
 
 

Delft University of Technology

Managing aging bridges under seismic hazards through deep reinforcement learning

Metwally, Z.; Andriotis, C.P.; Molaioni, F.

DOI
10.1201/9781003483755-403
Publication date
2024
Document Version
Final published version
Published in
Bridge Maintenance, Safety, Management, Digitalization and Sustainability

Citation (APA)
Metwally, Z., Andriotis, C. P., & Molaioni, F. (2024). Managing aging bridges under seismic hazards through
deep reinforcement learning. In J. S. Jensen, D. M. Frangopol, & J. W. Schmidt (Eds.), Bridge Maintenance,
Safety, Management, Digitalization and Sustainability (pp. 3405-3413). CRC Press / Balkema - Taylor &
Francis Group. https://doi.org/10.1201/9781003483755-403
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1201/9781003483755-403
https://doi.org/10.1201/9781003483755-403


Bridge Maintenance, Safety, Management, Digitalization and Sustainability –  
Jensen, Frangopol & Schmidt (eds) 

© 2024 The Author(s), ISBN 978-1-032-77040-6 
Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Managing aging bridges under seismic hazards through deep 
reinforcement learning

Z. Metwally & C.P. Andriotis
Faculty of Architecture and the Build Environment, Delft University of Technology, Delft, The Netherlands

F. Molaioni
Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, 
Rome, Italy

ABSTRACT: Structural systems must satisfy multiple performance and functionality 
requirements during their life cycle, withstanding safety-reducing degradation mechan
isms and hazards. Intervention strategies must be planned accordingly to maintain struc
tural integrity and minimize total life-cycle costs and risks, posing a complex 
optimization problem. Recent advances in multi-agent deep reinforcement learning 
(DRL) in conjunction with partially observable Markov Decision Processes (POMDPs) 
have shown great potential for determining optimal structural integrity management pol
icies for systems with large state and action spaces compared to traditional decision 
practices. This paper tackles the maintenance optimization problem of aging bridges in 
seismic-prone areas, creating an updatable environment that embeds chloride-induced 
corrosion and state-dependent seismic fragility throughout the bridge life-cycle. The evo
lution of the environment is captured by a dynamic Bayesian network, and it is further 
integrated with decentralized multi-agent DRL algorithms to identify near-optimal life- 
cycle decisions under risk constraints. Results on a multi-component bridge system show 
the suitability of the developed framework for minimizing expected life-cycle costs, and 
for providing detailed and adaptive policies that significantly outperform traditional con
dition- and time-based maintenance plans.

1 INTRODUCTION

Structural degradation of bridges, induced by time-dependent stressors and natural haz
ards, is a major threat to long-term structural safety. Controlling it becomes more and 
more crucial in the expanding and complexifying landscape of infrastructure networks. 
Many highway bridges worldwide have been constructed with outdated design principles, 
and are experiencing structural weakening due to aging and deterioration (Shekhar & 
Ghosh 2021). Late reports show, for instance, that almost half of the US bridges are 
more than 50 years old, with 35% requiring maintenance interventions of circa $125B. 
This raises the risk of disruptive transportation network closures, mobility restrictions, 
and potential failures (ASCE 2021). These figures highlight a broader challenge facing 
many countries: a growing stock of aging infrastructure that are reaching or have well 
exceeded their design life.

Among different deterioration mechanisms, corrosion, which is typically initiated by 
the penetration of aggressive substances (e.g., chlorides), is a threat that can compromise 
the ability of structural systems to withstand the design loads, resulting in a decreased 
structural reliability and, hence, increased vulnerability to natural hazards (Choe et al. 
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2008). Specifically, corrosion of reinforcement bars, which is typically associated with 
reinforcement mass loss, spalling of the concrete cover, and bond slippage, is shown to 
affect the strength and ductility of bridge components such as RC columns, bridge piers, 
and bearings (Rinaldi et al. 2022). The phenomenon manifests itself through uniform 
area reduction along the rebar length, as well as nonuniform spatially distributed local 
pits or cavities (Bertolini et al. 2004).

It is well understood that the severity of seismic consequences on RC bridges is mag
nified due to corrosion. Therefore, recent studies have developed formulations to quan
tify seismic fragility under corrosion. A common assumption is to consider uniform 
corrosion, therefore, uniform cross-sectional area losses (Alipour et al. 2011; Rao et al. 
2017; Deng et al. 2018). Yet in more recent studies, it is shown that pitting corrosion 
can be more critical compared to uniform corrosion, especially in RC bridge columns, as 
it can reduce the lateral load capacity due to localized weakening (Shekhar & Ghosh 
2021). Accounting for both effects, Molaioni et al. 2023 proposed a DBN approach to 
continuously track the seismic fragility of reinforced concrete bridges throughout the 
life-cycle. Bridges are treated as multi-component systems that include columns and dif
ferent types of bearings. The aging of bridges is rigorously incorporated in the approach, 
considering mass loss due to pitting corrosion and associated secondary effects of 
strength reduction, cracking, and loss of confinement, in addition to deterioration of 
steel bearings and corresponding modified cyclic behavior. Overall, literature suggests 
that modeling aging bridges as heterogeneous multi-component systems, and considering 
uniform and pitting corrosion alike for concrete members, in addition to reduction of 
strength and ductility of rebars, loss of concrete cover, and deterioration of steel fixed 
and expansion bearings, can significantly enhance our predictive capabilities. The next 
question to be addressed is how we can harness such predictive models to synthesize pre
cise optimal life-cycle maintenance and retrofit plans given the complexity and uncertain
ties of the involved systems and phenomena.

Over the past years, there has been increasing attention to the development of life-cycle 
decision optimization methodologies for infrastructure management, aimed at meeting this 
challenge in the most eco-socio-economically aware ways (Arunraj & Maiti 2007; Bucher & 
Frangopol 2006). Conventional approaches for determining maintenance policies for struc
tural systems build largely upon heuristic decision rules, which are based on engineering judg
ment about intervals or thresholds for interventions and observations. Such plans can be 
optimized either through exhaustive search or genetic algorithms. Another family of advanced 
optimization formulations sets up the problem as a Partially Observable Markov Decision 
Process (POMDP), solving the sequential decision-making task in a closed-loop fashion by 
incorporating observations and uncertainties of the underlying environment (Papakonstanti
nou & Shinozuka, 2014). Solutions can be traced effectively through value-based iteration 
methods in low- to medium-sized systems (Papakonstantinou & Shinozuka, 2014; Papakon
stantinou et al., 2018), or through Deep Reinforcement Learning (DRL) in large-scale ones 
(Andriotis & Papakonstantinou 2019, 2021).

Embracing these advances, we articulate the seismic management problem of aging 
bridges as a POMDP and solve it through Deep Decentralized Multi-agent Actor Critic 
(DDMAC) DRL architectures (Andriotis & Papakonstantinou, 2021). DDMAC allows 
us to deal with the curse of dimensionality, namely the exponential explosion of state 
and action spaces with an increasing number of components. The actors assimilate cen
tralized system information and produce a decentralized policy for each component, 
guided by a single critic network which is a surrogate of the life-cycle cost. Thereby, 
DDMAC allows actor outputs to scale linearly with components, while exploiting 
system-level information. Constraints are also incorporated either through state augmen
tation or a primal-dual optimization approach. A sparser version of DDMAC relying on 
local component information and centralized training with decentralized execution is 
introduced in (Saifullah et al. 2024). The temporal behavior of the structural system and 
its stressors are described by a Dynamic Bayesian Network (DBN), as developed by 
(Molaioni et al. 2023). This allows uncertainty propagation, state updating due to 
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observations, and coupling with DRL in a principled manner (Morato et al. 2023). The 
environment states are defined as probabilistic distributions, i.e., beliefs, rather than 
deterministic scalars.

Overall, this paper introduces a framework that integrates chloride-induced deterioration of 
components, state-dependent seismic fragility, probabilistic hazard analysis, maintenance 
actions, associated costs, and structural risk with DRL to optimize life-cycle intervention pol
icies. Exemplifying the approach in a case study of pre-70’s bridges, structures are idealized as 
multi-component systems that include columns, high-type expansion bearings, high-type fixed 
bearings, and low-type fixed bearings. The aging of bridges is rigorously incorporated consid
ering mass loss due to uniform and pitting corrosion, and associated secondary effects 
(Molaioni et al. 2023). Our approach results in substantial improvement in minimizing the 
life-cycle costs compared to traditional maintenance policies, offering detailed and dynamic 
maintenance plans at the component level, which are, however, risk-compliant and near- 
optimal at the system-level.

2 SEQUENTIAL DECISION-MAKING

The sequential decision-making problem is formulated as a Partially Observable Markov Decision 
Process (POMDP). Transfer between states is defined by a transition probability model, which is 
the probability of moving to a new state, st+1, in the coming time step, given the current state, st, 
when taking action at, i.e., Pr(st+1 | st,,at). Based on st+1, st, and the imposed action at, a cost ct is 
received, which is a measure of the desirability of the environment state and imposed action. The 
environment is perceived through noisy observations, ot, conditional on the actual hidden state, 
st, and the imposed action at-1, according to an observation model which defines the probability 
of observing ot given st and at, i.e., Pr(ot | st, at-1). Leveraging the transition and observation 
models, sufficient statistics that encode all the previous observation and action history, i.e., beliefs, 
can be formed which can be forwarded to the agent. The agent is tasked with learning the best 
mapping between belief bt and potential actions, i.e., a policy π=Pr(at | bt).

Throughout training, π is constantly updated to determine an optimal policy π* within 
a region of feasible policies Πc, defined by the set of stochastic and deterministic constraints of 
the optimization problem (Andriotis and Papakonstantinou, 2021):

where γ is a positive discount factor lower than 1.0 translating future costs to the current 
value.

The optimized policy π� can be written in terms of the initial belief b0, which is updatable 
after each decision step in a Bayesian manner in the POMDP framework, as follows:

where Vπ is the value function, which is a surrogate of the expected cumulative costs through
out the life-cycle until termination, t=T.

Here, the actor and critic neural networks parameterize the policy and value functions, 
respectively, following an off-policy approach, as follows:
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where i is the index of the ith actor; θi is the actor neural network weights vector; φ is the critic 
neural network weights vector;, wt is an importance sampling weight; and Aπ is the advantage 
function. The advantage function used takes the form:

3 STATE-DEPENDENT SEISMIC FRAGILITY

To quantify the seismic risk, we need to integrate the probability of exceedance of specific 
damage states due to distinct seismic intensity measures, over the range of these intensity 
measures, based on the bridge site characteristics:

where PAs(t) refers to the annual probability of exceedance of the seismic damage state 
(SDS=ss) at time t; H(x) is the hazard curve that quantifies the annual probability of 
exceedance given intensity measure IMt=x, where x is typically the PGA magnitude at 
the bridge site.

To consider the effect of aging on the seismic fragility, it is important to consider the histor
ical deterioration of the bridge component due to environmental factors (e.g., chloride- 
induced corrosion). In order to take this into account, the deterioration due to corrosion is 
modeled using non-stationary Markovian transition models conditioned on the prior corro
sion state at time t-1, Pr(CDSt=sc| CDSt-1). Following the same rationale, the probability of 
exceedance of the seismic damage state, SDSt = ss, at time t, is defined given the associated 
corrosion damage state, the intensity measure, and the prior seismic damage state, Pr(SDSt ≥ 
ss | CDSt, IMt, SDSt-1). The corresponding DBN is graphically shown in Figure 1. Accord
ingly, at a specific time, t, of the bridge life, associated with a nonstationary deterioration 
rate, the seismic fragility, given the complete histories of corrosion deterioration, seismic dam
ages, and prior seismic hazards, is approximated as follows:

Figure 1.  DBN for seismic fragility of aging bridges throughout the life-cycle.
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4 APPLICATION

The developed framework, integrating state-dependent seismic fragility assessment and life-cycle 
decision optimization through multi-agent DRL, is applied to a case study of a transportation 
corridor comprising two bridges in series, as shown in Figure 2. Note that spatial ground motion 
variability is not examined here, i.e., the accelerograms for the two bridges are identical. The 
bridges are located in a seismic-prone area (Monti et al. 2023), with a hazard curve shown in 
Figure 2. Each bridge is a four-component system that contains columns (COL), High-Type 
Expansion Bearings (HTEB), High-Type Fixed Bearings (HTFB), and Low-Type Fixed Bearings 
(LTFB). The corrosion of the bridge components is defined in a discrete space that contains four 
CDSs, i.e., Sound, Initial, Progressive, Critical. The corrosion state of the columns (COL) is dis
cretized according to the percentage of rebar mass loss, while the discretization for the bearings 
depends on the mass loss of the bolts, the reduction in steel plate thickness, and the additive coef
ficient of friction due to corrosion-induced interlocking effects. Readers with more interest in the 
modeling details are referred to (Molaioni et al. 2023). Similar to corrosion, the seismic damage 
states are discretized into five SDSs, i.e. Intact, Slight, Moderate, Extensive, Complete, with the 
latter corresponding to (near-)failure. Here, the five states are defined probabilistically using log
normal distributions for the curvature ductility and displacement limits for columns and bearings, 
respectively (Nielson, & DesRoches 2006). Correlations between component SDSs can be mod
eled as in (Song & Kang, 2009). However, they are omitted here in the interest of safety due to 
the lack of redundancy in the considered series system.

Without loss of generality, seismic states are considered fully observable, whereas to capture 
the imprecision of annual corrosion state inspections, it is assumed that CDSs are observed 
with noise according to the following observation matrix (Andriotis & Papakonstantinou 2021):

The aim is to optimize structural interventions over a 50-year planning horizon while con
straining the expected risk of disconnection between points A and B to no greater than 5% in 
50 years. Four maintenance actions are considered for columns (COL) and two actions for 
bearings (HTEB, HTFB,LTFB). These are shown in Table 1 in conjunction with the corres
ponding costs and effects on the corrosion and seismic damage states. In addition to these 
actions, the agent can choose to not interfere with the environment at a given decision step 
(i.e., Do Nothing). The costs associated with the potential actions are based on actual contract 

Figure 2.  System information including bridge schematic and hazard curve.
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prices (Tennessee Department of Transportation 2023, Ghosh & Padgett 2011). An additional 
mobilization cost of 15% of replacement cost is also imposed, which incentivizes taking simul
taneous actions for similar components. Note that identical components within the same 
bridge are treated as one component within this setting.

In order to optimize the life-cycle cost considering the aforementioned maintenance actions, 
costs, and risk constraints, the DDMAC and DDMAC-CTDE multi-agent algorithms are 
adopted for policy training. In both algorithms, the actor network consists of 8 separate con
trol units, corresponding to the components of the two-bridges corridor, with no parameter 
sharing among them. The two bridges work in series, i.e., losing one causes disconnection 
between A and B. The control units corresponding to the columns (COL) have 
a 5-dimensional softmax output, while the rest have a 3-dimensional output, which corres
ponds to the number of potential intervention actions. DDMAC control units share the 
system information, i.e., each unit has access to other units’ information in addition to its 

own. On the contrary, DDMAC-CTDE units adopt a decentralized information approach, 
where each unit accesses only its own information. In both algorithms, the actor units are 
guided by the critic network, which approximates the value function of the entire system with 
a one-dimensional linear output. For evaluating the performance of the learned policy, the 
DRL-based policy is compared to a condition-based baseline (CBM), where a corrective 
policy typically adopted to mitigate seismic damage (Ghosh & Padgett 2011) is imposed on 
top of a heuristically optimized condition-based maintenance policy on CDSs (CBM). Three 
training instances of each of the adopted DRL algorithms trained for 180K episodes, along 
with the optimized CBM, are shown in Figure 3. Both DDMAC and DDMAC-CTDE pro
duce comparable training averages, and both overperform the optimized CBM by almost 28% 
in terms of expected life-cycle costs. It was observed that the trained policies managed to also 
adhere to the risk constraints, with a tendency to prescribe more preventive action in relatively 
early life-cycle phases, as shown by the cumulative cost and probability of failure evolution of 
1000 random realizations shown in Figure 4.

Table 1. Potential actions for each component, corrosponding cost, and state effects.

Component Action Cost Action Effect

Columns (COL) Thin Epoxy overlay 2149$ Restart deterioration rate;

Epoxy Injection 3207$ Improve CDS & SDS by one;  
Delay CDS deterioration rate  
by 5 years;

Concrete Repairs 2388$ Improve CDS & SDS by two;
Replace 20000$ Bring to intact condition

Bearings (HTEB,  
HTFB, LTFB)

Replace Anchor Bolts 1112$ Improve CDS & SDS by one;
Replace 2397$ Transition to intact condition

Figure 3.  Training performance of DRL algorithms and comparison with baseline policy.
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To visualize the dynamics of the trained policy, a sample realization is presented in Figure 4, 
showing the observed seismic shocks characterized by the corresponding PGA on a temporal 
scale, followed by the corrosion CDS belief contours, the observed seismic SDS, and the imposed 
actions for each component. First, the trajectory starts with observing a relatively intense seismic 
event, with PGA≈0.25. This results in no seismic damage, except for damage in the HTEB com
ponents of both bridges, which are associated with the height fragility (Molaioni et al. 2023), in 
addition to slight damage in LTFB-1. While the agent decides to take no reactive action upon the 
damage, an intervention is made when corrosion deterioration is observed in other instances (e.g., 
HTEB-2 at year 15, LTFB-1 at year 4), which could have increased the vulnerability of such com
ponents to future shocks. Another major shock is observed around year 19, which causes different 
extents of damage across the bearing components, however, due to the prior preventive actions, 
no failure is observed throughout the system and the connectivity was maintained until two subse
quent major shocks are observed at years 23 and 39. The latter causes failures in different spots, 
resulting in corrective replacement actions. It should be noted that the agent typically avoids 

Figure 4.  Policy realization: (a) Cost accumulation; (b) Probability of failure evolution; (c) Life-cycle 
seismic shocks; (d) CDS beliefs, SDSs, and actions.
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maintaining the columns due to the relatively high associated costs, and due to their higher reli
ability compared to other components, as shown in detail in (Molaioni et al. 2023), except when 
failed. Similarly, the agent prefers to impose preventive repairs instead of costly replacements for 
bearings. Finally, the agent leverages the mobilization incentive, by imposing simultaneous inter
ventions to HTFB-1 and HTFB-2 at years 4 and 15.

5 CONCLUSIONS

In this paper, we introduce a framework for managing aging bridges subject to seismic hazards 
using dynamic Bayesian networks (DBNs) and Deep Reinforcement Learning (DRL). A virtual 
environment incorporates chloride-induced corrosion of bridge components and state- 
dependent seismic fragility functions, which are embedded in a DBN to allow for uncertainty 
propagation and state information updating throughout the life-cycle. Leveraging recent 
advances in multi-agent DRL in conjunction with partially observable Markov decision pro
cesses, the developed environment is probed by DRL agents operating on the belief space of the 
system, i.e., the dynamically updatable probabilistic distributions over component states. The 
framework is applied to identify a near-optimal 50-year intervention policy for a two-bridge 
transportation corridor located in a seismic-prone area, as well as the corresponding expected 
life-cycle cost under long-term risk constraints. A substantial improvement of 28% is observed 
in minimizing the life-cycle costs with DRL compared to traditional maintenance policies, while 
adhering to the imposed risk constraints. The introduced framework can be adopted, without 
loss of generality, to the management of other hazard- and deterioration-vulnerable systems, 
enhancing the safety, reliability, and cost-effectiveness of critical infrastructure networks.
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