l-l
Z F( 1) (1+§)) Z Fé_l) (CXp(—C(T . 2)—1—/{/2))‘
k=0

Observe that for a monotone nonincreasing function g, g(1) < oo,

] ) [b x &
(3.49) > 0= [gward Y e,
k=[a]+1 a k=la]

Since z = F (1)(1 /2) is nonincreasing and bounded, we obtain by (x) that

Kiy—Mg+1 Ky i
> A [ |V (exp(=B(r =27 ) dx — M
k=0 ”

Applying the change of variables y = x + 2i 4 2log(B)/|log(t — 2)| yields for C =
2log(B)/|log(t — 2)| and some constant M; > M that

Kt.tl‘ —Mg+1

S e 9) /y

k=0

2i+K,,+C ,
F£ 1)(exp(—(ﬂc — 2)_”2)) dy —
=2i+C

2Ky o2

2/ ) F; 7 (exp(—(r —2)77%))dy — My,
y=2i

again using that z — F i_l) (1/z) is bounded and nonincreasing. By transforming the integral

back to a summation using () in (3.49), we obtain by definition of Q; ; in (2.6), and K; ; —

K[’[i - 21 in (415),

Kt,tl‘ —MG+1 21+K[[
Z FL(, 1) (1+$) Z F( 1) eXp ( _2)—k/2)) _ML
k=0 k 2i+1
Kit 1
= Y FPexp(—@—27%)) - My
k=K —Ki;+1

= Qt,t,— - ML-
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Using this lower bound inside the event in (3.47) yields that
PO, (dy (g, 8Bc(q. K, ,, +2)) < Q1 — M1)
<2exp(—4BE£(1 Vlogti /1)) (t —2)7 ).

Recall that we would like to show (3.41). Its proof is accomplished by a union bound over the
times (#;)i<k, , n if we show that there is a B sufficiently large such that the error probabilities
on the rhs in (3.45) and (3.50) are smaller than 8’ when summed over i < K +.+/2. For this, it

is sufficient to show that for any §>0and C’ > 0 there exists B > 0 such that

(3.50)

> exp(—C'B(1 v log(ti/1))) < 4.
i=0

This follows from the lower bound on #; in (3.48), since for B large,

> exp(—C'B(1 v log(ti/1))) < Y exp(—C'B(1 v log(ti/1)))

i=0 i=0
OO .
= Zexp(—C/B(l v (t—2)7"th)
i=0
<2exp(—C'B(r —2)) < 4. O

4. Proof of the upper bound. The upper bound of Theorem 2.5 is stated in the following
proposition.

PROPOSITION 4.1 (Upper bound weighted distance). Consider the preferential attach-
ment model with power-law exponent v € (2,3). Equip every edge upon creation with an
i.i.d. copy of the nonnegative random variable L. Let u, v be two typical vertices in PA;. If
I,(L) < oo, then for any & > 0, there exists My > 0 such that

4.1 Pt : dg,)(u, V) =20+ ML) < 6.
Regardless of the value of I,(L), for any &, ¢ > 0, there exists My, > O such that
4.2) P@E :d" (u,v) > 2(1 + ) Q. + ML) <.

Outline of the proof. To prove Proposition 4.1, we have to show that for every ¢’ > ¢
there is a t'-present (u, v)-path whose total weight is bounded from above by the rhs between
brackets in (4.1) and (4.2), respectively. We construct a ¢'-present five-segment path 7 of

=0 =) @) <0

. . (t,) _ (t,)
three segment types. We writeitasm") = & o 7 , jom{ .07 , o7 . Here, we denote

for a path segment T = (mo, ..., m,) its reverse by T o= (y, ..., mo). The path segments
are constructed similar to the methods demonstrated in [37], Section 3. However, we need
stronger error bounds compared to [37], so that the error terms are also small when summed
over t' > t. Let 8’ > 0 be sufficiently small, and (M;); <3 be suitable positive constants.

Step 1. For g € {u, v}, the path segment J_t)(qt?o :=(q,...,qo) connects g to a vertex qo that

has indegree at least s(()o ) > 0 at time (1 — &")¢. The path segment uses only vertices

that are older than (1 — §")z. The path segments are fixed for all ¢ > ¢. The number
of edges on 73?0 is bounded from above by M| = M (8, s(()o)) w/p close to one.

(a) Since the number of edges on 7;’?0 is bounded, its total weight can also be
bounded by a constant. This is captured by the constant My in the statement of
Proposition 4.1.
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T core

FIG. 4. The five-segment path T from u to v at a single time t;. The y-axis represents the degree of the
vertices at time t;. The connected dots form the constructed path m© from u to v that is present at time t; . The top

continuous black line is the maximal degree in the graph at time t;, while the dashed horizontal lines represent a

= (i ) (t)

degree-threshold sequence (Sk )i>0,k=>0 defined in the proof of Proposition 4.6 for the segments 7 ,°; and T

(b) For the end vertex gg of 7 1, for g € {u, v}, we identify the rate of growth of
its indegree (Dq‘g ()= We bound D;g (t") from below during the entire interval
[£, 00) by a sequence that tends to infinity in " sufficiently fast.

—>(t> <)

Step 2. For the path segments 7 tho}e and 7 , | we argue, similar to the proof of Propo-
sition 3.14, that it is sufﬁment to construct these path segments along a specific subse-
quence (#;);>0, as the #;-present path segments have small enough total weight when
compared to Q, » forall t' € (#;, t;11]. With a slight abuse of notation, we abbreviate
for the path (segments) 7@ := Jt(")

Step 3. For g € {u, v}, the path segment 7 q 1 consists of at most K; ; + M> edges and
connects the vertex gg to the so-called ith inner core, that is, the set of vertices with
a sufficiently large degree at time (1 — &")z;. These path segments use only edges
that arrived affer time (1 — 8’); and the total weight of any such path segment is
therefore independent of the total weight on the segments 7 (')0 and _)(”0, that use
only edges that arrived before (1 — §)t. For the weighted distance, we construct the
path segment ?(qi?l greedily (minimizing the edge weights) to bound the weighted
distance between g and the inner core from above by Q; ;. + M3.

Step 4. Denote the end vertices of n.' ,and 7 ) EA% , by w and w(, respectively. The middle
path segment () . connects the two Vertlces w, w in the inner core. The number

core
of disjoint paths of bounded length between from w}’ to w{’ is growing polynomially

in ¢/. This yields that d (t’)(w(’) w!”) is bounded by a constant for all i. This weight
is captured by M}, in Proposition 4.1.
Step 5. Eventually we glue the different path segments together and obtain the results (4.1)

and (4.2). The path segments 7 7 2  and <_§))1 change at the times (#;);>0,
(t)

u,1°> **core>

while the segments ' and 7 T o stay the same for all t' > 7.

See Figure 4 for a sketch of the constructed path and Figure 1 in the Introduction for a visu-
alization of the construction of the subsequence (#;);>0 and the control of the degree of the
vertex go. Recall that the proof of the lower bound was based on controlling the dynamically
changing graph neighborhood up to distance K, , = K; y — M. For the proof of the upper
bound, the dynamics of the graph are mostly captured by controlling the degree of only two
vertices; see Step 1b in the outline.

Step 1. Initial segments and degree evolution. Recall D~ (t'), the indegree of vertex v at
time 7’
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LEMMA 4.2 (Finding a high-degree vertex). For any s(()o), 8" > 0, there exists M > 0 such

that for a typical vertex q in PA;,
@3)  P(qoe[(1-8)]:d" " (q.q) <M and DG ((1-58)1)=sy) <36

PROOF. Let &g :={q < (1 — &)r}. Since ¢ is chosen uniformly among the first ¢ ver-
tices,

P(€oia) =1—38"+ 0(1/1).

Recall Bg) (x, R) from (3.13). From minor adaptations of the proofs of [27], Theorem 3.6,
for FPA, and [40], Proposition 5.10, for VPA it follows for all ' > 0 that there exists M| such
that

P(BE (g M) 1 (x : D (1= 8)¢) > 50) # & | Era) = 1 — '

We refer the reader there for the details. Conditionally, on the above event between brackets,
there is a (1 — 8’)r-present path segment from ¢ to g, whose edges carry i.i.d. weights.
Hence, there exists M> > 0 such that the weight on the segment can be bounded, yielding
4.3). U

The following lemma bounds the degree evolution from below. It uses martingale argu-
ments that are inspired by [41]. However, here the statement only refers to the process of a
single vertex that has initial degree at least s where [41] considers a set of vertices for any
initial degree in FPA. Our statement applies to both FPA and VPA. Moreover, we consider
the degree during the entire interval [z, 00). See also [9], Section 5.1, for results on the degree
of an early vertex in FPA(m, &), where the considered vertex is born at time o(¢).

LEMMA 4.3 (Indegree lower bound). Consider the preferential attachment model with
power-law parameter T > 2. Let qo be a vertex such that D;g (t) = s > 2. There exists a
constant ¢ > 0, not depending on s, such that for all §' > 0,

(4.4) PR’ >1:D5 (1) <8 /) V) < b

PROOF. Lety :=1/(r — 1). Both for FPA and VPA, it holds by Definitions 2.1 and 2.2
that

P(Dy (' +1) = Dy (t') + 1| PAy) > y Dy (t) /1
for any ¢/ > 1.
Let (X;,)y>: be a discrete-time pure birth process satisfying X; ; = s and
4.5) PXy 1 =Xer+ 1| Xpp=x)=1-PX; p1 =Xs v | Xy =x) = yx/t/.

Then the degree evolution (Dq‘; (t"))y>; and (X; ,)p>; can be coupled such that the degree
evolution dominates the birth process in the entire interval [¢, c0). We first show that for any
k> —s and y € (0, 1), provided that t' > ¢ > ky,

. T@) Ta+ky) N +k)

SO T@Hky) T@ TXp)

(4.6)

is a nonnegative martingale. The result will then follow by an application of the maximal
inequality for k = —1. Clearly, E[IZI(I?, |] < 0o, as the arguments in the Gamma functions in
(4.6) are bounded away from 0. Moreover, since

4.7 F'x)=x-DHI'(x —1),
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and using (4.5),
E[F(Xt,t’—i—l +k) ’ X ,] _ ' —yXen DXy +k)  vXip DXy +k+1)
FXp o) 0 v L(X;.) 1 T +1)
X, +k k
_ M(l 4 _V),
['(X;,) v

(k)

. holds for t' > ¢. Due

making it straightforward to verify that the martingale property for Z
to Kolmogorov’s maximal inequality, for any 7" > ¢, A > 0,

k
) < EIZY%) _ 2 T +k _TG+k)

vzt T T A AT OAN(X) AT
Substituting (4.6) and k = —1, we see, using (4.7),

{supZ(7,1)>)\}: 3 >t L) F(t_y)F(X”t,_1)>x}
vsr 0T - —-y) T@® LX) —
re«y rr¢—y1
=W =r: X, p—1< /() ( V)_}
re—y)y T'@) A
rey rr¢—y1
Slarsix,, < ) ( )/)_}‘
' r@—-y)y ') x

Since I'(x)/T'(x +a) =x"4(1 4+ O(1/x)), by (4.8) there exists ¢’ such that for ¢ sufficiently
large

4.8) IP( sup z8 >

re) Tr@—y)
L@ —y) T'@

<d(t'/t)".
Choosing A = ¢/ (s8") yields
1 8's
Pl >t: X, p<=C( t”):IP’ U >t: X, <8s(t')1)") < ——.
< = t’t_)\.C(/) ( - [ g s(/))—c/(s_l)
d
Now (4.4) follows, since s > 2 and (qu(f/))z/zt > (X )= U

REMARK 4.4. The proof of this lemma can be adapted to obtain an upper bound on the
€0

degree evolution, by applying Kolmogorov’s maximal inequality to the martingale Z, ;.

Step 2. Sufficient to construct the path along a subsequence of times.

LEMMA 4.5 (Subsequence of times). Consider the preferential attachment model under
the same conditions as Proposition 4.1 and let (t;);>0 be as defined in (3.42). If there exists
M; > 0 such that

(4.9) P(3i € [K;./2]:d" (u,v) > 20, + My) <6,

then (4.1) holds. Similarly, (4.2) holds if there exists My > 0 such that for any ¢ > 0 and t
sufficiently large

(4.10) P(3i € [Kr/2]:dy (u,v) > 2(1 + ) Qry, + ML) <.
PROOF. Recall (2.6). The rhs between brackets in (4.1) only decreases at the times

(t;)i>0, while the lhs is nonincreasing in ¢'. By (2.6), for i > K;;/2, O = QIJK”/Z and
the asserted statements follow. [ ’
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Step 3. Greedy path to the inner core. Define the ith inner core, for #; from (3.42), as

1

(4.11) Core®” := |x € [ii]: Dy (#) = 77 P log™2(#)}  for iy := (1 — 8')1;.

PROPOSITION 4.6 (Weighted distance to the inner core). Consider the preferential at-
tachment model under the same conditions as Proposition 4.1. There exists C > 0 such that
for every 8' > 0, there exist s(o) M > 0 such that for a vertex qq satisfying Dg,((1 —8")t) >
So ,when I,(L) < o0,

(4.12) ]P’( U {4 (g0, Core®) = 011, + M}) <cs'.
i<K;:/2

Regardless of the value of 1,(L), there exists M > 0 such that for every ¢ > 0, there is an
) > 0 such that for a vertex qq satisfying Dg,((1 —8")t) > s(o)

(4.13) IP( U {d”(q.Core”) = (1 + )0y + M}) <Cs'.
i<K:i /2

The bounds on the weighted distance in Proposition 4.6 are realized by constructing the
segments “)1 and _)5))1, whose total weight we bound from above. For this, we follow the
same ideas as in [37], Proposition 3.4, up to computational differences. Therefore, the proof
we give here is not completely self-contained and for some bounds we will refer the reader
to [37].

Preparations for the proof of Proposition 4.6. For some constants s(()o), 8

quence & := (k + 1)=2, and 7; from (4.11), define the degree threshold sequence

> 0, the se-

(4.14a) N R /1T, k=0,
sy =
(4.14b) min{ (s )7/ T2, ”“ Ulog™2(i)}, k> 0.

For each time ¢;, the initial value So is chosen such that it matches the bound on the degree

in (4.4). The maximum value of sk , for each fixed #;, matches the condition for vertices to
be in the ith inner core; see (4.11). Set

4.15) k@ :=minfk : s,i’_)H =s;"}.

Denote by [,k) the kth vertex layer: the set of vertices with degree at least s,((’ ) at time 7, that
is,

(4.16) LY = {x elf]: Dx(f:) > 5}

—>(l)

The path segment 7 g1 1o the inner core has length 2«” and uses alternately a young vertex

(i) @)

(’) € [£;, ;] and an old vertex 1 . Thus, for o := qo, T, A | has the form

4 ;’)1 = (mo, v\, 7", ..., y,(c’(),), ,i’()l)) To keep notation light, we omit a subscrlpt q for the

from the layer £}

individual vertices on the segments T, 7T | for g € {u, v}.

In the next lemmas, we show that 7 (')1 exists for all i w/p close to one, and bound its total
weight. We outline the steps briefly. Using the choice of s(’) we bound x@ in terms of K, ;.
Then, since the number of vertices that have degree at least sk 41 at time f; is sufficiently

large, it is likely that there are many connections from a vertex n,i) via a connector vertex



DISTANCE EVOLUTIONS IN PAMS 4385

y,((’jrl to the (k 4+ 1)th layer. We denote the set of connectors by A}Zrl (n(’)) that is, for a

vertex n,i’) € E(')

AD (g ® 0 0 0 0
Al =y e G, n]: 300 e L 1 <y o x,

Given (7, n{’), .. (’)) we greedily set, if A,(ézrl(n,ii)) is nonempty,
@ @ . . A
(4.17) (yk+1’ nk+1) - arg(TIH {L(ﬂ,il), ) ( x;EIJ:I)}
ORI
[, 61x LY

If there exists kK < k® such that A}Zr (") = @, we say that the construction has failed.
When the construction succeeds, we can bound the weighted distance to the inner core, that
18,
k@1 k-1
1 i 1)
@.18)  d{"”(mp, Core™) < " af (7)) < Z Lo 0 F Lo o).

Ot 12Tk 1
k=0

We show that for all i there exists a sequence (n k’ k<@ such that |A}<’j_1 (n(’))l > n(’) for all
k < k@ w/p close to one. This allows to bound the minimal weight in the rhs of (4. 17) from
above, so that eventually this yields an upper bound for the rhs in (4.18).

We start with a lemma that relates K, ;; to k', half the length of 7 _)(’)

k +— s,((” is bounded from below by a doubly exponentially growing sequence.

|- Also, we show that

©0)

LEMMA 4.7. Let (Sk )1<K, /2 k< as in (4.14b), with sy" sufficiently large. Then

4.19) (’)_(8/S(0)(t/t)l/(r 1))0 (t=2)~*

for some constant ¢’ > 0. There exists M € N such that for k¥ defined in (4.15) and i <
Kl‘,f/z’

(4.20) kK" <Ky /2+ M.

PROOF. By our choice ¢ = (k + 1)~ ~2 before (4.14b), it holds that ]_[ ~1(1 —&) > 0.

The bound (4.19) follows immediately from the definition of (s(’)) in (4.14b). From [37],
Lemma 3.7, the bound (4.20) immediately follows for i = 0, leaving to verify the bound for
i > 1. By the choice of «® in (4.15) and (s(’)) in (4.14b), and the bound (4.19), for any k > x @
it holds that

. PO N S PR
(8/s(()°)(ti/t)1/(’_1))c (r=2) > tf(’_” log "2 (%).
Taking logarithms twice, and rearranging gives that for k > «®,

(r—1) 1og(<s/sg’>))
log(fi /1)

. 1 7 —1loglog(f;)
Zloglog(ti)—i-log(ﬁ— 527 —log(f-)l )
4

klog(1/(t —2)) +loglog(#; /1) + log<1 +

From (4.11), it follows for all i < K;;/2 that fi > (1 — 8')t. Thus, the last terms on both lines
are bounded by a constant for large ¢. Hence, there is M = M (t) such that if s(()o) >1/8,
i>1,

0 < loglog(f;) — loglog(f; /1)
- |log(t —2)|
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By construction of (#;);<k, /2 in (3.48), there exists b > 0 such that i <tb, foralli < Ki /2.
This relates loglog(f;) to loglog(t). Hence, there exists M such that (4.20) holds for i > 1,
recalling 7; = (1 — 8')#; and the definition of K;pyin(1.2). O

We now prove Proposition 4.6. We construct the segment ?g)l fori <« and g € {u, v}.

PROOF OF PROPOSITION 4.6.  Let Eeg := {¥i > 0: D (1) > sy'}. By Lemma 4.3 and
the choice of (s(’)) i>0 in (4.14a), we have that

IP>(_'5deg) = cd'.

We write Paeg (+) :=P(- | £geg). We will first show that w/p close to one, the sets of connectors

are sufficiently large. More precisely, for a set of vertices {r,} k<c®,i<K,,/2> Such that ) €

(@)

E(’) and setting 7, := 7o = qo for all i, we show that

@an) Puo( U U (450 <)) <8166)

i<K;, ;/2k</{(’)

where § l(so) ) is a function that tends to O as So) tends to infinity and, for ¢; > O chosen
below,

(4.22) ny =c18'(s)™.

Then, conditioning on the complement of the event in (4.21), we will bound the minimal
weight of connections to 5& | via the sets A,(jlrl(rrk')) using (4.17) and arrive to (4.12) and
(4.13) using the construction of the greedy path in (4.17). We follow the same steps as in
[37], Lemma 3.10. For notational convenience, we leave out the superscript (i) for the various
sequences and sets whenever it is clear from the context. For a set of vertices V C [t'], define
Dy (1) :=AZX ey D (t'). By Lemma A 4 in the Appendix, the probability that an arbitrary
vertex in (¢;, ¢;] is in Ay (7rx), is at least

1
(4.23) P, L) = Dy (D, (6,
i

for some constant n > 0, where this event happens independently of the other vertices. Since
the set (#;, t;] contains 8't; vertices, the random variable | A1 ()| stochastically dominates
a binomial random variable, that is,

d _.
(4.24) | Ak1 ()| = Bin(8't;, p (e, Li+1)) =: A
Let ¢y be the constant from Lemma A.5. After conditioning on DZ_k | (f;), one obtains that
(4.25) E[Ax] > E[Ag | Dck ;) > czt,sk_H] P(D£k+l &) > czt,sk+1)

where the latter factor equals 1 —o(1) by Lemma A.5. Since 7y € Ly, we have that D]; &) >
si. We substitute this and the conditioned bound on D‘_ (f,) in (4.25) into pg (7, Li+1) in
(4.23). By the recursive definition of s(’) in (4.14b) and nm in (4.22), we obtain that there
exists ¢y > 0 such that

i) \2— ()
. e th(skl+1) sy
2
li

E[Ag] > &'t; L (1—0(1)) = 2¢18' ()% =2n{.

An application of Chernoff’s bound and the constructed stochastic domination (4.24) yields
for ;" € £} that

Pdeg(|«4}('zr1(n,§’))} <ny’) <exp(—n}’/4).
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For details, we refer the reader to [37], Proof of Lemma 3.10. We return to (4.21). By a union
bound over the layers k <« and times (#;); <, , /2. it remains to show that

Krr/2 x®
(4.26) > > exp(—ny’/4) — 0 assy’ — oo,
i=1 k=1

with n(’) from (4.22). We postpone showing this to the end of the proof.
Deﬁne the conditional probability measure

Kii/2 c®
ructr:=2 ([ () (1A =01

i=1 k=1

Thus, the path segment ?q,l from g to the inner core exists Py c-a.s. We greedily choose
the vertices (y,(c’ ) n,ﬁ’il) as in (4.17). We bound the weight of the segment, that is, the rhs of

(4.18) to prove (4.12) and (4.13). Let L}, be i.i.d. copies of L. Since the minimum of N

i.i.d. random variables is nonincreasing in N, the weighted distance between n ) and 71(’) can

be bounded for k <k — 1, that is, for k <« and i < K, ;/2, Pyc-a.s.,

dg’ (n,i'),nli’il) < mm) (L(') +L(') )
€ln;’]

Applying (%) in (A.1) obtains for £ € (0, 1) that

i i i —1 in—1 i
Pac(dy” (" i 0) = Fipp, () 77F)) < exp(=(n)%),

where F é_}r)L denotes the generalized inverse of the distribution of the sum of two i.i.d.
copies of L. Recall the bound (4.18). By a union bound over the subsegments (JTk yk, n,i’jr D

for k < k¥ and the times (t1)i<K, /2

K1
i -1 in—1
Pd,c( U [d< (g0, Core® = 3 FD, (@) +f)})

i<Ky.)2 k=0
4.27)
Kii/2,®—1

<3S el

i=0 k=0

To bound the error probabilities in (4.26) and (4.27), and the sum inside the event in (4.27),
we bound n(’) from below. By its definition in (4.22), the bound on ¢ in (3.48) and the bound
on sy in (4.19),

n}(’) = ¢ 5( (:))ek > 18 (3/ “’)(t /t)l/(r 1))6 "(r—2)7k

| . J(t=2)"k¢
:cla/((S/s(()o)(l -8 /(= )exp<t (t—2)" ))

Assuming that s(o) > §"2(1 — 8")%/(t=D | we obtain since e; = (k + 1)~2 by definition above

(4.14a),
. 1 ) NN C(T=2)Ke
ny > c18/<exp<2 log(sy") + T_l(r - 2)’))
t JR—

T—2 .
= C](S/eXp< ) log( (0))(k + 1)—2(_[ _ 2)—]{ + :(k + 1)—2(1, _ 2)—(l+k)>.

(4.28)
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Since (r —2)k grows exponentially for t € (2, 3), while ey = (1 + k)™ —2 decreases polyno-
mially, there exist c3 > 0, c4 > 1 such that n(’) >c1d’ exp(log(s0)03c4 + 03c§+1) Substituting
this bound into (4.26) and (4.27), respectlvely, we observe that the terms are summable in
both i and k and tend to zero as so) tends to infinity.

It is left to relate the sum on the rhs in the event in (4.27) to the rhs in (4.12) and (4.13),
respectively, assuming that s(()o) is large. Recalling (4.28), we assume séo) is sufficiently large
so that there exists ¢5 > 0,

(n,((i))(l_g) > exp(2cs(k + D2t — 2)_(i+k)).

Since z Ff')(l/z) is nonincreasing and « < K; ;, /2 + M by (4.20), we obtain

K(i)—l Kmi/2+M—1
429 > Fgl—gz((ng)—l%)g 3 FL(I_Jlr)LZ(exp(—2C5(k+1)_2(1—2)_(l+k))).
k=0 k=0

Recall ¢ > 0 from the statement of Proposition 4.6. In Claim A.6, we show that for all ¢ > 0
there exists M > O such that

Kigy /2+M—1

@300 Y Fi o (exp(—esk+0) 7 =27 ) < (14 L1, 01)=00) Qs + M.
k=0

Substituting this bound inside the event in (4.27) and recalling that s(()o) is chosen sufficiently
large so that the total error probability from (4.26) and (4.27) is at most C8’ yields Proposi-
tion4.6. [J

Step 4. Bridging the inner core. We prove a lemma that shows that the path segments
(8 )i<k,, 2 exist and their total weight is bounded from above by a constant for all i.
Recall Core®” from (4.11).

LEMMA 4.8. Consider the preferential attachment model with power-law exponent T €
(2,3). Let {w?, w}i <k, , /2 be a set of vertices such that for all i, w(, w} € Core®”. Then
for every 8’ > 0, there exists M > 0 such that

(4.31) Pl U {4 W, <'>)>M})§5/.
i<K::/2

PROOF. From [27], Proposition 3.2, it follows for FPA that for fixed i, whp,

< M +6) > 1—o(1/1),

(4.32) IP’(diamg") (Core®) 3

where dlamG )(V) = MaXy,, w,eV dG (w1, wy) for a set of vertices V C [¢']. The statement
(4.32) holds also for VPA as explained in [37], Proof of Proposition 3.5. A union bound yields
that

Ki1/2

+6}) =Y o(1/t) =o(l),

i=1

2t — 1)
— 7T

]P’( U {dlamG (Core®) >

i<K;:/2

since K;; = O(loglog(?)), and #; is increasing in i. We sketch how to extend this result
to weighted distances, using the construction in the proof of [27], Proposition 3.2, which
in turn relies on [13], Chapter 10. In [27], Proposition 3.2, it is shown that the inner core
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dominates an Erd6s—Rényi random graph (ERRG) G (n;, p;), where there is an edge between
two vertices x, y € Core? if there is a connector in [(1 — §')#;, #;] in PA,,, where

ni=+t,  pi= ;t,“ " log (1.

The weight on the edge (wi, wy) in the ERRG is L(; y) + Ly, j), where y is a uniformly
chosen connector of w; and w; in PA;,. Now, for the construction used in [13], Chapter 10,
one can embed two r;-regular trees of depth A > 0 in the ERRG, rooted in w? and w!”,
respectively, whp. Here, r; > tl-“, for some a > 0, and A is a constant such that all vertices
at distance A from their root are members of both trees. Denote this event by Eee. On this
event, there are at least r; disjoint paths from w’ to w!” in PA,, of 4A edges, and we can
bound

dgi)(wg)’ w?) < nm<1;1 Z L(n)
lj 1

D

for i.i.d. copies of L. Moreover, for F L(l N

copies of L, for C sufficiently large

Ky /2
]P’( U {mmZL( QS C}) Z (1— FL1+...L4A(C))I"0 <4,

i<K::/2 =t j=1 i=1

being the distribution of the sum of 4A i.i.d.

since by choosing C large, but independently of ¢, Fr,,+....,, (C) can be brought arbitrarily
close to 1. The asserted bound (4.31) follows from a union bound over the above event and
_‘5tree- 0

Step 5. Gluing the segments. We are ready to prove the main proposition of this section.

PROOF OF PROPOSITION 4.1. Recall Lemma 4.5. We have to show that at the times
(t;)i>0 there is a path from u to v such that its total weight is bounded from above by the
rhs between brackets in (4.9) and (4.10), w/p at least 1 — 6. Let C4¢6 be the constant from
Proposition 4.6. Set 8" = 8/(7 + 2C4¢). Let M4, and My be the constants obtained from
applying Lemma 4.2 and Proposition 4.6 for &8, respectively. Lastly, let My g be the constant
from applying Lemma 4.8 for §’. The existence of the path segments follows now directly
from a union bound over the events described in Lemma (4.3) and Proposition 4.6 for g €
{u, v}, and Lemma 4.8. Hence, the summed error probability is (2 - 3 + 2C + 1)8’ = §. The
total weight of the constructed paths (z”);>¢ is bounded from above by 2Q; ;, + 2(M42 +
Myg) + My g for all i > 0. Thus, setting My := 2(Mss + Mag) + Mag in the statement of
Proposition 4.1 completes the proof. [

APPENDIX: PRELIMINARIES

In order to bound the minimum of a sequence of i.i.d. random variables, we need the
following lemma that we cite from [37], Lemma 3.11.

LEMMA A.1 (Minimum of i.i.d. random variables, [37], Lemma 3.11). Let Ly,..., L,
be i.i.d. random variables having distribution Fy. Then for all £ > 0,

A B(min Lz FG ) L (min g < ) Dot
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PROOF. Since the random variables are i.i.d., for a function z(n),

P(min L; > F{0(n714)) = (1 = Fu(e())"
J€ln]

We substitute z(n) = Fé_l)(n_li‘f), so that applying (1 — x)" < e "* yields (x) in (A.1), and
applying (1 — x)" > 1 — nx yields (x). O

A.1. Lower bound. PROOF OF LEMMA 3.11. We verify (3.25) by induction. Recall
the initial values in (3.23) and (3.24). We initialize the induction for j = 1. By (3.15), since
x <t

fiiy (0 x) = p(t’,x) =vx Ve P =u Vx40 a7,

establishing (3.25) for j = 1. We advance the induction so that we may assume (3.25) for
Jj = k. Then, using the definition of f in (3.16), which counts only the good paths and relies
on the product form of p in (3.15), we can write

fiitn (s Z fiiin (' 2)p(.x).
=gy
This bound does not hold with equality, because the first factor on the rhs counts the good self-
avoiding paths from ¢’ to z, but the vertex x is not necessarily excluded in these paths, while
these paths are excluded on the lhs. Recall from (3.15) that p(z, x) = v(x Az) "V (x vV z)? L.
Since f only counts the good paths, observe that if z < x, then x > £; 4 ». Thus, splitting
the sum in two, whether z > x or z < x, one obtains that

t
fiien @ ox) v 30 ()

2=l 1 p VX
(A.2)
x—1
y—1 1) -y
+ ]l{x>fi+k,;’}vx Z [i,i+k) (t Z) :
=ik

By the induction hypothesis (3.25), we have that

t t
(4 - -1 - 2y -2
Sty @ ox) <vx iy Y T A Yy Yy 2

z= g VX 2=y, VX

+Jl{x>12i+k,t/}ny_1¢[i,i+k) Z s

Z:ei+k,z/

x—1

+1{x>€,~+k7,/}vxy_lw[i,i-i-k) ) 2,

=iy

where the lower summation bounds in the second sum on both rows changed as a result of the
indicator in (3.25). Approximating the sums by integrals obtains that there exists ¢ = c(v, y)
such that

Yfikﬂ)(f’ x) < x77e(ri,i+k) 10g(f'/5i+k—1 )+ Vit )

FLpsg,,, X7 (o, z+k)51+k v+ Wi 10g(t /€ 1i—1.17))
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and (3.25) holds by the definitions (3.23) and (3.24), as shifting the index of the terms in the
logarithm is allowed because k +— £, p is nonincreasing. The bound (3.26) follows analo-
gously. The first indicator follows since the sum on the rhs in the analogue of (A.2) is equal
to zero if x =1/, since p(t’, ') = 0 by definition in Proposition 3.9, that is,

t/
Y f58@ D) = figh @ el 1) = S5 (g.1) - 0=0.

=gV U

LEMMA A.2 (Upper bound on ¢ /Z(')t,). There exists Baoo = Baa(y,v) such that for
B > Ba2,

{60 = exp(B(1v log(r /1) (r =277,

PROOF. Let y =1/(r — 1) so that 1/(r —2) =y /(1 — y). We omit the superscript
() of E,(;)t/ We prove by induction. For the induction base k = 0, t'/£g ,» < t'/(8't). The
advancement of the induction follows from [16], Lemma A.5, after (A.29), which contains
the Appendices of [17]. Recall [ k), Bj0.k)» £k, from (3.21), (3.22) and (3.33b), respectively.
Write ny =1/, and let ¢ = c(y,v) be the constant from Lemma 3.11. To use the
same calculations as [16], Lemma A.5, after (A.29), we need to show that there exists C =
C(y,v) > 1, such that

— - 1—
(A3) (Megay + 1) " < COY 4+ ml 1oglnirn ).

We start bounding the lhs. Observe that (®) in (3.33b) holds by definition of the arg max in
the opposite direction when we replace €4 by €4 , 4 1, that is,

aj0.0(6yy + 1) = (klog(r') ™.
Combining this with (3.21) yields

Cpsn p+ 1\V ! _
(%) <log®(t') (k +2)3ajo 2t 7

(A4) = clog’ (t') (k + 2) aqo k1) 77 log (s 1,01)
+clog’(t') (k +2)* Bro k1)t
=T+ 1.
Substituting (®) from (3.33b) in 7} obtains

T] = Clog3 (t,) (k + 2)30[[0’/(_1_1)[/1_)/ log(nk—l-],t/)
" k4+2\* -, 1
(k+1)3 k + 1) Met1,1 108 (Mk41,07)-

Hence, 77 is bounded by the second term on the rhs in (A.3) for C sufficiently large. For 7>,
we substitute (3.22) and (3.33b) to get

Ty := clog® (¢') (k 4 2)° Bo.xr 1yt

1-2
= log (') (k +2)° (1" o,y by + 1" Broky log(ne.r))

<tk 2P log(miyr ) = c(

<c2w3y+213t’k 2)3¢ 1
= A M TC og”(t") (k +2)°t" Bo.k) log(nk.,")

=:cTr +cTy.
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The term c7>; can be captured by the first term on the rhs in (A.3). For T3, by (3.21),
Bio.ot"” < C_I(X[O’k+1)t,1_y. Using (3.33b) and that n; » is nonincreasing, we further bound

Toy <log’ (') (k + 2)* log (i) epo.x+ 1yt 7

1
3 y—=1 _/1-
(A.6) <(k+2) log(nk,,)(k )3(Zk+1 A7

k42N 3 -y
< (m) log(Mict-1,6) Mg 11 -

Thus, cT>, can be captured by the second term on the rhs in (A.3) for C sufficiently large.
The desired bound (A.3) follows by combining (A.4), (A.5) and (A.6) by increasing the
constant C in (A.3). Now that we have established (A.3), the proof is completed by step-by-
step following the computations in [16], Lemma A.5, after (A.29). O

LEMMA A.3 (Upper bound on neighborhood size). Consider the preferential attachment

model under the same assumptions as Proposition 3.14 and recall & éz()i from (3.3b). Let g be
a typical vertex in PA;. Then, fort' > t,

K, 142 Kt,t/—i_z
TP’( U HaBg)(q,k)’Zexp(zB(l\/lOg(f//l))(T—2)_k/2)}‘ N ﬂfé;%)
(A7) k=1 k=0

<2exp(—B(1 vlog(s'/1))).
PROOF. Define £4), := M ~€). We will first bound E[|95% (¢, k)| | €)1 and
let the result follow by a union bound on the events in (A.7) and Markov S mequahty Condi-

tionally, on & @

good”’
Recall f[(é [k; (g, x) from (3.16) and its interpretation as an upper bound for the expected num-
ber of good paths from g to x of length k. Thus, we have by the law of total probability, and
the definition of good paths in Definition 3.3,

all vertices at distance k < K, ,» can only be reached via ¢’-good g-paths.

E[|aBE (q. k)| 1 €] <

Z 150 @ ).
P(S(Ood) eyl

Recalling (3.35), we see that it is sufficient to bound the sum on the rhs. Now, applying the
bound in (3.26) on f yields for some cy, ¢y > 0,

t/

t t
> f[((')’fk))(q,X)Sa[o,k) X"+ Bon Y P

(AS) x:ﬁk,,/ x={; xzek—l,t/

- -
<ci(eo.nt” ™" + Bownt”) < caaqorsnt” 7.

The last line follows since by (3.21), t" Bjo.x) < @[o.k+1)t"” ~'/c and k > oo ) is nonde-
creasing. We bound the rhs in (A.8) in terms of (t'/¢; ). By (®) in (3.33b) and Lemma A.2,

a0+t Y < ((k+ Dlog(t) (1 /sre)' 7

< ((k+ 1)log(t") exp(B(1 — y)(1 v log('/1)) (r — 2)~*FD/2),
This obtains that for B sufficiently large

E[0B% (q.0)| 1 E0,] < exp(B(1 v log('/1))(z — 2)7%/2)

C
(q)
IP’(E ood)

<exp(B'(1 Vvlog(t'/1))(t — 2)7](/2),
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where the last bound follows for some B’ > B as ]P’(Ség())d) =1-48+4o0(1) by (3.35). The
assertion (A.7) follows by a union bound over (A.7) and summing over k. [

A.2. Upper bound. This lemma is establishing the probability for a vertex to be a two-
connector, and is cited from [27].

LEMMA A.4 ([27], (3.6) in Proof of Proposition 3.2). For x € [;], a set V € [1;], condi-
tionally on PA;l_ , the probability that y € (1;, t;] is a connector of (x, V) is at least
1D, (t;) Dy (1;)

)
5

=:px,V),

where 1 > 0 is a constant and Dy (t;) := > .ev D (). Moreover, w/p at least p(x,V), the
event {y is a connector of (x,V)} happens independently of other vertices in (;,t;].

Recall #; from (4.11), 5;” from (4.14b) and £}’ from (4.16). The last lemma bounds the

total degree of vertices with degree at least s,((i) at time 7;.

LEMMA A.5 (Impact of high degree vertices [27], Lemma A.1). There is a constant
¢ > 0 such that for any ¢ > 0,

P(D (i) < chi (sO)77) = 0(1).

PROOF. The proof for FPA can be found in [27], Lemma A.1; we refer the reader there
to fill in the details. For VPA, it follows from [24], Theorem 1.1(a). [

CLAIM A.6. Recall K, ;; from (1.2), I2(L) from (2.4) and Q, ;; from (2.6). Let L and
Ly be two independent copies of the random variable L. For all c5,e, M > 0, there exists
My > 0 such that

Kt,tl‘ /2+M—1
(=D -2 —(i+k)
F exp(—2cs5k+1)"“(r —2)
(A.9) I;) 1+, (€xp(—2cs( )
<+ el y=c0)) Ot,r; + ML.

PROOF. We proceed along the same lines as in [37], Proof of Proposition 3.4. To shorten
notation, we define
K /24+M~1
Oryi= y.  Fy o (exp(=2cs(k + 1)72(x —2)~(F0)),
k=0

-1

+1,() o Fi_l)(‘) by observing that for x > 0,

First, we relate the inverse F £
Fp11,(x) = P(L1 + Ly < x) > P(max{Ly, Lo} < x/2) = (FL(x/2))’.

Hence, for any z > 0, it holds that Fy,47,(z) < 2F£_1)(ﬁ), so that for some M| > 0,
K4 /24+M—1
Orp <2 Y Fy P(exp(—estk+ 1) (x —2)~0H0))
k=0
Ky /2

<M +2 Y F P (exp(—estk + )72 —2)")),
k=0
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since z > Fé_l)(l/z) is nonincreasing and bounded. Define b := inf{x : Fz_])(x) > 0} and
L' := L — b, so that by (%) in (3.49),

Kf,t,‘ /2

Oryy < My + DK,y +2 / FCD(exp(—es + 1)72(x — 2)7 ) dx

x=0

(A.10) i /2

< My +bK,, + Zf FéTl)(eXp(—cs(x + D72t —2)77Y))dx

for some large constants xo, M> > 0. Apply the change of variables

k+1D)2@ =2 =@ —-27"? & y=2x—4logx +1)/|log(r —2)|.
Differentiating both sides, rearranging terms and using y = ®(x) yields a bound for dx, that
is,

2/|10g(r—2)|> | 1( c )
AL e W dr<—(14+-"Vay.
< t1 Y = e Ut )@

for some constant C > 0 and x > xo sufficiently large. Continuing to bound (A.10) from
above, we obtain if xq is sufficiently large,

Qt,t,- <M+ bK;,

K, _4M C
o [Tog(t—2)] _1 Cun
+/y—2x 4 logrg+D (1 + ﬁ)Fé’ )(exp(—cs(f —2)77Y/2))dy
(A.11) T og(r—2)]
<M+ bK;,

K C o
() eteste -2 )y

Y=X0

Recall I,(L’) from (2.4). We first assume I,(L’) < 0o. In this case, there exists M3 > 0 such
that

* C 2
/ y—i—lFL/ (exp(—(r —2)7Y7%))dy < Ms.
y=xo

Using that the integrand in (A.11) is bounded, we obtain for some M4 > 0,

~ Kf,fl' _ .
Oit, <My + M3+ bK; 1, + FL(/ 1)(exp(—05 (t — 2)_l_y/2)) dy
y=xo

(A.12)
< My + b+ | Fé,‘ (exp(—cs(r —2)717¥/2)) dy.

Since L' = L — b by definition, and using that the integration interval has length K, ;, we
obtain

Kt,ti

Qt,ti <M, +/ FL(fl)(eXp(—Cs(T _2)*()’+2i)/2)) dy

Kty +2i —1) 2
=Ms+ ) F; 7 (exp(—cs(r —2)7/%))dy
y=2i

by shifting the integration boundaries. Recall K; ; — K; ;, = 2i by (4.15), yielding

Ktt

O <My + / FD (exp(—es(t — 2)7/2)) dy.

Ktt Ktt
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We leave it to the reader to verify using another change of variables and (x) in (3.49) that,
similar to the proof for the lower bound after (3.49), there exists M5 such that

/K” F(_l)(exp(—cs(t — 2)_y/2)) dy
y:Kz,t—Kr,ri L
K;: '
— Z Fii )(exp(—(r - 2)71{/2)) dy < Ms.
k=Ky1—Ki,;+1

This establishes (A.9) when I,(L) < oo. If I5(L) = oo, we observe that there exists Mg such
that

K: 1, C
! (=D -y/2
——F;, (exp(—cs(t —2)77 d
/y:xo V1 (exp(—cs(r —2)7777))dy
Ki 1) 2

< Mg + 8/ 7 (exp(—cs(z —2)7/2)) dy.

Y=Xx0

We use this bound in (A.11), bound b < (1 + ¢)b and follow the same steps as from (A.12)
onwards, carrying a factor (1 + ¢) for the integrals. [
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