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ABSTRACT
Human attention is critical yet challenging cognitive process tomea-
sure due to its diverse definitions and non-standardized evaluation.
In this work, we focus on the attention self-regulation of learners,
which commonly occurs as an effort to regain focus, contrary to
attention loss. We focus on easy-to-observe behavioral signs in
the real-world setting to grasp learners’ attention in e-reading. We
collected a novel dataset of 30 learners, which provides clues of
learners’ attentional states through various metrics, such as learner
behaviors, distraction self-reports, and questionnaires for knowl-
edge gain. To achieve automatic attention regulator behavior recog-
nition, we annotated 931,440 frames into six behavior categories
every second in the short clip form, using attention self-regulation
from the literature study as our labels. The preliminary Pearson cor-
relation coefficient analysis indicates certain correlations between
distraction self-reports and unimodal attention regulator behav-
iors. Baseline model training has been conducted to recognize the
attention regulator behaviors by implementing classical neural net-
works to our WEDAR dataset, with the highest prediction result of
75.18% and 68.15% in subject-dependent and subject-independent
settings, respectively. Furthermore, we present the baseline of using
attention regulator behaviors to recognize the attentional states,
showing a promising performance of 89.41% (leave-five-subject-
out). Our work inspires the detection & feedback loop design for
attentive e-reading, connecting multimodal interaction, learning
analytics, and affective computing.

CCS CONCEPTS
• Applied computing→ E-learning.
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1 INTRODUCTION
Keeping a high level of attention is considered a prerequisite for
successful learning, being associated with more effective (e.g., com-
prehension), efficient (e.g., efforts put per time), and appealing (e.g.,
duration of engagement) learning experiences and outcomes [11,
12, 56]. In this regard, in the fields of learning sciences, multimodal
interaction, and affective computing, there have been attempts to
measure learners’ real-time attention with mind-wandering [37],
switches of inner thoughts [69], working memory [19], level of
interest [46], and goal-directed thoughts [67]. In this work, we
define attention as consciousness towards an ongoing task with-
out an attention redirection. With various sensors and model im-
plementations, attention management through real-time feedback
loop design has been endeavored [42, 53]. Significantly, the cur-
rent transition to hybrid and online learning environments during
the pandemic has accelerated the need for attention detection and
management in diverse e-learning scenarios.

In e-learning, learners’ attention management is different from
what they have had in the traditional classroom [3], with limited
human educators’ involvement and the lack of timely intervention
accordingly [61]. Therefore, attention management in e-learning
has been highly dependent on learners’ self-regulation compared
to on-site learning [3]. During e-learning practices, learners expe-
rience several iterations of attention fluctuations [29, 70]. In the
process, learners recognize their own distractions and try to re-
engage in their tasks [49] as a voluntary attentional control [23]. In
this work, our focus is on finding learners’ self-regulatory behaviors
based on learners’ own awareness, which leads to self-regulatory
efforts to sustain a good level of attention. We define such behaviors
as “attention regulator behaviors”: Learners’ earliest self-awareness
of attention loss and following observable behavioral changes as
self-regulation. We find those moments important since those are
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the moments that learners are willing to and are still able to re-
engage in their learning tasks.

In previous studies, diverse multimodal cues have been investi-
gated as observable predictors of subjects’ diverse internal states
(e.g., cognitive and affective status), such as attention [43, 68], en-
gagement [14, 58], affects [24, 25], and emotion [48]. However, they
were often criticized for being difficult to measure or interpret. Iris
extension, gaze direction, the position of hands and legs, the style
of sitting, walking, standing or lying, body posture, and movement
are known to be relevant behaviors for a person’s internal states
[13, 44, 48]. Diverse parameters of eyes, such as pupil diameter,
blinks, and saccades [37], have often been directly used to assess
learners’ attentional states with dedicated eye trackers. Learners’
valence and arousal were often understood primarily through facial
expressions [48], with expansion with sensors, such as a photo-
plethysmograph (PPG), Galvanic Skin Response (GSR), Electroen-
cephalography (EEG), and Electrocardiography (ECG) [38]. Poses
and gestures have been interpreted as means to assess engagement
[58], affective and cognitive states [24, 25].

However, the current framework has shown that the interpreta-
tion of internal states should be understood within the context [5]
on macro (e.g., cultural) and micro levels (e.g., situational, personal
features) [34]. It indicates that specific cues can be significant indi-
cators of attention in one learning activity, while the same cue does
not necessarily represent the same in the other type of learning
activity. In this sense, we choose to collect a novel dataset in an e-
reading scenario with cognitive and behavioral parameters, which
we hypothesize interlinking with attentional changes in e-reading.
We chose e-reading since it is the most common and fundamental
form of e-learning practice in higher education, which can support
other learning activities. This work focuses on which attention
regulator behaviors occur following the perceived distraction via
the statistical analysis and model implementation. We hope this
interdisciplinary study can nurture an understanding of attentive
e-reading. Our contributions to the field are listed below.

• To our best knowledge, it is the first attempt to introduce
attention regulator behaviors in e-learning for attention anal-
ysis and prediction. Compared to conventional subjective
measurements of attention, such as self-report, the attention
regulator behaviors are easier and intuitive to capture and
more objective to evaluate.

• We collected a novel dataset, WEDAR, from 30 subjects with
various metrics, including learner status, affects, behaviors,
and learning outcomes. Self-report of distraction is also pro-
vided as ground truths to verify the effectiveness of the
attention regulator behaviors as a predictor.

• Diverse machine learning models are implemented as a base-
line to recognize learners’ attention regulator behaviors and
attentional states. Those baselines can further be applied to
diverse e-reading system designs.

• The framework provides a webcam-based attention analysis.
It does not require dedicated hardware implementation for
obtaining the attention recognition features and can thus be
applied to diverse real-world settings.

2 RELATEDWORK
2.1 Attention “regulator” behaviors
Diverse learning theories have been constructed to understand
learners’ internal states through various tangible predictors. Our
work is based on the framework of [27], which focuses on how di-
verse stimuli (e.g., external condition, verbal representation, aware-
ness, intentionality, external feedback, delivered information) can
be interpreted (e.g., arbitrary, iconic, intrinsic) and connected to
functional nonverbal behaviors (e.g., emblems, illustrators, regula-
tors, affect displays, adaptors).

According to the behavior categorization of [27], “regulator”
behaviors occur as a self-regulatory action with the purpose of
successful task performance (e.g., head nods, eye contact, slightly
forwarded body, small postural shifts, and eyebrow raises in human-
to-human interaction). Those are subconscious and habitual actions
triggered by behavior agents’ “awareness” of their internal and
external states (e.g., attention loss). We hypothesize that such self-
regulatory behaviors (i.e., attention regulator behaviors) also occur
in e-reading. In this work, we try to define the types and frequencies
of attention regulator behaviors in e-reading. The framework of
[27] also indicates the expandability of their categorical framework,
which supports our attempt.

2.2 Multimodal attention recognition in
real-world e-reading settings

Previous research has highlighted the importance of contextual in-
terpretation of multimodal indicators [34]. Instead of finding global
features for attention in diverse learning scenarios, we explicitly
investigate theoretical and empirical behavioral cues of attention
regulation in e-reading. We investigate a data collection method
that is non-intrusive and closer to real-world settings, which al-
lows a more widespread application of our framework in diverse
e-reading scenarios. In the following, we introduce previous re-
search aimed explicitly at real-world implementation based on
webcam and mouse-click.

[43] aimed for the subject-independent model development in e-
reading based on eyebrow, lip, head movements, and mouse orienta-
tion. Specific behaviors (e.g., leaning forward) have been combined
and labeled as more generic categories (e.g., body) to avoid overlap-
ping features in different classes. [68] focused on head orientation,
eyelid and mouth height, gaze direction, and emotion (i.e., confu-
sion and happiness) during e-reading. Six hand-labeled attention
levels (i,e., sleepiness, drowsiness, fatigue, distraction, attention
shift, concentration) has been used as ground truths. However, we
assume that each attention class is not exclusive enough to the
other, so there is a high chance that the machine can not classify
different attention levels with higher performance. According to
our best knowledge, very little empirical work has been done for
attentive e-reading, which premises real-world settings.

2.3 Multimodal attention regulator behaviors
This section explicitly explores multimodal learning behaviors that
function as attention regulators in e-reading. Instead of investigat-
ing features that can be found with dedicated sensors and devices,
we focus on features recognizable to observers.
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Eyebrow. The movements of eyebrow has been associated with the
activation of cognition [25, 28], arousal [21] and emotions [21, 28],
having most of the framework applied to social communication
with rare empirical studies [33]. Though eyebrow movement is
often observed in e-reading, only several empirical works indicated
that eyebrow movements correlate to attentional changes [43]. As
far as we know, theoretical behavior frameworks dedicated to e-
reading have not been established yet. [26] understood eyebrow
movements as ritualized behavior of attention signals, while [21,
28] interpreted it as sign of “wanting to know more”, which is
connected to the cognitive arousal. The framework of [28] defined
eyebrow movements as a representation of surprise, question, and
fear. In this work, we focus on the arousal function of eyebrow
movements that are shown with combinations of inner and upper
brow raise and lowering movements [21]. With a few solid evidence,
we hypothesize eyebrow movements as voluntary self-regulatory
behavior to re-engage in the task, aiming at a better attention level.
Blink. Correlations between various eye movements and cognitive
actions have been revealed in diverse task performance scenarios,
such as reading, scene perception, and visual search [54]. Based on
the environmental task demands, humans are known to adapt their
blink patterns spontaneously, voluntarily, and reflexively [36]. In
e-reading, a reduced blinking rate by 4% has been observed with
higher perceived fatigue, compared to paper-based reading, having
dry eyes and eye discomfort as major causes [17]. As a result of
fatigue, changes in blink patterns in frequency and duration are
observed [60]. Blink flurries, which are defined as three or more
blinks within a 3-second window, occur [17] and are interpreted
as a spontaneous effort to sustain the attention and increase wake-
fulness [4]. Voluntary prolonged blinks are observed as a behavior
to reduce the fatigue levels in eyes [16], showing different ranges
in interblink interval variability, degree of completeness, duration
of the closure, and the force involved, compared to spontaneous
blinking [45].
Mumble. Verbalization during reading is one learning strategy
known to help readers’ cognitive processing, reading development,
and comprehension [64]. Verbalization is also known as read out
loud, oral reading, and mumble reading, allowing readers to focus
and monitor their real-time comprehension, as opposed to silent
reading [51]. We use the term “mumble reading” in this work since
our target behavior does not indicate active usage of the verbaliza-
tion technique. However, it is more inclined to semi-spontaneous
mumble behavior as a self-regulatory action to achieve better atten-
tion. Mumble reading is more commonly applied to teach young
learners. However, it is also known to assist adult learners with
decoding difficult passages. By mumbling the text, learners inter-
nalize the meaning and information of the sentence as coherent
sets [51] with auditory stimulation. Diverse eye movement patterns
are known to be correlated with mumble reading behavior [41]:
Mumble also works as a stimulus to blink [17], showing internal
consistency as an attention regulator behavior.
Hand. Self-touch is known to be an action that re-engages peo-
ple’s attention by soothing themselves during stressful moments,
causing self-enjoyment [7]. Aside from the stress-release effect,
self-touch during the task performance is known to bring better
self-regulation, too [7]. Inhibiting effect from such tactile stimula-
tion helps learners ignore distractions and refocus on the task [39].

Especially when working on a task that demands working memory
with the presence of distractors, more spontaneous self-touches on
the face tend to appear with the increasing necessity of refocusing
[47]. Self-touch should also be interpreted within the context since
certain self-touching behaviors lead to relaxation, while others
work as arousal (e.g., self-squeezing, rubbing, scratching, stroking)
[7]. Therefore, we define calming self-touching behaviors on the
body and face as one category of attention regulator behaviors.
Body. While the face delivers more information about types of
emotions, the body is known to convey affects and intensity [27] of
emotions via diverse amplitude, speed, and fluidity of movements
[10]. In previous studies, body postures have shown a direct cor-
relation with attentive [55] and affective states [24]. The direction
of the body is known to imply the affective states, such as bore-
dom, confusion, delight, flow, and frustration [24] while the leaning
forward pose works as a sign of active cognitive state [25]. Head
direction indicates the subject of attention [66]. [9] understood
postural shift as an action to move on to the next phase during the
task performances.
Distraction self-reports. Distraction self-reports are commonly
used as the ground truth to reflect people’s internal states [30]. The
model of [29] introduce two types of distraction: 1) Task-related
distraction and 2) task-unrelated distraction. [29] explains that task-
related thoughts are correlated with the objective performances,
while task-unrelated mind wandering functions as an impairment
to the ongoing task performances. In this regard, we collect two
types of distraction self-reports in e-reading.

Based on the execution, distraction reports are two types. The
first method is to collect distraction reports real-time at the choice of
participants during the task performance, putting more importance
of more timely aspect of distraction reports. The second method
uses a specific time or event to trigger the question regarding the
current distraction levels [30]. The first method is criticized as
participants might not be aware of their attention loss or forget
about reporting. The second method is faulted for bothering the
primary task performance.

We implemented the first method since our objective of the dis-
traction self-reports collection is to find behaviors at the moment of
learners’ perceived distraction, which is used as the ground truth of
the model training in our work. To minimize the possible intrusive-
ness in the self-report process, we carefully designed a simple and
intuitive self-report interface, introduced in the following “Distrac-
tion self-reports” section. In this way, we obtained the ground truth
of the attention levels of every subject through their frame-level
distraction self-reports.

3 WEDAR-DATASET
3.1 Participants
30 learners (gender: 15 males, 15 females; age: M=27.89, SD=3.39)
in higher education, who use the English language for their daily
education, have been invited for an e-reading task. Participants
voluntarily joined the experiment via an advertisement on campus.

3.2 Materials
The text “how to make the most of your day at Disneyland Resort
Paris” has been implemented on a screen-based e-reader, which
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we developed in a pdf-reader format. An informative but entertain-
ing text was adopted to capture learners’ attentional shifts during
knowledge acquisition. The text has 2685 words, distributed over
ten pages, with one subtopic on each page (e.g., how to book tickets
online the same day). The e-reader has been implemented on a 13-
inch laptop monitor with resolutions of 960 × 720, having the text
with 11 pt. A built-in webcam on Mac Pro and a mouse have been
used for the data collection, aiming for real-world implementation
only with essential computational devices. A height-adjustable lap-
top stand has been used to compensate for participants’ different
eye levels.

3.3 Measurements
We collected various cues that reflect learners’ moment-to-moment
and page-to-page cognitive states to understand the learners’ atten-
tion in e-reading. Fig 1 shows an overview of measurements used
in the WEDAR dataset collection.
Video recording.Video recordingsweremade at 30 fps. The record-
ing has initiated with “start session” button and ended with the
“end session” buttons on the screen interface, pressed by learners.
The collected video recording has an average duration of 16.2 min-
utes (SD= 5.2 minutes). Video processing will be described in the
following “Data analysis and results” chapter.
Distraction self-reports. Learners were asked to report their
distractions on two levels during the reading: 1) In-text distraction
(e.g., still reading the text with low attentiveness) or 2) out-of-text
distraction (e.g., thinking of something else while not reading the
text anymore). We implemented two noticeably-designed buttons
(33 × 22) on the right-hand side of the screen interface to minimize
the possible distraction coming from the reporting task.
Blur stimuli. We implemented blur stimuli on the text in the
random range of 20 seconds after the trigger of a new page. It
ensures that the blur stimuli occur at least once on each page. This
is based on the finding that average learners read 230-250 words
per minute [6]. Participants were asked to click the de-blur button
on the text area of the screen to proceed with the reading. The
button has been implemented to the whole text area, with 400× 480
resolutions, so participants can minimize the effort to find and click
the button. Reaction time for de-blur has been measured, too, to
grasp the arousal of learners during the reading.
Pre-test and post-test.We asked participants to answer pre-test
and post-test questionnaires related to the reading material. Partic-
ipants were given ten multiple-choice questions before the session,
while the same set of questions was given after the reading session
(i.e., formative questions) with added subtopic summarization ques-
tions (i.e., summative questions). It can provide insights into the
quantitative and qualitative knowledge gained through the session
and different learning outcomes based on individual differences.

3.4 Procedure
30 learners in higher education have been invited for a screen-based
e-reading task (M=16.2, SD=5.2 minutes). A pre-test questionnaire
with ten multiple-choice questions was given before the reading to
check their prior knowledge level about the topic. There was no spe-
cific time limit to finish the questionnaire. Afterward, instructions
on secondary tasks were given: 1) Deactivating the blur stimuli on

the screen by clicking the text area and 2) reporting distractions (i.e.,
in-text distraction, out-of-text distraction). Learners were left alone
in a room to perform a screen-based reading task. Once participants
finished the reading, they were given a post-test questionnaire with
the same question set as the pre-test. However, in the post-test
questionnaire, there were added questions for summarizing ten
subtopics by filling in the sentences starting with “ How to. . . ”.

3.5 Dataset: WEDAR
The final outcome of the WEDAR dataset is presented in Table 1,
including the objectives of data collection, modalities, features, eval-
uation, and interpretation. In this work, indicators in bold are used
for the attention regulator recognition and attention prediction.
Note that the WEDAR is built not only for attention regulator be-
havior recognition but, more importantly, for exploring the learners’
attentional states during the e-reading events. Thus, we collected
various metrics as cues of the learners’ attentional states, such as
reactions to stimuli, distraction self-reports, and knowledge gain.
All those metrics were obtained by learners’ self-reports. The anno-
tation is frame-level (one value for one reading case) for the metrics
of reactions to stimuli and distraction self-reports. The annotation
is instance-level for the metric of knowledge gain, which has been
measured before and after the reading.

4 DATA ANALYSIS AND RESULTS
This section presents preliminary experimental results conducted
on the WEDAR dataset. We first report a relevant statistical analy-
sis of the WEDAR dataset using Pearson’s correlation coefficient.
Several classical models are implemented as the benchmark for
recognizing different attention regulator behaviors. Lastly, high-
level attention analysis is conducted using the attention regulator
behaviors and attention span.

4.1 Annotation and baseline analysis
Annotation of attention regulator behaviors. The video dataset
of 931,440 frames has been annotated with the attention regulator
behaviors using an annotation tool that plays the long sequence
clip by clip, which contained 30 frames. Two annotators (doctoral
students) have done two stages of labeling. In the first stage, the
annotators were trained on the labeling criteria and annotated the
attention regulator behaviors separately based on their judgments.
In the second round, the labels were summarized and cross-checked
to address the inconsistent cases. We used six categories that we
found to be relevant to attention regulation based on the literature
study: Behaviors shown from eyebrow (26,535 frames), blink (17,761
frames), mumble (22,214 frames), hand (101,700 frames), and body
(155,880 frames), contrary to the neutral (607,350 frames) state
(Figure 2). Since the importance of our work is not merely on
the recognition of behaviors itself but on connection with hidden
behavioral functions (e.g., attention regulator) [44], we combined
multiple specific behaviors (e.g., squint) into a general category
(e.g., eyebrow). It also helps avoid redundancy among features [43]
which could negatively affect the model’s performance. The labeled
data has been used as two input formats: images segmented by each
frame and videos segmented every second (30 frames).
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In-session

Pre-test 
questionnaire

Knowledge level

Pre-session

Post-test
questionnaire

Knowledge level

Post-session

Paper-based 
multiple-choice
(10 questions)

Paper-based 
multiple-choice / summarization 

(10 / 11 questions)

Distraction 
self-report
Distraction

Reaction to  
blur stimuli

Feedback impacts

Visual features of
attention redirection
Attention redirection

Figure 1: The experiment settings show an overview of our WEDAR dataset collection.

Table 1: Our WEDAR dataset contains diverse dimensions of attention: Objectives, modalities, features, evaluation, and
interpretation of attention indicators.

Objectives Modalities Features Evaluation Interpretation

Learner behaviors Video (avi.) -Affective states of learners
-Behavioral states of learners

Objective/
Subjective

Short-term
attention

Reactions to stimuli Timestamp (txt.)
-Blur triggered
-Blur deactivated
-Reaction time

Objective Short-term
attention

Formative &
summative
assessment

Text (txt.)
-Pre-test (multiple-choice)
-Post-test (multiple-choice, summarization)
-Knowledge gain

Objective Long-term/holistic
attention

Distraction self-reports Timestamp (txt.) -Distraction in the context of reading
-Distraction outside the context of reading Subjective Short-term

attention

Eyebrow Blink Mumble Hand Body Neutral

 -Eyebrow raise 
 -Eyebrow bring  
  together

 -Blink flurry 
 -Voluntary prolonged  
  blink

 -Mumble reading  -Touch body 
 -Touch face

 -Adjust torso 
 -Adjust arm 
 -Adjust head 
 -Lean forward

 -Without attention  
 regulator behaviors

26,535 frames 17,761 frames 22,214 frames 101,700 frames   155,880 frames 607,350 frames

30 video samples

Annotation with 
six attention regulator behaviors

Figure 2: Annotation of attention regulator behaviors: Eyebrow, blink, mumble, hand, body, and neutral.1
1 Images were blurred for identity protection purposes. All images were consented to be used for publication.

4.2 Preliminary analysis: Pearson’s correlation
We conducted a preliminary second-to-second analysis using Pear-
son’s correlation among the overall, in-text, out-of-text self-reported
distractions and attention regulator behaviors. We aimed at compre-
hensive insights into how each behavior category can be correlated
to perceived distractions. As can be seen from Table 2, the total num-
ber of self-reported distractions and in-text distractions showed a
significant correlation with eyebrow and body behavior categories.
Out-of-text distraction has correlated with the most behavior cate-
gories: Eyebrow, blink, hand, and body. Though mumbling did not
directly correlate with any types of distractions, it has been corre-
lated with other behavior categories, such as eyebrow, hand, and
body. Various behavior categories have shown correlations among

each other. The unimodal correlation analysis based on Pearson’s
correlation coefficient has presented: 1) The internal consistency
among the attention regulator behaviors and 2) the potential of at-
tention prediction model training based on multimodal behavioral
cues related to attention self-regulation. Note that Pearson’s corre-
lation coefficient is a preliminary examination that only shows the
linear correlation of two variables, revealing their potential associ-
ation in the temporal domain. However, when it comes to attention
regulator behavior-based distraction recognition, the performance
might vary greatly because the relationship between attention reg-
ulator behaviors and distraction level is complex and non-linear,
which cannot simply be described by Pearson’s factor.
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Table 2: Preliminary Pearson’s correlation2 analysis between distraction self-reports and attention regulator behaviors.

Total
distraction3

In-text
distraction

Out-of-text
distraction Eyebrow Blink Mumble Hand Body

Total distraction Pearson’s r
(p-value) -

In-text distraction Pearson’s r
(p-value)

0.938 ***
(<.001) -

Out-of-text distraction Pearson’s r
(p-value)

0.342***
(<.001)

-0.004
(0.469) -

Eyebrow Pearson’s r
(p-value)

0.030***
(<.001)

0.021***
(<.001)

0.028***
(<.001) -

Blink Pearson’s r
(p-value)

0.019
(0.001)

0.011
(0.055)

0.025***
(<.001)

0.025***
(<.001) -

Mumble Pearson’s r
(p-value)

0.004
(0.518)

0.006
(0.274)

-0.006
(0.270)

0.041***
(<.001)

-0.005
(0.440) -

Hand Pearson’s r
(p-value)

0.006
(0.325)

0.002
(0.783)

0.012*
(0.036)

0.053***
(<.001)

0.028***
(<.001)

0.045***
(<.001) -

Body Pearson’s r
(p-value)

0.045***
(<.001)

0.035***
(<.001)

0.035***
(<.001)

0.095***
(<.001)

0.044***
(<.001)

0.037***
(<.001)

0.375***
(<.001) -

2Note. * p < .05, ** p < .01, *** p < .001, 3Total distraction=In-text distraction+Out-of-text distraction

Table 3: Attention regulator behavior recognition perfor-
mance on the test set of the WEDAR.

Method Framework Accuracy (%)

Subject-dependent Subject-independent

ResNet-18 + fine-tuning

Frame-level

39.76 25.90
ResNet-50 + fine-tuning 30.92 23.84
ResNet-101 + fine-tuning 31.26 16.39
ResNet-18 + kNN 69.98 18.43
ResNet-50 + kNN 69.95 18.23
ResNet-101 + kNN 69.73 15.76

CNN-RNN-imbalanced Video-level 75.18 68.15
CNN-RNN-balanced 75.70 68.43

4.3 Low-level attention regulator behavior
recognition

We propose the benchmark of classical models with two types of
frameworks (i.e., frame-level and video-level recognition) on the
WEDAR dataset to first recognize attention regulator behaviors.

Here, we followed the classical 70%-30% protocol from other
large-scale action/activity datasets, such as ActivityNet [31] and
Kinetics-400 [40]. Given 30 video samples with frame-level anno-
tations (931,340 frames), we aimed to recognize the six attention
regulator behavior categories accurately. Besides, we conducted an
evaluation with both subject-dependent and subject-independent
protocols. In subject-dependent protocol, we randomly shuffled all
the samples and split the training and testing set with a ratio of 70%
and 30%. In subject-independent protocol, we split the subjects with
a ratio of 70% and 30%. Thus, all the samples from 21 subjects were
used for training, and samples from the remaining nine subjects
were used for testing. Note that we used the same protocol and
evaluation settings for all the evaluation methods to make a fair
comparison. Table 3 shows the overall accuracy of the testing set.
Frame-level attention regulator behavior recognition. In this
section, we conduct the attention regulator behaviors recognition
using frame-by-frame image inputs. We implemented ResNet archi-
tecture as the backbone with its three variants (ResNet-18, ResNet-
50, ResNet-101) [35], which are pre-trained on ImageNet [22], and

fine-tuningd by fixing the layers 1000𝑑 𝑓 𝑐 and above. ResNet archi-
tecture became one of the most popular architectures in various
computer vision tasks. Its shortcut connections architecture yields
compelling results. First, each frame has been converted to 224×224
grid RGBs as image inputs. The higher-level features have been
extracted with the layer going deeper, combining primitive features
from images on earlier layers. To avoid the imbalanced data issue
brought by a large number of neutral behaviors, we evenly sam-
pled each category based on the class with the minimum category
number (17,761). The number of training features from ResNet-18,
ResNet-50, and ResNet-101 were 1000×74778, and testing features
were 1000×31788, respectively. All the models have been trained
with 32 batch sizes. In the process, fast Stochastic Gradient Descent
(SGD) [52] with standard momentum parameters were applied.

Furthermore, we implemented a simplemulticlass kNN (k-Nearest
Neighbour) classifier stacked to the output features from the layers
1000𝑑 𝑓 𝑐 of ResNet-18, ResNet-50, and ResNet-101 to achieve the
attention regulator behavior recognition. Our rationale lies in the
observation that the target dataset (WEDAR) is relatively small and
different from the source dataset (ImageNet). The images in the
WEDAR are also with high homogeneity. Thus, the fine-tuning of
the WEDAR dataset will highly likely make it overfit. Therefore,
we implemented the multiclass kNN classifier to verify it. Vari-
ous k variables have been applied to ResNets for the comparative
performance analysis.
Video-level attention regulator behavior recognition. Since
attention regulator behaviors are the aggregation of instant actions
over the temporal domain, frame-level recognition tends to lose
rich, dynamic information. In that sense, we adopted a video-level
framework compatible with the video inputs, having a “tempo-
ral” feature in its learning process. Comparative analyses have
been conducted between frame-based and video-based models to
achieve a better recognition result of attention regulator behaviors.
Specifically, we implemented a hybrid architecture that consists
of convolutions (for spatial information) and recurrent layers (for
temporal information). We used a Convolutional Neural Network
(CNN) and a Recurrent Neural Network (RNN) consisting of GRU
layers [18], popularly known as a CNN-RNN [2, 50]. We chose the
InceptionV3 architecture [63] as the CNN backbone, which has
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been pre-trained on ImageNet [22], benefiting from its lightweight
structure, which is suitable for the temporal modeling. The output
features of each frame have been fed into GRU with three layers
(with GRU units as 16) and stacked by a fully connected layer as
output. Besides, we noticed that imbalanced-data issues brought
by a large number of neutral behaviors might affect the model’s
performance. Thus, we present two types of data sampling strate-
gies: 1) Evenly sampling each category based on the class with the
minimal number (balanced) and 2) using all the samples from each
category (imbalanced).
Experimental results of the attention regulator behavior
recognition. A comparative performance analysis has been con-
ducted among models aimed at recognizing attention regulator
behaviors (Table 3). Note that all models followed the same eval-
uation protocol mentioned above for fair comparisons. 1) Video-
level models (CNN-RNN) have shown better performances than
frame-level models (75.70% vs. 69.73% in subject-dependent settings
and 68.43% vs. 25.90% in subject-independent settings) by large
margins, with the more temporal information involved. It means
capturing temporal dynamics (temporal reasoning) is important
for behavior recognition. 2) The performances of the models vary
significantly based on the evaluating protocol. ResNet-kNN archi-
tecture performed better than ResNet-finetuning architecture on
the subject-dependent protocol. ResNet-kNN (-18, -50, -101) has
achieved 69.98%, 69.95%, and 69.73% accuracy, respectively. How-
ever, when it comes to subject-independent protocol, ResNet-kNN
models have a significant performance drop of more than 50% ac-
curacy, while the performances of Resnet-finetuning models are
relatively steady. This result indicates that the high performance
of the ResNet-kNN model is benefited from the subject-dependent
setting via overfitting to our WEDAR dataset. 3) The comparison
between different ResNet variants has shown the best result in
ResNet-18 with slight performance differences compared to other
models with higher learnable parameters. Because WEDAR is a
relatively small dataset, learning could have been converged early
with smaller learnable layers. Our result emphasizes the importance
of the compatibility of the sizes of the model and datasets [1, 15].

4.4 High-level attention analysis with attention
regulator behaviors

This section introduces our attention analysis based on attention
regulator behaviors. The task is recognizing the attentional states
(i.e., attention or distraction) based on the attention regulator be-
haviors within a given small video instance.
Evaluation protocols. For the attentional state recognition, as the
task is highly subject-dependent, we chose to use a leave-subjects-
out protocol to verify the generalizability of the method. We ob-
tained the ground truths of attention and distraction instances from
participants’ distraction self-reports. We took 8-second duration as
an average attention span of human beings based on a literature
study [8, 62]. Therefore, we set the last 8 seconds to the moment of
distraction self-report as “distraction” while following 8 seconds
from the moment of distraction self-report as “attention” state. We
also took 16-second, 4-second duration and 2-second duration as
comparisons. 383 distraction self-reports have been observed in
the dataset, resulting in two sets of 383 × instances of “attention”

Attention instanceDistraction instance

Attention span (2s)

Attention span (8s)

Attention span (4s)

Attention span (16s)

Figure 3: The t-SNE visualization of the features for atten-
tional states. The feature embeddings are obtained based on
the attention regulator behaviors happened during the given
attention span. Each dot stands for attentional states.

and “distraction” states. We split the 30 subjects into six folds; each
fold contains five subjects. To conduct the leave-subjects-out eval-
uation, we used all the attention instances from 25 subjects for
the training and all the instances from the remaining five subjects
for testing at each fold evaluation. Each instance belonged to a
specific state (attention or distraction). We reported the average
and standard deviations of the recognition accuracy in percentage.
Note that we only focused on the recognition task of “recalled” and
“reported” distractions. Thus, although “false-negative” errors of
the self-reports (e.g., participants forgot to or ignored reporting the
distraction) exist, they will not be included in this analysis.
Attentional state recognition. We provide six machine learning-
based methods for attentional state recognition, using attention
regulator behaviors as cues. We first encoded the distribution of
attention regulator behaviors that happened within a given atten-
tion span as feature vectors with dimensions of 1 × 𝑁 . 𝑁 is the
number of attention regulator behaviors, as six in practice. Since
we used 30 fps for the annotation, which is redundant to count the
attention regulator behaviors, we downsample the frame rate from
30 to 8. The resulting feature vectors were fed into the classifiers to
predict the final binary attentional states (i.e., attention or distrac-
tion). We experimented with different classical machine learning
classifiers combined with feature embedding: Bayesian network
[13], Multi-layer Perceptron with Relu non-linearity (MLP) [57],
k-nearest neighbors (kNN) [32], and Adaptive Boosting (AdaBoost)
[59]. As can be seen from Table 4, the MLP classifier has achieved
the best performance (69.55%, 89.41%, and 87.57%) in the attention
span settings of 4s, 8s, and 16s while the SVM classifier has shown
the best performance over the attention span of 2s. We can also
observe that a shorter attention span of an instance has brought a
significant performance drop (87.57% to 57.84% from 16s to 2s) in
the recognition. We assume it is because the shorter attention span
implementation does not provide enough information on the atten-
tion regulator behaviors to build up the probabilistic distribution
model for further inferences.
Visualization of the features for attentional state recognition.
In this section, we visualized the feature embeddings constructed
from the attention regulator behaviors, using the t-SNE technique
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Table 4: Attention regulator behavior-based attention recognition results from various classifiers. The attention span is the
instance duration before and after the distraction self-reports. We show the average and standard deviations over six leave-five-
subject-out runs.

Methods Attentional state recognition (%)
Attention span (2s) Attention span (4s) Attention span (8s) Attention span (16s)

Random guess 0.50 0.50 0.50 0.50
kNN [32] 51.69 ± 5.62 61.86 ± 11.10 88.91 ± 7.98 80.02 ± 15.67
SVM [20] 58.09 ± 4.95 68.83 ± 7.67 89.31 ± 6.92 86.98 ± 7.43
AdaBoost [59] 57.84 ± 5.48 69.14 ± 7.51 88.12 ± 6.92 85.642 ± 6.83
MLP [57] 57.84 ± 5.48 69.55 ± 7.83 89.41 ± 6.91 87.57 ± 7.46

[65]. As shown in Figure 3, features from a short attention span are
not discriminative enough, while features from a longer attention
span show much larger margins.

5 DISCUSSION AND LIMITATIONS
5.1 Discussion
Distraction self-reports vs. attention regulator behaviors. Self-
reported distractions during the e-reading practices can be regarded
as ground truths of attentional states of participants to some extent,
as they are the direct reflection of internal activities provided by
participants. However, there are three major limitations of the
distraction self-reports. 1) Self-reports are based on a dual-task
condition. The participants might be distracted when keeping the
reporting task in their minds, which could affect their attention level.
2) self-reported metrics are not always reliable as participants often
forget to record their distractions. Thus, false-negative errors are
evident in some case, which could be a severe issue when evaluating
the performances of online detection algorithms. 3) Lastly, the self-
report is subjective, making it difficult for machines to learn the
patterns. In contrast, attention regulators-based attentional state
analysis has advantages as follows. 1) Those patterns are concrete
and rather easy to observe in the images so that machines can easily
learn. 2) Significant correlations found between distraction reports
and attention regulator behaviors indicate that observable attention
regulator behaviors as a good predictor of attention.
Further implementation in e-learning. Since our work aimed
for a real-life application based on a webcam, we believe that the
work can be extended to other reading-based e-learning scenar-
ios with an investigation of attention regulator behaviors in the
specific learning activity. By combining various feedback types
with diverse instructional designs, platforms, and modalities from
different feedback agents, more timely feedback provision can be
achieved for learners and instructors.
Defining attention span.We defined the attention span by taking
the duration before and after the distraction reports (e.g., 2s, 4s, 8s,
and 16s). We found that the definition of the attention span can
affect the performance of attention recognition by a large amount,
as a longer period will contain more behavioral patterns for the
recognition. Existing methods [43, 58, 68] mainly worked short-
term or even frame-level attention recognition, while our findings
can inspire the upcoming research to work on the direction of at-
tention span by showing potential for holistic attention recognition
in instances with a longer attention span.
Rich cues for attention analysis. In this work, we only presented
some preliminary baselines using attention regulator behaviors and
self-reports as cues and ground truths. However, rich cues provided

in WEDAR, such as knowledge gains and reaction time, can offer
more opportunities for a more holistic and long-term attention
analysis.

5.2 Limitations
Differentiating spontaneous behavior vs. voluntary behavior.
In this work, we focused on finding regulatory behavior that helps
learners sustain their attention. We primarily focused on volun-
tary or semi-voluntary behaviors from learners with consciousness.
However, it was often challenging to differentiate voluntary be-
haviors from spontaneous behaviors through human observation,
which might have affected our labeling and prediction results.
Lack of categorical frameworks for attention regulator be-
haviors in e-learning. We strived to classify learner behaviors
based on existing theoretical and empirical works. Though our
work is a categorical expansion of [27], we still miss the dedicated
framework that could be applied in the exploration of attention
regulator behaviors in e-reading.

6 CONCLUSION AND FUTUREWORK
In this work, we applied the categorical framework of [27] to an
e-reading scenario and identified attention regulator behaviors,
which was the first attempt. We collected a novel dataset from 30
higher education learners containing various cognitive, emotional,
and behavioral cues. We annotated 931,340 frames of video data
second-to-second into six categories. We used various classical mod-
els to recognize attention regulator behaviors as a baseline with the
highest accuracy of 75.70% (subject-dependent) and 68.43% (subject-
independent) with CNN-RNN. Attentional state recognition has
been further conducted by leveraging the attention regulator be-
haviors with a promising performance of 89.41% accuracy with
a leave-five-subject-out protocol. Our webcam-based dataset and
framework for the attention analysis make it feasible to comply
with primary computing devices without sophisticated sensor im-
plementation, allowing real-world implementation. We hope our
work contributes to the field by providing insights into attention
regulator behaviors in e-reading. The future research includes the
system extension with the feedback implementation, which will
function as an interactive feedback loop for attentive e-reading.
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