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Abstract

The use of small satellites, enabled by the standardization of the CubeSat specifications
and miniaturization in electronics, has seen a rapid increase in the past decades. The low-
cost and short development time of these satellites has made them an attractive option for
both commercial and academic applications, making space exploration more accessible.
However, these small satellites are prone to failures, leading to lost scientific potential.
Mitigation of these failures forms the motivation for this thesis. Recent advances in
neural networks have shown promise in the field of anomaly detection. The black-box
nature of such models, however, makes it challenging to understand the reasoning behind
their predictions.

Constraining the data-driven models with known physics can not only help us understand
the reasoning behind their predictions, but also ensuring the model is consistent with
the real-world behavior of the system. The work presented in this Master’s thesis aims
to demonstrate the advantages of such first-principles neural networks over purely data-
driven models in thermal behavior modeling of small satellites. Baseline performance of
data-driven Long Short-Term Memory (LSTM) networks is established using FUNCube-1
telemetry data, quantifying the temperature prediction accuracy of the models under
ideal conditions. The limitations of these models, especially with sparse data, are then
investigated, to highlight the need for more robust models.

First-principles models, based on a physics-informed curve-fit and simplified thermal
network models, are then developed to constrain the data-driven model predictions. The
first-principles models are shown to be more robust to sparse data, with the predictions
on data not seen during training being more consistent with the real-world thermal
behavior of the satellite. Methods to relate the first-principles model parameters to the
physical properties of the satellite are also proposed and explored, to help extract the
evolution of the thermal behavior of the satellite over time.
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1
Introduction

The past twenty years have witnessed a remarkable increase in the capabilities and
complexity of missions undertaken by small-scale satellites, a trend that began with
the first CubeSat launch in 2000. By May 2023, the number of nanosatellites and
CubeSats deployed into space has reached roughly 2300 and 2000, respectively, and are
only expected to increase [32]. These figures demonstrate the growth and increased
reliance on these smaller satellite systems in space exploration and scientific research.

The transformational shift in small satellite missions can be traced back to the standardiza-
tion of CubeSat specifications in 1999 [23]. This standardization provided manufacturers
and researchers with a platform for designing and developing CubeSats with greater
certainty and efficiency. Moreover, it provided a clear definition and established guidelines
for the dimensions, design, and deployment of these satellites, thereby facilitating their
wider acceptance and use.

The 1990s also saw significant advances in the domains of micro-electronics and micro-
control systems. These technologies have had a significant impact on the manufacturing
process of CubeSats and other small satellites. Specifically, they have made it possible to
miniaturize complex electronic systems into a small form factor while maintaining, or
even improving, their performance. CubeSats can now be manufactured using readily
available and relatively inexpensive Commercial Off-The-Shelf (COTS) components [21].
This miniaturization has been crucial to the success of CubeSats, allowing them to be
adapted for complex tasks and missions.

The CubeSat standard introduced a unit of measurement called 1U, defined as a 10×
10× 10 cm3 cube. Satellites can be assembled to align with these dimensions, resulting
in a 1U CubeSats size. Moreover, these units can be combined to form larger satellite
structures. To keep up with modern advancements, the CubeSat standard undergoes
periodic revisions, the most recent of which was updated in February 2022 [39].

Historically, the primary applications of CubeSats were in educational endeavors, with
over a 100 universities involved in CubeSat missions [9]. They have also been used as
technology demonstrators, and in Earth observation missions [52]. Increasingly, CubeSats
are being recognized for their potential in contributing to the broader scientific missions,

1



2

especially in the fields of astrophysics and planetary exploration missions. They have been
tasked with diverse missions, from testing advanced propulsion systems [34] to studying
planetary formation [14], demonstrating the impressive versatility of CubeSats. Their
small dimensions and lower cost render them a compelling option for evaluating novel
technologies or carrying out experiments in space that may otherwise prove prohibitively
costly or risky with larger, more traditional spacecraft.

As of May 2023, 15 CubeSats have been sent on interplanetary missions [32], with NASA’s
InSight Mars lander mission in 2018 being the first. Two 6U CubeSats, named Mars
Cube One (MarCO), were utilized to establish a communications link with the InSight
lander during its descent into the Martian atmosphere [1]. This marked the first time
CubeSats had been deployed in an interplanetary mission. The CubeSats enabled near
real-time transmission of the InSight during its Entry-Descent-Landing (EDL) phase.
MarCO-B was also the first CubeSat to capture an image of Mars. The success of this
mission helped solidify the role of CubeSats in future interplanetary missions and opened
up exciting new possibilities for their use in space exploration.

Despite the significant strides made in the field of CubeSat technology, these missions are
not without their challenges. In particular, reliability issues have been a major hurdle,
often impacting the success and effectiveness of these missions. In 2018, it was noted
that about a quarter of all CubeSat missions suffered early loss of mission.

There are a multitude of approaches being explored to enhance CubeSat reliability and
mitigate the risk of mission failure. One such strategy is the improvement of mission
testing procedures [16]. By rigorously testing CubeSats under conditions that simulate
the harsh environment of space, it is possible to identify potential points of failure before
launch. This proactive approach allows for issues to be addressed in the design and
construction stages, greatly enhancing the chance of mission success.

System redundancy is another valuable approach to improve CubeSat reliability [8]. This
involves duplicating critical components or systems within the satellite. In the event that
a primary system fails, the backup system can take over, thereby maintaining functionality
and preventing mission failure. While redundancy can increase the complexity and weight
of CubeSats, the benefits of enhanced reliability often outweigh these costs.

While the aforementioned strategies are crucial in enhancing the reliability of CubeSats
during the design and development phase, anomaly detection methods can be used to
identify deviations from expected behavior. Early detection of such irregularities is pivotal
in enabling swift planning and implementation of corrective measures, thereby potentially
preventing mission failure. In this way, anomaly detection methods complement the
pre-launch reliability enhancements, offering a more comprehensive approach to ensuring
mission success.

Most CubeSats maintain connectivity with ground stations, facilitating the collection
of telemetry. This information is indispensable for assessing the current condition and
performance of the CubeSat. However, for those CubeSats used for deep-space missions,
the transmission of these telemetry streams can be affected by latency problems or
disruptions in the downlink owing to the loss of direct line-of-sight. CubeSats missions
developed by universities and other institutions with constrained budgets may face
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difficulties in maintaining constant data links with their CubeSats due to limited access
to ground stations.

This delay in receiving telemetry poses a significant challenge, as it can impose a lower
limit for identifying and responding to anomalies occurring on board the CubeSat. With
advancements in data transmission methods, the volume of data relayed by CubeSats has
grown significantly. However, this increase in data transmission can further contribute
to delays, particularly if the data needs to be manually reviewed to identify potential
anomalies. This underscores the significance of automated data analysis and anomaly
detection systems, which are capable of swiftly and precisely sifting through substantial
volumes of data, thereby ensuring prompt identification of potential issues and mitigating
the possibility of mission failure.

There are several anomaly detection methods that are used for space applications, such
as a simple threshold applied to satellite parameters. Selecting this threshold might
present challenges to mission designers, as all possible normal operating conditions must
be accurately identified using on-ground testing and simulation data. This might limit
the anomaly detection to only those that have been previously identified. Even when
anomalies are detected, identifying the root cause of the anomaly can present a challenge.
Successful identification of the cause of an anomaly can be used to address the issue using
in-flight software updates, saving the mission, and providing data for future missions.

Satellite telemetry fundamentally takes the form of time series data. As outlined by
Chandola, Banerjee, and Kumar [12], this kind of data, when considering anomalies, can
be categorized into three distinct types:

1. Point anomalies: These are individual data points that exist in regions of the data
space that are sparsely populated.

2. Contextual anomalies: These are data points that, while being outliers in compari-
son to their immediate, local values, do not necessarily fall within sparse regions
of the data space. They are anomalies within a specific context, making their
detection reliant on understanding the surrounding data.

3. Collective anomalies: These refer to sequences of data points that, taken together,
deviate from expected behavior. Unlike point or contextual anomalies, collective
anomalies aren’t about singular data points, but rather about unusual collections
or patterns of data in relation to the overall data set.

Machine learning techniques, in particular, various forms of Recurrent Neural Networks
(RNNs), have emerged as powerful tools for anomaly detection. The inherent architecture
of RNNs enables them to learn temporal dependencies in time series data, which makes
them ideally suited for identifying contextual and collective anomalies.

However, the use of machine learning in anomaly detection isn’t restricted to their role
as classifiers to separate nominal data from anomalies. An equally significant use case
lies in their potential for predicting future data points in the telemetry stream. The
difference between the predicted and actual telemetry values can be used as part of a
more comprehensive anomaly detection system to identify anomalies.

The use of machine learning for prediction problems, however, is not without challenges.
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In particular, when the training data is sparse and does not adequately represent the
full range of possible data points. Fully data-driven machine learning models are usually
black-box models, which makes it difficult to interpret the results and understand the
reasoning behind the predictions. The prediction of the models in data regions that are
not well represented in the training data can be unreliable.

The main objective of this thesis, at a high level, is to explore the possibility of combining
data-driven models with known physics to constrain the prediction space of the hybrid
model to be more representative of the actual system behavior. Such hybrid models, also
known as first-principles neural networks, have been used in the past to model various
ground-based systems. This thesis aims to explore the use of such models for modelling
the thermal behavior of small satellites. The work presented can be used to gain insights
on not just “what” are the predictions of the model, but also “why” the model is making
those predictions.

1.1. Overview of thesis

The thesis report is structured as follows: Chapter 2 provides an overview of the state-
of-the-art in anomaly detection methods and time series forecasting using machine
learning. Chapter 3 identifies the research gap and proposes the research questions
tackled. Chapter 4 describes the methodology adopted to answer the research questions
at a high level, with the subsequent chapters providing more details. Chapter 5 describes
the orbit propagation techniques explored to generate the satellite trajectories. These
trajectories are used to correlate the telemetry data with the satellite’s position in orbit.
The orbit-overlaying technique used to transform the telemetry data from time domain
to the satellites’ position in orbit, along with the preprocessing steps used to prepare the
data for the data-driven and first-principles neural networks, are described in Chapter 6.
Chapter 7 describes the performance of the various data-driven models explored in this
study and demonstrates some of their limitations. Chapter 8 describes the performance
of the two first-principles models explored in this study, and compares their performance
with the data-driven models, along with estimation of evolution of the parameters of the
first-principles models. Finally, the main conclusions drawn from the results presented in
this study and recommendations for future work are presented in Chapter 9.



2
Background

Designing an effective anomaly detection system presents several intricate challenges.
At its core, anomaly detection involves determining data regions that represent normal
operations, with any deviating data points being flagged as anomalies. Crafting a data
space that comprises all potential normal behaviors is a complex task, with the boundary
between normal and anomalous often being fuzzy and dependent on the specific context.

Simple anomaly detection algorithms typically use static thresholds for parameters in the
telemetry stream to discern anomalies. These Out-Of-Limits (OOL) methods categorize
data points that fall outside the pre-set boundaries as anomalies [25]. While OOL methods
have the advantage of simplicity and low computational cost, the process of setting the
thresholds requires substantial input from mission designers. They must meticulously
define the critical thresholds for all parameters, and despite these efforts, the approach
may overlook subtle but potentially important parameter shifts.

Several data-driven anomaly detection techniques have been employed for space system
telemetry. This includes nearest-neighbor approaches [27] and methods based on data
clustering [18], [28]. While these methods, including OOL methods, are adept at detecting
point anomalies, they struggle to identify contextual and collective anomalies due to the
difficulty of understanding long-term dependencies in the telemetry data.

2.1. Recurrent neural networks

The detection of contextual and collective anomalies presents significant challenges due
to the need for contextual understanding and the identification of broader patterns in
the data. RNN is a specific type of neural network that can be used to solve this problem.
Featuring a feedback loop, RNNs can incorporate temporal information, making them
ideal for dealing with data that changes over time [35], [42]. They have been used
effectively in time series forecasting, where past data points are used as inputs to predict
future values.

5
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However, RNNs are not without their limitations. A key issue is the vanishing gradient
problem, first described by Hochreiter [24]. Neural network training often involves
calculating error gradients at the output layer and backpropagating these gradients
through the network to update the weights. During RNN training, the backpropagation
step applies not only from the output layer to the input layer, but also over time, from the
most recent data point to the earliest. This can result in the network struggling to learn
long-term dependencies as it places a disproportionate weight on the most recent input
when predicting the output, with the gradients used for learning the weights reducing
exponentially over time. Hence, while RNNs present a promising approach for anomaly
detection in time series data, overcoming the vanishing gradient problem remains a crucial
challenge in fully exploiting their potential.

Gers, Schmidhuber, and Cummins [20] proposed a new modified type of RNN, the
Long Short-Term Memory (LSTM) network, developed to address the vanishing gradient
problem of traditional RNN. Figure 2.11 depicts the structure of an LSTM cell.

Figure 2.1: LSTM cell structure

LSTMs tackle this problem with a novel cell structure that includes a memory cell and
three types of gates: a forget gate, an input gate, and an output gate. Each gate performs
a specific function that collectively allows the LSTM to retain and manipulate information
over extended periods, hence, overcoming the shortcomings of traditional RNNs.

ft = σ(Wfhht−1 +Wfxxt + bf )

it = σ(Wihht−1 +Wixxt + bi)

ot = σ(Wohht−1 +Woxxt + bo)

c̃t = tanh(Wchht−1 +Wcxxt + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(2.1)

In the equations above, h is the vector of the hidden layer, c refers to the memory cell
vector of the hidden layer, x is the input vector, b is the bias vector, and W is the weight

1Image by Guillaume Chevalier, adapted under CC BY-SA 4.0 license
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matrix. σ and tanh are the sigmoid and tanh activation functions respectively described
in Equation 2.2 and Equation 2.3.

tanh(x) =
ex − e−x

ex + e−x
(2.2)

σ(x) =
1

1 + e−x
(2.3)

The design of LSTMs enables them to learn and remember patterns over long sequences,
making them highly suitable for applications involving time-series data, like telemetry
data from CubeSats. By allowing the network to learn long-term dependencies, LSTMs

are adept at modelling even complex relationships in the data. The application of LSTMs

in various time series prediction applications has been extensively studied and has shown
significant improvements over standard RNNs [10], [30], [48], [49].

A study on anLSTM-based anomaly detection method was carried out by Malhotra, Vig,
Shroff, et al. [33]. An LSTM network was trained using the Space Shuttle Marotta valve
data. The prediction error the nominal validation dataset and the LSTM-predicted data
was presumed to exhibit a Gaussian distribution (κ = κ(µ, σ)). The probability, p, of
encountering an error value e is represented by the value of κ at e. An observation xi
was categorized as anomalous if the value of pi for this observation was smaller than
a threshold pi < τ . The τ value is fixed based on the anomalous validation dataset to
ensure optimal precision with the least false-positive rate within the validation dataset.
The network demonstrated the ability to predict anomalies with 93% precision. It was
observed that the nominal data points succeeding an anomaly were also designated as
anomalous.

Hundman, Constantinou, Laporte, et al. [25] developed a dynamic thresholding technique
for the LSTM-based anomaly detection approach. No assumptions about the error
distribution pattern were made when determining the threshold. The prediction errors
within the validation datasets were formed into a one-dimensional vector as follows:

e = [e(t−h), ...., e(t−1), et] (2.4)

where h represents the number of historical errors, determined by the size of the validation
set. LSTMs are susceptible to error spikes due to sudden input changes, even when these
changes signify normal behavior [47]. Hence, the error vector was smoothed using an
Exponentially Weighted Moving Average (EWMA). A threshold value applied to the
smoothed error values was used to classify if the data point was anomalous. The threshold
was chosen such that, if all values above this threshold are discarded from the smoothed
error vector es, it results in the maximum reduction in the mean and standard deviation
of es. An anomaly pruning method was also applied to lessen the number of false positives
reported by comparing the prediction error change near the anomaly to the standard
prediction error noise present. This ensures that the regular noise in the telemetry stream
is disregarded. Using this approach, the authors detected anomalies in the Soil Moisture
Active Passive (SMAP) satellite and the Mars Science Laboratory (MSL) rover, Curiosity
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telemetry data with an average prediction error of 5.9%.

The advantage of employing LSTMs over traditional Multi-Layer Perceptrons (MLPs) is
that LSTMs can identify contextual anomalies by learning long-term dependencies in the
data. The authors discovered that the LSTM-based approach had an average recall of
69% and an average precision of 90.3% of the point anomalies for the SMAP and MSL

telemetry. Using anomaly pruning reduced the recall by an average of 4% while increasing
the precision by 39%.

2.2. First-principles neural networks

As discussed briefly in the previous section, neural networks can be trained to predict
complex, non-linear system behavior. The black-box nature of such models prevents the
user from analyzing the modeling method. The problem of overfitting the network to the
training data may render the network unable to extrapolate the relationships learned
to real-world data that might lie outside the training data. The number of neurons in
the network depends on the modeled behavior’s complexity. The number of neurons,
and thus the training time, can become significant while modeling systems with many
non-linear governing equations.

Modeling the complete behavior of space systems such as the attitude and dynamic control
model or the thermal model of a satellite is possible. However, the computational cost
for such tasks can be prohibitive, especially for real-time prediction. One might consider
a simplified model for ease of computation, but the accuracy of such models might not
have an acceptable accuracy under all conditions. To mitigate this, a possible solution
could be to use a simplified first-principles physical model, which is then augmented by a
neural network to correct the residuals of the physical model. This approach of hybrid
networks was studied as early as 1992 by Psichogios and Ungar [40] investigating the
modeling of a batch-fed bioreactor.

In their study, the authors compare the performance of a standard MLP, a hybrid network,
and an Extended Kalman filter with parameter estimation techniques. The MLP proved
effective in predicting cell growth in most areas, but suffered for sections with noisy inputs.
Furthermore, the MLP struggled to extrapolate data when inputs fell outside the range of
the training data. The hybrid network, on the other hand, displayed better performance
than a standard MLP, with enhanced capabilities in prediction and extrapolation. The
incorporation of first-principles physics into the hybrid model significantly contributed to
these improvements.

Additionally, the hybrid network was compared with a parameter estimation method using
Sequential Quadratic Programming (SQP), complemented by an Extended Kalman filter
for input noise removal. The researchers found that the hybrid network outperformed
the parameter estimation method, particularly when parameters were time-variant.

It is of importance to note that the architecture of networks employed in early hybrid
models were relatively basic, consisting of only a few hidden layers [38]. However,
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the landscape of recent research regarding hybrid neural networks has expanded to
accommodate the use of deep neural networks. These networks, equipped with multiple
hidden layers, have led to significant improvements in the accuracy of predictions. Studies
carried out by Chaffart and Ricardez-Sandoval [11], Bangi and Kwon [2], and Pinto,
Mestre, Ramos, et al. [38] have substantiated the efficacy of hybrid networks in modeling
complex industrial processes. The increased complexity of the neural network architectures
in these studies were made possible due to advancements in computational power. These
modern hybrid models exhibited performance trends akin to those observed in the earlier
study by Psichogios and Ungar [40], despite the advancements in complexity.

The hybrid models studied by Chaffart and Ricardez-Sandoval [11], Bangi and Kwon
[2] and Shah, Sheriff, Bangi, et al. [46] were series first-principles networks, with the
neural network predicting the parameters of the physical model. The network weights are
trained using the prediction error of the hybrid model. Since a black-box model is used to
estimate the parameters used in the first-principles model, it can result in scenarios where
the hybrid model prediction is accurate while the parameters predicted are physically
infeasible. Constraints can be applied to these parameters as a possible solution to make
a more robust approximation model. Such a series hybrid network might also fail to
accurately predict the system behavior when the underlying first-principles model fails
to account for some driving phenomenon of the process. A general series hybrid model is
depicted in Figure 2.2.

Physics informed
model OutputInput

Data-driven model
Figure 2.2: Schematic of a series hybrid model

Sun, Yang, Wang, et al. [50] studied the prediction capability of parallel hybrid networks,
which use a neural network to correct the residuals of the first-principles model. A general
parallel hybrid model is depicted in Figure 2.3. Sun, Yang, Wang, et al. [50] described
the prediction of a cobalt removal process using a parallel hybrid network. The authors
compared the hybrid model with the performance of the first-principles model alone and
a purely data-driven MLP model. The authors demonstrated that the data-driven model
had approximately 50% improvement in the RMSE over the first-principles model they
used, and the hybrid model had approximately 50% improvement over the data-driven
model.

In a study conducted by Johnson, Quackenbush, Sorensen, et al. [29], the application of
first-principles based neural networks for the control of soft robots was examined. The
employed model utilized two MLPs; a surrogate network developed based on the first-
principles physics model, and an error network for compensating the residual inaccuracies
of the surrogate network in predicting the actual behavior. Numerous factors pertaining to
material properties were neglected in the first-principles physics model. By using current
position data and the commanded pressure, the combined surrogate and error networks
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Physics informed
model

Residual model

OutputInput

Figure 2.3: Schematic of a parallel hybrid model

were used to predict the robot’s behavior two seconds into the future. A controller loop
was developed with the neural network in order to predict future outputs for calculating
required inputs for the system to maintain a pre-set tracking angle. The study concluded
that the mean tracking error was reduced by 52% when the error network complemented
the surrogate network. A substantial reduction in the median tracking error by an order
of magnitude was also witnessed. Gathering a large quantity of raw data to construct
a pure data-driven neural network state estimator capable of capturing the intricate
non-linear behavior with intricate component interactions inherent to the soft robot would
have posed a challenge. However, the authors highlighted that the surrogate network
could be trained solely on simulated data derived from the first-principles physics model,
which was relatively straightforward to procure. Given that the error network is solely
responsible for learning the residuals, its size is considerably smaller than the surrogate
network, thereby reducing the need for extensive training data and the overall training
time. The prediction accuracy of the hybrid model substantiates the capacity of parallel
hybrid networks in capturing behavior that remains unmodeled in the first-principles
model.

Quadcopters, at low speeds, are fairly uncomplicated systems to model. The modeling
can be carried out by employing a mix of momentum exchange theory and blade element
theory to ascertain the aerodynamic forces and moments influencing the system. However,
these models fail to capture the interaction between the rotor wake and the drone frame,
which gives rise to considerable forces and moments at high speeds. This airflow data
can be modelled using Computational Fluid Dynamics (CFD) methods. Despite their
efficacy, CFD methodologies are computationally taxing, rendering their application in
real-time scenarios challenging. Bauersfeld, Kaufmann, Foehn, et al. [3] investigated the
utility of a hybrid network grounded on the Boundary Element Method (BEM) theory as
the first-principles physics model. They also considered other strategies, such as a MLP

and a grey-box parametric model [51]. An MLP was run concurrently with the physics
model to compensate for the residuals in the BEM model. It was observed that the hybrid
model consistently outperformed the alternative methods studied. Even when the hybrid
model was trained solely on data corresponding to slow-speed flight, it exhibited superior
extrapolation of high-speed flight behavior compared to other approaches. The researchers
also emulated different flight trajectories at varying speed regimes to scrutinize the impact
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of speed on the predictive proficiency of the studied methods. At slower speeds, nearing
hover, all models demonstrated approximately equal performance. Nevertheless, the
hybrid BEM model significantly outperformed others in modeling forces and moments at
high speeds.

Based on the aforementioned studies, the first-principles neural networks demonstrate
superior capability to extrapolate training data for fitting actual data. The imposition of
an underlying physics-based model ensures that input interactions align with physical
interactions, thus facilitating improved generalization of predictions. These hybrid
networks also offer the advantage of probing limitations in the first-principles model,
such as overlooked interactions, by examining the residual behavior from the neural
network. Series hybrid models excel when the first-principles align reasonably well with
real-world modeling effects. However, their performance markedly deteriorates when the
first-principles model neglects certain interactions. In contrast, parallel hybrid networks
exhibit greater resilience to such modeling limitations.

2.3. Satellites and Telemetry Data

Data from three small satellites, namely Delfi-C3, Delfi-PQ and FUNcube-1 were used
for this study

Delfi-C3 is the first satellite developed by TU Delft. It was launched on April 28, 2008,
as a secondary payload on the PSLV-C9 rocket from the Satish Dhawan Space Centre in
India. Delfi-C3 was inserted into a Sun-synchronous Low Earth Orbit (LEO). The orbital
characteristics of Delfi-C3 are summarized in Table 2.1.

Table 2.1: Orbital characteristics of Delfi-C3 (calculated using TLE generated on 2023-06-18 02:21:36)

Apoapsis 461.916 km

Periapsis 449.308 km

Orbital period 93.702min

Eccentricity 0.00092250

Inclination 97.3012◦

RAAN 190.1691◦

Argument of periapsis 122.059◦

Four Thin-Film Solar Cells (TFSCs), which are technology demonstrators from Airbus
DS, Netherlands, along with the On-Board Computer (OBC) and the two Radio Am-
ateur Platforms (RAPs) (RAP-1 and RAP-2), make up the seven available temperature
measurements in the telemetry. The four TFSCs are labeled according to their position
relative to the body co-ordinate frame depicted in Figure 2.4: TFSC Z+X+, TFSC Z+X-,
TFSC Z-Y+ and TFSC Z-Y-. The other techonolgy demonstrator aboard the CubeSat,
the Autonomous Wireless Sun Sensors (AWSSs) developed by TNO, Netherlands, was
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intended to provide attitude measurements. The data from the AWSSs, however, have
been challenging to recover [22].

Figure 2.4: Delfi-C3 [22]

Delfi-PQ is the third satellite developed by TU Delft. Launched on January 13, 2022,
as a rideshare on the SpaceX Transporter-3 mission, Delfi-PQ was inserted into a Sun-
synchronous LEO. The orbital characteristics of Delfi-PQ are summarized in Table 2.2.

Table 2.2: Orbital characteristics of Delfi-PQ (calculated using TLE generated on 2023-06-18 02:21:36)

Apoapsis 463.986 km

Periapsis 451.745 km

Orbital period 93.748min

Eccentricity 0.00089530

Inclination 97.4595◦

RAAN 240.9528◦

Argument of periapsis 240.8804◦

The Delfi-PQ telemetry contains seven temperature channels: one each for the four solar
panel blocks (solar panels Xp, Xm, Yp and Ym), one on the Microcontroller Unit (MCU)
and two for the battery. The two battery temperatures are measured using two different
sensors, with the data from the TMP20 sensor chosen for use in this study due to its
superior data quality, as ascertained from the preliminary analysis of the telemetry.

FUNcube-1, depicted in Figure 2.51, is a 1U CubeSat developed by AMSAT-UK. It was
launched on November 21, 2013, as a secondary payload on the Dnepr rocket from the
Yasny launch base in Russia. FUNcube-1 was inserted into a sun-synchronous LEO. The
orbital characteristics of FUNcube-1 are summarized in Table 2.3.

The FUNcube-1 telemetry contains eight temperature channels: black chassis, silver
chassis, black panel, silver panel, solar panels +X -X +Y and solar panel -Y.

1Picture by Wouter Weggelaar, used under CC BY 3.0
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Figure 2.5: FUNcube-1

Table 2.3: Orbital characteristics of Funcube-1 (calculated using TLE generated on 2023-06-18 02:21:36)

Apoapsis 643.956 km

Periapsis 572.501 km

Orbital period 96.858min

Eccentricity 0.00511390

Inclination 97.6713◦

RAAN 132.6663◦

Argument of periapsis 272.0532◦



3
Research questions

The state-of-the-art described in the preceding chapters demonstrate the potential of
utilizing LSTM networks in time series predictions. These predictions serve as an initial
step in the anomaly detection methodologies developed by Malhotra, Vig, Shroff, et al.
[33] and Hundman, Constantinou, Laporte, et al. [25].

The research cited in Section 2.2 showcases the application of first principles-based
neural networks in modeling complex systems. The findings demonstrate that hybrid
models can perform better when extrapolating training data to fit actual data. Improved
performances are due to the machine learning model having access to the first-principles
model, which keeps the input interactions consistent with physical interactions. This
allows for better generalization of the predictions. By observing the behavior of residuals
from a neural network, we can examine limitations in the first-principles model, such
as overlooked interactions. The series hybrid models exhibited good performance when
the first principles were relatively precise in real-world modeling effects. However, their
performance significantly deteriorates when there are neglected interactions in the first
principles model. Conversely, parallel hybrid networks demonstrate more resilience to
such modeling constraints.

More precise modeling of telemetry data can augment the performance of anomaly
detection methodologies. Studies into the use of first-principles neural networks for
space-based applications is currently limited, with much of the studies primarily focusing
on chemical and industrial process modeling.

This study aims to bridge this gap, by investigating the utilization of first-principles
neural networks for modeling satellite telemetry data. Furthermore, the comparison of
the results of these models with those of pure data-driven models can be used to validate
the hypothesis that the first-principles models are superior at extrapolating data for
satellite telemetry data. The findings from this study can be leveraged to enhance the
performance of satellite models used in anomaly detection methodologies.

Purely data-driven models limited in their ability to extrapolate data, especially important
to Delfi-PQ where the available telemetry data is discontinuous and sparse. Telemetry
data for CubeSats by TU Delft, namely Delfi-C3 and Delfi-PQ, are readily available for

14
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use in this study. In addition, limited data also available for FUNcube-1. Given the
multiple temperature sensors installed on these satellites, from a preliminary analysis of
the telemetry data, the satellite’s thermal behavior was identified as a suitable candidate
for modeling using first-principles neural networks.

Furthermore, two distinct first-principles models were identified for implementation in
this study, with varying degrees of complexity. The first is a lumped capacitance model,
and the second is a thermal network model. Despite their inherent differences, both
models offer the advantage of simplicity in both their implementation and evaluation.
This translates to relatively low inference times for the models, making them an efficient
choice for this study.

The following research questions were identified for this study:

1. How effective are the data-driven neural networks in predicting the temperatures
of small satellites?

i What prediction accuracy can be achieved using LSTM models when full orbit
data is available?

ii What input data is required for the models?

iii How does the performance of these models differ between nominal and anoma-
lous regions?

iv What is the effect of using residual networks in improving temperature predic-
tion accuracy?

v How can the models cope with regions without data, such as for Delfi-PQ?

2. How does the performance of first-principles model compare to the data-driven
models?

i What are the major sources of error in first-principles models, and how do
they compare to data-driven models?

ii How does the performance vary with the different first-principles models?

iii How does incorporating physics-based models affect the performance in regions
without data?

iv What role do residual networks play in improving/reducing the performance
of first-principles models?

v How does the performance of first-principles models vary with different as-
sumptions, especially on heat input?

3. Can the evolution of the physical parameters of the satellite be estimated from
the thermal network optimization process?

i What physical parameters are critical to the thermal model of the satellite?

ii Can the available data be used to extract changes in the parameters of the
first-principles model?

The first sub-question aims to develop a baseline for the performance of the data-driven
models. LSTM models were chosen as the base data-driven model due to the architecture
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of the LSTM cell being well-suited for time series predictions due to the presence of a
memory cell. This has also been demonstrated in the studies cited in Chapter 2.

The second sub-question aims to compare the performance of the first-principles models
with the data-driven models, and to identify the major sources of error in the first-
principles models.

The third sub-question aims to identify the physical parameters that are critical to the
thermal model of the satellite, and to identify if the available data can be used to extract
changes in the parameters of the first-principles model, which are very challenging to
extract from purely data-driven models or to measure in-orbit.



4
Methodology

In this chapter, the methodology used to develop the thermal models, the rationale
behind the choices made, and a high-level overview of the key results to justify the choices
are discussed.

4.1. Data pre-processing

The telemetry from all three satellites was pre-processed to remove outliers before being
used for training and testing the machine learning models. The telemetry from Delfi-C3

and Delfi-PQ is sparse, with data available only over receiving ground stations. For
Delfi-C3, the absence of an on-board battery meant that the telemetry was only available
when the satellite was in sunlight. The telemetry from FunCUBE-1, on the other hand,
was available as a regularly sampled continuous time series, with one telemetry frame
available per minute.

The telemetry frames were first transformed from time domain to spacial domain using the
orbital overlaying technique described in Section 6.1. This was done to reduce the sparsity
of available telemetry for Delfi-C3 and Delfi-PQ, by mapping all available telemetry onto
a single orbit. To keep the analyses consistent, the orbit overlaying was also performed on
FunCUBE-1 data, even though the telemetry was available as a continuous time series.

As a prerequisite for the orbit overlaying, the position of the satellites at the time of
each telemetry frame was required. This was obtained by propagating the TLEs of the
satellites, using the Simplified General Perturbations 4 (SGP4). The selection of the SGP4

was based on the results described in Section 5.2. To make the computation of the angles
required for the orbit overlaying efficient, the position, and velocity vector of the satellites
were initialized for every available TLE and propagated until the next available TLE using
the SGP4. The TLEs do not provide the exact position of the satellite at epoch = 0, and
contains some positional and velocity inaccuracy. Racelis and Joerger [41] show that
the position error of the TLEs can be expected to have a standard deviation of < 6 km
centered around ±1 km. At LEO orbital velocity, this represents a “time” error of less

17
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than 1 s, which was considered acceptable for modeling the relatively slower thermal
behavior of the satellites. 3D Cartesian interpolators were then constructed using the
propagated position and velocity vectors, and stored for use during the orbit overlaying.
The use of pre-computed interpolators reduced the look-up time for the position and
velocity vectors at any epoch within the time range of the available TLEs.

A Python package, SSA-Calc, was developed based on work by Zhang [53] to calculate the
angles required for the orbit overlaying using the position and velocity vector interpolators.
The orbit overlaying, Additionally, was used to conveniently visualize the large amount
of telemetry data available for the three satellites. The telemetry was found to contain
several outliers, which were cleaned using the procedure described in Section 6.2. The
cleaned telemetry was then used for training and testing purely data-driven neural
network models and first-principles based models.

4.2. Data-driven models

Purely data-driven models were used to establish a benchmark to compare the first-
principles based models against. An important restriction was set on the data-driven
models: the models only have access to data that the satellites can reasonably have
access to in space, to allow future studies into the possibility of using the models onboard
the satellite for autonomous operations. Thus, inputs such as the orbital position of the
satellites were not used.

As an initial test case, a temperature-based univariate time series prediction problem
was investigated for FunCUBE-1. The black panel temperature was selected as the
channel investigated due to the large fluctuations from the mean temperature trend
due to tumbling, presenting a challenging case to model. The prediction problem was
formulated as follows:

Predict the black panel temperature Tn+1 at time step tn+1 using the black panel tempera-
tures [Tn−w+1, Tn−w+2, ..., Tn−1, Tn] at time steps [tn−w+1, tn−w+2, ..., tn−1, tn] as the inputs,
where w is the input window size.

Since the FunCUBE-1 telemetry is available at 1min interval, an input window size of
w = n corresponds to n min of previous telemetry. The input window size was found
to have a significant impact on the prediction error of the model. For small window
sizes of w < 3, the model was unable to fully resolve the temperature fluctuations due
to tumbling. With an increase in w, up to approximately w ≈ 10, the ability of the
model to resolve fluctuations due to tumbling got better. For even larger input window
sizes, the models regressed towards the mean temperature trend over the orbit. Since
the weights and biases of each LSTM cell in the network is initialized psuedo-randomly
before training, the exact boundary of these three regions is fuzzy.

To check the robustness of the model for real-life applications, the model predictions were
tested with temperature data known to contain anomalies. Ideally, the model prediction
error in the anomalous region would be expected to be larger than the nominal region,
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with the prediction error returning to nominal as soon as the anomaly ends. This would
allow the anomalous region to be successfully identified and isolated. Since the model
input includes any previous anomalous temperatures, the predicted temperatures for
small window sizes were observed to fit to the anomalous behavior, with the prediction
error being similar to nominal data. For larger input window sizes, with more time steps
required to fill the input window fully with the anomalous inputs, the prediction error
was observed to be large in the anomalous region. But, due to the larger window size,
the prediction error continued to be large even after the anomaly had ended.

As a possible solution to decouple the predicted temperatures from previous measured
temperatures, an illumination-based model was investigated. The new prediction problem
had the following formulation:

Predict the black panel temperature Tn+1 at time step tn+1 using the satellite illumination
[In−w+1, In−w+2, ..., In−1, In] at time steps [tn−w+1, tn−w+2, ..., tn−1, tn], where w is the input
window size. The illumination input Ii = 1 if the satellite is in the illuminated section of
the orbit at time step ti, or Ii = 0 if the satellite is in eclipse.

The illumination status of the satellite can be possibly inferred based on the solar panel
voltages, without requiring any orbital position information. FunCUBE-1’s orbit has
a fraction of eclipse of fe ≈ 0.3. The minimum input window size required to assign a
unique sequence of illumination values to all sections of the orbit is wmin = P · (1− fe) ≈
68 minutes, where P is the orbital period. The model, similar to temperature-based
models with large input window sizes, regressed to the mean temperature trend. Since
the satellite tumbling is not synchronous with the orbital period, without additional
attitude information, the model was unable to resolve the temperature fluctuations due
to tumbling.

Since the illumination-based models were decoupled from measured temperatures, anoma-
lous temperatures did not affect the model predictions. Thus, by monitoring the prediction
error, the anomalous regions can be successfully identified and isolated.

To resolve the temperature fluctuations due to tumbling, a residual network for the
illumination-based model was investigated. The illumination-based model prediction
and a small window of previous measured temperatures were used as the inputs to the
residual network. The prediction problem for the residual network was formulated as
follows:

Predict the base model residual Rn+1 at time step tn+1 using the base model prediction
Tn+1 and the previous measured temperatures [Tn−w+1, Tn−w+2, ..., Tn−1, Tn] at time steps
[tn−w+1, tn−w+2, ..., tn−1, tn] as the inputs, where w is the input window size.

The use of residual network allows having two different models: the base model which
is independent of temperatures measured by on-board sensors, and a combined base
and residual model which incorporates the measured temperatures. The combined
model prediction was calculated as T ′

n+1 = Tn+1 +Rn+1. Since the input window sizes
investigated were small, the residual model was built as a feed-forward MLP instead of
a LSTM network. For residual window sizes of w > 5, the combined model was able
to resolve the temperature fluctuations due to tumbling, with larger step sizes having
diminishing effect on the prediction error. For an illumination-based model with w = 96
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and a residual model with w = 10, the combined model prediction error on the test data
was found to have µ = 0.0◦C and σ = 0.9◦C.

The combined model was also found to be scalable to predict on all eight available
temperature channels in the telemetry without any changes to the model architecture.
With the additional information available from the other temperature channels, the
combined model was able to resolve the temperature fluctuations due to tumbling even
for small input window sizes of w = 2 for the residual network.

Delfi-PQ, with its telemetry being sparse and containing sections of orbit with no data,
demonstrated the limitations of using a purely data-driven models. The predicted
temperatures for sections of orbit with no data were found to be inconsistent with the
expected temperature trends in these regions, thus reducing the confidence in the model
predictions in these regions.

4.3. First-principles based models

As described in the previous section, purely data-driven models were found to have bad
generalization in regions of orbit with no available training data. Since these data-driven
models are black-box models, it is difficult to understand the exact behavior being
modelled by the network. As a possible solution, hybrid physics-informed first-principles
models were investigated. The inclusion of first-principles models in the hybrid model
ensures that the model is consistent with the approximate, but known, physical behavior
of the system. The first-principles models were also found to be robust to the lack of
training data in regions of orbit with no data.

Two first-principles models were investigated: an exponential curve-fit based on the
lumped capacitance model, and a thermal network model. If only conductive heat
transfers are considered for the nodes, the rise, and fall of temperatures of the nodes can
be modelled using exponential curves [5]. A curve-fit model was studied by using the
training dataset to fit exponential curves for each of the available temperature channels
to use as the first-principles model.

The use of such a cuve-fit approach as the first-principles model was validated using
the full orbit data available for FunCUBE-1. The curve-fit model was observed to have
similar prediction error as the previously investigated illumination-based LSTM model.
With its use validated on FunCUBE-1 data, a similar approach was used to improve the
prediction confidence for Delfi-PQ telemetry in regions of orbit with no data. Similar
to FunCUBE-1, the illumination-based LSTM model and curve-fit model had similar
prediction error for Delfi-PQ data.

A hybrid LSTM model, combining the advantages of both data-driven and physics-informed
approaches, was investigated by adding synthetic temperatures obtained using the curve-
fit model to the available training dataset for Delfi-PQ. The resulting hybrid model was
observed to have the same predictions as the illumination-based models for regions of
orbit with available telemetry and predictions being closer to probable true temperatures
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for sections without data, though this cannot be tested without additional data. Since,
the predictions of the hybrid model and the illumination-based model were similar for
regions with data, the residual networks developed for the illumination-based model
could be reused with the hybrid model without further modifications.

The curve-fit model, though being better than purely data-driven models for predictions
in regions with no data, still was limited due to each node being modelled independently
due to the separate curve-fit performed per node. Though the data-driven part of the
hybrid model might have learned the connection between the nodes, since they were not
explicitly defined, the physical accuracy of such learned connections is not known. All
heat transfers are also assumed to be conductive in the curve-fit model, which is a close
approximation for the heat transfers between the nodes, but not for the heat received by
the satellite from the Sun and Earth and the heat loss due to radiative emissions.

A more complex first-principles model, a thermal network model based on the electrical
equivalence of heat transfer between the nodes [4], was studied as another physics informed
model to tackle the limitations of the curve-fit model. The thermal network model for
Delfi-PQ developed by Ruiz [44] and Cinotti, Lusvarghi, Marchese, et al. [13] was used
as the starting model. The thermal simulation of the temperatures of the nodes was
performed with several assumptions and simplifications to reduce the complexity of the
model, described in more detail in Section 8.2.2. As a result of these assumptions, the
thermal network model was found to have a large prediction error when compared to
the measured temperatures. To improve the accuracy of the thermal network model, the
parameters of the model, namely the absorptivity (α) and emissivity (ϵ) of the six outer
panels, and the heat capacities of the battery and the MCU, were tuned using a stepwise
optimization approach, using Nelder-Mead optimization algorithm [17], to minimize the
RMSE of the model predictions. The resulting thermal network model was found to have
a prediction error of RMSE = 3.65◦C on the test data, which is an improvement over
the prediction error of RMSE = 7.5◦C for the original thermal network model. Similar
to the curve-fit models, the prediction error of the physics-informed base model could
be reduced by adding a data-driven residual network to the model. The inputs to the
residual network were the base model prediction and the previous measured temperatures
in an input window of size w.

The satellite’s physical properties are expected to evolve with time due to aging. The
mean temperature trend of the satellite is also expected to vary not only due to the
changing physical properties but also due to the seasonal and long-term changes in the
solar flux received by the satellite. To attempt to observe the impact of these changes on
the optimized parameters of the thermal network model, the temperature telemetry was
batched into periods of intervals ranging from 30 to 90 days, and the variation of the
optimization results were investigated for different batches.
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4.4. Computational framework

It was considered important to use open-source software packages to develop the tools
and programs required to reach the proposed objectives. The use of open-source software
packages would enable others to easily adapt the outcome of the thesis project to their
requirements, enabling further technological development in the field. Python was chosen
as the programming language of choice based on well documented pre-existing modules to
build machine learning models and the availability of community support for commonly
known issues. This enabled an efficient workflow for this thesis.

SatMAD, an open-source Python package with in-built integration with TLEs, was used
for orbit propagation. All neural networks were implemented in Tensorflow, a feature-
rich module for machine learning applications, with Graphical Processing Unit (GPU)
accelerated computations enabled through the Nvidia CUDA and cuDNN libraries. The
curve-fit and optimization algorithms were implemented using SciPy.



5
Orbit Propagation

5.1. Two-line elements

The TLE set is a data format used to encode sets of orbital elements at a point in time,
or epoch, that describe the trajectories of Earth-orbiting satellites. The format was
originally designed by the North American Aerospace Defense Command (NORAD) to
make it easy for computers of the era to track satellites and predict their future locations.

A TLE is composed of two (and optionally a third) lines of ASCII text, each containing
a series of specific and precisely formatted data elements. Each line contains a set of
parameters that provide essential details about a satellite’s orbit. An example of a TLE
is shown in Figure 5.1, and the description of the fields in the TLE are summarized in
Table 5.1.

u

DELFI C3

a b c d e f g h i j

1 32789U 08021G 23001.00216029 .0002466 00000-0 11529-2 0 999 4

2 32789 97.3241 25.6810 0009233 7.1097 353.0268 15.19729105801961 8019 6

k l m n o p q r s t

Figure 5.1: Example of a TLE

For this thesis project, the TLEs for the satellites Delfi-C3, Delfi-PQ, and FUNcube-1
were retrieved from the Space-Track1 database. The histograms of the time intervals
between all available TLEs of these three satellites, up to February 2023, are graphically
represented in Figure 5.2. Table 5.2 summarizes key statistical data concerning this
distribution. Notably, the average time interval between the TLEs for all the satellites
is less than a day, with very few instances where the time difference exceeds two days.
Consequently, the selection of an appropriate orbit propagator for this project was based
on an assessment of the accuracy of various propagators over a propagation duration
of two days. This choice was deemed rational given the relatively short average time
interval between subsequent TLEs.

1https://www.space-track.org
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Table 5.1: Description of the fields in the TLE

, ,

Line 0 (optional)

Field Description

u Line number, always 0

Line 1

Field Description

a Line number, always 1

b Satellite catalog number
with classification type
(U: unclassified, C: classified, S: secret)

c International designator

d Epoch (first two digits: year,
remaining digits: day of the year)

e First derivative of mean motion

f Second derivative of mean motion
(decimal point assumed)

g B* drag term

h Ephemeris type (always 0)

i Element set number

j Checksum

Line 2

Field Description

k Line number, always 2

l Satellite catalog number

m Orbit inclination (degrees)

n Right ascension of the ascending node (degrees)

o Eccentricity (decimal point assumed)

p Argument of perigee (degrees)

q Mean anomaly (degrees)

r Mean motion (rev / day)

s Revolution number at epoch

t Checksum
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Figure 5.2: Histogram of the time between TLEs

Table 5.3: Time difference statistics between TLEs for Delfi-C3, Delfi-PQ, and FUNcube-1

Satellite TLE time range

TLE time difference
statistics

Maximum (days) µ(days) σ(days)

Delfi-C3 2008-20203 5.03 0.61 0.35

Delfi-PQ 2022-2023 3.23 0.53 0.29

FUNcube-1 2013-2023 5.42 0.58 0.37

5.2. Orbit propagators

The TLEs provide the ability to determine a satellite’s position and velocity at the specific
epoch of the TLE’s formulation. However, these epochs do not align with the epochs of
the available telemetry data. To address this discrepancy, numerical orbit propagation
was used to calculate the intermediate positions and velocities between the available
TLE epochs. This approach ensured a seamless representation of the satellite’s motion,
bridging the temporal gaps between subsequent TLEs.
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SatMAD, an open-source Python package offering orbit propagation capabilities [26], was
chosen as the computational framework for orbit propagation for this study, primarily
due to its robust interoperability TLEs. Two propagation models were investigated: a
numerical integration model based on a two-body system, and a propagator relying on
the Simplified General Perturbations 4 (SGP-4) model.

5.2.1. Two-body model

A simple differential equation for the motion of a satellite around Earth is described in
Equation 5.1. Some assumptions made here are:

• The Earth is modeled as a perfect sphere.

• The satellite is modeled as a point mass orbiting the Earth.

• The only force involved is the gravitational force between the satellite and the Earth.
No other forces, such as atmospheric drag or radiation pressure, are considered.

−̈→r = − µ

r3
−→r (5.1)

In Equation 5.1, r⃗ is the position vector of the satellite, µ is the gravitational parameter
of the Earth, and r is the magnitude of the position vector.

Given an initial position and velocity vectors of a satellite, derived from the TLE, the
position and velocity vectors at a future time can be determined by numerically integrating
the Ordinary differential equation (ODE) described in Equation 5.1. Due to the simplicity
of the model, the computational cost of the propagation is small.

Based on the results of the accuracy tests described in the SatMAD documentation2,3,
the DOP853 algorithm, which is an explicit eighth order Runge-Kutta method, was
chosen as the ODE solver, with an absolute error tolerance of 10−14 and a relative error
tolerance of 10−12 for each time step.

To assess the inaccuracy in the predicted satellite position, the satellite position and
velocity were initialized by selecting 500 random TLEs for each of the three satellites.
After a propagation duration of two days, the predicted positions and velocities were
compared against other available TLEs available for the propagation duration. Figure 5.3
depicts the mean and standard deviation of the predicted position and velocity errors of
the three satellites.

Since all three satellites are on similar orbits, their position errors were also observed
to be similar (≈1000 km), which was deemed too large to be used for predicting the
temperature of the satellites. To understand the source of this error, the predicted specific
energy of the satellite was compared with the specific energy calculated from the TLEs.
The specific energy was calculated using the vis-viva equation described in Equation 5.2.

2https://satmad-applications.readthedocs.io/en/latest/analyses/propagation/num_prop_performance_1.html
3https://satmad-applications.readthedocs.io/en/latest/analyses/propagation/num_prop_performance_2.html

https://satmad-applications.readthedocs.io/en/latest/analyses/propagation/num_prop_performance_1.html
https://satmad-applications.readthedocs.io/en/latest/analyses/propagation/num_prop_performance_2.html
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Figure 5.3: Histogram position errors of two-body model after a propagation duration of two days

ϵ =
v2

2
− µ

r
(5.2)

In Equation 5.2, ϵ is the specific energy, v is the magnitude of the velocity vector, and r
is the magnitude of the position vector.

Figure 5.4 depicts the results of this analysis for Delfi-PQ, with the results for the other
two satellites being similar. The results indicate that the loss in specific energy of the
satellite due to atmospheric drag, radiation pressure, non-spherical Earth, etc. are not
being accounted for in the two-body model. Since the three satellites are in low Earth
orbit, the atmospheric drag is the most significant perturbing force, and the two-body
model is not suitable for predicting the satellite position.

5.2.2. Simplified General Perturbations 4 model

The Simplified General Perturbations 4 (SGP-4) model, developed by Ken Cranford and
T. S. Kelso, is a widely used model for orbit propagation for satellites in Earth orbit.
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Figure 5.4: Specific energy of Delfi-C3 starting from 2017-07-04 05:54:27 to 2017-07-07 02:31:32 as
predicted by the two-body model and calculated from TLEs

Furthermore, the model is deeply integrated with the use of TLEs. The key advantage of
the SGP-4 model is its ability to predict the effects of atmospheric drag on a satellite’s
orbit, which can be significant for satellites in LEO. To model the atmospheric drag, the
SGP-4 incorporates drag coefficients and atmospheric density models. In addition to
atmospheric drag, other perturbations such as gravitational resonances caused by the
Moon and the Sun, and the effect of Earth’s oblateness are also considered by SGP-4.
These perturbations can cause significant deviations from the idealized two-body motion,
as described in Section 5.2.1.

However, long-term perturbations caused by effects such as atmospheric variations and
solar radiation pressure are not considered by the SGP-4 model. Since the time between
subsequent TLEs available for Delfi-C3, Delfi-PQ and FUNcube-1 is fairly small, the
SGP-4 model can be reinitialized frequently to account for the above-mentioned effects.
The SGP-4 model is implemented in SatMAD, and the same methodology described in
Section 5.2.1 was used to assess the accuracy of the SGP-4 model. The results of this
analysis are depicted in Figure 5.5.

The results indicate that the SGP-4 model is significantly more accurate than the two-
body model, with the mean position errors being of O(100) km for all three satellites.
The velocity errors are also observed to be small, of O(10−2) km s−1 for all three satellites.
By comparing the specific energy of Delfi-PQ predicted by the SGP-4 model and the
same energy calculated from TLEs, the SGP-4 model was also found to be more accurate
than the two-body model. The result of this comparison is depicted in Figure 5.6

For this study, SGP-4 was chosen as the orbit propagator for all three satellites. The
SGP-4 model was reinitialized at every epoch of the available TLEs, and the propagation
duration was set to be the time difference between two subsequent TLEs.

The propagation step size used for the SGP-4 propagator has a significant impact on both
the predicted position and velocity errors, and the computation time. This was studied by
evaluating by initializing the SGP-4 model with randomized initial TLE and propagating
the orbit for a duration of 2 days for various propagation step sizes ranging from 10 to
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Figure 5.5: Histogram position errors of SGP-4 model after a propagation duration of two days
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Figure 5.6: Specific energy of Delfi-C3 starting from 2017-07-04 05:54:27.610 to 2017-07-07 02:31:32.086
as predicted by the SGP-4 model and calculated from TLEs

500 seconds. The predicted position error and the computation time required for each
step size could then be analyzed to determine the optimal step size. Figure 5.7 depicts
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the results of this analysis for Delfi-PQ, with the results for the other two satellites being
similar. The results indicate that the position error remains relatively constant for step
sizes lesser than 200 seconds, and then increases for larger step sizes. The computation
time, on the other hand, reduces exponentially with increasing step size. Since the orbit
propagation had to be performed only once, accuracy was prioritized over computational
cost. A propagation step size of 100 seconds was chosen for this study, as it provides a
good balance between the predicted position error and the computation time.
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Figure 5.7: Effect of propagation step size on the predicted position error and computation time for
SGP-4 model



6
Data preprocessing

Data preprocessing is an important step in building effective machine learning models. It
involves transforming and cleaning of raw data into a format that is suitable for use with
machine learning algorithms.

Raw data often has issues, such as missing values, inconsistencies, and errors. These
issues can have a significant impact on the performance of machine learning algorithms,
leading to inaccurate and unreliable results.

The data preprocessing steps of orbit overlaying and removing outliers are described in
this chapter.

6.1. Orbit overlaying

The sparse nature of Delfi-C3 and Delfi-PQ telemetry data provides a challenge for
building machine learning models. The method to overlay orbits proposed by Zhang
[53] was adapted for use with all three satellites analyzed for this study. This enabled
transforming the sparse data, distributed over a large time range, into a dense data
mapped from time to angle along orbit.

The angle between the Sun vector S⃗ and the orbital plane, named β for this study, can
he calculated using Equation 6.1.

β =
π

2
− cos−1

(
H⃗ · S⃗
|H⃗||S⃗|

)
(6.1)

In Equation 6.1 H⃗ is the angular momentum vector of the satellite, and S⃗ is the Sun
vector.

The angular momentum vector H⃗ for the satellite in Earth orbit can be calculated using
Equation 6.2. The Sun vector S⃗ can be obtained from the ephemeris for the Sun at

31
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Figure 6.1: Schematic of orbit overlaying (adapted from [53])

satellite epoch time.

H⃗ = r⃗ × v⃗ (6.2)

In Equation 6.2 r⃗ is the satellite position vector, and v⃗ is the satellite velocity vector.

The vector H⃗ can now be scaled to form the vector N⃗ , which is the vector from the
orbital plane to the Sun, using Equation 6.3.

N⃗ =
H⃗

|H⃗|
· |S⃗| sin β (6.3)

In Equation 6.3 H⃗ is the angular momentum vector of the satellite, S⃗ is the Sun vector,
and β is the angle between the Sun vector S⃗ and the orbital plane.

If the vectors H⃗ and S⃗ do not point towards the same side of the orbital plane, the
angle β calculated using Equation 6.1 will be negative. This ensures that the vector N⃗
calculated using Equation 6.3 always points from the orbital plane to the Sun.

The Sun vector S⃗ can be projected onto the orbital plane to form the vector u⃗ using
Equation 6.4.

u⃗ = S⃗ − N⃗ (6.4)

The angle θ is defined as the angle from the projected Sun vector u⃗ to the satellite
position vector r⃗, in the direction of the satellite’s motion. It can be calculated from the
angle between u⃗ and r⃗ using Equation 6.5.
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θ =


cos−1

(
u⃗·r⃗
|u⃗||r⃗|

)
if H⃗ · (u⃗× r⃗) ≥ 0

2π − cos−1
(

u⃗·r⃗
|u⃗||r⃗|

)
if H⃗ · (u⃗× r⃗) < 0

(6.5)

The angle θ is zero when the satellite position vector r⃗ is aligned with the projected
Sun vector u⃗, and increases as the satellite moves in the direction of its motion. For a
section of orbit, from π − θe/2 < θ < π + θe/2, where θe is the angular extent of the
section of orbit in eclipse, the satellite is in eclipse. Since the Solar radiation is a major
factor influencing the temperature of the satellite, it is useful to transform the angle θ
to θT such that the angle θT is zero when the satellite exits eclipse and increases as the
satellite moves in the direction of its motion. The fraction of the orbit in eclipse can be
calculated using Equation 6.6.

θe =

2 cos−1
( √

h2+2Reh
(Re+h) cosβ

)
if |β| < β⋆

0 if |β| ≥ β⋆

(6.6)

In Equation 6.6 β⋆ is the critical angle for the orbit to have an eclipse, calculated using
Equation 6.7, h is the altitude of the satellite, and Re is the radius of the Earth.

β⋆ = sin−1

(
Re

Re + h

)
(6.7)

Equation 6.6 and 6.7 are valid only for circular orbits. Given the orbits of the three
satellites analyzed have very low eccentricity, the errors introduced by using Equation 6.6
and 6.7 were not considered for this study.

Using θe, the transformed angle θT can be calculated using Equation 6.8.

θT =

θ + π − θe/2 if 0 ≤ θ < π + θe/2

θ − π − θe/2 if π + θe/2 ≤ θ < 2π
(6.8)

6.2. Removing outliers

6.2.1. Data thresholding

The data from the Delfi-C3 and Delfi-PQ satellites contains outliers, which are data
points that are significantly different from the rest of the data. These outliers can be
caused by a variety of reasons, such as sensor malfunction, data transmission errors.
From a preliminary analysis of the datasets, temperatures outside the probable feasible
range were found. A simple thresholding process was used to remove data outside a
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Figure 6.2: Delfi-C3 TFSC temperatures before and after thresholding for telemetry data in 2012

defined valid range.

For Delfi-C3, it was observed that, for the OBC and RAP-1 temperatures, the valid
data was always between −50 ◦C and 50 ◦C. Thus, the data outside this range was
removed from the dataset. For the TFSC temperatures, the sensor used had a saturation
temperature of 119.195 ◦C, and defaulted to −235 ◦C when no data was available. Thus,
a threshold of −200 ◦C to 118 ◦C was used for the TFSC temperatures. Figure 6.2 depicts
the TFSC temperatures before and after thresholding for telemetry data in 2012. The
large cluster of data points at −235 ◦C that are present in Figure 6.2a are removed in
Figure 6.2b.

For Delfi-PQ, it was observed that the valid data was always between −40 ◦C and 60 ◦C.
The valid range was determined by visually inspecting the temperatures, and iteratively
removing clusters of non-feasible data.

6.2.2. Time correction

Delfi-C3 is powered solely by the solar panels and does not have an onboard battery.
Consequently, the satellite is only operational in the illumination section of its orbit.
The raw data from Delfi-C3, after the orbit overlaying process was done as described in
Section 6.1, showed that there was some data from the satellite in the eclipse section.
Additionally, there was a seasonal shift observed in the data. It was determined that the
satellite epoch time was reported in Dutch local time, which is UTC+2 in the summer
and UTC+1 in the winter. The data was converted to UTC by subtracting 2 hours from
the epoch time in the summer and 1 hour in the winter.

The telemetry still contained sections of data in the eclipse section. A closer examination
revealed that the anomalies were primarily reported by a small number of ground stations.
The timestamp attached to the telemetry data was the transmission time of the data
from the ground station to the Delfi-C3 team, rather than the reception time of the
telemetry frame. With some ground stations having a large time delay between receiving
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Figure 6.3: Delfi-PQ temperatures before and after thresholding

the telemetry frame and transmitting it to the Delfi-C3 team, the timestamp of the
telemetry frame had to be examined closely. The delay was also found to be variable,
making the correction process more difficult. Thus, a correction based on the ground
station field of view was used.

The locations of the ground stations are stored as a six letter Maidenhead location code.
The range of latitudes and longitudes of the satellite visible to the ground station can
be calculated using Equation 6.9. A tolerance of ±3◦ was used for the latitude and
longitude range to account for the fact that the Maidenhead location code provides a
rough estimate of the ground station location and the altitude of the satellite is not
constant.
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∆ϕ, ∆ψ = ϕ, ψ ± sin−1

(
Re

Re + h

)
(6.9)

In Equation 6.9 ∆ϕ and ∆ψ are the range of latitudes and longitudes respectively of
the satellite visible to the ground station, ϕ and ψ are the latitude and longitude of the
ground station, Re is the radius of the Earth, and h is the altitude of the satellite.

The satellite latitude and longitude at each timestamp of the telemetry frame was checked
against the visible range of the ground station. If the satellite was not in the visible range
of the ground station, the telemetry frame was discarded. Figure 6.4 depicts the effect of
this filtering process on the telemetry data. It can be observed that before filtering, some
telemetry data for θT > 240◦ is present. This is not possible due to the satellite being in
the eclipse section of its orbit for these values of θT . After filtering, the telemetry data
for θT > 240◦ is removed, without an explicit check for the value of θT . Some data in
the illuminated sections of the orbit were also removed, which would not be possible if a
simple threshold on θT was used, demonstrating the robustness of this method.

No time correction was done for Delfi-PQ: as the location data of the ground station was
not used for this study, and for FUNcube-1: as it was not necessary.
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Figure 6.4: Delfi-C3 before and after field of view filtering for TFSC Z+X+ telemetry data in 2012

6.2.3. Constant section removal for FUNcube-1

FUNcube-1 telemetry data contains sections where the temperature sensors report a
constant value, as shown in Figure 6.5. This issue was also mentioned by the FUNcube-
1 team when providing the data for this study. These sections were removed from
the dataset using a simple filter, checking for constant temperature values for three
consecutive timestamps. If the temperature values were constant for three consecutive
timestamps, all the previous and subsequent constant temperature values, except the
first, were removed from the dataset. Figure 6.6 shows the FUNcube-1 black chassis
temperature before and after the constant section removal.
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Figure 6.5: FUNcube-1 raw chassis and panel temperatures
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Figure 6.6: FUNcube-1 black chassis temperature before and after constant section removal

6.2.4. Hampel filter

The thresholding process described in Section 6.2.1 removes obvious outliers from the
dataset. Outliers that lie within the threshold range, but are anomalous compared to
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local data, are not removed by the thresholding process. These outliers can be removed
using the Hampel filter [43], which is a robust method for removing outliers from a
dataset. The Hampel filter is a three-step process, which is described in this section.

The first step of the Hampel filter is calculating the median of the dataset. Since the
temperature of the satellite varies with the satellite’s position in its orbit, the median is
calculated by binning the data into bins of 5◦ and calculating the median of each bin.
A bin is considered valid if it contains at least 10 data points. The bin size and the
minimum number of data points per bin were chosen based on manual inspection of the
data.

The amount of solar radiation flux received by the satellites can also be expected to have
an influence on the temperatures of the satellites. Thus, the first step of the Hampel
filter is also performed by binning the data per three months.

The second step of the Hampel filter is calculating the median absolute deviation (MAD)
of the dataset, done using Equation 6.10.

MAD = median (|xi −median|) (6.10)

In Equation 6.10, xi is the ith value of the data in the bin. The MAD is calculated for
each bin of the dataset.

The third step of the Hampel filter is calculating the Hampel identifier (HI), a measure of
how far each value of the dataset is from the median, of the dataset. The HI is calculated
using Equation 6.11.

HI =
xi −median

1.4826 ·MAD
(6.11)

In Equation 6.11, xi is the ith value of the dataset. The factor of 1.4826 is used to make
the MAD equivalent to the standard deviation of a normally distributed dataset. MAD
is used instead of directly using the standard deviation because the MAD is a robust
measure of dispersion, not sensitive to outliers unlike the standard deviation.

Removing the outliers is the final step of the Hampel filter. The outliers are the values of
the dataset for which the HI is greater than a threshold value. The threshold value can
be changed to remove more or less outliers from the dataset. The threshold value used
for this study was 3, which is equivalent to removing data points that are more than 3
standard deviations away (assuming a normal distribution) from the median of the bin.
Figure 6.7 depicts the effect of the Hampel filter applied to the Delfi-PQ solar panel Yp
temperatures. All the outliers between 150◦ < θT < 250◦ are removed by the Hampel
filter. The filtering is not perfect, as some outliers remain in the dataset, especially
some data points from the cluster at θT ≈ 100◦. However, the Hampel filter is able to
remove most of the outliers from the dataset. This filter was considered sufficient for the
purposes of the machine learning models developed in this thesis, and no further filtering
was performed.
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Figure 6.7: Hample filter applied to Delfi-PQ solar panel Yp temperatures for the period of 2022-01-18
to 2022-03-29

6.3. Training and testing split

The train-test split is an important concept in creating machine learning models that
involves dividing the dataset into two subsets: the training set, which is used by the
model to learn relationships in the data, and the test set, which is used to evaluate the
model’s performance.

The test set serves as a never-before-seen dataset that the model has not encountered
during training. Evaluating the model’s performance on the test set can help us understand
the effectiveness of the model to generalize to new, unseen data.

To simulate the requirements of a real space mission, where it might be necessary to
employ existing data to train the models to predict future behavior, a sequential split
was used instead of a random split. The satellite degradation can significant deviations
in the temperatures of the satellite over time. Thus, a sequential split could also be used
to test the robustness of the models to adapt to the varying satellite behavior.

After outlier removal, the first 80% of the total available dataset was used as the
training set, with the remaining 20% being used as the test set to evaluate the prediction
performance of the models.

6.4. Data normalization

Data normalization, also known as feature scaling or standardization, is an essential
preprocessing step in machine learning. It involves transforming the numerical features
of a dataset to a common scale or range.

When features in a dataset have different scales or measurement units, it can negatively
affect the performance of optimization algorithms used to train neural networks. Features
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with larger scales can dominate the learning process and lead to biased results [36].
Furthermore, optimization algorithms often have greater efficiency and better convergence
when the features are of a similar size [19]. Normalization of data ensures that the
optimization process is not hindered by features with widely different ranges, resulting in
a more stable and reliable model training process.

For this study, a simple scaling normalization, described in Equation 6.12, was used to
normalize the data. The minimum and maximum values of the dataset used to scale the
data were calculated only on the training set to avoid data leakage from the test set.

x′ =
x− xmin

xmax − xmin

(6.12)

6.5. Data selection

After using the filtering process described in Section 6.2.1, Section 6.2.2 and Section 6.2.4,
the Delfi-C3 telemetry data was still found to be noisy. This is hypothesized to be due
to the low thermal mass of the TFSCs, causing large temperature fluctuations due to
tumbling. Since Delfi-C3 no data from the attitude sensors, it proved to be difficult
to compensate for the tumbling. A possible solution to this problem would be to use
the mean temperature of all the TFSCs as the input to the model, instead of using the
temperatures of each panel separately, resulting in the fluctuations due to tumbling being
averaged out, as depicted in Figure 6.8. It was observed that the mean temperature of
the TFSCs, while still containing some noise, followed a similar trend to the temperatures
from Delfi-PQ and FUNcube-1 data. Due to the low thermal mass of the TFSCs, the
temperatures also begin to saturate at smaller values of θT compared to Delfi-PQ and
FUNcube-1.
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Figure 6.8: Mean TFSC temperature of Delfi-C3 for 2012

The averaging process, however, reduces the available payload temperature channels from
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four to one. Thus, the Delfi-C3 data was not used for the analysis in this study. The
limitation of no data availability in the eclipse phase, making it difficult to model the
cooling cycle, was also a factor in not using the Delfi-C3 data.

Telemetry from FUNcube-1 is available for the whole orbit. Thus, the FUNcube-1
telemetry data was used to validate the performance of purely data-driven models,
considered as the baseline models in this study. The Delfi-PQ telemetry, being sparse
and having sections of orbit with no data, provides a challenge for purely data-driven
models. This was used to demonstrate the limitations of data-driven models when no
fitting data is available, and to demonstrate the advantages of using a physics-based
model to fill in the gaps in the data.



7
Data-driven models

Purely data-driven models serve as a preliminary reference point for this study, to
understand the potential accuracy of temperature predictions under ideal circumstances.
The thermal modeling can be formulated as a time series prediction problem, where the
primary objective is to forecast future temperatures based on past measurements within
a defined input window size w.

Upon examining the telemetry data, it becomes evident that for a given position in the
orbit (maintaining the same θT ), the temperatures tend to be similar. As outlined in
the state-of-art, LSTM based neural networks have demonstrated to be effective in time
series prediction applications.

By using LSTM networks, which account for temporal dependencies in the data, the
models developed are potentially well-suited for predicting future temperature values
based on past observations. However, it’s also important to remember that these models
are purely data-driven, and they can be more challenging to interpret due to their “black
box” nature.

7.1. FUNcube-1 temperature prediction

The initial data-driven models were developed utilizing FUNcube-1 data, owing to the
availability of full-orbit telemetry. The first phase of model training was focused solely
on predicting the temperature of the black panel. This panel was selected due to its
significant temperature fluctuations induced by tumbling, thus offering a challenging
scenario for the models to address.

7.1.1. Temperature-based models

The black panel exhibits a steady thermal behavior with no abrupt temperature shifts
under standard conditions. This stability potentially allows for future temperature

42
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Table 7.1: LSTM model architecture

Layer Number of cells

Input layer Based on input window size

Hidden layer 1 256

Hidden layer 2 256

Hidden layer 3 128

Hidden layer 4 128

Hidden layer 5 64

Hidden layer 6 32

Hidden layer 7 16

Output layer Based on the number of output channels

prediction based purely on prior temperature readings. Models trained on a range of
input step sizes, from one minute to 120 minutes, were tested. Since the telemetry
available is sampled at one minute intervals, the size of the input window in minutes
directly translates into the number of temperature readings within the input window.

Table 7.1 summarizes the number of layers and LSTM cells in each layer for the models
used in this study. The networks were sized conservatively, most likely being larger than
necessary, to establish the possibility of the models to achieve the desired accuracy.

Since a large number of models were evaluated during the study, a short training time was
advantageous in rapid prototyping and iterations. Therefore, the selection of activation
functions was confined to the default tanh and sigmoid functions described in Equation 2.2
and Equation 2.3 respectively. This constraint enabled running the models on a GPU
using the TensorFlow and cuDNN frameworks.

The models were trained using the Adam optimizer [31] with a learning rate of 10−4.
The learning rate was chosen based on the smoothness of the loss curve during training.
The loss function used was the Mean Squared Error (MSE) loss function, defined in
Equation 7.1. The MSE loss function was chosen since it is a differentiable function,
which is a requirement for the Adam optimizer. It also penalizes large errors more than
small errors. To prevent overfitting, the loss function value was monitored on the test set
during training, which was stopped when the loss on the test set stopped decreasing.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (7.1)

Two distinct behaviours were observed in the models trained. For step sizes less than five,
the models were unable to capture the temperature fluctuations due to tumbling. For a
small section of step sizes, the models were able to capture the temperature fluctuations.
As the step sizes increased, the models tended to smooth out the temperature fluctuations,
predicting the average temperature in the training data.
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Figure 7.1: Predicted and actual black panel temperature for FUNcube-1 (2016-02-04 20:52:00 to
2016-02-04 22:28:00) using a temperature-based LSTM model

The aforementioned models excel at predicting temperatures under nominal conditions.
Nevertheless, they present certain limitations during anomalous data segments, par-
ticularly when the sensors relay constant temperature readings. For small step sizes,
model predictions closely mirror the anomalous constant temperature, yielding an error
margin nearly equal to the mean error on the test set. This small error may complicate
anomaly detection. Conversely, for larger step sizes, due to the broader input window,
the model predictions respond more slowly to the anomaly, generating considerable
error in the initial phase. This also results in a prolonged recovery period from the
anomaly, maintaining significant errors even after the anomaly has concluded. A larger
input window would facilitate anomaly detection, but concurrently hinder the precise
isolation of the anomalous section. This behavior of the temperature-based LSTM models
is illustrated in Figure 7.2, with error statistics summarized in Table 7.2.

Table 7.2: Prediction error in black panel temperature for FUNcube-1 during anomalous orbit
(2016-02-04 07:56:00 to 2016-02-04 09:30:00) using temperature based LSTM model

Step
size

Error µ (◦C) Error σ (◦C)

Before
anomaly

During
anomaly

After
anomaly

Before
anomaly

During
anomaly

After
anomaly

2 -0.03 -0.42 -0.88 3.03 0.27 3.74

10 -0.04 -0.12 -0.63 1.89 0.93 3.46

60 1.37 -5.54 -8.03 4.03 1.53 12.22

A possible solution to this problem is to decouple the predicted temperatures from the
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Figure 7.2: 7.2a, 7.2b, 7.2c: Predicted and actual black panel temperature for FUNcube-1 during
anomaly (2016-02-04 07:56:00 to 2016-02-04 09:30:00) using temperature-based LSTM model

7.2d, 7.2e, 7.2f: Difference between actual and predicted black panel temperature for FUNcube-1 during
anomaly

previous measured temperatures. Thus, the anomalies would not affect the predicted
temperatures, allowing the detection and isolation of anomalous sections of temperature
data. Such models are discussed in the next section.

7.1.2. Illumination-based models

One-channel temperature prediction
As outlined in Section 7.1.1, the temperature-based models are susceptible to sensor
anomalies, demonstrating limitations in simultaneously detecting and isolating anomalous
data segments. The relatively constrained range in the temperature data after orbit
overlaying (as shown in Figure 6.6b for the black chassis temperatures) indicates the
potential for predicting temperatures based on illumination data. Acting as a stand-in
for the satellite’s orbital position, the illumination data can be readily inferred from
solar panel voltages. Moreover, solar radiation is a principal contributor to the satellite’s
temperature, reinforcing the potential utility of this approach.

The illumination data was considered as a binary input, being one if the satellite was
in sunlight, and zero if the satellite was in eclipse.The models maintained identical
architecture, as well as the same training and testing dataset, as the temperature-based
models highlighted in Section 7.1.1. The requisite minimum time steps to resolve the
temperature data accurately was found to correspond to the duration of the satellite’s
illuminated orbital phase. The illuminated phase represents approximately 70% of the
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orbital period, and for step sizes smaller than the illuminated phase, a fraction of the
illuminated phase will exhibit identical input illumination data. Consequently, the model
regresses to the mean temperature of this section rather than the actual temperature, as
illustrated in Figure 7.3. This phenomenon can also be observed in the fluctuation of
the prediction error standard deviation, represented in Figure 7.4. The error standard
deviation remains high for smaller step sizes, decreasing as the step size increases to
match the duration of the illuminated phase. For step sizes exceeding the illuminated
phase, the error standard deviation stabilizes and remains almost constant.
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Figure 7.3: Predicted and actual black panel temperature for FUNcube-1 using an illumination-based
LSTM model
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Figure 7.4: FUNcube-1 black panel temperature prediction error statistics for different window sizes

The illumination model regresses to the mean temperature trend of the overlaid orbital
temperature data, failing to account for temperature variations caused by tumbling.
To reincorporate the temperature measurements into the model, while maintaining the
benefits of illumination-based models, a residual network was developed. This network
adjusts the base illumination model prediction to more precisely correspond with measured
temperatures.

Given that the network is founded on LSTM cells and the inputs are sequentially fed into
the model, the input layer remains unaltered across all step sizes. Given the absence of
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drawbacks associated with increasing the input step size for the base model, all subsequent
analyses adopted an input step size of 96, approximately equating to one orbit.

The residual model utilizes a compact input window comprising temperature measure-
ments and the base illumination model’s predicted temperature for the subsequent time
step. It then generates a corrective prediction for the base model. An MLP was chosen for
the residual model, instead of an LSTM network, as the input window size, varying from
one to ten time steps, was relatively small in comparison to the networks examined in
Section 7.1.1. The number of hidden layers and nodes in each layer was identical to those
detailed in Table 7.1, but the LSTM cells were supplanted with dense feed-forward neu-
rons. The activation function for the hidden layers was the Rectified Linear Unit (ReLU)
function, as described in Equation 7.2, while a linear activation function was applied for
the output layer. The schematic of the combined model is depicted in Figure 7.5

Base predictionIllumination data

Base model

Residual model

Temperature data

Combined prediction

Figure 7.5: Schematic of the combined illumination-based and temperature-based residual models

f(x) = max(0, x) (7.2)

Figure 7.6 depicts the performance of the combined model for residual model input
window sizes of 2, 4 and 8. For small step sizes, the model is unable to resolve the
temperature variations due to tumbling, and the prediction error is similar to the base
model. The prediction error reduces with an increase in input step size. For step sizes
approximately 5, the improvement in prediction error is small. This trend can also be
seen in the prediction error statistics depicted in Figure 7.7.

As illustrated in Figure 7.8, the combined model exhibits notable performance in pre-
dicting the anomalous temperature segment. Because the base model does not consider
temperature measurements, unlike the models discussed in Section 7.1.1, the abnormal
constant temperature measurements do not influence the base model’s prediction. Due
to the temperature inputs used by the residual model, the combined model aligns closely
with the anomalous sensor readings.

Although the prediction error of the combined model is less than that of the base
model, it is still higher than the prediction error for the non-anomalous part of the orbit.
Additionally, the combined model’s prediction error rapidly reverts to non-anomalous
prediction error levels as soon as the anomalous section concludes, owing to the relatively
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Figure 7.6: Predicted and actual black panel temperature for FUNcube-1 using illumination-based
LSTM model with residual network
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(a) Prediction error µ and σ for different residual input
window sizes
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Figure 7.7: FUNcube-1 black panel temperature prediction error statistics for different residual input
window sizes

small input window size of the residual model. Therefore, by comparing the prediction
errors of the base and combined models, the anomalous section can be identified and
distinguished from the non-anomalous section.

Multi-channel temperature prediction
The models detailed in the preceding sections were all trained to forecast only one of the
eight accessible temperature channels in the FUNcube-1 telemetry data. Ideally, a single
model would be employed to predict all eight temperature channels, as the model would
have the potential to learn the thermal couplings between the different sections of the
satellite. To evaluate the possibility of concurrently predicting all temperature channels,
an illumination-based model with the architecture described in Table 7.1 was trained to
predict all eight temperature channels. The base model employed an input window size
of 96.

The measured and predicted temperatures for all eight channels are portrayed in Figure 7.9.
The model manages to predict the temperature of all eight channels with a prediction
error analogous to the base model mentioned above, which predicted solely black panel
temperatures. Given that the model can predict all eight temperature channels with the
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(c) Residual window size = 8
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(d) Residual window size = 2
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(e) Residual window size = 4
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Figure 7.8: 7.8a, 7.8b, 7.8c: Predicted and actual black panel temperature for FUNcube-1 during
anomaly (2016-02-04 07:56:00 to 2016-02-04 09:30:00) using an illumination-based LSTM model with an

input window size of 96 time steps and temperature-based residual model
7.8a, 7.8b, 7.8c: Difference between actual and predicted black panel temperature by the base and

combined models for FUNcube-1 during anomaly

same architecture as the model forecasting just one temperature channel, it is plausible
that the size of the single-channel model could be reduced.
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Figure 7.9: Measured and predicted temperatures of all 8 temperature channels in FUNcube-1 telemetry
data using an illumination-based LSTM model with an input window size of 96 time steps

The residual models similar to the residual models for the one channel base model were
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trained for the eight channel base model, for input window sizes ranging from one to ten
time steps. The error statistics for the combined models for different input window sizes
are depicted in Figure 7.10. The reduction in standard deviation of the prediction errors
with increasing input window size is small after an initial reduction compared to the base
model.
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Figure 7.10: Prediction error µ and σ for different residual input window sizes of the combined model
for all 8 temperature channels in FUNcube-1 telemetry data

The residual models were observed to capture the temperature fluctuations due to
tumbling at smaller time steps compared to one channel models. This is possibly due
to information present in the additional temperature channels. For example, it can be
expected that the temperatures of opposing solar panels have opposite deviation from
the base model prediction. Thus, with even a single time step of temperatures, the
residual model is able to predict the deviation from the base model due to tumbling. The
predictions of the combined model with input window sizes for the residual models of
one and five time steps are depicted in Figure 7.11 and Figure 7.12 respectively, from
which it can be observed that the predictions are very similar.

Similar to the one channel model, for an anomalous section, the base model can be used
to identify and isolate the anomalous section. The combined model predictions follow the
anomalous measurements more closely due to the input anomalous temperature values to
the residual model. The prediction error of the combined model, however, is still higher
for the anomalous section compared to the non-anomalous. The error statistics for the
combined models are shown in Table 7.3.

Table 7.3: Prediction error (all channels) for FUNcube-1 during anomalous orbit (2016-02-04 07:56:00 to
2016-02-04 09:30:00) using combined illumination-based model (w = 96) and residual models

Residual window
size

Error µ (◦C) Error σ (◦C)

Before
anomaly

During
anomaly

After
anomaly

Before
anomaly

During
anomaly

After
anomaly

0 (Base model) 0.39 -11.25 -0.14 1.99 5.42 1.42

2 0.05 -0.08 0.4 0.44 2.02 2.72

5 0.01 -0.86 0.17 0.37 1.98 2.88

10 0.11 -0.81 -0.23 0.46 2.60 2.9
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Figure 7.11: Measured and predicted temperatures of all 8 temperature channels in FUNcube-1
telemetry data using an illumination-based LSTM model with an input window size of 96 time steps

and a residual model with an input window size of 1 timestep
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Figure 7.12: Measured and predicted temperatures of all 8 temperature channels in FUNcube-1
telemetry data using an illumination-based LSTM model with an input window size of 96 time steps

and a residual model with an input window size of 5 timesteps

Several models with different input data have been described above, with the key results
summarized in Table 7.4
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Figure 7.13: Predicted and actual temperatures of all 8 temperature channels in FUNcube-1 telemetry
data during anomaly (2016-02-04 07:56:00 to 2016-02-04 09:30:00) using an illumination-based LSTM
model with an input window size of 96 time steps and a residual model with an input window size of 5

timesteps

Table 7.4: Summary of FUNcube-1 models

Model Error µ (◦C) Error σ (◦C)

Temperature-based model (w = 96) -0.13 2.9

Illumination-based model (w = 96) 0.53 1.91

Illumination-based model (w = 96) + temperature-based
residual model (w = 5)

0.02 0.69

Illumination-based model (w = 96) + temperature-based
residual model (w = 10)

0.06 0.76

7.2. Delfi-PQ temperature prediction

Unlike FUNcube-1, Delfi-PQ telemetry data is sparse. Telemetry data for Delfi-PQ is
available only when it is over a receiving ground station, therefore the data is sparse
and sections of orbit, especially over the South Pole, have no telemetry data. This
makes it challenging to train a purely data-driven model for Delfi-PQ as the confidence
of the model predictions for sections of orbit with no data is hard to quantify. An
illumination-based model, with the same architecture as the illumination-based models
described in Section 7.1.2 with an input window size of 94 time steps (which roughly
corresponds to one orbit) was trained to predict the six available temperature channels.

Figure 7.14 shows the measured and predicted temperatures, from the illumination-based
model, of the six temperature channels for the test set of Delfi-PQ. It was observed
that the prediction error is larger than the FUNcube-1 model. This is possibly due to
FUNcube-1 data spanning only one day, while the Delfi-PQ data spans over about one
year. The thermal behavior of the satellite can be expected to change with time due to
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Figure 7.14: Predicted and measured temperatures of Delfi-PQ using an illumination-based LSTM
model with an input window size of 94 time steps

aging and seasonal variation in the input solar flux. Combining data from 11 months to
create the training set can be seen to increase the spread of the data. Since the model
fits to the mean of the data, the prediction error is higher compared to the FUNcube-1
model. The KDE of the prediction errors is shown in Figure 7.15.

The prediction error might potentially be reduced by constructing different base models
for smaller data segments. However, this approach was not pursued in this thesis.
It’s evident that the absence of telemetry data for certain orbit sections impacts the
predictions of the purely data-driven model. We would generally anticipate the satellite
to keep warming up during the orbit’s illuminated section, a pattern observable in the
FUNcube-1 data. However, the model’s predictions do not consistently capture this
trend across all channels. From Figure 7.14, the model’s predictions do not accurately
reflect physical conditions. This highlights the limitations of a purely data-driven model
and introduces the potential of employing a hybrid, physics-informed model to enhance
prediction accuracy, even when telemetry data is not available.

Temperature based residual models similar to the ones trained for the FUNcube-1 were
explored for Delfi-PQ. The step sizes of the residual models had to be limited to a
maximum of four time steps due to the availability of test data.

Figure 7.16 shows the error statistics of the combined base and residual models of various
step sizes. It can be observed that the trends in the error statistics are similar to the
FUNcube-1 residual models depicted in Figure 7.10, with the standard deviation of
the prediction error reducing with increasing step size. The prediction error mean and
standard deviations for step size of four, however, were observed to have large variation
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Figure 7.15: KDE of the prediction error on the test set of Delfi-PQ using an illumination-based LSTM
model with an input window size of 94 time steps

between different training runs. This is possibly due to the small amount of training
data available for the step size of four.
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Figure 7.16: Error statistics of the combined illumination base and residual models of various step sizes
for Delfi-PQ



8
First-principles models

To supplement telemetry data in sections where there is no available telemetry information,
a basic first-principles thermal model of the satellite can be employed. This utilization of
a first-principles model can aid in bolstering the reliability of the predictions made by
the data-driven model by constraining the predictions using known physics. This section
delves into two first-principles models: one is a curve-fit model built upon the lumped
capacitance method, and the other is a thermal network model.

8.1. Curve-fit model

The curve-fit model is predicated on the lumped capacitance method [6]. Under the
assumption that conduction is the only mode of heat transfer, the satellite’s temperature
can be characterized using two exponential curves for the heating and cooling phases.
The equation describing the heating phase is as follows:

T (θT ) = ∆Th ·
[
1− exp

(
−θT
τh

)]
+ T0 (8.1)

where ∆Th is the temperature difference between the temperature at the beginning of
the heating phase and the temperature the satellite would reach if illuminated constantly,
τh is the time constant of the heating phase and T0 is the temperature at the beginning
of the heating phase.

The cooling phase is described by the following equation:

T (θT ) = Tsat,c + (Te − Tsat,c) · exp
(
−θT − 2π(1− fe)

τc

)
(8.2)

where Tsat,c is the temperature the satellite would reach if it was in eclipse indefinitely,
Te is the temperature of the satellite at the end of the heating phase, fe is the fraction of
eclipse for the orbit and τc is the time constant of the cooling phase.

55
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The following boundary conditions are imposed:

• The temperature at the end of the heating phase is equal to the temperature at
the beginning of the cooling phase, i.e. T (θT = 2π(1− fe)) = Te.

• The temperature at the end of the cooling phase is equal to the temperature at the
beginning of the heating phase. To ensure this, the value of Tsat,c is assumed to be
lower than T0 by ∆T0. Using this condition, the value of τc can be calculated using
Equation 8.3.

τc =

− ln

(
∆T0

Te − Tsat,c

)
2πfe

(8.3)

These conditions can be used to represent both the heating and cooling cycle of the
satellite using the piecewise function shown in Equation 8.4. The temperature data is
fitted to this function by varying the parameters ∆Th, τh, T0 and ∆T0.

T (θT ) =

∆Th ·
[
1− exp

(
− θT

τh

)]
+ T0 if 0 ≤ θT ≤ 2π(1− fe)

Tsat,c + (Te − Tsat,c) · exp
(
− θT−2π(1−fe)

τc

)
if 2π(1− fe) ≤ θT ≤ 2π

(8.4)

8.1.1. Validation of curve-fit model using FUNcube-1 data

The feasibility of the curve-fit model based on the lumped capacitance method was
evaluated by fitting the model on the training dataset for FUNcube-1 and comparing
its performance against the illumination-based model described in Section 7.1.2. The
results of the curve-fit model are shown against the test dataset for FUNcube-1 in
Figure 8.1 and the comparison of the KDEs of the base illumination model and the
curve-fit model are shown in Figure 8.2. The prediction error of the curve-fit model
(µ = 0.00 ◦C;σ = 2.06 ◦C) has a similar distribution to that of the illumination-based
model (µ = −0.02 ◦C;σ = 1.91 ◦C), being only slightly higher. This can be attributed
to the limitation of the lumped capacitance model, with assumes only conductive heat
transfer.

8.1.2. Hybrid networks for Delfi-PQ using curve-fit model

The results of the curve-fit for Delfi-PQ are shown in Figure 8.3 and the fitting parameters
are summarized in Table 8.1. Figure 8.4 depicts the KDE of the prediction error of the
illumination-based model described in Section 7.2 and the curve-fit model on the test
dataset. Similar to the validation case for FUNcube-1, the prediction error of the curve-fit
model (µ = 0.87 ◦C;σ = 5.96 ◦C) is slightly higher than that of the illumination-based
model (µ = 0.61 ◦C; σ = 5.72 ◦C), but has the advantage of having better predictions for
sections of the orbit where there is no telemetry data.
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Figure 8.1: Curve-fit model prediction on FUNcube-1 test dataset
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Figure 8.2: KDE of the prediction error of the illumination-based model and the curve-fit model on the
FUNcube-1 test dataset.

The battery temperature has different heating and cooling trends than the other temper-
ature channels. This is possibly due to the battery being an internal node, with the heat
transfer to the battery being through conduction from the outer panels, along with the
high heat capacity (Cp) of the battery, causing the temperature rise and fall to be almost
linear over the timescale of one orbit. This can also be seen in the quality of the curve-fit
for the battery temperature, where the fitted value for ∆Th and ∆T0 hitting the upper
bound and lower bound of 300 ◦C and 75 ◦C respectively, and the heating rate τh being
at least an order of magnitude lower than the other channels.

To improve the curve-fit model, a hybrid dataset was created by combining the existing
training dataset for Delfi-PQ and simulated temperatures obtained using the curve-fit
model. The number of simulated orbits ranged from one to ten orbits. Illumination-based
models were trained using the hybrid datasets, and their prediction error was compared



8.1. Curve-fit model 58

0 50 100 150 200 250 300 350
T (°)

15

10

5

0

5

10

15

20
Te

m
pe

ra
tu

re
 (°

C)
Data
Curve fit

(a) Battery

0 50 100 150 200 250 300 350
T (°)

30

20

10

0

10

20

30

40

Te
m

pe
ra

tu
re

 (°
C)

Data
Curve fit

(b) Solar panel Yp

0 50 100 150 200 250 300 350
T (°)

30

20

10

0

10

20

30

40

Te
m

pe
ra

tu
re

 (°
C)

Data
Curve fit

(c) Solar panel Ym

0 50 100 150 200 250 300 350
T (°)

30

20

10

0

10

20

30

Te
m

pe
ra

tu
re

 (°
C)

Data
Curve fit

(d) Solar panel Xp

0 50 100 150 200 250 300 350
T (°)

30

20

10

0

10

20

30

40

Te
m

pe
ra

tu
re

 (°
C)

Data
Curve fit

(e) Solar panel Xm

0 50 100 150 200 250 300 350
T (°)

10

0

10

20

Te
m

pe
ra

tu
re

 (°
C)

Data
Curve fit

(f ) MCU

Figure 8.3: Exponential curve-fit on Delfi-PQ training dataset

Table 8.1: Curve-fit model parameters for Delfi-PQ.

Channel ∆Th (◦C) τh (◦) T0 (
◦C) ∆T0 (

◦C)

Battery 300 4.41× 10−4 -6.93 75

Solar panel Yp 192.73 1.61× 10−3 -21.35 2.25

Solar panel Ym 62.20 1.94× 10−2 -34.09 44.97

Solar panel Xp 89.94 6.04× 10−3 -31.41 37.94

Solar panel Xm 48.77 1.02× 10−2 -21.22 4.61

MCU 58.72 5.52× 10−3 -15.64 41.52

to the prediction error of the model created using the original training dataset. Figure 8.5
shows the hybrid model predictions for Delfi-PQ with different number of simulated
orbits used for training the hybrid model.

The prediction error was calculated for both the test dataset and a simulated test
orbit. The model prediction error against the test dataset can be used to evaluate the
performance of the hybrid model for regions of the orbit with available data, while the
prediction error with the simulated orbit can be used to gain insights on the theoretical
performance of the model in regions with no available data. The results of this analysis
are shown in Figure 8.6. It was observed that the prediction error on the test dataset
remained relatively constant, ≈ 5.8◦C with the addition of simulated orbits, while the
prediction error on the simulated test orbit decreased with increase in number of simulated
orbit, reducing from 5.5◦C for no simulated orbit to 2.4◦C for nine simulated orbits in
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Figure 8.4: KDE of the prediction error of the illumination-based model and the curve-fit model on the
Delfi-PQ test dataset
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Figure 8.5: Hybrid model predictions for Delfi-PQ for different number of simulated orbits used for
training.

the training data. From the validation test results described in Section 8.1.1, it can be
concluded that the hybrid model has a similar performance to the illumination-based
model for regions of the orbit with available data, while having predictions closer to the
probable true temperatures for the regions of the orbit with no available data.

Since the hybrid model predictions are similar to the illumination-based model, the
possibility to reuse the temperature based residual models described in Section 7.2 can
be used without modification was tested, and the error statistics of the combined hybrid
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Figure 8.6: Prediction error of the hybrid model for Delfi-PQ for different number of simulated orbits
used for training.

model and the temperature based residual models are shown in Figure 8.7. Comparing
the error statistics to the ones depicted in Figure 7.16, which have very similar error
distribution and variation with input window sizes, with the standard deviation difference
for all the different input window sizes being less than 0.001 ◦C between the illumination-
based model and the two hybrid models. This implies that the temperature based residual
models can be reused without modification for the hybrid model.
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Figure 8.7: Error statistics of the combined hybrid base and residual models of various training
simulated orbits and input temperature input window sizes for Delfi-PQ

Using a curve-fit model as the first-principles model in the hybrid model has some major
drawbacks. The curve model investigated above considers each node separately and does
not model the heat transfer between nodes. This is a limitation of the approach in this
study and not in the lumped capacitance model. The heat loss from the satellite to space
is in the form of infrared radiation, which is varies with T 4 instead of being linear in
temperature as considered by the lumped capacitance model. The model used here is
also a quasi-steady state model, thus the transient effects, such as the fluctuations caused
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by the tumbling of the satellite, are difficult to model.

8.2. Thermal network model

The conductive heat flow for a node is given by the following equation:

Q̇ =
n∑

i=1

Ti − T

Ri

+Qin (8.5)

where Q̇ is the thermal power flowing into the node, Ti is the temperature of the ith node
connected to the node, T is the temperature of the node, Ri is the thermal resistance
between the node and the ith node, and Qin is the internal heat generated by the node.

The above equation closely resembles an electrical circuit, where the temperature is
analogous to voltage, the heat flow is analogous to current, and the thermal resistance is
analogous to electrical resistance. The inverse of the thermal resistance, named thermal
conductance, is from here on referred to as the thermal coupling.

If the mass and the heat capacitance of the node is known, the temperature of the node
can be described my the following differential equation:

dT

dt
=

Q̇

mCp

=
1

mcp

(
n∑

i=1

Ti − T

Ri

+Qin

)
(8.6)

8.2.1. Thermal network model for Delfi-PQ

An 11 node thermal network model was developed for Delfi-PQ by Ruiz [44] using
an inverse modeling approach, by fitting the thermal couplings to match simulated
temperatures to the experimentally measured temperatures with a known heat input.
The 11 nodes are: one node for each face of the satellite (six in total), one for each
metal ring (three in total) and one each for the payload and battery. This model was
expanded by Cinotti, Lusvarghi, Marchese, et al. [13] by adding more nodes to the
payload and battery, creating a 13 node model. The thermal couplings between the nodes
are described in Table 8.2. The physical properties of the nodes, consisting absorptivity
(α), emissivity (ϵ), Cp and panel areas, are described in Table 8.3.

Since temperature measurements are available only for six nodes, comprising the four
faces with the solar panels, the battery and the MCU, the 13 node network was reduced
to an eight node network by removing nodes without temperature measurements from
the model. The nodes for the Zp and Zm panels were retained, even though they do
not have any temperature sensors, to properly calculate the input solar power to the
satellite. The reduction in number of nodes was carried out using the star-point reduction
technique [37], depicted in Figure 8.8. The new additional couplings between the nodes
can be calculated using Equation 8.7
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Table 8.2: Thermal couplings (W/K) between nodes in the 13 node thermal network model for Delfi-PQ

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 0 0 0 0 0 2.8×
10−4

1.2×
10−1

2.9×
10−4

2 0 0 0 0 0 0 0 0 0 0 2.8×
10−4

1.2×
10−1

2.9×
10−4

3 0 0 0 0 0 0 0 0 0 0 2.8×
10−4

1.2×
10−1

2.9×
10−4

4 0 0 0 0 0 0 0 0 0 0 2.8×
10−4

1.2×
10−1

2.9×
10−4

5 0 0 0 0 0 0 0 0 0 0 2.1×
10−1

0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 7.9×
10−2

7 0 0 0 0 0 0 0 0 0 0 3.2×
10−1

3.2×
10−1

0

8 0 0 0 0 0 0 0 0 4.3×
10−1

0 0 3.2×
10−1

0

9 0 0 0 0 0 0 0 4.3×
10−1

0 9.7×
10−1

0 0 0

10 0 0 0 0 0 0 0 0 9.7×
10−1

0 0 0 9.7×
10−1

11 2.8×
10−4

2.8×
10−4

2.8×
10−4

2.8×
10−4

2.1×
10−1

0 3.2×
10−1

0 0 0 0 0 0

12 1.2×
10−1

1.2×
10−1

1.2×
10−1

1.2×
10−1

0 0 3.2×
10−1

3.2×
10−1

0 0 0 0 0

13 2.9×
10−4

2.9×
10−4

2.9×
10−4

2.9×
10−4

0 7.9×
10−2

0 0 0 9.7×
10−1

0 0 0

Table 8.3: Physical properties of nodes

Property Node Value

α
Panels Xp/Xm/Yp/Ym 0.91

Panels Zp/Zm 0.1517

ϵ
Panels Xp/Xm/Yp/Ym 0.85

Panels Zp/Zm 0.1355

Area (m2)
Panels Xp/Xm/Yp/Ym 0.0089

Panels Zp/Zm 0.0025

Cp (J/K)

Panels Xp/Xm/Yp/Ym 28.9784

Panels Zp/Zm 8.14

MCU 36.3

Battery 66.65

Rnew =
RiRj∑n
k=1Rk

(8.7)

Since the internal heat dissipations of the nodes being removed are small compared to the
incident solar power and the heat flow from the outer panels to the internal nodes, the
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Figure 8.8: Star-point reduction

effect of removing these nodes on the temperature of the remaining nodes is negligible.
The new thermal couplings are described in Table 8.4.

Table 8.4: Thermal couplings (W/K) between nodes in the reduced 8 node thermal network model for
Delfi-PQ

1 2 3 4 5 6 7 8

1 0 1.7×
10−2

1.7×
10−2

1.7×
10−2

1.3×
10−2

4.1×
10−5

4.4×
10−2

2.5×
10−4

2 1.7×
10−2

0 1.7×
10−2

1.7×
10−2

1.3×
10−2

4.1×
10−5

4.4×
10−2

2.5×
10−4

3 1.7×
10−2

1.7×
10−2

0 1.7×
10−2

1.3×
10−2

4.1×
10−5

4.4×
10−2

2.5×
10−4

4 1.7×
10−2

1.7×
10−2

1.7×
10−2

0 1.3×
10−2

4.1×
10−5

4.4×
10−2

2.5×
10−4

5 1.3×
10−2

1.3×
10−2

1.3×
10−2

1.3×
10−2

0 0 3.3×
10−2

0

6 4.1×
10−5

4.1×
10−5

4.1×
10−5

4.1×
10−5

0 0 0 6.8×
10−2

7 4.4×
10−2

4.4×
10−2

4.4×
10−2

4.4×
10−2

3.3×
10−2

0 0 4.3×
10−1

8 2.5×
10−4

2.5×
10−4

2.5×
10−4

2.5×
10−4

0 6.8×
10−2

4.3×
10−1

0

8.2.2. Assumptions for the thermal simulation

The thermal simulation was carried out using the thermal network model described in
the previous section, with the following assumptions:

• The Sun is assumed to be at infinity. This simplifies the calculation of varying
heat input due to the rotation of the satellite. A more complicated model, which
incorporates the β angle of the Sun vector, can be used to properly model the heat
input from the Sun. This, however, would be important only when the satellite
thermal behavior over a short period of time is of interest. Since the mean thermal
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behavior of the satellite over a period of one year is of interest, where the fluctuations
due to tumbling are averaged out, the assumption of the Sun at infinity is valid.

• The solar heat flux is assumed to be constant, set at 1400 Wm−2. The variation of
the solar flux due to the eccentricity of the orbit is not considered.

• The satellite is assumed to rotate at a constant rate, with respect to an Earth-
fixed non-rotating frame. Since no attitude data is available for Delfi-PQ, the
spin rates estimates from Cinotti, Lusvarghi, Marchese, et al. [13] are used. The
sparse attitude data available for Delfi-PQ makes it difficult to properly resolve
the fluctuations due to tumbling, using which an estimate of the spin rate can be
obtained. The spin rate is assumed to be constant over the entire mission duration.

• Earth’s albedo is assumed to be constant, set at 0.3. The variation of the Earth’s
albedo over the orbit is not considered. The reflected solar flux is also assumed to be
constant over the illuminated section of the orbit, hence no view factor calculations
are required.

• Earth is assumed to be a perfect black body with a temperature of 300 K.

• All heat transfers between the nodes of the satellite are assumed to be only
conductive transfers. This assumption can be made due to the relatively small
temperature differences between the nodes of the satellite. The surface properties
of the internal components of the satellite are also not characterized, making it
difficult to model the radiative heat transfer between the nodes.

• All heat transfers from the satellite to space assumed to be radiative and only
happening from the surfaces of the satellite facing space.

• The outer panels Xp, Xm, Yp and Ym are assumed to be fully covered in solar cells.
The surface properties of these panels are assumed to be the same as the solar cells.

8.2.3. Physical property estimation

Using the thermal couplings and physical properties described in Table 8.4 and Table 8.3
respectively, the temperatures of the nodes were simulated by numerically integrating
Equation 8.6 using the fourth order Runge-Kutta method to obtain the temperatures for
three orbits. The results of the simulation, depicted in Figure 8.9, show that the satellite
attains equilibrium temperatures after 3-4 orbits, with the temperatures at the same θT
for different orbits being within 1 ◦C.

Since there is no attitude data available for Delfi-PQ, the initial Euler angles were
assumed to be 0 rad for all the thermal simulations. Though the choice of initial angles
was found to have no effect on the general temperature trends and the amplitude of
fluctuations in the temperatures, the choice of initial angles was found to have an effect
on the phase of the fluctuations. Even with a perfect thermal model, the prediction
errors can be large if the phases of the simulated temperature fluctuations and the actual
satellite temperatures are not the same. To avoid this, the temperatures were smoothed
using a third order Savitzky-Golay filter [45] with a window size of 100 s. The smoothed
temperatures show a delay in the heating cycle for the internal nodes of the battery
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Figure 8.9: Simulated temperature of Xp solar panel for 680 minutes

and payload, compared to outer panels, which can be expected due to the delayed heat
transfer from the outer panels to the internal nodes. This delay is more pronounced for
the battery, which has a larger Cp compared to the payload.

Overlaying the simulated temperatures against the available temperature data, depicted
in Figure 8.10, shows that the simulated temperatures are not a perfect fit to the measured
temperatures. The KDE of the errors between the simulated and measured temperatures,
containing not only the information about the mean and, depicted in Figure 8.11, shows
that the errors are not centered around 0, indicating a bias in the model. The standard
deviations of the errors are also large, depicted in the large width of the KDE, show that
the model is not very accurate.
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Figure 8.10: Base thermal network simulation
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Figure 8.11: KDE of errors between simulated temperatures and telemetry data

The large errors might be due to the inaccuracies introduced by the assumptions made
in the model, especially the assumptions about the heat input to the satellite from the
Sun and Earth. As a possible solution, the physical properties of the satellite, such as
the surface α and ϵ, and the Cp of the battery were varied to obtain a better fit to the
measured temperatures.

The effect of the different parameters on the simulated temperatures was studied to
identify suitable parameters to use as design variables for the optimization process.
A selection of parameters, namely the coupling matrix, Cp, surface α and ϵ, initial
Euler angles and the spin rate of the satellite were scaled by ±20% and the effect of the
perturbations on the maximum and minimum temperatures of the simulated temperatures
were analyzed.
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Figure 8.12: Effect of initial temperature on the thermal network simulation for solar panel Xp

The effect of the initial temperature of the nodes on the convergence of the temperatures
over the orbits is depicted in Figure 8.12a. The temperatures over an orbit were considered
to have converged when the minimum and maximum temperature, occurring at the end
of the eclipse and illuminated sections of the orbit respectively, was within 1 ◦C of the
previous orbit. It was observed that for all initial temperatures studied, the number
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Figure 8.13: Effect of perturbations on the thermal network simulation for solar panel Xp

of orbits before equilibrium was less than five. Thus, for all further simulations, the
temperatures of the fifth simulated orbit were selected as the representative temperatures
for the satellite. The effect of the initial temperatures on the minimum and maximum
temperatures of the satellite, depicted in Figure 8.12b, was found to be within 1 ◦C for
all initial temperatures studied. Thus, the initial temperatures were not considered as
design variables for the optimization process.

The effect of the coupling matrix on the minimum and maximum temperatures (Fig-
ure 8.13a) was also found to be small for all perturbations studied, being less than 2.5 ◦C.
From Equation 8.6, it can be observed that increased Cp increases the energy required to
change the temperature of the node. For a constant heat input, the increase in Cp would
be expected to reduce the range of temperatures of the node over the orbit. This expected
behavior was observed in the simulation results, as depicted in Figure 8.13b. The surface
α and ϵ of the outer panels determines the amount of heat absorbed and emitted by
the satellite. Increasing α and reducing ϵ both have the same effect of increasing the
heat available to the satellite for increasing the temperatures. This effect is depicted
in Figure 8.13c and Figure 8.13d. The effect of the initial Euler angles and the Euler
spin rate of the satellite used for the simulation was found to have an effect of similar
magnitude as the effect of the coupling matrix on the simulated temperatures. This is
depicted in Figure 8.13e and Figure 8.13f respectively. The effect of changing initial Euler
angles cannot be integrated into the thermal network simulations used in this study, and
thus was set to zero for all simulations.

The effect of the various parameters on the simulated temperatures, having the same
trend as expected from the governing equations, increases the confidence in the thermal
network simulation despite the simplifications made.

Several optimization algorithms were explored to minimize the RMSEs between the
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simulated temperatures and the telemetry data, namely Nelder-Mead simplex algorithm
[18], a zeroth-order method, trust region [15] and Sequential Quadratic Programming
(SQP) [7], two first-order methods. The order of the method refers to the order of
the derivative information required for the optimization algorithm. The first-order
optimization algorithms require gradient information, analytical calculations of which were
not explored in this study, and only finite difference methods were investigated. The time
taken for simulating temperatures for 5 orbits was about 30 s, making it computationally
expensive to run first-order optimization algorithms using finite-difference methods for a
large number of design variables. Thus, the Nelder-Mead simplex optimization algorithm
was chosen for this study.

The optical properties of the outer panels, the Cp of the nodes and the thermal resistances
between the nodes were chosen as possible design variables for the optimization algorithm.
As depicted in Figure 8.13, several of the design variables have similar effects on the
simulated temperatures. Thus, the inverse modeling problem of fitting the design
variables to the telemetry data was found to be under-determined. No convergence
of the optimization algorithm was observed when all the design variables were fitted
simultaneously. An alternative approach of a step-wise optimization process is thus
proposed.

First, the α and ϵ of the outer panels were fitted by formulating a 12 design variable
minimization problem. The large errors in the predicted temperatures were found to
cause bad convergence in the optimization algorithm. Thus, a simple brute-force search
was used to minimize the RMSE between the simulated and measured temperatures using
a scaling factor f for the panel α and ϵ as the design variable. The design space was
constrained to 0 < f < 1.5 and a search was conducted for all values of f with a input
window size of 0.1. The best fit was found to be for f = 0.7. The initial point for
the Nelder-Mead simplex algorithm was set as the values of the α and ϵ described in
Table 8.3, scaled by f = 0.7. Figure 8.14 depicts the simulated temperatures for the
scaled initial α and ϵ values. Comparing this with Figure 8.10, it can be seen that the
simulated temperatures are a better fit to the measured temperatures.

The selection of the cost function to minimize was found to have a large impact on the
optimization results. The smoothing of the simulated temperatures using the Savitzky-
Golay filter removes the spread in temperatures due to tumbling, it was considered logical
to try to remove the spread of the temperatures from the telemetry data as well. Thus,
similar to the method described in Section 6.2.4, the telemetry data was binned into
θT ranges of 5◦, and the mean of the temperature in each bin was calculated, depicted
in Figure 8.15. All prediction errors were calculated against the mean telemetry data,
instead of the raw telemetry data. This was found to improve the convergence of the
optimization algorithm.

Since the amount of data for the illuminated side is greater than the eclipse side, if the
RMSE was calculated over the whole dataset, as described in Equation 8.8, it was found
that the optimization algorithm converged to fit to the heating phase, while worsening
the cooling phase predictions.
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Figure 8.14: Thermal network simulation for f = 0.7
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Figure 8.15: Mean temperatures of the Delfi-PQ telemetry between 2022-01 and 2022-04

RMSE =

√√√√ 1

N

N∑
i=1

(Tsim,i − Tmean data,i)2 (8.8)
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As a possible solution, the errors were calculated separately for the heating and cooling
phase of the temperatures, and the final cost function was defined as the mean of the two
RMSEs, described in Equation 8.9. Even after the filtering steps described in Chapter 6,
and the compensating for spread in telemetry data as described previously, a small region
of noisy data was observed in the solar panel temperatures around θT ≈ 100◦. Thus, the
RMSE of the heating phase was calculated for θT < 80◦ to avoid the noisy data.

From here onwards in the report, the mean RMSE between the heating and cooling phases
described in Equation 8.9 is referred to as the RMSE.

RMSE =
RMSEheating +RMSEcooling

2
(8.9)

The Nelder-Mead optimization algorithm was run for a maximum of 2500 iterations
with a tolerance of 10−4 ◦C for the reduction in RMSE and 10−4 for the change in design
variables. The design space was constrained to 0.1 to 1 for the values of α and ϵ.

The optimum values for the values of α and ϵ for the panels are summarized in Table 8.5.

Table 8.5: Optimized values of α and ϵ for the panels

Panel
α ϵ

Original Optimized Original Optimized

Xp 0.91 0.6215 0.85 0.5894

Xm 0.91 0.6698 0.85 0.5223

Yp 0.91 0.5935 0.85 0.5983

Ym 0.91 0.6504 0.85 0.5828

Zp 0.1517 0.1108 0.1355 0.0994

Zm 0.1517 0.1142 0.1355 0.0974

The simulated temperatures for the optimized values of α and ϵ are depicted in Figure 8.16.
The RMSE between the simulated and measured temperatures was found to be 4.36 ◦C,
which is an improvement over the RMSE of 11.14 ◦C for the original values of α and ϵ.

Next, the Cp of the battery and MCU nodes were optimized, while allowing for small
changes to the optimized values of α and ϵ. This was done to compensate for the
possible reduction in panel temperatures due to increased Cp of the internal nodes. The
optimization problem was formulated as a 14 design variable minimization problem, with
the design variables being the Cp of the battery and MCU nodes, and the α and ϵ of the
panels. The initial values for α and ϵ were set to the results of the previous optimization
results. The design space was constrained to 0.1 to 5 times the original values of the Cp

of the battery and MCU nodes, and 0.75 to 1.25 times the optimized values for α and
ϵ described in Table 8.5. The results of the optimization are summarized in Table 8.6.
The RMSE of the solution of this optimized run was 3.89 ◦C, a small improvement from
the previous optimization run.

From Figure 8.17, it can be seen that the thermal network simulation results in tempera-
tures closer to the observed temperatures for Delfi-PQ; however, it is still not a perfect
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Figure 8.16: Simulated temperatures of the thermal network with optimized values of α and ϵ
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Figure 8.17: Simulated temperatures of the thermal network with optimized values of α, ϵ and Cp

match. Attempts to improve the match by further optimizing the thermal couplings
between the nodes were attempted. If all thermal couplings described in Table 8.4
are used as the design variables for the optimization, it results in a 28 design variable
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Table 8.6: Optimized values of α, ϵ for the panels, and Cp for battery, and MCU

Node
α ϵ Cp (J/K)

Initial Optimized Initial Optimized Original Optimized

Xp 0.6215 0.6087 0.5894 0.5907 - -

Xm 0.6698 0.6773 0.5223 0.5106 - -

Yp 0.5935 0.5745 0.5983 0.5961 - -

Ym 0.6504 0.6547 0.5828 0.5823 - -

Zp 0.1108 0.1119 0.0994 0.0999 - -

Zm 0.1142 0.1157 0.0974 0.0969 - -

MCU - - - - 36.3 35.6975

Battery - - - - 66.65 109.799

minimization problem, not considering the inclusion of the panel surface properties and
the Cp of the internal nodes, resulting in a 32 design variable minimization problem. Both
variations of the optimization problem were attempted; however, the optimization runs
did not converge to a usable solution. For the first formulation with 28 design variables,
the optimization run did not converge to a solution within 2500 iterations, taking over
12 hours to finish. For the second formulation, the optimization run converged after
≈ 1700 iterations, but the optimized thermal couplings had changed by less than 5%
of their initial values. The RMSE of the optimized solution was 3.82 ◦C, which is not a
large improvement over the previous optimization run for the computation time required.
Thus, the optimization process was stopped at the previous optimization run.

An important caution to note is that the optimized parameters described in the results
obtained above are only valid for the specific assumptions made in the thermal network
model. The most important assumption is the heat input assumptions made for the
outer panels. A constant albedo of 0.3 for the illuminated section of the orbit, which
is a reasonable assumption only when θ = 0◦ with it being lower for other parts of
the illuminated section of the orbit. This can also be observed in the results of the
optimization run, where the α of the panels are considerably lower than the initial
values. This is possibly caused as a result of the overestimation of the heat input to the
panels, which is compensated by reducing the α of the panels. The heat input to the
panels can be more accurately modeled by using a time varying albedo factor to account
for the viewing angle, which is a function of the angle between the Sun and the orbit
plane. This would require the use of a more complex thermal model, which would be
more computationally expensive to solve. Thus, the thermal network model is a good
compromise between accuracy and computational cost.

The RMSEs of the thermal model at the different optimization stages are summarized in
Table 8.7.
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Table 8.7: RMSE of the thermal network at different optimization stages

Thermal model RMSE (◦C)

Base thermal network 11.1357

Thermal network with f = 0.7 5.5748

α, ϵ optimized thermal network 4.3567

α, ϵ, Cp optimized thermal network 3.8864

8.2.4. Residual networks

Using the approach described in Section 7.2, residual networks were trained to correct for
the errors in the thermal network model. Instead of using an illumination-based model
(output of which is of very low confidence in the no-data regions) or a curve-fit based
model (does not model any thermal interactions between the different sections of the
satellite), the base model used here is the thermal network model with the values of α
and ϵ for the panels and the Cp of the battery and MCU optimized to fit the telemetry
data as described above. Residual networks of input window sizes ranging from 1 to 4
previous time steps of temperature data were trained. The KDE of the prediction error of
the thermal network model and the combined models are shown in Figure 8.18, and the
prediction error statistics with varying input window sizes are depicted in Figure 8.19. It
can be observed that the standard deviation of the prediction error of the thermal network
model drops by around 5 ◦C with the addition of just one time step of temperature data
using the residual models. This is also evident in the reduction in spread of the KDE in
Figure 8.18. As seen for temperature based residual networks built for FUNcube-1 and
other base models for Delfi-PQ, the standard deviation of the prediction errors reduce
with an increase in input window size. Similar to the previous residual models built for
Delfi-PQ described in Section 7.2 and Section 8.1.2, the small number of training and
testing samples available for input window size = 4 results in an increase in standard
deviation of the errors.

The prediction error metrics of the various data-driven and hybrid models for Delfi-PQ
are summarized in Table 8.8.

8.2.5. Batched optimization

Even though the optimized parameters do not have direct correlation to their physical
counterparts, attempts to gain insights into the thermal evolution of the satellite with
time were made. With the variation of the input solar radiation over the course of a year
due to changing distance between the Sun and the Earth, the heat input for the satellite
changes over the course of the year. Since the thermal network model assumes a constant
solar input, we can expect the optimized surface parameters of the panels to mirror this
trend in the heat input. We can also expect the satellite to run hotter with time due to
degradation, so we should also be able to see a general increase in α and reduction in ϵ
after the optimization process.

To try to extract these trends, the telemetry data was batched for durations of 30, 45,
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Figure 8.18: KDE of the prediction error of the thermal network model and the combined models
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Table 8.8: Summary of FUNcube-1 models

Model Error µ (◦C) Error σ (◦C)

Illumination-based model (w = 94) 0.61 5.72

Illumination-based model (w = 94) + temperature-based
residual model (w = 1)

0.00 1.64

Illumination-based model (w = 96) + temperature-based
residual model (w = 2)

-0.05 2.03

Curve-fit model 0.87 5.96

Base thermal network 10.24 10.07

Thermal network with f = 0.7 4.24 7.94

α, ϵ optimized thermal network 2.03 7.75

α, ϵ, Cp optimized thermal network -1.27 7.59

α, ϵ, Cp optimized thermal network + temperature-based
residual model (w = 1)

0.06 1.79

α, ϵ, Cp optimized thermal network + temperature-based
residual model (w = 2)

-0.31 1.88

60, 75 and 90 days and the two-step optimization process described above was performed
on each of the batches. For a batch size of 45 days, the variation of the optimum α and ϵ
to minimize the RMSE is depicted in Figure 8.20. The expected seasonal pattern in the
fitted values were not observed in the results of the optimization process, and appears to
be mostly dominated by noise.
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Figure 8.20: Variation of optimized α and ϵ for batches of 45 days

To understand the reason for this, the variation of the RMSE for different batches and the
spread of the data (calculated as the mean of the standard deviations of the telemetry
data in every 5◦ bin of θT ) were analyzed, and the same is depicted in Figure 8.21. It
was observed that there was a rough between the RMSE and the spread in the data. The
method of compensating for the spread of the data by considering only the mean trend
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of the temperatures does not appear to be completely effective, although it helped in
the convergence of the optimization algorithm. The implications of these results is that
the thermal network model is susceptible to the temperature variation due to tumbling.
Even though a full rotation model is incorporated in the thermal network model, the
rotation calculations are not constrained properly due to the absence of attitude data,
and relying on the mean trend of the temperatures does not completely compensate for
this.
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Figure 8.21: Variation of RMSE of the optimization results and the spread of the data for batches of 45
days



9
Conclusion

The research presented in this study sought to answer the three main research questions
defined in Chapter 3. The answers to these questions are summarized in this chapter,
along with recommendations for future work.

9.1. Answers to research questions

How effective are the data-driven neural networks in predicting the temperatures of
the satellites analyzed in this study.

The applicability of LSTM models for time series prediction tasks, including those
relevant to space applications, has been demonstrated by various prior research (as per
the references cited in the literature review section).

For the data-driven models developed in this study, the FUNcube-1 data set was selected
as the base case. This was due to the availability of full orbit data, at a regular sampling
rate of 1min and the presence of distinct anomalies. In regions of nominal operation, the
models that were solely reliant on preceding temperature data were able to effectively
predict future temperatures. However, these models failed to detect and identify anomalies
concurrently in regions characterized by anomalous conditions. For small input window
sizes, the models followed the anomalous temperature trend, with the prediction error
having a similar magnitude as the nominal regions. For larger input window sizes, it
was possible to detect anomalies as regions with large prediction error, but these errors
persisted for several time steps after the anomaly had ended.

As a possible solution, an approach was adopted that decoupled temperature prediction
from previous temperature data using an illumination-based model. For sufficiently long
input window size, long enough for each sample in the orbit to have a unique previous
illumination sequence, the illumination regressed to the mean temperature trend of the
satellite. This removed the fluctuations due to tumbling from the predictions.

Since the illumination model did not have temperature data as an input, the measured
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temperatures did not affect the model predictions, enabling the model to simultaneously
detect and isolate anomalies by monitoring the prediction error. A temperature-based
secondary network was developed to correct for the residuals of the illumination-based
model. When used with the illumination model, the combined model resolved fluctuations
due to tumbling, reducing the prediction error to σ < 1◦C.

However, these purely data-driven models have limitations when applied to telemetry
from Delfi-PQ, which has gaps in coverage over the orbit. The model predictions have
high accuracy in regions with available training data, but cannot be trusted in regions
without data.

For the residual networks developed for Delfi-PQ, the input window size was constrained
by the availability of suitable contiguous training and testing data. From the prediction
error variation for different step sizes, it is possible that the residual network performance
is close to saturation at an input window size of 3 steps.

How does the performance of first-principles model compare to the data-driven models?

This study focused on two first-principles models for Delfi-PQ, namely the exponential
curve fitting based on the lumped capacitance model, and a thermal network model. It
was found that merely relying on the exponential curve-fit as the base model might result
in a higher error in comparison to models that are purely data-driven. As discussed
before, the base model error is important in identifying and isolating anomalies.

To enhance the performance of the base model, a synthetic training dataset was con-
structed by merging existing training data with simulated data originating from the
curve-fit. This resulted in an improvement in the performance of the curve-fit model,
with similar prediction error as compared to the illumination-based model.

The inclusion of residual networks into the curve-fit based model resulted in a decrease
in prediction error. The residual network developed for the data-riven model could be
reused with the curve-fit model due to similar predictions in data-available regions.

In the curve-fit model, thermal coupling between the nodes was not considered. Some
coupling may have been inherently captured when the synthetic data was used to train
the model, but this might not be accurate. This limitation can be overcome by employing
a thermal network model as the base model.

The sparsity of the telemetry and no available attitude data for Delfi-PQ posed a
considerable challenge in fully constraining the physical parameters of the satellite used
for the thermal model. The heat input from the Sun and Earth, a key component of the
thermal model, was highly simplified to improve computation time, resulting in a large
error in the model predictions. An optimization process is proposed to estimate model
parameters to better align with the assumptions used.

Optimization presented further complications due to the high correlation among various
parameters, such as the surface optical properties, heat capacities, and thermal couplings.
The close relationship between these parameters rendered simultaneous optimization a
complex task, as changes in one variable would invariably affect the others. To work
around this issue, a step-wise optimization process was implemented. However, this
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approach brought about its difficulties, with the optimized parameters not being physically
accurate.

Due to the large computation cost of the thermal network model, the optimization
process was only performed on the surface optical properties of the external panels and
the heat capacities of the internal nodes. The optimization of the thermal coupling, while
yielding small improvements in the model predictions errors, had a disproportionately
high computation cost, and was not pursued further.

As in previous models, residual networks could also be utilized to enhance the performance
of the combined model. The combined first-principles model and residual network, when
compared to the purely data-driven models, have similar prediction error in regions with
available data. However, the first-principles model can provide predictions in regions
without data with a higher degree of confidence than the purely data-driven models.

Can the evolution of the physical parameters of the satellite be estimated from the
thermal network optimization process?

The possibility of using the optimization process developed for improving the thermal
network model predictions to estimate the evolution of the physical parameters of the
satellite was also explored in this study. Despite the difficulty of directly associating
the optimized parameters with their physical equivalents, tracking the evolution of the
optimized parameters could provide insights into the physical changes of the satellite.

The available telemetry data for Delfi-PQ, treated as one dataset for creating the thermal
network model, was batched for different time periods and the optimization process was
performed on each batch. The results of the optimization process were then compared to
possibly identify any trends in the evolution of the physical parameters.

One notable difficulty was discerning the effects of changing solar radiation and degra-
dation over time from other potential influences, given the sparse data and changing
deviations from the mean temperature trend due to tumbling. This highlights the need
for more data to better distinguish between these effects in future studies.

9.2. Future work recommendations

• The study conducted on FUNcube-1 was based solely on a single day’s worth of data.
This approach might limit the effectiveness of the base model over a more extended
period due to the fluctuating mean temperature trend. Future studies could aim to
validate the base model’s performance over more extended periods, strengthening
the reliability of the results and further reinforcing the model’s application.

• Currently, illumination is classified as a binary input, categorizing conditions
as either sunlight or eclipse. This method of classification could be improved
by considering illumination as a continuous variable instead, thus enabling the
incorporation of the changing solar flux effect in the data-driven models.

• In parallel with the enhancement of the illumination variable, the parameters of the
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first-principles models for Delfi-PQ could be adjusted over time to accommodate
changing conditions. However, this would necessitate more comprehensive data
to constrain these parameters effectively and, thus, underline the significance of
extensive and precise data collection.

• Future work into improving the code efficiency of the thermal network model would
enable the inclusion of more accurate heat input models, improving the correlation
between the optimized parameters and the physical parameters.

• If full orbit data is available for Delfi-PQ, the possibility of obtaining an attitude
estimate based on the generated voltages of the solar panels can be explored. If
this is possible, the attitude estimate can be used to improve the first-principles
models.

• Similar to Delfi-PQ, the feasibility of inferring attitude data from solar panel
voltages for Delfi-C3 can be explored. With attitude data available, the fluctuations
due to tumbling can be accurately characterized, allowing for more advanced
filtering of the available data. Due to the large amount of available data, it might
be possible to implement the models developed in this thesis on Delfi-C3.
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A
Telemetry fields

All available telemetry fields for Delfi-PQ and FUNcube-1 are listed below:

Delfi-PQ

Field Name
1 timestamp
2 groundstation
3 TotalUptime
4 BootCounter
5 BatteryGGStatus
6 BatteryINAStatus
7 InternalINAStatus
8 UnregulatedINAStatus
9 Bus1INAStatus
10 Bus2INAStatus
11 Bus3INAStatus
12 Bus4INAStatus
13 PanelYpINAStatus
14 PanelYpTMPStatus
15 PanelYmINAStatus
16 PanelYmTMPStatus
17 PanelXpINAStatus
18 PanelXpTMPStatus
19 PanelXmINAStatus
20 PanelXmTMPStatus
21 InternalINACurrent
22 InternalINAVoltage
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23 UnregulatedINACurrent
24 UnregulatedINAVoltage
25 BatteryINAVoltage
26 BatteryINACurrent
27 BatteryGGTemperature
28 BatteryTMP20Temperature
29 Bus4Current
30 Bus4Voltage
31 Bus3Current
32 Bus3Voltage
33 Bus2Current
34 Bus2Voltage
35 Bus1Current
36 Bus1Voltage
37 PanelYpCurrent
38 PanelYpVoltage
39 PanelYmCurrent
40 PanelYmVoltage
41 PanelXpCurrent
42 PanelXpVoltage
43 PanelXmCurrent
44 PanelXmVoltage
45 PanelYpTemperature
46 PanelYmTemperature
47 PanelXpTemperature
48 PanelXmTemperature
49 MCUTemp
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FUNcube-1

Field Name
1 Satellite Date/Time UTC
2 Black Chassis deg. C
3 Silver Chassis deg. C
4 Black Panel deg. C
5 Silver Panel deg. C
6 Solar Panel +X deg. C
7 Solar Panel -X deg. C
8 Solar Panel +Y deg. C
9 Solar Panel -Y deg. C
10 Solar Panel X mV
11 Solar Panel Y mV
12 Solar Panel Z mV
13 Tot. Photo Curr. mA
14 Battery mV
15 Tot. System Curr. mA



B
Delfi-PQ thermal network

Figure B.1: Internal stack of Delfi-PQ [44]
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Figure B.2: Location of nodes of the 13-node thermal network model [13]



C
Code

All Python scripts and Jupyter notebooks used for this thesis are available on GitHub at
https://github.com/ullas-bhat/master-thesis.

The installable Python package SSA-Calc, useful for calculating the angles required
for orbit overlaying is available at https://github.com/ullas-bhat/master-thesis/
tree/main/ssa-calc
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