
Deterministic Task Transfer in
Network-on-Chip Based Multi-Core

Processors

THESIS

Jacobus Reinier van Kampenhout

Deterministic Task Transfer in
Network-on-Chip Based Multi-Core

Processors

THESIS

submitted in fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Jacobus Reinier van Kampenhout
born in Beilen, the Netherlands

Berlin, 18 April 2011.

Computer Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Abstract

In this thesis we consider the application of multi-cores in safety-
critical real-time systems, especially avionics. In our literature study
we extract two major challenges. Firstly the unpredictability that
comes from the concurrent access of shared resources (especially the
on-chip interconnect) must be dealt with. To address this we propose
to extend the concept of partitioning which provides fault contain-
ment, in combination with resource reservation at design time. The
second challenge is to optimize the hardware usage without compro-
mising on the determinism inherent to static mapping and scheduling.
We propose mode-based mapping to deal with this, which allows to
switch between multiple static schemes. We capture these concepts in
a simple formal model. Mode-based mapping is enabled by task mi-
gration. The transfer time of tasks must be bounded, which requires
guarantees on the Quality-of-Service (QoS) offered by the intercon-
nect. Modern multi-cores feature Networks-on-Chip (NoC), which are
packet-switching interconnects consisting of links and routers. Key
to deterministic behaviour of NoCs this is avoiding contention, this
can be achieved with flow control and buffering strategies based on
resource reservation. We propose the use of transient modes to control
the changes between the different modes in a NoC.

To evaluate different transfer methods we conducted a number of ex-
periments on a 64-core processor that features a NoC. The experiments
show that both data prefetching from the shared cache and the pro-
grammer accessible networks are suitable for deterministic task trans-
fer. The former is twice as fast but the number and size of shared
data objects must be limited because timing analysis of large coherent
shared caches is not feasible. For all methods the maximum deviation
from the mean values is constant (0,4 µs), and the standard devia-
tion is under 1

2% of the total transfer time. This shows that these
methods are deterministic and that a tight bound on the transfer time
can be determined. We conclude that private caches and scratchpads
are suitable memory architectures for real-time systems, which can
be supported by message passing and explicit communication through
small shared memory regions. Mapping traffic at design time avoids
contention, and isolation of traffic at the transfer level offers additional
fault-tolerance. We propose a number of improvements for the transfer
methods considered in our experiments that will enable guarantees on
QoS. Our experiments confirm the feasibility of the proposed concepts.

Acknowledgements

This research was performed at: Fraunhofer Institute for Computer Architecture
and Software Technology, FIRST
Kekuléstraße 7
12489 Berlin
Germany

Supervisor Fraunhofer FIRST: Dipl.-Inf. Robert Hilbrich

Supervisor TU Delft: Dr. Zaid Al-Ars

iii

Contents

List of Figures vii

1 Introduction 1
1.1 Trends in the Avionics Domain 1

1.1.1 Federated Architectures 1
1.1.2 Research Incentives 2
1.1.3 Integrated Modular Avionics 4

1.2 The Potential of Multi-Core Processors 6
1.2.1 Trends . 6
1.2.2 Overview of Architectures 7
1.2.3 Multi-Cores in Avionics Systems 8

1.3 Summary and Thesis Outline 9

2 Multi-Core Processors in Real-Time Systems: Challenges 10
2.1 Predictability . 10

2.1.1 Execution Time Dependencies 10
2.1.2 Modelling Interconnects 12
2.1.3 Interference on Shared Resources 14

2.2 On-Chip Interconnects . 14
2.2.1 Networks-on-Chip . 14
2.2.2 Networking Concepts 16
2.2.3 Quality-of-Service . 18

2.3 Deployment of Software . 18
2.3.1 Parallelism . 19
2.3.2 Static Mapping . 20

2.4 Summary . 21

3 Partitioning, Mapping and Scheduling 23
3.1 Software Partitioning . 23

3.1.1 Temporal Partitioning 23
3.1.2 Spatial Partitioning 25

3.2 Hardware Partitioning . 27
3.2.1 Abstraction of Resources 28

iv

3.2.2 Composable Timing 29
3.3 Mode-Based Mapping and Scheduling 30

3.3.1 Optimizing Resource Usage 30
3.3.2 The Mode-Based Approach 31

3.4 Summary . 34

4 Task Migration 37
4.1 Motivation . 37

4.1.1 Load Balancing . 37
4.1.2 Data Locality . 38
4.1.3 Power Management 40
4.1.4 Redundancy . 40

4.2 Related work . 41
4.2.1 Basics . 41
4.2.2 Strategies . 43
4.2.3 Implementations . 45

4.3 Deterministic Task Migration 46
4.3.1 Requirements . 46
4.3.2 Deterministic Communication 51
4.3.3 Guarantees on Quality-of-Service 52

4.4 Summary . 55

5 Task Transfer Experiments 56
5.1 Approach . 56

5.1.1 Migration Model . 56
5.1.2 Transfer Methods . 57
5.1.3 Framework . 59

5.2 Experimental Setup . 60
5.2.1 Hardware Architecture 60
5.2.2 Software Architecture 64
5.2.3 Implementation of Transfer Methods 66

5.3 Limitations . 69
5.4 Summary . 70

6 Experimental Results 72
6.1 Precision of the Measurements 72
6.2 Transfer Time . 74
6.3 Transfer Distance . 75
6.4 Execution Time . 78
6.5 Variations in Transfer Time 79
6.6 Summary and Analysis . 82

v

7 Conclusions and Recommendations 85
7.1 Conclusions . 85

7.1.1 Theory . 85
7.1.2 Experiments . 86
7.1.3 Overall Conclusions 88

7.2 Recommendations . 90

Bibliography 92

Acronyms 97

Appendix A Source Code 99

vi

List of Figures

1.1 An overview of the research incentives in the avionics industry
and their relations. 3

1.2 A federated architecture (left) versus Integrated Modular Avion-
ics (right) [48]. 4

2.1 Two masters and two slaves communicating over a shared
interconnect. 12

2.2 A scheme of the transaction phases of different connection
types. 13

2.3 Schematic view of three IP blocks interconnected by a Network-
on-Chip that consists of Network Interfaces (NI), routers (R)
and links. 15

2.4 A two-dimensional mesh network with tiles that each contain
a router, network interface, computational core and memory. 16

2.5 Overview of abstraction levels in embedded avionics systems. 19
2.6 A scheme that depicts the static mapping and scheduling of

five partitions S0..S4 on a 2-d mesh in a hyperperiod with
three time slots t0..t2 . 21

3.1 An example of two partitions with five tasks, four intra- and
two inter-partition connections. 27

3.2 Partitioning of four cores and interconnecting links. 29
3.3 A hyperperiod partitioned in four time slots. 30
3.4 A state diagram of two modes. 31
3.5 An overview of the mapping and scheduling process of soft-

ware onto hardware partitions. 32
3.6 Five tasks scheduled on four cores in two different modes. . . 34
3.7 Six connections scheduled on four links in two different modes.

The task migration is labelled with an M. 35

4.1 A mode switch: three partitions are transformed and relo-
cated, balancing both the traffic and computational load. . . 38

vii

4.2 Impression of the seven basic migration steps on a NoC-
based multi-core processor with nine cores laid out in a two-
dimensional mesh architecture. 42

4.3 A task with a migration point in its main loop [9]. 43
4.4 Detailed view of the seven basic migration steps on a proces-

sor with nine cores. 47
4.5 A mode switch from Mode0 to Mode2 via three transient

modes denoted as Mode1a...c in which a connection is set up,
a task is transferred, and the connection is torn down. 48

4.6 Task τ00 must communicate with τ01 and τ10 via different
paths after it is migrated. 49

4.7 Two cases of contention: two traffic streams want to use the
same link (left circle) and two streams converge on a single
slave (right circle). 51

4.8 The concept of time-division-multiplexing, the time slots are
depicted above each node and router. 53

5.1 The architecture of a tile. 61
5.2 An overview of the functions in the framework. 64
5.3 The mapping of tasks onto the cores(M = mapping core, U

= unused, W = worker core, T = measurement core, L =
Linux core). 65

6.1 Results of the timer experiment. The left graph depicts the
calculated time versus the measured time, the right the stan-
dard deviation. 73

6.2 The transfer time of the different transfer methods with vary-
ing task and dataset sizes. 74

6.3 The sequence of operations of each transfer method. Light
squares represent data transfer operations, dark squares the
task execution. 75

6.4 The transfer time plotted against the number of hops between
source and destination. 76

6.5 Timing details of the different transfer methods. 77
6.6 The transfer time and subsequent execution time for ten additional

iterations of the experiment. 78
6.7 Maximum deviation from the mean and standard deviation

using cache-pull. 79
6.8 Maximum deviation from the mean and standard deviation

using prefetching. 80
6.9 Maximum deviation from the mean and standard deviation,

using explicit copy. 81
6.10 Maximum deviation from the mean and standard deviation

using the UDN. 81

viii

6.11 Maximum deviation from the mean and standard deviation
using the STN. 82

A.1 The source file hierarchy. 99

ix

Chapter 1

Introduction

The research conducted for this master’s thesis is driven by the increas-
ing demand for computer-based systems in the aerospace industry. The
term aviation electronics, or avionics, describes all the on-board electronic
systems and components used in aircraft. In this thesis the focus is on
embedded systems, a term which is used for computer systems that are in-
tegrated in their environment and closely interact with it. While avionics
are the main focus of this research, the concepts that are presented can also
be applied in fields where similar problems are faced.

1.1 Trends in the Avionics Domain

1.1.1 Federated Architectures

Embedded systems in the avionics domain must meet very strict require-
ments. The reason for this is that most on-board systems are safety-critical,
which means that the failure of a system can have catastrophic consequences
such as the loss of human lives. Thus the probability of a failure occurring
in the hardware or software must be minimized by design. To achieve this a
system must be fault-tolerant so that the system responds to a fault in such
a way that complete failure is avoided. Fault-tolerance can be implemented
by the addition of mechanisms that detect the failure and minimize its ef-
fect. A function is redundant if there are multiple independent instances
of that function within a system. If the instances of a redundant function
are implemented according to different design methodologies, the function
is dissimilar which reduces the risk of design- and implementation faults.

An important aspect of safety-critical design is the real-time capability of
systems. In real-time computing the correctness of a computation depends
not only on the logical result, but also on the time at which this result is
produced. Such dependencies are captured in timing constraints, a point in
time at which a result must be available is called a deadline. An embedded

1

system is referred to as a real-time system if it is able to satisfy such timing
constraints. Safety-critical systems on board of an aircraft are typically hard
real-time, meaning that failing to satisfy the timing constraints has severe
consequences. This is opposed to soft real-time, where the violation of a
deadline does not endanger the system nor its user.

Another set of requirements originates from economic motives and con-
cerns the size, weight and power consumption of embedded avionics systems.
While the systems must be robust, they should be compact and lightweight
so that an aircraft can carry as much valuable payload as possible. The
main incentive for saving power is heat reduction. This is necessary because
avionics systems must be able to run for a certain time without active cool-
ing. Furthermore power savings lead to reduced fuel consumption and a
reduction of the size and weight of power supply systems.

An approach to address these challenges that has been successful in the
past decades is the use of a so-called “federated architecture”. Federated
architectures consist of a collection of independent computing platforms that
are interconnected by a network. A distinct property of these architectures
is that each function has its own dedicated computing resources.

1.1.2 Research Incentives

In every industry companies are keen to cut costs and increase functionality
in order to gain advantage over their competitors. Manufacturers of avionics
equipment are no exception to this. The costs for the embedded systems on
board an aircraft can be split in development, operating and maintenance
costs. The number of available functions and their individual complexity
determine the overall functionality of an avionics system. In the avionics
industry it is common practice to upgrade the functionality after some time
in order to extend the lifetime of an aircraft; the costs associated with this
will here be considered maintenance costs.

Development budgets are dominated by the costs for design and, because
avionics systems are safety-critical, costs for certification. Design costs can
be reduced by developing standardized components which, once certified,
can be re-used with little additional (certification) costs. The certification
costs are usually high because of the complexity of modern processors. Many
processors exhibit unpredictable behaviour because of speculative features.
This makes it difficult or even impossible to perform the software timing
analysis that is required to certify real-time systems. In fact some mod-
ern processors cannot be certified for safety-critical systems at all. Thus
the avionics industry favours deterministic processor architectures without
speculative features.

2

Increase functionalityCut costs

Reduce weight and

power

Use fewer devices

Use resources more

efficiently

Increase resource

performance

Standardize components

Centralize resources

Facilitate upgrades

Figure 1.1: An overview of the research incentives in the avionics industry and
their relations.

Considering the long lifetime of a typical aircraft, reducing the operat-
ing costs is an interesting option. One way to do this is to reduce the size,
weight and power consumption of the avionics systems. For this the proces-
sor boards must either shrink in size, or their number must be reduced. To
accomplish this, the hardware must be used more efficiently or the perfor-
mance must be increased. Resource usage can be optimized if the amount
of redundant hardware can be reduced. This can be achieved by centralizing
resources so that fault-tolerant mechanisms can be shared among functions.

As most functional upgrades of modern avionics systems are software up-
grades, the initial design should be able to facilitate these. The update
of a software function should preferably not require re-certification of the
whole system. Furthermore redundant computing capacity can be added to
a system for future expansions or additions. A problem with this strategy
in federated architectures is that computing capacity is fragmented, so the
required spare capacity might not be available at the desired location. Again
the centralization of computing resources is helpful, the spare capacity can
then be shared between functions. This also corresponds with the desire to
have fewer devices.

To increase the functionality of avionics systems one could simply add more
hardware. This however contradicts with the desire to reduce space, weight
and power consumption. Instead it would be better to aim for more efficient
resource usage and increased performance of individual devices. A part of
the gained capacity can then be used to increase the functionality while the
total amount of devices can be reduced at the same time.

It has become clear that the incentives that drive the avionics industry

3

G
P

U

CPU

I/O

I/O

Actuators

CPU

I/O

I/O

Sensors

CPU

I/O

Network

Interface

Actuators Sensors

Common

I/O

Network

Interface

D
is

p
la

y

C
o

n
tr

o
ls

G
P

U

D
is

p
la

y

C
o

n
tr

o
ls

Network

Interface

Common

CPU

Figure 1.2: A federated architecture (left) versus Integrated Modular Avionics
(right) [48].

lead to the desire to concentrate the functionality on fewer devices. This
can be achieved either by optimizing or by increasing the performance of
the devices. Furthermore standardization of components can help reduce
both development costs and the complexity of the certification process. An
overview is depicted in Figure 1.1.

1.1.3 Integrated Modular Avionics

The aforementioned considerations lead to a shift from federated architec-
tures towards Integrated Modular Avionics (IMA), which aims to host mul-
tiple avionics functions on a shared computing platform [48]. Figure 1.2
depicts the architectural difference between the two approaches. The feder-
ated architecture on the left comprises of three CPUs, five communication
modules and four physical communication channels. On the right an IMA
architecture with the same functionality is shown. It consists of only one
CPU, four communication modules and one common communication net-
work. A description of the network is part of the IMA specification, often
down to the hardware connectors. Whereas in the federated architecture the
functions are deployed on separate CPUs which all have their own I/O mod-
ules and channels, in IMA the resources are shared between functions which
leads to a reduction of hardware and thus weight and power. Although there
are usually still multiple CPUs in a system, their number is greatly reduced
compared to federated architectures. Because the resources are centralized
software updates can be performed in less time which reduces the overall
maintenance time.

To exploit those advantages there is however a new challenge that must
be dealt with. Since functions are not physically isolated anymore, it be-
comes possible that they interfere with each other in a way that was not

4

intended by the system designers. A faults that occurs in one function can
potentially affect many others. This is unacceptable for safety-critical func-
tions and must be ruled out by design in order to build a safe system and to
pass the certification process. Such fault-containment is a natural property
of federated architectures, but is a major challenge in IMA.

To deal with this challenge, spatial and temporal partitioning of software is
applied in order to guarantee isolation between functions. A system is con-
sidered to be strongly partitioned when a faulty function cannot interfere
with or cause a failure in other functions [28]. In practice spatial parti-
tioning is enforced by assigning each function a memory address space that
cannot be accessed by others. Temporal partitioning is achieved by schedul-
ing time slots in which one function has access to the resources while the
others are suspended. These techniques push the actual problem of isolation
to a higher abstraction level, namely to that of the Real-Time Operating
System (RTOS) which must enforce the partition bounds. To standardize
RTOS interfaces across the industry and thus enable re-use of components,
the ARINC Specification 653: Avionics Application Software Standard
Interface was developed [4].

The interfaces described in the ARINC Specification 653 establish a bound-
ary between the functions and the RTOS. This means that the functions and
the RTOS can be developed concurrently, and that the hardware platform
can evolve independent of the applications [38]. The RTOS is responsi-
ble for allocating memory regions and processing time for each partition as
well for as providing mechanisms for inter-partition communication. Fault-
containment through isolation is crucial because it must be guaranteed that
a faulty component cannot cause the failure of other components. Strong
partitioning is often achieved through the combined functionality of the
RTOS and the memory management hardware.

Although the main goal of IMA is to reduce the amount of total hardware,
several other advantages have become apparent. Standardized interfaces fa-
cilitate the concurrent development of components. Furthermore it helps to
avoid re-verification of the whole system when functionality is added later
on and enables re-use of components. Abstraction improves the platform
independence of software. The spare resources in an IMA architecture are
centralized and can be allocated to any function. This flexibility leads to a
reduction of the total spare capacity, thus reducing hardware requirements.
A similar reduction can be obtained when mechanisms for fault-tolerance are
shared between multiple functions. For example, a fault-tolerant memory
controller can be used by all functions on a processor.

5

1.2 The Potential of Multi-Core Processors

1.2.1 Trends

In recent years the IMA approach has been successfully applied in aircraft
such as the Boeing 787 and Airbus 380 [39]. In the future however power
consumption and weight must be reduced even more, while the demand for
functionality still increases. In order to do this, IMA must be taken one
step further. The software architecture applied in IMA is suitable for this
because it is composable; functionality is contained in partitions which are
abstracted from the architecture on which they are deployed.

On the hardware side this approach requires an increase in the capacity
of individual processor boards. Advances in technology ensure that new
processors, memory chips and interconnect technologies become available
frequently which allows the design of more advanced processor boards. In
the past the increase in hardware performance has mainly been achieved
by increasing the clock frequency. It is however impossible to continue in
this fashion because the limits of Instruction Level Parallelism (ILP) have
been reached and due to the so-called “power wall”. This power wall means
that the increase in clock frequency results in a disproportional growth in
power density which in turn leads to an unacceptable increase in tempera-
ture. Therefore it has become common practice to increase processor per-
formance by placing multiple computational cores on one die, the multi-core
processors. This means however that the temporal scheduling of partitions
on single-core processors, which is one of the foundations of the IMA ap-
proach, cannot be continued.

There are many new challenges that must be faced with the shift to multi-
cores, especially in the field of software engineering. In multi-core processors
a number of instructions can be executed at a given time which means either
several applications can run concurrently on the same chip, or thread-level
parallelism can be exploited to speed up a single application [25]. If there is
sufficient parallelism in the application code, multi-core architectures pro-
vide an increase in processing power compared to single-core processors that
run at the same clock speed.

When the avionics domain is considered, multi-cores are a promising tech-
nology to meet the increasing requirements on the short term. Even more,
on the long term manufacturers may stop further development of single-core
processors so that the use of multi-cores becomes inevitable. Thus the po-
tential benefits of multi-core technology for avionics must be identified and
the new challenges that arise must be addressed. This brings us to the first
objective of this thesis, which is:

6

To investigate how multi-cores can be successfully applied in safety-
critical systems, with special regard to the efficient usage of hard-
ware.
The rest of this section describes some required background information
after which Section 1.3 will gives the outline of this thesis.

1.2.2 Overview of Architectures

A multi-core processor contains several computational cores that are inter-
connected by a communication medium. Homogeneous multi-core proces-
sors feature a number of cores with the same architecture and Instruction Set
Architecture (ISA). Heterogeneous multi-cores on the other hand contain at
least one core with an architecture and instruction set that differs from the
others. The architecture of the cores depends on the intended use, which
can for instance be general purpose computing, signal processing or graphics
processing. The complexity of the cores and the feature size determine how
many can be placed on a single die. It is expected that future chips will
contain hundreds or even thousands of cores [12]. There is a trend to brand
processors with a several tens of cores or more as “many-cores”, but in this
thesis we will stick to the term multi-cores and consider many-cores as a
subset.

Single-core processors usually feature a large off-chip memory, complemented
with an on-chip cache hierarchy to hide the latency. In multi-cores this kind
of organization is called a centralized shared memory architecture. Because
the memory bandwidth is limited however, the memory access quickly be-
come a bottleneck if the number of cores is scaled up. One solution to this
is to implement distributed shared memory, in which the memory and ad-
dress space are split up in order to divide the traffic over multiple paths.
Another approach is to provide each core with a smaller private memory.
While this is scalable, software engineering becomes more challenging be-
cause data consistency must be guaranteed. When each memory has its
own address space the data must be moved explicitly. If the memories are
implemented as caches, a cache coherency scheme is required which may
be implemented in hardware. In many designs local memories as well as a
larger central memory are used in order to combine the advantages of both.
Any form of centralized memory requires global control mechanisms which
limits the scalability. On the other hand, sharing data between cores re-
quires more effort when private memories are used.

A central topic that multi-cores introduce to processor design is inter-core
communication. There are two different paradigms for communication which
depend on the memory architecture, namely shared memory and message
passing. In memory mapped communication a common address space is

7

used from which shared data items can be accessed by any core. With
message passing all communication must be programmed into the software
explicitly. These communication principles have already been used for some
time in multi-processor machines such as supercomputers. Such machines
feature multiple computational cores that are spread over different chips,
in contrast to multi-cores. This difference in physical scale means that on-
chip multi-cores have some distinctive properties that separate them from
multi-processors. The local proximity for instance leads to very short com-
munication times, and transmission faults are less likely to occur because
the physical environment is much better controlled. Thus the complexity of
protocol stacks can be greatly reduced and latencies are in the order of a
few clock cycles, which enables many new possibilities for parallel software
design.

1.2.3 Multi-Cores in Avionics Systems

To exploit the potential benefits that multi-cores offer, avionics software
must be ported to these new architectures while satisfying the requirements
for safety and certification. Avionics software is safety critical as well as
real-time, in this thesis we will further use these terms to clarify which as-
pect we mean. Real-time applications consist of sets of tasks that each have
their own deadline. To make efficient use of the available hardware, these
tasks must be scheduled sequentially on a computational core so that each
task completes its execution before the deadline expires. Scheduling can
be performed dynamically (online) or statically (offline). In safety-critical
real-time systems static scheduling is applied because the correctness of
such schedules can be guaranteed. In order to be able to schedule a set of
tasks, execution time analysis is needed to determine the Worst Case Execu-
tion Time (WCET) and Best Case Execution Time (BCET) of those tasks.
Those bounds must be safe and tight, i.e. they must never underestimate
(overestimate) and the overestimation (underestimation) should be as small
as possible. This can only be achieved if the behaviour of the hardware is
predictable, which is not always the case in modern processors with specu-
lative features such as branch prediction and out-of-order execution.

Thus, safety critical real-time systems need a deterministic hardware archi-
tecture. An event is deterministic if it is causally determined by an unbroken
chain of prior events. This means that when a system is in a certain state
and receives a certain input, the response must be predictable. Furthermore
the time that elapses between receiving the input and the finalized transition
to the next stable state must be predictable, or at least have an upper bound.

One of the challenges introduced by the application of multi-cores is the
sharing of resources. When multiple computational cores are placed on a

8

single die, each will have some private hardware such as registers, a com-
munication interface and perhaps a local memory. There are however also
resources which are shared such as the main memory and the on-chip inter-
connect. This leads to conflicts when multiple cores try to gain access to a
resource at the same time, which results in undeterministic behaviour if no
additional measures are taken. Because all current multi-core architectures
have shared resources, this challenge must be studied to be able to analyze
its impact on the execution of real-time software. We will further go into
this in Chapter 2.

1.3 Summary and Thesis Outline

In this chapter we introduced the avionics domain, which is the focus of this
master’s thesis. We discussed the unique requirements of this domain as
well as the incentives for past and current research. The trends in avionics
lead to an increasing interest in the application of multi-core processors.
We presented the first objective of this thesis, which is to investigate how
multi-cores can be successfully applied in safety-critical embedded systems
with special regard to the efficient usage of hardware. Furthermore we intro-
duced the terminology and presented a short overview of the main concepts
in multi-core computing to provide the reader with sufficient background
information.

In Chapter 2 we identify two major challenges that must be addressed when
applying multi-cores in safety-critical real-time systems. The first concerns
the predictability of hardware in multi-core processors, especially that of
the interconnect. The second is related to optimizing hardware usage for
which the deployment of software is discussed in more detail. In Chapter
3 we propose a combination of concepts from different fields to deal with
these challenges. We capture these in a formal model and identify the direc-
tion in which we continue our research, after which we refine the objective
accordingly. In Chapter 4 we go deeper into a technique that concerns all
of our proposed concepts, namely task migration. We review related work
and investigate the challenges of applying this technique in multi-core pro-
cessors. This results in a list of requirements, one of which is new particular
in this unique combination of domains. This leads to the second and final
refinement of the objective.

In Chapter 5 we propose a number of experiments to evaluate the ideas
presented in this thesis. We describe the approach and the experimental
setup in detail, as well as the limitations. We present and analyse the
results of these experiments in Chapter 6, and give the conclusions and
recommendations in Chapter 7.

9

Chapter 2

Multi-Core Processors in
Real-Time Systems:
Challenges

In this chapter we present two major challenges that must be addressed
when multi-cores are applied in safety-critical real-time systems. Section
2.1 focuses on the predictability of hardware in multi-cores, which is re-
quired for real-time applications. The main new component that may cause
unpredictability in multi-cores is the on-chip interconnect, we go deeper into
this subject in Section 2.2. The second challenge concerns the deployment
of software on multi-cores, which determines the efficiency with which the
hardware can be used. In Section 2.3 we discuss the mapping and scheduling
of real-time applications on multi-cores.

2.1 Predictability

Whether the behaviour of real-time software is deterministic or not depends
on the hardware of the computer system on which it is deployed. When
the hardware behaves perfectly predictable, the execution of the software is
deterministic and timing analysis can be performed to find an upper bound
on the execution time. In this section we determine which elements in multi-
core architectures could lead to unpredictable behaviour.

2.1.1 Execution Time Dependencies

The execution time of software on a multi-core processor depends on three
main components: the computational cores, the memory hierarchy and the
on-chip interconnect. Previous research has focused on timing analysis of
single-cores to extract safe bounds on the execution time [18]. Such analysis
is however increasingly difficult due to the rise in complexity of modern pro-

10

cessors [46]. Exploitation of instruction level parallelism such as superscalar
and out-of-order execution lead to timing anomalies and complex depen-
dencies between instructions. Thus cores with architectures that do not
contain timing anomalies (i.e. a local WCET does not contribute to the
global WCET) and have limited speculative features are recommended for
use in real-time systems [50]. When many cores are placed on a single die,
the complexity of the individual cores is usually less than the computational
units in modern single-core processors. Existing timing analysis techniques
should be sufficient to analyze the execution time of a sequence of instruc-
tions executed on a core.

The second main contribution to the execution time of a task comes from
memory accesses. In [50] three recommendations for memory hierarchies on
single-cores are given that enable the extraction of tight bounds on memory
timing:

• either scratchpad memories or caches with a Least Recently Used
(LRU) replacement policy should be used;

• instruction and data memory should have separate L1 caches;

• flat linear byte-oriented memory without paging is preferred.

In multi-core processors however the memory hierarchy is often more com-
plex. Many architectures combine shared and distributed memories, and
caches are applied at different levels to hide the latency gap between the
cores and main memory. While the recommendations for single-core proces-
sors are also valid for each individual memory, shared memories introduce
additional challenges. The interference of cores on any shared resource can
lead to undeterministic behaviour, which makes WCET analysis hard and
only feasible under certain conditions [42]. Therefore it is recommended to
limit the use of shared memory and especially shared caches when possible,
although the shared memory model enhances the programmability of multi-
cores.

The third contributor to the execution time is the on-chip interconnect. In
single-core processors the contribution and complexity of this part are rela-
tively small, but in multi-cores the situation is quite different. Traditionally
the computational core is the bottleneck of most computer systems. With
the rise of multi-cores however, a large amount of computational power be-
comes available on a single chip. As the number of cores grows, so does the
complexity of the interconnect that connects the cores to each other and to
resources such as memory and I/O. The interconnect thus quickly becomes
the new bottleneck because it must move around all the data that is pro-
duced and consumed by the cores. Traffic properties such as bandwidth and

11

Master 1 Slave 1

Master 2

In
te

rc
o

n
n

ec
t

Slave 2

1a

1b
2b

1c

2c

2a

Figure 2.1: Two masters and two slaves communicating over a shared intercon-
nect.

latency limit the speed at which computations can be performed. Therefore
the architecture of modern multi-core processors becomes communication-
centric in contrast to traditional computation-centric single-cores.

This paradigm shift to communication-centric design has major consequences
for the software design and execution time analysis. Because an intercon-
nect is a shared resource itself, it must be carefully designed in order to
rule out undeterministic behaviour. Even if the interconnect hardware is
designed properly, the complexity of inter-task communication leads to sig-
nificant difficulties in traffic management. Proper design and programming
of the interconnect is considered a major challenge for modern chip design
[7]. Its impact on the predictability of the entire system is critical for the
deployment of real-time software on multi-core architectures. In this thesis
the timing analysis of memories and cores is considered trivial. These are
however all connected to a interconnect, and the execution time depends
heavily on the time required for communication. Therefore the we focus on
the interconnect and the impact it has on the predictability of multi-core
processors.

2.1.2 Modelling Interconnects

From the previous subsection it has become clear that access to shared re-
sources is the main challenge in timing analysis of multi-cores. This access is
provided by the interconnect, which is a shared resource itself. The remain-
ing part of this section will therefore focus on the details of this problem
after which Section 2.2 presents actual modern interconnects.

The situation where multiple entities access a shared resource can be mod-
elled as masters accessing a slave via an interconnect. A master always
initiates a transfer and will in this comparison be represented by a core.
Slaves on the other hand are passive and only respond to requests, memory

12

2b 2c2a

1a 1c1b

2b 2c2a

1a 1c1b

2b

1b

2c2a

1a 1c
Non-split, sequential

t

Split, sequential

Split, concurrent

1b 1c1a

1a 1c1bSplit, sequential,

pipelined

Figure 2.2: A scheme of the transaction phases of different connection types.

interfaces and I/O devices are typical examples of those. Cores can however
also respond to other cores, so they can be master, slave or both depending
on the program code they execute. Interconnects can be implemented by a
bus, point-to-point or switched architecture. Figure 2.1 depicts a schematic
view of two masters accessing the same slave. The different phases of the
transaction of master one are labelled 1a through 1c and that of master two
2a through 2c. A transaction consists of a request issued by the master
followed by the acceptation and transportation of the request by the inter-
connect (phase a). The slave then accepts and executes the request (phase
b). An optional response by the slave (phase c) is similar to phase a but
goes in the other direction.
A basic interconnect is non-split, non-pipelined and sequential, which means
that both master and interconnect can handle one transaction at a time. In
Figure 2.2 the scheduling of the transactions of Figure 2.1 is depicted in dis-
crete time slots It is clear that there is no concurrency in non-split sequential
transactions. An improvement on this are split transactions, in which the
request and response phases are decoupled. This means that a master is
not blocked between sending the request and receiving the response, and
that the interconnect can interleave requests and responses from different
masters, see Figure 2.2. Pipelining allows multiple outstanding requests of a
single master and thus increases the throughput of that master, split trans-
actions are a prerequisite for this. An interconnect features concurrency
when it can handle multiple requests and responses at the same time, which
is independent from splitting and pipelining. This is again depicted in Fig-
ure 2.2, the communication is handled concurrently but the slave can only
handle one request at a time. Note that non-split concurrent transactions
are not pictured, those only bring an advantage when the masters commu-
nicate with different slaves.

13

2.1.3 Interference on Shared Resources

From here on the masters and slaves will be referred to as nodes, and requests
and responses as messages. The predictability of the modelled hardware de-
pends on the separate components and on the interaction between them.
Concurrent access to shared resources occurs when multiple nodes issue a
message to the interconnect at the same time, and when multiple messages
arrive at one node at the same time. This includes the situation where one
message is currently being processing when a new message arrives. In Figure
2.1 concurrent access to shared resources occurs when 1c and 2a are issued
to the interconnect concurrently, or when 1a and 2a arrive at the slave at
the same time. These events are deterministic only when the response of
the system is predictable and when there is an upper bound on the response
time. If the interconnect and the nodes can process multiple messages si-
multaneously, the problem persists if the maximum number of concurrently
processable messages is exceeded.

The issue of concurrent access to shared resources is often dealt with by
applying an arbitration mechanism. Such a mechanism accepts one message
and delays the others. This can for instance be implemented by a “first-
come-first-serve” or “round-robin” arbitration. The consequence of delaying
messages is that a node has to wait before it may try again, which must be
included in the response time boundary. If there is however no guarantee
that the delayed node succeeds the second time, the response time becomes
unpredictable.

2.2 On-Chip Interconnects

In Section 2.1 it has become clear that on-chip communication is crucial
for the predictability of multi-core processors. In recent years advances in
technology forced hardware designers to turn to a new class of interconnects
based on networking principles. Such networks are the only scalable inter-
connects so far [24]. The concept of these will be presented here after which
issues with the predictability will be analyzed.

2.2.1 Networks-on-Chip

As feature sizes continue to shrink, it becomes harder to interconnect the
Intellectual Property (IP) blocks on a chip. While the number of transistors
increases quadratically, the number of wires into an area only increases lin-
early because those are located at the edges of the blocks. At the same time
the increase of clock frequency reduces the distance that a signal can travel

14

IP

IP

IP

NoC

NI

NI

R

R

R
NI

Figure 2.3: Schematic view of three IP blocks interconnected by a Network-on-
Chip that consists of Network Interfaces (NI), routers (R) and links.

in a single clock cycle. The scalability of an interconnect in terms of chip
area and capacity is crucial to facilitate large numbers of IP blocks. The
named problems however cannot be addressed with traditional interconnects
such as buses.

A concept that provides a solution is the Network-on-Chip (NoC), which
is commonly used to interconnect IP blocks in a System-on-Chip (SoC)
[17]. Such networks use packet switching to transport data, similar to off-
chip networks such as local area networks. Because wires are shared the
chip area dedicated to the interconnect is used more efficiently than with
buses. For example, when two nodes are communicating on a bus all the
others are usually blocked. In a NoC on the other hand only the links be-
tween them will be used and even on these other packets can be interleaved.
This leads to the notion that NoCs are currently the only scalable solution
for communication-centric design of modern chips [24]. When we consider
the master-slave model presented in Section 2.1 we see that traffic is split,
pipelined and concurrent.

A Network-on-Chip consist of three basic components. Each IP block must
feature a Network Interface (NI) or network adapter that connects it to the
actual network. The network itself contains a number of routers that for-
ward packets arriving at the inputs to the correct output. The routers are
interconnected by physical links. Figure 2.3 depicts three IP blocks inter-
connected by a NoC. When the IP blocks all have the same size, as is the
case with multi-core processors, a regular array of square tiles can be laid
out that each contain an IP block, an NI and a router with up to five connec-
tions. One router link connects the router to the NI while the others lead to

15

Router Core

Memory

NI

Figure 2.4: A two-dimensional mesh network with tiles that each contain a router,
network interface, computational core and memory.

the neighbouring tiles in all four cardinal directions. Several network topolo-
gies have been proposed such as ring, cube, butterfly and fat tree networks.
For regular on-chip networks however a two-dimensional mesh topology is
the most advantageous as it is scalable and naturally fits onto a die. An
example of such an architecture is depicted in Figure 2.4. It is obvious that
the cost of external memory accesses increases as the number of cores grows,
especially for cores in the middle. Besides the physical increase in distance
each access will occupy the sparse resources at the edges of the chip, thus
blocking others.

A common network concept used in NoC design is protocol layering. This
offers several advantages through decomposition, abstraction and sharing.
Decomposition of problems helps to manage the complexity. Abstraction
hides details so that lower-level services can be used without having to worry
about implementation details. Common services can be shared between dif-
ferent users so that they have to be implemented only once. A model for
protocol layering that is often applied in NoC design is the Open Systems
Interconnect (OSI) model. This model defines seven layers that each use
the services of the underlying layer to implement their own service, which
is then again offered to the layer above it. Five of those layers usually suf-
fice to model a NoC. Those five layers, their description and the concerned
components are listed in table 2.1.

2.2.2 Networking Concepts

A central problem in all networks is finding a path between two endpoints, or
routing. Routing can be optimized with respect to certain parameters such
as path length or traffic balance. When deterministic routing is applied, the
path between source and destination is always the same. In adaptive routing
on the other hand a path is determined while taking the network state into
account. Path computation can be done either all at once, in which case the

16

Layer name Components
involved

Description

Application IP block and NI Offer various communication ser-
vices to IP block

Transport NI Flow control, error correction

Network NI and router Send packet over a logical end-to-
end link: routing, buffering, packe-
tization

Datalink Router Send packet over a single logical
link: access control, flow control

Physical Router and link Data transport over a single physi-
cal link

Table 2.1: Description of the OSI layers and their relation to the components of
a NoC.

entire path is stored in the packet header, or incrementally in each router
along the path. Routing deadlocks are the result of circular dependencies
and should be avoided. A deterministic routing strategy that is often used
is dimension ordered routing, which is deadlock-free provided there are no
cycles when the network topology is traversed in a single dimension.

The links in a NoC and the buffers in the routers are shared resources.
As explained in Section 2.1, sharing can lead to problems when multiple
users request a resource at the same time. When multiple packets request
the same link at the same time contention occurs. Contention can possi-
bly cause congestion because packets have to wait for other packets, even
if they do not want to use the link with contention. Congestion leads to
large buffer requirements, increases latencies and renders the performance
unpredictable. This hinders the adaptation of NoC based architectures in
real-time systems, so congestion must either be bounded or avoided.

Congestion can be limited or prevented with proper flow control techniques
that manage traffic streams. Circuit switching for instance is an example
of buffer-less flow, and is similar to the connections in traditional telephone
networks. With buffered flow control on the other hand one packet is for-
warded over the requested link while the others are delayed and temporarily
stored in buffers. Examples of this are store and forward, virtual cut through
and wormhole flow control. While these techniques can reduce congestion,
additional measures are necessary to be able to give guarantees on traffic
properties.

17

2.2.3 Quality-of-Service

The term Quality-of-Service (QoS) is used to express the ability of a NoC
to offer a certain level of performance to its nodes. A number of properties
determine the performance of network communication as perceived by the
nodes, such as:

• data correctness, delivery and ordering;

• bandwidth;

• latency;

• jitter (latency variation).

If these properties can be guaranteed, the traffic is deterministic and an
upper bound can be determined on the communication time. Real-time
software needs such “guaranteed service” to be sure that the deadlines are
met. “Best effort” traffic on the other hand offers no guarantees on QoS
and is therefore only of use for non-critical applications. These two types of
traffic can be combined within one system [36].

With buffered flow control each router must have physical buffers that imple-
ment a certain buffering strategy such as input buffering, output buffering
or virtual circuit buffering. A router furthermore features a switch that
connects the input (buffers) to the output (buffers). A non-blocking switch
can connect multiple inputs to multiple outputs simultaneously. Blocking
switches introduce extra dependencies between the flows and are thus not
favoured. Guarantees on QoS can only be provided with the right combina-
tion of a buffering strategy, switch architecture and switch arbitration.

It can be concluded that NoCs are switched interconnects that themselves
pose a complex shared resources problem. This is because traffic may have
to travel over multiple hops, and each link and buffer on the path is a another
shared resource which might suffer from contention. Buffering schemes may
reduce or eliminate buffer sharing at the cost of extra hardware. But even
with an expensive buffering scheme and a non-blocking switch the wires are
still shared. Thus an additional end-to-end scheduling strategy is required
in order to guarantee QoS. Chapter 4 presents several solutions that offer
guarantees on QoS.

2.3 Deployment of Software

The deployment of software on a multi-core processor has a temporal and
a spatial component. Scheduling is the temporal allocation of tasks on a
computational core. Mapping on the other hand is the spatial allocation

18

system function/partition application task

Figure 2.5: Overview of abstraction levels in embedded avionics systems.

of software artefacts to cores [37]. On a cluster of single-core processors,
mapping would be the process of distributing the applications on these pro-
cessors. With multi-core processors however the granularity is smaller, as
software must be distributed among the cores on one processor. This section
will elaborate on the challenge of deploying real-time software on multi-cores,
the focus will be on the mapping process in particular.

2.3.1 Parallelism

In order to utilize the potential of multi-core processors in a system the appli-
cations must contain parallelism. That is, there must be multiple elements
that can be executed concurrently. Parallelism can be found at different
abstraction levels. On board an aircraft there are different physical embed-
ded avionics systems. These each contain one or more functions such as
providing cockpit information, communication services or radar image pro-
cessing. A function can potentially be spread over multiple partitions, which
are isolated (groups of) applications. For simplicity we assume a one-to-one
relation between these levels here. Each function is implemented by one or
more software applications that in turn consist of a number of tasks. In
practice tasks are for instance implemented by processes or threads. Figure
2.5 presents an overview of these different abstraction levels.

To find a solution to the mapping problem, the abstraction level at which
software should be mapped must be determined. Although there are often
multiple applications within one system that can be executed in parallel,
their number is most likely not sufficient to fill a multi-core processor when
each application is mapped to one core. Thus, going one level lower and
exploiting task-level parallelism is the approach used so far to tackle this
problem [33, 13]. Still there are lower levels at which parallelism can be
found. While these are too fine-grained for current multi-core processors,
they might be interesting to consider for future processors which could fea-
ture hundreds of cores. In this thesis each partition is considered to consist
of one application. This does not affect the validity of the proposed concepts
because those are based on task-level parallelism.

19

A partition thus consists of multiple tasks which can communicate with
each other. Because partitions are isolated from each other, special mech-
anisms are required if tasks from different partitions need to communicate.
This is usually achieved through a specialized Application Programming In-
terface (API) that isolates the partitions from faults in the communications
and thus allow inter-partition communication. Because of the concentration
of functionality that is pursued in multi-cores, we assume in this thesis that
all the elements of a single partition are mapped on the same processor. The
kernel of the Operating System (OS) usually schedules the partitions, which
themselves may have local schedulers to schedule the tasks [40]. Another
approach is to schedule the tasks directly in the kernel, but this requires
special care to protect the system from faults. Chapter 3 elaborates on
partitioning.

2.3.2 Static Mapping

The input of a mapping process consists of the hardware and software prop-
erties as well as external requirements and constraints. An approach that
has been successful in mapping real-time tasks onto processors is static map-
ping. Static mapping is performed at design time and tries to find a valid
mapping that satisfies all the requirements, given that such a mapping exists.

For safety critical systems, static mapping is often combined with static
scheduling to generate a scheme whose correctness can be guaranteed. Tasks
are assumed to be cyclic with a fixed period so that a scheme can then be
composed for the duration of a so-called hyperperiod. The period of the
hyperperiod must be equal to or greater than the least common multiple
of all task periods. This hyperperiod will be repeated in a cyclic fashion
so that it can be guaranteed that each task always meets its deadline. A
statically mapped and scheduled scheme can for instance be generated by
applying constraint logic programming [19].

An example of static mapping and scheduling is depicted in Figure 2.6. In
this example five partitions labelled S0 through S4 are scheduled on a pro-
cessor with nine cores, which are laid out in a regular two-dimensional mesh
structure. The hyperperiod is split in three time slots labelled t0 through t2
in which the partitions are mapped and scheduled. Some of the partitions
need two time slots. The darker shaded links represent paths used for com-
munication between partitions, while the lighter links are used for inter-task
communication within a partition.

With static mapping it can be guaranteed that all the timing requirements
are satisfied, which is a prerequisite for safety-critical systems. An obvious
disadvantage is that the mapping process must be repeated when tasks are

20

t0 t1 t2

S0

S1

S2

S0

S3

S4

S2

Figure 2.6: A scheme that depicts the static mapping and scheduling of five par-
titions S0..S4 on a 2-d mesh in a hyperperiod with three time slots
t0..t2

added or deleted, or when the execution time of a task changes. In the
avionics domain however changes to the system are often part of an upgrade
which requires re-certification anyway, compared to which the generation
and verification of a new schedule is a negligible effort.

Another disadvantage is that the hardware cannot be used optimally. This is
due to three factors. Firstly, a time slot with the duration of the WCET will
be reserved for a task in every hyperperiod, even when a task finishes much
earlier on the average. Secondly, we need to distinguish between periodic
(synchronous) and sporadic (asynchronous) tasks, the latter are triggered
by external events such as the arrival of data. Those do not fit in the model
because at design time it is unknown when they need to be started. Hence
time slots must be reserved to be able to cope with the worst case. Thirdly,
it might not be possible to occupy all resources due to the fixed number of
tasks and their relations. In Figure 2.6 for example there are no tasks to
occupy the empty cores in t1 and t2. We conclude that multi-core proces-
sors will probably not be utilized optimally under static mapping because
resource reservation for the worst-case scenario is overly negative. This is a
major limitation of static mapping.

2.4 Summary

In this chapter we pinpointed two major challenges for the adoption of multi-
cores in safety-critical real-time systems. Firstly the execution of real-time
software must be deterministic, which requires predictable hardware be-
haviour. Previous research addresses predictability and timing analysis of
execution pipelines and memory systems. We found however that the pre-
dictability in multi-cores is largely determined by a new hardware compo-
nent, namely the on-chip interconnect. The interconnect of multi-cores is
much more complex than that of single-cores and is based on new concepts.

21

We presented a simple model of communication between nodes which showed
that the unpredictability comes from the simultaneous access to a shared
resource. In such a scenario one node must wait on the other to finish, which
potentially introduces unpredictable delays. Deterministic behaviour of the
interconnect requires careful design of both hardware and software to deal
with this concurrent access of shared resources.

The only scalable on-chip interconnects used until now are Networks-On-
Chip, which we described in Section 2.2. The links and buffers in a NoC are
shared resources. When multiple users (packets) request the same resource
at the same time, contention occurs. Contention can lead to congestion,
which means that packets have to wait for other packets. This can in turn
lead to unpredictable delays. The performance level that a network can
offer is described by the “Quality-of-Service”, a real-time application for
instance needs guarantees on latency and bandwidth. This requires that
contention and congestion are avoided or bounded. Certain combinations
of routing, buffering and flow control can offer guarantees on QoS so that
an upper bound on the time required for communication can be determined.

The second main challenge that we deduced concerns the deployment of
software on multi-cores, which consists of mapping and scheduling. We
found that parallelism on the task-level can be exploited for parallelization
of software on multi-cores, but that those tasks must be encapsulated in par-
titions to guarantee fault-containment through isolation. In safety critical
systems tasks are usually statically mapped and scheduled because it can be
proved that such schemes meet the requirements. The main disadvantage of
this approach is that hardware cannot be used efficiently because resources
must be reserved for the worst case scenario, which is overly negative on the
average.

22

Chapter 3

Partitioning, Mapping and
Scheduling

This chapter introduces a combination of concepts from different fields in
order to address the challenges described in Chapter 2. In Section 3.1 we
present a formal model of software partitioning, which is used in the avionics
domain to achieve fault containment. To deal with the challenge of interfer-
ence on shared resources we extend this concept to include hardware in Sec-
tion 3.2. In Section 3.3 we present an approach to match the software and
hardware partitions which allows to optimize hardware usage. Combined
with the formal model, this approach offers a solution to the challenges, but
we also identify the need for further research and focus on that by refining
the objective of this thesis.

3.1 Software Partitioning

In Section 1.1 we mentioned partitioning as a method to isolate applications
in both space and time. Only isolation can guarantee that faults are con-
tained and that the behaviour of an application is independent of that of
others. Partitioning rules out mutual interference between tasks as possi-
ble cause for undeterministic behaviour, which is vital for real-time systems
[21]. It has been successfully applied in IMA architectures with multiple
single-core processor boards. In this section we present a formal description
of partitioning which we will then adapt to multi-core processors. We also
introduce an example that will be used throughout this chapter.

3.1.1 Temporal Partitioning

The partitioning process decomposes software into partitions that are super-
vised by an OS [28]. Each partition consists of a number of software com-
ponents that are functionally related and closely interact with each other

23

during run-time. When multiple partitions are deployed on a single-core
processor they are usually statically scheduled in time. Each partition is
granted a predefined number of time slots in which it has access to the
hardware resources. We denote the set of software partitions as:

Psw = {S0,S1, ...,Sk−1}, where k is the number of software partitions.

Continuing this formal description, each partition consists of a set of software
components (tasks) and a set of connections that describe the communica-
tions paths within a partition:

Si = {Ti,Ai}, for i = 0, 1, ..., k − 1.

We describe the set of tasks Ti that each partition contains as follows:

Ti = {τi0, τi1, ..., τi(l−1)}, for i = 0, 1, ..., k − 1 and where l is the total num-
ber of tasks in a partition i. We will elaborate on the communication paths
described by Ai later.

The temporal scheduling process uses the absolute deadline and the WCET
of each task to find a feasible schedule. The scheduling of real-time tasks
is a complex problem which usually involves many more parameters such
as the arrival time and task period. Here we will only cover the very basic
scheduling principles needed to explain the concept of partitioning. To avoid
unnecessary complexity in the model we make several assumptions are made
that are unrealistic for most embedded systems. A more elaborate descrip-
tion of scheduling can be found in [5, 3] and particularly for multi-cores in [8].

We start with the assumption that the time axis is divided in hyperperiods
that are repeated periodically. These hyperperiods contain a finite number
of discrete time slots in which the partitions are scheduled. We denote a
hyperperiod as:

HP = {t0, t1, ..., tm−1}, where m is the number of time slots in a hyper-
period.

We furthermore assume that a task must be scheduled exactly once dur-
ing each hyperperiod for the duration of at least one time slot We can now
express the relative deadline D and the worst case execution time E of each
task in time slots:

τij = {Dij , Eij}, for i = 0, 1, ..., k− 1 and j = 0, 1, ..., l− 1, with 0 ≤ D < m
and 0 < E ≤ m. The deadline expires at the end of the time slot indicated
by D.

24

In this simplified model the scheduling process must distribute the tasks
over the time slots of a hyperperiod so that each task meets its deadline.
The tasks that we consider are not pre-emptable, that is, a running task may
not be suspended and continue execution later. The formalism presented so
far is recapitulated in the following example, in which one partition that
contains two tasks that must be scheduled:

Psw = {S0}
{S0} = {T0}
{T0} = {τ00, τ01}
with τ00 = {3, 1} and τ01 = {2, 3}.

The hyperperiod consists of four time slots:

HP = {t0, t1, t2, t3}.

The scheduling function denoted by Sched{Psw,HP} can now create a fea-
sible schedule by assigning the tasks to the available time slots:

Sched{Psw,HP} = {τ01, τ01, τ01, τ00}.

3.1.2 Spatial Partitioning

In single-core processors spatial partitioning concerns the memory and ex-
ternal resources such as sensors, actuators and I/O interfaces. Spatial par-
titioning of memory is achieved by assigning different memory areas to each
partition, and blocking tasks in one partition from accessing the memory
area of another. Access to external resources is inherently partitioned in
time but may additionally only be available to specific partitions. Mecha-
nisms for access restriction should preferably be implemented in hardware so
that illegal access attempts are physically blocked. Thus fault are contained
because a fault in one partition cannot affect the others. An example of this
is protection from “babbling idiots” on an I/O interface [40].

A new dimension is added to spatial partitioning when it is applied in multi-
core processors. In single-core processors access attempts to shared resources
such as memory are inherently separated in time, and thus spatial partition-
ing is not very complex. In multi-cores multiple partitions are executed con-
currently and may try to access memory or resources simultaneously. Thus
more sophisticated blocking mechanisms are required. Furthermore tasks
need to communicate with one another. As we already noted however, the
interconnect that offers access to these resources is a shared resource itself.
Thus it is required to partition the traffic on the interconnect, which avoids

25

simultaneous access of resources altogether so the blocking mechanisms can
be similar to those in single-cores.

For such spatial partitioning of traffic the communication requirements of
tasks must be captured. This allows us to map traffic onto the intercon-
nect in addition to the mapping of tasks onto cores. If isolation between
traffic streams can be guaranteed, we have extended the concept of spatial
partitioning to include the interconnect and avoid contention at the shared
memory and external resources.

It is a major new challenge to analyse and model the communication re-
quirements of tasks. From here on we will only consider communication
between tasks because those can act as both master and slave, but we need
to keep in mind that communication with memory and external resources is
very similar. Traffic between tasks can be split in intra- and inter -partition
communication. We need the latter for the extension of spatial partition-
ing, but the former offers us a method to increase the predictability of task
execution within a single partition. There are two different ways in which
tasks can communicate with each other:

• through local memory if they are mapped on the same core;

• through the on-chip interconnect if they are mapped on different cores.

We assume here that all communication operations on an interconnect will
only span one hop. This simplification means that two communicating tasks
must be mapped either on the same or on two adjacent cores. We model
these communication paths as a set of abstract connections contained in
each partition. Details such as the traffic direction and bandwidth require-
ments are omitted here but can be attached to the connections as required.
The connections of each partition are described as follows:

Ai = {ai0, ai1, ..., ai(n−1)}, for i = 0, 1, ..., k − 1 and where n is the num-
ber of connections in a specific partition i.

There is one additional set which describes all the inter-partition connec-
tions, and is therefore added to the set of software partitions:

Psw = {S0,S1, ...,Sk−1,Ap}, with k the number of software partitions and
where p is an identifier (not a number).

Many additional constraints can be thought of, a task can for instance be
bound to a specific core because it needs access to a hardware resource only
available at that location. Such parameters will not be considered here to
limit the complexity of the model.

26

τ00 τ10

τ01

τ12

τ11

a00

ap1

a10

a12

S0 S1

a11

ap0

Figure 3.1: An example of two partitions with five tasks, four intra- and two
inter-partition connections.

Inter-task communication between tasks mapped on different cores leads
to an additional temporal constraint, namely that these tasks must run
concurrently for a number of time slots. The amount of time slots can be
expressed for every connection in Ai. In the example presented in this sec-
tion it is assumed that communicating tasks must execute concurrently for
at least one, arbitrary time slot. This assumption is unrealistic for many
systems because tasks must often communicate at a specific point during
their execution.

An example of software partitioning that will be used throughout this chap-
ter is depicted in Figure 3.1. The software consists of five tasks that are
grouped in two partitions, S0 and S1. Connections between two tasks within
a partition are represented by solid lines, while connections between tasks
from different partitions are dotted. Note that the inter-partition connec-
tions are captured in a separate set of connections, Ap.

3.2 Hardware Partitioning

In Section 3.1 we introduced the partitioning of software in time and space,
possibly supported by hardware mechanisms. We then proposed to extend
this in order to deal with the concurrent execution of multiple partitions, for
which it is necessary to model the communication. The mapping of tasks
onto cores and connections onto the interconnect are new concepts that must
be addressed with the introduction of multi-cores. Such mapping requires
a model of the hardware that we name hardware partitions onto which the
software partitions can be mapped. In this section the concept of hardware
partitioning is presented and the formal description is extended accordingly.

27

3.2.1 Abstraction of Resources

We now present an abstract model of the hardware and add it to the for-
mal description. A multi-core processor is described with basic components,
cores and links. The mapping process assigns these elements to a task or
connection in each time slot. Thus spatial and temporal partitioning is ac-
complished. First of all the availability of multiple computational cores must
be expressed in the formal description. A set of cores will be described as:

C = {c0, c1, ..., cn−1}, where n is the number of cores.

The mapping process is required to know the locations, so each core contains
a set of x, y coordinates:

ci = {x, y}, for i = 0, 1, ..., n− 1.

Before the hardware is partitioned all the cores will be available. Hard-
ware partitions to which the software partitions can be mapped must be
composed by extracting a subset of cores for each software partition. The
set of hardware partitions is denoted as follows:

Phw = {H0,H1, ...,Hk−1}, where k is the number of hardware partitions.

It was already mentioned that partitioning the computational cores is not
enough. To ensure deterministic behaviour, the communication operations
must also be scheduled. Because all these operations go through the inter-
connect, it is crucial that the access to and behaviour of this interconnect
is predictable. This can be achieved by also partitioning the interconnect in
time and space. An interconnect can be described as a set of links:

L = {l0, l1, ..., lq−1}, where q is the number of links.

Each link connects two cores:

li = {cu, cv}, for i = 0, 1, ..., q − 1 and u, v any two adjacent cores.

In a regular 2-d mesh network with n cores there are 2n(n − 1) links in
each dimension. Each hardware partition contains a set of links and a set
of cores and is denoted by:

Hi = {Ci,Li}, for i = 0, 1, ..., k − 1.

The subset of links for each partition is extracted from the set of available
links similar to the assignment of cores to partitions. Note that each core

28

l0

l1

l3

l2

c2 c3

c0 c1

Figure 3.2: Partitioning of four cores and interconnecting links.

and link can be part of multiple partitions because temporal partitioning is
also applied. We assume here that memory and external resources can be
designed deterministically and therefore pose no additional challenge. An
example of the partitioning of four cores and four links is depicted in Figure
3.2.

3.2.2 Composable Timing

In real-time systems the timing of software must be composable, that is, the
execution time of a task must be independent of that of others. We pro-
pose to achieve composable processor timing by partitioning the hardware in
time and space. Each hardware partitions consist of a number of dedicated
components which are sufficiently isolated from each other. Within a soft-
ware partition that is mapped onto a hardware partition different tasks and
connections are scheduled locally. This is quite similar to composable vir-
tualization, which can for instance be implemented through Time-Division
Multiplexing (TDM) scheduling [31]. This same work presents four require-
ments for timing composability, namely:

• the schedule repetition period must be constant;

• this period must be divided in slices with the same size;

• the tasks must be assigned a constant amount of time slices;

• the same scheme must be executed in each period.

The model presented in Section 3.1 where a static scheme is repeated each
hyperperiod on partitioned hardware satisfies these requirements. A notable
difficulty with this approach is that all hardware components must be syn-
chronized on a cycle-accurate level. This is not trivial in modern chips which
often feature multiple clock domains.

We will now introduce temporal partitioning of hardware so that each core
has its own set of m time slots in a hyperperiod:

HPci = {t0ci, t1ci, ..., tm−1ci} for i = 0, 1, ..., n− 1 and where n is the num-
ber of cores.

29

HƤ t

t0c0 t1c0 t2c0 t3c0 t0c0
core0

core1
t0c1 t1c1 t2c1 t3c1 t0c1

Figure 3.3: A hyperperiod partitioned in four time slots.

Because links must also have their own schedules, those also have a set
of m time slots associated with them:

HPlj = {t0lj , t1lj , ..., tm−1lj} for j = 0, 1, ..., q−1 and where q is the number
of links.

An example of two cores and a hyperperiod consisting of four time slots
is depicted in Figure 3.3.

3.3 Mode-Based Mapping and Scheduling

Now that we defined a model of the partitioned software as well as the hard-
ware, we can look in more detail at the mapping and scheduling processes
that combine these two to find construct a scheme. It is easy to see that
static mapping and scheduling is feasible. This however leads to sub-optimal
usage of the available resources as we described in Chapter 2. To improve the
efficiency of resource usage we propose an extension of the static mapping
approach in this section.

3.3.1 Optimizing Resource Usage

Each function in an avionics system is assigned a Design Assurance Level
(DAL) based on the results of a safety-assessment that determines the crit-
icality of a failure of that function. The DAL determines the software de-
velopment process that must be followed as well as the allowed failure rates
of the hardware, which is reflected in the required amount of redundant
hardware. Because a lower DAL usually reduces the resource requirements,
functions can sometimes be split and assigned different DALs to lower the
overall requirements. This is called segregation and can be enforced through
partitioning.

Section 2.3 described the concept and limitations of static mapping, namely
that some of the available processing power in multi-cores is not used. This
is caused by the dynamic behaviour of the software which cannot be ad-
dressed sufficiently with a static approach. The WCET might for instance

30

Mode0 Mode1

Figure 3.4: A state diagram of two modes.

be overly negative on the average, and tasks that are invoked sporadically
might not need their time slots at all. We will try to exploit these dynamic
elements to optimize the resource usage. Partitions with high criticality
levels however must still have the same deterministic access to resources as
they would get when statically mapped on a single-core.

From here on we differentiate between partitions that need to be statically
mapped because of their high criticality, the synchronous partitions, and
all others that are less critical, the asynchronous partitions. We propose a
mode-based mapping and scheduling approach that improves the resource
utilization while still guaranteeing deterministic access to resources. The
optimization is made possible by varying the shape, size and location of
asynchronous partitions. Each of these scenarios can be captured in a mode,
a concept which is presented under the name use-case in [22].

3.3.2 The Mode-Based Approach

With a mode we mean an particular instance of the set of partitions. Static
mapping and scheduling is performed at design time for each mode. Between
modes the allocated resources for the asynchronous partitions may change,
but those of the synchronous partitions remain the same. Thus we guarantee
the advantages of static mapping for the synchronous partitions, but opti-
mize the resource usage by exploiting changes in asynchronous partitions.
During design time it cannot determined when a mode switch should occur
so this decision is made during run-time, for instance triggered by a sporadic
event. It is crucial that such a switch is a deterministic event. There can
only be a finite number of modes, and for each of these a scheme is produced
at design-time. Mode-based switching between static schemes thus compro-
mises between static and dynamic scheduling and mapping. The software
structure of the example depicted in Figure 3.1 has two modes which is il-
lustrated in Figure 3.4.

An overview of the concepts that were presented in this chapter is depicted
in Figure 3.5. Starting from the top, the software partitions are composed of
tasks and connections. The resource requirements of each task are expressed

31

Software partitions: Ƥsw = {S0, S1, …, Sk-1, Ap}

Mapping and scheduling function:

MapSched(Ƥsw , Ƥhw, HƤ)

Tasks: Ƭ = {τ00, τ01, …, τ(k-1)(l-1)}

Connections: A = {a00, a01, …, a(k-1)(n-1)}

Software

Cores: C = {c0, c1, …, c(n-1)}

Links: L = {l0, l1, …, l(q-1)}

Hardware

Hardware partitions:

Ƥhw = {H0, H1, …, Hk-1}

Hardware partitioning

process

Figure 3.5: An overview of the mapping and scheduling process of software onto
hardware partitions.

in the deadline, WCET, and the connections to other tasks. The mapping
function instructs the hardware partitioning process to compose partitions
that meet these requirements. This hardware partitioning process is part of
the MapSched function, but is depicted as a separate block in Figure 3.5 to
clarify the work flow. The scheduling function assigns time slots to the tasks
and connections so that each task finishes before its deadline and overlaps
with the tasks it must communicate with. The process can be iterative as
the cycle in the figure indicates. Because the mapping and scheduling func-
tion strongly depend on each other they are combined in a single function:

MapSched{Psw,Phw,HP}

Upon completion this process produces a scheme for each core and each
link, described as:

Scheme− ci = {t0ci = τuv, t1ci = τwx, ..., tm−1ci = τyz} for i = 0, 1, ..., n−1,
where n is the number of cores and where u...z are defined by the MapSched
function.

Scheme− lj = {t0lj = auv, t1lj = awx, ..., tm−1lj = ayz} for j = 0, 1, ..., q−1,
where q is the number of links and where u...z are defined by the MapSched
function.

In the mode-based mapping approach we consider multiple different config-
urations of the software partitions, which require different schemes that are
switched during run-time. Each mode consists of a complete set of schemes

32

Mode0 Mode1
Tasks Dij Eij Dij Eij

τ00 3 4 3 4

τ01 2 3 2 3

τ10 3 3 2 2

τ11 3 2 3 2

τ12 2 2 3 3

Table 3.1: Two different modes for software consisting of five tasks distributed
over one synchronous partition (S0) and one asynchronous partition
(S1).

produced by the mapping and scheduling functions:

Modei = {Scheme− c0, Scheme− c1, ..., Scheme− cn−1, Scheme− l0,
Scheme− l1, ..., Scheme− lq−1}, for i = 0, 1, ..., r−1, where r is the number
of modes, n the number of cores and q the number of links.

The software structure of the example depicted in Figure 3.1 has two
modes, as illustrated in Figure 3.4. The different requirements for all tasks
in each mode are given in Table 3.1. A hyperperiod consists of four time
slots. It can be seen that partition S0 is synchronous while S1 is an asyn-
chronous partition with changing requirements. The tasks of S1 must be
re-mapped and re-scheduled because of their changed deadline and WCET.
A mode switch is described by:

ModeSwitch{Modey,Modez} for arbitrary y and z.

Such a mode switch results in one or more task migrations and connec-
tion reconfigurations. These two processes are formally described by:

M(τwx, csource, cdest) for arbitrary w, x, and

R(awx, lsource, ldest) for arbitrary w, x.

A possible mapping of the tasks onto the cores depicted in Figure 3.2 is
given in Figure 3.6. The time axis depicts two hyperperiods. In the first hy-
perperiod the scheme of Mode0 is executed, in the second a mode switch to
Mode1 has occurred. The lighter shaded tasks belong to static partition S0,
their mapping and scheduling remains the same. The scheme S1 consisting
of the dark shaded tasks however changes. This re-mapping of tasks comes
at a cost because task τ11 must migrate to another core:

33

τ11

τ11

τ00

τ10

τ01

τ12

τ01

τ10

τ12

τ00c0

c1

c2

c3

t

Mode0 Mode1

Figure 3.6: Five tasks scheduled on four cores in two different modes.

M(τ11, c3, c1)

Such a migration costs and time and resources. Task migration is a critical
component of mode-based mapping and must also be deterministic. We will
go deeper into this subject in Chapter 4.

The connections can be mapped onto the links using the information from
Figure 3.1 and 3.6. Let us assume in this simple example that the migration
cost is one time slot on one link. Figure 3.7 depicts the scheduling of the
links in the two different modes. In this case no connection is relocated, but
one is removed and another added instead:

R(a11, l2, del) and R(a12, add, l2)

The migration of the task takes place in the block labelled with M . While
there happened to be an available time slot on the required link in this par-
ticular scheme, this time slot must be reserved even when there is no mode
switch. Alternatively one or more transient modes may be defined, more on
this in Chapter 4.

3.4 Summary

This chapter started with the definition of a simplified formal model of tem-
poral and spatial partitioning of software, which is a concept used in IMA to
achieve fault-containment. We then proposed to extend spatial partitioning
to include inter-task communication so that the traffic can be mapped onto
the interconnect. This requires to reserve the resources for communication,
which solves the problem with unpredictability that results from simulta-
neous access to the interconnect. In our formal model a software partition

34

ap0 ap0

M

a00

ap1 ap1

a10a10

a00

a12a11

l0

l1

l2

l3

t

Mode0 Mode1

Figure 3.7: Six connections scheduled on four links in two different modes. The
task migration is labelled with an M.

consists of a set of tasks as well as a set of connections. We furthermore
proposed the concept of hardware partitions onto which the software par-
titions can be mapped. Such partitions consist of a set of cores and a set
of links. Each of these elements is furthermore partitioned in a number of
time slotswithin a hyperperiod in order to have composable timing.

The formal model of software and hardware partitions allows us to stati-
cally map and schedule the former onto the latter. Partitioning is enforced
by isolation, which allows functions with different criticality levels to be
mapped onto one multi-core processor. We use this flexibility to address
the second major challenge, the sub-optimal usage of resources inherent to
static mapping. We propose a mode-based mapping and scheduling ap-
proach which offers static mapping for critical, synchronous partitions but
allows to switch between multiple, pre-computed configurations of the less
critical asynchronous partitions. This mode switching requires the migra-
tion of tasks and reconfiguration of links, which must be accounted for in
the pre-computed schemes.

In Chapter 2 we extracted two major challenges from our main objective.
Firstly the unpredictability resulting from simultaneous access to the on-
chip interconnect must be addressed, and secondly we must deal with the
sub-optimal hardware usage that results from static mapping and schedul-
ing. The concepts proposed in this chapter offer solutions to both of these
challenges. The application of these concepts in this new field however still
requires much research, which is too much to cover in one thesis. Therefore
we focus on one of the main enabling techniques that we discussed, namely
the migration of tasks. Thus we come to the second objective of this thesis:
To determine the prerequisites for deterministic task migration
over a Network-on-Chip.
This theme requires us to deal with all the new concepts introduced by

35

multi-cores: tasks must be mapped onto the cores, and to perform the actual
migration the traffic must be mapped onto the interconnect. This implies
that we must partition the interconnect and therefore deal with fundamental
networking concepts. In Chapter 4 we look at task migration over a NoC in
detail, after which we perform a number of experiments to put our approach
to the test.

36

Chapter 4

Task Migration

In this chapter we present the concept of task migration, which is required
for mode-based mapping. We start with an overview of the motivations for
task migration in Section 4.1. In Section 4.2 we describe the basics of task
migration and discuss several recent implementations. We then investigate
how these concepts can be applied to achieve deterministic migration in
NoC-based multi-cores in Section 4.3.

4.1 Motivation

In this first section we present several motivations for task migration. From
Chapter 3 it has become clear that the main reason for our interest in task
migration is to optimize hardware usage by means of load balancing. There
are however several other potential benefits. Firstly, considering data lo-
cality can reduce the overall communication requirements and thus improve
performance. Furthermore task migration enables software management of
the power consumption and temperature. And last but not least, the flexi-
bility in fault-tolerant systems can be greatly improved.

4.1.1 Load Balancing

In Chapter 2 we elaborated on the challenges that are faced when multi-
cores are applied in safety critical systems. One of the major problems
is that hardware usage is not optimal with static mapping because of the
dynamic behaviour of software. The solution to this that we presented in
Chapter 3 allows to balance the load, which means spreading the workload
as evenly as possible over the cores so that the overall usage of the processor
is optimized [30, 45]. This can be achieved by analyzing run-time variations
in the workload and changing the mapping so that tasks migrate from over-
loaded cores to idle ones. The mapping and migration processes however
have certain overhead so there cannot be an infinite amount of migrations.

37

t0 t1 t2

S0

S1

S2

S0

S1

S2

S0 S1

S2
Data arrives

for S2

S0 needs

additional

resources

Figure 4.1: A mode switch: three partitions are transformed and relocated, bal-
ancing both the traffic and computational load.

The migration time of real-time tasks must furthermore be bounded, which
means the migration process must be deterministic.

Load balancing is not possible with static mapping. Dynamic mapping on
the other hand is very well able to respond to changes the behaviour of tasks
and the resulting variation in resource requirements. Recently several map-
ping algorithms based on heuristics have been proposed [2, 15, 32]. Because
it is difficult to prove that such algorithms always find a feasible mapping,
dynamic mapping is not yet considered a solution for safety-critical systems.

The mode-based mapping approach that we presented in Chapter 3 allows to
switch between different static mappings and is thus a compromise. Within
one mode the mapping process can balance the load. A profile of the soft-
ware must be determined at design time to uncover properties such as the
WCET and traffic requirements. The resource requirements of asynchronous
partitions vary over time. Such a partition might for instance monitor an ex-
ternal device and start multiple computation intensive tasks when an event
is detected. Thus the shape, size and location of asynchronous partitions
vary between modes according to the resource requirements. Figure 4.1 illus-
trates this with an example. In time slot t0 partition S0 requires additional
computational resources. This triggers a mode switch in time slot t1, in
which all three partitions are transformed and relocated. The mode switch
is completed in time slot t2, partition S0 is assigned an additional core. The
changes to partition S2 are discussed later on.

4.1.2 Data Locality

In a NoC-based multi-core with shared memory the interconnect must han-
dle at least three types of traffic:

• shared memory accesses;

• communication between cores;

38

• accesses of external resources such as I/O interfaces.

We assume that the shared memory and external resources are off-chip, and
that each core has a small local scratchpad memory or cache. Data accesses
can then be arranged according to their speed as follows, starting with the
fastest:

• data in the local scratchpad or cache;

• data provide by another core;

• data provided by the main memory or external resources.

As each data access contributes to the WCET, it should be known at design
time in which memory the data lie. If the data are not in the local memory,
they must be retrieved via the interconnect. This leads to the previously
described problem of concurrent access to shared resources. As mentioned
this can be dealt with by reserving the path between the requesting core and
the source of the data. Having these paths as short as possible reduces both
the latency and the number of reserved links. Thus we establish two rules of
thumb: data accesses should be localized whenever possible, and otherwise
the path length between two communicating actors should be minimized.

The first rule means all static data should be copied into the local mem-
ory prior to task execution. Data produced by another core or obtained
from an external source must be taken into account by the mapping pro-
cess, which should map the tasks so that the path length is minimized. Note
that this is opposite to an approach commonly used in SoCs, where traffic
is analyzed in a statically mapped scenario after which the link capacities
of the NoC are adjusted [11].

The validity of this approach is challenged if the traffic requirements change
over time. It could then be desirable to change the mapping online to bal-
ance the traffic, very similar to load balancing for varying computational
requirements. The one-time migration of a task can then avoid many com-
munication operations over a long distance. In other words, the program
code is moved to the data instead of vice versa. Switching between modes
that are optimized for different scenarios can again provide a solution that is
acceptable for safety-critical systems. An example is a partition that needs
to interact heavily with an external resource which is connected to an I/O
interface at the edge of the chip. Relocating the partition can then reduce
the path distance, latency and overall communication requirements. This is
also depicted in Figure 4.1, where data destined for partition S2 starts to
arrive in time slot t0 at the top left core. By relocating S2 to this location it
can directly process the data so that the traffic does not have to go through
the other partitions.

39

4.1.3 Power Management

Embedded systems are often subject to strict constraints on the power con-
sumption. Techniques such as power gating and the dynamic scaling of
voltage and frequency can be used to save power by slowing down or shut-
ting down computational cores. Such power management must closely co-
operate with mapping and scheduling to avoid unacceptable performance
degradation. If the mapping can be changed online it might be possible to
concentrate the running tasks on a number of cores in some modes so that
other cores can be slowed down or shut down completely.

Power management also enables regulating the temperature of a processor.
If a certain part of the chip is overheated, tasks can be moved away from
those “hot” cores. A dynamic mapping approach can benefit from this more
than mode-based switching because every mode in the latter is extensively
tested during design time to avoid such situations. It is not unthinkable
however that an emergency mode is activated in case a processor is over-
heated, in which all the non-critical tasks are shut down and the critical
tasks are spread across the chip using task migration.

All the concepts mentioned so far require that the mapping process opti-
mizes with respect to multiple parameters. There should be clear priorities,
as some requirements may conflict. Power saving might for instance pack as
many tasks on one core as possible, while thermal management and load bal-
ancing requirements at the same time indicate that tasks should be spread
more evenly. A comprehensive analysis of mapping strategies is outside of
the scope of this thesis, but it is clear that mapping and scheduling are not
trivial problems.

4.1.4 Redundancy

Safety critical systems must be fault tolerant, that is, they must be able to
continue operation when a part of the system fails. This is often achieved by
some form of redundancy, for instance by replicating hardware and software
components. The level of redundancy that a function requires depends on
its criticality. A highly critical function might need to be replicated several
times on multiple independent hardware units. Functions with lower crit-
icality may have to be only partly replicated, possibly on the same chip.
Fault-tolerance and performance usually have contrasting requirements.

Multi-core processors offer a platform where software can easily be repli-
cated to achieve fault-tolerance. This will at the same time cancel out a
part of the expected gain in performance. There is however one major
difference with legacy systems: in those the hardware that provides redun-

40

dancy is often statically reserved for that purpose. In multi-core processors
the trade-off between fault-tolerance and performance can be more dynamic
because replicated tasks can be mapped and migrated as any other. This
flexibility in assigning redundant hardware to partitions is another advan-
tage enabled by task migration [16].

Trends in technology scaling allow the placement of more and more cores on
a single chip. This however also increases the sensitivity to external inter-
ferences such as transient faults [44]. The flexibility in assigning redundant
resources is a suitable concept to deal with this problem. A function must
be protected against several possible faults based on the criticality level.
Some faults affect the entire operation of the chip, such as the failure of
a power supply circuit. Those cannot be resolved by implementing redun-
dancy within the processor. Transient and persistent faults however usually
affect only a small area of a chip and therefore it is likely that the execution
sequence of only one core will be influenced. Precisely those faults can be
resolved by executing a task concurrently on multiple cores.

4.2 Related work

There has been interest in task migration since the early days of multi-
processing. In this section we present task migration and give an overview
of relevant work. We start with the basics and then evaluate several high-
level approaches to the problem. Finally we present a number of recent
implementations involving real-time aspects and Networks-on-Chip.

4.2.1 Basics

We use the term task to describe an instance of a program that is executed
on a core. On the operating system level the term process is commonly
used, which also comprises the stack and OS-specific state. Here we focus
is on low-level task migration or task transfer discard and OS-level objects
that might belong to a process. In this view a task consists of the following
elements:

• executable code, located in the program memory;

• task-specific data, located in the data memory;

• context which contains the processor state, e.g. the registers contents.

Migration is the act of transferring a task from a source to a destination
node. Both nodes must support the instruction set that the task needs to
execute, but do not have to be completely homogeneous [43]. The mech-
anism that performs the migration can be implemented at different levels,

41

S

M

D

4

7

1

1

2

3

4

4

5

6

7

Figure 4.2: Impression of the seven basic migration steps on a NoC-based multi-
core processor with nine cores laid out in a two-dimensional mesh
architecture.

ranging from the OS-kernel to the application level. We describe a migration
with the following basic steps:

1. initiation of the migration by the mapping process;

2. halting the task;

3. storing the context and modified data on the source node;

4. transferring the code, data and context to the destination node;

5. restoring the context on the destination node;

6. restarting the task;

7. signalling the completion of the migration.

Figure 4.2 shows these steps on a nine-core processor with a two-dimensional
mesh architecture. The mapping process is indicated with an M , the source
node with an S and the destination node with a D. Although quite sim-
plistic, these steps suffice for a rudimentary model of task migration in
embedded systems. A comprehensive survey of more elaborate migration
techniques can be found in [30].

In processors with a distributed memory model all data and code mem-
ory must be transferred explicitly. When shared memory is used only a part
of the data and code might be loaded locally (e.g. in a cache) while the rest
is located in the main memory. In this situation the modified (“dirty”) data
must be transferred from one core to another but the address space does
not have to be moved, so the cost is much lower.

Different classes of migration are listed in [45]. Tasks can be migrated while
running or while inactive, for instance when suspended by the scheduler. In

42

begin

migration point

end

resume

Figure 4.3: A task with a migration point in its main loop [9].

the first case the task must be halted and context must be stored as de-
scribed, but in the latter the task can probably be migrated without steps
two, three, five and six. If a task has finished rather than being suspended,
there might be no context at all.

The motivations presented in Section 4.1 promise that task migration en-
ables several advantages. It has now become clear that these come at a
cost, and that a sensible trade-off should be made. The overhead of each
step involves the use of several hardware components, namely:

• the mechanism that triggers the migration;

• the source core and its memory and router;

• the interconnect;

• the destination core and its memory and router.

The total migration time consists of the times for which each of these com-
ponents are used.

4.2.2 Strategies

Since systems are seldom designed with task migration in mind from the
beginning, the addition of a transparent migration mechanism is often not
trivial [30]. For transparency it must be ensured that a task’s references to
memory, other nodes and external devices and vice versa are updated cor-
rectly. This may greatly increase the size of the context and the migration
time when tasks can be migrated at any point during execution. Moreover,
it might result in unpredictable behaviour which makes it impossible to de-
termine an upper bound on this time.

A viable solution to this problem are migration mechanisms based on code
checkpointing. In this approach migration points are inserted in the tasks
which are executed at regular intervals [9]. These points can for example be
inserted in the main control loop of the task, see Figure 4.3. Every time such
a point is reached it is checked if a migration was triggered, if this is the case

43

a migration is initiated. At a migration point all state information (context)
that is needed to resume task execution at the destination node is explicitly
specified. This is generally much less than the complete context. Migration
points can be inserted in the original code by hand or by the compiler [27].
The state information required for a migration must be identified at these
points, which may not be trivial. Thus code modifications are required for
this strategy which lead to overhead in the execution time, the size of which
depends on the frequency of the checkpoints.

With code-checkpointing there is a trade-off between the design-time and
run-time overhead, response time and context size. An approach which re-
duces the run-time overhead is dynamic code modification [45]. The code
that performs a migration is then only inserted at a checkpoint if the mi-
gration is actually triggered. Yet another approach based on hardware sup-
ported migration is presented in [34], where a number of registers originally
intended for debugging are used for migrating tasks. An interrupt is raised
when the program counter reaches a value in one of those registers, they are
however only activated by the OS when a migration is triggered. When this
happens and the set value of the program counter is reached an interrupt is
generated and the migration is performed in the interrupt service routine.
Thus there is no overhead during execution and the OS effort is minimized.
This approach is obviously not portable but might be implemented in a sim-
ilar way with other interrupt mechanisms.

In order to evaluate migration strategies we must evaluate the cost, which
consists of the following three main factors:

• the increase in design effort;

• the run-time overhead when no migration is performed;

• the overhead of an actual migration.

Furthermore the transparency and re-usability of the migration mechanism
should be traded off with design effort and overhead. When migration is
applied at a high level such as in the user application, the implementation
is usually less complex than an implementation at a low level such as the
OS-kernel. Performance, transparency and re-usability are however better
for implementations at a low level [35].

For each separate case it should be determined whether the cost of task
migration is justified. For instance, the effect of load balancing can be eval-
uated by plotting the wall clock time against the task’s CPU time for both an
unbalanced situation and a scenario where tasks migrate [9]. A break-even
point where the cost of task migration is compensated by the increase in

44

performance can then be determined. Every change in the system however
leads to a different situation where those trade-offs must be re-evaluated.

4.2.3 Implementations

An assessment of task migration on embedded real-time systems is presented
in [1]. Tasks are allocated during run-time to maximize performance and
optimize energy consumption. The cores have both a private memory and
access to a shared memory. All components are interconnected by a shared
bus. The migration strategy is based on code checkpointing which is imple-
mented at the OS and middleware level. The software under test consists of
a streaming multimedia application with soft real-time constraints and re-
quirements that vary for different scenarios. This paper evaluates the long-
term improvements enabled by migration versus the inherent short-term
overhead. Experiments show that the timing overhead of the checkpoints
is under 1% when no migrations are triggered, so performance is hardly af-
fected when the system is in steady-state. Furthermore it was found the
impact of migration on the software performance can be hidden with prop-
erly designed communication buffers. The overall test setup is sophisticated,
and many aspects such as the changing software requirements support the
assumptions that we made in Chapters 2 and 3 of this report. A major
difference is that soft real-time applications are considered, so there is no
partitioning and a deep analysis of inter-task communication. Furthermore
the shared bus used for on-chip communication is not a scalable solution fit
for future multi-cores.

The approach in [6] also considers a hybrid memory architecture with local
scratchpads in addition to a global shared memory located at the centre of
the chip. The nodes communicate over a Network-on-Chip using message
passing. Communication energy is then minimized by deciding whether to
obtain the code from the source node or from shared memory at run-time.
This hybrid approach results in lower energy consumption and, in some
cases, reduced task migration times because of the decreased distance. Al-
though large on-chip memories seem somewhat unrealistic, it is interesting
to see that a proper trade-off can lead to savings in traffic volume and mi-
gration times of up to 24% and 29% respectively.

In [14] the impact of task migration on NoC-based multi-cores is evalu-
ated for soft real-time applications. The workload is dynamic and besides
the main goal of meeting real-time constraints, the consumption of energy
is minimized. Migration is based on a copy model where the full context
is migrated along with the code and data, triggered by an interrupt. The
results show that despite the overhead, task migration over a NoC pays off
in terms of overall system performance and energy savings.

45

The research presented in [41] identifies the need for task migration to satisfy
performance requirements. At the same time migration poses a significant
challenge to timing predictability because of cache warm-up and an increase
in NoC traffic. A scheme that enables real-time tasks to meet their deadlines
in presence of task migration based on push-assisted migration is presented.
Each core is assumed to have an L2-cache in which a task fits completely.
The novelty of the migration mechanism lies in that cache lines are copied
from the source to the destination node prior to the invocation of the task
on the destination, thus not affecting the execution time. This is opposite
to regular cache behaviour where data are pulled into the cache one at a
time upon a cache miss. The effectiveness of this scheme is influenced by the
complexity of the algorithm, the slack time that is available for copying, and
whether the cache is pushed partly or as a whole. The results show that the
migration overhead can be bounded to less than 33% of a tasks execution
time, which makes software-assisted cache migration a feasible solution in
this particular scenario.

4.3 Deterministic Task Migration

In Chapter 2 we identified the possibly unpredictable behaviour of the inter-
connect as a major challenge. So far the concepts presented in this chapter
did not address the challenge of deterministic task migration. This can be
achieved when the non-determinism caused by the sharing of resources is
eliminated. In this section we start with an analysis of the possible causes
for such undeterministic, and present an overview of the requirements for
deterministic task migration. We then investigate how these requirements
translate to modern NoC-based multi-cores.

4.3.1 Requirements

A migration is always triggered by the mapping process which signals the
source core to start. The task is then physically and logically migrated
as described in section 4.2. The destination core must signal the mapping
process upon completion. These events correspond to the basic migration
steps 1, 4 and 7 which are depicted in Figure 4.2. We deduce a number of
requirements that are necessary for deterministic behaviour:

1. the mapping process and the control traffic must be predictable;

2. the time required for the task transfer must be bounded;

3. other software components may not malfunction during the migration;

4. the restarted task must have exactly the same WCET as it had on the
source;

46

S

M

D
CoreSwitchCore

Memory

Switch

Memory

4

4

5

6

code data

context

code data

context

2
3

4

7

1

Figure 4.4: Detailed view of the seven basic migration steps on a processor with
nine cores.

5. other software components may not be affected after the migration is
complete.

These requirements are not trivial and each imply a set of measures that
affect different layers of a system. We will now describe each requirement
in more detail and discuss potential solutions.

Predictable behaviour of the mapping process can be ensured with the mode-
based mapping approach that we proposed in Chapter 3. For the control
traffic to be deterministic the more fundamental problem of dealing with
the shared interconnect must be addressed, we will look into this in detail
later this section.

To understand how the time required for the physical migration can be
bounded, consider the basic migration steps 2 to 6 again which are depicted
in more detail in Figure 4.4. The time required for step two depends on
the migration strategy, when code checkpointing is used this is the time to
reach the next checkpoint. If a task can be migrated at any point, this time
will be zero. In step three the contents of the registers and possibly other
modified data are written to a context datastructure in memory. It should
be no problem to derive an upper bound on the time required for this if
the context is clearly specified. If we are migrating a task that is not cur-
rently running, step two and three can be omitted. Step four poses a great
challenge because a potentially large amount of data must be copied over
the interconnect in a bounded amount of time. This is only possible when
Quality-of-Service can be guaranteed, several NoC concepts that can do this
are be discussed later this section. In step five the context is restored from
memory so that the task can be restarted in step six. The timing behaviour
of those steps should again be quite trivial. In conclusion, the main difficulty
in meeting this requirement seems to be in the deterministic transportation
of context, code and data over the interconnect.

It is inevitable that other components within a system are affected by a

47

Mode0 Mode2

Mode1a Mode1b Mode1c

mode switch

initiated

mode switch

complete

step 4

data transfer

step 1, 2, 3

set up connection

step 5, 6, 7

tear down connection

Figure 4.5: A mode switch from Mode0 to Mode2 via three transient modes de-
noted as Mode1a...c in which a connection is set up, a task is trans-
ferred, and the connection is torn down.

migration. To avoid unacceptable variations in the execution time of other
tasks, the consequences of a migration must be clearly defined and accounted
for in the WCET analysis. To do this we propose to define a number of tran-
sient modes that are placed between two actual modes. At least three of
those are needed to complete the physical migration:

a. stop the task and store the context on the source, prepare the desti-
nation for receiving the task, and set up the interconnect to provide a
connection between the two;

b. send the data over the connection;

c. destroy anything that is left on the source, restore and restart the task
on the destination, and tear down the connection between the two.

A mode switch from Mode0 to Mode2 via the transient modes captured in
Mode1a...c is depicted in Figure 4.5. Not only the basic migration steps fit
into those transient modes, also the usage of a connection consists of three
phases . A connection between source and destination must be set up before
it can be used, and torn down after the migration is complete. During the
transient nodes the same level of service must still be provided to the tasks
that are not affected by the mode switch.

For a migrated task to have the same WCET before and after the migra-
tion there are several sub-requirements. In homogeneous architectures the
timing of instructions that access registers or local memory will be the same
on any two cores. A significant contribution to the WCET however comes
from shared memory accesses, inter-core communication, and the access of
external resources. The timing of those is dependent on the location and
does vary between two cores. This leads to the following requirements:

a. all memory accesses that were local on the source must also be local
on the destination core;

48

τ01

t0

τ00

τ10

t1 t2

S0

S1

S2

τ00

τ00

S0

S1

S2

τ01

τ10

τ00

S0 S1

S2

Figure 4.6: Task τ00 must communicate with τ01 and τ10 via different paths after
it is migrated.

b. the upper bound on the timing of communication operations with other
cores and external resources must be the same.

This first requirement can be satisfied when the complete dataset is copied
to the destination core. The second requirement means that the derivation
of the worst case time of a communication operation must always consider
the maximum distance that two nodes can ever be apart from each other.
An example involving a NoC is shown in Figure 4.6, where task τ00 com-
municates with task τ01 which is in the same partition (lighter shaded link)
and task τ10 in partition S1 (darker shaded links). After task τ00 is mi-
grated to the bottom left, the traffic must be re-routed. In this case the
distance to both other nodes is increased. The same QoS must be guar-
anteed on the communication before and after, which usually means that
the network is configured differently before, during and after the migration.

Not only the migrated task but also all other tasks that it communicates
with must have the same execution time as before the migration. Therefore
all the references to the migrated task must be updated in those tasks. This
means the other tasks must somehow learn that a task has migrated and
on which core it now runs. With mode-based mapping it suffices to notify
all cores of the switch, after which they can individually update their in-
ternal references. This will certainly affect the WCET of those tasks, and
therefore again the derivation of the worst case time of communication op-
erations must be based on the largest possible distance between two nodes.
Partitioning enforces isolation between groups of tasks and the use of inter-
faces for inter-partition communication, which abstracts from the internal
configuration of a partition. Thus partitioning is a powerful mechanism for
protecting tasks from events in other partitions such as migrations.

We can now give a complete overview of all the requirements and poten-
tial solutions presented so far:

1. The mapping process and the control traffic must be predictable.

49

Solution: Mode-based mapping and guarantees on QoS.

2. The time required for the task transfer must be bounded.

Solution: Ensure an upper time bound on the halting and restarting
of tasks and have guarantees on QoS.

3. Other software components may not malfunction during the migration.

Solution: Define transient modes that capture the details of the mi-
gration.

4. The restarted task must have exactly the same WCET as it had on
the source.

(a) All memory accesses that were local on the source must also be
local on the destination core.

Solution: Copy the complete dataset.

(b) The upper bound on the timing of communication operations
with other cores and external resources must be the same.

Solution: Always consider the maximum possible distance be-
tween two nodes and maintain the level of QoS.

5. Other software components may not be affected after the migration is
complete.

Solution: Update the references and always consider the maximum
possible distance between two nodes.

With these requirements we have defined the prerequisites for determinis-
tic task migration and partly addressed the second objective. From the
presented requirements it however becomes clear that the main challenge
of deterministic task migration is to transfer tasks deterministically over a
Network-on-Chip, which requires guarantees on the QoS. The mapping of
traffic that we presented in Chapter 3 offers a high level solution to con-
current access of an interconnect. A further challenge lies in applying this
approach in modern NoCs, which we consider the main new challenge in
achieving deterministic task migration. We therefore we on this subject and
define the third and last objective of this thesis:
How to transfer tasks over a Network-on-Chip deterministically.

50

master 1

master 2

slave

Figure 4.7: Two cases of contention: two traffic streams want to use the same link
(left circle) and two streams converge on a single slave (right circle).

In the remaining of this chapter we will look into QoS in NoCs in more de-
tail, after which we present a number of experiments to verify these concepts
in Chapter 5.

4.3.2 Deterministic Communication

We can only determine an upper bound on the time needed for a com-
munication operation if the behaviour of the interconnect is deterministic.
This means we must avoid the unpredictability coming from the random
access to shared resources, which can be achieved by separating the access
attempts in either time or space. The master-slave interconnect model pre-
sented in Chapter 2 showed that sequential traffic is isolated in time, and
that spatial isolation can be achieved by sending traffic via different paths.
Unpredictable behaviour may occur if two nodes request a channel at the
same time, or when two messages that were sent via different paths arrive
at a destination at the same time.

Networks-on-Chips are complex switched architectures in which both these
situations can appear because traffic is split, pipelined and concurrent. A
single link handles packets sequentially, but there are multiple end-to-end
paths that transport packets in parallel. Concurrent access of shared re-
sources occurs when multiple packets want to use the same link. Another
problem appears when multiple traffic streams converge on a single slave.
Both situations can lead to contention and potentially to congestion, which
is depicted in Figure 4.7 indicated by two circles. Therefore the available
capacity of both the interconnect and the slaves must be partitioned in time
and space. To serve varying user demands and still be able to guarantee
network access and QoS to the nodes, capacity must be reserved at design
time [20].

51

Between the different modes the NoC must be reconfigured. This may in-
clude reprogramming the routers and the notification of end users. The
mapping process closely cooperates with the mechanism that reconfigures
the interconnect, both are usually centralized and executed on one of the
cores [1, 20]. Such an approach is not scalable when many cores are placed
on a single chip because such a central control mechanism will become a
traffic bottleneck, but it suffices for current multi-cores.

When a mode switch occurs the mapping of both the tasks and the con-
nections is changed. Connections can be added, removed and modified.
Programmable networks offer this flexibility as described in [23], which gives
three requirements for NoC reconfiguration:

• the architecture must be programmable;

• the configurations must be specified and computed either online or at
design time;

• facilities are needed for controlling the change and leaving the NoC in
a consistent state after modification.

This last point is crucial: when moving from one mode to another the sys-
tem is momentarily in a transient state in which the service to tasks that
are still running needs to be continued to avoid deadlocks and corrupted
data. Therefore we propose to split a mode switch up in different transient
modes. The control traffic must again have guarantees on QoS.

When multiple partitions are mapped on one processor there must be strict
isolation in order to meet certification requirements. This is because a mal-
functioning partition might try to access all resources it is connected to (the
“babbling idiot” syndrome). Thus the traffic of different partitions must be
separated, preferably on a hardware level. To achieve traffic isolation not
only the links and routers that transport packets for a particular partition
must be reserved, also the other partitions must be blocked from accessing
these resources. One approach to traffic isolation is to use separate physical
networks. Although this greatly increases cost, it ensures complete isolation.
The routers of the different networks can possibly be combined to reduce
the total cost if packets are sufficiently separated internally.

4.3.3 Guarantees on Quality-of-Service

In Chapter 2 we explained end-to-end flow control for managing traffic
streams and avoiding or bounding congestion, and buffering strategies which
define the architecture of each router. Several combinations of these two
techniques can offer guarantees on QoS in a NoC. The basic idea is that
traffic streams from different nodes should not influence each other.

52

master 1

master 2

slave

t0 … t4

t

Figure 4.8: The concept of time-division-multiplexing, the time slots are depicted
above each node and router.

An approach to such isolation with buffer-less flow control is circuit switch-
ing, where a circuit is set up that exclusively transports traffic between the
two nodes at the end points. This requires the switches inside the routers
must be non-blocking, which means multiple packets can be distributed to
multiple outputs at the same time. In circuit switching there is no contention
because all the intermediate links and buffers are reserved. Therefore this
technique is a natural candidate for mapping traffic onto a NoC. The sharing
of wires is however cancelled with this approach, which is one of the main
advantages that NoCs offer. Also there is the overhead of setting up and
tearing down connections, so frequent changes should be avoided. All in all
this solution is suited best for long-lived connections that require a lot of
bandwidth.

To overcome these disadvantages multiplexing can be applied. Frequency
multiplexing is common in off-chip networks but is not suited for imple-
mentation in digital chips, except perhaps in optical NoCs. Time-Division
Multiplexing (TDM) can however be applied to circuit switching, and has
been proven to be able to provide guarantees on QoS [20]. It requires all the
routers to be synchronized or in lock-step, an example is depicted in Figure
4.8. The first master sends a packet in time slot t0, the second in t1. The
packets are shifted in time when they arrive at the second router stage and
therefore do not collide. The advantages of TDM are that no buffers are
needed except in the end points, that there is isolation between the flows,
and that bandwidth and latency can easily be guaranteed. Disadvantages
are that the mean latency is high and that admission control is difficult.

53

The formal model of the hardware that we presented in Chapter 3 could be
extended to include TDM circuit switching, each connection will then be
allowed to use a certain percentage of the link capacity. We believe that this
is a promising solution for efficiently mapping traffic onto a NoC.

Circuit switching avoids contention altogether. Another approach is to
bound contention by delaying one of the packets when two arrive at the
same time at the same place. This requires buffered flow control. It is then
possible to guarantee QoS if a non-blocking switch is used in combination
with an output buffering scheme and Store-And-Forward (SAF) or Virtual
Cut-Through (VCT) flow control. With output buffering there must be a
buffer for each input-output combination which leads to a cost of N2 if there
are as many inputs as outputs. With SAF and VCT flow control an element
of a packet (flit) is only forwarded to the next router if it has sufficient space
in its buffers to store the complete packet, as opposed to e.g. wormhole rout-
ing. This means that when congestion appears, a packet will be stuck in one
router and cannot be spread over multiple buffers which would potentially
block multiple links. This combination of techniques can offer guarantees
on QoS only if a feasible scheduling strategy is applied per link as well as for
a series of links (end-to-end). Resources are not reserved in this approach
which makes it impossible to map traffic, but if it can be guaranteed that
contention is bound it might be possible to achieve deterministic communi-
cation anyway.

Another approach to guarantee QoS is the application of a non-blocking
switch in combination with virtual circuit buffering. In such a scheme a
buffer is reserved for each circuit (traffic stream) in each router on the path.
While this is the most expensive buffering solution, QoS can be guaranteed
per flow and traffic is isolated from other streams. Note that congestion
might still occur if the slave is too slow in consuming packets. Therefore
again a feasible end-to-end scheduling strategy is needed. This approach is
again a natural candidate for mapping traffic onto a NoC, the disadvantages
of circuit switching are avoided.

An end-to-end scheduling scheme suitable for these two buffered flow-control
schemes is aggregate resource allocation, which regulates the traffic flows at
the edges of the network. Thus the regularity of flows and the maximum la-
tency and buffer requirements can be controlled. However, flows can still be-
come bursty inside the network due to contention. Rate-controlled schedul-
ing is a more advanced strategy that regulates the flows at the edges as well
as inside the network so that the latency bound is lowered. This can be com-
bined with virtual circuit buffers in order to have isolation between the flows
[10]. End-to-end scheduling should include admission control, which is the
allocation of NoC capacity for a new flow without compromising on service

54

to existing flows. Admission control fits well to the mode-based mapping
that we proposed because network capacity is explicitly reserved in each
mode.

4.4 Summary

In Chapter 3 we found that load balancing can be achieved by mode-based
mapping, which requires task migration. At the beginning of this chapter
we presented several additional motivations for task migration: traffic re-
duction by exploiting data locality, management of power and temperature,
and flexible redundancy. After that we gave an overview of related work.
Starting with the basics we divided a migration into seven steps, and pre-
sented several migration strategies and relevant implementations.

To address the determinism that is required in real-time systems, we deduced
a number of requirements for deterministic task migration and discussed
potential solutions for each of those. It became clear that the mode-based
mapping of traffic onto the interconnect sufficiently addresses the challenge
of accessing a shared interconnect on a high level. We proposed the use
of transient modes to deal with the complexity of changing the mapping of
the interconnect between different modes. Our analysis of the requirements
shows that the deterministic transfer of tasks over the interconnect is the
main new challenge of task migration in multi-cores. In Chapter 2 we al-
ready mentioned that such transfers require guarantees on QoS. To address
this subject we introduced the third objective: to find out how tasks can be
deterministically transferred over a NoC.

To address this objective we analyzed Networks-on-Chip with help of the
interconnect model from Chapter 2. We found that contention occurs when
multiple packets request access to a shared resource such as a link, buffer
or destination node. There are several solutions to this. First we presented
circuit switching, which is quite suitable for the mode-based mapping of
traffic onto a NoC. Multiplexing techniques such as TDM can be applied
to increase the usage of hardware resources. Some buffered flow control
techniques (e.g. Store-And-Forward, Virtual-Cut-Through) can also offer
guarantees on QoS, but seem difficult to use in combination with resource
reservation. Virtual circuit buffering on the other hand is again a natural
candidate because buffers are reserved for traffic flows in this approach.

55

Chapter 5

Task Transfer Experiments

In the first three chapters we analysed the complexity of deploying safety-
critical real-time software on modern multi-core processors. In Chapter 4 we
focussed on one specific aspect in which multiple challenges are combined:
the deterministic transfer of tasks over a Network-on-Chip (third objective).
In this chapter we describe the experiments that we conducted to verify the
concepts presented in this thesis. The goal of the experiments is to evaluate
task migration over a NoC using different transfer methods. We need a basic
task migration mechanism for this, which we introduce in Section 5.1. Then
we present the hardware and the setup of the experiment, and describe the
migration mechanism in detail. We conclude with an assessment of the
validity of the experiments and identify the limitations of our approach.

5.1 Approach

In this section we present the migration strategy that we use in the exper-
iments. We discuss the different data transfer methods in detail. Further-
more we describe the software framework that implements the migration
strategy.

5.1.1 Migration Model

In Chapter 4 we stated that task migration can be implemented on different
levels such as the application or OS-kernel level. For the experiments we
implemented a simple migration mechanism on the application level. There
are two reasons for this:

• the complexity of such an implementation is limited because it does
not require modification of an OS or hypervisor;

• the implementation is portable.

56

Even more, we use an OS for setting up the system but not for performing
the experiments. As a result the size of the context is limited because there
are no OS-related datastructures.

Furthermore we only consider periodic tasks that are executed at least once
during a hyperperiod. Because of the real-time character of the tasks we
do not consider the migration of tasks while running feasible, and therefore
only allow tasks to migrate when they are stopped. This avoids saving and
restoring context altogether and reduces the complexity of the migration
mechanism. For the transfer of a task over an interconnect the division be-
tween data, code and context is merely an administrative issue. Thus we
consider it reasonable to omit the context without affecting the validity of
the results. We realize that many aspects of task migration are not covered
by our experiments, we explicitly focus on task transfers only.

The code for the experiments was implemented in the C language (lan-
guage level gnu99). In that language, a natural candidate to represent tasks
are functions (the term has a different meaning here than in Chapter 2).
On the assembly level, a function is a section of program code. If a function
is called, the program counter is set to the functions starting address and
the CPU starts executing that block of instructions. The very last instruc-
tion of a function is usually a jump back to the address from which the
function was called plus one. In the C language a function may be called
with a number of arguments. Those can contain or refer to a larger dataset,
alternatively data may be declared “global” so that they are accessible by
every function. Upon completion a function might have overwritten such
global data but can also explicitly return data to the calling function. Thus
a function has input and output, and can also work on shared data. This
suffices to implement task migration in our experiments.

Task management requires a mechanism to start functions, which must also
take control when a function has finished. Information about the starting
address of a function can be communicated conveniently by using function
pointers. Because no OS was used, we implemented an administrative task
that accepts pointers, starts the corresponding functions and takes control
again when the function finishes execution.

5.1.2 Transfer Methods

Because our tasks have no context they only consist of a block of code
memory and a dataset. We assume that both the code and private dataset
completely fit and remain in the cores local memory. We believe this is a
reasonable assumption for the relatively small control tasks which are com-
mon in embedded systems. Even in more data intensive tasks, such as for

57

instance radar image processing in the avionics domain, it is plausible that
the code can be kept in the local memory while fresh data is obtained peri-
odically via a reserved connection. When a migration is triggered the code
memory and dataset must be transferred from the source to the destination
core. There are two fundamental approaches to data transfer, one of which
can be subdivided based on the memory architecture [25]:

• shared memory supported by:

– a private cache at each core;

– a shared cache architecture;

– a scratchpad memory at each core;

• message passing.

We will now go deeper into each method.

If private caches are used, cores are forced to get all data from a shared
(usually off-chip) main memory. In a shared cache architecture a core can
obtain data from another core’s local cache. When scratchpad memories
are used it is possible to construct the address space in such a way that a
programmer can copy data from another core’s memory. We will focus only
on core-to-core migrations, for which an architecture with private caches is
not suitable. In future multi-core processors with hundreds or thousands
of cores the cost of accessing off-chip memory will raise tremendously [12].
With task migration data locality can be optimally exploited in order to
reduce traffic.

With a shared memory architecture the transfer of a task is initiated by
executing the program code. Each instruction that is executed and every
data element that is accessed will be pulled to the core by the cache subsys-
tem. This is a sunny scenario from the programmers standpoint because it
requires no facilities in software at all. From the previous chapters however
it has become clear that random access of shared memory leads to unpre-
dictability. Especially distributed shared cache architectures either lead to
overly negative WCETs or cannot be analyzed at all [50]. A main cause
for this unpredictability is that the execution time of the task is affected by
cache operations until eventually all code and data is accessed. This effect
is known as the cache-warmup. The complexity further increases when a
new task is started on the source core which starts to evict cache lines. All
in all the regular cache-pull method is not suited for safety-critical real-time
systems.

An approach that proposes a solution to this disadvantage of shared caches
is presented in [41], namely push-assisted migration. Here a task is not

58

started directly, but first the code and data are prefetched so that they are
present in the local cache when the task is started. This impacts the soft-
ware because these prefetch operations must be included. Now the WCET
analysis of the task can be based on local data accesses only. The transfer
time is completely separated from execution time an must be accounted for
in the mapping and scheduling scheme. All memory operations now appear
in one block so it is easier to model the traffic and map it onto the inter-
connect. To determine an upper bound on the migration time, the data
transfer operations must be deterministic. This should be possible if it can
be guaranteed that the cache system can get the data from the source core
before they are overwritten.

Another approach to shared memory is to provide each core with a local
scratchpad memory, into which data must be explicitly copied. Some caches
can be “locked” so that they act as scratchpad. Transferring tasks is then
similar to prefetching, but now the source of the data must be addressed
explicitly. Because copy operations involve the CPU this approach might be
slower. Timing analysis is simpler because the memory architecture is less
complex. In combination with mode-based mapping it is possible to achieve
deterministic behaviour if data operations are scheduled in time slots. This
approach results in more software design effort because the code and data
must explicitly be copied from the source core.

The last approach is independent from the type of local memory as data
is transferred via message passing rather than through the shared memory.
The source core must packetize the code and data and send those through
the interconnect, after which the destination core receives and stores them
locally. This can be combined with regulated access to the interconnect
because source and destination can negotiate about their communication.
A disadvantage is that both cores are busy during the transfer of the task,
although they might do useful work while waiting for the interconnect. Send-
ing and receiving data must be explicitly done in the program code, so there
is some overhead in this approach. In conclusion, there are three approaches
have the potential to offer deterministic task migration:

1. push-assisted migration in shared caches;

2. explicit copy from and to local scratchpad memories;

3. message passing.

5.1.3 Framework

To perform the experiments we designed a software structure that we refer
to as the framework. It allows us to execute tasks statically at cores (e.g.

59

task under test or time measurement). We furthermore use it to control
the experiments, that is, the task transfers. The framework allows us to
evaluate the impact of three different parameters:

• the transfer method;

• the distance between source and destination;

• the size of the code and dataset.

The main challenge we faced while developing the framework is to per-
form reliable measurements while still offering flexibility. The quantity we
measure is time, therefore any interference with the experiments must be
avoided. For instance, interrupts must be disabled on all cores.

From the previous chapters it has become clear that simultaneous access of
shared resources influences the timing behaviour of the tasks. We estimated
that the development a complete partitioning scheme for the experiments
is too costly and time consuming. Therefore we considered it sufficient for
these experiments to make sure that the framework does not interfere with
the measurements. We especially avoid unnecessary access of the intercon-
nect by framework tasks during the experiments.

The framework sets up the network and memory on each core. After that
the core starts its dedicated function, one core is the designated mapping
core. The mapping function instructs the other cores when to start their
experiments, and triggers the migrations. The remaining cores are split in
worker cores and an equal amount of measurement cores. Each worker core
is next to a measurement core so they form pairs that can communicate
over just one link. This minimizes the network traffic required for the mea-
surements. The worker cores wait until the mapping core initiates a test
sequence. In each test sequence a task is migrated from the mapping core
to that worker core multiple times.

5.2 Experimental Setup

In this section we introduce the multi-core processor that we used for the
experiments. The implementation details of the software are discussed next,
which are closely related to the hardware architecture. Finally we describe
how we implemented the transfer methods from Section 5.1 on our test
platform.

5.2.1 Hardware Architecture

For the experiments we used a TILEPro64TMprocessor from the Tilera R©
corporation, to which we will refer as the test platform. It has 64 identical

60

Switch

CPU

L2 cache

L1-i L1-d

itlb dtlb

2D DMA

Figure 5.1: The architecture of a tile.

cores and is very well suited for embedded systems because of its power
efficiency [47]. The cores are interconnected by multiple NoCs with a two-
dimensional mesh architecture that are used for both inter-core communi-
cation and the access to memory and external resources. Because to date
NoCs are the only type of interconnect that have been proven to be scalable,
we consider this processor very suitable for the study of the challenges that
are faced with the introduction of multi-cores [24]. Furthermore the it sup-
ports both shared memory and message passing, which allows to evaluate
fundamentally different transfer methods.

The cores have a 32-bit Very Large Instruction Word (VLIW) architecture
that can bundle up to three instructions per cycle. There are three pipeline
stages for integer and fixed point operations, there is no dedicated floating
point unit. Each CPU is placed on a “tile” that also contains a local cache
system and a switch that offers access to the network. The architecture of
a tile is depicted in Figure 5.1.

There are four memory controllers that provide access to off-chip DDR2
type memory. Each core has a local cache architecture consisting of:

• an L2 cache for both instructions and data;

• an L1-instruction cache;

• an L1-data cache;

• a separate Translation Look-aside Buffer (TLB) for both instructions
and data.

More details about the caches are can be found in Table 5.1. A hardware
mechanism combines the aggregate of all on-chip L2 caches into a shared L3
cache named the “Dynamic Distributed CacheTM”. Based on a directory
protocol, this cache provides a coherent shared-memory view . A memory
page can be assigned a home tile where it will be cached upon access, even

61

Size Associativity Line size Allocate policy Write policy

L1-I 16 kB direct mapped 64 B On read miss N/A

L1-D 8 kB 2-way 16 B On load miss Write through

L2 64 kB 4-way 64 B On load/store miss Writeback

Table 5.1: The properties of the cache architecture.

if the access comes from another core. The caches of our test platform can
be configured in different ways: as shared cache, as private caches or they
can be locked so that they behave as scratchpad memories.

The Network-on-Chip actually consists of six two-dimensional 8x8 mesh
networks. Details about the network are described in [49]. Each network is
intended for a different purpose:

• the User Dynamic Network (UDN) can be directly accessed by the
programmer;

• I/O devices can be accessed via the I/O Dynamic Network (IDN);

• the Memory Dynamic Network (MDN) is for memory data transfers
in general;

• the Coherence Dynamic Network (CDN) is for cache-coherence inval-
idate messages;

• the Tile Dynamic Network (TDN) is for memory data transfer between
tiles;

• the Static Network (STN) is a programmable low-latency network op-
timized for streaming.

Each switch has five connections with three-entry input buffers and an all-
to-all (non-blocking) crossbar switch. The routing strategy in the dynamic
networks is dimension-ordered wormhole routing. Packets are first sent in
the x dimension, and then in the y dimension once the destination column
is reached. Wormhole routing means that a packet is split in a number of
flits, which are forwarded immediately by the receiving router as soon as the
next router has space for a flit. This strategy offers low latency (the trans-
mission time of one flit) and has low buffering requirements (a minimum of
one flit per link), but a blocked packet can occupy multiple switches which
potentially increases congestion. Between the switch and the CPU there is
additional buffering for end-to-end flow control. In the static network the
routing decisions at each router are programmable which allows to set up
communication channels in a circuit-switched manner.

There are three approaches to inter-core communication:

62

• shared memory (using the MDN, CDN and TDN);

• message passing using the UDN;

• message passing using the STN.

All those networks have link-level credit-based flow control. The approach
to high-level flow control however is quite different in each network [49]. A
high level flow-control technique based on buffer-preallocation in the mem-
ory controllers makes sure that the memory networks are free of deadlocks
and congestion. Because buffers are physically limited the amount of data
requests of each node must be bounded for guarantees on the latency, which
is essentially resource reservation. To determine that amount an analysis of
the complete memory architecture including the networks is necessary. Such
a complex process is out of the scope of this thesis.

In the UDN there is flow control on the link level only so deadlocks due
to insufficient buffering capacity are possible. There is a mechanism for
deadlock recovery. Therefore higher level flow control must be implemented
in software. Because the programmer has direct access to this network we
consider it possible to implement circuit switching in software, without hard-
ware support for setting up circuits (connections). Because the switches of
the dynamic network cannot be programmed, each core must maintain a
table of all the connections. This solution is therefore not trivial and has
overhead in software. If the cores can be sufficiently synchronized however,
virtual TDM circuit switching could be implemented which has significant
advantages .

The STN implements circuit switching in hardware, so guarantees on QoS
can be provided once a connection is established. Each link can however
only be used by one connection, which usually means the network usage
is far from optimal. Adding and removing connections involves the repro-
gramming of switches. Circuit-switching is therefore a suitable strategy for
long-lived connections that require a lot of bandwidth. It is not fit for short
lived connections because of the overhead, and also not for connections that
require little bandwidth because too much capacity reserved. This last case
is commonly found in measurement and control functions which can typ-
ically be found in embedded systems. For such connections TDM circuit
switching is a much better solution because links can be shared between
connections.

There is a interesting trade-off between regular circuit switching and the
virtual TMD circuit switching that we suggested. Let us assume that a
block of packets must be transferred periodically, but that it is too costly
to maintain one long-lived connection. If the period is short and the block

63

SMP Linux Framework (main)

Initialization

function (main)

Declare

shared page

Init shared page

Mapping function:

initialize

for(workers)

 for(loops)

 clean cache

Worker function:

initialize

for(loops)

 migrate task

 clean cache

Measure function:

initialize

for(loops)

Flush cache

Measure time

start

stop

start

stop

Figure 5.2: An overview of the functions in the framework.

size small, the overhead of simulated TDM circuit switching could be out-
weighed by the flexibility it offers. If the period and/or the block size grow
there will be a point at which the overhead of hardware-supported circuit
switching becomes smaller. Every connections could be assigned to one of
these techniques so that their advantages are combined. We will not go
into the details of such a software implementation of TDM here, but it is
certainly an interesting subject for future research.

5.2.2 Software Architecture

We presented a high-level view of the framework in Section 5.1, here we will
further go into the details. A symmetrical multiprocessing version of the
Linux OS is available for our test platform. It offers the possibility to de-
clare “dataplane” tiles, which continuously execute a single thread without
interference by the scheduler. We evaluated this mode because it is suited for
high performance and time-critical applications. However, we found that the
access to hardware is too restricted in this mode to conduct the proposed
experiments. Therefore we implemented the framework on “bare metal”,
which means there is no OS or hypervisor. This significantly increased the
design effort. In the experimental setup the Linux OS still runs on eight of
the 64 tiles to perform basic hardware configuration. After startup it initial-
izes the NoC and one huge page (16 MB) of shared memory, after which it
informs the framework on each tile about their dedicated function and the
shared page. During the experiments the OS is idle.

An overview of the software architecture at the function level is depicted
in Figure 5.2. The body of the framework is executed in a loop to perform

64

M U W06 T06 W13 T13 W20 T20

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W00 T00 W07 T07 W14 T14 W21 T21

W01 T01 W08 T08 W15 T15 W22 T22

W02 T02 W09 T09 W16 T16 W23 T23

W03 T03 W10 T10 W17 T17 W24 T24

W04 T04 W11 T11 W18 T18 W25 T25

W05 T05 W12 T12 W19 T19 W26 T26

L L L L L L L L

Figure 5.3: The mapping of tasks onto the cores(M = mapping core, U = unused,
W = worker core, T = measurement core, L = Linux core).

measurements with varying code and dataset sizes. Between every iteration
the L2 and L1 caches are flushed completely so that measurements cannot
influence each other. Between each iteration within a function the code and
data of the task are also removed from the cache. The mapping function
controls the worker functions by sending control messages over the UDN.
Every worker tile repeats the measurements for loops times after which the
mapping core signals the next worker. These messages are sent just before
and after the actual experiments to ensure that those are not influenced.
The workers themselves signal their dedicated measurement core with con-
trol messages. The actual sequence of control messages is more complex
than depicted in Figure 5.2 to ensure a synchronous start and detect erro-
neous messages.

Of the 64 cores, eight are used by the OS and one is dedicated to the
mapping function. The remaining 55 cores can be used by the worker and
measurement functions. Because these operate in pairs, one core is not used
in this setup. An overview of the mapping is depicted in Figure 5.3.

The task that is actually migrated consists of instructions and a dataset.
We do not want to perform WCET analysis, therefore we used tasks with a
constant execution time. These were implemented as a sequence of “nop”
instructions, which has the additional advantage we can easily adjust the

65

size of the code. The size of the instructions and the dataset ranges from
1000 bytes to 8000 bytes, iterating with a step size of 1000 bytes. The upper
value is bounded by the size of the L1-data cache (8 kB), because we work
with the assumption that both instruction and data memory fit and remain
in the L1 cache.

5.2.3 Implementation of Transfer Methods

In our experiments we focus on step four of the basic steps of a task migra-
tion as presented in Chapter 4, namely the transfer of data from one core’s
local memory to that of another. In Section 5.1 we found that three transfer
methods are suitable for deterministic task migration, two of which assume
a shared memory model. In the first method a transfer is performed by
prefetch operations, while in the second data must be explicitly copied.

The first transfer method that we implemented is the regular cache-pull
method. Note that this method is not suitable for deterministic task migra-
tion and we did not consider it in detail in Section 5.1, we implemented it
just to compare it to the others. At the start of the experiment we load the
task under test into the L2 cache of the mapping core. The mapping func-
tion then signals the first worker function which starts executing that task,
thus forcing the cache subsystem to transfer the task while simultaneously
executing it. This process is repeated in a loop, during which the time is
measured. The body of the loop consists of the following code lines:

// S ta r t the t imer on the measurement t i l e
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER START) ;
//Run the ta sk
(∗ s h a r e d t a s k i n s t r p t r) () ;
//Stop the timer on the measurement t i l e :
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER STOP) ;
//Clean the L1−I and L2 cache :
tmc mem inva l idate i cache (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;
tmc mem finv (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;

For the sake of the example the code sections in this chapter show only the
transfer of code memory. The transfer of the dataset and all code lines that
are non-crucial are omitted.

The second transfer method that we implemented is to prefetch the task
prior to execution. The body of the loop is as follows:

// S ta r t the t imer on the measurement t i l e
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER START) ;
// Pre fe tch the ta sk in the L2 cache
tmc mem prefetch (sha r ed ta sk da ta p t r 64 , c u r r e n t t a s k s i z e) ;
//Run the ta sk
(∗ s h a r e d t a s k i n s t r p t r) () ;
//Stop the timer on the measurement t i l e :
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER STOP) ;
//Clean the L1−I and L2 cache :

66

tmc mem inva l idate i cache (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;
tmc mem finv (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;

The prefetch function only works with data memory, therefore the memory
page on which the program code resides is loaded into the data TLB as well
as in the instruction TLB. Thus it we can use a data pointer for prefetching:
shared task data ptr 64 and shared task instr ptr point to the same address.
Because the page has the same virtual address in both TLBs we must clean
the L2 cache only once. The prefetch function uses a pseudo instruction
that loads a byte into the “zero” register, which is not an actual operation
but instructs the hardware to get that byte into the cache.

Thirdly, we explicitly copied data into the local memory. Because the data
and code sizes are smaller than the cache capacity, the task will never be
evicted from the cache. While this is very much like the use of scratchpad
memories, the actual transfer is still performed by the cache subsystem.
This method is therefore a mixture of prefetching and the explicit copying
of data. Still this method is useful to compare with the others, we will see
why in Chapter 6. We copy data into the local memory with explicit copy
operations to a dummy variable, as shown in the following code:

∗(dummy ptr 64) = 0 ;
// S ta r t the t imer on the measurement t i l e
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER START) ;
for (int k = 0 ; k < c u r r e n t i n s t r c o un t ; k++){

∗(dummy ptr 64) = ∗(s ha r ed t a sk da t a p t r 64 + k) ;
}
//Run the ta sk
(∗ s h a r e d t a s k i n s t r p t r) () ;
//Stop the timer on the measurement t i l e :
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER STOP) ;
//Clean the L1−I and L2 cache :
tmc mem inva l idate i cache (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;
tmc mem finv (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;

Again a data pointer must be used to access the instruction memory. Al-
though this method is somewhat similar to prefetching, here the CPU must
however wait for the data to arrive and then execute an actual copy opera-
tion whereas a prefetch operations only triggers the cache hardware.

These three previous transfer methods assume a shared memory model.
The remaining two implementations are based on the transfer of data via
message passing, in this case via the UDN. There is now explicit communi-
cations between a worker core and the mapping core that is the source node.
To minimize overhead the maximum packet size of 20 words is used for this
strategy. The code is as follows:

// Pre fe tch the memory area to which the ta sk w i l l be wr i t t en
tmc mem prefetch (sha r ed ta sk da ta p t r 32 , c u r r e n t t a s k s i z e) ;
// S ta r t the t imer on the measurement t i l e
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER START) ;
//Receive the ta sk v ia the UDN

67

for (int k = 0 ; k < (c u r r e n t i n s t r c o un t /10) ; k++){
∗(s ha r ed t a sk da t a p t r 32) = udn1 rece ive () ;
∗(s ha r ed t a sk da t a p t r 32 + 1) = udn1 rece ive () ;
. . .
∗(s ha r ed t a sk da t a p t r 32 + 19) = udn1 rece ive () ;
s ha r ed t a sk da t a p t r 32 += 20 ;

}
//Run the ta sk
(∗ s h a r e d t a s k i n s t r p t r) () ;
//Stop the timer on the measurement t i l e :
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER STOP) ;
//Clean the L1−I and L2 cache :
tmc mem inva l idate i cache (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;
tmc mem finv (sha r ed ta sk da ta p t r 32 , c u r r e n t t a s k s i z e) ;

First we prefetch the memory range to which the task is written so that the
measurement is not influenced by data operations that are not related to
the migration. Then the mapping core and worker core synchronize, this
code is omitted here. All data is received as 32-bit words and written to the
locally cached memory.

The fifth and last method is also based on message passing but now via
the STN:

// Pre fe tch the memory area to which the ta sk w i l l be wr i t t en
tmc mem prefetch (sha r ed ta sk da ta p t r 32 , c u r r e n t t a s k s i z e) ;
// S ta r t the t imer on the measurement t i l e
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER START) ;
//Receive the ta sk v ia the UDN
for (int k = 0 ; k < (c u r r e n t i n s t r c o un t /10) ; k++){

∗(s ha r ed t a sk da t a p t r 32) = s t n r e c e i v e () ;
∗(s ha r ed t a sk da t a p t r 32 + 1) = s t n r e c e i v e () ;
. . .
∗(s ha r ed t a sk da t a p t r 32 + 19) = s t n r e c e i v e () ;
s ha r ed t a sk da t a p t r 32 += 20 ;

}
//Run the ta sk
(∗ s h a r e d t a s k i n s t r p t r) () ;
//Stop the timer on the measurement t i l e :
tmc udn send 1 (measure header , UDN0 DEMUXTAG, TIMER STOP) ;
//Clean the L1−I and L2 cache :
tmc mem inva l idate i cache (s h a r e d t a s k i n s t r p t r , c u r r e n t t a s k s i z e) ;
tmc mem finv (sha r ed ta sk da ta p t r 32 , c u r r e n t t a s k s i z e) ;

This loop very similar to that of transferring data via the UDN. There is no
function to send a packet of 20 words as there was with the UDN, now use a
loop in which 20 packets are sent to allow a fair comparison. The framework
takes care of configuring the network which comprises the programming of
a number of registers on each core, this code is omitted here. Note that
there is no central mechanism for reconfiguring the STN, so setting up and
tearing down connections requires the cooperation of all the concerned tiles.

As mentioned, the instruction memory can only be read and written with
data operations if the page is manually loaded in both the instruction and
data TLB. Such “self modifying code” is not allowed to run under the Linux

68

OS, which is the main reason that the experiments were performed on bare
metal. In Section 5.1 it was stated that the migration is implemented at the
application level. This is still true, but it should be noticed that the frame-
work performs services that would normally be done by an OS or hypervisor.

In conclusion, we implemented five transfer methods:

• shared memory supported by a coherent shared cache architecture
with:

– cache-pull;

– prefetch;

– explicit copy;

• message passing using the UDN;

• message passing using the STN.

Of those only the last four can potentially transfer tasks deterministically.

5.3 Limitations

In this section we relate the proposed experiments to the concepts and re-
quirements that were presented in the previous chapters. Furthermore we
discuss the limitations of our approach and their impact on the validity of
the experiments.

In our experiments we focus on step 4 of the basic migration steps, which
corresponds to our third objective: the deterministic transfer of tasks over
the interconnect. We implemented the other steps but do not perform time
measurements on those. In our test setup there is no operating system or
hypervisor, and tasks can only be migrated when stopped. Therefore there
is no context at all, and only data and code memory must be transferred.
We believe this is a feasible scenario for embedded tasks that are executed
strictly periodically. The objective of the experiments is to investigate which
transfer method can offer the required guarantees on QoS.

We evaluate five different transfer methods on our test platform. In Sec-
tion 5.2 we concluded that use of the shared memory requires a compre-
hensive analysis of the memory architecture, including the NoC. The UDN
uses the same routing and buffering strategies as the memory networks, but
here additional end-to-end flow control like circuit switching could be imple-
mented in software. We estimated however that the implementation effort
is too high to include such a strategy in this thesis.

69

The tasks that we use in the experiments are not a realistic representa-
tion of embedded real-time software. Firstly, the code does not do anything
useful because it consists of “nop” instructions. Secondly, the task sizes were
picked so that the tasks fit in the L1-cache, and are not based on an analysis
of real software. We expect however that on-chip memories will continue to
grow in size and that multiple embedded tasks will fit the code of in one
local memory. Furthermore we believe that our test platform is a suitable
representation of future multi-core processors because of its low power usage
and of the NoC that can be used in different ways. The experiments focus
on the NoC, which is the fundamental new element in multi-cores.

We did not implement temporal and spatial partitioning, but perform the
experiments while no other tasks are active on the processor. While this
shows if a particular transfer method has the potential to offer guarantees
on QoS and allows to compare the methods, it does not show the isolation
of traffic. In other words, our experiments do not show the limitations of a
transfer method with respect to interference from other traffic.

Traffic can be separated on different levels. In the mode-based mapping
approach that we presented in Chapter 3 the traffic is separated by design.
This is also the case in our experiments, so our results are valid in that re-
spect. Such a strategy does however not provide protection from faults (e.g.
“babbling idiots”), which can only be achieved with hardware supported
isolation of traffic on a lower level. Our test platform features hardware
support for isolating traffic on the UDN and STN, the so-called hardwall.
This hardwall could be used to implement circuit switching on the UDN.

5.4 Summary

In this chapter we described our approach to the experiments whose objec-
tive is to investigate which transfer methods are suitable for deterministic
task migration. We implemented a basic migration mechanism, our tasks
consist of C-functions that are periodically executed and can migrate be-
tween executions. Because there is no context our migration model is very
simple and focuses on the actual transfer of code and data memory. We
analyzed different transfer methods and concluded that there are three ap-
proaches which can potentially offer deterministic task migration:

1. push-assisted migration in shared caches;

2. explicit data transfer using local scratchpad memories;

3. message passing.

We developed a software framework to support our experiments, which al-
lows to switch between the transfer methods and adjust various parameters.

70

Our test platform comprises a TILEPro64TMprocessor with 64 identical
cores. The cores are interconnected by six Networks-on-Chip which have
a 2-d mesh structure. Inter-core communication can go through shared
memory or via either the UDN or STN using message passing. The shared
memory architecture uses three networks which are free of congestion be-
cause of high-level flow control, to obtain a bound on the latency however
a comprehensive analysis of this memory system would be necessary. The
UDN is physically the same as the memory networks but has no high-level
flow control. It is however programmer accessible, so software flow control
such as for instance circuit switching could be implemented. Hardware cir-
cuit switching is implemented in the STN, which therefore offers guarantees
on QoS by construction. The considerable overhead and suboptimal network
usage inherent to hardware circuit switching however means that it is only
suited for long-lived connections that require a lot of bandwidth. This could
be improved by multiplexing such as for example Time Division Multiplexed
circuit switching.

We then presented our software architecture in more detail. In our “bare
metal” implementation we only use an OS to set up the shared memory and
network, after which our framework takes over and starts the experiments.
The actual tasks consist of sequences of “nop” instructions, the size of the
code and dataset ranges from 1000 to 8000 bytes. We implemented five
different transfer methods:

• shared memory supported by the coherent shared cache architecture
with:

– cache-pull;

– prefetch;

– explicit copy;

• message passing using the UDN;

• message passing using the STN.

In Section 5.3 we related the proposed experiments to the concepts and re-
quirements from the earlier chapters. We focus on one step of a migration,
namely the deterministic transfer of tasks.

The tasks that we use in our experiments are not a realistic representation of
embedded real-time software. We believe however that our test platform is
a plausible representation of future multi-core processors and that our setup
is suitable for the research of fundamental techniques. Our experiments
can show differences between the transfer methods, but not the isolation of
traffic.

71

Chapter 6

Experimental Results

In this chapter we present the results of the experiments described in Chap-
ter 5. We start with determining the precision of the measurements. Then
we compare several metrics of the different transfer methods. Firstly, we
look at the absolute transfer times in Section 6.2. In Section 6.3 we evaluate
the effect of varying the distance between the source and destination. Then
we show the impact of a migration on the execution time of a task in Section
6.4. Finally we analyse the variations between multiple repetitions of the
experiment in Section 6.5.

6.1 Precision of the Measurements

In each experiment we measure the elapsed time. The timer that we use for
this is based on a cycle-accurate counter that is present in every core. To
determine the precision of the timer we performed a series of experiments in
which we used a task with a known execution time. We varied the execution
time to cover the expected range of the experimental results. Furthermore
we repeated each experiment 10.000 times so that we can determine the
mean value and standard deviation.

To test the timer we executed the framework that is also used in the migra-
tion experiments. We replaced the actual migration by the execution of the
following task:

void execute nops (u i n t 32 t number){
for (int i =0; i < number ; i++){

asm(”nop”) ;
}

}

Thus, we execute given number of “nop” instructions and use the frame-
work to measure the elapsed time. This C code translates to the following
assembly code:

000106 a0 <execute nops >:

72

0 10 20 30 40 50 60
Calculated time [µs]

0

10

20

30

40

50

60
M

ea
su

re
d

tim
e

[µ
s]

0 10 20 30 40 50 60
Calculated time [µs]

1.35

1.40

1.45

1.50

1.55

1.60

1.65

St
an

da
rd

 D
ev

ia
tio

n
[µ

s]

1e 4

Figure 6.1: Results of the timer experiment. The left graph depicts the calculated
time versus the measured time, the right the standard deviation.

. . .
106 c0 : { nop }
106 c8 : { addi r3 , sp , 0 }
106d0 : { add l i r4 , sp , 8 ; lw r3 , r3 }
106d8 : { addi r5 , sp , 0 ; lw r4 , r4 }
106 e0 : { addi r3 , r3 , 1 }
106 e8 : { s l t u r3 , r3 , r4 ; sw r5 , r3 }
106 f0 : { bnzt r3 , 106 c0 <execute nops+0x20> }
106 f8 : { addi sp , sp , 16 ; j rp l r }

We see that the loop starts at 0x106a0 + 0x20 = 0x106c0 and ends at ad-
dress 0x106f0, and is seven instructions long. As the processors clock speed
is 700 MHz, these seven instructions cost 7 ∗ 1

700∗106 = 10 nanoseconds (ns).
We performed the experiments for number = {0, 300, 600, ..., 6000}, so we
expect the results to be the ten folds of these numbers on a nanosecond scale.

The results of the measurements are depicted in Figure 6.1. We see that
the measured time is exactly the same as the calculated time, and that the
standard deviation is < 0,2 ns in this time range. We consider this adequate
for our experiments. The result of the measurements with number = 0 is 31
ns, which gives us the overhead of calling the timer. Furthermore we noted
that the maximum absolute difference that was measured between measure-
ments with the same theoretical execution time is 17 ns. We consider it
good practice to have this difference smaller than 1% of the measured value,
which means our measured values should be over 170 ns.

73

1000 2000 3000 4000 5000 6000 7000 8000
Task and dataset size [bytes]

0

10

20

30

40

50
Ti

m
e

[µ
s]

Cache-pull
Prefetch
Copy
UDN
STN

Figure 6.2: The transfer time of the different transfer methods with varying task
and dataset sizes.

6.2 Transfer Time

We evaluated the different transfer methods described in Chapter 5 in a se-
ries of experiments. In each experiment we perform a migration, followed by
one execution of the task. The execution consists of executing the migrated
code and accessing all the elements in the migrated dataset. All experi-
ments are performed at worker core number zero and repeated 10.000 times,
of which the mean value is calculated to produce the graph. We vary the
size of both the code and dataset with steps of 1000 bytes.

The results are depicted in Figure 6.2. The prefetch strategy is clearly the
fastest because there the memory hardware is used optimally. A core can
continuously instruct the cache subsystem to get the next item, and has no
other activities. Thus the interconnect is constantly occupied with satisfying
data requests. In the regular cache-pull approach the requests to the cache
system are issued while the function is executed and the data elements are
accessed. This is slightly slower, which can be explained by noticing that the
core must execute an instruction before the next data can be requested and
therefore delays are introduced in the data stream. Even while a core might
have multiple outstanding load misses (eight on the Tilera architecture), this
boundary will be reached soon because none of the data are in the cache yet.

The other three transfer methods take roughly twice as long, namely 46,0
µs instead of 21,3 µs for the largest task size. The overview in Figure 6.3
depicts the actual sequence of operations, based on the code presented in
Section 5.2. Note that the timing is not to scale. The lighter squares indicate

74

... ...

trnsf

data

data

copy

data

pull

data

copy
...

trnsf

instr

instr

copy
...

data

copy
...

instr

exec
...

...

instr

copy

instr

pull
...

data

copy

data

pull
...

instr

exec

data

copy

......
instr

pull
...

data

pull
...

instr

exec

data

copy

instr

exec

instr

pull
...Cache-pull

t

Prefetch

Copy

UDN / STN

Figure 6.3: The sequence of operations of each transfer method. Light squares
represent data transfer operations, dark squares the task execution.

the operations needed for the transfer of data, the darker represent the two
steps of task execution. Each operation or pair of operations is repeated
a number of times, indicated by three dots. From this figure it becomes
clear why the other three methods are slower; in those the transferred data
must additionally be stored by the core with copy operations. Although the
address range to which the data are stored is prefetched beforehand, these
copy operations still consume a considerable amount of CPU cycles.

The results of the UDN and STN are very similar. This was to be ex-
pected because all networks are physically the same (except the switches
and high level flow control) and are always completely reserved for the ex-
periments. If we want to compare the UDN and STN with a shared memory
approach, it is more fair to look at the “copy” method because the amount
of basic operations is the same. We see that the copy method is slightly
slower because the “conservative buffer-preallocation” flow control is slower
than the simple ACK messages we used for the UDN and STN.

There are no timing artefacts in the graph and all methods slow down lin-
early with increasing task and dataset sizes. This is conform the expecta-
tions based on NoC theory as presented in Chapter 4, and we conclude that
there were no abnormal events during the experiments. The linear factor
shows that the transfer methods are scalable in this particular setup. We
should note that because all resources are reserved for each experiments,
there is no congestion. Thus we cannot see the major disadvantage that
all but the STN transfer method have, namely undeterministic behaviour in
case of a network overload.

6.3 Transfer Distance

We repeated the experiments from Section 6.2 but now vary the distance
between source and destination. Again we take the mean value of a series of

75

0 2 4 6 8 10 12 14
Number of hops

20

25

30

35

40

45

50

55

60
Ti

m
e

[µ
s]

Cache-pull
Prefetch
Copy
UDN
STN

Figure 6.4: The transfer time plotted against the number of hops between source
and destination.

10.000 iterations. We plot the measured time against the varying distance,
expressed in the number of hops. The results are depicted in Figure 6.4.
This graph shows the transfer of a task with a code and dataset size of 8000
bytes. We also performed the experiment with other task sizes but do not
show those here, the results are very similar except for linear shifts in the
measured time.

We see that the transfer time of the cache-pull method increases linearly
with a growing number of hops, the total increase is 25% over 12 hops. This
is a relatively small increase due to the 1-cycle per-hop latency of our test
platform. The effect of adding one hop to the path is that the latency to
get a data element increases with some constant. The timing details of each
transfer method are depicted in Figure 6.5, in this example we see the load
and execute stages of two instructions. As soon as uncached data are ac-
cessed with the cache-pull method, the cache system is instructed to load
those data. The core must wait for the data to arrive before it can complete
the instruction and continue with the next. The latency on communication
is thus the limiting factor, and the delay required to communicate over an
additional hop is added to every load operation. We see that the increase
in distance has a significant impact on the transfer time.

The transfer time does increase for the prefetching method. We can un-
derstand this by noticing that all transfer operations appear after another,
and that the core does not stall in between. While the latency of each load
operation increases, a core does not have to wait on the answer and the
different transfer operations can be pipelined. This can be seen in Figure

76

instr a instr b

load a

transfer a

prefetch b

load b

instr

b

instr

b

store b

transfer b

instr b

b

load b

b
instr a

load a

instr

a

prefetch a

instr

a

 a

instr astore a

load a

a

Core

Cache

Core

Cache

Cache-pull

Prefetch

Core

Interconnect

Copy

t

Core

Interconnect

UDN/STN

...
store store store store

load b

Figure 6.5: Timing details of the different transfer methods.

6.5 because the load operations overlap, which is only possible because the
prefetch instructions are not dependent on the arrival of data. Thus, the
delay needed to travel an additional hop is added to the transfer time only
once. The transfer time over thirteen hops is so small that it does not show
up in the graph.

Copying code and data explicitly still relies on the cache subsystem, but
now the core waits on the requested data again because it must store those
to the local L2-cache as can be seen in Figure 6.5. This means the core
must wait for the data to arrive between every instruction, in this respect
the situation is similar to the cache-pull method except that the instructions
must additionally be executed. Therefore the transfer time of this method
also increases, namely with 18% over 12 hops.

In the STN and UDN all data is sent in one block, and there is no need
to wait for acknowledgements because we know that the complete path is
reserved. The timing behaviour is again depicted in Figure 6.5. Unlike the
explicit copy method, there are no data request operations in the destina-
tion CPU but rather the data is “pushed” by the source after negotiation of
the start of the migration. Thus the situation is similar to the prefetching
method, and the increased communication latency is hidden. The latency
is very low in general because the NoC is clocked at the same speed as the
CPUs. We see that pipelining that was presented in Chapter 2 is inherent
to some transfer methods, and brings great advantages.

77

0 1 2 3 4 5 6 7 8 9
Iterations of experiment

5
10
15
20
25
30
35
40
45
50

Ti
m

e
[µ

s]

Cache-pull
Prefetch
Copy
UDN
STN

Figure 6.6: The transfer time and subsequent execution time for ten additional
iterations of the experiment.

6.4 Execution Time

Next we investigated the effect that a migration has on the execution time
of a task. The setup is the same as before, but we now migrate the task
only once after which it is executed from the local cache for the remaining
experiments. Thus the very first measurement includes the migration, and
all following measurements only show the tasks execution time. The task
and code size is again 8000 bytes. The experiments are again repeated for
10.000 iterations, the first ten of which are depicted in Figure 6.6. We see
that the tasks execution time does not change after the second iteration,
regardless which transfer method is used.

We already saw that the transfer time of the cache-pull and prefetch transfer
methods are much shorter. In the graph we see one peculiar timing arte-
fact: the execution time need two iterations to settle with the cache-pull
method. This violates the requirement which states that the execution of a
task must be the same after a migration as it was before. With the other
transfer methods the migration has no effect on the execution time after
the first iteration (which includes the migration), which is conform the re-
quirement. The execution time of the methods based on shared memory are
shorter than the UDN and STN methods because the source code of those
is slightly different.

78

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.0

0.5

1.0

1.5

2.0

2.5
M

ax
. d

ev
ia

tio
n

fr
om

 m
ea

n
[µ

s]

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 d
ev

ia
tio

n
[µ

s]

Figure 6.7: Maximum deviation from the mean and standard deviation using
cache-pull.

6.5 Variations in Transfer Time

In this section we look at the variations in transfer time between multiple
executions of the same experiment. It is essential to evaluate and under-
stand these variations in order to assess whether a transfer is deterministic.
We re-use the results of the first series of experiments. From each series we
determine the value that deviates the most from the mean value and depict
this absolute difference in a graph. Furthermore we plot the standard devi-
ation.

We depicted the variations on the transfer time of the cache-pull trans-
fer method in Figure 6.7. We see that the absolute deviation from the mean
is rather constant. This small constant variation of the transfer time comes
from the cache behaviour. Between measurements with different code sizes
the cache is flushed and some code of the framework must be reloaded in the
first iteration, which therefore always takes slightly longer. The standard
deviation is constantly 2 ns and < 0,1% of the total transfer time, which is
probably adequate for most systems.

Figure 6.8 depicts the variations on task transfers with prefetching. The
maximum deviation from the mean is again constant but slightly higher,
namely around 0,4 µs. This increase can be explained by looking at the
prefetching in more detail. Many prefetch requests immediately follow each
other, unlike the cache-pull method where an instruction is executed be-
tween two requests. Data requests that are issued so quickly after another
lead to “bursty” behaviour of the cache system because of buffering on the

79

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.0

0.5

1.0

1.5

2.0

2.5
M

ax
. d

ev
ia

tio
n

fr
om

 m
ea

n
[µ

s]

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 d
ev

ia
tio

n
[µ

s]

Figure 6.8: Maximum deviation from the mean and standard deviation using
prefetching.

tile and in the NoC [49]. The standard deviation reaches a maximum of 11
ns and is thus also higher, but still < 1

2% of the total transfer time. This
higher standard deviation indicates that the dispersion also increased.

In Figure 6.9 the variations on the explicit copy method are depicted. We
would expect results similar to the cache-pull method depicted in Figure 6.7
but interestingly, they are quite different. The maximal deviation from the
mean as well as the standard deviation are much higher and show a non-
linear dependence on the task size. This leads to the observation that the
behaviour of the cache subsystem is unpredictable if data is not prefetched.
As noted, this is inherent to all cache-coherent systems. It shows the trade-
off between ease of programming enabled by automated data management
on one hand, and increased unpredictability on the other.

The results of task migration using the UDN and STN transfer meth-
ods are depicted in Figure 6.10 and 6.11 respectively. The variation on the
transfer time is again rather constant for both and around 0,4 µs, similar
to the cache prefetch method. The standard deviation of the UDN reaches
a maximum of 16 ns which is also comparable to that of cache prefetching.
The standard deviation of the STN however ranges between 18 and 70 ns
and is therefore considerably higher, although still < 1

2% of the total trans-
fer time. We can explain this because there is no buffering at the receiving
side in this network, so the sender is blocked when the receiver does not pro-
cess the packets immediately and the buffers of the switches in the path are
filled. This again results in bursty behaviour, it however has no effect on the
maximum deviation as long as the receiver processes the packets regularly.

80

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

. d
ev

ia
tio

n
fr

om
 m

ea
n

[µ
s]

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 d
ev

ia
tio

n
[µ

s]

Figure 6.9: Maximum deviation from the mean and standard deviation, using
explicit copy.

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

. d
ev

ia
tio

n
fr

om
 m

ea
n

[µ
s]

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 d
ev

ia
tio

n
[µ

s]

Figure 6.10: Maximum deviation from the mean and standard deviation using
the UDN.

81

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.0

0.5

1.0

1.5

2.0

2.5
M

ax
. d

ev
ia

tio
n

fr
om

 m
ea

n
[µ

s]

1 2 3 4 5 6 7 8
Task and dataset size [x1000 bytes]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 d
ev

ia
tio

n
[µ

s]

Figure 6.11: Maximum deviation from the mean and standard deviation using
the STN.

6.6 Summary and Analysis

At the beginning of this chapter we showed that the standard deviation of
the time measurements that we perform on our test platform is < 0,2 ns, and
that the absolute error of our measurements is under 1% for measurements
> 170 ns. We then presented four experiments to evaluate the five different
transfer methods. In the first experiment we looked at the transfer time of
a task migration and found that it grows linearly with an increasing task
size. There is no congestion in the network because the NoC is completely
reserved for each migration, which is confirmed because there are no timing
artefacts. The direct use of the cache subsystem is roughly twice as fast as
the others, namely 21,3 µs versus 46,0 µs for the largest task size. This is
because in the other methods the core must store the data in the local cache.

In the second experiment we varied the distance between source and desti-
nation. The transfer times of the cache-pull and explicit copy methods grow
with 25% and 18% respectively when the distance is increased with 12 hops,
but remain constant for all others. This is because in those two the core
must wait for each data word to arrive, and thus experiences the increased
latency on each word. In the other methods the transfers are pipelined so the
increased latency is only experienced once. We conclude that the pipelining
inherent to some transfer methods brings a huge advantage.

In the third experiment we measured the time of one task transfer followed
by multiple executions. The first iteration includes the transfer time and one
execution, after which the instructions and data are available from the local

82

L1 caches and the execution time should be constant. We see this expected
behaviour for all but one of the transfer methods; in the regular cache-pull
approach it takes two iterations before the execution time is constant. This
is an unexpected anomaly because once a task is executed, all data should
lie in the L1 caches. While we examined the source code very thoroughly,
we cannot explain this phenomenon. From the theory presented in previous
chapters however we know that cache-pull is not suitable for deterministic
task transfer anyway, it was merely included for comparison.

Finally we re-use the results of the first experiments and determine the
variation between successive iterations of a transfer. This indicates how
“deterministic” a transfer method is:

• the maximum deviation from the mean indicates how overly negative
the worst case transfer time will be on the average;

• the standard deviation indicates how dispersed the results are.

We see that the maximum deviation from the mean of the prefetching, UDN
and STN approaches are all constant and around 0,4 µs. This shows that a
relatively tight upper bound on the transfer time can be determined. The
graph of the explicit copy method shows a strong nonlinear dependence on
the task size. The standard deviation of all methods is under 1

2% of the to-
tal transfer time. That of the STN approach is however significantly higher
than that of the others, which is caused by a lack of buffering at the end
points.

The experiments show that four of the tested transfer methods are basi-
cally suitable for deterministic task transfer, although prefetching is clearly
preferred over the explicit copy method. As noted, we did not test the iso-
lation from other traffic so the experiments do not show the limitations in
that respect. We however extracted these limitations from the theory in
earlier chapters:

• the prefetching and explicit copying of data relies on the shared cache
system which uses three networks with buffer-preallocation, compre-
hensive timing analysis of this hardware is needed to be able to deter-
mine a bound on the latency;

• the UDN has no isolation between traffic flows and therefore no con-
gestion and deadlock avoidance, this could be implemented by flow
control in software such as circuit switching combined with the hard-
wall mechanism;

• when the STN is used the switches must be reconfigured whenever a
route changes, these changes must be communicated to all involved
switches via another transfer method.

83

Although each method has certain benefits, none of them is usable “as it
is”. The least effort for achieving deterministic task transfer will be the use
of the STN, perhaps with use of the UDN for control traffic.

On first sight it seems that cache prefetching is the most promising method
because it is much faster than the programmer accessible networks (UDN
and STN). This is true, but the following must be taken into account. Shared
memories supported by shared caches can be based on snooping or directory
protocols, the latter requires more implementation effort but has a better
scalability [25]. The timing analysis of large shared caches using either of
these techniques is however difficult if not impossible [50]. An exception is
the caching of read-only data such as instruction memory, which is very use-
ful for task migration [29]. Private caches where each core obtains its data
from the main memory or scratchpad memories seem a better approach be-
cause their timing behaviour can be analysed. These can be supported by
message passing or by communication through shared memory regions that
are explicitly defined for the transfer of data. Timing analysis of such a
limited number of shared regions is feasible, especially if those contain data
objects that are periodically updated by only one actor. They might then be
modelled as read-only memory, which greatly reduces the complexity of the
timing analysis. In conclusion, we can probably not take much advantage
from large shared caches in safety critical real-time systems. An exception
are small shared memory regions which are explicitly prefetched before use,
preferably with read-only memory. These can be used for the migration of
tasks and can be combined with other on-chip communication methods.

84

Chapter 7

Conclusions and
Recommendations

In Section 7.1 we draw the conclusions from our literature study presented
in Chapters 1 and 2 and from the concepts we presented in Chapters 3 and
4. Furthermore we recapitulate the results of our experiments described
in Chapter 5 and 6. Then we combine these results and draw the overall
conclusions. In Section 7.2 we give several recommendations and present
ideas for future research.

7.1 Conclusions

7.1.1 Theory

In this thesis we investigated how multi-core processors can be applied in
safety-critical real-time systems, especially in avionics. This is motivated by
the trend to increase the performance of individual processor boards, as well
as to use them more efficiently by consolidating functionality. Multi-cores
have the potential to achieve both goals but we must deal with the strin-
gent requirements that apply in safety-critical domains. A concept suitable
to deal with this is partitioning, which achieves fault-containment through
isolation.

In Chapter 2 we extracted two main challenges:

• dealing with the unpredictability that comes from the concurrent ac-
cess of shared resources, especially the on-chip interconnect;

• optimizing the hardware usage of multi-core processors without com-
promising on the determinism offered by static mapping and schedul-
ing.

85

We presented a basic interconnect model and explained that unpredictability
is caused by the concurrent access to shared resources. Networks-on-Chip
are scalable interconnects with shared links and buffers. To offer guarantees
on Quality-of-Service (e.g. latency and bandwidth), contention for shared
resources must be avoided or at least bounded. Usually static mapping and
scheduling are applied in safety-critical systems because the correctness of
such schemes can be guaranteed, but the efficient use of hardware is hin-
dered because resources must be reserved for the worst case scenario.

In Chapter 3 we used a formal model to propose a combination of con-
cepts to address these challenges. Firstly we extended software partitioning
to include inter-task communication so that traffic can be mapped onto the
interconnect. Furthermore we extended the concepts of spatial and tempo-
ral partition to the hardware. Software partitions (tasks and connections)
can be thus be mapped and scheduled onto the hardware partitions (cores
and links). Such resource reservation provides a high level solution to the
problems with shared resources. To address the second challenge we pro-
posed mode-based mapping and scheduling, which allows to switch between
multiple precomputed schemes during runtime to optimize hardware usage.
Such mode switching requires task migration, we focus on this with our sec-
ond objective which is to determine the prerequisites for deterministic task
migration over a Network-on-Chip.

Task migration enables load balancing, traffic reduction, power and tem-
perature management and the flexible assignment of redundant resources.
To switch between multiple static modes and control the changes in a NoC
we proposed the use of transient modes in which the migrations take place.
We deduced the requirements for deterministic task migration and concluded
that the transfer of tasks is the main new challenge that comes with task
migration in multi-cores. Mapping of traffic onto the interconnect is the
high level solution to this. For our third objective we focused on this prob-
lem in more detail and investigated how it can be made sure that low-level
transfers are deterministic by providing guarantees on QoS. We presented
several solutions to avoid and bound contention by combining flow-control
techniques and buffering strategies. An approach that is very suitable for
mapping traffic onto a NoC is circuit switching, possibly multiplexed in time.

7.1.2 Experiments

We performed a number of task migration experiments on our test plat-
form, which features 64 computational cores interconnected by a Network-
on-Chip. The goal of the experiments was to investigate which transfer

86

methods can be used for deterministic task migration. The shared cache sys-
tem can theoretically transfer data deterministically if prefetching is used,
but timing analysis is complex because it must cover the NoC and the shared
cache system. Both the UDN and STN are programmer accessible and im-
plement message passing. The former does not feature hardware flow control
so this must be implemented in software for it to be deterministic. The lat-
ter implements hardware circuit switching and communication is therefore
deterministic but not very efficient. Timing analysis of communication via
the programmer accessible networks is however much simpler than that of
shared caches. Because the programmer must communicate explicitly, code
analysis is much simpler. Furthermore only the NoC hardware is involved,
for which communication times can be determined quite easily. In each of
our experiments the instruction and data memory of a task with varying
sizes are migrated and the transfer time is measured.

From the first experiment we found that the transfer time of a task grows
linearly with an increasing task size. This means all transfer methods are
scalable, which is what we expected. Secondly we found that use of the
shared cache system is twice as fast as using the UDN or STN (21,3 µs ver-
sus 46,0 µs for the largest task size), but from the theory we know that the
cache-pull approach is not deterministic. Therefore prefetching is the only
fast method that is suitable for real-time systems. In Chapter 6 however
we already noted that there are limitations: the number and size of shared
memory regions should be limited and preferably contain read-only data. All
other methods are significantly slower because the core must explicitly store
data in its local cache. When the distance between source and destination
is increased with 12 hops, the transfer times of the cache-pull and explicit
copy methods grow with 25 % and 18 % respectively because transfers are
not pipelined. We furthermore showed that tasks are executed from local
cache after a migration. In the cache-pull approach an inexplicable timing
anomaly showed up during this experiment, but the other methods work as
expected.

Finally we investigated the variation in transfer times. The variation of
the explicit copy method shows a nonlinear dependence on the task size due
to the unpredictability inherent to coherent shared caches. This method
uses the same memory networks as the prefetch method, so the latter is
clearly preferred on our test platform. The prefetch, UDN and STN meth-
ods all have a constant maximum deviation from the mean transfer time
of roughly 0,4 µs. This shows these methods are deterministic because we
can determine an upper bound on the transfer time independent of the task
size. The standard deviation of all methods is under 1

2% of the total transfer
time, although that of STN is significantly higher than that of the others
due to the lack of buffering at the end points.

87

We conclude that prefetching from the shared cache and message pass-
ing via the programmer accessible networks are suitable transfer methods
for deterministic task migration. We see that the coherent shared cache
that provides ease of programming for non-real-time applications is comple-
mented by multiple mechanisms that offer deterministic communication for
real-time performance. From the theory however we know that none of the
transfer methods is usable “as it is”, although deterministic communication
over the STN can be achieved with little effort. Prefetching is much faster
than message passing, but we must keep in mind that it is very hard if not
impossible to perform timing analysis of large shared cache architectures.
Private caches or scratchpads are more suitable for real-time systems, which
can be supported by message passing and explicit data transfer through a
limited amount of shared memory regions.

7.1.3 Overall Conclusions

In this thesis we studied a combination of two complex and demanding fields,
namely the application of modern multi-core processors in safety-critical
real-time systems, especially avionics. Our contribution is threefold:

• we conducted a literature study and extracted the main challenges,
namely to address the predictability of on-chip interconnects and the
efficient deployment of software;

• we proposed temporal and spatial partitioning of hardware and soft-
ware in combination with mode-based mapping and scheduling to ad-
dress these challenges, and captured this in a model;

• we focused on task migration which is needed for mode-based map-
ping and requires to address the architectural novelties of multi-cores,
and we performed experiments in which we evaluated several transfer
methods on our test platform.

These contributions correspond to the three objectives that we set. From
the experiments we concluded that four transfer methods on our test plat-
form can transfer data deterministically. Each of these however requires
additional work to avoid or bound contention and thus enable guarantees
om Quality-of-Service. We showed the complexity of combining resource
reservation with lower-level concepts such as routing, buffering and flow
control to achieve deterministic communication.

We concluded that it is very hard to analyze the timing behaviour of large
coherent shared caches. It is however feasible to use a limited amount
of shared memory regions, especially when using read-only data. Private
caching strategies and scratchpad memories are also suitable for real-time

88

systems because timing analysis is simplified. The trade-off between the
limited use of shared data objects and private caches or scratchpads is not
trivial, as the latter are difficult to use because the programmer must explic-
itly manage data transfers. A combination of techniques allows designers to
select tailored solutions for the different challenges within one system.

The problem with shared resources however persists in all methods, therefore
the resources for data transfers must be reserved at design time to ensure
an upper bound on data access times. Deterministic inter-core communi-
cation can be achieved over reserved connections on programmer accessible
networks or through scratchpads or small memory regions that are explicitly
shared. If combined with data prefetching, such shared regions are suited for
deterministic task migration. On our platform this can be combined with
usage of the STN for streaming data and of the UDN when complemented
with software flow control. The latter can transport control traffic for the
former. Such use of physically different networks is desirable because it is
the strongest form of isolation. We see that the combination of multiple
mechanisms for explicit data management offer a range of possibilities for
deterministic communication. This even includes limited use of the shared
coherent cache, which is generally not considered suitable for real-time sys-
tems.

Our experiments show that it is possible to guarantee aspects of Quality-of-
Service for four out of five methods, but that prefetching has preference over
the explicit copy method which uses the same networks. We did however not
use sophisticated mechanisms for resource reservation, and did not test to
what degree the traffic is isolated. In other words, we could not show under
which circumstances the used transfer methods are not deterministic. Such
experiments require a significant enhancement of the software framework.
We did however extract the limitations of each method from the theory.
The tasks that we migrated in our experiments are furthermore not a re-
alistic representation of embedded real-time software. This does not affect
the validity of our experiments as we studied fundamental behaviour that
does not depend on the software functionality. The results of our experi-
ments show that deterministic task migration is possible, and thus confirm
the feasibility of mode-based mapping. During this process we showed that
the mapping of traffic at design time solves the problem of dealing with a
shared interconnect, and we presented several practical solutions for deter-
ministic communication. Overall our experiments confirm the feasibility of
the concepts we proposed to deal with the challenges, although there is still
much potential for further research.

We believe that our research is very relevant as the interest of manufactur-
ers of embedded systems in multi-cores is growing tremendously. It might

89

still take several years before multi-cores are applied in avionics because the
aerospace industry is very conservative. Our study is valuable input for this
lengthy process as it elaborates on the fundamental problems and possible
solutions. A short position paper based on this thesis was published in the
proceedings of the 3rd International Workshop on Multicore Software Engi-
neering (IWMSE) [26]. Our work is also relevant for real-time systems in
other domains such as automotive, medical and automation. Although the
constraints in those are not as strict as in avionics, the same fundamental
concepts can be used to match the domain-specific requirements.

7.2 Recommendations

In answering our first objective we uncovered many possibilities for further
research. Firstly, there are many possible extensions of the software parti-
tions in our model, such as:

• a more complex timing model, including e.g. the arrival time and task
period;

• inclusion of additional spatial constraints;

• more complex communication requirements (profiles), including e.g.
the bandwidth and latency.

This last item is crucial because the communication requirements of a task
must be determined to be able to map the traffic. Such communication
profiling is comparable with WCET analysis and is certainly not trivial.
Secondly, the hardware partitions in our model can be extended with for
example:

• multi-hop connections;

• inclusion of different transfer methods;

• flow control and buffering mechanisms;

• (worst case) timing information;

• additional (external) resources.

Thirdly the concept of mode-based mapping and scheduling can be explored
further.

The use of migration to exploit data locality and flexible redundancy are
research areas with much space left to explore. We investigated only one of
the requirements that we extracted to answer our second objective, namely
the deterministic transfer of tasks. The others however also have potential

90

for further research. Firstly, migrations must be triggered somehow. When
mode based mapping and scheduling are used, all cores must be notified
of the switch. Such a mechanism is not scalable if centralized. Potential
solutions for this problem include the use of self-organizing networks. Sec-
ondly, the WCET of tasks on multi-cores strongly depends on time required
for communication, which in turn depends on the location of the core to
which a task is mapped. The conservative approach is to consider the worst
case scenario, but there is much to win if only the feasible mappings are
considered for the timing analysis. Such an iterative optimization of param-
eters offers interesting opportunities for research, for instance using machine
learning. Furthermore the concept of transient modes is still an open sub-
ject as we did not apply it to specific transfer methods.

To address our third objective we presented a number of deterministic trans-
fer methods for Networks-on-Chip. These are a research domain of their own
where routing, flow control and buffering strategies must be tuned while ac-
counting for the network architecture. Furthermore the timing analysis of
network traffic and shared caches is in its infancy and contains many interest-
ing challenges. There is also much potential for expanding our experimental
setup. Alternative migration mechanisms and other platforms with different
transfer methods can be evaluated building on the framework.

When the actual implementation of multi-core processors in a safety-critical
design is considered, a number of more practical extensions of the experi-
ment should be evaluated. Firstly, real-time software with realistic timing
constraints should replace the software-under-test. Secondly the transfer
methods should be improved as suggested at the end of Chapter 6. The
framework should be extended so that multiple nodes can communicate si-
multaneously in order to evaluate the degree of isolation.

91

Bibliography

[1] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. Assessing task
migration impact on embedded soft real-time streaming multimedia
applications. EURASIP J. Embedded Syst., 2008:1–15, 2008.

[2] M. Al Faruque, T. Ebi, and J. Henkel. Run-time adaptive on-chip
communication scheme. In IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2007, pages 26 –31, nov. 2007.

[3] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling on
multicore platforms. In Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 179 – 190,
04-07 2006.

[4] ARINC. ARINC Specification 653P1-2: Avionics Application Software
Standard Interface Part 1 - Required Services. Technical report, Aero-
nautical Radio Inc., Maryland, USA, Dec. 2005.

[5] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline-monotonic approach. In Proc. IEEE
Workshop on Real-Time Operating Systems and Software, pages 133–
137, 1991.

[6] D. Barcelos, E. W. Brião, and F. R. Wagner. A hybrid memory or-
ganization to enhance task migration and dynamic task allocation in
NoC-based MPSoCs. In SBCCI ’07: Proceedings of the 20th annual
conference on Integrated circuits and systems design, pages 282–287,
New York, NY, USA, 2007. ACM.

[7] L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm.
Computer, 35(1):70 –78, Jan 2002.

[8] M. Bertogna and M. Cirinei. Response-time analysis for globally sched-
uled symmetric multiprocessor platforms. In 28th IEEE International
Real-Time Systems Symposium, pages 149 –160, 3-6 2007.

[9] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali. Supporting
task migration in multi-processor systems-on-chip: a feasibility study.

92

In DATE ’06: Proceedings of the conference on Design, automation and
test in Europe, pages 15–20, 3001 Leuven, Belgium, 2006. European
Design and Automation Association.

[10] T. Bjerregaard and J. Sparso. Scheduling discipline for latency and
bandwidth guarantees in asynchronous network-on-chip. In 11th IEEE
International Symposium on Asynchronous Circuits and Systems, 2005.
ASYNC 2005., pages 34 – 43, March 2005.

[11] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS archi-
tecture and design process for network on chip. 50(2-3):105–128, 2004.

[12] S. Borkar. Thousand core chips: a technology perspective. In Proceed-
ings of the 44th annual Design Automation Conference, DAC ’07, pages
746–749, New York, NY, USA, 2007. ACM.

[13] C. Breshears. The Art of Concurrency: A Thread Monkey’s Guide to
Writing Parallel Applications. O’Reilly Media, Inc., 1st edition, 2009.

[14] E. W. Brião, D. Barcelos, F. Wronski, and F. R. Wagner. Impact of
task migration in NoC-based MPSoCs for soft real-time applications.
In VLSI-SoC, pages 296–299, 2007.

[15] E. Carvalho, N. Calazans, and F. Moraes. Heuristics for dynamic task
mapping in NoC-based heterogeneous MPSoCs. pages 34 –40, May
2007.

[16] M. Cirinei, E. Bini, G. Lipari, and A. Ferrari. A flexible scheme for
scheduling fault-tolerant real-time tasks on multiprocessors. In IEEE
International Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007., pages 1 –8, March 2007.

[17] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-
connection networks. In DAC, pages 684–689, 2001.

[18] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, 2002.

[19] H.-J. Goltz and N. Pieth. A tool for generating partition schedules of
multiprocessor systems. In Proceedings of the 23rd Workshop on (Con-
straint) Logic Programming (WLP 2009), Potsdam, Germany, Septem-
ber 15-16, 2009.

[20] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on
chip: Concepts, architectures, and implementations. IEEE Des. Test,
22(5):414–421, 2005.

[21] A. Gryc. Zeitpartitionierung am beispiel freisprechsystem. Elektron-
ikPraxis, pages 28–31, May 2010.

93

[22] A. Hansson, M. Coenen, and K. Goossens. Undisrupted quality-of-
service during reconfiguration of multiple applications in networks on
chip. In DATE ’07: Proceedings of the conference on Design, automa-
tion and test in Europe, pages 954–959, San Jose, CA, USA, 2007. EDA
Consortium.

[23] A. Hansson and K. Goossens. Trade-offs in the configuration of a net-
work on chip for multiple use-cases. In NOCS ’07: Proceedings of the
First International Symposium on Networks-on-Chip, pages 233–242,
Washington, DC, USA, 2007. IEEE Computer Society.

[24] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: a scalable,
communication-centric embedded system design paradigm. In 17th In-
ternational Conference on VLSI Design, 2004, pages 845–851, 2004.

[25] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach, Fourth Edition. Morgan Kaufmann, 2007.

[26] R. Hilbrich and J. R. van Kampenhout. Dynamic reconfiguration in
NoC-based MPSoCs in the avionics domain. In IWMSE ’10: Proceed-
ings of the 3rd International Workshop on Multicore Software Engi-
neering, pages 56–57, New York, NY, USA, 2010. ACM.

[27] H. Jiang and V. Chaudhary. Compile/run-time support for thread mi-
gration. In Parallel and Distributed Processing Symposium., Proceed-
ings International, IPDPS 2002, pages 58 –66, 2002.

[28] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou. Partition scheduling in
APEX runtime environment for embedded avionics software. In Fifth
International Conference on Real-Time Computing Systems and Appli-
cations, pages 103 –109, Oct 1998.

[29] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing
analysis of concurrent programs running on shared cache multi-cores.
In 30th IEEE Real-Time Systems Symposium, 2009. RTSS 2009., pages
57 –67, 2009.

[30] D. S. Milóičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
Process migration. ACM, 32(3):241–299, 2000.

[31] A. Molnos, A. Milutinovic, D. She, and K. Goossens. Composable
processor virtualization for embedded systems. In Proc. Workshop on
Computer Architecture and Operating System Co-Design (CAOS), Lec-
ture Notes in Computer Science (LNCS). Springer, Jan. 2010.

[32] O. Moreira, J. J.-D. Mol, and M. Bekooij. Online resource management
in a multiprocessor with a network-on-chip. In SAC ’07: Proceedings

94

of the 2007 ACM symposium on Applied computing, pages 1557–1564,
New York, NY, USA, 2007. ACM.

[33] F. Nemati, J. Kraft, and T. Nolte. Towards migrating legacy real-time
systems to multi-core platforms. In IEEE International Conference on
Emerging Technologies and Factory Automation, 2008. ETFA 2008.,
pages 717–720, Sept. 2008.

[34] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest. Low cost task
migration initiation in a heterogeneous MP-SoC. pages 252 – 253 Vol.
1, March 2005.

[35] Y. Paindaveine and D. S. Milóičić. Process vs. task migration. vol-
ume 1, pages 636 –645 vol.1, jan. 1996.

[36] M. Pastrnak, P. de With, C. van Meerbergen, and K. Goossens. Mixed
adaptation and fixed-reservation QoS for improving picture quality and
resource usage of multimedia (NoC) chips. In IEEE Tenth International
Symposium on Consumer Electronics, 2006. ISCE ’06, pages 1 –6, 0-0
2006.

[37] R. Pop and S. Kumar. A survey of techniques for mapping and schedul-
ing applications to Network on Chip systems. Technical Report ISSN
1404 0018, Embedded Systems Group, Department of Electronics and
Computer Engineering, Jönköping University, 2004.

[38] P. Prisaznuk. Arinc 653 role in integrated modular avionics (ima). In
Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA
27th, pages 1.E.5–1 –1.E.5–10, Oct. 2008.

[39] J. W. Ramsey. Integrated modular avionics: Less is more. Avionics
Magazine, February 2007.

[40] J. Rushby. Partitioning for safety and security: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[41] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-assisted
migration of real-time tasks in multi-core processors. In LCTES ’09:
Proceedings of the 2009 ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools for embedded systems, pages 80–89, New
York, NY, USA, 2009. ACM.

[42] S. Schliecker, M. Negrean, and R. Ernst. Response time analysis on
multicore ECUs with shared resources. IEEE Transactions on Indus-
trial Informatics, 5(4):402 –413, nov. 2009.

95

[43] H. Shen and F. Petrot. Novel task migration framework on configurable
heterogeneous mpsoc platforms. In Asia and South Pacific Design Au-
tomation Conference, 2009. ASP-DAC 2009, pages 733 –738, jan. 2009.

[44] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Model-
ing the effect of technology trends on the soft error rate of combinational
logic. pages 389 – 398, 2002.

[45] P. Smith and N. C. Hutchinson. Heterogeneous process migration: The
Tui system. Technical report, Vancouver, BC, Canada, Canada, 1997.

[46] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langen-
bach, R. Wilhelm, and C. Ferdinand. An abstract interpretation-based
timing validation of hard real-time avionics software. In International
Conference on Dependable Systems and Networks, 2003, pages 625 –
632, 22-25 2003.

[47] Tilera Corporation. TILEPro64TM processor product brief, 2009.

[48] C. Watkins and R. Walter. Transitioning from federated avionics ar-
chitectures to integrated modular avionics. In Digital Avionics Systems
Conference, 2007. DASC ’07. IEEE/AIAA 26th, pages 2.A.1–1–2.A.1–
10, Oct. 2007.

[49] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal. On-chip intercon-
nection architecture of the tile processor. Micro, IEEE, 27(5):15–31,
Sept.-Oct. 2007.

[50] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory hierarchies, pipelines, and buses for future ar-
chitectures in time-critical embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):966
–978, july 2009.

96

Acronyms

API Application Programming Interface.

BCET Best Case Execution Time.

CDN Coherence Dynamic Network.

DAL Design Assurance Level.

IDN I/O Dynamic Network.

ILP Instruction Level Parallelism.

IMA Integrated Modular Avionics.

IP Intellectual Property.

ISA Instruction Set Architecture.

IWMSE International Workshop on Multicore Software Engineering.

LRU Least Recently Used.

MDN Memory Dynamic Network.

NI Network Interface.

NoC Network-on-Chip.

OS Operating System.

OSI Open Systems Interconnect.

QoS Quality of Service.

RTOS Real-Time Operating System.

97

SAF Store-And-Forward.

SoC System-on-Chip.

STN Static Network.

TDM Time-Division Multiplexing.

TDN Tile Dynamic Network.

TLB Translation Look-aside Buffer.

UDN User Dynamic Network.

VCT Virtual Cut-Through.

VLIW Very Large Instruction Word.

WCET Worst Case Execution Time.

98

Appendix A

Source Code

This appendix refers to the digital copy of the source code that accompanies
this thesis, which consists of the following files:

/bme migration /
bme frame . c
bme frame . h
bme mapping . c
bme mapping . h
bme measure . c
bme measure . h
bme tasks . c
bme tasks . h
bme worker . c
bme worker . h
copyr ight . txt
l i n u x c l i e n t . c
Make f i l e
msg . h
pc i . hvc

The hierarchy of the source files is depicted in Figure A.1. In addition to
the description of the test setup in Chapter 5 we will now provide some
practical instructions on how to use this code. Firstly, the code was only
tested with Tilera MDE version 2.1.0-rc.94454 and is not compatible with
MDE version 3.x or newer. Furthermore the code was only tested on a
Tilera TILEncoreTMcard with a TILEPro64TMprocessor. The code should

linux_client.c

bme_frame.c

bme_measure.cbme_mapping.cbme_worker.c

bme_tasks.c

Figure A.1: The source file hierarchy.

99

be compiled, uploaded and run with the following commands:

make a l l
make run pc i > f i l ename . txt

The raw results are printed to the terminal so it is useful to print those to
a file for processing later on. To perform the different experiments some of
the source files must be manipulated. Firstly, uncommenting the definition
of TEST on line 12 in file bme frame.h performs the experiments for only
100 iterations instead of 10.000, and prints only a summary of the results
to the terminal. This is useful to perform a quick check to see if the code
functions. Uncommenting the definition of SINGULAR in the same file on
line 15 performs any experiment only with a code and dataset size of 8000
bytes. This is useful to save time for experiments where only those results
are of interest. In the files bme worker.c and bme mapping.c many lines of
code are preceded by one or more integer numbers, and most of those are
commented out. The description of these numbers is listed in Table A.1.
To perform a specific experiment, uncomment all lines preceded by that
number and comment out all lines preceded by any other number. The code
is currently configured to execute experiment 34. To recreate a figure the
concerning experiments must be re-run and the results processed. Figure
6.5 for example requires the results of experiments 34, 36, 38, 40 and 60.
Note that experiments 1 to 33 and 46 to 49 were used in the research process
but are not related to any of the experiments described in this thesis.

Number Description

0 Timer test

1 Pull and execute instructions from own L2

2 Pull and execute instructions from L1-i

3 Pull and execute instructions from main memory

4 Pull instructions once from main memory, then execute from
L1-i

5 Prefetch and execute instructions from main memory

6 Prefetch instructions once from main memory, then execute
from L1-i

7 Load data from own L2

8 Load data from own L1-d

9 Load data from main memory

10 Load data once from main memory, then from L1-d

11 Prefetch data from main memory into L2

12 Prefetch data from main memory into L2, then load from
there

100

13 Prefetch data from main memory into L2 once, then load
from L1-d

20 Pull and execute instructions from another L2

21 Pull and execute instructions from another L2 once, then
execute from own L1-i

22 Prefetch and execute instructions from another L2

23 Prefetch and execute instructions from another L2 once,
then execute from own L1-i

24 Copy and execute instructions from another L2

25 Copy and execute instructions from another L2 once, then
execute from own L1-i

26 Copy and execute instructions from another L2 via the UDN

27 Copy and execute instructions from another L2 via the UDN
once, then execute from own L1-i

28 Copy data from another L2 via the UDN

29 Copy data from another L2 via the UDN once, then load
from L1-d

30 Prefetch data from another L2

31 Prefetch data from another L2 once, then load from own
L1-d

32 Copy data from another L2

33 Copy data from another L2 once, then execute from own
L1-d

34 Pull and load/execute data and instructions from another
L2

35 Pull and load/execute data and instructions from another
L2 once, then use L1 caches

36 Prefetch and load/execute data and instructions from an-
other L2

37 Prefetch and load/execute data and instructions from an-
other L2 once, then use L1 caches

38 Copy and load/execute data and instructions from another
L2 once

39 Copy and load/execute data and instructions from another
L2 once, then use L1 caches

40 Copy and load/execute data and instructions from another
L2 via the UDN once

41 Copy and load/execute data and instructions from another
L2 via the UDN once, then use L1 caches

101

46 Copy and execute instructions from another L2 via the STN

47 Copy and execute instructions from another L2 via the STN
once, then execute from own L1-i

48 Copy data from another L2 via the STN

49 Copy data from another L2 via the STN once, then load
from L1-d

60 Copy and load/execute data and instructions from another
L2 via the STN once

61 Copy and load/execute data and instructions from another
L2 via the STN once, then use L1 caches

Table A.1: Description of the experiments that belong to the numbers in the
source code.

102

	List of Figures
	Introduction
	Trends in the Avionics Domain
	Federated Architectures
	Research Incentives
	Integrated Modular Avionics

	The Potential of Multi-Core Processors
	Trends
	Overview of Architectures
	Multi-Cores in Avionics Systems

	Summary and Thesis Outline

	Multi-Core Processors in Real-Time Systems: Challenges
	Predictability
	Execution Time Dependencies
	Modelling Interconnects
	Interference on Shared Resources

	On-Chip Interconnects
	Networks-on-Chip
	Networking Concepts
	Quality-of-Service

	Deployment of Software
	Parallelism
	Static Mapping

	Summary

	Partitioning, Mapping and Scheduling
	Software Partitioning
	Temporal Partitioning
	Spatial Partitioning

	Hardware Partitioning
	Abstraction of Resources
	Composable Timing

	Mode-Based Mapping and Scheduling
	Optimizing Resource Usage
	The Mode-Based Approach

	Summary

	Task Migration
	Motivation
	Load Balancing
	Data Locality
	Power Management
	Redundancy

	Related work
	Basics
	Strategies
	Implementations

	Deterministic Task Migration
	Requirements
	Deterministic Communication
	Guarantees on Quality-of-Service

	Summary

	Task Transfer Experiments
	Approach
	Migration Model
	Transfer Methods
	Framework

	Experimental Setup
	Hardware Architecture
	Software Architecture
	Implementation of Transfer Methods

	Limitations
	Summary

	Experimental Results
	Precision of the Measurements
	Transfer Time
	Transfer Distance
	Execution Time
	Variations in Transfer Time
	Summary and Analysis

	Conclusions and Recommendations
	Conclusions
	Theory
	Experiments
	Overall Conclusions

	Recommendations

	Bibliography
	Acronyms
	Appendix Source Code

