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Abstract This paper is first of the two papers deal-

ing with the nonlinear modelling and investigation of

coupled cross-flow and in-line vortex-induced vibrations

(VIVs) of flexible cylindrical structures. As a continu-

ation of the previous work [1] where a new single wake

oscillator model was proposed and studied for VIVs of

rigid cylinders, the present paper focuses on applying

it to flexible cylinders. In this paper, the structure is

modelled as an extensible Euler-Bernoulli beam and its

3D nonlinear coupling motion is described in the ab-

solute coordinate system. The single van der Pol wake

oscillator model with nonlinear coupling to the in-line

motion of the structure, in addition to the classic linear

cross-flow motion coupling, is uniformly distributed a-

long the structure to model the hydrodynamic force act-

ing on it. The finite element method has been applied

to solve the dynamics of the coupled system, and the

experiments of the VIV of a top-tensioned straight riser

subjected to a step flow have been taken for the valida-

tion of the model. The model has been shown to be able

to capture most features of VIVs of flexible cylinders,

and a good agreement between the simulation results

and the experimental measurements has been observed

with regard to the amplitude, frequency and excited

mode of both cross-flow and in-line vibrations, as well

as the mean in-line deflection due to the amplified in-

line force. While it is conventionally expected that the

VIV of a flexible cylinder subjected to a uniform flow
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is dominated by a single frequency, a multi-frequency

response is observed in the simulation results over the

range of flow velocities through which the transition of

the dominant mode of vibration occurs.

Keywords Vortex-induced vibration · In-line cou-

pling · Wake oscillator · Fluid-structure interaction

1 Introduction

Vortex-induced vibration (VIV) is a well-known phe-

nomenon related to civil engineering structures, such

as chimneys, cables of suspended bridges, suspended

power lines, offshore risers and mooring cables, that

are subjected to air or water flows. VIVs of flexible

structures are important sources of fatigue damage, and

the reliable prediction thereof has been a long-standing

problem.

In most studies of VIVs of flexible cylinders, the fo-

cus has been placed on the analysis and prediction of

the vibration of a top-tensioned riser, which can be ade-

quately modelled as a tensioned beam or cable with ap-

propriate boundary conditions. With a small amplitude

of vibration, the structural dynamics model is normally

assumed to be linear, and the cross-flow and in-line mo-

tions are considered separately [2–5]. However, in prac-

tical applications, many long, slender structures, such

as catenary risers, pipelines during laying processes and

mooring cables, have a curved shape. Due to the high

slenderness of the structure and complicated environ-

mental loads, the dynamics of these structures often

exhibit strong 3D nonlinear coupling motions. There-

fore, a general, realistic, nonlinear model of the struc-

ture that is valid for both straight and curved structures

is needed. To authors’ knowledge, only a few works have
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considered such structural nonlinearities in the study of

VIV [6–8].

The main difficulty related to the reliable prediction

of VIV lies in the modelling of hydrodynamic forces. As

solving the equations governing the viscous flow that in-

teracts with the structure is extremely computational-

ly demanding, the industry relies mainly on the force-

decomposition method for the prediction of VIVs of

flexible structures. This method, originally based on the

work by Sarpkaya [9], is semi-empirical. The basis of the

method is the use of a hydrodynamic forces database,

which is obtained from forced vibration tests [10–12].

Based on this method, several frequency domain tools,

such as VIVANA and SHEAR7, have been developed

and widely used by the industry. More recently, a u-

nique modal space direct VIV prediction method has

been developed and validated by Lu et.al [13]. This

new method converts the VIV prediction problem in-

to modal space and solves the equations by graphically

finding their crossing point of two curves of modal re-

sponse and modal hydrodynamic force without any nu-

merical iterations and calculation of energies. Despite of

its wide applications, the force decomposition method

is a frequency domain approach and is not able to con-

sider the nonlinear structural behaviours. Moreover, a

hydrodynamic database that takes both cross-flow and

in-line motions into account is required for this method

to be applied in the prediction of coupled cross-flow

and in-line VIVs. An attempt has been made to con-

duct two degrees of freedom (2DOF) forced vibrations

to build such an advanced force database. However, the

large number of control parameters makes it difficult

to build a complete database with sufficient resolution,

and interpolating the relatively sparse database is not

an ideal option due to the strong nonlinearity of the

problem [14].

The wake oscillator model is another type of model

that is more often used in the research field than in the

industry for the prediction of VIV. The fundamental

idea of this approach is to describe the dynamics of the

wake using an effective nonlinear oscillator, whose mo-

tion is coupled to the dynamics of the cylinder. Since

the first proposal of the concept in the 1950s, a large

number of wake oscillators have been developed; for de-

tails of these models please refer to [15]. In general, the

van der Pol type nonlinear oscillators have been most-

ly used and this type of nonlinear oscillators describes

the hydrodynamic forces acting on a fixed cylinder bet-

ter than others, e.g., Rayleigh type nonlinear oscilla-

tors [16]. Studies have revealed that the wake oscilla-

tor models are capable of capturing key VIV features

in qualitative, sometimes quantitative, agreement with

experimental observations and direct numerical simu-

lations for both rigid and flexible cylinders [2,17,18].

There are also progresses in the derivation of reduced-

order model of VIV from first principles, which have

provided more insight into the underlying physics and

hydrodynamic basis of the wake oscillator model [19,

20].

Apart from the methods described above, other mod-

els have also been developed - for detailed information,

please refer to the review by Gabbai et al. [15]. De-

veloping new time domain models for VIVs of flexible

cylinders subjected to both steady and oscillatory flows

has been the focus of many recent studies [21–23]. E-

specially, Zhang et. al [22] proposed an empirical time

domain prediction method where for the first-time cou-

plings between tension variations and VIV were consid-

ered via a simplified tension variation model. This new

method provides the possibility to evaluate effects of

tension variations on VIVs, becoming an indispensable

reference to VIV researches.

In most studies on wake oscillator models, only the

cross-flow VIV is considered and the in-line response

is normally assumed to be very small and its influence

is ignored. However, experimental studies have demon-

strated that the presence of the in-line vibration can

alter the wake pattern, and the VIV of a rigid cylinder

free to move in both cross-flow and in-line directions can

be significantly different from the case where the cylin-

der is constrained to move in only one direction [24–26].

With regard to this problem, a few double wake oscilla-

tor models have been developed; a second wake oscilla-

tor equation is introduced in the model to describe the

fluctuating drag force [27–29]. However, introducing a

second oscillator equation to describe the fluctuating

drag force seems to contradict the fundamental mech-

anism of the coupled cross-flow and in-line VIV where

the lift and drag forces have the same origin, i.e., the

dynamics of the wake. It is physically more reasonable

to use only one oscillator to describe the dynamics of

the wake, and this oscillator should be coupled to both

cross-flow and in-line motions of the cylinder.

In line with this principle, a single van der Pol wake

oscillator model has been developed in [1]. In addition

to the classic linear cross-flow acceleration coupling as

suggested in [17], a nonlinear in-line coupling term has

been introduced to the wake oscillator equation. This

new model overcomes the main limitations of the dou-

ble wake oscillator models and has been shown to be

able to reproduce important features of coupled cross-

flow and in-line VIVs of rigid cylinders that the double

wake oscillator models have failed to capture [1]. With

the previous paper [1] focusing on rigid cylinders, the

main purpose of the present work is to investigate how

this new wake oscillator model performs with respec-
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t to predicting coupled cross-flow and in-line VIVs of

flexible cylinders. As the VIVs of flexible cylinders are

significantly different from and more complicated than

those of rigid cylinders, the effect of the in-line coupling

which has been studied to some extent in [1] for rigid

cylinders needs to be evaluated from different perspec-

tives, such as the response pattern, force distribution,

energy transfer and fatigue damage. Due to its exten-

sive content, the work is presented in two parts. The

first part is related to the model description and vali-

dation which is the focus of the present paper, while the

second part is presented in another (Part II) where the

effect of the in-line coupling as well as its importance

on the prediction of coupled cross-flow and in-line VIVs

of flexible cylinders are thoroughly discussed.

The remainder of the paper is structured as follows.

In Section 2, the models of both the structure and hy-

drodynamic force are described. The models are then

applied to simulate the experiments presented in [30],

and the comparison between the results of the simula-

tions and experiments are discussed in Section 3. Final-

ly, the main conclusions are presented in Section 4.

2 Model description

In this section, the structural and hydrodynamic force

models for the simulation of VIVs of flexible cylinders

are described. The structure is modelled as an exten-

sible Euler-Bernoulli beam, which can deal with both

straight and curved configurations, and a three dimen-

sional nonlinear coupled motion is considered. A local

reference frame is introduced at each location along the

cylinder within which the wake oscillator model in [1]
is applied to model the hydrodynamic force.

2.1 Nonlinear structural model

The flexible cylinder is simplified into a beam. In line

with the Euler-Bernoulli beam theory, only the axial

and bending deformations are considered. This is a rea-

sonable simplification in most cases when the shear de-

formation and torsion are negligible, and it is computa-

tionally more efficient. The configuration of the struc-

ture is described by the position vector r (p, t) of the

cylinder axis as

r (p, t) =

x (p, t)

y (p, t)

z (p, t)

 (1)

where p is the Lagrange coordinate or arc-length mea-

sured along the undeformed cylinder, and t is the time.

For the convenience of writing, the following notation

will be used to represent the partial derivative with

respect to p: r,p = ∂r/∂p and overdots represent the

derivative with respect to time.

The weak form of the equation of motion is given as

δWI + δWS − δWE = 0 (2)

where δWI denotes the virtual work of inertia forces,

δWS is the virtual work of internal (elastic) forces, and

δWE is the virtual work of external forces.

The expressions of virtual work of inertia force is

given as

δWI =

∫ L

0

m0r̈
T δrdp (3)

where L is the length of undeformed beam and m0 is

the mass of the beam per unit length.

The virtual work of internal forces, as proposed in

[31], is divided into two parts: one due to the bending

moment and another due to the axial force. That virtual

work reads as follows:

δWS =

∫ L

0

(EAε0δε0 + EIKδK) dp (4)

in which E is the modulus of elasticity, A is the cross-

sectional area and I is the second moment of the area.

Furthermore, ε0 is the axial strain, which is defined as

ε0 = |r,p| − 1 (5)

and K, interpreted in [32] as the material measure of

curvature, is defined as

K =
|r,p × r,pp|
|r,p|2

(6)

The variation of axial strain ε0 is given by

δε0 =
1

|r,p|
rᵀ,pδr,p (7)

The variation of K reads

δK = −2
|r,p × r,pp|
|r,p|4

rT,pδr,p

+
1

|r,p|2|r,p × r,pp|
(r,p × r,pp)

ᵀ
(δr,p × r,pp + r,p × δr,pp)

(8)
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x

dX
U = V -

dt

U

y

dY
U = -

dt
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VYF

VDF
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OXF

VF

Fig. 1: Decomposition of the vortex force in drag, lift, cross-
flow and in-line directions

2.2 Hydrodynamic force model

In this study, the single van der Pol wake oscillator

model proposed in [1] for rigid cylinders is now applied

and distributed along the structure to compute the hy-

drodynamic forces due to vortex shedding at each cross

section. In order to introduce the model, we consider a

case where the cylinder is rigid and the flow, with ve-

locity V , is perpendicular to its axis. By assuming that

the flow around the cylinder is two-dimensional (uni-

form along the cylinder axis), the interaction between

the cylinder and the flow can be simplified as shown in

Fig.1 .Taking into account of the relative flow veloci-

ty (U) between the free stream flow and the two-DOF

moving cylinder, the instantaneous lift (FV L) and drag

(FV D) forces acting on the cylinder are assumed to be

perpendicular to and aligned with U , respectively.

The magnitudes of lift and drag forces per unit length

are related to the relative flow velocity U and are de-

fined as

FV L =
1

2
ρDU2CV L, FV D =

1

2
ρDU2CV D (9)

where ρ is the mass density of the fluid, D is the di-

ameter of the cylinder, CV L and CV D are lift and drag

force coefficients respectively, the relative flow velocity

is expressed as

U =

√(
V − dX

dt

)2

+

(
dY

dt

)2

(10)

In Eq.(9), the drag coefficient CV D is assumed to

be constant and the influence of the dynamics of the

wake is taken into account through time varying lift

coefficient CV L. One major problem with this force for-

mulation is that it ignores the oscillatory component

of the drag force. Therefore, an additional in-line force

FOX is introduced which is given as

FOX =
1

2
αC2

V LρD|Ux|Ux, (11)

where α is an empirical parameter and Ux = V −
dX/dt is the relative flow velocity in the in-line direc-

tion. Physically, the lift and drag forces are projections

of the total fluid force in different directions and the

two forces are therefore interdependent. To account for

this interdependency, the quadratic drag-lift coupling

as shown in Eq.(11) is adopted according to the work

[33] where the frequency components and phase relation

of the lift and drag forces are studied using higher-order

spectral moments.

The cross-flow (FV Y ) and in-line (FV X) hydrody-

namic forces can be obtained, by projecting the FV D
and FV L components onto the cross-flow and in-line

axes, as

FV Y = FV D sinβ + FV L cosβ (12)

FV X = FV D cosβ − FV L sinβ + FOX (13)

where β is the angle between the direction of the rela-

tive flow velocity U and the undisturbed flow V . The

angle β is given by

sin(β) = −dY

dt
/U, cos(β) = (V − dX

dt
)/U (14)

Substituting Eqs.(9, 10, 11) and (14) into Eqs.(12)

and (13), we obtain

FV Y =
1

2
ρDV 2CV Y (15)

FV X =
1

2
ρDV 2CV X (16)

where

CV Y = CV L
U

V 2

(
V − dX

dt

)
− CV D

U

V 2

dY

dt
(17)

CV X =CV L
U

V 2

dY

dt
+ CV D

U

V 2

(
V − dX

dt

)
+ αC2

V L

(
1− 1

V

dX

dt

)
|1− 1

V

dX

dt
|

(18)

When a cylinder does not move, i.e. dX/dt = 0 and

dY/dt = 0, Eq.(18) reduces to

CV X = CV D + αC2
V L (19)

which is in the same form as proposed by Qin [33] for

the coupled lift and drag forces on a fixed cylinder.

If the lift force acting on a fixed cylinder is expressed
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as CV L = CL0 sin (ωt), where CL0 is the amplitude of

fluctuating lift force coefficient. Then, substituting it

into Eq.(19) results in

CV X = CV D +
1

2
αC2

L0 (1− cos (2ωt)) (20)

The mean value of CV X is CV D + 1
2αC

2
L0 and the

amplitude of the fluctuating component of CV X is 1
2αC

2
L0,

as can be derived from Eq.(20). Comparing the mean

and fluctuating components of CV X to those measured

on a fixed cylinder, the values of CV D and α can be

obtained as

CV D = CD −
1

2
αC2

L0 (21)

and

α = 2
CD0

C2
L0

(22)

where CD is the mean drag force coefficient and CD0 is

the amplitude of the fluctuating drag force coefficient

measured on a fixed cylinder.

The dynamics of the wake is modelled by a van der

Pol nonlinear equation which is coupled to both the

cross-flow and in-line motions of the cylinder. The e-

quation is given as

d2q

dt2
+εωs(q

2−1)
dq

dt
+ω2

sq−κ
ω4
sD

d2X
dt2

ω4
sD

2 +
(

d2X
dt2

)2 q =
A

D

d2Y

dt2

(23)

where q is the wake variable; ε, A and κ are tuning pa-

rameters; ωs = 2πV St/D is the Strouhal frequency and

St is the Strouhal number. Compared with the conven-

tional wake oscillator equation for the cross-flow VIV,

Eq.(23) introduces a nonlinear in-line coupling term to

describe the influence of the in-line motion on the dy-

namics of the wake. This relatively complicated in-line

coupling term is the result of modifying a simpler for-

m of parametric excitation κ
D

d2X
dt2 q, which was derived

based on the experimental observation and heuristic in-

ference from the dynamics of a pendulum, to overcome

its limitation when subjected to forced in-line vibra-

tions at high frequencies [1]. It needs to be clarified

that Qu and Metrikine [1] were not the first to propose

introducing in-line coupling in the form of parametric

excitation. This idea has been suggested before in the

work by Qin [33].

The lift force coefficient CV L is associated with the

wake variable q as

CV L =
q

2
CL0 (24)

With X = 0 and Y = 0, Eq.(23) describes the lift

force that wake imposes on a fixed cylinder. In such

case, the steady solution of Eq.(23) reaches a limit cycle

with the amplitude of 2. Therefore, the coefficient 1/2

in Eq.(24) is used to ensure the amplitude of oscillation

of CV L equals to CL0 for a fixed cylinder.

Choosing appropriate tuning parameters is impor-

tant in the application of the wake oscillator model to

simulate VIVs of flexible cylinders. A common practise

is to use the tuning parameters that have been calibrat-

ed against experiments of rigid cylinders by assuming

that the flow field around a flexible cylinder at each

local cross section is the same as that around a rigid

one [2,5,8]. The same approach is adopted here. How-

ever, in the work [1] where the present wake oscillator

model is tuned to experiments of rigid cylinders, two

different sets of values for tuning parameters A, ε and

κ have been applied to capture the upper and lower re-

sponse branches respectively. It is not clear yet which

set of values should be used here for flexible cylinders.

A flexible cylinder possesses infinite number of natural

frequencies, and the cross-flow and in-line vibrations of

it are normally characterized by dual resonance when

VIV occurs [34]; this is more similar to the case of a

rigid cylinder with the in-line natural frequency ap-

proximately twice that of the cross-flow. As the ratio

between the in-line and cross-flow natural frequencies

increases from 1 to 2, it was observed in experiments

that the cross-flow response becomes dominated by one

response branch over a wide range of reduced velocities

and this response branch exhibits two distinct peak-

s [35]. A preliminary study indicates that the current

model qualitatively captures this characteristic using

the set of tuning parameters of Case U given in [1];
see Appendix A. Therefore, these tuning parameters,

namely A = 8, ε = 0.08 and κ = 5, will be applied

in the following for the modelling of VIVs of flexible

cylinders.

2.3 Coupled system

As mentioned in the previous paragraphs, the wake os-

cillator model described above is developed for rigid

cylinders subjected to the normal uniform cross flow.

However, in many engineering applications of long, flex-

ible cylinders, the flow may not be uniform (shear flow)

and, in many cases, not perpendicular to the axis of the

cylinder, such as in the case of a catenary riser. In such

cases, the independence principle is normally applied;

it assumes that the flow dynamics are essentially de-

pendent on the normal component of free stream with

respect to the cylinder axis, while the component that
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teq

neq

beq

(a)

VN

eq

Veq

 UN
 FVL

 FVD

beq

neq

DVL

VN

eq

(b)

 FOX

Fig. 2: Local vortex shedding for a curved beam and definition
of the local coordinate system: (a) local coordinate system
and (b) force decomposition in plane beq − neq.

is aligned with the cylinder axis has a negligible im-

pact. Here, the inclination angle is defined as the angle

between the incoming flow and the plane that is per-

pendicular to the cylinder axis.

To apply the wake oscillator for the modelling of

VIVs of flexible cylinders, a local coordinate must first

be established at each cross-section. Since the VIV of

a flexible structure is normally characterised as finite

amplitude motions around the equilibrium position, it

is reasonable to build up the local coordinate system

based on the equilibrium position of the structure. Con-

sider a segment of a cylinder at its equilibrium position

subjected to the flow, as illustrated in Fig.2(a). Using

the local frame described by the tangential unit vector

teq, in-line unit vector neq and cross-flow unit vector

beq, according to the independence principle, the vor-

tex shedding process is assumed to take place in the

plane that is perpendicular to the orientation of the

beam, i.e., the beq − neq plane. Here, the superscript

‘eq’ signifies that the vectors are obtained in the equi-

librium position. According to [36], the tangential unit

vector teq is given as

teq =
req,p
|req,p |

. (25)

Under the equilibrium configuration, the free stream

velocity at a specific location of the structure is Veq,

and its component within the plane of vortex shedding,

i.e., beq − neq, is obtained as

Veq
N = Veq − ((Veq)

ᵀ
teq) teq. (26)

where []ᵀ denotes transpose operator.

The in-line unit vector neq is defined to be in the

same direction as Veq
N , and it reads

neq =
Veq
N

|Veq
N |
. (27)

The cross-flow unit vector beq is defined as the following

cross product:

beq = teq × neq. (28)

The unit vectors teq, neq and beq formulate the lo-

cal coordinate system within which the wake oscillator

described in Section 2.2 is applied. The unit vector beq

corresponds to the cross-flow direction of the rigid cylin-

der, and the unit vector neq corresponds to the in-line

direction. Within the plane beq−neq, the force decom-

position is the same as that for a rigid cylinder and is

depicted in Fig.2(b). It has to be pointed out that this

local coordinate system is based on the equilibrium con-

figuration of the structure and does not change as the

structure vibrates. The same rule applies to the cor-

responding parameters (with the superscript ‘eq’) that

are derived from the equilibrium position. Within the

local coordinate, the wake oscillator equation can be

written as

q̈+ωs
(
q2 − 1

)
q̇+ω2

sq−κ
ω4
sDr̈ᵀneq

ω4
sD

2 + (r̈ᵀneq)
2 q =

A

D
r̈ᵀbeq

(29)

where ωs = 2πSt|Veq
N |/D. The instantaneous lift and

drag forces per unit length are defined as

FV L =
1

2
ρD

CL0
2
q|UN |2DV L (30)

FV D =
1

2
ρDCV D|UN |UN (31)

where UN is the relative flow velocity within plane

beq − neq, which is given as

UN = Veq
N − (ṙ− (ṙᵀteq) teq) (32)

and DV L is the unit vector in the b-n plane that is

perpendicular to UN and is given as

DV L =
teq ×UN

|teq ×UN |
. (33)



Title Suppressed Due to Excessive Length 7

The extra in-line oscillating force, denoted by FOX
is given as

FOX =
1

2
ρDα

C2
L0

4
q2|UNX |UNX (34)

where

UNX = Veq
N − ((neq)

ᵀ
ṙ) neq. (35)

Apart from the hydrodynamic force, the structure

is also subjected to a hydrostatic force when submerged

in the fluid. The concept of effective tension is normally

used in offshore engineering to take into account the ef-

fect of hydrostatic fluid pressure. The effective tension

approach states that the total effect of the structure’s

fluid pressure, internal or external, on a section of the

structure can be replaced by the buoyancy force that

follows the Archimedes’ principle and an axial tension

equal to PeAe − PiAi, where Pe is the external fluid

pressure, Ae is the corresponding external area of the

cross-section, Pi is the internal fluid pressure, and Ai
is the corresponding internal area of the cross-section.

The buoyancy force is treated as the external distribut-

ed force, while the tension PeAe − PiAi will be taken

as the internal force and incorporated into the equa-

tion of motion of the structure. For simplicity, here the

PeAe−PiAi is calculated based on the equilibrium con-

figuration of the structure and does not change during

the vibration. Another effect of the fluid on the mo-

tion of the structure that has not been addressed in the

previous paragraphs is the potential inertial force (po-

tential added mass). This force should be considered

as acting in the direction normal to the cylinder axis

and proportional to the acceleration of the structure in

that direction. For simplicity, we also assume that this

direction is defined in the equilibrium configuration of

the structure and does not change during the vibration.

This enables us to integrate the potential added mass

into the mass matrix of the structure and added mass

coefficient Ca = 1 is taken.

2.4 Finite element formulation

Fig.3 depicts a two-noded beam element, which is the

same as the lower-order element proposed by Gerstmayr

et al. [31], with two nodes A and B at each end. Each

node is defined by six degrees of freedom that consist

of the nodal global position vector and slope vector:

uj =
[
rᵀj rᵀj,p

]ᵀ
j = A,B. (36)

Then, the beam element coordinates are given by

the vector

u = [uᵀ
A uᵀ

B ]
ᵀ
. (37)

A

A,p

B

B,p

Fig. 3: Two-noded beam element.

The global position vector of an arbitrary point with-

in the beam element, originally placed at p of the un-

deformed beam axis, in the deformed configuration can

be interpolated in terms of the nodal coordinates and

the element shape function as

r (p, t) =

x (p, t)

y (p, t)

z (p, t)

 = Su. (38)

Hermite shape functions are employed, and the shape

function matrix S is written as

S = [S1I S2I S3I S4I] (39)

where I is the 3 × 3 unit matrix, and functions Si =

Si (p) are given by

S1 = 2
( p
L

)3
− 3

( p
L

)2
+ 1

S2 = L
( p
L

)3
− 2L

( p
L

)2
+ p

S3 = 3
( p
L

)2
− 2

( p
L

)3
S4 = L

( p
L

)3
− L

( p
L

)2
(40)

By substituting Eq. (38) into Eq. (3), one obtains

the virtual work of inertia force as

δWI = üᵀ
∫ L

0

m0S
ᵀSdpδu (41)

from which the mass matrix of the structure element is

determined as

Me
s =

∫ L

0

m0S
ᵀSdp (42)

Similarly, by substituting Eq.(38) into Eq.(4), the

stiffness matrix of the structure element Ke
s is obtained.

The detailed derivation, as well as the final expression

of Ke
s, is provided in Appendix B.1.
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For the structural damping, the Rayleigh damping

model is applied for simplification, and it reads as fol-

lows:

Ce
s = αMe

s + βJe,eqs (43)

where Je,eqs = ∂[Ke,equ]
∂u is the tangent stiffness matrix

calculated under the equilibrium configuration.

The wake oscillators are uniformly distributed along

the structure and therefore also need to be discretised

in accordance with the beam element. With the same

Hermite shape function as that used for the beam ele-

ment, the wake variable q is interpolated as

q (p, t) = Sqq (44)

where q is the wake element coordinates and consists of

the wake variable as well as its derivative with respect to

p at two nodes of beam element q = [qA qA,p qB qB,p]
ᵀ.

Sq is the shape function matrix and is written as

Sq = [S1 S2 S3 S4]. (45)

Then, the mass matrix, damping matrix and stiff-

ness matrix of the wake variable element can be ob-

tained from Eq.(29) as

Me
q =

∫ L

0

Sᵀ
qSqdp (46)

Ce
q =

∫ L

0

ωs
(
qᵀSᵀ

qSqq− 1
)
Sᵀ
qSqdp (47)

Ke
q =

∫ L

0

ω2
sS

ᵀ
qSqdp−κ

∫ L

0

ω4
sD (üᵀSᵀneq)

ω4
sD

2 + (üᵀSᵀneq)
2 Sᵀ

qSqdp.

(48)

By applying the principle of virtual work to Eq.(30),

(31) and (34), the nodal hydrodynamic forces are ob-

tained as

Fe =

∫ L

0

Sᵀ (FV L + FV D + FOX) dp

=
1

2
ρD

CL0
2

∫ L

0

|UN |2SᵀDV LSqqdp

+
1

2
ρDCDM

∫ L

0

|UN |SᵀUNdp

+
1

2
ρDα

C2
L0

4

∫ L

0

(Sqq)
2 |UNX |SᵀUNXdp

(49)

where UN , UNX and DV L are obtained by substituting

Eq.(38) into Eqs.(32), (33) and (35) and are given as

UN = V eq
N − (Su̇− (u̇ᵀSᵀteq) teq) (50)

UNX = Veq
N − ((neq)

ᵀ
Su̇) neq (51)

DV L =
teq ×UN

|teq ×UN |
. (52)

Similarly, the external nodal force of the wake oscil-

lator can be obtained as

Re =
A

D

∫ L

0

Sᵀ
q ü

ᵀSᵀbeqdp. (53)

After discretisation, the dynamics of the coupled

system are described by ordinary differential equations

that, in the matrix form, are given as

Me
sü + Ce

su̇ + Ke
su = Fe (54)

Me
qq̈ + Ce

qq̇ + Ke
qq = Re. (55)

Implicit Newmark time integration method is used

to solve the above equation, and verification of the

structural model is also performed, see Appendix ??-

B.4.

3 Model validation against experiments

In this section, the model for VIVs of flexible cylinders

that was described in the previous section is used to

simulate the experiments conducted by [30], and the

simulation results are compared with the experimental

measurements.

3.1 Experiment description and coordinate system

In the series of experiments presented in [30] and [37],

the cross-flow and in-line vibrations of a vertical ten-

sioned riser were measured when being towed through

the still water by a carriage at different speeds. The

riser is 13.12 m long, with a diameter of D = 0.028 m,

and only the lower 45% of its length is submerged in

the flume and subjected to a uniform current; the re-

maining part is in still water. The two ends of the riser

are connected to a stiff frame mounted on the carriage

through universal joints, and the tension is provided by

a set of springs at the top that allows the top end of

the riser to move in the vertical direction. The detailed

main parameters of the experiment are summarised in

Table 1.

To model the experiments, a global Cartesian coor-

dinate system with its origin at the bottom of the riser

has been used; see Fig.4. The x-axis is aligned with the

flow direction representing the in-line direction; the z-

axis coincides with the vertical axis of the riser in its

initial configuration, and the y axis is perpendicular to

both, representing the cross-flow direction. The riser

is pinned to the supporting structure at the bottom,

which only allows rotation, while the top of the riser is
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Table 1: Properties of the riser model

Parameters Values Dimension

External diameter 0.028 m
Length 13.12 m
Aspect ratio 470 -
Submerged Length 5.94 m
Flexural Stiffness 29.88 Nm2

Mass 1.845 kg/m
Mass ratio 3 -

X

Y

Z

r(p,t)

Flow

Initial configuration

Deformed configuration

Fig. 4: Schematic of the global coordinate system and riser in
its initial and deformed configurations.

pinned to an array of springs hanging from the support-

ing structure and therefore can move in the z direction.

When the riser vibrates, its configuration at any mo-

ment is described by the position vector r (p, t), where

p is the coordinate along the riser.

When applying the model described in the previous

section, an important part is to determine the equi-

librium configuration of the structure, upon which the

local coordinate system can be established. However,

the mean in-line deflection of the structure, as a re-

sult of amplified in-line force, is not known in advance,

and an iterative procedure thus is required. Here, for

simplicity, the iteration is not included and the local

coordinate system at each cross section is established

upon the initial vertical configuration of the riser. This

is a reasonable simplification since the mean in-line off-

set of the riser studied in this paper is small compared

to its length, i.e. the flow is almost perpendicular to the

axis of the riser in its equilibrium configuration.

With the model described in Section 2, simulations

are performed for the VIV of a riser under initial top

tension T = 810 N at different flow velocities rang-

ing from 0.1 m/s to 1.0 m/s, with a step of 0.02 m/s,

resulting in a total of 45 cases. The values of the hy-

drodynamic force coefficients CL0, CD0 and CD are not

reported in [30] and [37]. Therefore, the same values as

used in [1], namely CL0 = 0.3, CD0 = 0.1, CD = 1.2,

are applied here. As to the Strouhal number St, a value

St = 0.17 is taken as given in [30]. The riser is discre-

tised into 50 elements, and a convergence test has been

conducted to assure the accuracy of the discretisation.

For each case, the flow velocity is applied in a ramped

manner, and the simulation time is chosen such that a

minimum time window of steady-state response corre-

sponding to at least 50 vortex shedding cycles (following

the Strouhal relation) is achieved.

3.2 Comparison of predictions and experimental

measurements

Non-dimensional parameters have been used to present

the simulation results. To illustrate the variation of riser

response with respect to the flow velocity, two different

types of reduced velocity have been applied. The first

type, V1, is calculated using the fundamental natural

frequency f1 in still water, while the second type is

obtained based on the dominant response frequency for

the cross-flow fy and in-line fx:

V1 =
V

f1D
(56)

Vx,y =
V

fx,yD
. (57)

The fundamental frequency f1 is calculated using the

finite element model under the riser’s initial vertical

configuration in still water, subjected to a mean top

tension obtained over the time window that has been

chosen for analysis. The dominant response frequency

is defined as the frequency of the dominant mode. The

same modal analysis approach as used in [38] has been

adopted here to determine the dominant modes. The

modal shapes of the riser used in the modal analysis

are calculated under an initial vertical position in still

water, with the averaged top tension obtained over the

time window that has been chosen for analysis. The use

of the term ‘modes’ here is not rigorous, as the riser will

vibrate around its in-line offset due to the drag force,

and the top tension is also not constant during the vi-

bration. More importantly, the added mass is not the

same in the current as that in the still water. Therefore,
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the ‘modes’ used here are only a reasonable approxima-

tion. As for the indications of response amplitudes, the

cross-flow response standard deviation σy and σx for

in-line, has been calculated as follows [37]:

σx,y =

√√√√ 1

S

S∑
j=1

[
1

N

N∑
i=1

u2ji

]
(58)

where S is the number of time samples, N is the number

of locations along the riser where the response of the

riser is read, uji denotes the displacement of riser at

location i and time instance j and only the fluctuating

component of the in-line displacement is considered.

With Eq.(58), the standard deviations of cross-flow

and in-line response amplitudes (with the mean in-line

deflection subtracted) have been calculated, and they

are shown in Fig.5 against reduced velocity V1. In sim-

ulation results, both single and multiple frequency re-

sponses are observed. The cases of single frequency re-

sponse are represented by hollow diamonds, while those

of multiple frequency response are represented by black

squares. For the multiple frequency response, the stan-

dard deviations of the in-line displacement are obtained

after removing the low frequency components through

a high pass filter. The standard deviations of the sim-

ulated cross-flow and in-line displacements are plotted

in Fig.5. Following the same approach taken by Chap-

lin et al. [30], the results are grouped according to the

combination of dominant in-line and cross-flow modes

represented by the arrows with dashed lines, and the

thick grey lines represent the linear approximation of

the experiment results.

As can be seen from Fig.5, the standard deviations
of the simulated amplitudes appear to be slightly scat-

tered, with most cross-flow values varying from 0.1D to

0.4D, which is in good agreement with the experimental

measurements. The standard deviations of the simulat-

ed in-line amplitudes, which mostly lie between 0.04D

and 0.12D, are generally smaller than those from the

experiments. The underestimation of the in-line ampli-

tude by the same wake oscillator model was also re-

ported in the prediction of free vibration of the rigid

cylinder [1]. This is one drawback of the model which

needs further improvement.

In general, the response of the riser predicted by the

model follows the same pattern as those observed in the

experiments. For both cross-flow and in-line displace-

ments, there is a trend of increase with an increased

reduced velocity within each group. As the reduced

velocity further increases beyond the group, the sub-

sequent group takes over and starts at a much small-

er amplitude, generating discontinuities and jumps be-

tween groups. Overlaps of groups are also observed, and
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Fig. 6: Standard deviations of (a) cross-flow and (b) in-line
displacements against reduced velocity Vx,y.

multiple frequency response usually takes place with-

in these regions. For the cross-flow response, although

some discrepancies are observed between the simulated

results and experimental measurements, the agreement
is consider to be qualitatively good for reduced veloci-

ties V1 > 20. However, at small reduced velocities where

the cross-flow mode up to the third is dominant, the

simulated cross-flow amplitudes are significantly small-

er than those in the experimental measurements, and

the increasing trends, represented by the slopes of the

lines, are much less sharp. This may be due to the fact

that in the experiments, all the measurements at small

reduced velocities, corresponding to mode patterns 2/1,

4/2 and 6/3, are obtained at top tensions that are much

higher than the one used in the simulations.

In Fig.6, the standard deviations of simulated cross-

flow and in-line displacement are now plotted against

the reduced velocities based on the dominant frequency

fx,y. The cross-flow response falls in the region between

Vy = 5 and Vy = 7, while the in-line response collapses

around Vx = 3. A clear trend of increasing amplitude

with reduced velocity is observed in the cross-flow di-

rection, while it is much less significant in the in-line

direction.
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Fig. 5: Standard deviations of (a) cross-flow and (b)
in-line displacements. Simulation results are rep-
resented by hollow diamonds (single frequency re-
sponse) and black squares (multiple frequency re-
sponse). Simulation results are grouped by the ar-
rows with dashed lines labeled with (dominant in-
line modes)/(dominant cross-flow modes). Linear
approximation of the experimental results in [30]
are represented by grey thick lines.

The dimensionless frequency, which is obtained by

normalising the dominant frequency in the form fx,yD/V ,

is plotted in Fig.7 against the reduced velocity V1. In

general, the cross-flow response is around the Strouhal

frequency, which is represented by the straight line in

Fig.7(a) at 0.17. The in-line dominant frequency, on

the other hand, is always double that of the cross-

flow frequency, and it concentrates around 0.34. Thick

grey lines in the figure represent reasonable linear ap-

proximations of the experimental results, indicating the

range as well as the variation of the measured dominant

frequencies, which are in good agreement with the sim-

ulation results. The main difference between the two is

observed at high reduced velocities where the experi-

mental results display a trend of becoming more con-

centrated around the Strouhal frequency, while those of

the simulations still spread over a wide range of reduced

velocities.

The jumps of the dimensionless frequency is due

to the lock-in, which is illustrated in a better way in

Fig.8 where the frequency is normalised by the funda-

mental frequency. A clear stair-stepping trend in the

dimensionless frequency of both cross-flow and in-line

responses is noticeable.

In Fig.9, the simulated dominant modes as well as

those observed in the experiments are plotted. The com-

parison of the simulation and experiment results re-

veals good agreements between the two regarding the

cross-flow dominant modes. As for the in-line domi-

nant modes, at low reduced velocities, both simulation

and experiment results demonstrate that only even-

numbered modes appear. For high reduced velocities,

both even and odd-numbered modes are observed from

the experiments while, interestingly, only odd modes

appear in the simulations.

The reason for only the odd-numbered modes to be

predicted by the model at high reduced velocities is still

unclear to the authors and requires further study.

With regard to the in-line offset of the riser, since

the drag force is proportional to the square of the flow

speed, it is expected that the maximum in-line deflec-

tion should follow a similar trend. In Fig.10, the mean

of the maximum in-line deflections x̃max are plotted

against the reduced velocity V1, and a general quadrat-

ic relationship between the two can be found. x̃max is

obtained by finding the maximum in-line deflections a-

long the riser at each time instance and then taking

the mean value of these maxima. The line shows that

the best quadratic fit to the results yields a coefficient
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Fig. 7: Normalised (a) cross-flow and (b) in-line dominant fre-
quencies (fx,yD/V ) versus V1. In (a), the straight line repre-
sents the frequency corresponding to a Struhal number 0.17;
and in (b), the straight line represents the doubled frequency
corresponding to a Struhal number 0.17. Linear approxima-
tion of the experimental results by [37] are represented by
grey thick lines.

of 6.7e−3, which is in excellent agreement with the ex-

perimental measurements where a coefficient of 6.1e−3

was obtained [37]. This proves that the amplification

of the in-line force due to VIV is properly captured by

the model. This reveals one of the main advantages of

the current model over the original one without in-line

coupling [18], which has been shown in [39] and [40] to

significantly underestimate the mean in-line deflection

of the riser.

3.3 Predicted single and multiple frequency responses

For a flexible riser that is subjected to the uniform flow,

despite the fact that several modes may potentially be

excited, it is normally expected that one will eventually

dominate, and the motion of the riser would be char-

acterised as a single frequency response. Although in

the case of experiments to be simulated in this section,

only half of the riser is subjected to flow, the behaviour
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Fig. 8: Normalised (a) cross-flow and (b) in-line dominant
frequencies (fx,y/f1) versus V1. In (a), the straight line rep-
resents the frequency corresponding to a Struhal number 0.17;
and in (b), the straight line represents the doubled frequency
corresponding to a Struhal number 0.17.

of the riser should follow the same pattern, since it is

expected that only one vortex shedding frequency is

involved. However, the simulation results of the exper-

iments reveal the presence of both single and multiple

frequency responses. The multiple frequency response

is normally observed within the range of flow velocities

where the riser response is in transition from one mod-

e to another,as can be seen in Fig.5. In what follows,

two examples of riser responses at two different flow ve-

locities V = 0.5 m/s and V = 0.56 m/s are presented

to illustrate the typical single and multiple frequency

responses observed in the simulation results.

Case 1: V = 0.5 m/s, single frequency response.

An example of a simulated single frequency response

is demonstrated here at flow velocity V = 0.5 m/s. The

spatial and temporal characteristics of the structural

response are analysed based on a 2D Fourier transfor-

m. Denoting the cross-flow displacement of the riser as

y (p/L, t), where p is the coordinate along the riser and

L is the length of the riser, the 2D Fourier Transform
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the best quadratic fit to the results with the expression
x̃max/D = 6.7e−3V 2

1

of the displacement is defined as

ỹ (f, k) =
1

L

∫ L

0

∫ T0

0

y (p/L, t) e−i2πfte−i2πkp/Ldtdp

(59)

where f is the frequency, k is the dimensionless wavenum-

ber and T0 is the duration of the data set. The above

equation is the Continuous Fourier Transform and for

the discrete displacements, as those obtained from the

simulation, the Discrete Fourier Transform (DFT) has

been applied. The 2D DFT of the in-line displacement,

with the mean in-line deflection subtracted, is calcu-

lated in the same way. In the following part, the 2D

spectrum of the displacement of the riser is presented

in the form of power spectral density (PSD), which is

obtained as |ỹ|2/T0.

In Figs.11(a) and (b), the 2D PSD of cross-flow and

in-line non-dimensional displacements are presented a-

gainst the frequency and spatial wavenumber. The PSD

is normalised by its maximum value. The frequency of

oscillations – fy for the cross-flow and fx for the in-line

– is normalised by the Strouhal frequency fs = StV/D.

Only the positive frequency is presented in Figs.11(a)

and (b), and positive wavenumbers are thus associat-

ed with travelling waves propagating towards p/L = 0

(downwards), while negative wavenumbers are associat-

ed with travelling waves moving in the opposite direc-

tion. Figs.11(a) and (b) also illustrate the wavenumbers

of free vibration structural modes, indicated by verti-

cal dashed lines, and the corresponding natural frequen-

cies, indicated by red crosses, which are calculated using

the finite element model described in the previous sec-

tion. The modal shape and natural frequencies of the

structure are obtained under the initial straight con-

figuration under top tension that is equal to the mean

value of the simulated varying top tension. Due to the

variation of the tension along the riser as a result of

gravity, the structural mode shapes are slightly differ-

ent from sinusoidal shapes. For the sake of simplicity,

the wavenumbers of the structural modes are still ap-

proximated using sinusoidal mode shapes.

As can be seen from Figs.11(a) and (b), the struc-

tural response is dominated by a single frequency in

both the cross-flow and in-line directions. In the cross-

flow direction, the riser oscillates at a peak frequency

fy = 0.877fs, and the in-line motion is dominated by

the frequency fx = 1.754fs, which is twice that of the

cross-flow motion. The excited wavenumbers, different

from the frequency that concentrates around a single

value, seem to spread over a relatively wide range. This

is partially caused by the numerical errors of DFT con-

ducted in the space domain, as only a small number of
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Fig. 11: Spatio-temporal spec-
tra of (a) cross-flow and (b)
in-line displacements at flow
velocity V = 0.5 m/s with
(c) cross-flow and (d) in-line
complex modes extracted at
dominant frequencies which
are indicated by arrows. The
wavenumbers and natural fre-
quencies of selected free vibra-
tion modes are indicated by
black vertical dashed lines and
red crosses respectively.
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spatial cycles are excited along the riser, and partial-

ly because of the variation of the top tension in time.

Therefore, it is difficult to determine from Figs.11(a)

and (b) the exact wavenumber at which the structure

vibrates. In such cases, the complex modes extracted at

the dominant frequency, as will be demonstrated later,

are taken as references to decide on the main dominant

wavenumber.

It is clear from Fig.11(a) that in the cross-flow direc-

tion, the riser vibrates at a wavenumber and a frequency

that are both close to the 4th free vibration mode, while

in the in-line direction, as illustrated in Fig.11(b), the

wavenumber close to the 7th free vibration mode is ex-

cited, but at a lower frequency than the corresponding

natural frequency. It is conventionally expected that a

single structural wavenumber will be excited at a giv-

en frequency, which is the case for the cross-flow mo-

tion. However, in the in-line direction, apart from the

wavenumber close to 3.5, another wavenumber close to

zero is also excited at the same frequency. This is be-

cause the top of the riser is not constrained in the verti-

cal direction, and its vibration, at the same frequency of

the in-line motion, leads to the periodic variation of the

in-line offset, which resembles the shape corresponding

to small wavenumbers.

The slightly different weights of positive and nega-

tive wavenumber peaks suggest that the response of the

structure is characterised by mixed standing-travelling

waves. To further investigate the pattern of the ris-

er response, the response modes of the structure are

calculated using Fourier expansion following the same

approach as given in [41]. Denoting the cross-flow dis-

placement of the riser as y (pr, tj), the Fourier expan-

sion of the times series of y (pr, tj) at location pr is given

as:

y (pr, tj) = Re

(
Λ∑
l=1

ŷ (pr, ωl) eiωltj

)
(60)

where ŷ (pr, ωl) is complex-valued and represents the

lth Fourier coefficient corresponding to the frequency

ωl. Extracting ŷ (pr, ωl) at each location along the riser,

one obtains the cross-flow response mode of the riser at

a specific frequency ωl, denoted as Y (pr). The same

process can be applied to the in-line motion to obtain

the in-line response mode of the riser denoted as X (pr).

The spanwise evolution of amplitudes and phase an-

gles of the response modes Y (pr) and X (pr), is present-

ed in Figs.11(c) and (d), for the dominant frequencies

shown in Figs.11(a) and (b). The shapes of |Y (pr)| and

|X (pr)| suggest that both cross-flow and in-line mo-

tions are dominated by the standing wave. However,

the absence of the definite nodes reveals the underlying

travelling character of the riser response in both direc-

tions. The cross-flow vibration, as depicted in Fig.11(c),

is close to the 4th free vibration mode, while the in-line

vibration exhibits a different pattern compared to the

7th mode, as can be seen in Fig.11(d). The underlying

travelling character of the structural response can be

better illustrated by the evolution of the phase of the

complex modes. For the cross-flow motion, the gener-

al decreasing trend of the phase angle corresponds to

travelling waves moving from p/L = 0 towards p/L = 1

(upwards). This is consistent with the fact that only
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Fig. 12: Spatio-temporal spec-
tra of (a) cross-flow and (b)
in-line displacements at flow
velocity V = 0.56 m/s with
(c) cross-flow and (d) in-line
complex modes extracted at
dominant frequencies which
are indicated by arrows. The
wavenumbers and natural fre-
quencies of selected free vibra-
tion modes are indicated by
black vertical dashed lines and
red crosses respectively. In (c)
dash line – fy = 0.810fs; solid
line – fy = 0.975fs; dot line
– fy = 1.145fs. In (d) dashed
line – fy = 1.780fs; solid line
– fy = 1.949fs; dotted line –
fy = 2.117fs.

the bottom half of the riser is subjected to the flow,

and the energy should therefore be input over the same

segment, carried away in the form of a travelling wave

and dissipated over the upper half of the riser which

is submerged in the still water and only subjected to

damping. The spanwise evolution of the phase angle of

the in-line response mode indicates that the wave is ex-

cited close to p/L = 0.4 – still within the bottom half

of the riser–and propagates in two directions towards

both boundaries.

Case 2: V = 0.56 m/s, multiple frequency re-

sponse.

Although a single frequency response is observed

for most simulation cases, for a few, especially those

within the range of flow velocities where the riser re-

sponse is in transition from one mode to another, a

multi-frequency response is detected. An example of a

simulated multi-frequency response is given here at flow

velocity V = 0.56 m/s, which lies in the transition of

the cross-flow dominant mode from the 4th to the 5th

mode. The 2D PSD of the steady-state riser response

and the response modes of the dominant frequency are

presented in Fig.12.

As can be seen from Figs.12(a) and (b), the ris-

er exhibits a response at several frequencies in both

the cross-flow and in-line directions. The cross-flow re-

sponse, as illustrated in Fig.12(a), has main peaks at

frequencies fy = 0.810fs, 0.975fs and 1.145fs. Most en-

ergy concentrates at the frequency fy = 0.975fs, which

is the closest of the three frequencies to the Strouhal

frequency. The secondary dominant frequency is fy =

0.810fs. At frequency 1.145fs, only small peaks are ob-

served. The frequencies fy = 0.810fs and 0.975fs are

close to the 4th and 5th natural frequencies of the struc-

ture respectively, and the wavenumbers excited at these

two frequencies are consistent with the corresponding

free vibration modes. At frequency fy = 1.145fs, the

response of the riser deviates from the 6th natural fre-

quency, although the excited wavenumber is close to

the 6th free vibration mode.

Concerning the in-line response, as portrayed in Fig.

12(b), apart from the frequency components around

2fs as expected, significant energy concentrates at low

frequencies of fx = 0.25fs and 0.3fs. The source of

these low frequency components will be discussed later.

Three main frequency peaks are observed around 2fs:

fx = 1.780fs, 1.949fs and 2.117fs. Comparing these in-

line frequencies with their cross-flow counterparts leads

to ratios of fx/fy = 2.20, 2.00 and 1.85 respectively.

Only the cross-flow frequency close to the Strouhal fre-

quency apparently has a ratio of fx/fy = 2. All three in-

line frequency-wavenumber pairs would not result from

the free vibration analysis.

In Figs.12(c) and (d), the response modes of cross-

flow and in-line response at frequencies – which are indi-

cated by arrows in Figs.12(a) and (b) – are presented.

Again, the well-defined cells in the amplitudes of the

response modes – both cross-flow and in-line – suggest

that the response of the riser at each frequency is domi-

nated by standing waves. The response modes with the

highest magnitude are at frequencies that are close to

the Strouhal frequency (double the Strouhal frequen-

cy for the in-line response). The underlying travelling
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character of the response can be observed in the varia-

tions of the phase angle along the riser, which suggests

that the waves are excited within the bottom half of the

riser and move towards the upper end, and the travel-

ling waves seem to be more pronounced in the in-line

response.

One interesting question that arises is whether the

multi-frequency response is a result of coexisting mul-

tiple frequency components or a result of only one fre-

quency that varies in time. To answer this question,

the wavelet transform is performed for selected time se-

ries of cross-flow and in-line displacements at locations

p/L = 0.9 and 0.95 respectively, where all dominant

frequencies make significant contributions; the results

are plotted in Fig.13. In these plots, the predominant

response frequencies identified in the previous analysis

are indicated by dashed lines, and for in-line vibration,

only the frequency components around fx/fs = 2 are

displayed. It is clear from Fig.13 that in the cross-flow

response, the multiple frequency components instanta-

neously coexist and remain independent over the entire

observation period, while those of the in-line vibration

are characterised by a main dominant frequency that

sweeps up and down across the dashed lines over time.

The multiple frequency response predicted by the

proposed model for the VIV of a flexible cylinder ful-

ly or partially subjected to a uniform flow has been

scarcely reported in the literature. The main reason,

according to the authors, is the difficulty in captur-

ing and quantifying it in the experiments. First, the

multiple frequency response is normally observed in the

transition region, which requires a small increment of

flow velocity to be captured. Second, the multiple fre-

quency response seems to be fragile, and the balance

between the different coexisting frequency components

can be easily jeopardised by, for example, external dis-

turbance. Finally, even though the multiple frequency

response is observed in experiments, it is difficult to

decide whether it corresponds to a steady response or

a transition phase. Therefore, in most experiments, for

example the one by Chaplin et al. [30], only the time

segment corresponding to a steady periodic motion with

a constant amplitude is chosen for post processing; how-

ever, strong modulation of the response of the structure

is observed in other time segments.

To the authors’ best knowledge, this multiple fre-

quency VIV in uniform flow is only reported in the

work by Seyed-Aghazadeh et al. [42]. In their experi-

ments, a uniform flexible cylinder is placed vertically

in a re-circulating water tunnel subjected to a unifor-

m flow. Only low modes of the structure are excited,

and the flow velocity is increased in small increments.

Seyed-Aghazadeh et al. [42] report that at a small re-
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Fig. 13: Selected time series of (a) cross-flow and (b) in-
line displacements, and corresponding frequency content as
a function of time. The dashed lines represent the dominant
frequencies indicated by arrows in Fig. 12.

duced velocity, only first-mode excitation is observed in

the cross-flow response of the cylinder. As the reduced

velocity increases to a certain value, a second harmonic

contribution, in addition to the first one, with the sec-

ond structure mode shape is observed. The contribution

from the second harmonic monotonically increases with

increasing flow velocity and finally becomes dominant

over the first mode.

It is a pity that in the work [42], although the fre-

quency content of the in-line motion demonstrates a

significant contribution from low frequencies when the

transition occurs – see Fig.4(f) in [42] – it is not clear

whether this is due to the multiple frequency response

or if it is simply the result of a mean in-line deflection

due to the drag force. Gopalkrishnan [10] has already
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demonstrated that for a rigid cylinder that is forced

to vibrate with a prescribed beating motion, the ‘in-

stantaneous mean drag force coefficient’, defined as the

average value of the drag coefficient over one carrier fre-

quency, follows the envelope of the beating motions. If

the fluid-structure interaction for a flexible cylinder is

similar to that of a rigid cylinder, then it is reasonable

to expect that the modulation of the cross-flow motion

would lead to the slow variation of the in-line force that

follows its envelope and consequently results in a low

frequency component in the in-line motion.

4 Conclusions

In this paper, a nonlinear model has been presented for

the simulation of coupled cross-flow and in-line VIVs

of flexible cylindrical structures. The structure is de-

scribed as a geometrically nonlinear extensible Euler-

Bernoulli beam, and the interaction between the struc-

tural motion and fluid is modelled by a wake oscillator,

with nonlinear in-line and linear cross-flow coupling,

that is uniformly distributed along the cylinder. Al-

though the main focus has been on the VIV of a straight

flexible cylinder, the same model can, in principle, be

used for the prediction of the VIV of a curved structure,

such as a catenary riser. To deal with the cases where

the incident flow is not perpendicular to the cylinder

axis, a local coordinate frame is introduced, and the

independence principle is applied.

The dynamics of the coupled system has been anal-

ysed using the finite element method, and the simu-

lation results of a series of experiments where a top-

tensioned flexible riser was subjected to step flows have

been presented. A comparison with the experimental re-

sults has revealed that the model is able to qualitatively

predict most features of VIVs of flexible cylinders, and

the predicted vibration amplitudes, frequencies and ex-

cited modes are in good agreement with the measure-

ments. Moreover, it has been demonstrated that the

current model is able to offer good prediction of the

mean in-line deflections, which reflects its superiority

over the original model proposed in [18] without in-line

coupling, as the latter one significantly underestimates

the amplification of the mean in-line force when VIV

occurs.

In contrast to the conventional belief that the VIV

of a flexible cylinder subjected to a uniform flow should

be dominated by a single frequency oscillation, the cur-

rent model predicts that over the range of flow veloci-

ties through which a transition of the dominant mode

of vibration takes place, the riser may exhibit a multi-

frequency response. In such cases, the multiple frequen-

cy components in the cross-flow response instantaneous-

ly coexist, while those of the in-line response are the

result of a single frequency that temporally drifts from

one predominant frequency to another one. When the

multi-frequency response occurs, the in-line response

contains significant components at a low frequency, which

is caused by the slow variation of the in-line force due

to the modulation of the cross-flow displacements.
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Appendix A A preliminary study on the

effect of frequency ratio on the coupled

cross-flow and in-line VIV of an elastically

supported rigid cylinder

In this appendix, a preliminary study is conducted to

compare the performance of two different sets of tuning

parameters, which have been used in previous study

[1], in the modelling of coupled cross-flow and in-line

VIV of an elastically supported cylinder with unequal

natural frequencies in cross-flow and in-line directions.

In this preliminary study, simulations of VIVs of a rigid

cylinder are conducted with the ratio between the in-

line and cross-flow natural frequencies increasing from 1

to 2.5. The set of parameters that reproduces the main

features of the VIV observed in the experiments would

be adopted in the paper for the modelling of VIVs of

flexible cylinders.

Fig.14 displays the two-dimensional VIV of an elas-

tically supported rigid cylinder placed in a steady and

uniform flow. The displacements of the cylinder X and

Y along the in-line and cross-flow directions can be de-

scribed as

(m+ma)
d2X

dt2
+ bx

dX

dt
+ kxX = LFV X (61)

(m+ma)
d2Y

dt2
+ by

dY

dt
+ kyY = LFV Y (62)

where m is the mass of the cylinder, L is the length

of the cylinder and ma = ρπLD2Ca/4 (Ca = 1) is the

added mass.

Dividing equations by (m+ma) and introducing

cross-flow and in-line force coefficients CV Y and CV X ,
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Fig. 14: A schematic diagram of coupled cross-flow and in-line
VIV of an elastically mounted circular cylinder in uniform
flows.

Eqs. (61) and (62) become

d2X

dt2
+ 2ζxωxn

dX

dt
+ ω2

xnX =
1

2
ρDLV 2 CV X

m+ma
(63)

d2Y

dt2
+ 2ζyωyn

dY

dt
+ ω2

ynY =
1

2
ρDLV 2 CV Y

m+ma
(64)

where ω(x,y)n =
√
kx,y/ (m+ma) and

ζx,y = bx,y/
(
2ω(x,y)n (m+ma)

)
are the natural fre-

quency and damping ratio of the cylinder in still water

and CV Y and CV X are given by Eqs.(17) and (18) re-

spectively.

Eqs.(63), (64), (17), (18) and (23) formulate the ini-

tial value problem for the coupled cross-flow and in-line

VIV of an elastically supported rigid cylinder.Using the

following quantities:

τ = ωst, Ω(x,y)n = ω(x,y)n/ωs, x = X/D, y = Y/D (65)

the dimensionless form of the governing equations is

obtained as

ẍ+ 2ζxΩxnẋ+Ω2
xnx =

CV X

2π3St2 (m∗ + Ca)
(66)

ÿ + 2ζΩynẏ +Ω2
yny =

CV Y

2π3St2 (m∗ + Ca)
(67)

q̈ + ε(q2 − 1)q̇ + q − κ ẍ

1 + ẍ2
q = Aÿ (68)

where

CV X = (CV D (1− 2πStẋ) + CV L2πStẏ)√
(1− 2πStẋ)

2
+ (2πStẏ)

2

+ αC2
V L (1− 2πStẋ) |1− 2πStẋ|

(69)

CV Y = (−CV D2πStẏ + CV L (1− 2πStẋ))√
(1− 2πStẋ)

2
+ (2πStẏ)

2
(70)
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Fig. 15: Influence of the frequency ratio Ωx,n/Ωy,n on the
cross-flow response using tuning parameters of (a) Case U
(A = 8, ε = 0.08, κ = 5) and (b) Case L (A = 20, ε = 0.8,
κ = 5)

and m∗ = m/
(
ρπD2/4

)
is the mass ratio and the over-

dots denote derivatives with respect to the dimension-

less time τ .

With the definition of CV D and CV L given by Eq.(21)

and (24), Eq.(66-70) can be solved numerically in the

time domain, using a fifth-order Runge-Kutta method,

to simulate the coupled cross-flow and in-line VIV of

an elastically supported rigid cylinder.

Using the same empirical parameters given in [1],

simulations have been conduced with m∗ = 2.6 and

ξx,y = 0.005 for Ωnx/Ωny = 1− 2.5. Two different sets

of tuning parameters Case U and Case L have been ap-

plied and the amplitude of the dimensionless cross-flow

displacement y0 are plotted in Fig.15 against reduced

velocity Vn = 2πV/ (ωynD).

For the results of Case U, as can be seen in Fig.15(a),

the maximum amplitude of the cross-flow vibration sig-

nificantly decreases as the frequency ratio increases from

1 to 2.5. Meanwhile, the range of lock-in is extended.

Especially, the amplitude of the cross-flow vibration is

characterized by two peaks at frequency ratio 2.5. For

the results of Case L, as can be seen in Fig.15(b), the
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frequency ratio only has a small influence on the cross-

flow response which decreases slightly as the frequency

ratio increases. The results of Case U is qualitatively

more consistent with the experimental observations as

reported in [35]. Therefore, the corresponding tuning

parameters are adopted in this paper to model the cou-

pled cross-flow and in-line VIVs of flexible cylinders.

Appendix B Finite element formulation and

time integration

B.1 Derivation of the stiffness matrix of the beam

element

Substituting the variation of ε0 and K, given by Eq.

(7), and (8) into Eq. (4) yields

δWS =

∫ L

0

[
EA
|r,p| − 1

|r,p|
rᵀ,pδr,p

−2EI
|r,p × r,pp|2

|r,p|6
rᵀ,pδr,p

+EI
(r,p × r,pp)

ᵀ

|r,p|4
(δr,p × r,pp + r,p × δr,pp)

]
dp

(71)

In three dimensions, Binet-Cauchy identity asserts

that, for four vectors a, b, c and d, the following rela-

tion holds

(a× b)
ᵀ

(c× d) = (aᵀc) (bᵀd)− (aᵀd) (bᵀc) (72)

Applying Binet-Cauchy identity to Eq. (71), one ob-

tains

δWS =

∫ L

0

[
EA

(
1− 1

|r,p|

)
rᵀ,pδr,p + EI

1

|r,p|2
rᵀ,ppδr,pp

−EI 1

|r,p|4
|r,pp|2rᵀ,pδr,p

−EI 1

|r,p|4
rᵀ,pr,pp

(
rᵀ,ppδr,p + rᵀ,pδr,pp

)
+EI

2

|r,p|6
(
rᵀ,pr,pp

)2
rᵀ,pδr,p

]
dp

(73)

By substituting r = Su into above equation, one

obtains the expression of δWS in the form of element

coordinates, and it reads

δWS =uᵀ
∫ L

0

{
EIγ2Sᵀ

,ppS,pp

−EIγ4
(
Sᵀ
,pS,p

)
uuᵀ

(
Sᵀ
,ppS,pp

)ᵀ
−EIγ4

[(
Sᵀ
,ppS,p

)ᵀ
+ Sᵀ

,ppS,p
]
uuᵀ

(
Sᵀ
,ppS,p

)
+2EIγ6

(
uᵀSᵀ

,pS,ppu
)2

Sᵀ
,pS,p

+EA (1− γ) Sᵀ
,pS,p

}ᵀ
dpδu

(74)

where γ = 1
|r,p| . To make the element computationally

more efficient for the cases where the axial deformation

of the beam is very small, the γ is approximated as

γn ≈ n+ 1− n|r,p| = n+ 1− n
√

(S,pu)
ᵀ

(S,pu) (75)

From Eq. (74), the stiffness matrix Ke
s of the beam

element is derived as

Ke
s =

∫ L

0

{
EIγ2Sᵀ

,ppS,pp

−EIγ4
(
Sᵀ
,pS,p

)
uuᵀ

(
Sᵀ
,ppS,pp

)ᵀ
−EIγ4

[(
Sᵀ
,ppS,p

)ᵀ
+ Sᵀ

,ppS,p
]
uuᵀ

(
Sᵀ
,ppS,p

)
+2EIγ6

(
uᵀSᵀ

,pS,ppu
)2

Sᵀ
,pS,p

+EA (1− γ) Sᵀ
,pS,p

}
dpδu.

(76)

To make the expression of the stiffness matrix brief,

we denote

Q1 = Sᵀ
,ppS,pp, Q2 = Sᵀ

,ppS,p and Q3 = Sᵀ
,pS,p

(77)

Then, the expression of the stiffness matrix of the

beam element becomes

Ke
s =

∫ L

0

(
EIγ2Q1 − EIγ4Q3uuᵀQ1

−EIγ4 (Qᵀ
2 +Q2) uuᵀQ2

+2EIγ6 (uᵀQᵀ
2u)

2
Q3 + EA (1− γ)Q3

)
dp

(78)

From Eq.(78), it can be seen that it would not be

possible to factorise the element coordinates vector u

out of the integrals because of the presence of γ. There-

fore, here, the integrals in Eq.(78) are approximated us-

ing a Gaussian quadrature with three integration points.

The last term of Eq.(78), namely EA (1− γ)Q3,

can be replaced by (EA (1− γ) + γ (PeAe − PiAi))Q3

if the effective tension is taken into account. Here, Pe
and Pi are the external and internal fluid pressures,

which, in offshore applications, usually depend on the

depth of the water and are therefore functions of the po-

sition vector. The above-mentioned term will be treated

separately in different cases with a specific definition of

the water depth.
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solving algebraic equations Eq.(??) and (??). However,

Eqs.(??) and (??) are nonlinear, since both the damp-

ing and stiffness matrix and the nodal forces are response-

dependent, and they need to be solved through itera-

tion. Here, the Newton-Raphson method is applied, and

the tangential stiffness (Jacobian matrix) of the system

needs to be determined first.

The jacobian matrix of Eqs.(??) and (??) can be ob-

tained by differentiating them in terms of the element

coordinates ui+1 and qi+1. For the sake of simplicity,

the subscript i + 1 is not used in the following deriva-

tions. Differentiating Eq.(??) with respect to u gives

Jes,u = a1M
e
s + b1

∂ (Ce
su)

∂u
+
∂ (Ke

su)

∂u
− ∂Fe

∂u
(86)

Differentiating Eq. (??) respect to q yields

Jes,q = −∂Fe

∂q
(87)

Similarly, differentiating Eq. (??) respect to u and

q yields

Jeq,u =
∂
(
Ke
qq
)

∂u
− ∂Re

∂u
(88)

Jeq,q = a1M
e
q + b1

∂
(
Ce
qq̇
)

∂q
+ Ke

q (89)

Rayleigh damping has been applied to the structure,

and from Eq. (43) it can be derived that

∂ (Ce
su)

∂u
= αMe

s + βJe,eqs (90)

With the expression of beam stiffness matrix given by Eq. (78), it can be derived that

∂ (Ke
su)

∂u
=

∫ L

0

EI
(
γ2Q1 − 2γ4Q1uuᵀQ3

−γ4 ((uᵀQ1u)Q3 +Q3uuᵀ (Q1 +Qᵀ
1)) + 4γ6Q3uuᵀQ1uuᵀQ3

−γ4 ((uᵀQ2u) (Q2 +Qᵀ
2) + (Q2 +Qᵀ

2) uuᵀ (Q2 +Qᵀ
2)) + 4γ6 (Q2 +Qᵀ

2) uuᵀQ2uuᵀQ3

+2γ6
(

2Q3uuᵀQᵀ
2uuᵀ (Q2 +Qᵀ

2) + (uᵀQᵀ
2u)

2
Q3

)
− 12γ8 (uᵀQᵀ

2u)
2
Q3uuᵀQ3

)
+ EA

(
(1− γ)Q3 + γ3Q3uuᵀQ3

)
dp

(91)

As to the external nodal hydrodynamic forces Fe, its derivative respect to u reads

∂Fe

∂u
=

1

2
ρD

CL0
2

∫ L

0

Sᵀ (Sqq)

(
2DV LUᵀ

N

∂UN

∂u
+ |UN |2

∂DV L

∂u

)
dp

+
1

2
ρDCD0

∫ L

0

Sᵀ
(
|UN |I +

UNUᵀ
N

|UN |

)
∂UN

∂u
dp

+
1

2
ρDα

C2
L0

4

∫ L

0

(Sqq)
2
Sᵀ
(

UNXUᵀ
NX

|UNX |
+ |UNX |I

)
∂UNX

∂u
dp

(92)
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where

∂UN

∂u
= b1 [teq (teq)

ᵀ − I] S (93)

∂DV L

∂u
=b1

[
I

|teq ×UN |
− (teq ×UN ) (teq ×UN )

ᵀ

|teq ×UN |3

]
[teq]× [teq (teq)

ᵀ − I] S

(94)

∂UNX

∂u
= −b1neq (neq)

ᵀ
S (95)

In Eq. (94), the operator []× denotes the skew

-symmetric matrix, which is normally used to represent

the cross products as matrix multiplications.

The derivative of Fe with respect to q reads

∂Fe

∂q
=

1

2
ρD

CL0
2

∫ L

0

Sᵀ|UN |2DV LSqdp

+
1

2
ρDα

C2
L0

4

∫ L

0

2 (Sqq) |UNX |SᵀUNXSqdp

(96)

From Eq. (48), it can be derived that

∂
(
Ke
qq
)

∂u
= a1

κ

D

∫ L

0

Sᵀ
qSqq (neq)

ᵀ
Sdp (97)

Similarly, from Eqs.(53) and (47), the following is

obtained.

∂Re

∂u
=
A

D

∫ L

0

Sᵀ
q (beq) Sdp (98)

∂Ce
qq̇

∂q
= 4πSt/D

∫ L

0

|Veq
N | (Sqq) (Sqq̇) Sᵀ

qSqdp+ b1C
e
q

(99)

B.3 Static example, Cantilever beam

The static problem of the large deformation of a can-

tilever beam subjected to a tip load, as illustrated in

Fig.16, has already been used in literature for compar-

ison, and the iterative solutions by means of the exten-

sible elastic theory are given in [43].

The parameters of the beam consist of length L = 2

m, the equivalent bending stiffness EI = 1.725 × 106

N/m
2

and the equivalent axial stiffness EA = 2.07×109

N. The tip load has been chosen according to F0 =

3EI/L2, which leads to a large deformation. Displace-

ments of the tip in X and Y directions, obtained with

different numbers of elements, are presented in Table 2

wherein they are compared with the classical extensible

elastic solution given in [43]. The proposed model, with

128 elements, already generates a result that matches

the extensible elastic solution up to six digits.

L

x

y

F0

ux

uy

Fig. 16: Cantilever beam subjected to tip load.

Table 2: Axial and transverse displacement of the tip of the
cantilever beam using the proposed beam element model and
comparison to the analytical solution of the extensible elastica

Elements ux uy

4 0.509715120993764 1.209144995093078
8 0.508604452895885 1.207351964767034
16 0.508541687577717 1.207246521801250
32 0.508537806636057 1.207240038638574
64 0.508537557824162 1.207239635075415
128 0.508537541233588 1.207239609883485
Ext. elastica 0.508537304325877 1.207239854549824

B.4 Dynamic example, large deformation pendulum

The goal of the second example is to evaluate the perfor-

mance of the proposed model in the case of 3D motion

with a large rotation. The initially straight pendulum

that is parallel to the X-Z plane has an initial angular

velocity of 4 rad/s about the Y axis. Under the effect

of gravity, the flexible pendulum will undergo a large

rotation as well as deformation. The parameters of the

pendulum consist of length L = 1 m, the equivalen-

t bending stiffness EI = 8.3 × 10−5 N/m
2
, equivalent

axial stiffness EA = 40 N and the mass m = 0.008

kg/m. With only four elements, the implicit Newmark-

beta method as described in ?? is used to calculate the

response of the pendulum with time steps of 0.1 ms.

Fig.17(a) illustrates the position of the tip projected

in X-Z plane, and Fig.C.2(b) shows the Y position of

the middle point of the pendulum. A comparison are

made between the solution of the proposed model and

the cable element in [31]. Both figures indicate that the

proposed model performs well in the case of 3D motion

with a large rotation.
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Fig. 17: Dynamic response of a large deformation pendulum.
(a) Plot of the Z versus X co-ordinate of the mid-point of the
three-dimensional pendulum; (b) Y-displacement of the mid-
point of the three-dimensional pendulum as function of time.
Simulation results with the proposed model are represented
by dashed lines and reference results are represented by solid
lines.
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