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Abstract

As self-driving vehicles progress toward real-world deployment, efficient and reliable motion planning in
dynamic multi-agent environments becomes increasingly essential. This work addresses this challenge
by advancing the field of nonlinear distributed model predictive control (NMPC) for autonomous multi-
vehicle coordination. The approach focuses on complex, interaction-dense scenarios where space is
limited. To model vehicle shapes and collision boundaries efficiently it uses polytopic set representa-
tions to approximate vehicle geometries and collision boundaries instead of conventional shapes such
as ellipsoids.

We propose a novel distributed NMPC approach for navigation in tight environments. The goal is to en-
able coordinated motion planning for multiple autonomous vehicles in dense traffic scenarios. This can
be easily modelled with centralised formulations, however, considering the scale of the road network
they become computationally intractable as the number of agents grows. In distributed approaches
instead each vehicle solves its local part of the problem which scales linearly and is therefore better
suited for these kind of environments. So building on an existing distributed method we enhance its
structure to improve scalability, safety, and performance in cooperative autonomous driving tasks. The
research is guided by three objectives: (RO1) to reproduce a known distributed baseline algorithm
using the DART (Delft’s Autonomous-driving Robotic Testbed) vehicle model [10], the Model Predic-
tive Contouring Control (MPCC) [7] tracking objective, and the ACADOS solver framework [14]; (RO2)
to develop a novel distributed MPC-based algorithm that improves inter-vehicle spacing and tracking
performance while generalizing beyond predefined reference trajectories; and (RO3) to prepare the
algorithm for validation on a real-world robotic testbed.

The primary contributions of this work include: (C1) successful reproduction of the distributed baseline
using open-source tools and realistic vehicle modelling; (C2) development of two enhanced distributed
algorithms, Distributed Model Predictive Contouring Control with Relaxed Collision Avoidance (DMPC-
RCA) and DMPC-RCA with consensus (DMPC-RCA-C), that demonstrate superior performance in
tracking accuracy and safety margins; and (C3) integration of these algorithms with the DART hard-
ware platform for future experimental validation. The repository of these approaches can be found in
https://github.com/HubertVisser/multi-vehicle-coordination-algorithm.git

Performance is evaluated in two representative scenarios, a merging situation and a T-junction, with
the centralised NMPC approach serving as the performance benchmark. To evaluate the performance
of the proposed designs, three key metrics are used: accumulated tracking cost, computation time,
and minimum inter-agent distance. The results show that both proposed methods achieve tracking
costs comparable to the centralised controller, while significantly outperforming the distributed baseline
method. Notably, the inclusion of a consensus term yields no substantial improvement in performance
over the non-consensus version.

To conclude, the proposed approaches offer strong potential for scalable, safe, and efficient multi-agent
motion planning, moving one step closer to the deployment of fully cooperative autonomous driving on
public roads.
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1
Introduction

Autonomous driving technology is becoming an increasingly integral part of modern transportation,
gradually making its way into our daily lives. Many new vehicles are now equipped with advanced
driver assistance systems (ADAS), which provide features like adaptive cruise control, lane-keeping
assistance, and automated parking, enhancing safety and convenience for drivers. As this technology
advances, fully autonomous taxis have started operating in select cities on a small scale [9], offering
a glimpse into a future where transportation is safer, more accessible, and less reliant on human in-
tervention. These developments hold transformative potential across economic, environmental, social
and ethical domains [1]. Economically, self-driving vehicles can significantly increase road capacity by
enabling smoother traffic flow and reducing congestion, ultimately saving time for travellers. Addition-
ally, autonomous systems can optimize fuel consumption, leading to cost savings and reduced reliance
on non-renewable resources. Environmentally, the improved efficiency of autonomous vehicles leads
to lower emissions, contributing to better air quality and addressing climate change. The increased
road capacity reduces the need for extensive road infrastructure, requiring less land for parking and
road surfaces. Socially, the reduction in human error associated with autonomous vehicles is expected
to lead to fewer accidents, which not only improves public safety but also reduces medical expenses
and the societal impact of road injuries. Ethically, autonomous driving offers mobility to individuals
who may currently face limitations, such as the elderly and disabled, fostering greater independence
and accessibility. Together, these benefits illustrate the far-reaching societal relevance of autonomous
driving technology.

To realize a future where autonomous vehicles operate safely and efficiently in complex urban envi-
ronments, the development of advanced control systems is essential. Centralised controllers, while
effective in small-scale scenarios, face significant challenges when scaled to large fleets of self-driving
cars, including computational intractability and communication bottlenecks that make real-time optimi-
sation infeasible. As a result, there is a growing need for distributed optimisation schemes that can
decentralize decision-making and leverage local information. These methods offer various trade-offs
between computational efficiency, scalability, and optimality, making them suitable for different as-
pects of decentralised planning in multi-agent systems. State-of-the-art motion planning techniques
for multi-vehicle systems include sampling-based algorithms such as Rapidly-exploring Random Tree
(RRT) [8], graph-based methods like A* [5], optimisation-based approaches such as Model Predictive
Control (MPC) [11] and Model Predictive Path Integral (MPPI) control [15], as well as artificial poten-
tial field methods [4], [13]. While these methods have demonstrated effectiveness in structured or
low-density environments, they face significant limitations in online coordination for dense traffic or
tight scenarios. [16] Sampling-based and graph-based planners often suffer from high computational
complexity and slow replanning, making real-time operation challenging as the number of vehicles in-
creases [12]. optimisation-based approaches, including MPC and MPPI, though capable of handling
constraints and vehicle dynamics, become computationally intractable for large fleets and are often
centralised, which is impractical for distributed traffic [17]. Potential field methods can struggle with lo-
cal minima and lack explicit coordination mechanisms, leading to deadlocks or suboptimal behaviours
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1.1. Research Objectives and Contributions 2

in crowded environments [6]. Furthermore, many existing approaches assume perfect communication
and synchronization, which is rarely achievable in real-world scenarios where delays, packet loss, and
asynchrony are common [2]. These limitations highlight the need for scalable, distributed, and robust
planning frameworks that can handle real-time coordination and uncertainty in practical multi-vehicle
traffic environments. This research addresses this need by proposing a distributed Model Predictive
Control (MPC)-based framework for coordinated multi-vehicle navigation, particularly in constrained or
tight environments where cooperation and adaptability are crucial.

1.1. Research Objectives and Contributions
This work is guided by the following research objectives, which aim to advance the field of distributed
multi-vehicle control through performance improvement and broader applicability.

• RO1: Can a known baseline approach for nonlinear distributed multi-vehicle control be success-
fully reproduced using the DART [10] vehicle model, the Model Predictive Contouring Control
(MPCC) [7] tracking objective, and the open-source ACADOS [14] solver?

• RO2: Can a distributed Model Predictive Control (MPC)-based algorithm be developed that not
only improves inter-vehicle spacing and trajectory tracking accuracy over the baseline, but also
generalises beyond reliance on predefined reference trajectories for use in diverse and dynamic
environments?

• RO3: Can the improved algorithm be validated on a real-world testbed beyond simulation?

In accordance with the stated research objectives, the primary contributions of this work are outlined
as follows:

• C1: The baseline distributed control algorithm was successfully reproduced using the DART [10]
vehicle model, the Model Predictive Contouring Control (MPCC) [7] tracking objective and the
open-source ACADOS [14] solver.

• C2: A novel distributed control algorithm was developed and implemented, demonstrating im-
proved performance over the distributed baseline in terms of trajectory tracking accuracy and
inter-vehicle spacing, while also generalizing beyond the use of predefined reference trajectories
to enhance applicability in diverse and dynamic environments.

• C3: The algorithm has been prepared for deployment and testing on the DART experimental
platform, supporting future validation in real-world scenarios.

1.2. Outline
This thesis is structured to guide the reader through the development and evaluation of distributed
control algorithms for autonomous vehicle coordination. The outline of the chapters is as follows:

The first chapter, Preliminaries 2, introduces the foundational concepts and tools used throughout the
research. It presents the formulation of the Model Predictive Contouring Control (MPCC) tracking cost,
describes both the centralised and distributed baseline algorithms, and introduces the DART platform,
a modular framework developed for testing autonomous control algorithms, including details of the
vehicle model employed. Additionally, the open-source optimisation solver ACADOS, which is used for
real-time implementation of the controllers, is discussed.

Chapter 3, Proposed Approach, elaborates on the design choices made in implementing the baseline
algorithms and the rationale behind them. It then introduces the proposed distributed control algorithms,
detailing their conceptual motivation and expected performance improvements.

In chapter 4 Results, the performance of the proposed algorithms is rigorously evaluated. A consis-
tent set of metrics is applied to compare the new approaches against the baseline, including tracking
performance, computation time, and inter-vehicular distance. The algorithms are tested in two distinct
scenarios to demonstrate robustness and generalizability.

The Discussion, chapter 5, reflects on the findings, and identifies limitations.
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Finally, the Conclusion, chapter 6, provides a concise overview of the research, offers directions for
future work and concludes the thesis.



2
Preliminaries

The definitions needed in the remainder of the thesis are given below.

2.1. Model Predictive Contouring Control
Model Predictive Contouring Control (MPCC) [7] is a state-of-the-art technique for reference path track-
ing in autonomous vehicle control. It provides a flexible trade-off between tracking accuracy and traver-
sal speed, which is regulated through the weighting of different objective components, specifically, the
contouring and lag errors. This makes MPCC particularly suitable for tasks requiring precise navigation
in dynamic or constrained environments.

To better understand how the MPCC controller evaluates tracking performance, consider the geomet-
ric relationship illustrated in Fig. 2.1. The black dot at (xk, yk) represents the vehicle’s current position,
while the black curve denotes the reference path, which is parametrized by arc length θk. The orien-
tation of the path at a given point is indicated by the angle ϕ(θk), which corresponds to the tangent
direction of the path at θk. The errors are computed and approximated with respect to the nearest
point on the path, (xd(θr), yd(θr)), and are decomposed into two components: the contouring error
ϵck, representing the lateral deviation from the path, and the lag error ϵlk, representing the longitudinal
deviation along the path. The errors are approximated via projection onto the local path frame and are
denoted by ϵ̂ck and ϵ̂lk.

The MPCC controller minimizes a composite objective that balances speed, accuracy, and control
smoothness. The cost function comprises four main components:

1. Velocity Deviation: The deviation of the current velocity vk from a reference velocity vref is
penalized to ensure speed regulation:

vk − vref (2.1)

2. Contouring Error εc: This term captures the orthogonal (normal) deviation from the vehicle’s
position to the desired path (see Fig 2.1). It is approximated as:

ϵ̂c(ξk, θk) = sinϕ(θk)(xk − xd(θk))− cosϕ(θk)(yk − yd(θk)) (2.2)

where (xk, yk) is the vehicle position, (xd(θk), yd(θk)) is the reference point on the path, and ϕ(θk)
is the orientation of the path at arc length parameter θk.

3. Lag Error εl: This measures the longitudinal deviation (along the path) between the vehicle’s
current position and the corresponding reference point (see Fig 2.1) and is approximated as:

ε̂l(ξk, θk) = − cosϕ(θk)(xk − xd(θk))− sinϕ(θk)(yk − yd(θk)) (2.3)

The reference path parameter θk is updated based on the current velocity:

θk+1 = θk + vk, vk ∈ [0, vmax], vmax > 0 (2.4)

4
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Figure 2.1: Illustration of the contouring error ϵck and lag error ϵlk at time step k. (Adapted from [7])

4. Control Effort: To promote smooth control inputs and reduce actuator usage, the squared norm
of the control input vector u is included in the cost. This penalizes large or abrupt control inputs
via a quadratic term:

u⊤Quu

Here, Qu ∈ Rm×m is a symmetric positive semi-definite weighting matrix that assigns relative
importance to each control input component. For example, in this research, the control input is
defined as u =

[
th st

]⊤, representing throttle and steering input. Then, Qu could be defined
as:

Qu =

[
qth 0
0 qst

]
where qth and qst are scalar weights that penalize excessive throttle and steering effort, respec-
tively.

The complete objective function minimized by the MPCC controller at each time step k is given by:

Jk = q1(vk − vref )
2 + q2(ε̂

c
k)

2 + q3(ε̂
l
k)

2 + u⊤
k Quuk (2.5)

Having defined the MPCC framework for single-vehicle path tracking, we now shift focus to multi-agent
coordination. The following section introduces the baseline distributed algorithm upon which our pro-
posed method builds.

2.2. Baseline: Distributed Multi-Vehicle Coordination Algorithm
The baseline for this research is the distributed multi-vehicle coordination algorithm proposed by Firoozi
et al. [3]. This algorithm provides a scalable framework for coordinating multiple autonomous vehicles
by decomposing a centralised optimisation problem into distributed subproblems, making it suitable for
real-world deployment where computational scalability is critical.

The core idea behind the algorithm is to partition a centralised coordination problem into smaller, agent-
specific optimisations. Each vehicle independently solves two optimisation problems at every time step:
a Nonlinear Model Predictive Control (NMPC) problem for reference trajectory tracking, and a Collision
Avoidance (CA) problem that ensures safety in multi-agent scenarios. The difference between the
centralised structure and the distributed structure is shown in figure 2.2. This distributed structure
allows computational complexity to grow linearly with the number of agents, significantly improving
scalability compared to centralised approaches.
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Figure 2.2: Centralised design (a) vs. distributed design (b) for multi-vehicle coordination. (Adapted from [3])

A key component of the algorithm is the reformulation of the collision avoidance constraint based on
strong duality theory. As detailed in Section 2.2.1, this reformulation enables the decomposition of the
centralised problem into two interdependent but separately solvable optimisation problems:

1. The NMPC subproblem, which optimizes the tracking performance for each vehicle using a local
objective (e.g., MPCC-based).

2. The CA subproblem, which updates the dual variables associated with the collision avoidance
constraints to ensure inter-vehicle safety.

Furthermore, the use of polytopic sets to represent vehicle shapes in the collision avoidance formu-
lation (see Section 2.2.2) makes the algorithm particularly well-suited for navigation in constrained
environments. For instance, in road-like scenarios where vehicles must remain between the lanes, this
representation provides an efficient and non-conservative approximation for safe interaction among
agents.

This distributed structure forms the basis upon which the proposed algorithms in this thesis are built,
with the goal of improving both, tracking performance and general applicability.

The following subsections present the reformulation of the collision avoidance constraint and the def-
inition and use of polytopic sets to model the vehicles. Both are required to construct the centralised
and distributed formulations.

2.2.1. Reformulation of the Collision Avoidance Constraint
Let P1 and P2 be two convex polytopic sets, defined respectively as:

P1 = {x ∈ Rn | A1x ≤ b1}, P2 = {y ∈ Rn | A2y ≤ b2}.

The Euclidean distance between these sets is given by the following optimisation problem:

dist(P1, P2) = min
x,y

{
∥x− y∥2 | A1x ≤ b1, A2y ≤ b2

}
.

Incorporating a minimum distance constraint dist(P1, P2) ≥ dmin directly into a Nonlinear Model Predic-
tive Control (NMPC) formulation is computationally expensive due to the nested nature of this optimisa-
tion. To reduce complexity, the approach proposed by Firoozi et al. [3] leverages strong duality theory
to reformulate this constraint using its dual representation. The resulting dual problem is given by:

dist(P1, P2) := max
λ12,λ21,s

− b⊤
1 λ12 − b⊤

2 λ21 (2.6a)

subject to A⊤
1 λ12 + s = 0, (2.6b)

A⊤
2 λ21 − s = 0, (2.6c)

∥s∥2 ≤ 1, (2.6d)
λ12 ≥ 0, λ21 ≥ 0. (2.6e)

Here, λ12 and λ21 are dual variables corresponding to the polytopic constraints of P1 and P2, and
dual variable s captures the separating hyperplane direction between the sets. This dual formulation
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maintains the same optimal value as the primal distance problem and allows the collision avoidance
constraint to be imposed efficiently within a distributed framework.

This reformulation plays a critical role in enabling the decomposition of the centralised NMPC problem
into smaller, agent-level problems, as detailed in Section 2.2.

To effectively handle tight-space scenarios, the vehicles are represented as polytopic sets, described
in the following section.

2.2.2. Polytopic Sets
To model the DART robots within the collision avoidance framework, an oriented rectangular polytope
is used. The polytopic definition used in this research is specified below.

A polytopic set is defined as:
P = {p ∈ Rn | Ap ≤ b}

The orientation of the vehicle is incorporated through a rotation matrix defined by its heading angle θ:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(2.7)

Using this rotation matrix, the constraint matrix A(θ) is constructed as:

A(θ) =

[
R(θ)⊤

−R(θ)⊤

]
(2.8)

The corresponding vector b defining the bounds of the polytope is given by:

b =


l/2
w/2
l/2
w/2

+A(θ)

[
x
y

]
(2.9)

Here, l and w denote the length and width of the DART robot, respectively (see Section 2.4). The
construction of polytopic set yields a rotated rectangular polytope that accurately captures the robot’s
shape and orientation in the world frame. These polytopic sets are used in the collision avoidance
constraints to ensure safe multi-vehicle coordination in constrained environments.

2.2.3. Centralised Approach
In the centralised formulation, a single optimisation problem coordinates the trajectories of all agents
simultaneously. This approach has the advantage of full information but suffers from scalability issues
due to the rapid growth in problem size with the number of agents. Next, the objectives and the con-
straints are presented.

Objective Modules:

• Low-level planning objective. To minimize deviation from a higher-level reference.
• Minimization of dual variables λij , λji, sij : Encourages tight but safe distances between vehicles
while contributing to the dual-based collision avoidance.

Constraint Modules:

• Vehicle dynamics constraints: Ensure that each agent’s motion complies with its respective non-
linear dynamics model.

• State and input feasibility constraints: Ensures each trajectory respects system limits.
• Collision avoidance constraints: Enforced using the dual formulation from Section 2.2.1.



2.2. Baseline: Distributed Multi-Vehicle Coordination Algorithm 8

The resulting centralised optimisation problem is formulated as:

min
ui(·|t), λij(·|t),
λji(·|t), sij(·|t)

M∑
i=1

J i(zi,ui) (2.10a)

subject to zi(k + 1|t) = f(zi(k|t),ui(k|t)), (2.10b)
zi(0|t) = zi(t), (2.10c)
zi(k|t) ∈ Z, ui(k|t) ∈ U , (2.10d)
− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (2.10e)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (2.10f)
Aj(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (2.10g)
λij(k|t) ≥ 0, λji(k|t) ≥ 0, ∥sij(k|t)∥2 ≤ 1, (2.10h)
∀i ∈ V , j ∈ Ni, k ∈ {1, 2, . . . , N}. (2.10i)

In the formulation above:

• f(·) in (2.10b) represents the nonlinear system dynamics of each agent.
• Z and U denote the state and control input feasible sets, respectively.
• dmin is the set constrained minimum distance between the agents.
• V is the set of all agents, and Ni represents the set of neighbours of agent i.

This centralised approach serves as a benchmark for assessing the scalability and performance of the
distributed alternatives proposed in this thesis.

2.2.4. Distributed Approach
In the distributed formulation, each agent i ∈ V independently solves its own optimisation problem
based on local information and shared variables with its neighbouring agents j ∈ Ni.

The optimisation is split into two subproblems for each agent: one Nonlinear Model Predictive Con-
trol (NMPC) problem for trajectory tracking, and one Collision Avoidance (CA) problem to ensure the
collision avoidance constraints are satisfied through dual variable updates.

NMPC Subproblem
Each agent solves the following NMPC optimisation, assuming the dual variables from the previous
iteration are fixed:

min
ui(·|t)

M∑
i=1

J i(zi,ui) (2.11a)

subject to zi(k + 1|t) = f(zi(k|t),ui(k|t)), (2.11b)
zi(0|t) = zi(t), (2.11c)
zi(k|t) ∈ Z, ui(k|t) ∈ U , (2.11d)
− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (2.11e)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (2.11f)
∀k ∈ {1, 2, . . . , N}

Here, the bar notation (·) denotes variables treated as constants during this optimisation, passed from
the CA module of the previous time step.
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CA Subproblem
After each NMPC optimisation, each agent updates its collision avoidance dual variables by solving the
following maximization problem:

max
λij(·|t), λji(·|t), sij(·|t)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t) (2.12a)

subject to A
i
(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (2.12b)

A
j
(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (2.12c)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t) ≥ dmin, (2.12d)

∥sij(k|t)∥2 ≤ 1, (2.12e)
λij(k|t) ≥ 0, λji(k|t) ≥ 0, (2.12f)
∀k ∈ {1, 2, . . . , N}.

This dual update ensures the safety constraints in the primal NMPC formulation are respected. The
decoupling into two alternating subproblems enables distributed computation, reducing the centralised
computational burden while maintaining coordination via dual variable exchange between neighbours.

2.2.5. Cost Function
The cost function used in the NMPC formulation in [3] is presented below. This objective function
penalizes deviation from a reference trajectory, control effort, and control input rate changes. It is
defined as:

J(z,u) =

t+N∑
k=t

∥z(k|t)− zref(k|t)∥2Qz
+

t+N−1∑
k=t

(
∥u(k|t)∥2Qu

+ ∥∆u(k|t)∥2Q∆u

)
, (2.13)

where:

• z(k|t) is the predicted state at step k given current time t,
• zref(k|t) is the reference trajectory state at step k,
• u(k|t) is the control input at step k,
• ∆u(k|t) = u(k|t)− u(k − 1|t) represents the control input rate,
• Qz, Qu, and Q∆u are symmetric positive semi-definite weighting matrices that encode the rela-
tive importance of state tracking, control effort, and control smoothness, respectively, in the cost
function.

This quadratic cost formulation ensures smooth and accurate trajectory tracking while avoiding aggres-
sive control actions that might result in instability or actuator saturation.

The following section presents the distributed baseline algorithm, which sequentially solves the NMPC
and CA problems in a structured and distributed manner.
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2.2.6. Original Algorithm

Algorithm 1 Distributed Coordination Algorithm
1: Description: This algorithm alternates between two optimisation stages: the NMPC optimisa-

tion (2.11) and the Collision Avoidance optimisation (2.12).
2: Initialize: [sij(1), . . . , sij(N)], [λij(1), . . . , λij(N)], [λji(1), . . . , λji(N)], for all i, j ∈ N , i ̸= j.
3: for t = 0, 1, 2, . . . do
4: for all vehicles i ∈ V (in parallel) do
5: Solve NMPC problem (2.11).
6: Compute the shifted state and interpolate the terminal state:

[zi(1), . . . , zi(N), z̄iT ]

7: Compute associated polytopic sets:[
Ai(1), . . . ,Ai(N),Ai

T

]
,

[
bi(1), . . . ,bi(N),bi

T

]
8: Communicate polytopic sets to all neighbouring vehicles j ∈ Ni.
9: for all j ∈ Ni do

10: Solve Collision Avoidance problem (2.12).
11: end for
12: Apply first control input ui

MPC.
13: end for
14: end for

2.3. ACADOS
ACADOS is a free and open-source software package designed for fast embedded optimisation, of-
fering high-performance solvers with a high-level Python interface [14]. Its open-source nature makes
it accessible to researchers and developers, fostering transparency and collaboration. ACADOS is
especially convenient for distributed multi-agent experimentation, as it avoids the licensing constraints
commonly associated with commercial optimisation solvers. Its solver architecture supports real-time
performance and is particularly well-suited for model predictive control (MPC) and nonlinear program-
ming (NLP) in robotics and automotive applications.

2.4. Delft’s Autonomous-driving Robotic Testbed (DART)
The algorithms proposed in this research enable complex multi-vehicle motion planning through a dis-
tributed approach. While promising, these methods require substantial further development and valida-
tion before they can be reliably deployed in real-world traffic scenarios. The Delft Autonomous-driving
Robotic Testbed (DART) [10] provides a cost-effective and easily accessible platform to support this
development. DART is a small, car-like robotic platform, approximately 1/10th the size of a standard
vehicle, equipped with a comprehensive suite of sensors suited for research in cooperative and au-
tonomous driving.

The kinematic and geometric model of the DART vehicle forms the foundation for the distributed Model
Predictive Control (MPC) formulation used in this work. To streamline the development process, a high-
fidelity DART simulator is employed to evaluate the real-time performance of the distributed controller
in a controlled and reproducible environment. The simulator replicates all relevant sensor outputs and
enables rapid prototyping, significantly reducing the time between algorithm design and validation.

The control architecture operates within a closed-loop system using the Robot Operating System (ROS).
Controller nodes compute throttle and steering commands and transmit them to the simulator node. The
simulator then updates the vehicle state based on these inputs and returns the updated state to the
controller nodes. This interaction loop, illustrated in figure 2.3, facilitates thorough testing of distributed
decision-making and control strategies under realistic communication and feedback conditions.

While testing on a 1/10 scale vehicle provides valuable insights, it also introduces limitations. Physical
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Figure 2.3: The closed-loop interaction between the controllers and the DART simulator

dynamics such as friction, inertia, and actuation delays scale nonlinearly and may not fully reflect the
behaviour of full-size vehicles. Additionally, real-world challenges, such as GPS inaccuracies, road
surface variability, and large-scale communication issues, are not entirely captured in the DART setup.
These are important considerations for future work, where transitioning to full-scale autonomous plat-
forms will be essential for validating practical deployment. However, for now, the DART platform offers
an efficient and accurate tool for early-stage testing, allowing researchers to develop, debug, and refine
distributed planning and control strategies before moving to more complex, real-world environments.



3
Proposed Approach

This chapter begins by presenting a set of design modifications and enhancements to the general op-
timisation problems defined in Chapter 2. Specifically, Equations (2.10), (2.11), and (2.12). These
modifications are foundational to the methods evaluated experimentally in subsequent chapters. The
chapter proceeds by detailing the baseline algorithms, which incorporate these design choices, forming
a reference point for evaluating the improvements brought by the proposed methods. Finally, the pro-
posed algorithms are introduced. For each, we provide themotivation, design rationale, and algorithmic
modifications, with a focus on illustrating the concrete advantages they offer over the baseline.

To enhance the performance and practicality of the distributed coordination scheme, several key adjust-
ments have been proposed in this work. These modifications aim to address computational challenges,
improve generalizability, and facilitate future deployment on physical testbeds.

First, the cost function employed in the optimisation was reformulated based on contouring control
objectives, as described in Section 2.1. In contrast to [3], which relies on a carefully designed ref-
erence trajectory that implicitly encodes merging timing, the proposed approach leaves the timing of
interactions to be determined by the algorithm itself. This provides increased flexibility of the solution
and avoids the need for hand-crafted references, but also introduces additional complexity for the opti-
mizer. By leveraging contouring control, agents can follow spatial referencesmore generically, enabling
broader applicability in scenarios where exact reference timing is unknown or undesired.

Second, the system dynamics used in the NMPC formulation are replaced with the DART vehicle
model introduced in Section 2.4. The DART platform is specifically designed for autonomous driving
experiments and includes all necessary sensors for perception and control. By using this model, the
proposed controller can be tested in simulation with high fidelity and readily transferred to physical
robots in the lab, providing a practical pathway for real-world validation. For an illustration of the setup
see figure 2.3.

Another important change concerns the dual variable s, which appears in the collision avoidance (CA)
formulation. The original problem includes a constraint ∥s∥2 ≤ 1, which represents a ball constraint
in two dimensions. In figure 3.1 an illustration is shown which visualises the 2D ball constraint, where
the axes correspond to the components of the sij vector. It was observed, however, that this constraint
posed difficulties for the numerical solver, often resulting in infeasibilities or poor convergence. To
alleviate this, the unit ball constraint was approximated using an octagon inscribed within the ball (see
figure 3.1). This polytopic approximation preserves the core geometric property of the constraint while
improving solver compatibility. It is noted that this relaxationmay be solver-dependent and could require
tuning of the number of polygon sides for best performance.

Additionally, the original algorithm does not minimize the dual variables in the CA optimisation. In this
work, the objective function of the CA solver was extended to include a regularization term that penalizes
the norm of the dual variables. This modification encourages tighter and more efficient interactions
between agents and was empirically shown to improve the spatial coordination, resulting in smaller

12
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Figure 3.1: Visualisation of the adjusted sij -norm constraint. The axes represent the two entries of the sij dual variable

and more consistent inter-agent distances during operation.

Finally, the iteration structure of the algorithm was revisited. The distributed baseline version performs
one NMPC optimisation followed by one CA optimisation at each timestep. In contrast, the proposed
algorithm allows for multiple alternations between NMPC and CA at each timestep, giving the agents
more opportunities to refine their plans in response to updated collision avoidance solutions. It was
observed that this additional iterative refinement improves overall convergence and robustness.

Together, these enhancements aim to make the distributed coordination algorithm more general, practi-
cal, and reliable. The full details of the modified algorithmic implementation are provided in the following
section.

3.1. Baseline Proposed Design
Based on the design choices outlined above, the proposed baseline is presented in the following cen-
tralised and distributed formulations.

3.1.1. Centralised Model Predictive Contouring Control
In this section, based on the centralised problem in 2.2.3, we formulate a centralised Model Predictive
Contouring Control (MPCC) problem for coordinating multiple autonomous vehicles. The contouring
control approach is advantageous in scenarios where the trajectory is defined in a spatial frame rather
than over time, allowing each agent to follow a reference path without a predefined timing, which is
particularly beneficial for cooperative manoeuvres such as merging or intersection negotiation.

The objective function in the centralised MPCC formulation includes several terms. The tracking term
ensures the vehicle velocity remains close to a reference speed vref. The contouring error εc and lag
error εlag terms penalize deviations from the spatial reference path, ensuring the agent stays near the
intended trajectory. The control effort is minimized via a weighted quadratic penalty on the control
input u. In a similar manner, the decision variables λij , λji, and sij are also included as optimisation
variables and minimized accordingly.

This results in the following centralised optimal control problem:
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min
ui(·|t), λij(·|t),
λji(·|t), sij(·|t)

M∑
i=1

[
∥v(k|t)− vref∥2Qvref

+ ∥εc(k|t)∥2Qεc
+
∥∥εlag(k|t)∥∥2

Q
εlag

+ ∥u(k|t)∥2Qu
+ ∥λij(k|t)∥2Qλij

+ ∥λji(k|t)∥2Qλji
+ ∥sij(k|t)∥2Qsij

]
(3.1a)

subject to zi(k + 1|t) = f(zi(k|t),ui(k|t)), (3.1b)
zi(0|t) = zi(t), (3.1c)
zi(k|t) ∈ Z, ui(k|t) ∈ U , (3.1d)
− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (3.1e)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (3.1f)
Aj(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (3.1g)
λij(k|t), λji(k|t) ≥ 0, ∥sij(k|t)∥2 ≤ 1, (3.1h)
∀i ∈ V , j ∈ Ni, and k ∈ {1, 2, . . . , N}.

3.1.2. Distributed Model Predictive Contouring Control (DMPC)
To enable scalability and reduce computational burden, the centralised MPCC problem (3.1) can be
reformulated in a distributed fashion, enabling each vehicle to optimize its trajectory independently
while still accounting for nearby vehicles through information exchange.

As with the distributed scheme in Section 2.2.4, the MPCC formulation is split into two subproblems:
the local NMPC problem and the collision avoidance (CA) problem. The local NMPC step focuses on
optimizing trajectory tracking and control effort, based on the latest predictions of other agents. The CA
step, in turn, updates the shared dual variables required to enforce inter-agent separation constraints.
In the remainder of this thesis, we will refer to this approach as Distributed Baseline or DMPC.

The alternating scheme between NMPC and CA is coordinated through the algorithm described in
Algorithm 1. The algorithm allows agents to refine their decisions iteratively, sharing their trajectories
as polytopic sets to support local optimisation.

The distributed NMPC subproblem for each agent i is defined as follows:

min
ui(·|t)

M∑
i=1

[
∥v(k|t)− vref∥2Qvref

+ ∥εc(k|t)∥2Qεc
+
∥∥εlag(k|t)∥∥2

Q
εlag

+ ∥u(k|t)∥2Qu

]
(3.2a)

subject to (3.1b), (3.1c), (3.1d),

− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (3.2b)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (3.2c)
for all k ∈ {1, 2, . . . , N}.

The dual variables λij , λji and sij are fixed during this NMPC phase and updated in the subsequent
CA phase equal to optimisation problem 2.12. This modular decomposition enables each agent to
compute its optimal input trajectory using only local information and shared geometric constraints from
its neighbours.

3.2. Proposed Alternative Algorithms
Building on the distributed baseline formulation, we now introduce two alternative algorithms that relax
coordination constraints to improve flexibility and convergence.

The two algorithms proposed in this chapter are used for an in-depth analysis of their performance,
found in the next chapter: Results chapter 4.
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In addition to these two main alternatives, also other variants were explored, discussed in the appendix
in Sections A.2.1 and A.2.2.

3.2.1. Distributed Model Predictive Contouring Control with Relaxed CA (DMPC-
RCA)

In the DMPC formulation, the dual variable λij used in the NMPC phase are fixed based on the outputs
of the collision avoidance (CA) solver. While this enforces consistent inter-agent constraints, it also
significantly restricts the flexibility of the NMPC solver, resulting in conservative trajectory plans and
smaller feasible regions.

This section proposes a relaxed formulation that allows greater flexibility in planning by treating the
dual variables λij as decision variables in the NMPC optimisation step. In the remainder of this thesis,
we will refer to this proposed method as DMPC-RCA. The key insight is that the same constraints
governing λij in the centralised problem can be directly applied in the distributed NMPC step, without
compromising the underlying dual structure of the formulation.

By making λij a decision variable in the NMPC phase, the optimizer gains the ability to adapt the
supporting hyperplanes defining collision avoidance constraints dynamically within the prediction hori-
zon. This leads to less conservative plans and allows agents to explore a larger region of feasible
trajectories.

Proposed DMPC-RCA Algorithm
The overall structure of the algorithm remains unchanged from Algorithm 1. The modification lies in
the NMPC solver, where the dual variable λij is now optimized alongside the control inputs ui. This
modified NMPC problem is defined below:

min
ui(·|t), λij(·|t)

M∑
i=1

[
∥v(k|t)− vref∥2Qvref

+ ∥εc(k|t)∥2Qεc
+

∥∥εlag(k|t)∥∥2
Q

εlag
+ ∥u(k|t)∥2Qu

+ ∥λij(k|t)∥2Qλij

]
(3.3a)

subject to (3.1b), (3.1c), (3.1d),

− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (3.3b)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (3.3c)
for all k ∈ {1, 2, . . . , N}.

Here, the dual variable λij is treated as a local decision variable by agent i, while λji remains fixed from
the CA solver. This introduces asymmetry in the constraint handling, but it is progressively resolved as
both agents update their respective duals in an alternating fashion in multiple iterations.

The flowchart in figure 3.2 illustrates the exchange of decision variables between the algorithm stages
and consecutive time steps. Dotted indicate the exchange of predicted state trajectories between
agents, while solid lines denote the exchange of dual variables computed in the CA optimisation. Be-
tween the NMPC and CA solvers, the trajectories are shifted forward by one time step to align with the
prediction horizon of the next time instant.

3.2.2. Distributed Model Predictive Contouring Control with Relaxed CA and Con-
sensus (DMPC-RCA-C)

Building on the DMPC-RCA approach presented earlier, this section proposes an enhancement to
improve coordination and convergence between agents. In the remainder of this thesis, we will refer
to this proposed method as Consensus Algorithm and DMPC-RCA-C.

In the previously introduced DMPC-RCA approach, the dual variables λij are independently computed
in both the NMPC and CA solvers. While this design increases flexibility in trajectory planning, it may
also lead to discrepancies between agents’ planned paths. As a result, the CA solver can struggle
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Figure 3.2: Flowchart for the shared variables for DMPC-RCA Algorithm. The orange colour scheme belongs to vehicle i, and
the blue colour scheme belongs to vehicle j. The black and gray arrows represent the exchange of the dual variables (λji, sij )

between the CA and NMPC modules. The dashed coloured arrows represent the exchanged computed trajectories.
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to find feasible solutions, particularly when trajectories diverge significantly due to overly independent
NMPC decisions.

To address this, we propose the DMPC-RCA-C algorithm, which introduces a consensus-regularization
term in the CA cost function. This encourages agreement between the dual variables computed by
neighbouring agents, without explicitly enforcing equality constraints. The regularization improves con-
sistency across agents and supports convergence while preserving the flexibility of DMPC-RCA. This
consensus term penalizes the deviation between λi

ji, the local CA decision variable, and λ
j

ji, the cor-
responding value received from the neighbouring agent j, as shown in Equation (3.4).

ρ ·
∥∥∥λi

ji(k|t)− λ
j

ji(k|t)
∥∥∥ for k = 0, . . . , N (3.4)

Here, ρ is a tunable penalty parameter that determines the strength of the consensus enforcement. The
inclusion of this term introduces asymmetry into the CA optimisation, as agents i and j no longer solve
identical problems and each uses a locally received estimate from its neighbour. However, this asym-
metry is expected to diminish over successive iterations, as the consensus term promotes alignment
between agents’ solutions.

By including this consensus term, the CA solver is guided to maintain alignment with the dual vari-
ables computed in the NMPC step of neighbouring agents. This mechanism effectively serves as a
form of warm-starting and promotes convergence by reducing inter-agent discrepancy in the collision
avoidance constraints.

Proposed DMPC-RCA-C Algorithm
The structure of this algorithm follows the general framework of Algorithm 1 and the NMPC problem
definition is equal to the definition in problem 3.3. The modifications for this approach are introduced in
the CA solver. The adjusted CA problem, incorporating the consensus term, is defined in Equation (3.5).

max
λij(·|t), λji(·|t), sij(·|t)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t)− ρ ·

∥∥∥λji − λj
ji

∥∥∥ (3.5a)

subject to A
i
(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (3.5b)

A
j
(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (3.5c)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t) ≥ dmin, (3.5d)

∥sij(k|t)∥2 ≤ 1, (3.5e)
λij(k|t) ≥ 0, λji(k|t) ≥ 0, (3.5f)
∀k ∈ {1, 2, . . . , N}.

The flowchart in figure 3.3 illustrates the exchange of decision variables between algorithm stages
across consecutive time steps, following a similar structure to figure 3.2. In contrast to the earlier ver-
sion, this diagram incorporates the consensus mechanism in the CA solver. The black lines represent
the additional exchange of dual variables introduced by the consensus term, which ensures agreement
on shared variables between agents.

The resulting algorithm is presented in Algorithm 2.
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Figure 3.3: Flowchart of the decision variables for the DMPC-RCA-C Algorithm. The orange colour scheme belongs to vehicle
i, and the blue colour scheme belongs to vehicle j. The connection arrows explained in figure 3.2 are made transparent for
readability. The black arrows represent the exchange of the, in the NMPC module computed, dual variable λij/λji for the

consensus term in the CA objective.
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Algorithm 2 Distributed Coordination Algorithm
1: Description: This algorithm alternates between two optimisation stages: the NMPC optimisa-

tion (3.3) and the Collision Avoidance optimisation (3.5).
2: Initialize: [sij(1), . . . , sij(N)], [λij(1), . . . , λij(N)], [λji(1), . . . , λji(N)], for all i, j ∈ N , i ̸= j.
3: for t = 0, 1, 2, . . . do
4: for all vehicles i ∈ V (in parallel) do
5: Solve NMPC problem (3.3).
6: Compute the shifted state and interpolate the terminal state:

[zi(1), . . . , zi(N), z̄iT ]

7: Compute associated polytopic sets:[
Ai(1), . . . ,Ai(N),Ai

T

]
,

[
bi(1), . . . ,bi(N),bi

T

]
8: Communicate polytopic sets and dual variables λij to all neighbouring vehicles j ∈ Ni.
9: for all j ∈ Ni do

10: Solve Collision Avoidance problem (3.5).
11: end for
12: Apply first control input ui

MPC.
13: end for
14: end for



4
Results

4.1. Experimental Design
To evaluate the performance of the proposed algorithms in comparison to the centralised method
and the distributed baseline, a set of simulation experiments was conducted. All four variants: cen-
tralised (3.1), distributed baseline (section 3.1.2), distributedDMPC-RCA (section 3.2.1), and distributed
DMPC-RCA-C (section 3.2.2) were tested across two representative traffic scenarios: a merging sce-
nario and a T-junction scenario.

Merging Scenario. In this scenario, both vehicles begin in separate lanes and are required to merge
into a single shared lane, see figure 4.1. The primary focus of analysis is the resulting merging order
and the interplay between collision avoidance behaviour and reference trajectory tracking.

Figure 4.1: Reference path for the merging scenario. The vehicles’ starting positions are denoted by the arrows and chosen to
simulate their placement in adjacent lanes.

T-junction Scenario. Here, the two vehicles approach a T-junction from different directions and must
coordinate a safe crossing, see figure 4.2. Although scheduling-based strategies may bemore naturally
suited to this problem, the scenario is employed in this work to evaluate how well the algorithms balance
reference tracking with collision avoidance under more complex spatial interactions.

4.1.1. Slack Handling
To ensure robustness and feasibility of the optimisation problems, all algorithms incorporate constraint
relaxation through slack variables. These slacks are penalized both linearly and quadratically in the
objective function to discourage constraint violation while allowing flexibility when needed.

20
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Figure 4.2: Reference path for the T-junction scenario. The vehicles starting positions are denoted by the arrows

The penalties are formulated as follows:

Quadratic penalty: 1

2
s(t)⊤Z s(t), (4.1)

Linear penalty: z⊤s(t), (4.2)

where s(t) denotes the slack variable, Z is a diagonal matrix of quadratic penalties, and z contains the
linear penalty weights. These penalties are chosen to be 2 to 10 times larger than the other weights in
the objective function, depending on the experiment.

4.1.2. Evaluation Metrics
The algorithms are evaluated on the following criteria:

• Accumulated Tracking Cost Compared to Centralised. To evaluate and compare the perfor-
mance of all four approaches, the accumulated cost is computed using the centralised objective
function without slack penalty cost. This ensures a consistent and fair comparison across meth-
ods. The objective function, detailed in equation (4.3), includes contouring error, reference veloc-
ity tracking, and the minimization of control inputs and dual variables. The total cost is the sum
of the total prediction cost for every control update (denoted in the equation by variable K).

• Computation Time. One of the core motivations of this work is to identify distributed methods
that match the centralised solution in performance but scale better in terms of computational
cost. Computation time is measured as the average time per prediction step. For the centralised
method, this corresponds to the time required to solve problem (3.1) at each control step. For the
distributed variants, it refers to the time taken by Algorithm 1 to complete two full iterations. While
the number of iterations can be adjusted, it was observed in these test cases that two iterations
were sufficient.

• Inter-Vehicular Distance. The minimum distance between vehicles serves as a proxy for solu-
tion optimality: smaller distances indicate more efficient use of the shared space. This metric
computes the minimum distance between the polytopes representing each vehicle, accounting
for orientation and shape.
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J =

K∑
0

N∑
k=1

z⊤k Qzk (4.3)

zk =



ϵcontourk

ϵlagk

vk − vref
uthrottlek

usteeringk

λk

sk


Q = diag

wcontour, wlag, wvelocity, wthrottle, wsteering, wλ, . . . , wλ︸ ︷︷ ︸
nλ

, ws, . . . , ws︸ ︷︷ ︸
ns


4.1.3. Scenario: Merging

Accumulated Cost
Centralised Objective
(without slack cost)

Computation Time Mean
(ms)

Minimum Inter-Vehicular
Distance

Centralised MPCC 24.08 37.9 7.40e-1
DMPC Algorithm

(Distributed Baseline)
50.44 0.5 5.80e-1

DMPC-RCA Algorithm 24.11 0.4 4.50e-1
DMPC-RCA-C Algorithm 24.03 0.5 4.50e-1

Table 4.1: The table shows the performance comparison on the four algorithms evaluated in this research on the merging
scenario. Metrics include accumulated tracking cost, computation time mean and distance between the vehicles.
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t = 1 s t = 5 s t = 9 s t = 13 s

(a) centralised MPCC

(b) DMPC (Distributed Baseline)

(c) DMPC-RCA

(d) DMPC-RCA-C

Figure 4.3: Snapshots at selected time steps illustrating the behaviour of the four algorithms in the merging scenario. The
images highlight differences in agent interaction across the algorithms. Predicted trajectories are shown as sequences of blue
rectangles, which visualises the polytopic sets at each time step. The first rectangle indicates each agent’s current position.

The green bars represent the separating hyperplanes computed by the agents for collision avoidance. Both agents maintain a
local copy of the separating hyperplane, which is plotted and may occasionally overlap.
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(a) Centralised (b) Distributed Algorithm DMPC

(c) Distributed Algorithm DMPC-RCA (d) Distributed Algorithm DMPC-RCA-C

Figure 4.4: Trajectories of the agents (solid lines) compared to the centralised trajectories (dashed lines) for all four algorithms
in the merging scenario.
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4.1.4. Scenario: T-junction
Accumulated Cost

Centralised Objective
(without slack penalties)

Mean Computation Time
(ms)

Minimum Inter-Vehicular
Distance

Centralised MPCC 16.05 14.5 2.20e-1
DMPC Algorithm

(Distributed Baseline)
64.79 0.5 4.40e-4

DMPC-RCA Algorithm 20.94 0.5 9.40e-2
DMPC-RCA-C Algorithm 24.03 0.5 9.40e-2

Table 4.2: The table shows the performance comparison on the four algorithms evaluated in this research on the T-junction
scenario. Metrics include accumulated tracking cost, computation time mean and distance between the vehicles.
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t = 1 s t = 5 s t = 9 s t = 13 s

(a) centralised MPCC

(b) DMPC (Distributed Baseline)

(c) DMPC-RCA

(d) DMPC-RCA-C

Figure 4.5: Snapshots at selected time steps illustrating the behaviour of the four algorithms in the T-junction scenario. The
images highlight differences in agent interaction across the algorithms. Predicted trajectories are shown as sequences of blue
rectangles, which visualises the polytopic sets at each time step. The first rectangle indicates each agent’s current position.

The green bars represent the separating hyperplanes computed by the agents for collision avoidance. Both agents maintain a
local copy of the separating hyperplane, which is plotted and may occasionally overlap.
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(a) Centralised (b) Distributed Algorithm DMPC

(c) Distributed Algorithm DMPC-RCA (d) Distributed Algorithm DMPC-RCA-C

Figure 4.6: Trajectories of the agents (solid lines) compared to the centralised trajectories (dashed lines) for all four algorithms
in the T-junction scenario.
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Final parameter values for the proposed algorithms can be found in appendix A.1.



5
Discussion

This chapter discusses the observed behaviours and performance characteristics of the proposed dis-
tributed NMPC algorithms, particularly in comparison to a centralised approach, for a merging and a
T-junction scenario.

5.1. Performance in the Merging Scenario
Accumulated Tracking Cost
From Table 4.1, it can be observed that in terms of deviation from the centralised cost, both the DMPC-
RCA algorithm and the DMPC-RCA with consensus perform similarly well to the centralised approach.
In contrast, the Distributed Baseline shows the highest recomputed cost, which is approximately twice
that of the centralisedmethod. This result highlights the limitations of the Distributed Baseline approach,
where the static dual structure restricts the nonlinear model predictive control from effectively following
the reference path and target velocity. The improved performance of DMPC-RCA and DMPC-RCA-C
illustrates the benefit of introducing additional flexibility in the optimisation problem. By relaxing the
dual variables, the feasible solution space is enlarged, allowing trajectories to more closely align with
those produced by the centralised solution. When comparing DMPCRCAwith its consensus-enhanced
version, the results indicate that the inclusion of a consensus mechanism does not significantly improve
tracking performance.

Computation Time
The results in Table 4.1 show that the distributed approaches achieve a significant reduction in compu-
tation time, approximately two orders of magnitude faster than the centralised approach. This compu-
tational advantage is expected to become even more pronounced as the number of vehicles increases,
due to the improved scalability of the distributed framework. It could be expected that the consensus
algorithm would improve the computation time as it assists the CA solver in converging more efficiently
to a solution for the dual variables.

Inter-Vehicular Distance
All algorithms successfully respect the minimum required inter-agent distance of 0.1, as enforced by
the collision avoidance constraints and seen in table 4.1. It is noteworthy, however, that the centralised
approach results in the largest minimum distance. This could be attributed to the highly nonlinear nature
of the problem and the possibility of local minima affecting different approaches differently. Despite
using relaxation techniques, all distributed methods ensured collision-free behaviour. Additionally, the
results for the distributed baseline approach show a more conservative minimum distance compared
to the relaxed versions (DMPC-RCA and DMPC-RCA-C), which is expected. Relaxing the algorithm
allows for less conservative, more flexible solutions.

Visual Behaviour
Figure 4.4 presents the trajectories of the two agents under all four control approaches. The dashed
lines indicate the trajectories generated by the centralised controller, which serves as the benchmark
for performance comparison. Notably, the trajectory of the DMPC algorithm (figure 4.4b) exhibits the
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smallest deviation from the reference path among the distributed approaches. Interestingly, despite this
visual advantage, the numerical results in table 4.1 show that DMPC yields the highest Accumulated
Tracking Cost. This apparent contradiction can be attributed to the algorithm’s conservative behaviour:
by maintaining a larger inter-agent distance, the DMPC solution provides more flexibility in tracking the
reference trajectory accurately, albeit at the expense of overall efficiency.

5.2. Performance in the T-Junction Scenario
Accumulated Tracking Cost
In Table 4.2, the first column shows that both the DMPC-RCA and DMPC-RCA-C algorithms achieve
accumulated costs comparable to that of the centralised approach, while the baseline DMPC incurs a
tracking cost that is approximately three times higher. Unlike the merging scenario, the DMPC-RCA
algorithm performs notably better than its consensus-enhanced counterpart. This difference may be
attributed to the sharp 90-degree turn required by the bottom agent in the T-junction scenario. In this
context, the dual variables (lambdas), which represent supporting hyperplanes perpendicular to the
minimum inter-agent distance, must undergo a rapid 180-degree flip midway through the maneuver.
The consensus formulation hinders this transition, as it attempts to minimize deviations from previ-
ously computed lambdas. This effectively reduces the algorithm’s responsiveness and limits its flexibil-
ity. The observed performance gap highlights the importance of balancing convergence stability with
adaptability in dynamic multi-agent environments. Furthermore, the clear improvement of DMPC-RCA
over the distributed baseline approach underscores the benefits of increased flexibility introduced by
its enhanced NMPC structure.

Computation Time
The distributed algorithms demonstrate superior computational performance, achieving solution times
that are approximately one to two orders of magnitude faster than the centralised approach. It can
also be observed that adding the consensus term to the CA objective does not decrease the overall
computation time. One might expect the consensus term to support the solver by guiding the optimisa-
tion process toward coordinated trajectories. In this way, it could act as a regularizing component that
helps the solver converge more efficiently. However, this supportive effect is not clearly reflected in
the measured computation times. Overall, the computational advantage of the distributed approaches
compared to the centralised method is substantial and is expected to become even more pronounced
as the number of agents increases.

Inter-Vehicular Distance
In the last column of table 4.2, the minimum distance between agents is reported. The results indi-
cate that only the centralised approach maintains a distance greater than the required minimum of 0.1.
In contrast, the distributed baseline results in a collision, as the two agents violate the minimum dis-
tance constraint. This outcome suggests that the slack penalties in the DMPC formulation overly relax
the collision avoidance constraints, preventing convergence to a collision-free solution in this specific
scenario. While the DMPC-RCA algorithms avoid actual collisions, they do not strictly adhere to the
minimum distance threshold of 0.1, indicating some level of constraint violation as a result of the intro-
duced slack. Nevertheless, these algorithms still converge to a collision-free trajectory for this specific
scenario.

Visual Behaviour
From the snapshot of the DMPC algorithm in figure 4.5, it can be observed that in the second frame at
t = 5 s, the agent trajectories bend upward in contrast to those produced by the other algorithms. This
deviation likely contributes to the higher accumulated tracking cost and the near-zero inter-vehicular
distance observed. The altered manoeuvrer may stem from the conservative structure of the distributed
baseline approach. In particular, the hyperplanes generated by the collision avoidance (CA) solver, rep-
resented by the dual variables, are enforced more rigidly within the NMPC solver. This strict treatment
could explain the agents’ trajectories bending away from the separating hyperplane as visualized in the
snapshot.
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5.3. Discussion
The results of both scenarios demonstrate that the RCA-based algorithms clearly outperform the dis-
tributed baseline approach in terms of tracking accuracy and collision avoidance. By introducing flexi-
bility through the relaxation of dual variables, these distributed algorithms significantly reduce conser-
vativeness in their behaviour while still maintaining safety. This allows for trajectories that more closely
resemble the centralised, and therefore optimal, solution without incurring its computational burden.
While the consensus-based formulation was hypothesized to enhance coordination and possibly guide
the solver toward improved performance, its practical impact was limited. Across all metrics, including
accumulated tracking cost, inter-vehicular distance, and computation time, the addition of a consen-
sus term did not lead to substantial improvements. Therefore, although the RCA framework proves
highly effective, the consensus enhancement does not yet justify its added complexity in the scenarios
evaluated.

5.4. Limitations and Assumptions
While the proposed distributed NMPC framework demonstrates promising results in simulation, several
limitations and assumptions should be acknowledged. First, the current study assumes perfect inter-
agent communication, with no delays, packet loss, or bandwidth constraints. In real-world deployments,
communication imperfections can significantly affect coordination and convergence, potentially leading
to degraded performance or safety violations. Second, the simulations neglect sensor noise and model
uncertainties, which are inevitable in practical scenarios and may impact both state estimation and
control accuracy. Additionally, the vehicle and environment models are idealized, omitting factors such
as actuator dynamics, friction variations, and unexpected disturbances. Addressing these limitations in
future work, by incorporating realistic communication models, sensor noise, and hardware-in-the-loop
experiments will be essential to validate the robustness and applicability of the proposed methods in
real-world multi-vehicle systems.



6
Conclusion

The proposed algorithms demonstrate increased robustness and flexibility in multi-agent scenarios,
especially in complex situations such asmerging or negotiating intersections. Compared to the baseline
distributed approach, both the DMPC-RCA and the consensus-based formulation handle a wider range
of initial conditions and promote safer and more optimal behaviours. Additionally, they offer a significant
computational advantage over the centralised nonlinear model predictive control, making them more
suitable for real-time applications in autonomous multi-agent systems. This research highlights the
strong potential of the proposed methods in the field of distributed cooperative motion planning and
marks a meaningful step toward the realization of fully cooperative autonomous driving on public roads.

6.1. Future Work
While the current implementation demonstrates promising results, several areas remain open for further
investigation and enhancement. These can be categorized into short-term and long-term goals as
follows:

Short-term goals:

• Re-initialization strategies: Introducing mechanisms to recover from standstill situations or
deadlocks can immediately enhance robustness, particularly in scenarios where local infeasibility
arises.

• Real hardware validation: Testing the algorithms on real hardware, such as the DART platform,
including the effects of communication delays and random faults, is a critical next step to bridge
the gap between simulation and practical deployment.

• Heterogeneous robot systems: The current architecture can be extended to heterogeneous
robots by employing different polytopic constraint sets. However, tuning becomes more complex
due to the need for robot-specific weights and parameters

Long-term goals:

• Higher-level scheduling: Integrating a global scheduling layer to improve performance in highly
dynamic environments or scenarios with complex task dependencies.

• Formal convergence analysis: Although empirical performance is promising, a theoretical proof
of convergence—possibly by leveraging existing results from ADMM literature—would signifi-
cantly strengthen the theoretical foundation of the approach.
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A
Final Settings and Other Approaches

A.1. Final Code Settings
Listing A.1: Final parameter configuration merging scenario

1 N: 20 # Prediction horizon length
2 integrator_step: 0.3 # Integration step size
3 skip_solver_generation: false # Skip solver code generation (assume precompiled

)
4 add_slack: true # Add slack variable for feasibility
5 slack_value: 1.0e0 # Slack penalty magnitude
6 number_of_robots: 2 # Total number of robots
7

8 robot_1:
9 start_x: -5.0 # Initial x-position

10 start_y: 1.0 # Initial y-position
11 start_theta: 0.0 # Initial heading (radians)
12

13 robot_2:
14 start_x: -4.0
15 start_y: -1.0
16 start_theta: 0.0
17

18 solver_settings:
19 iterations_centralised: 2 # Iterations for centralised solver
20 iterations_distributed: 2 # Iterations for distributed NMPC-CA loop
21 solver_type: SQP_RTI # Solver type: SQP_RTI (default), SQP
22 control_frequency: 5.0 # Control update frequency (Hz)
23 braking_acceleration: 0.4 # Emergency braking acceleration
24

25 polytopic:
26 d_min: 0.1 # Minimum separation distance
27 length: 0.5 # Robot bounding box length
28 width: 0.5 # Robot bounding box width
29

30 contouring:
31 num_segments: 5 # Segments for contouring path
32

33 weights:
34 throttle: 0.1 # Throttle effort penalty
35 steering: 0.1 # Steering effort penalty
36 lambda: 0.1 # Penalty on dual variables �
37 s_dual: 0.1 # Penalty on slack variables s
38 dmin_objective: 0.1 # Penalty on proximity constraint

35
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39 velocity: 0.6 # Velocity tracking penalty
40 reference_velocity: 0.5 # Reference speed penalty
41 lag: 0.7 # Lag error penalty
42 contour: 0.7 # Contour error penalty

Listing A.2: Final parameter configuration T-junction scenario

1 N: 20 # Prediction horizon length
2 integrator_step: 0.3 # Integration step size
3 skip_solver_generation: false # Skip solver code generation (assume precompiled

)
4 add_slack: true # Add slack variable for feasibility
5 slack_value: 1.0e0 # Slack penalty magnitude
6 number_of_robots: 2 # Total number of robots
7

8 robot_1:
9 start_x: -5.0 # Initial x-position

10 start_y: 0.0 # Initial y-position
11 start_theta: 0.0 # Initial heading (radians)
12

13 robot_2:
14 start_x: 0.0
15 start_y: -2.0=1
16 start_theta: 0.5
17

18 solver_settings:
19 iterations_centralised: 2 # Iterations for centralised solver
20 iterations_distributed: 2 # Iterations for distributed NMPC-CA loop
21 solver_type: SQP_RTI # Solver type: SQP_RTI (default), SQP
22 control_frequency: 5.0 # Control update frequency (Hz)
23 braking_acceleration: 0.4 # Emergency braking acceleration
24

25 polytopic:
26 d_min: 0.1 # Minimum separation distance
27 length: 0.5 # Robot bounding box length
28 width: 0.5 # Robot bounding box width
29

30 contouring:
31 num_segments: 5 # Segments for contouring path
32

33 weights:
34 throttle: 0.1 # Throttle effort penalty
35 steering: 0.1 # Steering effort penalty
36 lambda: 0.1 # Penalty on dual variables �
37 s_dual: 0.1 # Penalty on slack variables s
38 dmin_objective: 0.1 # Penalty on proximity constraint
39 velocity: 0.7 # Velocity tracking penalty
40 reference_velocity: 0.5 # Reference speed penalty
41 lag: 0.2 # Lag error penalty
42 contour: 0.7 # Contour error penalty

A.2. Other Distributed Approaches
A.2.1. Approach: s-Only CA
In this approach the NMPC optimiser has the freedom to compute the path including optimising for λij .
Variable λij is then communicated and neighbouring agents use this lambda as parameter λji in their
NMPC and CA solver.

The resulting optimisation problems can be found below.

Result: the CA solver does not find a solution for the trajectories and lambda’s given.
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Possible cause: The agents operate too much independent of one another and there is no solution
possible in the form of separating hyperplane parallel to the supporting vectors defined by λij and λji.

min
ui(·|t), λij(·|t)

M∑
i=1

[
∥v(k|t)− vref∥2Qvref

+ ∥εc(k|t)∥2Qεc
+

∥∥εlag(k|t)∥∥2
Q

εlag
+ ∥u(k|t)∥2Qu

+ ∥λij(k|t)∥2Qλij

]
(A.1a)

subject to (3.1b), (3.1c), (3.1d),

− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (A.1b)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (A.1c)
for all k ∈ {1, 2, . . . , N}.

min
sij(·|t)

∥sij(k|t)∥2Qsij
(A.2a)

subject to A
i
(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (A.2b)

A
j
(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (A.2c)

∥sij(k|t)∥2 ≤ 1, (A.2d)
∀k ∈ {1, 2, . . . , N}.

A.2.2. Approach: Fixed-λij CA
In this approach the λij is optimised in the NMPC optimiser and used as a parameter in the CA solver.

motivation: the NMPC solver has a larger solution space to find a solution for the trajectory while
optimising λij .

result: Ether agent one or agent two finds a solution.

Possible cause: λij and λji are optimised independent of each other, so or the separating hyperplane,
s, is aligned with the trajectory of agent 1 or agent 2.

min
ui(·|t), λij(·|t)

M∑
i=1

[
∥v(k|t)− vref∥2Qvref

+ ∥εc(k|t)∥2Qεc
+

∥∥εlag(k|t)∥∥2
Q

εlag
+ ∥u(k|t)∥2Qu

+ ∥λij(k|t)∥2Qλij

]
(A.3a)

subject to (3.1b), (3.1c), (3.1d),

− bi(zi(k|t))⊤λij(k|t)− bj(zj(k|t))⊤λji(k|t) ≥ dmin, (A.3b)
Ai(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (A.3c)
for all k ∈ {1, 2, . . . , N}.
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max
λji(·|t), sij(·|t)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t) (A.4a)

subject to A
i
(zi(k|t))⊤λij(k|t) + sij(k|t) = 0, (A.4b)

A
j
(zj(k|t))⊤λji(k|t)− sij(k|t) = 0, (A.4c)

− b
i
(zi(k|t))⊤λij(k|t)− b

j
(zj(k|t))⊤λji(k|t) ≥ dmin, (A.4d)

∥sij(k|t)∥2 ≤ 1, (A.4e)
λji(k|t) ≥ 0, (A.4f)

∀k ∈ {1, 2, . . . , N}.
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