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ABSTRACT: Structural systems must satisfy multiple performance and functionality
requirements during their life cycle, withstanding safety-reducing degradation mechan-
isms and hazards. Intervention strategies must be planned accordingly to maintain struc-
tural integrity and minimize total life-cycle costs and risks, posing a complex
optimization problem. Recent advances in multi-agent deep reinforcement learning
(DRL) in conjunction with partially observable Markov Decision Processes (POMDPs)
have shown great potential for determining optimal structural integrity management pol-
icies for systems with large state and action spaces compared to traditional decision
practices. This paper tackles the maintenance optimization problem of aging bridges in
seismic-prone areas, creating an updatable environment that embeds chloride-induced
corrosion and state-dependent seismic fragility throughout the bridge life-cycle. The evo-
lution of the environment is captured by a dynamic Bayesian network, and it is further
integrated with decentralized multi-agent DRL algorithms to identify near-optimal life-
cycle decisions under risk constraints. Results on a multi-component bridge system show
the suitability of the developed framework for minimizing expected life-cycle costs, and
for providing detailed and adaptive policies that significantly outperform traditional con-
dition- and time-based maintenance plans.

1 INTRODUCTION

Structural degradation of bridges, induced by time-dependent stressors and natural haz-
ards, is a major threat to long-term structural safety. Controlling it becomes more and
more crucial in the expanding and complexifying landscape of infrastructure networks.
Many highway bridges worldwide have been constructed with outdated design principles,
and are experiencing structural weakening due to aging and deterioration (Shekhar &
Ghosh 2021). Late reports show, for instance, that almost half of the US bridges are
more than 50 years old, with 35% requiring maintenance interventions of circa $125B.
This raises the risk of disruptive transportation network closures, mobility restrictions,
and potential failures (ASCE 2021). These figures highlight a broader challenge facing
many countries: a growing stock of aging infrastructure that are reaching or have well
exceeded their design life.

Among different deterioration mechanisms, corrosion, which is typically initiated by
the penetration of aggressive substances (e.g., chlorides), is a threat that can compromise
the ability of structural systems to withstand the design loads, resulting in a decreased
structural reliability and, hence, increased vulnerability to natural hazards (Choe et al.
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2008). Specifically, corrosion of reinforcement bars, which is typically associated with
reinforcement mass loss, spalling of the concrete cover, and bond slippage, is shown to
affect the strength and ductility of bridge components such as RC columns, bridge piers,
and bearings (Rinaldi et al. 2022). The phenomenon manifests itself through uniform
area reduction along the rebar length, as well as nonuniform spatially distributed local
pits or cavities (Bertolini et al. 2004).

It is well understood that the severity of seismic consequences on RC bridges is mag-
nified due to corrosion. Therefore, recent studies have developed formulations to quan-
tify seismic fragility under corrosion. A common assumption is to consider uniform
corrosion, therefore, uniform cross-sectional area losses (Alipour et al. 2011; Rao et al.
2017; Deng et al. 2018). Yet in more recent studies, it is shown that pitting corrosion
can be more critical compared to uniform corrosion, especially in RC bridge columns, as
it can reduce the lateral load capacity due to localized weakening (Shekhar & Ghosh
2021). Accounting for both effects, Molaioni et al. 2023 proposed a DBN approach to
continuously track the seismic fragility of reinforced concrete bridges throughout the
life-cycle. Bridges are treated as multi-component systems that include columns and dif-
ferent types of bearings. The aging of bridges is rigorously incorporated in the approach,
considering mass loss due to pitting corrosion and associated secondary effects of
strength reduction, cracking, and loss of confinement, in addition to deterioration of
steel bearings and corresponding modified cyclic behavior. Overall, literature suggests
that modeling aging bridges as heterogeneous multi-component systems, and considering
uniform and pitting corrosion alike for concrete members, in addition to reduction of
strength and ductility of rebars, loss of concrete cover, and deterioration of steel fixed
and expansion bearings, can significantly enhance our predictive capabilities. The next
question to be addressed is how we can harness such predictive models to synthesize pre-
cise optimal life-cycle maintenance and retrofit plans given the complexity and uncertain-
ties of the involved systems and phenomena.

Over the past years, there has been increasing attention to the development of life-cycle
decision optimization methodologies for infrastructure management, aimed at meeting this
challenge in the most eco-socio-economically aware ways (Arunraj & Maiti 2007; Bucher &
Frangopol 2006). Conventional approaches for determining maintenance policies for struc-
tural systems build largely upon heuristic decision rules, which are based on engineering judg-
ment about intervals or thresholds for interventions and observations. Such plans can be
optimized either through exhaustive search or genetic algorithms. Another family of advanced
optimization formulations sets up the problem as a Partially Observable Markov Decision
Process (POMDP), solving the sequential decision-making task in a closed-loop fashion by
incorporating observations and uncertainties of the underlying environment (Papakonstanti-
nou & Shinozuka, 2014). Solutions can be traced effectively through value-based iteration
methods in low- to medium-sized systems (Papakonstantinou & Shinozuka, 2014; Papakon-
stantinou et al., 2018), or through Deep Reinforcement Learning (DRL) in large-scale ones
(Andriotis & Papakonstantinou 2019, 2021).

Embracing these advances, we articulate the seismic management problem of aging
bridges as a POMDP and solve it through Deep Decentralized Multi-agent Actor Critic
(DDMAC) DRL architectures (Andriotis & Papakonstantinou, 2021). DDMAC allows
us to deal with the curse of dimensionality, namely the exponential explosion of state
and action spaces with an increasing number of components. The actors assimilate cen-
tralized system information and produce a decentralized policy for each component,
guided by a single critic network which is a surrogate of the life-cycle cost. Thereby,
DDMAC allows actor outputs to scale linearly with components, while exploiting
system-level information. Constraints are also incorporated either through state augmen-
tation or a primal-dual optimization approach. A sparser version of DDMAC relying on
local component information and centralized training with decentralized execution is
introduced in (Saifullah et al. 2024). The temporal behavior of the structural system and
its stressors are described by a Dynamic Bayesian Network (DBN), as developed by
(Molaioni et al. 2023). This allows uncertainty propagation, state updating due to
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observations, and coupling with DRL in a principled manner (Morato et al. 2023). The
environment states are defined as probabilistic distributions, i.e., beliefs, rather than
deterministic scalars.

Overall, this paper introduces a framework that integrates chloride-induced deterioration of
components, state-dependent seismic fragility, probabilistic hazard analysis, maintenance
actions, associated costs, and structural risk with DRL to optimize life-cycle intervention pol-
icies. Exemplifying the approach in a case study of pre-70’s bridges, structures are idealized as
multi-component systems that include columns, high-type expansion bearings, high-type fixed
bearings, and low-type fixed bearings. The aging of bridges is rigorously incorporated consid-
ering mass loss due to uniform and pitting corrosion, and associated secondary effects
(Molaioni et al. 2023). Our approach results in substantial improvement in minimizing the
life-cycle costs compared to traditional maintenance policies, offering detailed and dynamic
maintenance plans at the component level, which are, however, risk-compliant and near-
optimal at the system-level.

2 SEQUENTIAL DECISION-MAKING

The sequential decision-making problem is formulated as a Partially Observable Markov Decision
Process (POMDP). Transfer between states is defined by a transition probability model, which is
the probability of moving to a new state, 5.+, in the coming time step, given the current state, s,,
when taking action a,, i.e., Pr(s;+; | s,,a,). Based on s,+1, 5, and the imposed action «a,, a cost ¢, is
received, which is a measure of the desirability of the environment state and imposed action. The
environment is perceived through noisy observations, o,, conditional on the actual hidden state,
s;, and the imposed action «,.;, according to an observation model which defines the probability
of observing o, given s, and a,, i.e., Pr(o, | s; a,.;). Leveraging the transition and observation
models, sufficient statistics that encode all the previous observation and action history, i.e., beliefs,
can be formed which can be forwarded to the agent. The agent is tasked with learning the best
mapping between belief b, and potential actions, i.e., a policy 7=Pr(«, | b,).

Throughout training, 7 is constantly updated to determine an optimal policy 7" within
a region of feasible policies /7., defined by the set of stochastic and deterministic constraints of
the optimization problem (Andriotis and Papakonstantinou, 2021):

T
Tt = argminE(Z ved ap ~ (004, a0:-1) , bo > (1)

ell, —0

where y is a positive discount factor lower than 1.0 translating future costs to the current
value.

The optimized policy z* can be written in terms of the initial belief by, which is updatable
after each decision step in a Bayesian manner in the POMDP framework, as follows:

7* = argmin V*(by) (2)

zell,
where V" is the value function, which is a surrogate of the expected cumulative costs through-
out the life-cycle until termination, t=T.

Here, the actor and critic neural networks parameterize the policy and value functions,
respectively, following an off-policy approach, as follows:

go' = E[w, V' logn' (d}|by; 6) A" (bs, ay)] (3)

8o = E[W,V¢ V(b)) A" (b, a,)] 4)

3407



where i is the index of the i actor; &' is the actor neural network weights vector; ¢ is the critic
neural network weights vector;, w, is an importance sampling weight; and A" is the advantage
function. The advantage function used takes the form:

A"(by,ar) = (b, a) +yV™(bis1s0) — Vi(bi; ) (5)

3 STATE-DEPENDENT SEISMIC FRAGILITY

To quantify the seismic risk, we need to integrate the probability of exceedance of specific
damage states due to distinct seismic intensity measures, over the range of these intensity
measures, based on the bridge site characteristics:

dH (x)

e dx (6)

PA(1) = /Pr[SDS(t)>ss|IM, = x]’
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Figure 1. DBN for seismic fragility of aging bridges throughout the life-cycle.

where PA(?) refers to the annual probability of exceedance of the seismic damage state
(SDS=s,) at time ¢; H(x) is the hazard curve that quantifies the annual probability of
exceedance given intensity measure IM,=x, where x is typically the PGA magnitude at
the bridge site.

To consider the effect of aging on the seismic fragility, it is important to consider the histor-
ical deterioration of the bridge component due to environmental factors (e.g., chloride-
induced corrosion). In order to take this into account, the deterioration due to corrosion is
modeled using non-stationary Markovian transition models conditioned on the prior corro-
sion state at time ¢-1, Pr(CDS,=s.| CDS,.;). Following the same rationale, the probability of
exceedance of the seismic damage state, SDS, = s, at time ¢, is defined given the associated
corrosion damage state, the intensity measure, and the prior seismic damage state, Pr(SDS, >
sy | CDS,, IM, SDS,.;). The corresponding DBN is graphically shown in Figure 1. Accord-
ingly, at a specific time, ¢, of the bridge life, associated with a nonstationary deterioration
rate, the seismic fragility, given the complete histories of corrosion deterioration, seismic dam-
ages, and prior seismic hazards, is approximated as follows:

PI‘(SDS, > SX|CDS();[7 IM();[, SDS()[), PI‘(SDS, > S3|CDSZ, IM[, SDS[71) (7)
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4 APPLICATION

The developed framework, integrating state-dependent seismic fragility assessment and life-cycle
decision optimization through multi-agent DRL, is applied to a case study of a transportation
corridor comprising two bridges in series, as shown in Figure 2. Note that spatial ground motion
variability is not examined here, i.e., the accelerograms for the two bridges are identical. The
bridges are located in a seismic-prone area (Monti et al. 2023), with a hazard curve shown in
Figure 2. Each bridge is a four-component system that contains columns (COL), High-Type
Expansion Bearings (HTEB), High-Type Fixed Bearings (HTFB), and Low-Type Fixed Bearings
(LTFB). The corrosion of the bridge components is defined in a discrete space that contains four
CDSs, i.e., Sound, Initial, Progressive, Critical. The corrosion state of the columns (COL) is dis-
cretized according to the percentage of rebar mass loss, while the discretization for the bearings
depends on the mass loss of the bolts, the reduction in steel plate thickness, and the additive coef-
ficient of friction due to corrosion-induced interlocking effects. Readers with more interest in the
modeling details are referred to (Molaioni et al. 2023). Similar to corrosion, the seismic damage
states are discretized into five SDSs, i.e. Intact, Slight, Moderate, Extensive, Complete, with the
latter corresponding to (near-)failure. Here, the five states are defined probabilistically using log-
normal distributions for the curvature ductility and displacement limits for columns and bearings,
respectively (Nielson, & DesRoches 2006). Correlations between component SDSs can be mod-
eled as in (Song & Kang, 2009). However, they are omitted here in the interest of safety due to
the lack of redundancy in the considered series system.

=g

Column (COL) Hazard Curve
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High Type Expansion 10

Bearing (HTEB)
ks 102

CDF

High Type Fixed

Bearing (HTFB) 1073

P BE

Low Type Fixed
Bearing (HTFB)

1074

0.00.51.0 1.52.02.53.0
PGA

>

Figure 2. System information including bridge schematic and hazard curve.

Without loss of generality, seismic states are considered fully observable, whereas to capture
the imprecision of annual corrosion state inspections, it is assumed that CDSs are observed
with noise according to the following observation matrix (Andriotis & Papakonstantinou 2021):

Oc,l 00,2 0073 00,4

ser /084 013 0.02 0.01

s o011 077 009 003
Pr(oc|CDS =) = ("1 002 0.16 070 0.12 ®)

sea \0.01 002 0.13 0.84

The aim is to optimize structural interventions over a 50-year planning horizon while con-
straining the expected risk of disconnection between points A and B to no greater than 5% in
50 years. Four maintenance actions are considered for columns (COL) and two actions for
bearings (HTEB, HTFB,LTFB). These are shown in Table 1 in conjunction with the corres-
ponding costs and effects on the corrosion and seismic damage states. In addition to these
actions, the agent can choose to not interfere with the environment at a given decision step
(i.e., Do Nothing). The costs associated with the potential actions are based on actual contract
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prices (Tennessee Department of Transportation 2023, Ghosh & Padgett 2011). An additional
mobilization cost of 15% of replacement cost is also imposed, which incentivizes taking simul-
taneous actions for similar components. Note that identical components within the same
bridge are treated as one component within this setting.

In order to optimize the life-cycle cost considering the aforementioned maintenance actions,
costs, and risk constraints, the DDMAC and DDMAC-CTDE multi-agent algorithms are
adopted for policy training. In both algorithms, the actor network consists of 8 separate con-
trol units, corresponding to the components of the two-bridges corridor, with no parameter
sharing among them. The two bridges work in series, i.e., losing one causes disconnection
between A and B. The control units corresponding to the columns (COL) have
a 5-dimensional softmax output, while the rest have a 3-dimensional output, which corres-
ponds to the number of potential intervention actions. DDMAC control units share the
system information, i.e., each unit has access to other units’ information in addition to its

Table 1. Potential actions for each component, corrosponding cost, and state effects.

Component Action Cost Action Effect
Columns (COL) Thin Epoxy overlay 21498 Restart deterioration rate;
Epoxy Injection 32078 Improve CDS & SDS by one;
Delay CDS deterioration rate
by 5 years;
Concrete Repairs 2388$ Improve CDS & SDS by two;
Replace 200008  Bring to intact condition

Bearings (HTEB,  Replace Anchor Bolts 1112% Improve CDS & SDS by one;
HTFB, LTFB) Replace 2397% Transition to intact condition

\ CBM DDMAC DDMAC

7e+5
S5e+5 CTDE
3e+5
2e+5

le+5

Cost

50000 N

30000 - e e, ——
20000

10000
0 50000 100000 150000

Episode

Figure 3. Training performance of DRL algorithms and comparison with baseline policy.

own. On the contrary, DDMAC-CTDE units adopt a decentralized information approach,
where each unit accesses only its own information. In both algorithms, the actor units are
guided by the critic network, which approximates the value function of the entire system with
a one-dimensional linear output. For evaluating the performance of the learned policy, the
DRL-based policy is compared to a condition-based baseline (CBM), where a corrective
policy typically adopted to mitigate seismic damage (Ghosh & Padgett 2011) is imposed on
top of a heuristically optimized condition-based maintenance policy on CDSs (CBM). Three
training instances of each of the adopted DRL algorithms trained for 180K episodes, along
with the optimized CBM, are shown in Figure 3. Both DDMAC and DDMAC-CTDE pro-
duce comparable training averages, and both overperform the optimized CBM by almost 28%
in terms of expected life-cycle costs. It was observed that the trained policies managed to also
adhere to the risk constraints, with a tendency to prescribe more preventive action in relatively
early life-cycle phases, as shown by the cumulative cost and probability of failure evolution of
1000 random realizations shown in Figure 4.
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Figure 4. Policy realization: (a) Cost accumulation; (b) Probability of failure evolution; (c) Life-cycle
seismic shocks; (d) CDS beliefs, SDSs, and actions.

To visualize the dynamics of the trained policy, a sample realization is presented in Figure 4,
showing the observed seismic shocks characterized by the corresponding PGA on a temporal
scale, followed by the corrosion CDS belief contours, the observed seismic SDS, and the imposed
actions for each component. First, the trajectory starts with observing a relatively intense seismic
event, with PGA~0.25. This results in no seismic damage, except for damage in the HTEB com-
ponents of both bridges, which are associated with the height fragility (Molaioni et al. 2023), in
addition to slight damage in LTFB-1. While the agent decides to take no reactive action upon the
damage, an intervention is made when corrosion deterioration is observed in other instances (e.g.,
HTEB-2 at year 15, LTFB-1 at year 4), which could have increased the vulnerability of such com-
ponents to future shocks. Another major shock is observed around year 19, which causes different
extents of damage across the bearing components, however, due to the prior preventive actions,
no failure is observed throughout the system and the connectivity was maintained until two subse-
quent major shocks are observed at years 23 and 39. The latter causes failures in different spots,
resulting in corrective replacement actions. It should be noted that the agent typically avoids
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maintaining the columns due to the relatively high associated costs, and due to their higher reli-
ability compared to other components, as shown in detail in (Molaioni et al. 2023), except when
failed. Similarly, the agent prefers to impose preventive repairs instead of costly replacements for
bearings. Finally, the agent leverages the mobilization incentive, by imposing simultaneous inter-
ventions to HTFB-1 and HTFB-2 at years 4 and 15.

5 CONCLUSIONS

In this paper, we introduce a framework for managing aging bridges subject to seismic hazards
using dynamic Bayesian networks (DBNs) and Deep Reinforcement Learning (DRL). A virtual
environment incorporates chloride-induced corrosion of bridge components and state-
dependent seismic fragility functions, which are embedded in a DBN to allow for uncertainty
propagation and state information updating throughout the life-cycle. Leveraging recent
advances in multi-agent DRL in conjunction with partially observable Markov decision pro-
cesses, the developed environment is probed by DRL agents operating on the belief space of the
system, i.e., the dynamically updatable probabilistic distributions over component states. The
framework is applied to identify a near-optimal 50-year intervention policy for a two-bridge
transportation corridor located in a seismic-prone area, as well as the corresponding expected
life-cycle cost under long-term risk constraints. A substantial improvement of 28% is observed
in minimizing the life-cycle costs with DRL compared to traditional maintenance policies, while
adhering to the imposed risk constraints. The introduced framework can be adopted, without
loss of generality, to the management of other hazard- and deterioration-vulnerable systems,
enhancing the safety, reliability, and cost-effectiveness of critical infrastructure networks.
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