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Modern applications demand extremely low power budgets in
computer architectures for battery-operated devices. In the
particular case of implantable devices —the main focus of this
thesis— the system must have a long life span and batteries may
not be possible or easy to recharge. In addition to power, chip area
is also of major concern in this specific scenario. Since implantable
devices are sometimes placed at locations inside the body where
limited space is available, the implant must be as small as possible.
The vast amount of volume of an implant is typically occupied
by the battery and its electrodes, so the affordable chip area is
very limited. Another reason why we want very small processor
cores, is because this approach leaves more space for cache memory
and it statistically reduces the chance of hardware failures. In
this thesis we focus on the arithmetic unit (AU) of such a core,
which is typically the adder/subtracter. The goal is to explore
existing fault-tolerant and low-power AUs which are suitable for
implementation in biomedical implants. A second objective is to
study our own idea for a resource-constrained AU, based on graceful
degradation: the so-called scalable arithmetic unit (ScAU). When
an error occurs, the ScAU is able to proceed with the computational

work, but no longer at the normal throughput: instead of single-cycle we downgrade to double-cycle
operations. The design of our ScAU as well as several reference designs are all implemented in VHDL,
synthesized and analyzed using Synopsys Design Compiler/PrimeTime and ModelSim. A major part of
this thesis is dedicated to fault-tolerant design. An extensive study among common and less frequently
employed error-detection schemes is performed. Finally, an error-detection scheme is chosen, applied to the
ScAU, as well as to the reference designs for providing fair comparisons. A simple error-correction scheme
is implemented as well. The fault-tolerant ScAU proves to have some very interesting advantages over the
current state of the art. The fault-tolerant ScAU saves 17% of area, with a speedup of 12% for a 7.3%
increase in power consumption, compared to the conventional technique with the lowest costs. Because
of these savings, the power-delay-area product reduces by almost 21%. Under specific circumstances, our
fault-tolerant ScAU is even capable of saving both area and power.
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Introduction 1
1.1 Background

Nowadays, numerous electronic devices are battery-powered. Cell phones, MP3-players,
and notebooks, are probably the most prominent examples. Although we welcome
new advanced technologies and functionalities, we are very reluctant when it comes to
sacrificing battery time. There has been done a lot of research in the field of low-power
design, and designers are currently able to utilize energy much more efficiently than they
did in the past. In addition, a lot of progress has been made in the design of batteries
with enhanced energy capacities. Both these accomplishments have been crucial in the
design of, for example, modern smart phones (such as the Apple iPhone) with relatively
large TFT screens and numerous functions, very long stand-by times and only very small
sized battery packs.

In this thesis we aim at a specific, very unique group of electronic devices: biomedical
implants. These devices are utilized inside the human body to support or replace failing
or distorted physiological functions of patients with a certain illness. The most common
and well-known implants are pacemakers and implantable cardioverter defibrillators
(ICDs). Pacemakers generate electric pulses, which are required to let the heart contract,
in cases when one of the natural pacemakers (the sinoatrial node and atrioventricular
node) does not fire pulses at all, fires them too slowly, or irregularly. ICDs are utilized
for patients with certain types of heart arrhythmias (tachycardia) and high risk of
ventricular fibrillation (which always leads to sudden death). ICDs deliver electrical
shocks to the heart in order to bring the abnormal rhythm back to the normal rhythm.
There are indeed more applications for implantable devices, such as cochlear implants,
implantable neurostimulators (to treat neurological disorders as seizures and epileptic
attacks), implantable drug-infusion pumps, and spinal-fusion stimulators (to enhance
and facilitate the rate of bone healing) [1]. It can be expected that biomedical implants
will be employed for a growing number of medical conditions in the future, such as for
example, eye implants [2]. Further advances in implantable symbiotic brain-machine
interfaces (BMIs) can be expected. For example motor BMIs, which will form the key
in substituting lost motor functions. For patients who miss a limb, a neuroprosthetic
device (e.g. a robotic arm) can then be employed, utilizing a BMI implanted in the
brain to extract information from and deliver feedback to the brain in order to control
the robotic arm. Another possibility is cognitive BMIs, which would enable implants
to repair broken connections in the brain, e.g. between the long-term memory, the
hippocampus, and the short-term memory [3, 4].

From the energy point of view, the most important differences between implants and
all other electronic devices are that batteries should have a very long life span (up to ten
years) and they are impossible or cumbersome to recharge. Patients with an implant will

1
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visit their physician on a regular basis. During such visits the physician can read out
information from the implant via a dedicated wireless communication link. For example,
the physician is able to see how often the implant had to intervene, but also what the
status of its battery is. Until recently, when the battery level of an implant became low,
the the entire implant had to be replaced, requiring an invasive surgical procedure.
Nowadays, some implants do have replaceable batteries, which allows replacing the
battery without removing the entire implant out of the body. However, surgery is still
required, although less invasive. This makes immediately clear why ultra-low-power
design is of even greater importance in implants than anywhere else.

Another major difference between consumer electronics and implantable devices is
the need of the latter for high system reliability. Human lives literally depend on it.
The same holds true for, e.g., avionics and military defense systems, but these systems
are typically located in power-rich environments, in contrast with biomedical implants.
When power consumption is not an issue, it is much easier to build highly reliable,
fail-safe systems, sometimes even with complete redundant backup systems. In case of
implants, however, this is very difficult since every additional circuit utilized to increase
the fault tolerance will contribute to the power consumption and will deplete the battery
faster.

1.2 The SiMS Architecture

The SiMS project (Smart implantable Medical Systems, [5]) is a project targeting
the design of highly reliable, ultra-low-power, and of miniature physical dimensions
biomedical implants. SiMS is a truly multidisciplinary project, where many academic,
industrial, and medical specialists work on different parts of the implant, such as the
micro-architecture, the software (for example the compiler), the electrodes and battery,
sensors and actuators, analogue electronics, (wireless) data communication etc. The
main intention of the project is not to produce a single, specific implant, but to provide
the building blocks and the methodology for a wide range of implantable systems.
Basically, it provides biomedical researchers a toolbox of ready-to-use components, which
enables them to design an implant for a specific application, without having to build all
the sub-systems from scratch. This project will lead to significant design-time savings
and higher design quality. It is also expected that the SiMS approach will shorten the
time needed for medical approvals of new implantable devices.

At the computer engineering laboratory, a special minimalistic computer
architecture for implantable microelectronic devices is currently being designed. The
micro-architecture will have a data path of 16 bits wide. Since the implant is
battery-powered and requires a relatively long lifetime, the architecture needs to be
designed for ultra-low-power consumption. The system frequency has not been precisely
determined yet. Most current architectures in implants employ clock frequencies up to
10 Mhz [6], but future developments in the biomedical field will probably demand higher
clock frequencies, in order to enable higher throughputs. However, we need to be aware
of the fact that power consumption grows linearly with the clock frequency, so the system
frequency is envisioned to be limited (to approximately 20 MHz).
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Figure 1.1: The SiMS concept [5]

1.3 Thesis motivation

Currently, the SiMS processor architecture is being specified and designed. No special
ALU has been implemented yet. The ALU is the core processing component in any
computer architecture and is heavily utilized, therefore significantly contributing to the
total power consumption. In this thesis we focus on the arithmetic unit (addition and
subtraction; including zero, overflow, and sign detection) only. Arithmetic operations
are more difficult to perform than logical operations, and also the error detection of
arithmetic operations is more complex. This reflects in the power consumption and
area requirements of the arithmetic unit, which are significantly larger than that of the
logic unit. Therefore, the design of the arithmetic unit is the most interesting from the
low-power and low-area point of view, as well as from the reliability perspective.

The arithmetic unit that is eventually implemented in the architecture should be
designed for high reliability, since it is a vital component in the architecture. On the
other hand, increasing the reliability will always require additional (redundant) hardware,
therefore increasing the area and power costs. As mentioned previously, the power budget
is extremely small and increasing power will lead to a shorter life time of the battery and
thus a shorter life time of the implant itself. The area budget is very tight as well. Since
the physical dimensions of the implant are tightly bounded (implants tend to become
smaller and smaller, enabling them to be implanted in parts inside the body where there
is not much space), and the vast amount of area within the implant is used for the battery
pack and the electrodes, the available chip area is very limited. Another reason to keep
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the arithmetic unit small is: the smaller the circuit, the chance of hardware failures
statistically reduces as well. In addition, we want to save as much ”free space” on the
chip, so it can be employed for other core structures which have been shown to benefit
implant operation, such as caches [7]. Therefore, the design of a reliable arithmetic unit
under these conditions is challenging.

At this moment, the SiMS architecture is still in development and we do not have
any precise numbers about the maximum power consumption or acceptable chip area
of the arithmetic unit. What we do know is that the slightest increase in power has
always immediate effect on the battery lifetime. A slight increase in area does not
necessarily have immediate negative consequences. Through the course of this thesis we
will introduce a number of custom joint metrics, where different weights are assigned to
power, in order to classify the different designs for different needs. The idea is to assign
a higher weight to power, than we assign to area. What we also know is that in the
SiMS-targeted biomedical implants we do not require high performances. Throughout
the design process we will focus on low to medium performance.

One very common and effective technique for increasing reliability, is hardware
replication. When one of the adders fails inside the arithmetic unit (we assume
self-checking adders here, i.e. adders which are capable of detecting errors), the remaining
functioning adder can proceed with the computational work. Clearly, replicating
hardware blocks increases both power and area costs drastically. The idea was raised to
explore alternative approaches. Instead of replicating adders, we want to implement
only one single adder which is scalable in size. The basic idea is to shut down only
a part of the adder, the part where the failure has occurred, and to continue with the
computational work by employing the remaining part(s) of the adder. Preferably we do
not want to compromise precision, so we will have to sacrifice latency. This approach
would be an example of graceful degradation. We would like to know if this approach is
viable for our purpose, and if it is advantageous over the common hardware replication
technique, especially in terms of power consumption and area.

1.4 Thesis goals

A prerequisite for this particular thesis work is a good understanding of low-power design.
Therefore, a comprehensive literature study within this field is mandatory. Another
important objective of this thesis work is to set up an ASIC design tool flow and get
familiar with all the different tools, from which the most important one is Synopsys
Design Compiler.

A thorough study among plain adders should be performed to analyze their suitability
for implementation in low-power, resource-constrained architectures. Apart from these
general constraints, we also need to know which adders are suitable for implementation
in a scalable structure. We will implement, synthesize, and analyze the results of these
plain adders to make a comparison with studies from the literature. Existing literature
studies all report their results based on outdated technologies, and we want to study
if the power, area, and delay trends hold for relatively new technology nodes. This
study is interesting for the current work within the SiMS framework, but also for other
fields where low-power embedded design is applicable. We will also study the effects of
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glitching in order to see if this phenomenon should have any influence on the chosen
adder. Finally, we present the most suitable candidates.

As a next step, a new scalable arithmetic unit needs to be designed, implemented,
and synthesized. Together with some reference designs, the results will be analyzed and
compared. We will report if the scalable approach is viable or not. If it is, we will try
to find the optimal design point of the scalable arithmetic unit, by studying its behavior
for different frequencies and different technologies. If it is not, we will continue with the
best conventional solution.

Then fault tolerance comes in the picture. A thorough literature study in the
field of fault-tolerant design is required. Various error-detection schemes will be
explored, focusing on fault coverage and costs (in terms of power consumption and area
requirements). To determine the costs, some schemes might have to be implemented,
synthesized, and analyzed in order to obtain exact numbers if the literature does not
provide conclusive information. Also, the desired/acceptable fault coverage of the
arithmetic unit has to be determined. Based on this study, the best error-detection
scheme will be picked. Further, the implementation of a specific error-correction scheme
has to be devised. The error detection and correction scheme will have to be implemented
in our arithmetic unit. A number of standard, fault-tolerant arithmetic units will be
implemented as well, which will serve as reference designs. Finally, our fault-tolerant
arithmetic unit will be compared with these reference designs and conclusions will be
drawn.

1.5 Thesis organization

Chapter 2 begins with an explanation of the fundamentals about power
dissipation in CMOS technology. Subsequently, a survey through various common
low-power/power-aware design methodologies and low-power optimizations is presented.
This chapter is the result of a thorough literature study and provides the basic knowledge
for the design of the scalable arithmetic unit.

Chapter 3 explains which tools are employed for the design, simulation, synthesis, and
analysis of the scalable arithmetic unit (and other designs that have been implemented
throughout this thesis work). It is explained how the tools are utilized, and in which
setup.

In chapter 4, a number of well-known adder structures are investigated and compared
to make a decision about which adder type is the most suitable for utilization in the
scalable arithmetic unit and the SiMS architecture. Apart from these specific goals, we
have generalized the adder study to provide up-to-date results regarding delay, area, and
power trends of adders in modern technology.

Chapter 5 describes the design of the scalable arithmetic unit, including synthesis
results and various optimizations. Here, some preliminary conclusions are drawn about
the viability of our scalable design. Also, the design is studied for multiple system
frequencies, technologies, adder types, and word widths to find an optimal design point.
Further, some alternative applications of the scalable arithmetic unit are discussed.
Finally, a number of approaches are presented to solve the problems which appear when
the scalable arithmetic unit is gracefully degraded when an error has occurred.
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Chapter 6 is dedicated to fault-tolerant design. The chapter starts with an extensive
theoretical part which discusses the fundamentals about fault-tolerant design in general
and error detection/correction in adders in particular. It is investigated which error
detection/correction methods are the most suitable for implementation in the scalable
arithmetic unit. We will focus on the error coverage and, obviously, on the power and
area costs. The most suitable technique is implemented in the scalable arithmetic unit
and the synthesis results are presented, along with the results of a number of reference
designs, in order to make a good comparison.

Finally, chapter 7 presents the conclusions of the thesis work and lists a number of
directions for future work.



Designing for low-power

consumption 2
2.1 Introduction

If we want a design for low-power consumption to be successful, it is important to
have a thorough understanding of the sources of power dissipation, the factors that
affect them, and the methodologies and techniques that are available to achieve optimal
results. Therefore, this thesis starts with a literature study in low-power and power-aware
design. We present —we believe— the most important low-power methodologies and
power optimization techniques available. Low-power design can be applied on various
different levels, such as the architectural level, the gate level, and the technology level.
Apart from that, also a number of alternative logic-design styles are presented to report
on their characteristics regarding power consumption. This chapter could as well be
utilized by others as a quick study in the field of low-power/power-aware design.

2.2 Low-Power Design vs. Power-Aware Design

Nowadays, low-power design is a term that has become familiar to probably everyone
in the engineering field, because of the simple fact that we want to do the same amount of
work (or even more) with less power. Another design methodology exists, which employs
low-power design techniques, called power-aware design. These methodologies are,
however, not the same. Power-aware design is sometimes confused with low-power design,
but there is an elementary difference in the point of view.

Low-power design is a design methodology which focuses on minimizing power of a
certain circuit. Since low-power design techniques may severely affect the performance of
a circuit (as will be explained later), a minimal performance constraint can be set. This
means that the power consumption will be minimized without violating this performance
constraint. Power-aware systems are typically systems that have limited power budgets
but provide a respectable performance as well. When these circuits are designed,
low-power consumption is of importance as well, but the point of view is different. In
power-aware design the performance is maximized subject to a power budget [8].

Thus, to summarize, in low-power design we determine the absolute minimum
performance we require and minimize power without violating this constraint, and in
power-aware design we first determine our maximum power budget and we try to reach
the optimal performance within this budget.

7
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2.3 Sources of Power Consumption

There are a number of sources of power consumption in CMOS, which can be subdivided
into static and dynamic power dissipation. Dynamic power dissipation is primarily
caused by the switching of the CMOS devices (MOSFETs) when logic values are
changed (known as capacitive power or switching power). The amount of power
that is dissipated is directly related to the switching activity (which is the number of
logic transitions per clock cycle in the entire circuit), the clock frequency, the supply
voltage, and the capacitive load the circuit drives [8]. Another source of dynamic power
dissipation is short-circuit power. CMOS is comprised of both PMOS and NMOS
devices. During a logic transition, the PMOS and NMOS devices are simultaneously
turned on for a very short period of time, allowing a short-circuit current to run from
VDD to ground [9, 10]. This behavior is inherent to CMOS switching. Static power,
which is a constant factor and has nothing to do with the switching activity, is caused
by leakage power. In an ideal situation, a static CMOS circuit (i.e. one that does
not switch) does not consume any power because there is no direct path from VDD to
ground. In real life there will always be leakage currents, since CMOS devices are not
perfect switches. The total power dissipation can be described by the following formula:

Ptotal = α(CL · VDD
2 · fclk) + Isc · VDD + Ileak · VDD (1)

The Greek letter α represents the switching activity in the circuit, expressed in a value
between 0 (no switching activity at all) to 1 (maximum switching activity). CL is the
capacitive load, driven by the circuit. As can been seen in the formula, the dynamic
power consumption depends on VDD square, which makes the supply voltage a very
important factor in low-power design, as will be explained later. Isc and Ileak represent
the total short circuit and leakage current, respectively. It is important to realize that
that Isc is is a variable, while Ileak is not. Isc depends on the charge carried by the
short-circuit per transition, the cycle time, and the total number of transitions [11]:

Isc = Qsc · f · α (2)

A better way to represent the formula would be like this:

Ptotal = α(CL · VDD
2 · fclk +Qsc · fclk · VDD) + Ileak · VDD (3)

It is a misunderstanding that reducing power consumption will always lead to a
reduction in energy as well. When we refer to power, we refer to the momentary
electric energy that is dissipated, measured in Watts. Energy is measured in Joules, or
Watts per second. Thus, the energy consumption depends on the power consumption
and the time it takes to perform a task. For example, if we have two circuits A and B, and
PA = 2PB , and 2DA = DB (where ’D’ refers to the delay of the circuits), then EA = EB .
Thus, even though the power consumption of circuit B is twice as low as circuit A’s, no
energy is saved. When we take another look at formula (3) in section 2.3, reducing α,
VDD, and CL will always reduce power and energy consumption. Lowering fclk reduces
only power, not energy [12] (assuming that fclk is not higher than 1/Tcritical path)

1.

1The system frequency is based on the demands of the system as a whole. That does not necessarily
mean that every subsystem requires to operate at a frequency as high as the system frequency, e.g., when
the subsystem does not reside in the critical path.
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2.4 Basic Low-Power Design Methodologies

The following methodologies are the most powerful ones and applicable to virtually
every system. They include static voltage scaling, frequency scaling, various other kinds
of voltage scaling (sometimes combined with frequency scaling), clock gating and power
gating. Finally, a section is dedicated to technology scaling.

2.4.1 Static voltage scaling

One way to decrease the power consumption significantly, is to decrease the supply
voltage. As mentioned in section 2.3, dynamic power consumption depends quadratically
on VDD. Voltage scaling is therefore the most effective method to limit the power
consumption. However, when VDD is lowered, it comes at a price: the delay of the logic
increases. In systems where we desire a high throughput, and ask for the maximum
performance of the technology being utilized, voltage scaling is not an option. If VDD

would be lowered, we would not be able to meet the performance requirements. In many
situations however, we do not ask for the maximum performance and we can safely lower
VDD in order to save power. Even though delay is increasing, the power-delay product
is improving when VDD is decreased, since power decreases quadratically while delay
increases less fast. Delay scales with:

VDD

(VDD − VTH)2
(4)

A graph of this function is depicted as an example in figure 2.1, where the threshold
voltage (VTH) is 1 Volt. The threshold voltage is the minimal voltage required between
the gate and source in order to create a conductive channel between the drain and source
of the MOSFET. Note that when VDD is lowered to such extent that it reaches the
threshold voltage of the CMOS devices, the delay of the logic increases radically [13, 10].
In addition, the robustness of the transistors against noise is severely lowered and proper
circuit behavior is compromised [12]. According to Rabaey [9], voltage scaling is only
advantageous when VDD ≥ 2 · VTH , but a minimal value of 4VTH is recommended. So,
there is a limit in voltage scaling. It can provide massive power savings, but we have to
be careful not to jeopardize the reliability of the logic.

There is no such thing as a maximum VDD limit, since the normal supply voltage is in
fact the maximum VDD. However, technologies are becoming smaller and smaller, and in
an ideal situation the voltages, electric fields, and linear dimensions remain constant with
the scaling factor. However, in reality this is not always the case. Sometimes constant
electric field scaling is sacrificed by disproportional scaling of the supply voltage in order
to achieve higher performances [14, 15]. The channels in modern technologies are already
very short and the electric fields are very high. Careless scaling leads to even higher
electric fields. Very high electric fields cause so-called hot-carriers: electrons gain so
much kinetic energy that they can get injected and trapped in areas of the MOSFET
where they are not supposed to be. These conditions do not contribute to the reliability
of the technology since it leads to early transistor aging (which also negatively affects
the delay of the devices). Proper scaling is therefore very important for the reliability of
the technology. Obviously, also in carefully scaled technology device aging is inevitable.
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Figure 2.1: Graph displaying delay versus VDD

However, in the next paragraph will be discussed how easily this process can be slowed
down.

Operating at the normal supply voltage theoretically assures correct operation for
a certain period of time, but if we require high reliability and need to depend on the
technology for long periods of time (such as in biomedical implants), it is not only wise
to reduce VDD for power-saving purposes but also for increasing the reliability. A small
reduction in the supply voltage can already substantially diminish the device degradation
over time, since device aging is nearly exponentially dependent on VDD [15]. According
to Kakumu et al. [14], an optimum supply voltage exists for each technology which
takes both performance and reliability into consideration. According to [15], a number
of other factors can be altered to slow down the aging process, but this theory goes too
deep to discuss in this survey. In conclusion we can say that even a small reduction in
the supply voltage will always increase the reliability of the technology.

2.4.2 Frequency scaling

Apart from VDD, there is another variable in the equation of section 2.3 that intuitively
suggests possibilities for reducing power: frequency. Of course, the clock frequency is
bound by the desired throughput of the system. However, a system does rarely operate at
its maximum throughput all the time. Often, the desired throughput is much lower than
its maximum performance. Then, it is possible to lower the operating frequency in order
to save power (and thus also energy), which is called frequency scaling. Sometimes
voltage scaling and frequency scaling are employed simultaneously, such as in cell phones,
when they are in stand-by mode.
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2.4.3 Multi-VDD and CVS

A system is often comprised of various subsystems or components. If one or multiple
components require maximum performance and cannot permit voltage scaling, it does
not mean that the entire system does not apply for voltage scaling. It is possible to
subdivide the system in blocks, having their own different supply voltage: high-VDD

(normal VDD) or low-VDD. These supply voltages are, however, fixed. Therefore this
technique is still referred to as static voltage scaling. There appears, however, a problem
when Multi-VDD is employed. Signals cross from low-VDD to high-VDD blocks and vice
versa. Crossing from high-VDD to low-VDD does not result in any problems, but signals
coming from a low-VDD block driving logic on a high-VDD block results in problems.
A low-VDD output signal driving a high-VDD circuit may lead to problems with cutting
off the PMOS transistors (as PMOS transistors may get stuck in triode mode)2, which
causes a static current flowing from VDD to ground in the high-VDD circuit [17]. And
even when low-VDD is high enough to cut off the PMOS transistors, there will be an
increase in the rise and fall times at the receiving inputs, leading to higher switching
currents and slower transition times. Slower transition times will ultimately cause the
short circuit current to last longer than necessary. The solution for these problems are
level shifters (a.k.a. level converters). These are devices that can be placed in between
the signals crossing from a low-VDD to a high-VDD block. The level shifter will lift
the low-voltage signal to the level that is appropriate for the high-VDD powered block
[12]. Note that these components have a certain cost, and when many level shifters are
implemented, they may contribute significantly to the total area and dynamic power
consumption. Therefore, the total number of blocks should be limited, since too many
level shifters may cancel the power savings.

Another approach is CVS: Clustered Voltage Scaling. This technique avoids the
implementation of many level shifters (and thus power) by clustering all critical and
non-critical paths in only two separate clusters, one powered by low-VDD, the other by
high-VDD. Before CVS is applied, a lot of level shifters can reside along a path from an
input to an output of a circuit if a high-VDD circuit is connected to a low-VDD circuit,
which is in turn connected to a high-VDD circuit, etc. The idea of CVS is that every
combinational logic circuit can be rearranged in such a way that the structure is as
follows: primary inputs → high-VDD cells → low-VDD cells → level shifters → primary
outputs. On top of that, the level shifters can be combined with the output registers
which saves both area and power. Level shifters in between the clusters are not required
since high-VDD outputs drive low-VDD cells. An algorithm based on heuristics can be
utilized to rearrange the circuit into clusters [17].

2Triode mode means that the MOSFET is not fully open or fully closed, but stuck somewhere in
between. The MOSFET now functions basically as a variable resistor. Triode mode occurs when VGS >

VTH and VDS < (VGS − VTH) The actual resistance is dependent on the gate voltage relative to both
the source and drain voltages, which de facto determines the size of the static current. The conditions
we have to meet in order to have the P-MOSFET fully closed are: VGS > VTH and VDS > (VGS −VTH).
Note: G=gate, S=source, D=drain. For more background information, refer to [16].
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2.4.4 Dynamic voltage scaling

Instead of a fixed supply voltage during circuit operation it is also possible to dynamically
adjust the supply voltage based on the current required performance of the circuit. The
required performance is often not always the same. When the required performance
of the circuit is momentarily reduced, we can afford lower supply voltages. This is
called dynamic voltage scaling (DVS). A feedback control is required to control the
voltage based on the required performance. A replica of the critical path is implemented
together with a DC-DC converter. Note that a critical path replica is not an exact
functional copy of the critical path, but a virtual copy by creating a chain of gates that
equals (or slightly exceeds) the delay of the real critical path [18]. The delay of the
circuit is continuously monitored and the lowest possible supply voltage is generated by
the DC-DC converter. Ideally, we want access to an infinite amount of supply voltages,
such that the optimal voltage can be chosen. In reality, this is impossible, and we have
to work with a large, but limited number of voltages. Apart from lowering the supply
voltage, it is also possible to lower the clock frequency. A reduction in VDD will always
increase the delay to some extent, but if the cycle time is still much higher than the delay
of the circuit, energy is wasted. Therefore dynamic voltage and frequency scaling
(DVFS) can be employed to save energy to the maximum.
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Figure 2.2: Variable supply voltage scheme [19]

Kuroda et al. [19] proposed a variable supply voltage scheme, divided into
three elementary parts: the speed detector, the timing controller and the buck
converter, as depicted in figure 2.2. The timing controller contains two critical path
replicas (CPR and CPR+), both powered by the reduced supply voltage VDDL. After
one of the replicas a small delay element (a couple of inverters) is placed (CPR+), to
increase the critical path by a slight amount. Further, a simple wire is utilized as a
reference (path called REF). No matter how low VDDL is, the output register will always
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be able to clock in the value of the input register, since there is virtually no delay in
the REF path. If VDDL is too low, only the REF path is fast enough. The output data
comparator will detect this and output ’+1’, indicating that VDDL must be increased.
If VDDL is too high, all paths (REF, CPR, and CPR+) are fast enough, and the output
is ’-1’, indicating that VDDL must be decreased. If the paths REF and CPR are fast
enough, but CPR+ is not, then we have obtained the optimum supply voltage. The
output data comparator outputs a ’0’, which makes sure that the value is maintained.
All registers in the speed detector are clocked by the external system clock. The timing
controller contains a counter, clocked by a ring oscillator. In this case the counter
operates at 1 MHz, meaning that every 1 µs the counter can be increased/decreased.
The counter’s output is an integer N from 0 to 64, which is an indicator for the value
of the supply voltage VDDL. The buck converter is comprised of a duty controller
(clocked by a 64 MHz ring oscillator), a CMOS inverter, and a low-pass LC-filter.
The buck converter is the part that creates the VDDL from VDD. The idea is as follows.
Within every consecutive 1 µs time span, the duty control can turn VDD on for a period
of time X (PMOS is on) and off (NMOS is on) for a period of time Y. The ratio X/Y is
determined by the integer N. Since the duty controller runs at 64 MHz (which is 64 times
faster than the timing controller), and N can represent 64 numbers, we are able to create
64 different values of VDDL. For example, if N=32, then VDD is turned on for 0.5 µs and
for the remaining 0.5 µs the value is zero. Then the average value of VDDL is 0.5 ·VDD.
The low-pass filter3 is placed off-chip. Finally, there is the feedback loop back to the
speed detector. If VDD is 1 Volt, which is common in 90nm CMOS, this variable supply
voltage scheme can provide a resolution of 15.6 mV (meaning that VDDL can be varied
in steps as small as 15.6 mV). Obviously, the larger the frequency of the buck converter
(and the range of the counter), the larger the resolution, and the closer VDDL will be to
the optimal value. It appears that the external frequency fext assumes some predefined
values (based on different performance requirements), such that VDDL can be fine-tuned
for the specific frequency. The reason why this scheme is presented in such close detail
is mainly to provide a deeper insight in how dynamic voltage scaling exactly works, but
also to show that a significant amount of overhead is required for this technique.

Multi-level voltage scaling is a form of dynamic voltage scaling and essentially
an extension of static voltage scaling. Based on the required performance, the supply
voltage can be scaled between a small number of fixed and discrete voltage levels [13].
The advantage of Multi-level voltage scaling is that it is a significantly less expensive
power scheme than DVS with a virtually infinite number of supply voltages.

The Dual Variable Supply-voltage scheme (Dual-VS) is a combination between
DVS and clustered voltage scaling (CVS). First, the circuit is clustered into a high-VDD

and a low-VDD cluster. Both supply voltages are variable, and —in contrast with
multi-level voltage scaling— non-discrete. The minimal voltage is controlled by the
feedback loops for both the high and low supply voltages [18].

3We are referring to the LC-filter in figure 2.2. The purpose of this filter is to block the high frequency
supply voltage (alternating between zero and VDD) and pass the average value instead.
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Figure 2.3: Voltage dithering compared to other approaches [20]

2.4.5 Voltage dithering

Assume that we, for example, require a rate (normalized frequency) of 0.5 for a certain
period of time. If we do not implement a technique which allows us to dynamically adjust
parameters as voltage and frequency, and the circuit always operates at the maximum
rate of 1, a dramatic amount of the total dissipated energy is wasted energy. This
situation is depicted in figure 2.3(a). If power gating is implemented, the circuit can
operate at maximum rate and go to sleep when the work is done (2.3(b)). The energy
savings are significant (theoretically 50%), but power gating has a number of serious
drawbacks, as will be explained in section 2.4.7. When utilizing DVFS, fclk is lowered
(in this case by 50%) and since a lower frequency is required also the supply voltage
can be decreased (2.3(c)). However, also DVFS has an important drawback: access to a
vast (ideally infinite) amount of different supply voltages requires a significant amount
of hardware overhead. A solution to this problem has been presented by multi-level
voltage scaling, utilizing a small number of discrete voltages, but this introduces a
new problem. With not that many discrete voltages, the selected voltage will probably
not be optimal, which results in a higher energy consumption than strictly necessary.
A solution to both problems is Voltage Dithering. In voltage dithering, only two
discrete voltage/frequency pairs are utilized: A high-frequency, high-voltage pair and a
low-frequency, low-voltage pair. All possible rates can be achieved by utilizing both these
two pairs in a time span t(y)− t(0). The rate can be determined by the switch point : the
point ’x’ in time (t(y−x)) where the high-frequency, high voltage pair is alternated with
the low-frequency, low-voltage one. An example is depicted in 2.3(d) [20]. The costs for
voltage dithering is lower than for DVS. This can be explained by the fact that only two
discrete supply voltages (and frequencies) are required, which makes the power scheme
less complex.
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Figure 2.4: The clock gating mechanism

2.4.6 Clock gating

In the previous sections we have referred to (sub)systems that do not always operate
at their maximum performance. It is also possible that parts of a system are idle for a
period of time: then no useful computational work is performed. Still, there is power
consumed. A subsystem being idle does not necessarily mean that the subsystem is not
performing any computations. It only means that the results are not being utilized. This
is possible when the subsystem is still fed with data, but the result is discarded, because
it is not needed at that moment. But even when the subsystem is not performing
any computational work, there is still the static power dissipation (leakage power) of
the subsystem. What is more, flip-flops dissipate some dynamic power every single clock
cycle, even when the in- and outputs remain the same. If there are large registers present
in these subsystems, this power dissipation can become quite significant. And, finally,
there is the power dissipation of the clock network in the subsystem. Clock networks
are very expensive in terms of power. A major portion of the total power consumption
of the system is dissipated in the clock network (mainly in the clock buffers/drivers) [13].

Considering the above, there is a lot of power that can be saved when a subsystem
is idle. One way to achieve this goal is to apply clock gating. This essentially means
that the clock signal of the subsystem is cut off. This will save the power dissipated in
flip-flops and the clock network. If the combinational logic in the subsystem is fed by
registers at the inputs, the logic will stop switching [21]. It will, however, not save the
leakage power.

For clock gating an additional signal is required: a clock-enable signal. Clock
gating is a very simple approach and can be automatically implemented by a synthesis
tool. There are essentially two ways of implementing clock gating: flip-flop-free and
flip-flop-based clock gating. Flip-flop-free clock gating is implemented by a simple
AND-gate. This works fine, as long as the clock-enable signal is stable in between the
rising edges of the clock. If it is not, additional clock pulses can be generated or the clock
gating can be terminated prematurely. A better approach is to insert a flip-flop for the
clock-enable signal to avoid these problems. Both methods of clock gating are depicted
in figure 2.4. Thus, clock gating requires some additional logic, but the costs are low.
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Clock gating is not only applicable to large subsystems, it can as well be applied to simple
registers that do not need to be updated every clock cycle [11]. In some occasions, clock
gating a few registers is sufficient to disable an entire subsystem. For example, when the
input registers of an ALU are clock gated, the entire ALU can be ”turned off” (desired in
the case when the ALU is computing in vain, since the results are not utilized). However,
clock gating a register smaller than 3 bits is not efficient, considering the overhead of
the clock gating mechanism [13].

2.4.7 Power gating

Power gating provides basically a solution to the same problem mentioned in section
2.4.6. Power gating has however an important advantage over clock gating: it is capable
to save static power of idle blocks as well, since it cuts of the power supply instead of
the clock signal. In order to do that, blocks need to be placed onto separate ”power
islands”, which can be powered on and off. In reality, low-leakage PMOS transistors
(called switches) are placed in between every connection to VDD of the block, to create
a virtual power network that can be turned on and off. These switches are controlled
by power gating controllers. For these low-leakage PMOS transistors often high-VTH

transistors (the higher VTH , the lower the leakage current) are employed. Transistors
with low-VTH are suitable for high performance, but not for low-leakage, and vice versa.
Therefore, the transistors in the circuit have low threshold voltages and the switches
have high voltage thresholds. This is called a dual-threshold voltage technology or
MTCMOS (multi-threshold CMOS). These high-VTH transistors do, however, cause a
problem. Since VDD is low and VTH is relatively high, these transistors will be slow. In
order to speed them up, we would need to resize (upscale) them (see section 2.7.1) [22].

When a block is asleep it costs some time to wake it up again, the same as it costs
some time to put a block to sleep. This introduces additional delays. Also during
wake-up and going to sleep, still some leakage power is dissipated which makes power
gating not perfect. The essential criteria for implementing power gating is the total
leakage power component and how many and how often blocks are idle. The leakage
power highly depends on the technology being utilized and the impact of the leakage
power highly depends on the system frequency being utilized. If the leakage component
is significant and many blocks are idle for longer periods of time, power gating may
be efficient. One should however be aware of the fact that power gating is much more
difficult to implement than clock gating and leads to significantly higher costs (mainly
because of all the switches that are required). It is also important to realize that power
gating is much more invasive than clock gating. While clock gating does not affect the
functionality of the system, power gating does. It affects inter-block communication and,
as mentioned before, adds time delays to safely enter and exit power gated modes [13].

2.4.8 Technology scaling

Another way to save energy is to improve and scale the technology. Over the last
decades CMOS technology has improved and scaled from 10µm in the early 1970’s to
32nm in 2010. Sizes as small as 11 nm are expected around the year 2015. Ideally, the
voltages, electric fields, and linear dimensions remain constant with the scaling factor
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ϕ as explained in section 2.4.1. Therefore, the energy savings scale with ϕ3 (VDD and
the capacitance of the transistors scales with ϕ, where power/energy has a quadratic
dependence on VDD). In reality it is difficult to scale VTH along with VDD [23]. It will
be explained in section 2.7.2 why this is true. In smaller technologies the leakage currents
(and thus the leakage power) become a factor of significance (as they grow exponentially)
and ultimately, as technologies continue to shrink in the future, we may very soon face
a situation where the leakage power will be the dominating factor in the total power
consumption at any frequency [22]. However, at this point in time (at least in most
cases) smaller technologies still lead to significantly lower energy consumptions.

2.5 Methodologies at Architectural Level

Two methodologies at architectural level are presented, namely parallelization and
pipelining. Note that in both cases voltage scaling is required as well, and these
methodologies are not applicable to every circuit, since it depends on the implementation
of the architecture and constraints of the system.

2.5.1 Parallelization

Parallelization is essentially a technique where we trade power consumption for area. If
we take an ALU as an example, with a delay of T seconds, operating at a clock speed of
1/T Hz, at its maximal (normal) voltage VDD (Vmax). Now, if we would reduce VDD to
a value Vlow, such that the delay of the ALU is no longer T but 2T (which allows a VDD

reduction of roughly 40%), we are not able to run at 1/T Hz anymore. However, if we
replicate the ALU and feed both outputs to a multiplexer, as depicted in figure 2.5, we
are still able to deliver the same performance. Each ALU now produces a result twice
as slow (the ALUs operate on 1/2T Hz), but they deliver a result every system cycle
(1/T ) in turns [10, 24]. The dynamic power consumption for the single ALU data path
(reference path) is given by:

Pref = Cref · V 2
ref · fref (5)

And the same formula holds true for the parallelized data path:

Ppar = Cpar · V 2
par · fpar (6)

And if we take formula (6) and express the right side of the equation with terms from
formula (5) only, we obtain:

Ppar = (φCref )(γVref )
2(
fref
2

) (7)

The total effective capacitance being switched increases by more than two times (thus
φ is slightly larger than 2), since apart from the duplicated ALU, we have to account
for the additional wiring and the extra multiplexer as well. The system frequency inside
the ALUs is divided by 2. For convenience, division by two and multiplication by φ can
be cancelled out. This leads us to the following upper boundary for power saving by
parallelization:
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Figure 2.5: Parallelization principle

Ppar =O(γ2Pref ) (8)

Note that γ represents the supply voltage reduction; a number between 0 and 1. Since
the cycle time doubles, we can decrease VDD until the delay of the circuit has (almost)
doubled as well. According to [10], this happens when γ = 0.58. Since the ALU is
replicated, the leakage power would theoretically double. However, since VDD is lowered
by 42%, the increase in leakage power is only small. It may be obvious that parallelization
is not suitable for area constrained designs (such as the arithmetic unit in biomedical
implants). Also, if there is a feedback loop in the circuit, parallelization cannot be
employed.

2.5.2 Pipelining

Another effective technique to reduce power is pipelining. Again we take an ALU as an
example, with a delay of T seconds, operating at a clock speed of 1/T Hz, at its maximal
(normal) voltage VDD (Vmax). If we can somehow subdivide the ALU in blocks and we
place a pipeline register in between (depicted in figure 2.6), we decrease the latency of
the ALU from T to 2T , but this does not have to be a problem since every cycle a result
can be produced. Now the critical path in both blocks is much shorter (say, exactly half
what it was before), we are allowed to decrease the supply voltage. This results in the
following:

Ppipe = Cpipe · V 2
pipe · fpipe (9)

Ppipe = (φCref )(γVref )
2fref (10)

Ppipe =O(γ2Pref ) (11)

So, also here, the power savings are upper bounded by the supply voltage reduction
γ. The total capacity being switched has been increased slightly because of the extra
pipeline registers, so φ will be slightly larger than one. The supply voltage can be
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Figure 2.6: Pipelining principle

reduced to the same extent as in parallelization. This technique is, however, much more
interesting for designs with limited area budgets. However, if there is a feedback loop
in the circuit, pipelining cannot be employed.

Note that pipelining and parallelization can also be employed simultaneously to
obtain even larger power savings. The same upper bound holds true for this method
as mentioned in (8) and (11), but γ can be even smaller, since the critical path has now
been reduced to 4T instead of 2T . A voltage reduction of approximately 60% (γ = 0.4,
the point where the delay has quadrupled) is now possible [10]. Note that the relation
between VDD and delay may vary between different types of technology, so the numbers
of γ we presented serve only as an indication.

2.6 Optimizations at Gate Level

At lower abstraction levels, techniques can also be applied to decrease the power
consumption. At gate level, these techniques focus on optimization of the netlist in order
to reduce power. We present three important optimization techniques: path balancing,
high-activity net remapping, and fan-in decomposition.

2.6.1 Path balancing

Spurious transitions are a significant problem in combinational designs, since the
portion of the total power consumption of a combinational circuit that is caused by
spurious transitions can be as high as 10 to 40 percent [11]. Spurious transitions are
useless transitions, since they do not contribute to the real computation and thus the
power that is dissipated during these transitions is a waste of power. Their occurrence is
caused by timing differences between different paths leading to the same logic element.
For example, when a two-input XOR-gate does not receive both inputs simultaneously,
but with a certain delay between input 1 and 2, a spurious transition may occur. This
example is depicted in figure 2.7. On the left side of the figure (a), the paths 1 and 2
are assumed to have no delay. The signals on inputs A and B of the gate switch on the
exact same time, such that the output signal Z remains unaltered. On the right side (b),
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Figure 2.7: Example of a spurious transition due to unequal path delays

Input Capacitance

[fF]

I1 1.628
I2 1.898
I3 1.667
I4 1.995

Table 2.1: Input capacitance of a 4-input AND-gate

the paths do have a certain delay, as they will have in a real life situation. Path 1 has
however a slightly longer delay than path 2, causing a spurious transition in output Z.

These undesired transitions can be eliminated by path balancing (a.k.a. path
equalization), a technique that makes sure that the delay of all paths that converge at
each gate is about equal [11, 21]. This can be done by inserting unit-delay buffers in the
paths that are shorter than the others. The paths do not have to be exactly equal, since
if the width of a glitch is very small, it will not cause a spurious transition (the glitch is
then absorbed). A signal needs to be stable for a certain period of time in order to be
propagated.

2.6.2 High-activity net remapping

Since an n-input gate (e.g. a 4-bit AND-gate) can have significant differences in input
capacitance between its various inputs, it is wise to connect the net with the highest
switching activity to the input pin with the lowest input capacitance and vice versa,
to reduce power (the higher the capacitive load, the higher the power dissipation). For
example, the input capacitance of a 4-bit AND-gate in UMC 90nm technology can be
observed in table 2.1 (values are represented in Femtofarad; 10−15 F). In this particular
situation, the high-activity net should be mapped to input ’I1’. An optimization tool
(which obviously has to be aware of the switching characteristics of each net) can remap
the nets in order to reduce dynamic power [13].
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2.6.3 Fan-in decomposition

Gates with large fan-ins are undesired because these gates have typically high input
capacitances. High input capacitances result in slow logic and high power consumption
[25]. It is better to decompose a gate with a high fan-in into a network of multiple gates
with a low fan-in, which significantly reduces the total capacitance. For example, in the
UMC 90nm library, gates have a maximum fan-in of four inputs. Typically, the synthesis
tool takes care of these optimizations. For example, a 16-bit AND-gate implemented in
VHDL, will be decomposed by the synthesis tool and implemented by e.g. a tree of 4-bit
AND-gates.

2.7 Optimizations at Technology Level

At the lowest abstraction level, the technology (or transistor) level, a number of
optimizations can be performed in order to reduce power consumption. When
no low-power methodologies have been applied to the circuit, optimizations at the
technology level will not be necessary. But if the supply voltage is altered and the
delay of the circuit is compromised by low-power design methodologies, optimizations at
technology level may be desired. Optimizations at technology level includes adjusting
the threshold voltage of the transistors, and/or altering their sizes.

2.7.1 Resizing transistors

One should know, that the standard size of the transistors (MOSFETs) is based on the
normal, maximum supply voltage. When VDD is reduced, the size of the transistors is
no longer optimal.

With the size of the transistor we mean the W/L-ratio, which is the channel-width
to channel-length ratio, as depicted in figure 2.8. If we increase the W/L-ratio by
a factor N, the delay of the transistors will decrease. At the same time, the energy
consumption will increase linearly. If we want to consume the absolute minimal amount
of energy, we should shrink the devices to their minimal size. The delay of the transistors
then increases to their maximal values. The reason for this is inherent to the shrinking
of the transistors. As the transistors become smaller, also the current drive of the
transistors decreases, which effectively makes the transistors slower [23].

If we take the parasitic contributions into consideration, the theory becomes
more complex and more interesting. With parasitic contributions (P) is meant the
ratio between Cp and Cref . Cp represents the parasitic capacitance which is the sum
of the junction (substrate coupling) capacitance and interconnect capacitance of
the transistor. Cref is the gate capacitance of a transistor with the smallest possible
W/L-ratio (N=1). If P=0, then energy is indeed linearly dependent on N. If P > 0 this
is no longer the case, as depicted in figure 2.9. For higher values of P, we can afford to
increase the size of the transistors and thus decrease the delay of the transistors, without
increasing the energy consumption. In fact, the energy consumption first decreases for
increasing N, and then starts increasing again. This means that for every value of P,
there is an optimal value for N. Note that for P=0.5 in figure 2.9, the optimal value
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Figure 2.8: MOSFET (NMOS)

of N is still 1, since E does not decrease when N increases. The benefits of resizing is
that we can compensate for the speed loss due to the VDD reduction. By increasing the
transistor size, the speed of the transistors goes up again. For relatively small values
of P, the energy consumption will increase, but E only increases sub-linearly with N.
Still, the energy increase may cancel the energy savings by VDD reduction. In that
case resizing is not useful. For higher values of P, there exists an optimal value for N,
which enables a significant speed-up and additional energy savings. At least we can say
that in some cases resizing and VDD reduction together enable significant energy savings
without compromising the delay of the circuit [10].

It is obvious that not every transistor resides on the critical path. Resizing transistors
(shrinking them) may violate the performance constraints of the design. Not resizing
transistors may violate the power constraints. A solution is to shrink all transistors
except those on the critical path. The transistors on the critical path can maintain their
original size.

2.7.2 Optimizing the VDD/VTH ratio

As mentioned before in section 2.4.1, voltage scaling is limited by the threshold voltage of
the CMOS devices. The closer VDD gets to VTH , the larger the delay penalty will be. If
a significant reduction in VDD is required, but this results in unacceptable delays (when
VDD < 4VTH), it is possible to decrease VTH as well in order to keep VDD > 4VTH , and
thus keep the delay penalty acceptable. However, we have to be aware that the threshold
voltage is also an important factor in the leakage energy. Even a small reduction in VTH

leads to a significant increase in Eleak, since Eleak has an exponential dependence on VTH

[22]. However, even though VDD/VTH scaling will increase leakage energy, the leakage
energy component is generally a small fraction of the total energy consumption, so the
impact will be limited. The dynamic energy will decrease quadratically as well, since
it is quadratically dependent on VDD. [9, 24]. Normally, VDD/VTH scaling is therefore
efficient. Extreme VDD/VTH scaling leads however to extreme leakage currents. And even
though dynamic power energy be very low, ultimately the increase in leakage energy
will cancel the dynamic energy savings. So there is a limit to VDD/VTH scaling. An
optimum for a given fclk exists, and is reached when Edynamic ≈ Eleak [24]. Others claim
the optimum at Edynamic ≈ 2Eleak.
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Figure 2.9: Energy consumption versus scaling factor N for various values of P
(logarithmic scale)

In conclusion, simultaneously optimizing VDD, VTH , and transistor size will lead to
the optimal result. By not only reducing VDD, but also optimizing VTH and transistor
size it is possible to achieve significant energy savings without compromising the speed
of the circuit.

2.8 Different Digital Logic Styles

Standard CMOS is the most common and widely utilized digital logic in almost any
application field. Still, other digital logic styles exist and are utilized in the industry as
well. Since we aim in this thesis work for special design characteristics, such as very low
power consumption and very small sized designs, it is fair to have a look at other digital
logic design styles as well. First the fundamental differences between static and dynamic
logic will be explained. Then, the three most interesting alternative digital logic styles
are discussed.

2.8.1 Static vs. Dynamic logic

In static logic circuits the clock signal is only utilized for memory cells (flip-flops). Pure
combinational circuits do not need a clock signal at all. In dynamic logic, all cells are
clocked (this is the reason why dynamic logic is also referred to as clocked logic), even if
the circuit is purely combinational. This may seem odd, especially given the fact that the
clock network is one of the largest energy consumers in almost any design, but dynamic
logic provides a number of advantages. Dynamic logic is actually commonly utilized in
computer memories nowadays. All types of DRAM is dynamic logic (Dynamic Random
Access Memory). Another well-known application of dynamic logic is domino logic.
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Figure 2.10: AND-gate implemented in static and dynamic logic

In dynamic logic we distinguish between two phases: the precharge phase (when the
clock is low) and the evaluation phase (when the clock is high). During the precharge
phase, the output of the logic circuit is driven to ’1’, regardless of the inputs. This way,
the load (whatever is connected to the circuit) is charged. During the evaluation phase,
the circuit is actually producing a meaningful result. However, when the output is ’1’,
it is not because it is driven by VDD. It is high because it is driven by the charged load.
After a period of time this charge will leak away, so every clock cycle the charge process
has to repeat. This is the reason why DRAM requires ’refreshing’ (recharching) to
avoid losing data. To give an example of static versus dynamic logic circuits, a static
and a dynamic logic implementation of an AND-gate is depicted in figure 2.10.

One of the primary advantages of dynamic logic is the speed. It is significantly
faster than static CMOS, because dynamic does not utilize slow PMOS-transistors
(PMOS transistors are slower than NMOS transistors) for the actual computations (the
computations are performed by NMOS pull-down networks), and the capacitive load
and the threshold voltage of the devices is lower in dynamic CMOS. The packing density
of complex gates in dynamic CMOS is much higher than that of static CMOS, which
ultimately leads to smaller chip areas. Further, in dynamic logic there is no glitching
(which is obvious, since all cells are clocked). The major drawback of dynamic logic is its
power consumption, which exceeds that of static CMOS by far (due to large clock loads
and huge switching activities), even though we eradicate glitching power [26, 9, 10, 27].

There exist several techniques to lower the power consumption of dynamic logic
(such as dual-threshold voltages in domino logic [22]), which makes it more attractive
for low-power environments, but still, employing dynamic logic is only justified when very
high performances are required. In general, dynamic logic is not suitable for low-power
design [26].
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Figure 2.11: Multiplexer implemented in standard CMOS and CMOS with pass-gates
[26]

2.8.2 Complementary Pass-Transistor Logic

Gates in standard CMOS are comprised of a PMOS pull-up and an NMOS pull-down
network. The pull-up network is complementary to the pull down network. So called
pass-gates can be employed for the efficient implementation of, e.g., multiplexers and
flip-flops. Pass gates are combinations of a PMOS and an NMOS transistor, both in
pass transistor mode. The fundamental difference of pass-transistors, is that the
source is connected to a certain input signal, instead of VDD. If pass-gates are employed
as well, we refer to the logic style as CMOS with pass-gates (which is standard CMOS
technology, with standard CMOS libraries with pass gates added to it). In figure 2.11
an implementation of a 2-input multiplexer is depicted, both in standard CMOS and
CMOS with pass gates. It is clear that the implementation in CMOS with pass-gates is
much more efficient, since it requires fewer transistors. In the case when pass-gates lower
the amount of required transistors, the circuit area, power, and delay decreases. The
number of logic functions that can be efficiently implemented by pass-gates is however
limited. This has to do with the fact that each pass-transistor network must contain a
multiplexer structure to avoid shorts between inputs. Other drawbacks of pass-transistor
logic are:

• layout of pass-transistors is more difficult (irregular arrangements, high wiring)

• not very robust against voltage scaling

• very sensitive to transistor sizing (in fact, transistor sizing is crucial for correct
operation)

• high short circuit currents
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Figure 2.12: Multiplexer implemented in CPL [26]

A number of new pass-transistor logic styles have been developed since, which
performs better than CMOS with pass-gates. One of them is CPL (Complementary
Pass-gate Logic). It is one of the most common and well-know styles. CPL employs
a double-rail structure. Every CPL gate consists of two NMOS networks, two PMOS
transistors, and two inverters at the output (to provide the complementary outputs).
The multiplexer we discussed earlier, now implemented in CPL, is depicted in 2.12 (this
figure illustrates the function of the double-rail structure and complementary outputs
perfectly as well). Note that also in CPL, every gate has to be based on a multiplexer
structure, so this circuit is the basis for every gate in CPL. That means also for NAND
and NOR gates, which results in rather inefficient implementations. CPL does have
small capacitive input loads, very efficient implementations for, e.g., multiplexers and
exclusive-or gates, and very good output drives (powered by the output inverters). On
the other hand, double-rail structures involve many transistors and a lot of wiring, and
as mentioned before, simple gates have inefficient implementations. And, CPL performs
significantly worse at low supply voltages, which is a major drawback [9]. According
to Zimmermann and Fichtner [26], standard CMOS is the logic style of choice for the
implementation of arbitrary combinational circuits if low-voltage, low-power, and small
power-delay products are of concern. Essentially the only component that appeared to
be more efficient in CPL than in standard CMOS in the experiments of Zimmermann
and Fichtner, was the full-adder. This is also reported by [10], since a full-adder
contains XOR-gates, which can be implemented very efficiently. However, standard
CMOS appears to be superior to CPL in almost all cases, in terms of power, but also in
terms of area and delay.

2.8.3 Adiabatic CMOS logic

Adiabatic CMOS logic is a form of static CMOS with a couple of fundamental differences
with respect to standard CMOS. As explained in section 2.3, dynamic energy is dissipated
(as heat) because of switching capacitive loads and short circuit currents. Adiabatic
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CMOS logic is also known as energy-recovery CMOS: techniques are applied to
conserve and recover the energy that otherwise would have been dissipated as
heat. Instead of a constant supply voltage, in adiabatic CMOS logic we focus on a
constant current. What is necessary is a constant-current, variable-voltage source.
In practice, the supply voltage is commonly combined with the clock signal for this
purpose (powered-clock). The main idea is that when the powered-clock is rising, the
circuit is evaluated and energy is transported to and stored in the circuit. When the
powered-clock is falling, the recovery phase starts, where (most of the) energy is recovered
from the circuit by the source. When a circuit capacitance is charged and the supply
voltage decreases, the energy stored in the capacitance can be recovered by the source.
Otherwise it would have discharged to ground. Only energy stored in capacitances can
be recovered, energy dissipated as heat in resistances is lost forever. Adiabatic CMOS
logic is rather complicated, and we will not explain the functionality of this logic style
in detail, because it goes beyond the scope of the thesis work.

By definition, adiabatic CMOS logic is applicable for (ultra) low-power design. It
however requires higher supply voltages than standard CMOS, and adiabatic circuits
have longer delays. This makes adiabatic CMOS logic less suitable for high-performance
circuits. Plus, adiabatic CMOS logic circuits have higher area requirements than
in standard CMOS and adiabatic CMOS logic design requires extra design effort.
Altogether, the primary question is whether the drawbacks are tolerable, and if adiabatic
CMOS logic design actually leads to better results than aggressive low-power design for
standard CMOS [9].

Blotti et al. [28] has implemented a carry-lookahead adder in PFAL (Positive
Feedback Adiabatic Logic), which is one of the many different types of adiabatic CMOS
logic. They report an energy recovery of 94%, which ultimately results in a power
consumption that is about twenty times smaller than in standard CMOS. The area
increase with respect to standard CMOS is limited to 20%. At first appearance these
results seem formidable, however Blotti et al. have not applied any form of low-power
design for the standard CMOS implementation. Therefore it remains unclear what the
true power of adiabatic CMOS logic is in terms of energy savings.

Amirante et al. [29] has performed a similar experiment, with the implementation
of an adiabatic logic ripple-carry adder in 0.13 µm CMOS. It is shown that PFAL is the
most interesting adiabatic logic type, since it has the lowest energy consumption and
the highest robustness against technology parameter variations. It is reported that the
energy consumption of the adder is 6 times smaller than in standard CMOS (at 20 MHz).
At frequencies above 100 MHz, the energy savings become significantly smaller. One
important drawback can be found in the area requirements: the adder requires 50% more
area than its standard CMOS counterpart. In resource constrained designs, this might
lead to problems. Further, PFAL requires a four-phase powered-clock generator (off
chip). Amirante et al. took this into account for the power comparison. It is possible to
embed an adiabatic circuit (in this case an adder) in a standard CMOS environment (this
is possible because it is based on the same technology (CMOS), except that it employs a
different style (which is described in the adiabatic libraries)). Obviously, these interfaces
will increase area and power overheads, but for larger adiabatic circuits, these overheads
might be affordable. Therefore, PFAL to standard CMOS interfaces (and vice versa)
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are required. Unfortunately, the energy results mentioned in this paper are insignificant,
since no information is provided about the technology parameters of the standard CMOS
circuit (e.g. if low-power design is applied by lowering VDD, resizing transistors, etc.).
That means we have no clear answer whether PFAL achieves larger energy savings than
aggressive low-power design in standard CMOS. This topic is therefore an interesting
direction for future research.

2.9 Conclusions

We have discussed the sources of power consumption in CMOS: static (leakage
power) and dynamic power consumption. Dynamic power can be subdivided into
capacitive power and short-cut power. Only dynamic power is dependent on the
switching activity in the circuit. Further, the difference between low-power design and
power aware-design is explained.

Standard low-power methodologies are voltage scaling, frequency scaling, clock
gating, and power gating. Voltage scaling (lowering VDD) is the most powerful technique,
since power (and energy) have a quadratic dependency on the supply voltage. Voltage
scaling can be static or dynamic. In dynamic voltage scaling, the supply voltage is
adjusted based on the required performance of the system at that particular time.
There exist several forms of dynamic voltage scaling, sometimes combined with frequency
scaling. Voltage scaling does not only reduce energy, but also contributes to the reliability
of the technology. Clock gating is a simple, low cost, but excellent way to shut down idle
blocks and prevent any internal switching activity. Power gating can be utilized for the
same purpose, but is more complex and invasive. The major advantage of power gating
is that not only dynamic power is cut off, but also leakage power. Drawbacks of power
gating are additional delays and significant area costs.

At architectural level, low-power methodologies can be applied as well, such as
parallelization and pipelining. Parallelization increases area significantly (since the
original design is replicated) but is a powerful method (by employing voltage scaling)
to decrease power without compromising the throughput. About the same results can
be achieved with pipelining. The original design must however be dividable into two
parts. The area costs of pipelining is much lower than of parallelization, which makes it
more attractive to resource constrained designs. But, both parallelization and pipelining
cannot be employed if the is a feedback-loop in the design.

At gate level, we can balance unequal paths (try to make the delays of the paths
involved equal), to avoid spurious transitions, which can account for 10-40% of the total
power consumption. Another optimization technique is high-activity net remapping.
Here, the nets with the highest switching activity are connected to the inputs of the gate
with the lowest input capacitance, to keep the power consumption as low as possible. A
third technique, performed by the synthesis tool, is fan-in decomposition. Gates with
large fan-ins are slow and have high input capacitances. By decomposing these gates
into a network of smaller gates, the total capacitance is reduced, and so is the power
consumption.

At technology level, we are able to resize transistors and to optimize the VDD/VTH

ratio. Their sizes can also be increased, which is in particular interesting when the
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parasitic capacitances of the transistors are not that small. It allows us to decrease
the delay of the transistors, without increasing the energy consumption. This is a very
interesting technique to compensate for delay penalties due to voltage scaling. If VDD

is lowered significantly, and VDD gets close to the threshold voltage of the transistors,
the delay penalty will be massive. To prevent this, VTH should be reduced as well. The
problem is, however, that leakage power increases quadratically when VTH is lowered.
Extreme VTH lowering will lead to extreme leakage energies, which might cancel the
dynamic energy savings.

In conclusion we can say that low-power design always has a price. The easiest way
is to trade performance for lower-power. If we cannot afford losing (much) performance,
we will have to resort to more complicated methodologies, which will cost for example
larger chip areas and/or longer design times.

Finally we had a look at alternative digital design styles. Dynamic logic has a number
of very interesting properties such as higher speeds and smaller areas compared to
standard CMOS, plus the property that it has no glitching, however the significantly
higher power consumption makes dynamic logic not applicable for low-power design.
Pass-transistor logic (like CPL) leads to lower power results for a small group of cells, such
as multiplexers, exclusive-or gates, and full-adders, but in arbitrary designs, standard
CMOS still is still the best choice (primarily because the implementation of other cells
is often less efficient). Adiabatic CMOS logic is by definition suitable for low-power
design, however the higher area requirements might be a problem in resource-constrained
designs. The key in adiabatic design is that techniques are applied to conserve and
recover energy that otherwise would have dissipated as heat. Unfortunately, based on the
available literature, we were unable to tell whether adiabatic CMOS logic still performs
significantly better than standard CMOS when aggressive low-power design is applied
to standard CMOS design.
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Tools, Libraries and Tool Flow 3
3.1 Introduction

Apart from an extensive literature survey of existing designs, in this thesis work we also
introduce novel designs. These novel designs are implemented in synthesizable VHDL
in order to analyze their characteristics. The VHDL language provides us the means to
describe hardware and to test its functionality in a simulator. It is of great importance
to be able to report on the power consumption, area requirements, and also the delay
of a specific design in order to be able to make comparisons. For that purpose, we need
synthesis and analysis tools. For very accurate results, we might even need to resort to
place-and-route tools. Synthesis can also be utilized to back up theoretical assumptions.
Before the final design is presented, a number of iterations is, generally, passed. For
writing the VHDL code and obtaining the characteristics of the design, many different
tools are involved. There is no ready-to-use software tool which can perform all the
necessary tasks by simply pressing a button. Setting up the tool flow is a complicated
task and getting familiar with the different tools is very time-consuming. This chapter
explains which tools are utilized and why they are required. Above all, the overall tool
flow is explained in detail. Our experience during this thesis work has been that, although
the complexity and interaction details of the various tools needs are high, still no single
tutorial text could be found to help us in our efforts. Given also that the utilized tools are
established, top-of-the-line commercial products, we thought it would be very beneficial
to include a chapter delving into the practical details of these tools. It should be noted
that depending on the level of expertise with these tools, resulting designs can range
from infeasible to highly attractive. This means that a deep understanding of the tools
and their various quirks is a necessity for any serious design nowadays. This chapter is
compiled based on information from various sources, as well as our own experience with
the tools. This chapter may serve as a short but —we believe— very useful tutorial for
future students who will have to work with ASIC synthesis tools as well.

3.2 Tools and Technology Libraries

All designs presented in this thesis are described in VHDL [30, 31]. ModelSim
from Mentor Graphics [32] is utilized as VHDL compiler, simulation and debugging
environment. Synthesis and chip area analysis is performed by utilizing Synopsys Design
Compiler, and Synopsys PrimeTime for accurate timing and power analysis [33, 34].
Together with Cadence SoC Encounter, which is employed for place-and-routing and
post-layout area analysis [35, 36], it provides an excellent hardware (ASIC) design
environment. The tools, according functions, and general flow, are depicted in figure
3.1. Apart from that, the figure tells also something about the precision of the area,

31



32 CHAPTER 3. TOOLS, LIBRARIES AND TOOL FLOW

timing, and power reports after each design phase, and which libraries are required for
which tools. We will explain much more about this in the next sections. Please note
that figure 3.1 is a simplified representation of the tool flow. Later in this chapter we
will discuss and depict the tool flow in close detail.
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Figure 3.1: Tools, functionalities, and simplified tool flow

In this thesis work, we utilize four different technologies for synthesis from
two different manufacturers (United Microelectronics Corporation and Taiwan
Semiconductor Manufacturing Company):

• UMC 90nm SP (Standard Purpose)

• UMC 130nm SP

• TSMC 65nm GP (General Purpose)

• TSMC 65nm LL (Low Leakage)

The reason several technologies are employed is to investigate how certain designs scale
with different technologies, which is one of the thesis’s objectives.
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3.3 Synthesis

Synthesis is the process where a hardware description on a high abstraction level is
transformed into a design implementation in terms of logic gates. The input of the
synthesis tool are VHDL (or Verilog) files, usually describing the hardware on RTL
level. The primary output of the tool is a netlist, which is also a VHDL (or Verilog)
file, but now on a much lower level of abstraction, namely on gate level.

Before the synthesis tool, Synopsys Design Compiler (DC), can be utilized, a setup
file must be provided with proper links to the technology libraries. This involves the
target library, link library and the symbol library. The target library contains all
elementary cells, like logic gates, multiplexers, flip-flops, etc. which are utilized to build
the design with. Each cell is annotated with information about the size, delay, power
consumption and input and output capacitances, which is utilized by DC to compute the
area, delay and power consumption of the design. Apart from cells, the target library
also contains a number of wire load models and operating conditions. A wire load
model is utilized to calculate the net delays (and net area) and can be chosen manually,
but it is better to leave it up to DC to decide which model is appropriate. The criterion
for choosing the appropriate wire load model is the total cell area. The idea behind this
is that the average wire length increases for designs with a higher total cell area.

One should note that for small CMOS geometries, 350 nm or below, the net delay
calculations based on wire-load-models are not very accurate, but provide a reasonable
estimate. For accurate net delay calculations, a place and route tool (such as Cadence
Encounter) is required. Different operating conditions (e.g. best, typical, and worst
case) can be chosen, to compute the delay and power consumption subject to variations
in supply voltage and operating temperature.

The link library refers to a library of cells used solely for reference. This means that
the cells from this library are not inferred by DC. For example, the target library may
contain all standard cells, while the link library contains macros such as memories and
I/O pads, which we only want to link to, but for whatever reason not want to infer in
the design. A technology library can be utilized as target library, as well as link library.
Thus, there is no such thing as a target and a link library in the sense that they are
different in nature. They are only utilized in a different manner. The link library is in
particular useful to remap a design to a newer library version. In this case, the target
library is set to the new library and the link library to a previous version. Using a special
command in DC, a design mapped by older technology can easily be converted into one
utilizing new technology. The target library is only utilized by DC, PT only works with
the netlist produced by DC and, if necessary, with macros from the link library.

The symbol library assigns symbols to all target cells, utilized to translate the
netlist into a schematic representation. This is very useful to see how the VHDL design
is actually implemented and to search for bugs. Synopsys Design Vision is utilized for
this purpose, which is the graphical front-end version of DC. For all other purposes, the
command line interface of DC is the most convenient.

Apart from the libraries we have mentioned so far, the is another important library:
the physical library. The physical library is utilized only by the place-and-route tool
and contains the physical characteristics of each logical cell, like physical dimensions,
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layer information, etc. The place-and-route tool performs the physical cell placement
and routing (called layout) and provides the ability to place cells optimally, based on
the area and timing constraints of the design. Post-layout results are the most accurate
results up to this point in the design process. Which libraries are utilized in which phase
of the design process, is also depicted in figure 3.1.

After providing the setup file, another important file is required: the synthesis
script file. This file is to be created by the designer and should tell DC what to do.
The script file generally contains the following sections:

• List of VHDL files to compile and the name of the top level design

• Setting the operating conditions (and wire load model)

• Setting input drive strength (characteristics of cells driving the inputs of the
design)

• Setting load capacitances on output ports.

• Setting design constrains (maximum area, delay, dynamic power, static power)

• Compile command with necessary options (level of design effort)

• Report commands, to report on the results of the synthesis (preferably writing it
to an output file)

• Write command to produce the netlist in VHDL format

By setting the drive strength we let go of DC’s unrealistic assumption of zero drive
resistance and thus infinite drive strength at the inputs of the design. The drive strength
can be set by a number or by selecting a cell from one of the technology libraries which
is used as a reference for the driving cell. A finite drive strength will affect the transition
delay of the port and DC will buffer the net if the drive strength is too low. By setting a
load capacitance on the output ports of the design, the design —and its characteristics—
will be more realistic, since DC assumes zero capacitance by default (no load). In
reality there will always be a capacitive load. Setting the correct output load helps
DC selecting selecting the appropriate cell drive strength of an output pad. When we
compile we can select a number of effort levels. Without extra parameters a minimum
solution is produced. A medium or high effort (incremental) compile requires additional
instructions. This is only the case for the standard compiler of DC. Nowadays, virtually
only DC Ultra is utilized, which produces the optimal result by default. DC Ultra has
more powerful algorithms to perform the synthesis than the standard version. One should
note that the standard version of DC is still present in the latest Synopsys software.
Therefore, it is important to invoke the command ’compile ultra’ and not ’compile’, in
order to obtain the optimal results. In the following sections and chapters, the utilized
commands in the script files will have some further explanation wherever necessary. The
DC and PT script files that were involved in the design of the fault-tolerant scalable
arithmetic (introduced in chapter 1 and discussed in chapter 5 and 6) unit can be found
in appendix A, in order to give an example of a complete script file we actually wrote
and utilized.
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3.4 Area and Timing Analysis

The area analysis is straightforward. After the synthesis step is completed successfully,
the area can be reported by the

report_area

command (generally present in the script file). The total area of the design is subdivided
in cell area and net area. The UMC and TSMC libraries are provided with zero-area
wires only, which makes it impossible to report on the net area. However, in general
the net area is just a small portion of the cell area. The area is reported in logic units.
These logic units (in this thesis often simply abbreviated by ’units’) are dimensionless
quantities and provide only relative information about the required chip area. Only the
place-and-route tool can calculate the actual chip area in square micrometers. To give
an impression about the logic units: a simple NOR-gate has a size of 4, an AND-gate of
5, and a XOR-gate of 10 logic units (according to the UMC 90nm databook).

Reporting the delay of the critical path in purely combinational circuits is usually
easy. By invoking the

report_timing

command DC computes the delay from all inputs via all possible paths to all outputs.
The longest path is reported. One should, however, be aware of the possibility that
the critical path reported, might never occur in real life. DC does not detect that,
because the timing analysis is static. Only dynamic timing analysis would discover this,
by applying all possible input vectors to the design. When this occurs, one needs to
disable the false path manually. More about this topic can be found in the discussion
of the Carry Skip Adder (which will be discussed in the next chapter, section 4.4.1). In
sequential designs, the timing analysis is slightly more complex. Our topic of interest is
the critical path, which may be:

• a purely combinational path from an input port to an output port

• a path from an input port to a register

• a path from a register to an output port

• a path between two registers

All four situations mentioned above must be analyzed individually by invoking the
commands:

report_timing -from [all_inputs] -to [all_registers -data_pins]

report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins]

report_timing -from [all_registers -clock_pins] -to [all_outputs]

report_timing -from [all_inputs] -to [all_outputs]

These commands can be added to the DC script file. A faster and more powerful timing
analyzer is Synopsys PrimeTime (PT). The estimations are more accurate than the ones
produced by DC [37]. It requires a script file with instructions as well.
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3.5 Power Analysis

3.5.1 Basic power analysis

Accurate power analysis is the most complex of all, because the actual power
consumption highly depends on the circuit’s switching activity, which is, in turn, highly
dependent on the circuit’s input data. It is possible to simply invoke the command:

report_power

after the synthesis has completed. Then, the power compiler of DC just assumes a static
probability of 0.5 (i.e. the percentage of the time that a signal is high is assumed to be
50%) and the maximum possible toggle rate as the switching activity on all design nets
and ports. DC then performs a power analysis that does provide a very rough estimate.
Since the estimations are based on non-realistic switching activities, they are not of much
use.

3.5.2 Power analysis based on simulated switching activity

The best method is to obtain accurate information about the circuits switching activity
first. ModelSim can be utilized for this purpose. After the synthesis has completed,
DC can output the netlist in VHDL format. The netlist, together with a testbench,
can be imported in ModelSim. The netlist file contains numerous references to logic
cells from the technology library. A new ModelSim library must be created to make
ModelSim aware of these components. Fortunately, every technology library provides
VHDL descriptions of the logic cells as well, which can be referenced once they are
compiled and added to a library in ModelSim.

It is, however, very important that the stimuli in the testbench represent real data,
i.e. data which the design eventually in real life has to process. If it is unknown
at design time how the data looks like, it is wise to use worst-case-scenario stimuli
or so-called ’optimistic worst-case’ scenario stimuli, which are random inputs. For
generating random test vectors, we utilized a generator which can be found online [38].
This generator produces numbers based on the atmospheric noise, which leads to better
results than most pseudo-random computer algorithms. During simulation it is possible
to back-annotate the switching activity of each net in the design. ModelSim is, like most
other EDA logic simulation tools, capable of dumping all occurring value changes during
the simulation in an ASCII-based VCD (Value-Change Dump) file. For this purpose,
it is most convenient to create a ModelSim script file. It should contain the following
commands:

vsim work.testbench

vcd file ./foo.vcd

add wave -r *

vcd add -r *

run -all

vcd flush

vcd off

quit -sim
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What happens, is that the testbench (and all underlying designs in the hierarchy)
is loaded by the simulator and a VCD file is created, called foo.vcd. All signals (nets)
are added to both the wave window and the VCD file. Then the actual simulation is
executed. Every time a signal changes value in the wave window, the switching event is
written to the VCD file. Finally, the VCD file is closed and the simulation is terminated.
Since the Synopsys software does not work with VCD files, the VCD file needs conversion
into a SAIF (Switching Activity Interchange Format) file by utilizing the vcd2saif tool
(part of the Synopsys software). A SAIF file is actually a hierarchical list of nets with
annotated switching activity, e.g.:

(n168

(T0 522) (T1 478) (TX 0)

(TC 60) (IG 0)

)

means that a certain net ’n168’ has value ’0’ during 522 time units (T0), value ’1’ during
478 time units (T1), and changes from value (1-0 or 0-1) 60 times (TC, which stands
for transition count). TX stand for the total time the signal is undefined, and IG for
the number of 1-X-1 and 0-X-0 transitions. At this point, the SAIF file can be utilized
by Synopsys Power Compiler to calculate the power consumption. However, it appeared
that there is a naming mismatch between the instance and net names in the netlist and
the SAIF file. The VHDL compiler is case-insensitive, however, the power compiler that
reads the VHDL netlist is not. This means that all instance and net names in the netlist
are considered to be case sensitive and have to match with the names in the SAIF file.
Unfortunately, ModelSim dumps all information to the VCD file in lower-case letters,
regardless of the use of upper-case letters in the netlist. Since all names in the VCD file
are lower-case, so are they in the SAIF file. When the power compiler finds a net ’N168’
in the netlist and a net ’n168’ in the SAIF file, they are considered to be two different
nets. In reality they are the same. This leads to false power calculations. The easiest
way to solve this issue, is to convert all upper-case letters in the netlist to lower-case,
before we supply it to the power compiler. Perl is an excellent tool to do this:

> perl -pi.bak -e "tr/A-Z/a-z/" netlist.vhd

Having the synthesized netlist and the switching annotations, the actual power
calculation can be performed. The most accurate power compiler is the power compiler
in PrimeTime (called PrimeTime-PX) [37]. Once the calculation is done, the power
compiler provides the following information:

• The cell internal power

• The cell leakage power

• The net switching power

• Total power consumption
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As mentioned in chapter 2, power dissipation in CMOS has multiple sources. To
recapitulate: the total power consumption can be divided into static and dynamic
power consumption. DC utilizes specific definitions that need some explanation. The
cell internal power is the dynamic power, dissipated inside all cells in the design,
thus both the switching power and dissipated power due to shortcut currents. The net
switching power, is the switching power dissipated outside the cells, as a result of the
load capacitances at the outputs of the cells. Thus, the dynamic power is the sum of
the cell internal power and the net switching power. Finally, the cell leakage power is
what we call the static power component and needs no further explanation. The entire
tool flow is depicted in detail in figure 3.2.

3.5.3 Power analysis including glitching power

The power analysis discussed in the previous section is much more accurate because of the
utilization of simulated switching activity of nets and ports. We can however obtain even
higher accuracies, if we account for glitching/spurious transitions as well. The glitching
power component can be a significant portion of the total dynamic power consumption,
as explained in the previous chapter (section 2.6.1). The reason why spurious transitions
are not accounted for in the first place, is because ModelSim utilizes standard zero-delay
transmission models. Obviously, in reality, each cell/gate has a certain delay. This
implies that the outputs or internal nodes of a cell/gate can switch before the correct
logical value is stable. However, glitching is often caused by signals arriving at different
times at the inputs of a cell/gate. If we want to perform a power analysis based on a
non-zero delay transmission model, we have to provide ModelSim with a SDF (Standard
Delay Format) file, which is a file containing the delays of all cells utilized in the design.
This file can be generated in DC, but generation in PT leads to more accurate results.
Before the simulation in ModelSim can be started, the first line of the ModelSim script
has to be modified:

vsim work.testbench -sdfmax /testbench/dut=timing-postsyn-PrimeTime.sdf

The option ’sdfmax’ makes sure that the worst case delays are utilized from the SDF file.
Now also the glitches are counted as transitions. If the width of a glitch is very small, it
will in real CMOS never cause a transition since a signal needs to be stable for a certain
period of time in order to be propagated. The glitch is then absorbed. ModelSim’s
VITAL Glitch1 will detect this and disables the glitch generation preemptively. If the
width of the glitch exceeds a predetermined threshold, such a glitch at the input of a
gate may cause a transition at the output and then another transition when the output
falls back to its original level (0-1-0 or 1-0-1). This glitch counts as two transitions and
is commonly referred to as a spurious transition. This glitch is propagated [39]. When
PrimeTime-PX is invoked, the netlist, SAIF file, and SDF file must be provided. The
tool flow for power analysis based on non-zero delay transmission models is depicted in
figure 3.3.

1VITAL Glitch is a feature of ModelSim to generate glitches based on the provided timing information
of the circuit.



3.5. POWER ANALYSIS 39������ ��� ¡�¢ �£¤���£� �£��� ¥��¢¦

§¨��©�¨� ª«¬§¨� ¦���

®���¯§�¬«��©¯� ���°�®���¯§�¬±²�¢ ���¯ ��²¯� ��

¡¢�³��́

§¨��©�¨� ª«¬«��©¯� ���°�

®���¯§�¬§�²¯� �� µ ���� � �°�¶ ¢¦�° �¢ ¡ ¨
®���¯§�¬«��©¯� ���°�
·«ª ´¯�

¸®« ¹º��¯¥£�£¨
·»ª¼½� ¯�  §¨� ¦���£�©�£ 

·»ª¼ª��°�

¸®« ¹º��¡¦�¯ ¯¥£�£¨
¾¿¿À¿Á ¾¿¿À¿Á

Â�¢Ã¶�£�§ÄÅ± ´¯�

Æ© ��� µ«��� £�� �

Æ© ��� µ«��� £�� �§¨��©�¨� Ç£�����¬���� ���°�
���°£�©�£ 

Ä£��£�©�£ 

§¨��©�¨� Ç£�����¬���° Ä��¯̈ ��§¨��©�¨� Ç£�����ÈÇÉ¬Ç�¶�£ Ä��¯̈ ��Ç�¶�££�©�£ 
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Figure 3.3: Tool flow for power analysis including glitching power

3.6 Place-and-Route

As mentioned earlier in the text, the place-and-route tool performs the physical cell
placement and routing of nets. The tool has highly sophisticated algorithms at its
disposal in order to place cells and nets optimally, trying to meet the demands of the
designer. The output of the tool is the layout, which is the actual blueprint of the chip.
The layout is the lowest level of abstraction in the hardware design process.

Even though DC/PT provides good estimates, they remain estimates. Estimated
power, area, and timing numbers will always differ from the real values once the
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Figure 3.4: Tool flow for place-and-route

design is laid out and implemented in the chip. One could say that the numbers
themselves only have a limited meaning: it is the relation between the results of different
designs/implementations that provides us the real valuable information. For example, if
the post-synthesis power consumption estimates of three designs X, Y, and Z are a, b,
and c (in µW), where a > b > c, it is not of great importance if the post-layout results
turn out to be α = a ± ∆a, β = b ± ∆b, and γ = c ± ∆c, as long as the trend holds:
α > β > γ. The chance that this is the case is actually very high: our designs are
small, have a lot of common circuitry, and the wiring area is practically negligible for
such small circuits. However, according to [40], there is always a chance that the layout
changes the trend predicted by the synthesis results. For example, DC simply adds up
the size of each cell in the design to compute the logic area. Two different designs with
equal logic area might however, after layout, have substantial differences in chip area.
This is the case when one of the designs is much more complicated for layout than the
other. A larger chip area will in turn also affect delay and power.

Therefore, we decided to check some of the designs by a place-and-route tool. We
employed Cadence SoC Encounter 7.0 for this purpose [35, 36]. We utilized an available
script file with setup for TSMC 65nm GP technology [37]. This is the only technology we
test for, since it would be too time-consuming to convert the setup to, for example, UMC
90nm technology. The setup of Encounter is much more complicated than the setup of
the synthesis tools, and strictly speaking, place-and-route goes beyond the scope of the
thesis. The only reason why we employ place-and-route is to obtain absolute certainty
that the trends are correctly predicted by the synthesis tools. The tool flow for the
place-and-route is depicted in figure 3.4. The synthesis files that are required are the
netlist (in Verilog format) and the SDC file, which is the file containing the constraints
of the design. Further, Encounter needs two important libraries: the target library (.lib
file) and the physical library (.lef file).
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3.7 Conclusion

Setting up a correct tool flow is a difficult task, since many tools are involved and
each tool needs its own setup. The tool flow depends on the needs of the designer,
which complicates it even further. For example, if we decide to analyze the glitching
power as well, the tool flow becomes more complicated. Apart from the tool flow, it
is important to have a thorough understanding of at least the basic functionalities of
the tools as well. Without having any experience with synthesis whatsoever, this is a
very time consuming task. It is however an essential part of the thesis work. Without
synthesis it is obvious that we are unable to report on the characteristics of designs.
In particular the experience one gains working with these tools provides an interesting
insight in the transformation process of a hardware description in VHDL into a netlist of
logic components and ultimately a layout. The reader should be aware that throughout
this thesis pre-layout numbers are provided, unless specifically mentioned otherwise.
Therefore the numbers have to be looked at for their relative, and not their absolute
value.



Exploratory Study Among

Different Adder Types 4
4.1 Introduction

In this chapter, an extensive study among different adder structures is presented. A
number of motivations have led to this study. First, one of the motivations for this
study is to find the most suitable adder structure for implementation in the scalable
arithmetic unit. As explained in chapter 1, instead of duplicating adders, we want to
implement a single adder only, which is scalable in size. The basic idea is to shut down
only a part of the adder, namely that specific part where the failure has occurred, and to
continue with the computational work by employing the remaining part(s) of the adder.
Not every adder structure will be suitable for implementation in the scalable arithmetic
unit, since the adder must be divisible into (at least) two segments, capable of operating
independently and together as a whole. A more extensive explanation of the scalable
structure will be discussed in the next chapter (sections 5.2 and 5.3).

Second, a number of researchers have compared different adders in the past, such as
[9, 41, 42, 43]. However, in all studies we found the adders are implemented in older
technologies, such as 2µm CMOS [9] and 1.2µm CMOS [41], so it is difficult to predict
what the delay and power consumption will be for much smaller, submicron technologies,
such as 90nm CMOS. More importantly, it is important to know if the trends between
the various adders in 90nm CMOS remain the same as in, e.g., 2µm CMOS. Therefore,
the decision was made to implement, synthesize, and analyze the adders in order to make
an accurate comparison between the different adder types, and between our results and
the results in the literature.

This exploratory study has the intention to provide an up-to-date insight in the delay,
area, and power characteristics of well-known adder structures implemented in modern
technology. Please note that, at this point, we have intentionally decided to expand
the scope of this thesis work. This part of the study is a general study, which does
not focus on the employment of the adder in implants. The results of the study can be
utilized by anyone who requires an adder in their design.

Apart from the general study, it is an important objective to find an adder which
is suitable for implementation in low-power and low-area architectures, such as the one
in SiMS. Therefore, we utilize standard metrics to classify the different adders. And,
finally, we have a look at glitching power as well. Even though fast adders might not be
required for the intended purpose, they might become interesting if they prove to reduce
the unwanted glitching power to such extent, that the total power consumption of the
fast adder is lower than the slower and simpler adder.

43
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4.2 Various adder implementations

The most well-known and simplest adder is the ripple-carry adder (RCA). The RCA
design is regular, easy to implement and has the lowest area and power costs of all
existing adders. Its primary limitation is the long delay, which grows linearly with the
word width (for an n-bit adder, the delay is O(n)).

Fast adders are designed for having shorter delays, which obviously comes at a certain
price regarding the adders’ area and power consumption. In this thesis, apart from the
RCA, the following adders are investigated:

• Carry-lookahead adder

• Carry-select adder

• Carry-skip adder

• Ripple-carry/carry-lookahead adder (hybrid adder)

Fast adders have the advantage to scale better with increasing word widths (except
for the ripple-carry/carry-lookahead adder, which is explained later on), since the delay
of the previously mentioned n-bit fast adders is either O(

√
n) (the carry-select and

carry-skip adder), or O(log(n)) (the carry-lookahead adder). Among the fast adder
we find not only a variety in speedups, but also in area and power overheads. Although
these adders are common and well-known, they will be discussed briefly for completeness.
An in depth explanation can be found in [44].

The main idea behind the carry-lookahead adder (CLA) is to eliminate the slow
carry propagation. In order to do that, each full-adder (FA) requires two additional
outputs ’g’ and ’p’. The ’g’ signal indicates that a carry is generated inside the FA, the
’p’ signal indicates that an incoming carry will be propagated (in other words, there is no
’room’ to absorb an incoming carry). A fast lookahead logic unit (which utilizes the
’p’ and ’g’ signals to compute the carry input of each stage) enables the addition to be
computed in O(log(n)) time. The lookahead logic unit that is implemented is depicted
in figure 4.1. The ’p-block ’ and ’g-block ’ signals are used to compute the carry output, or
are fed to the next level of lookahead logic. This adder is the fastest one among the fast
adders, so it is not surprising it also has a high cost. Although the full adders are simpler
(partial adders can be utilized, since there is no need to compute the carry output), the
carry-lookahead logic is the part of the design which makes it expensive.

The carry-select adder is based on module replication. The n-bit adder is divided
into ’k’ ripple-carry adders of n/k bits each, and all these adder blocks are replicated
(except the lowest order part). The simplest n-bit carry-select adder is built using three
n/2-bit ripple-carry adders. The first adder is utilized to compute the lower half of the
n-bit sum, while the other two compute the higher half: one based on the assumption
that the input carry is zero, the other based on the assumption that it is one. This way
the computation of the higher half can start immediately; there is no need to wait for
the lower half to complete. When the lower half of the sum is computed, and the carry
input value for the next stage is available, the correct higher half of the sum is selected
by a multiplexer. It is not difficult to see that the overhead of this adder (depicted in
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Figure 4.1: Implementation of the lookahead logic in the CLA [44]

figure 4.2) is quite dramatic. The required area and power consumption of this type of
adder practically doubles with respect to the RCA (in particular when k > 2), because
of the replication technique.
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Figure 4.2: A 16-bit carry-select adder utilizing three 8-bit adders [44]

The carry-skip adder (CSK) is a very simple but ingenious adder, with a minimum
of additional logic. The n-bit adder is divided into ’k’ (n/k-bit) ripple-carry adder blocks,
where ’k’ is greater than, or equal to 4. Each adder block has a group propagate signal,
which means that when this propagate signal is 1, an incoming carry cannot be absorbed
and will propagate through the adder block instead. If that is the case, we could as well
skip this adder segment. This is exactly the idea behind the skip adder: when it can be
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determined, a priori, that a block cannot absorb a carry, it skips the block via the skip
logic. In this study, the sizes of all blocks are fixed and identical. Variable block-size
CSKs were omitted in this study, because of the irregularity of the design. In the next
section is explained why this is such an important criterion in this study. However, for
each adder width an optimal block size exists. The block size ’b’ can be easily computed
by the formula: b =

√

n/2, where ’n’ is the adder width. E.g., an 8-bit CSK has an
optimal block size of 2 bits, and a 32-bit CSK of 4 bits. For a 16-bit CSK the outcome
of the formula is not an integer (

√
8), so in this study the 16-bit CSK is implemented

with both 2- and 4-bit blocks, to investigate which block size is beneficial.
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Figure 4.3: Implementation of the lookahead logic in the RCLA [44]

The ripple-carry/carry-lookahead adder (RCLA) is a hybrid adder which
has a lower area and power overhead than a pure CLA, but is significantly faster
than a RCA. The problem with CLAs is that the carry-lookahead logic cannot be
extended to large word-widths. Not only because full lookahead logic increases the
overhead dramatically for larger word-widths, but also because of the physical limitations
regarding its implementation. The speedup of the CLA is based on the small number
of logic stages to compute the carry signals. The larger the word-width, the higher the
fan-in of the gates in the lookahead logic, which ultimately forces the synthesizer to
implement more logic stages to cope with the large fan-ins. In practice, lookahead logic
is implemented by standard 4-bit blocks. For example, a 16-bit CLA is implemented by
four 4-bit CLAs, with an additional 4-bit lookahead block to compute the block carries.
This is called a 2-level CLA and requires five lookahead blocks. The RCLA omits the
lookahead block which computes the block carries, and connects the four 4-bit CLAs in
a ripple-carry manner. This way it saves both area and power. Another advantage of
the RCLA is its regular structure, in contrast with the 2-level CLA. In this study, all
RCLAs (8, 16, and 32 bits) are implemented by a chain of 4-bit CLAs. The lookahead
logic unit that is used here is depicted in fig 4.3. Since the block ’p’and ’g’ signals are
not required here, the carry output ’c4’ is computed in a more relaxed manner, which
decreases the overhead of the lookahead logic.
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4.3 Suitable adders for employment in a scalable structure

For implementation in the scalable arithmetic unit, not only the delay, area, and power
consumption of the adder are of great importance. The adder should also lend itself to
segmentation (i.e. the ability to divide the adder up in segments, without compromising
the functionality and benefits of the adder in question), and should therefore have a
regular structure. Obviously, the RCA is always preferred in terms of power and area,
when it appears to be fast enough for its intended purpose. It is also has the most
regular structure of all known adder types. However, even when the RCA is fast enough,
there might still be reasons to choose a faster adder. For example, a fast adder could
buy the designer extra time for the implementation of additional hardware, such as error
detection/correction. In this situation, where it is still unknown what the exact system
frequency of the micro-architecture will be, it is important to investigate multiple adder
types. Therefore, the CLA, and in particular the RCLA hybrid, as well as the carry-skip
adder deserve some further investigation, mainly because of their regular structures and
their high speed potentials. The carry-select adder will be omitted in the subsequent
study. There are two reasons for that. First, this adder has no regular structure which
makes the implementation in the scalable ALU difficult. Second, previous studies such
as [9], show that the overheads of this type of adder are considerably higher than those
of the CLA, while the delay appears to be longer.

4.4 Synthesis results of different adder types

4.4.1 Preface

The RCA, CLA, RCLA, and CSK are synthesized and analyzed for different adder
widths, in order to have a good insight on how a particular adder type scales with
word sizes. The adder widths that are utilized for the analysis are 4, 8, 16, and 32 bits.
However, two exceptions exist. First, the RCLA is implemented as 8-, 16- and 32-bit
versions only. Since 4-bit CLAs are utilized to build the adder with, the 8-bit RCLA
is the smallest implementation possible. Secondly, the same is true for the CSK. The
minimum adder size of the CSK is 8 bits. The CSK requires more than one full adder in
each block to take advantage of the fast skip logic, and there must be a sufficient amount
of blocks to actually be able to skip a block. A 2-block CSK is obviously useless, because
since there are no blocks ’in between’ the two there are no blocks that can be skipped.
A 3-block CSK would be possible, but since we use word widths that are a power of two
only, a 4-block CSK with a minimum of two full adders per block, makes an 8-bit CSK
the smallest possible CSK.

Synthesis and analysis of the RCA is straightforward, however the analysis of the
CSK and synthesis of the(R)CLA requires overcoming some obstacles. In general, the
synthesis and analysis methods described in chapter 3 apply, except for the following
cases.

Synthesizing the lookahead logic of the CLA requires some extra attention. The
speed of the CLA is determined by the speed of the lookahead logic. In the literature,
e.g. [44], the lookahead logic is implemented with a minimum number of logic stages,
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which implies the use of logic gates with a higher fan-in. The lookahead function is
described by the recurrence ci+1 = gi + pici. In VHDL, the lookahead logic can be
described in the same way:

c(1) := g(0) or (p(0) and c(0));

for i in 1 to (WIDTH-1) loop

c(i+1) := g(i) or (p(i) and c(i));

end loop;

Even though this description is correct, Synopsys Design Compiler will not
automatically unroll the loop to build the lookahead logic as depicted in figure 4.1. The
implementation by DC is depicted in figure 4.4. It is obvious that this implementation
is worthless, since it does not provide the desired speedup. STU U U UVWXYTWZ[\ZZ ]^^_X VWXYTWZ[\ZZ ]^^_X VWXYTWZ[\ZZ ]^^_X VWXYTWZ[\ZZ ]^^_XS` UaUbUcUd eaebeced fafbfcfd

Figure 4.4: Incorrect implementation of the lookahead logic

Also, manually unrolling the loop in VHDL:

c(1)<=g(0) or (c_in and p(0));

c(2)<=g(1) or (g(0) and p(1)) or (c_in and p(0) and p(1));

c(3)<=g(2) or (g(1) and p(2)) or (g(0) and p(1) and p(2))

or (c_in and p(0) and p(1) and p(2));

etc...

appears to have no effect on the actual implementation by DC. The reason, is that
DC standard searches for small-size implementations, even without specific manual
instructions by the designer regarding the area constraints. Therefore, the carry
recurrence is not unrolled. And even when the VHDL description provides the unrolled
recurrence already, DC will detect that the logic can be implemented as a chain of logic
gates which is, in terms of area, beneficial. To force DC to unroll the lookahead logic
loop, the command

set_max_delay 0.07 [all_outputs]

must be utilized (which can be added to the synthesis script file). This command forces
DC to implement the lookahead logic in such a way, that all carry outputs have a
maximum delay of, in this particular case, 0.07 ns. This way, DC has no other option
than unroll the loop, utilizing gates with a higher fan-in and a higher drive strength, to
meet the demands of the designer. The maximum delay command overrides all (manually
set) area constrains in case conflicts occur.

The choice of the maximum delay value is the most difficult. Picking a value that is
too low results in a CLA that does not have the speedup that it should have. Picking a
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value that is too high, results in only minor, if any, further speedup. However, it does
increase the area, since DC dauntlessly tries to meet the demands of the designer, by
upscaling the drive strength of the logic gates and inferring driving buffers. The trick is
to strike the golden mean: sufficient speedup, without massive increase in area costs.

Synthesis of the CSK is straightforward, but delay analysis is more difficult. A
carry-skip adder is basically a ripple-carry adder. The important difference is that a
the CSK is subdivided in RCA blocks and has additional skip logic attached to each
block. In a RCA there is just one path for the carry to travel: through the RCA. In
a CSK two paths exist: through the RCA-block, or bypass the RCA-block via the skip
logic. Synopsys DC/PT just seeks for the longest path: which is through all RCA-blocks
successively, and never by-passing them via the skip logic. However, in reality this is
a false path (depicted in figure 4.5). The maximum path a carry will travel in a CSK
is when a carry is generated in the first full adder of the first block, and absorbed in
the last full adder of the last block. Thus, the maximum delay is determined by a carry
rippling trough two adder blocks and skipping every other block in between. This path
is depicted in figure 4.6.gh gijklimlnhop jklimlnhop jklimlnhop jklimlnhopq q q q

Figure 4.5: False pathrs rtuvwtxwysz{ uvwtxwysz{ uvwtxwysz{ uvwtxwysz{| | | |}~� ��
Figure 4.6: True critical path

Thus, there is a difference between the physical longest path and the true critical path.
In this particular case, the physical longest path will never occur in reality. Synopsys is
not able to detect that, because the timing analysis is static. Only dynamic timing
analysis would discover this, by applying all possible input vectors to the design. To
analyze the true critical path, the false path must be disabled manually. In Synopsys
DC/PT, we can use the following construct:

set_false_path -through RCA_1/FA_0/c_in

set_false_path -through RCA_2/FA_0/c_in

An 8-bit CSK is composed of four RCA blocks (RCA0...RCA3) with carry-skip logic.
By using the false path command like above, we declare the carry inputs of the middle
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two RCAs as a no-go zone. In other words, we force the timing analyzer to follow the
alternative path: the skip logic. This way we obtain the correct delay estimates.

4.4.2 Chosen frequency

The power analysis in this study is based on a frequency of 100 MHz (of course, the the
adders are combinational circuits and do not have a clock, but we target on the frequency
the operands are provided to the adder by the testbench). This frequency is not randomly
chosen. As discussed in chapter 2, the power consumption is linearly dependent on the
clock frequency. However, for relatively low frequencies this is not entirely true. We
found that (for our designs, in the specific technology we utilize) for frequencies below
approximately 20 MHz, the leakage component becomes a quite significant portion of
the total power consumption, because the dynamic power component becomes smaller.
When the frequency is reduced even further (below 10 MHz), the leakage component will
ultimately dominate the total power consumption. Since leakage power is a constant,
the power consumption no longer scales linearly with the frequency. Since we design
for low-power and obviously cannot afford high system frequencies, this is an important
issue. However, the primary objective of the study in this chapter is to make a good
and fair comparison between various adder types, regardless of the system speed, and
therefore we are primarily interested in the dynamic power consumption. The frequency
of 100 MHz is chosen, since the leakage component is then just a relatively small fraction
of the total power consumption. In the next chapter we will revisit this topic. For now
the synthesis results of the various adder types provide sufficient information to make a
judgment about which adder can or cannot be utilized for our purpose.

4.4.3 Synthesis results

The synthesis results of the various types of adders can be found in table 4.1. In this
chapter, random input vectors are utilized for the measurements, unless specifically
mentioned otherwise. The input drive strength of the adder circuits is considered
to be high, and the capacitive load on the circuit’s output ports is zero. The input
drive strength is the reciprocal of the output driver resistance (of the cell which drives
the input of the circuit involved), as explained in chapter 3 (section 3.3). Synopsys
DC assumes by default zero drive resistance on inputs ports, which is an unrealistic
assumption. In order to override this default setting one can use two commands to
manually set the input drive strength by a number, or by selecting a driving cell from
the technology libraries (which was also explained in section 3.3). We chose for the last
option, and drive every input of the adders by a simple buffer. This means that the
input drive strength will be high, but not unrealistic. A zero-capacitive load means that
we assume open output ports, enabling us to observe the purest results of the adders,
since the input capacitance of any successive circuitry (negatively) influences the delay
and power consumption of the adder itself. Of course, open output ports are unrealistic,
but it gives us an impression about he maximum capabilities of the adders. Later on we
will repeat the measurements with realistic capacitive loads. The technology utilized for
this study is UMC 90nm Standard Purpose.
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Component Delay Area Power

[ns] [units] [µW]

RCA 4-bit 0.30 116 6.55
RCA 8-bit 0.57 232 12.04
RCA 16-bit 1.11 464 23.67
RCA 32-bit 2.22 928 47.40

CLA 4-bit 0.21 189 11.41
CLA 8-bit 0.35 378 22.31
CLA 16-bit (2-level lookahead) 0.44 817 45.79
CLA 32-bit (2-level lookahead) 0.61 1634 91.99

RCLA 8-bit 0.40 316 17.54
RCLA 16-bit 0.74 632 34.11
RCLA 32-bit 1.45 1264 68.44

CSK 8-bit (4x2-bit blocks) 0.53 268 14.42
CSK 16-bit (8x2-bit blocks) 0.83 536 28.80
CSK 16-bit (4x4-bit blocks) 0.90 528 27.48
CSK 32-bit (8x4-bit blocks) 1.25 1080 56.83

Table 4.1: Synthesis results of adders (with open output ports)

Table 4.1 reports the synthesis results. In table 4.2 well-known metrics such as
the power-delay product, area-delay product and power-delay-area product
can be found. Table 4.3 illustrates the speedup and power/area overheads of the fast
adders compared to the ripple-carry adder more clearly. Finally, figures 4.7, 4.8, and 4.9
depict the delay, area, and power consumption respectively, as a function of the adder
width. The numbers that are displayed in boldface in table 4.2 represent the ’winners’ in
each category, which is the adder with the lowest PD, AD, or PDA product for various
adder-widths.

4.4.3.1 Conclusions

As depicted in figure 4.7, the delay of the RCA and RCLA scales linearly with the adder
width. However, there is a significant difference between the slopes of these linearities.
As expected, the delay of the RCA is worst and results in relatively large delays for 16-
and 32-bit adders. The RCLA and CSK are close competitors within the 8- to 16-bit
spectrum: for larger adder widths (32 bits or more), the CSK is advantageous in terms
of delay (which is obvious, since the CSK’s delay is O(

√
n)). Since the required area and

power consumption of the CSK is significantly lower than that of the RCLA, the CSK is
a very interesting alternative. The CLA is one of the adder types that shows a non-linear
delay trend, since the delay is logarithmically dependent on the adder width. However,
in practice this is not a continuous logarithmic curve, but a discrete one, or in other
words: a curve with twists (decreased slope) at discrete points along the x-axis, with
a linear progression in between these points. These twists coincide with the transition
of the adder to a higher-level lookahead structure. For example, a 4-bit CLA has only
one level of lookahead logic. An 8-bit CLA is simply built by placing two 4-bit CLAs in
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Component PD AD PDA

RCA 4-bit 1.97 34.80 227.94
RCA 8-bit 6.86 132.24 1,592.17
RCA 16-bit 26.27 515.04 12,191.00
RCA 32-bit 105.23 2060.16 97,651.58

CLA 2-bit 0.55 10.36 40.71
CLA 4-bit 2.40 39.69 452.86
CLA 8-bit 7.81 132.30 2,951.61
CLA 16-bit (2-level lookahead) 20.15 359.48 16,460.59
CLA 32-bit (2-level lookahead) 56.11 996.74 91,690.11

RCLA 8-bit 7.02 126.40 2,217.06
RCLA 16-bit 25.24 467.68 15,952.56
RCLA 32-bit 99.24 1832.80 125,436.83

CSK 8-bit (4x2-bit blocks) 7.64 142.04 2,048.22
CSK 16-bit (8x2-bit blocks) 23.90 444.88 12,812.54
CSK 16-bit (4x4-bit blocks) 24.73 475.20 13,058.50
CSK 32-bit (8x4-bit blocks) 71.04 1350.00 76,720.50

Table 4.2: Performance metrics (open outputs)

Component Speedup Area overhead Power overhead

[%] [%] [%]

CLA 2-bit 14.29 27.59 28.43
CLA 4-bit 42.86 62.93 74.20
CLA 8-bit 62.86 62.93 85.30
CLA 16-bit (2-level lookahead) 152.27 76.08 93.45
CLA 32-bit (2-level lookahead) 263.93 76.08 94.07

RCLA 8-bit 42.50 36.21 45.68
RCLA 16-bit 50.00 36.21 44.11
RCLA 32-bit 53.10 36.21 44.39

CSK 8-bit (4x2-bit blocks) 7.55 15.52 19.77
CSK 16-bit (8x2-bit blocks) 33.73 15.52 21.67
CSK 16-bit (4x4-bit blocks) 23.33 13.80 16.10
CSK 32-bit (8x4-bit blocks) 77.60 16.38 19.89

Table 4.3: Speedup and overheads with respect to the RCA (open outputs)

series and therefore the delay characteristics are not altered. A 16-bit CLA is built with
a 2-level lookahead structure, which explains the twist point in figure 4.7 at a width of
8 bits. A 64-bit CLA would be implemented with a 3-level lookahead structure, which
would cause another twist point at a width of 32 bits. There is no doubt that the
CLA is superior in speed, especially for larger adder sizes. However, the required area
and power consumption of the CLA increases dramatically with larger widths, and is
therefore less interesting for low-power designs. On the other hand the CSK appears to
be very applicable in low-power and low-area budget designs. The 32-bit implementation
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actually has the lowest PDA product of all adders, including the RCA. And apart from
the low overheads, the speedup of the CSK is very significant. The twist point in the
delay trend of the CSK at a width of 16 bits is caused by the transition from 2- to 4-bit
blocks for the 32-bit CSK. After all, the delay of the CSK is O(

√
n), thus the efficiency

of the CSK increases as the adder width increases.
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Figure 4.7: Delay as a function of the adder width
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Figure 4.8: Area as a function of the adder width

Figures 4.8 and 4.9 depict the area requirements and power consumption of the four
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Figure 4.9: Power consumption as a function of the adder width

different adder types. The trend lines are linear, except for the cost trend of the CLA.
The area requirements of the CLA increases with O(n · log(n)). This is true because
every time an extra level of lookahead logic is added, the costs increase even further
(this explains the twist point in the area plot at a width of 8 bits). However, the delay
grows less fast with the adder size than the costs. From that perspective, the CLA
becomes more interesting for larger adder widths. The proof for that can be found in
table 4.2, which shows that the PDA product grows less fast with increasing adder width
than, for example the RCLA, an adder which scales linearly both in delay and costs. In
both the area and power plot we see that the costs slightly increase when the transition
is made from 2- to 4-bit blocks (twist point at a width of 16 bits). This is caused because
the skip logic now receives four ’propagate’ signals (from four full-adders), and since the
skip logic has to be fast, the skip logic is implemented by gates with higher fan-ins,
higher drive strengths, and thus higher costs. The RCA performs best in terms of area
and power, followed by the CSK, the RCLA, and finally at significant distance, the CLA.

Based on the synthesis results, a number of other conclusions can be drawn. First,
the 16-bit 4x4 CSK adder is less interesting than its 8x2 counterpart. The 8x2 version is
faster, while requiring only little extra area and power. Therefore, the 16-bit 4x4 CSK
adder is omitted in the remaining sections of this study. Secondly, the 16-bit CLA with
2-level lookahead logic turns out to be impractical. The primary reason for this is that,
based on the previous results, the power consumption almost doubles when compared to
the 16-bit RCA, and therefore is not suited to our low-power demands. Also, the 2-level
CLA has an irregular structure and is therefore difficult to implement as a scalable adder.
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Component Delay Area Power

Typical Case [ns] [units] [µW]

RCA 4-bit 0.45 116 7.54
RCA 8-bit 0.79 232 13.20
RCA 16-bit 1.48 464 25.71
RCA 32-bit 2.86 928 50.93

CLA 4-bit 0.34 199 12.94
CLA 8-bit 0.52 398 24.60
CLA 16-bit 0.68 867 48.77
CLA 32-bit 0.90 1734 97.92

RCLA 8-bit 0.57 346 20.16
RCLA 16-bit 1.03 692 39.17
RCLA 32-bit 1.95 1384 78.36

CSK 8-bit (4x2-bit blocks) 0.68 300 16.89
CSK 16-bit (8x2-bit blocks) 1.03 600 33.25
CSK 32-bit (8x4-bit blocks) 1.49 1312 74.02

Table 4.4: Synthesis results of adders (with Cout=0.01pF)

4.4.4 Impact of capacitive load

Now that we obtained the synthesis results of the different adder types, we investigated
the impact on the delay and power consumption of the adders when they are implemented
inside the surrounding circuitry: the ALU. However, at this point it is still unknown how
the entire ALU is implemented, so it is impossible to come up with a close estimate of
the capacitive load of the successive circuitry (which will be a bank of flip-flops, zero and
overflow detection logic, error correction/detection logic, etc.). To be on the safe side,
a pessimistic rough estimate is the best solution here. The capacitive load is set to 0.01
pF, which means in practice that each output drives at the most 5 to 7 logic cells (e.g.
gates or flipflops). Tables 4.4, 4.5, and 4.6 show the results in the same way as in the
previous (zero-load) situation. Also here, in table 4.5 the numbers that are displayed
in boldface represent the ’winners’ in each category, which is the adder with the lowest
PD, AD, or PDA product for various adder-widths. It is clear from the results that the
capacitive load has a serious impact on both the delay and the power consumption of
the adders. E.g., the delay of the 32-bit RCA increases with almost 29% and the power
consumption increases with 7.4% when we attach a load of 0.01 pF. Also area increases
(slightly) for the CLA, RCLA, and CSK, since the synthesis tool optimizes the lookahead
logic/skip logic to compensate for the speed loss, and therefore utilizes gates with higher
drive strengths.

4.4.5 Comparison with literature

It is far from easy to make a fair comparison between the results of this adder study with
other adder studies in the literature. There are a number of reasons for this. First, the
exact implementations of the skip logic of the CSK and the lookahead logic of the CLA
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Component PD-product AD-product PDA-product

RCA 4-bit 2.71 38.28 314.66
RCA 8-bit 8.68 139.20 2,014.22
RCA 16-bit 32.22 528.96 14,948.41

CLA 4-bit 3.06 45.36 577.89
CLA 8-bit 9.03 139.86 3,413.98

RCLA 8-bit 8.07 129.56 18,444.29
RCLA 16-bit 29.18 480.32 18,444.29

CSK 8-bit (4x2-bit blocks) 9.35 150.08 2,504.84
CSK 16-bit (8x2-bit blocks) 29.02 466.32 15,556.44

Table 4.5: Performance metrics (with Cout=0.01pF)

Component Speedup Area overhead Power overhead

[%] [%] [%]

CLA 4-bit 37.50 62.93 54.99
CLA 8-bit 62.16 62.93 68.69

RCLA 8-bit 46.34 46.83 36.07
RCLA 16-bit 50.00 36.21 35.88

CSK 8-bit (4x2-bit blocks) 7.14 15.52 15.34
CSK 16-bit (8x2-bit blocks) 31.03 15.52 18.05

Table 4.6: Speedup and overheads with respect to the RCA (with Cout=0.01pF)

may differ, since different synthesis tools and different technology libraries are employed.
Second, there are difficulties with comparing the area. Some papers report the area
results only in square micrometers, while others report in number of transistors, number
of gates, or transition counts. Reports in number of transistors or logic gates makes a
comparison with our results possible, but has still no ideal one-to-one correspondence to
our pre-layout logic units. Nevertheless, we have compared the results of three different
16-bit adders of the following studies:

• Our own study (Riemens): 90 nm CMOS, VDD = 1.0 Volt, f = 100 MHz

• Nagendra’s study [41]: 1.2 µm CMOS, VDD = 5.0 Volt, f = 10 MHz

• Rabaey’s study [9]: 2 µm CMOS, VDD = 10.0 Volt, f = 2 MHz

Nagendra et al. and Rabaey et al. utilized, like we did, (pseudo) random input vectors
for the power measurements. Our results are based on pre-layout results. The results
of Nagendra’s study and Rabaey’s study are based on post-layout results (Nagendra et
al. employed HSPICE for the circuit simulations, while Rabaey et al. employed CAzM).
The comparison can be observed in table 4.7. The results are also represented in graphs
for a more revealing view, depicted in figures 4.10, 4.11, and 4.12.

Note that area overheads and speedups, mentioned in the table, are calculated with
respect to the RCA. Both the delay and area results of the CLA between our study and
the study of Nagendra et al. show virtually no differences. The same holds true for
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Riemens Nagendra Rabaey

Adder Area Overhead Area Overhead Area Overhead
16-bit [units] [#tors1] [#gates2]

RCA 464 596 144
CSK 536 15.5% 682 14.4% 156 8.3%
CLA 817 76.1% 1038 74.2% 200 38.9%

Adder Delay Speedup Delay Speedup Delay Speedup
16-bit [ns] [ns] [ns]

RCA 1.11 28.00 54.27
CSK 0.83 25.2% 18.00 35.7% 28.38 47.7%
CLA 0.44 60.4% 11.00 60.7% 17.13 68.4%

Adder Power Overhead Power Overhead Power Overhead
16-bit [µW] [µW] [µW]

RCA 23.67 1.80 117.00
CSK 28.80 21.7% 2000.00 11.1% 109.00 -6.8%
CLA 45.79 93.5% 2600.00 44.4% 171.00 46.2%

1 Total number of transistors
2 Total number of logic gates

Table 4.7: Comparison results with literature

the area results of the CSK. However, the speedup of the CSK is somewhat larger in
Nagendra’s study. Possibly this difference is caused by a more optimal implementation
of the skip logic. The area results of the study of Rabaey et al. are hard to compare with
our study. Here the number of gates is counted, but obviously not every gate has the
same complexity and thus not the same size. We however do see the same trend: a small
area increase for the CSK and a much larger one for the CLA. What is remarkable in
this study is the delay of the CSK and CLA in the study of Rabaey et al. The speedup
of both adders with respect to the RCA is significantly larger than in our study and the
study of Nagendra et al. It is very difficult to draw a conclusion about the cause, as will
be explained in the next paragraph.

The power consumption of the CSK and CLA in our study appears to be considerably
higher than in the study of Nagendra et al. The overheads are about twice as high. It
is extremely difficult to give an explanation for this. To begin with, Nagendra et al.
employed a totally different technology and their results are acquired in a totally different
manner. We have no idea which synthesis tool has been utilized (synthesis algorithms
may vary significantly between different synthesis tools) and which technology library has
been employed. Power results are acquired by a simulation tool, called HSPICE, after
layout, while we presented only pre-layout results. Further, we have absolutely no insight
in the different effort and optimization levels that have been set during synthesis by
Nagendra et al. So, there are many variables that can influence the exact implementation
of the design, and thus, the characteristics of the design. Although not impossible, it
is, however, questionable if such a large difference in power overhead can be explained
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by these implementation variables alone. A possible cause could be the size of the
technology: maybe the skip logic and in particular the lookahead logic (which has high
fan-ins and requires considerable drive strengths) can be implemented more efficiently in
1.2 µm than in 90 nm CMOS. One way to possibly find out more about the cause of the
differences in power overhead is to perform synthesis and analysis of the adders again,
by employing the same design tools and parameters we have utilized for our previous
measurements, only now utilizing an older technology library (preferably UMC 1.2µm
CMOS). This way we would be able to tell whether the size of the technology has any
influence on the power overhead. Unfortunately, we do not have access to this technology
library nor the actual designs available to Nagendra. In conclusion, we cannot provide
a decisive answer explaining the large differences in power consumption. We should,
however, at least be aware of the possibility that newer, smaller technologies alter —in
particular— the power trend, when compared to older, larger technologies.

The power results of the adders in Rabaey’s study show a remarkable phenomenon:
the power consumption of the CSK is actually lower than that of the RCA. According to
Rabaey et al., the power supply current of the CSK falls to zero faster than in the RCA,
even though it is larger at the peak, causing the average power to be lower than that of
the RCA. We have not been able to observe this phenomenon, and neither has Nagendra
et al. Later on in the study of Rabaey et al., physical measurements are presented [9],
which show a totally different picture. Therefore, we believe the results of Rabaey et al.
are questionable.
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Figure 4.10: Area overheads of different adders reported in different studies

The difficulties we encountered during the comparison of our results with a couple
of older studies from the literature emphasizes the value of our adder study. This adder
study, gives every designer quickly an impression about the speed, area, and power
consumption of the most common adders in relatively modern technology. Although
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Figure 4.11: Speedups of different adders reported in different studies
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Figure 4.12: Power overheads of different adders reported in different studies

we have to look at pre-layout numbers for their relative value and not their absolute
value, these results do provide a relatively good insight in the actual delay and power
numbers in 90nm technology. Above all, we believe the pre-layout area estimates in logic
units is actually a very good metric for depicting a trend, since all individual cells in the
technology library have their own ’weight’. It is much more meaningful than reporting
number of transitions or number of gates. Providing pre-layout trends has another
advantage. Some papers report their post-layout results based on full-custom design,
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while others employ semi-custom design. Then, a fair comparison cannot be made at
all. We also showed that there are many variables involved in the design process which
can lead to different characteristics of the ultimate design. A designer should always
be aware of the fact that utilizing different tools, settings, constraints, libraries, and
technologies will in most cases lead to deviations from the results that are reported in
the literature. This is in fact a general remark, which holds true for all designs.

4.4.6 Impact of glitching

Since an RCA implemented in 90nm CMOS is most certainly fast enough for
implementation in SiMS, and the RCA has the lowest power and area costs, the decision
seems obvious. However, according to [40, 45], the RCA does not necessarily have
the lowest power consumption. Since the RCA is the slowest adder of all, and in the
worst-case scenario, the carry-ripples through all the full adders, it takes a relatively
long time before the carry signal reaches the full adders further down the path, allowing
glitches (spurious transitions) to occur. The reasoning is, if the carry signal reaches
these full adders faster, at least some of the spurious transitions can be avoided. So far
we only considered useful transitions. In the following power analysis of three different
8-bit adders we also account for glitching power (how this is done is explained in chapter
3). We use random input vectors and worst-case input vectors which cause the most
spurious transitions possible. Normally, the worst-case input vectors for these adders
would be like this:

Time Cin Operand A Operand B

0 0 0000000000000000 0000000000000000

1 1 1111111111111111 1111111111111111

2 0 0000000000000000 0000000000000000

3 1 1111111111111111 1111111111111111

pattern repeating...

With these inputs, every time (cycle) all inputs change value, and all output values
change value (result and carry out bits), leading to the maximum switching activity
inside the adder. However, if we look closely to what really happens inside the adders,
we find that these inputs cause zero glitches, i.e. all transitions are useful transitions.
This is easy to see, since when both operands (and Cin) are zero, no carry-rippling
occurs, so no spurious transitions occur. The next cycle, all operand bits are ones, as
well as the carry input. This addition leads to the maximum ripple-carry path. However,
the rippling carry does not cause spurious transitions. The addition of operand A and
B is performed bitwise in parallel, leading to the sum ’00000000’ and a carry out of
’1’. Note that this is the same result as the previous addition. After the carry-rippling
is complete, the result is ’11111111’. Then, in the next cycle, the sum is immediately
’00000000’ again, but since no ripple-carry path exists, no spurious transitions exist. So,
even though we achieve the highest possible switching activity inside the adder, these
input vectors are definitely not suitable for testing the impact of glitching on the adder.
Therefore we need the following input data:
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Time Cin Operand A Operand B

0 1 1111111111111111 0000000000000000

1 0 0000000000000000 0000000000000000

2 1 0000000000000000 1111111111111111

3 0 0000000000000000 0000000000000000

pattern repeating...

These inputs all lead to the same result (’00000000’), so the useful switching power is zero,
but the glitching power is now maximal. This means that all transitions are spurious
transitions and no useful transitions exist (except for Cout). In the first transition, when
A and B are added bitwise in parallel, the result is ’11111111’. After the carry-ripple is
complete, the result is ’00000000’. That means that all intermediate values are changed
by the rippling carry, and therefore the maximum amount of spurious transitions occur.
The same holds true for the third addition. In between additions are performed with
both operands (and Cin) being zero, in order to ’reset’ the internal values. If we would
not insert a zero-addition (addition 2 and 4), the switching activity would stop after the
very first addition, since all additions lead to the same sum and carry values. The results
of utilizing both random inputs and worst-case-glitching inputs can be observed in table
4.8.

Component Random inputs WC glitching

Typical Case [µW] [µW]

RCA 8-bit 17.20 (+30.3%) 30.68
CLA 8-bit 31.03 (+26.1%) 40.85
CSK 8-bit 23.04 (+36.4%) 37.04

Table 4.8: Power results of 8-bit adders with random and worst-case inputs

It is immediately clear that the glitching power is a significant portion of the total
power consumption, when we compare the results of the random inputs to the results
in table 4.4. The column ’random inputs’, shows the power results when we account for
spurious transitions as well. The increase in power compared to our previous zero-delay
measurements is also shown in percentages of the total power consumption. In the
second column we shown the maximum glitching power. Note that this is pure glitching;
there is no useful switching activity involved. These numbers make crystal clear that
glitching power is not something we should ignore. We were, however, unable to prove
that any fast adder performs better in terms of power than the RCA, when the worst case
glitching scenario is simulated. According to [45], the CLA will in all situations consume
more power than the RCA because of the high switching activity in the lookahead logic,
which explains the result. However, also the CSK performs far worse than the RCA.
Therefore, we hold on to the conclusion that the RCA is the adder with the lowest power
consumption under all circumstances.
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4.5 Conclusions

To determine which adder suits our needs best is obviously highly dependent on the
environment it is intended for. Within the SiMS environment, high throughputs are not
required (refer to chapter 1, section 1.3) and the power budget is extremely limited. The
speed of the RCA in 90nm CMOS will most certainly be high enough, and since we were
unable to prove that the CSK utilizes less power for worst-case inputs when considering
the glitching power as well, the RCA appears to be the most suitable adder for our
purpose. If the RCA proves to be not fast enough for the intended throughput (when
it is utilized in other architectures), the CSK is a very good alternative. The area and
power overheads of the CSK are small, while the speedup is (in particular for larger word
widths) considerable. An interesting observation is that the PDA product of the CSK,
for a 16-bit adder width, is virtually equal to that of the RCA (for the 32-bit version
even better). Therefore the conclusion may be drawn that the CSK is a suitable adder
type within low-power and resource-constrained architectures as well. The difficulties
we encountered (reporting in different metrics, utilizing different design methodologies)
during the comparison of our results with a couple of older studies from the literature
emphasizes the value of our adder study. This adder study, gives every designer quickly
an impression of the speed, area, and power consumption of the most common adders in
relatively modern technology.



The Scalable Arithmetic Unit 5
5.1 Introduction

In this chapter we start with an explanation of the basic functionality of the arithmetic
unit and a short survey of existing scalable arithmetic designs. Then, the general
concept behind our idea of a gracefully-degradable arithmetic unit is presented. It is
investigated if this approach is, in terms of power consumption and/or area requirements,
advantageous over the most common method of increasing hardware reliability, which is
hardware replication. After the scalable arithmetic unit is fully designed and optimized,
the post-synthesis results of the design are compared to those of an arithmetic unit with
a single adder and with duplicated adders. This way we can place the results of the
scalable design between the two extremes: having no replicated hardware at all on one
side, and having full hardware replication on the other side. Note that in this chapter
we focus on the potential for reliability of the designs alone. We do not focus on error
detection and correction yet (which is, of course, vital in the design of reliable systems).
These topics will be discussed in detail in the next chapter. All three designs are tested
for multiple clock frequencies and multiple technologies, in order to find the optimal
design point of the ScAU. Further, the results of the ScAU are presented when other
adder types than the RCA are utilized.

5.1.1 Basics of the arithmetic unit

The ALU consists of different parts: the logic unit, a comparator unit, a shift unit, and
an arithmetic unit. The arithmetic unit contains the actual adder and is our topic of
interest. A standard arithmetic unit consist of the following components:

• The adder

• A complementer (for subtraction)

• Zero and overflow computation circuitry

Thus, the arithmetic unit is in fact an adder/subtracter with a zero and an overflow
output. However, in practice this arithmetic unit is often called an adder as well, to
avoid confusion with multipliers and dividers. We also require the following registers:

• Input registers for the operands

• Output registers for the result

• Output registers for zero and overflow bit

63
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Typically, the in- and output registers are not part of the arithmetic unit itself, but are
pipeline registers in the micro-architecture. However, we specifically add them to the
design of the arithmetic unit. It will be shown later, that for the scalable arithmetic
unit, special output registers will be required. Apart from that, we need these registers
anyhow in order to simulate the environment.

4-bit Ripple Carry Adder

4-b result registerOvfl Zero

C0
C3

C4

S0S1S2S3

Sign

A(3..0) B(3..0)

Figure 5.1: Zero, overflow, and sign detection

The zero and overflow detection can be implemented by a simple logic circuit [44],
as depicted in figure 5.1. The figure shows the detection logic for a 4-bit adder. The
labels C4 and C3 represent the adder’s carry output as well as the last internal carry,
respectively. The sign flag does not require a storage register, since the sign flag is
basically the MSB of the result (since all numbers are in 2’s complement representation),
and is already stored in the result register. Modification of the adder to support
subtractions is rather simple. A subtraction A-B requires an addition of the operand A
and the 2’s complement representation of the negated operand B. The operand B is first
negated (inverted) by the complementer (which is implemented by a bank of XOR-gates,
where one of the two inputs of each gate functions as the ’add/sub’ control signal). The
conversion from 1’s complement to 2’s complement representation requires the addition
of ’1’, which is performed by providing a carry input to the adder.

5.1.2 Scalable structures

Scalable arithmetic units, ALUs and micro-architectures have been studied by a number
of others. For example, Lee [46] presented a scalable booth-multiplier. The objective of
this design is to reduce the power consumption, by scaling down the multiplier width,
when both operands are small-sized (detected by a dynamic-range detection unit).
A similar design is presented by Pfänder et al. [47] which also focuses on flexible
word-length multiplication in order to save energy.

Kumar et al. [48] presented a design for an energy-efficient, high-performance
architecture (including functional units, register files, caches, etc.), where the datapath
is bit-sliced. The higher order bit-slices are only activated if required, which saves
a significant amount of energy. Iyer and Marculescu [49] also worked on a scalable
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micro-architecture. The resources are dynamically allocated, based on the needs of
the running program. Here, each basic block of code (straight sequence of instructions
without any jumps or branches) is analyzed (determining the parallelism and resource
usage) and the processor is reconfigured for each basic block. Any FU that is not used
is disabled by a clock-gating mechanism. Lin et al. [50] presented a low-power ALU
cluster design, which is basically an ALU that is composed of multiple clusters (two
arithmetic units, two multipliers and a divider), each placed onto a separate voltage
island. That means, that any of the clusters can be power-gated when they are not
utilized, which in this case results in higher power and energy savings than the regular
clock-gating mechanism. Also Monteiro [51] reports about the so-called data-dependent
power shut down, which is for example used in Intel Pentium processors. Even though
these implementations do not have a flexible word-length, they can be considered as
scalable designs in terms of power consumption.

Another form of power-scalable designs, exclusively used in arithmetic units, are
mechanisms to vary the precision of the arithmetic operation. An example is given
in [52] (using distributed arithmetic), however many different implementations can be
found. The basic idea is that, whenever possible, the arithmetic unit does not produce
exact results, but approximate ones.

But there are more motivations for scalable designs. Kursun et al. [53]
describes the problems that occur, when the on-chip temperatures are increasing. It
compromises the lifespan of the device and leads to slower operating speeds. Dynamic
thermal-management techniques are developed to cope with these problems. These
techniques limit the heat dissipation, to avoid critical temperatures. Scalable designs
are employed for this purpose as well.

The primary objective of this thesis work, is to make the arithmetic unit scalable
in order to increase the reliability and to save power and/or area compared to regular
non-scalable fault-tolerant designs. In case of an error, we might be willing to degrade
(downscale) the performance, but not the precision of the calculation. This of course,
strongly depends on the specific application of the implant. In some applications
precision may be of much greater importance than speed, while in other applications
deadlines must be met at all costs, even if it means that the precision of the calculation
must be downgraded. The literature provides little, if any, information about this
specific purpose. However, the previously mentioned scalable-designs might be useful
for this purpose as well. We will discuss both possibilities in this chapter: downgrading
performance as well as downgrading precision. We focus, however, on downgrading
performance.

5.2 Basic idea behind the scalable, gracefully-degradable
arithmetic unit

Instead of duplicating the adder inside the arithmetic unit, we want to implement
a single adder only, but now a version which is able to scale the width of the adder.
For example, an x-bit adder can be divided into two x/2-bit segments. When only
one of these segments fails, the arithmetic unit could proceed with the segment that
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still functions correct (by this we create the necessary potential for reliable computing).
In that case a one cycle x-bit addition or subtraction will be replaced by an x/2-bit
operation, requiring two clock cycles. The word size of the arithmetic unit is downscaled,
even though the word size of the architecture remains the same. Possibly, the adder can
be divided into more than two segments, which increases the reliability even further
(the arithmetic unit would be able to proceed with the computational work, even
when multiple adder segments are damaged). However, this approach might result in
serious problems regarding the required throughput (the more segments are shut down,
the higher the latency will be). This scalable approach is an example of graceful
degradation. We would like to know if this approach is viable for our purpose, and if
it is advantageous over the common hardware duplication technique, especially in terms
of power consumption and area.

5.3 Design of the Scalable Arithmetic Unit (ScAU)

The primary concerns in the design of the scalable arithmetic unit (or shortly: ScAU) are
to design an efficient multiplexing network to redirect the data (operands and results) via
alternative routes, to store intermediate results for multi-cycle operations, and to keep
track of the current cycle. At the time the design of the ScAU was started, it was not
sure yet if the word size of the SiMS architecture would be 8- or 16-bit. Apart from that,
it is interesting to investigate how the ScAU scales with word size anyhow. Therefore,
the ScAU is designed, synthesized, and analyzed for both 8- and 16-bit word sizes. In
the following discussion an 8-bit version is assumed for the sake of convenience.

The basis of the ScAU are two separate 4-bit adders A and B. The lower 4-bit part
of the operands are supplied to adder B, the upper four bits to adder A. The carry
out signal of adder B is connected to the carry in of adder A. Each adder has its own
4-bit complementer and both the upper and lower half of the result are stored in a 8-bit
output register. This provides the basis for a single-cycle 8-bit operation. When one of
the adders gets damaged (which will be detected by the error-detection, as discussed in
chapter 6), the data needs to be rerouted (by action of the error-correction hardware,
also discussed in chapter 6). The adder which is still intact (adder A or B) needs to
be provided with the lower half of the operands in the first cycle, and with the upper
half of the operands in the second cycle (in downscaled mode). This is implemented by
a multiplexer network. To keep track of the current cycle (cycle 1 or cycle 2), and
to control the multiplexer network, a controller is implemented. Also, a multiplexer
network is required for the output of the adders. The output of the functioning adder
should provide its result to the lower half of the result register in the first cycle, and
to the upper half of the result register. Finally, also flip-flops are required to store the
value of the carry output of the functioning adder during the first cycle, to feed it to the
carry input of the same adder in the second cycle. This means multiplexing at the carry
inputs of both adders is required as well.

Besides all this, there is another important issue that requires attention. When the
scalable AU is in downscaled mode, the AU will require two clock cycles per operation
instead of one, and therefore the amount of energy per instruction increases dramatically.
The most obvious way to limit the energy per instruction is to shut down the segment
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that is not used (prevent switching activity). For sequential circuits, clock gating is
the easiest way to disable a (sub)circuit. However, adders are pure combinational and
therefore require another approach: input-gating. This means keeping all of the inputs
of the circuit constant to prevent any switching activity and thus limiting dynamic power
consumption inside the circuit. There are a number of methods to do this. In this study
we investigate the utilization of latches, as well as tri-state buffers for this purpose.
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Figure 5.2: The scalable arithmetic unit (initial design)

The initial design of the (8-bit) scalable AU is depicted in figure 5.2. The design is
roughly subdivided into four parts that already have been discussed: (A) the multiplexing
and input-gating network, (B) the adder logic, (C) the output multiplexing logic, and (D)
the control logic. It is easy to see that the overhead of the ScAU mainly lies in part A, C,
and D. In this design, guard latches [54, 55] are used to disable unused combinational
logic which, in this case, is any unused adder. Guard latches are one method to keep
the inputs of an adder constant. Apart from the operand inputs, there is an input signal
to select an addition or a subtraction as well as a ’scale’ signal. This 2-bit signal is
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Figure 5.3: The duplicated adder structure (including input buffering)

used to control the scalability feature of the AU. When the signal is asserted to ’11’, the
AU works in normal mode at full word width. When asserted to ’10’ or ’01’, the AU is
downscaled and only the left (adder A) or right adder (adder B) is active, respectively.
At this point we assume that the ’scale’ signal is a properly externally controlled input
of the design (controlled from the testbench). In the next chapter we will get to the
generation of this signal. The controller keeps track of the current cycle (in downscaled
mode) and controls all multiplexers and guard latches. The controller, along with all
components that are controlled by it, are displayed in green. The exact functionality,
including the FSM of the controller, will be discussed in section 5.5.2. Finally, a special
result register is required. This register must be able to load all bits in parallel, as well
as load the lower half and upper half of the result individually. When the scalable AU
is in downscaled mode, the register should load the lower half of the result in the first
cycle, store it, and load the upper half in the second cycle.

Obviously, there must be error-detection logic as well as error-correction logic present,
in order to detect a failure and reconfigure the circuit. However, at this point in the
process, the error detection/correction is omitted. This topic is covered in chapter 6.
The synthesis, analysis, and optimization process of the ScAU is described in section 5.5.

5.4 The duplicated arithmetic unit (DAU)

Figure 5.3 depicts an example of the hardware replication technique. This arithmetic unit
contains two adders. If the primary adder produces erroneous results, e.g. because
of a hardware malfunction, the backup adder can be utilized to proceed with the
computational work (this is basically the potential for reliable design, we referred to
earlier). An output multiplexer can be utilized to select the output of the correct
functioning adder. Not only the adders are replicated, but also the complementers and
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zero and overflow detection logic (the latter is not depicted in the figure). In figure 5.3,
both adder’s inputs are input-gated. These input-gates are, however, optional. When
these input-gates are omitted, both adders perform all calculations in parallel, and thus
both dissipate the same amount of dynamic power. The result of one adder is utilized
while the result of the other one is simply discarded. It might be beneficial to shut down
the backup adder (which is essentially idle, since the result is not utilized). By gating
the inputs, one of the adders can be disabled. This way, any switching activity inside
this adder is prevented, which saves the dynamic power of the adder that produces no
useful results (the power consumption in the backup adder is however still not zero,
because of leakage currents). However, this approach has serious implications on the
type of error-detection and -correction logic that can be used, and thus at this point it
is not certain whether this approach is advantageous or not. However, here applies also
that, at this point, error detection/correction is omitted and is covered in a later stage.
Whether we should implement input-gating or not highly depends on the error-detection
scheme which will be utilized.

5.5 Synthesis and comparison

5.5.1 Basics

For this study the following technology and operating conditions are utilized:

• Technology: UMC 90nm SP

• Operating voltage: 1.0 Volt

• Operating temperature: 25◦C

• Clock frequency: 100 MHz

• Operating conditions: TCCOM (Typical-Case, Commercial use)

• Input test vectors: random (’optimistic worst-case scenario’)

The UMC library contains three different operating conditions: best-case, typical-case,
and worst-case. The operating condition that is set determines the operating voltage,
temperature and the process scaling factor which accounts for variations in the outcome
of the actual semiconductor manufacturing steps. The worst-case conditions are not
utilized in this study since they assume an operating temperature of 125 degrees Celsius.
In medical implants, such high temperatures are obviously unacceptable, since any
heating of the surrounding tissue must be prevented at all times. The ScAU (as well
as the AUs with the single and duplicated adder) is synthesized and analyzed for both
8- and 16-bit implementations. The synthesis script can be found in appendix A. Clock
gating is employed to enable shutting down the entire ScAU during cycles where it is
idle. But also the clock gating ensures that the input registers do not receive a clock
cycle during the second cycle in downscaled mode, which prevents unnecessary switching
activity.
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5.5.2 Optimizations and final design

After synthesis and analysis it became clear that the overhead (in particular the power
overhead) of the ScAU is, utilizing the implementation depicted in figure 5.2, quite
dramatic. By overhead is meant the increase in area, delay, and power consumption
compared to the non-scalable single-adder AU. Therefore, the scalable design has gone
through a number of optimizations. The optimizations and their effect on power
consumption and area can be found in table 5.1. Note that these results are based
on the 8-bit implementation. The first optimization was replacing the guard latches by
tri-state buffers. Instead of keeping the adder inputs constant by the guard latches
(by storing the data), the adder inputs are now pulled to high-impedance state, which
also prevents any switching activity in the adder itself, in case it should be disabled. The
results show a significant reduction in both power and area. Therefore, the conclusion
can be drawn that guard latching is too expensive for this purpose. This also means
that tri-state buffers should also be used for the AU with the duplicated adder, in order
to disable the adder that is currently unused.

Optimization Area Power1 Power2

0 Guard latching, standard multiplexing 1751 > 100 > 100
1 Adder inputs tri-state buffered 1543 98.37 98.26
2 Output register multiplexing optimized 1546 94.47 94.66
3 Input multiplexing by tri-state buffering 1570 89.67 90.66
4 Removing asynchronous resets 1558 89.17 89.76
5 Adding enable input to carry-store flip-flops 1572 88.57 89.16
6 Various controller optimizations 1470 83.15 79.02
7 Simpler control logic, carry-store latches 1441 80.87 75.76

1 Normal (8-bit) mode, 2 Downscaled (4-bit) mode

Table 5.1: Optimizations of the 8-bit ScAU

Another important optimization was the removal of the multiplexers at the inputs
of the adders. Since the adder inputs now are buffered by a tri-state buffer, instead
of a guard latch, the multiplexing could as well be implemented by tri-state buffers
alone. Each of the adder’s inputs, at this point, is fed by a 2-input multiplexer in
series with a tri-state buffer (to disable the adder). Then, it is beneficial to remove
the multiplexer and add another tri-state buffer, such that the two tri-state buffers
operate as a multiplexer. Now, to disable the adder, both tri-state buffers must be in
high-impedance state. Replacing the multiplexers by tri-state buffers decreases the power
consumption significantly, however, it increases the area. The cause of this phenomenon
will be explained later. Then, the asynchronous resets were removed from the carry-save
flip-flops, since they are not truly necessary. This saves little area and power. Further,
there is no need for the carry-store flip-flops to operate every single clock cycle. In fact,
in normal full-width mode, there is no need to store the output carries at all. Only
when the AU is in downscaled mode, the carry-store flip-flop of the adder that is still
functioning is required. Thus, in all other situations the switching in the flip-flops is
a waste of energy. Therefore, an enable input is added to the carry-store flip-flops, to
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make sure they switch only when they are required to. This optimization increases the
area slightly, because of the extra logic that is required, but saves some power.

The most effective optimization was the optimization of the controller (number 7 in
the table). It appeared that the controller could be implemented with a much simpler
FSM by more careful design (parts of the FSM turned out to be redundant), such that
two of the flip-flops inside the controller could be omitted. This results in a substantial
decrease in both power and area. This optimization includes the utilization of a three bit
scale signal instead of two bits, reducing the number of outputs of the controller (and
by that also the number of flip-flops) to only one, and replacing the carry-store flip-flops
by latches. The 3-bit scale signal simplifies the controller, since this signal can now
be used for most of the control signals of the tri-state buffers and multiplexers, and the
only thing the controller is required to do is to keep track of the current cycle (i.e. in
downscaled mode, when single-cycle operations change into multi-cycle operations). For
example, the control of the tri-state buffers at the input of adder segment A (the left
segment, normally computing the upper byte of the result) is coded as follows:

--normal mode mode and downscaled mode (cycle 2)

input1_adder_A <= operand_X_high_order_byte when

(scale(2)=’1’ or (cycle=’1’ and scale(1)=’1’))

else (others => ’Z’);

input2_adder_A <= operand_Y_high_order_byte when

(scale(2)=’1’ or (cycle=’1’ and scale(1)=’1’))

else (others => ’Z’);

--downscaled mode (cycle 1)

input1_adder_A <= operand_X_low_order_byte when

(cycle=’0’ and scale(1)=’1’)

else (others => ’Z’);

input2_adder_A <= operand_Y_low_order_byte when

(cycle=’0’ and scale(1)=’1’)

else (others => ’Z’);

This piece of code tells a lot about how the input multiplexing/gating is controlled, and
what the exact function of the ’scale’ and ’cycle’ signals is. In normal mode, and in the
second cycle in downscaled mode, the left adder segment has to add the upper bytes of
the operands X and Y. In normal mode ’scale=100’, thus ’scale(2)=1’. We only have to
test for the value of this single signal, since all three signals ’scale(2..0)’ are mutually
exclusive. In downscaled mode we have to check if the left or the right adder is active.
To test if the left adder is active, we should check if ’scale(1)=1’. If the right adder
is active (then ’scale(0)=1’), the left adder segment must not receive any inputs, so all
tri-state buffers should close (’HiZ’ state, or high impedance state). Now we only have
to check whether we are in the first cycle or in the second. This is signaled by the ’cycle’
signal, coming from the controller. If ’cycle=0’ we are in cycle 1, if ’cycle=1’ we are
in cycle 2. The ’scale’ and ’cycle’ signals are employed to control every tri-state buffer,
multiplexer, and other components that need to be controlled in the ScAU in a similar
way.

The FSM of the cycle-controller is depicted in figure 5.4. Finally, using latches
instead of flip-flops for storing the output carries of the adders saves a considerable
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Figure 5.4: FSM of cycle-controller

amount of area and power as well, since latches are less complex devices than flip-flops.
After synthesis of the initial design we passed several times through the steps of (1)
closely analyzing the results and thinking about possible optimizations, (2) modifying
the design, and (3) re-synthesizing, until we were unable to optimize the design any
further.

The optimized ScAU is depicted in figure 5.5 (here also the zero and overflow
detection circuitry is depicted). The figure shows the tri-state buffers that are utilized as
multiplexing network for the inputs of the adders as well as input-gates for the individual
adder segments. However, for the multiplexing network on the outputs of the adders,
regular gate-based multiplexers are used. First we intended to replace all gate-based
multiplexers by tri-state-based versions, since in the literature various references can be
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Figure 5.5: The optimized scalable arithmetic unit

found which claim that the tri-state-based multiplexer is an efficient implementation.
Intuitively, this implementation seems indeed cheaper than the gate-based approach.
However, we found that, at least in the case of 2-input multiplexers, a tri-state-based
multiplexer is not advantageous over the regular gate-based multiplexer. Both area
and power consumption are higher for a tri-state-based multiplexer, than it is for a
gate-based one. The implementation of both versions is depicted in figure 5.6. On
the left, the optimal implementation of the gate-based multiplexer is depicted. Every
gate is annotated with a number, which represents the number of transistors which are
required for that particular gate [56]. In total, the gate-based multiplexer consists of 14
transistors. On the right side, the tri-state-based multiplexer is depicted. A tri-state
buffer does not exist as a library cell in UMC technology, it is built by placing a tri-state
inverter in series with a static inverter. The tri-state inverter and the static inverter are
depicted at transistor level in figure 5.7.

The tri-state inverter consists of 6 transistors, 4 are depicted, plus another two which
are required for inverting the control signal ’C’. In total, the tri-state-based multiplexer
consists of 18 transistors, which is more than the gate-based version. Especially when the
inputs are e.g. 16 bits wide, a significant difference in area and power consumption can
be observed. A tri-state-based multiplexer is most likely only efficient for multiplexers
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Figure 5.7: A tri-state inverter and static inverter implemented in CMOS

with a large number of inputs (and, of course in our specific case where multiplexing
is combined with input-gating). In UMC 90nm technology, the area ratio between the
gate-based and tri-state-based multiplexer is not 14:18, but close to 14:26. It appears
that the tri-state buffer (in terms of area) is not implemented as efficiently as possible.
However, the trend holds true. The large ratio has, however, the effect that the area
increases, when the multiplexer in series with the tri-state buffer is replaced by two
tri-state buffers, that handle both the multiplexing and input-gating of the adder inputs,
as mentioned previously. The reason why we chose this approach nevertheless, is because
the power consumption does decline significantly. The exact dataflow in the ScAU in
normal mode is depicted in figure 5.8. The dataflow in downscaled mode is depicted in
figures 5.9 (cycle 1) and 5.10 (cycle 2).

The synthesis results of the 8- and 16-bit ScAU, as well as the AUs with the single
and duplicated adder, are depicted in figures 5.11, 5.12, and 5.13. The AU refers
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Figure 5.10: Dataflow in downscaled mode during second cycle

to the arithmetic unit implemented with a single adder, where DAU refers to the
arithmetic unit implemented with a duplicated adder structure (where both adders are
simultaneously active). The DAU-RAS is the arithmetic unit with duplicated adder
where the backup adder is disabled by tri-state buffers (RAS stands for Redundant
Adder Shut down). As mentioned before, the acronym ScAU refers to the scalable
arithmetic unit, where ’nm’ stands for normal, full-width mode, and ’dm’ for downscaled
mode. These acronyms are employed throughout the rest of the thesis.

From these figures, a number of conclusions can be drawn. First, the 16-bit versions
are evaluated. Obviously, the DAU and DAU-RAS show an increase in area and power
consumption, compared to the single adder. The area and power consumption does,
however, not double, because the input and output registers are not replicated. Only
the combinational logic is replicated. Actually, the difference in area and power
overhead between the single-adder AU and DAU is relatively small, which means that
the sequential logic dominates both the area and power consumption. When the unused
adder is disabled, as is the case in the in DAU-RAS, the overall power consumption
reduces significantly, but area increases to a much larger extent due to the required
tri-state buffers.

The ScAU requires slightly more area than DAU, but significantly less than
DAU-RAS. Even though the power consumption of the ScAU in normal mode is
significantly less than that of DAU, it is slightly higher than it is of the DAU-RAS,
which is optimized for power by disabling the backup adder. This is not what we hoped
for, but also not very surprising, since when the 16-bit backup adder in the DAU-RAS
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Figure 5.12: 8- and 16-bit Arithmetic Units - Delay

is disabled, there is no dynamic power consumed (only a small amount of static power
is dissipated). Further, there is not much additional hardware which consumes power
apart from the output multiplexer and the tri-state buffers (32 tri-states in total, 16 of
them in ’pass’ state, 16 of them in ’HiZ’ state) at the inputs. The ScAU on the other
hand, does have the same power consumption for the adder part (2x8-bit adder segments
≡ 16-bit adder), the same power consumption of tri-state buffers (also 32 tri-states in
total, 16 of them in ’pass’ state, 16 of them in ’HiZ’ state), but has on top of that power
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Figure 5.13: 8- and 16-bit Arithmetic Units - Power

dissipated by the additional logic (many multiplexers, a cycle-controller, control logic,
and latches) which is necessary for the scalability feature. This is the reason why the
ScAU in normal mode cannot dissipate less power than the DAU-RAS.

The power consumption of the ScAU in downscaled mode (dm) is significantly lower
than in normal mode (nm), significantly lower than that of the DAUs, and only slightly
higher than that of the single-adder AU. Unfortunately, the ScAU shows a dramatic
increase in delay, because the additional logic resides in the adder’s critical path. In
chapter 6 we will show that this problem —which appears at this stage in the design
process— is irrelevant, since in the next stage (adding error detection and correction)
the critical path will be shortened again.

ScAU 8-bit 16-bit

Delay 100.9% 55.5%
Area 68.4% 54.1%
Power (nm) 23.2% 18.8%
Power (dm) -4.4% -15.4%

Table 5.2: Overheads of ScAU with respect to single-adder AU

The 8-bit ScAU is performing significantly worse than its 16-bit counterpart, as can
be observed in table 5.2. The area as well as the power overheads (in percentages),
with respect to the single-adder AU, are significantly higher. Therefore, the conclusion
is drawn that the 8-bit ScAU is not efficient. If we cannot save large amounts of area
without increasing the power consumption too much compared to the DAU-RAS, the
ScAU is not of much use. The reason why the 16-bit version performs significantly
better, is because a large portion of the additional hardware (enabling the scalability
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feature) is constant, regardless of the adder width. Only the amount of tri-state buffers
will increase linearly with the word width.

In table 5.3 the synthesis results (earlier depicted in figures 5.11, 5.12, and 5.13) of all
16-bit arithmetic unit designs are displayed. Table 5.4 shows the area, delay, and power
overheads of the DAU, DAU-RAS, and ScAU, compared to the non-scalable, single-adder
AU. What we see here is that the DAU creates a potential for reliable computing by
implementing a second adder, however this comes at a very large price in terms of power
overhead. The DAU-RAS does the same, only here the backup adder is disabled to
save power. It is clear from the table that the power overhead then significantly reduces
(from 73.8 to 57.7 percent, which is a difference of 16.1%). On the other hand, the
DAU-RAS does further increase the area overhead by a large amount (from 44.4 to 79.3
percent, an increase of 35.0%). The ScAU has a much lower power overhead than the
DAU (-14.1%), only slightly higher than the DAU-RAS (+2.0%), and has a significant
lower area overhead than the DAU-RAS (79.3 minus 54.1 percent, which comes down to
a reduction of 25.2%).

Design Area Delay Power

[units] [ns] [µW]

AU 1513 1.91 104.5
DAU 2185 2.09 181.6
DAU-RAS 2713 2.13 164.8
ScAU(nm) 2332 2.97 166.9

Table 5.3: Synthesis results of different 16-bits AUs

Design Area OH Delay OH Power OH

[%] [%] [%]

DAU 44.4 9.4 73.8
DAU-RAS 79.3 11.5 57.7
ScAU(nm) 54.1 55.5 59.7

Table 5.4: Overheads of different 16-bits AUs

If we compare real numbers (instead of comparing overheads), the power consumption
of the ScAU is 8.1% lower than the DAU and 1.3% higher than the DAU-RAS. The area
of the ScAU is 6.7% higher than the DAU and 14.0% lower than the DAU-RAS. The
delay of the ScAU is 39.4% higher than the DAU-RAS.

Since the ScAU requires a significant amount of hardware to enable the scalability
feature, we decided not to examine a ScAU with four segments. This would require
even more additional hardware and would only be efficient when the adder width is large
enough. For an 8- or 16-bit adder, where each of the four segments is no larger than 2
or 4 bits, this will most certainly not be the case.
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Frequency: 100 MHz 20 MHz 10 MHz
[µW] [µW] [µW]

AU 140.50 29.46 15.61
DAU 181.60 38.29 20.39
DAU-RAS 164.80 35.45 19.29
ScAU (nm) 166.60 35.41 18.99
ScAU (dm) 118.90 27.79 14.20

Table 5.5: Power consumption AUs for different frequencies

Power Consumption

15.61
20.39 19.29 18.99

29.49
38.29 35.45 35.42

140.50

181.60

164.80 166.90

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

AU DAU DAU-RAS ScAU

P
o

w
er

 (
u

w
)

10 MHz
20 MHz
100 MHz

Figure 5.14: Power consumption of arithmetic units as a function of frequency

5.5.3 Power versus frequency

The power consumption of the different AUs has been tested for three different clock
frequencies, as can be observed in table 5.5 and figure 5.14. At 100 MHz, the static
power component is only a very small portion of the total power consumption and is
negligible (depicted in figures 5.15 and 5.16). Even though static power is constant,
for significantly lower frequencies, such as 10 or 20 MHz, the static-power component
becomes a factor of importance since the dynamic power is linearly dependent on the
frequency. The lower the frequency, the lower the dynamic power consumption, and the
higher the impact is of the static power. As said before, static power does not depend
on frequency, but it does depend highly on the size of the design. The measurements
clearly show that the ScAU becomes more interesting for lower frequencies. The reason
for this is that the ScAU is smaller in size than the DAU-RAS and thus has a smaller
static power component. While the ScAU was at a slight disadvantage at 100 MHz, at 20
MHz the difference in power consumption between the ScAU and the DAU-RAS is close
to zero. At 10 MHz, the ScAU performs actually better (1.6% less power). Although
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Figure 5.16: Power components for different frequencies

the ScAU becomes more efficient with respect to the DAU-RAS at lower frequencies,
the power overheads of the ScAU, the DAU, and the DAU-RAS actually do increase.
Thus, in general, the efficiency of the designs is decreasing. This is also due to the higher
impact of the static power on the total power consumption. Therefore we cannot lower
the clock frequency without limits, in order to favor the power characteristics of the
ScAU with respect to the DAU-RAS. For very low frequencies (below 10MHz) we should
resort to low leakage technology (refer to section 5.5.7).
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5.5.4 Alternative employment of the ScAU

Within the scope of this thesis it is also interesting to explore whether the ScAU,
unaltered or with some modifications, can be employed to serve other purposes as well.
For example, downscaling the arithmetic unit, apart from the situation where an adder
segment fails, might also be useful for limiting the overall heat dissipation of the ScAU.
We would then de facto trade performance and higher energy consumption for less heat
dissipation. Since the ALU is one of the most heavily used part in the micro-architecture,
it probably is one of the primary sources of heat dissipation. Since this ScAU is intended
for utilization inside a biomedical implant, high temperatures of the chip (compromising
reliability) and casing (damage to surrounding live tissue) should be avoided at all times.
Therefore, it might be desired to downscale the ScAU, even when no error has occurred.
Whether such a mechanism to handle critical temperatures is really required is something
that cannot be predicted at this stage. It is a topic for future research.ijklmn opqmrnps ijklmn opqmrnps
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Figure 5.17: Precision scalable arithmetic unit

Another implementation of the ScAU, which will dramatically reduce the energy
per instruction in downscaled mode, is the precision-scalable arithmetic unit
(P-ScAU). Instead of performing the addition in full precision in two cycles, we might
want to discard the lower 8 bits of the operands. If an error occurs, we shut down
the erroneous adder segment and continue with the other segment, but we compute
only the higher order byte of the result, and pad the lower order byte with zeros. We
are compromising the precision of the addition, but we now need only one cycle in
downscaled mode instead of two. The P-ScAU is depicted in figure 5.17. Note that in
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downscaled mode the lower order byte is filled with zeros (the multiplexer selects the
input ”00000000”, which is generated by a direct connection to the ’scale’ signal, which
is zero during the first cycle). In table 5.6, the results of the ScAU and the P-ScAU are
compared (UMC 90nm, at 100 MHz). In downscaled mode, the ScAU requires 42.5%
more energy per cycle, while the P-ScAU requires 36.1% less. The P-ScAU is an option
for architectures where double-cycle operations are not permitted (e.g. because of the
implications it has on the throughput), but where precision-loss is acceptable.

Design: ScAU P-ScAU

Delay [ns] 2.97 2.14
Area [units] 2332 2050
Power (nm) [µW] 166.9 165.9
Power (dm) [µW] 118.9 106.40
Energy/instruction (nm) [pJ] 1.67 1.66
Energy/instruction (dm) [pJ] 2.38 1.06

Table 5.6: Comparison ScAU and P-ScAU

5.5.5 Scalable arithmetic unit with other adder types

Table 5.7 gives an impression about the impact of the overhead (with respect to the
non-scalable, single-adder AU) of the 16-bit ScAU, when faster adder types are employed
for the adder blocks inside the ScAU. We studied both the utilization of the CSK and
RCLA. This study is performed, in the case the ScAU will be utilized in an architecture
where the RCA is not fast enough. If a faster and thus larger adder is utilized, the
impact of the ScAU’s other logic will become less significant. As the table shows, the
area overhead of the ScAU decreases, the larger the adder structure is we choose. Thus,
in terms of area, the ScAU becomes more efficient for fast adders.

Metric RCA-16-8 CSK-16-8 RCLA-16-8

Area overhead 54.1% 49.7% 47.0%
Delay overhead 55.5% 88.4% 73.3%
Power overhead 18.8% 17.8% 17.4%

Table 5.7: Overheads of 16-bit ScAU with different adder types (normal operation)

For the delay, the opposite is true. The 16-bit ScAU is composed of two 8-bit adders
in series, while the non-scalable AU employs one 16-bit adder. This is of no significance
for RCA’s, but it is for fast adders: two 8-bit CSKs in series can never be as fast as
one 16-bit CSK (refer to chapter 3). Typically, fast adders become more efficient when
the word width increases. Therefore, the delay overhead increases when fast adders are
employed.

Finally, the power overhead decreases when fast adders are employed. This
phenomena can be explained in the exact same way as the decrease in area overhead:
fast adders utilize more power, which makes the power consumption of the other logic
less significant. In conclusion we can say that when higher adder speeds are required,
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fast adders make the ScAU more interesting with respect to the DAU-RAS, since they
reduce both the area and power overhead. Obviously, the speed limit of the ScAU is
significantly lower than that of the DAU-RAS (again, because one 16-bit fast adder is
generally faster than two 8-bit fast adders in series).

5.5.6 Using different technologies

Apart from different adder types and different frequencies, it is also important to know
how the performance and overheads of the design scales with different technologies. Up
until now, only the UMC 90nm SP (Standard Purpose) technology is utilized. In this
section it is investigated how the ScAU (as well as the AUs with single and duplicated
adders) performs when UMC 130nm SP, and TSMC 65nm GP technologies are utilized.
Note that all three technologies are targeting Standard Purpose designs, otherwise the
comparison would not be fair. We are in particular interested in the power and area
trends, and the goal of this study is to investigate in which technology the ScAU performs
optimally. The results can be observed in tables 5.8 and 5.9, as well as figures 5.18 and
5.19.

Absolute area [units]

Technology UMC 130nm SP UMC 90nm SP TSMC 65nm GP

AU 1721 1513 584.6
DAU 2412 2185 804.2
DAU-RAS 2984 2713 1077.8
ScAU 2565 2332 949.3
P-ScAU 2244 2050 814.0

Area overheads

Technology UMC 130nm GP UMC 90nm GP TSMC 65nm GP

DAU 40.15% 44.42% 37.56%
DAU-RAS 73.39% 79.31% 84.37%
ScAU 49.04% 54.13% 62.39%
P-ScAU 30.39% 35.49% 39.24%

Table 5.8: Area of 16-bit AUs utilizing three different technologies

It is immediately clear that the choice of technology is of great importance for the
performance of the ScAU. As depicted in figure 5.18, the trend lines between UMC
90nm and UMC 130nm are equal, only slightly shifted along the y-axis. The trend line
of TSMC 65nm is different. The area overhead of the DAU is slightly lower, while the
area overhead of all other designs are higher than when UMC technology is utilized.
The largest difference in the trend we see at the point of the ScAU. One reason for
this phenomenon is the larger size of tri-state buffers. Thus, in TSMC 65nm, the ScAU
performs significantly worse in terms of area than in UMC 90/130nm.

Figure 5.19 shows remarkable differences in the power trends between all three
technologies. When we consider the UMC 90nm and 130nm technologies, the power
overheads for the DAU and DAU-RAS do not differ much. The contrary is true for
the ScAU and the P-ScAU. In UMC 90nm, the power overhead is significantly lower
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Absolute power [µW]

Technology UMC 130nm SP UMC 90nm SP TSMC 65nm GP

AU 224.60 140.50 73.48
DAU 294.10 181.60 86.29
DAU-RAS 262.00 164.80 81.40
ScAU 273.00 166.90 84.31
P-ScAU 270.20 165.90 82.29

Power overheads

Technology UMC 130nm GP UMC 90nm GP TSMC 65nm GP

DAU 30.94 % 29.25 % 17.43 %
DAU-RAS 16.65 % 17.30 % 10.78 %
ScAU 21.55 % 18.79 % 14.74 %
P-ScAU 20.30 % 18.08 % 11.99 %

Table 5.9: Power of 16-bit AUs utilizing three different technologies

for these two designs than in UMC 130nm. The TSMC 65nm technology trend makes
perfectly clear that this technology is not very efficient for implementing the ScAU.
The power overhead between the ScAU and the DAU-RAS is large, the power savings
with respect to the DAU only small. The reason why the TSMC 65nm power trend is
located so low in the figure with respect to the UMC trends, is because in TSMC the
ratio between register and combinational power is different: in TSMC 65nm a larger
fraction of the total power is consumed by registers than in UMC 90/130nm, which
makes the impact of the combinational logic overhead less significant.

Area overheads
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Out of the three technologies we studied, we can say that UMC 90nm technology
is the optimal technology for implementation of the ScAU. We proved that technology
is a very important variable in the results of the entire design process. Even simple
and tiny designs as our arithmetic units show considerable differences in their area and
power trends when implemented in different technologies. The differences appear to be
the largest when technologies from different manufacturers are employed. The source
of the differences lies in the total set of available cells and the different ways cells are
implemented in different technology libraries.

5.5.7 General purpose vs. Low leakage technology

Finally, we took a short look at the impact on the results when we employ a low leakage
technology, instead of general purpose. We made a small comparison for the ScAU,
based on the TSMC 65nm GP and LL technology. The results can be observed in table
5.10.

The delay of the ScAU significantly increases when we employ LL technology
(about 58%), while the area requirements remain virtually equal. At 100 MHz, the
LL technology does not do much good to the power consumption: the total power
consumption even increases by 13.9%. Also at 20 MHz, the total power consumption is
still higher than in GP, even though more than 20 percent of the total power consumption
is wasted due to leakage power. At 10 MHz, LL finally proves to be advantageous over
GP.

It appears that reducing the static power of the library cells has a downside, as it has
a negative effect on both the delay and dynamic power consumption. Based on these
observations we conclude that utilizing LL technology is only beneficial if the leakage
component in GP is dramatically high (say, more than one third of the total power
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General Purpose

Area [units] 949.30
Delay [ns] 2.02

Frequency: 100 MHz 20 MHz 10 MHz

Ptotal [µW] 84.31 19.25 11.27
Pswitching [% of Ptotal] 19.16 15.66 12.31
Pinternal [% of Ptotal] 76.19 63.95 52.85
Pleakage [% of Ptotal] 4.65 20.39 34.84

Low Leakage

Area [units] 965.20
Delay [ns] 3.20

Frequency: 100 MHz 20 MHz 10 MHz

Ptotal [µW] 96.00 18.40 8.90
Pswitching [% of Ptotal] 24.00 22.90 22.75
Pinternal [% of Ptotal] 75.96 76.90 76.86
Pleakage [% of Ptotal] 0.04 0.20 0.39

Table 5.10: Power consumption of ScAU: GP vs. LL technology

consumption). Obviously, the observations are solely based on the TSMC 65nm GP
and LL technologies. Because of limited time, we have not investigated the low leakage
technologies of UMC. We mark this for future research. Since we also aim at system
frequencies above 10 MHz, and we also do not know if the entire SiMS architecture is
even suitable for implementation in LL technology, we will not utilize LL technology any
further in our experiments in this thesis.

5.5.8 Verification of area trends by place and route

The ScAU appears (at least at this point in the design process and under the current
configuration) not as interesting for saving power as we hoped for (see figure 5.13), but
on the other hand, the ScAU is capable of remarkable area savings (see figure 5.11). To
be certain about the correctness of this observation we checked if the trend holds true
after layout (please refer to chapter 3 for the details about the place and route tool). The
results are depicted in figure 5.20. The post-synthesis (a.k.a. pre-layout) results appear
to be astonishingly accurate: the maximum deviation between the pre- and post-layout
results is only 0.8%. As explained in chapter 3, we had only access to layout scripts with
links to the TSMC 65nm GP technology. The results in figure 5.20 are therefore based
on this technology. We believe however that it is justified to assume that the trends will
hold true for the UMC technologies as well.

5.6 Application of low-power design techniques

Since we proved that the ScAU is more than fast enough (when implemented in 90nm
CMOS) to operate on frequencies between 10-100 MHz, we are able to lower VDD of
the ScAU in order to save power (voltage scaling). Ideally, it would be best if VDD of
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Figure 5.20: Comparison between pre- and post-layout area trends

the entire architecture could be reduced. If not, level converters and a separate power
supply is required. It is difficult to predict if this would be efficient.

One of the downsides of the ScAU is the significant increase in energy per cycle in
downscaled mode (+42.5%). One way to overcome this downside is to decrease VDD only
(or even further) in downscaled mode. This is possible, since only one adder segment
is utilized in downscaled mode, and thus the critical path has become shorter. There
is, however, a limit to the extent we can reduce VDD (as explained in chapter 2, section
2.4.1). What is more, if we employ relatively low system frequencies, we will be able
to reduce VDD to the maximum extent even when the ScAU is in normal mode. Thus,
this approach is only applicable when the ScAU is employed in systems with higher
frequencies.

For example, when we utilize a frequency of 333 MHz (which is the maximum
frequency the ScAU can operate on, considering the delay of almost 3 ns). At this
speed, lowering VDD is not an option, since it not only decreases power but also increases
delay. When the ScAU is in downscaled mode (after an error has occurred), the critical
path has become significantly shorter, since one adder segment and a multiplexer are
by-passed. This reduces the critical path by approximately 30%. Ideally, we want the
energy consumed per operation to be equal in normal mode and in downscaled mode.
Now the critical path is shorter, we can accomplish this by reducing VDD. We utilize
the power results of the measurement at 100 MHz as an example:

Pnm = 166.9µW, Enm = 1.67pJ
Pdm = 118.9µW, Edm = 2.38pJ

Again, what we want is to make sure that the energy consumption in downscaled mode
does not exceed the energy consumption in normal mode. We can do that if we reduce
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VDD in downscaled mode, which leads to extra delay, but this does not have to be
a problem since the critical path is significantly shorter in downscaled mode than in
normal mode. In order to compute the necessary voltage reduction:

if Enm = Edm then
166.9 = 118.9x + 118.9x

x ∼= 0.7

we must make sure that the power consumption of the ScAU in normal mode during
one cycle is equal to the power consumption of the ScAU in downscaled mode during
two cycles. The variable x represents the necessary reduction in power (in downscaled
mode), in order to have Enm = Edm. Since x is 0.7, this means that with 70% of the
power we meet our goal. Thus, in downscaled mode we require a reduction in power
consumption of 30% with respect to the power consumed in normal mode. Normally,
VDD = 1 Volt in 90nm CMOS, and since power depends quadratically on VDD, VDD

needs to be reduced to:

√
x =

√
0.7 = 0.837 Volt

Which comes down to a voltage reduction of 16.3%. Since the critical path was reduced
by 30%, this VDD reduction is certainly allowed. Again, this method will require
level converters and an additional power supply, so it is unknown if this approach is
cost-effective. This topic is therefore an interesting direction for future research.

Another option to avoid increased latency and design problems of the pipeline to
support the double-cycle operations, is to double the clock frequency of the ScAU in
downscaled mode. Obviously, the power consumption of the ScAU will double as well,
but since power is quadratically dependent on VDD, we can cancel this effect by lowering
VDD by 25%. It is clear that this approach is only possible under certain conditions.
What is more, since we need an extra power supply, a variable clock signal, and level
converters, it is questionable if this approach is cost-effective.

For implementation in the SiMS architecture all of the above approaches are not
applicable. In SiMS relatively low frequencies will be utilized, so VDD can already be
reduced to the maximum extent (i.e. the maximum reduction that does not compromise
reliability and does not increase leakage power out of proportion, as explained in chapter
2) in normal mode.

5.7 Conclusions

The ScAU is a newly proposed design for an arithmetic unit which is able to downscale
its calculations when an error has occurred in one of the adder segments. This is a form
of graceful degradation, where the precision of the calculation is preserved, but the
throughput is compromised since the calculations now take two cycles per operation.
Supporting multi-cycle operations will complicate the design of the pipeline. At this
point it is unknown how the pipeline should be modified and what the costs will be. This
topic is, however, beyond the scope of this thesis work, but it is an interesting topic for
future research.
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We have presented the initial design of the ScAU, several optimizations as well as
the final design. After each synthesis step we closely analyzed the results and considered
possible optimizations, modified the design, re-synthesized, and repeated this loop until
we were unable to optimize the design any further. We proved that input-gating of
combinational logic (adders) is much more efficient when we employ tri-state buffers
instead of guard latches. It is shown that tri-state buffers can be utilized as a multiplexer
network and input-gates at the same time to reach optimal efficiency. The adder-output
multiplexing is implemented by regular gate-based multiplexers, since we proved that
two-input tri-state-based multiplexers require more power and area than gate-based ones.

The ScAU’s power consumption is significantly lower than that of the DAU (-8.1%),
equal to that of the DAU-RAS at 20 MHz, and higher than the DAU-RAS at all
frequencies above 20 MHz (+1.3% at 100 MHz). We can conclude that the ScAU
performs better at relatively low frequencies. The ScAU appears not as interesting for
saving power as we hoped for, but it certainly is capable of significant area savings. The
area requirements for the ScAU are 14.0% lower than for the DAU-RAS. The reason
why the ScAU does not perform very good in terms of power (in the sense that the
power consumption is slightly higher than the DAU-RAS, even though the adder is
not duplicated as in the DAU-RAS) is because the ScAU requires a significant amount
of hardware to enable the scalability feature. The delay of the ScAU is high (39.4%
higher than the DAU-RAS), since much of the additional logic resides in the critical
path. However, in the next chapter this problem will be solved. A drawback of the
ScAU is the energy per instruction which increases significantly when the ScAU is
in downscaled mode. A number of approaches have been discussed to overcome this
disadvantage.

We have showed that the 8-bit ScAU is not efficient, since the ratio between adder
logic and control logic is too small. The 16-bit ScAU performs much better, since most
of the control logic is constant and does not depend on the word size. As mentioned
previously, the ScAU performs also better at lower frequencies. Based on the results in
this study we decided to continue with the next study in chapter 6 with a frequency of
20 MHz, since a clock frequency of 20 MHz would be a good and realistic choice for the
SiMS architecture as well (refer to chapter 1, section 1.2).

Further, we discussed some alternative applications of the ScAU, such as the
precision scalable AU (P-ScAU). The P-ScAU could be employed when dual-cycle
operations are not allowed. The precision of the calculation is, however, sacrificed.
Another major advantage of the P-ScAU is the very low energy consumption per
instruction (in particular in downscaled mode). If the ScAU is employed in architectures
where high throughputs are required and the RCA is not fast enough, the ScAU has to be
equipped with a fast adder. We proved that the ScAU becomes more efficient in terms
of power and area overhead when fast adders are employed. Finally, we implemented
the ScAU (as well as the reference designs) in different technologies as one of our many
attempts to find the optimal design point. We showed that the ScAU performs best
in UMC 90nm and worst in TSMC65nm technology and proved that technology is a
very important variable in the results of the entire design process. Even simple and tiny
designs as our arithmetic units show considerable differences in their area and power
trends when implemented in different technologies. The source of the differences lies in
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the total set of available cells and the different ways cells are implemented in different
technology libraries. Utilizing low-leakage technology is only useful when low clock
frequencies are utilized (up to 10 MHz). For higher frequencies, this technology is useless
since it increases dynamic power consumption. In order to prove that the promising
post-synthesis estimations regarding low-area are correct we utilized a place and route
tool to confirm. The post-synthesis results appeared to be remarkably accurate.

A number of low-power design techniques are presented if the increased energy
consumption per operation and implications of double-cycle operations in downscaled
mode of the ScAU turn out to be problematic.
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Fault-Tolerant Design 6
6.1 Introduction

In this thesis, as stated before, we are targeting highly mission-critical applications
such as biomedical implants. Accordingly, in this chapter we investigate various
fault-tolerance techniques previously reported in the literature. Then, we move to
retrofit the adders discussed in the previous chapter with error-detecting capabilities.
This chapter is essentially divided into three major parts. The first part (sections 6.2 to
6.11), starts with a theoretical and general introduction in fault-tolerant (FT) design. All
important terminology that is employed in fault-tolerant design is explained. Since the
design of arithmetic units is unique in the sense that some of its error types are different
from that in logic structures, the types of errors specific to adders is discussed in detail. A
selection of common and less frequently utilized error-detection techniques is discussed,
as well as some methods for error correction. In part two (sections 6.12 to 6.16), a few
error-detection techniques are singled out for a more detailed investigation. The main
questions are: which error detection/correction (in this chapter often abbreviated by
ED/EC) technique is suitable for utilization in the ScAU, what is the area/power cost,
and what is the error coverage of each scheme. In addition, we also have to determine
what the minimal fault coverage of the ScAU should be. At the end of this part we
make the decision which ED/EC scheme we will utilize for the ScAU, and we assemble
a number of reference schemes, in order to make a good comparison later. In part three
(section 6.17), when the ED/EC scheme for the ScAU has been chosen, will be explained
how the scheme is exactly implemented. Most importantly, the synthesis results (area,
power, and delay) of the design are presented as well as the synthesis results of a number
of reference designs, which enables a good comparison. After that a number of important
conclusions will be drawn.

6.2 Logic error types and their sources

First, a number of terms will be introduced, which are frequently utilized in the field
of fault-tolerant design. For example, it is important to realize that the terms fault,
failure, and error do not have the same meaning. There are many reasons why a
certain component in a circuit might show abnormal behavior. However, if this abnormal
behavior occurs, we speak about a fault. An error is a situation where a fault changes
the system’s logical state that is different from the expected value. One should however
note that not all faults lead to errors and therefore they are not identical. Technically,
errors are a subset of the faults set. In the situation where an error occurs and the system
is not able to recover from this erroneous state, we speak about a failure. Thus, if we
can detect and correct the error, we can prevent a system failure. The primary goal of
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a fault-tolerant design, is to improve the dependability by enabling a system to perform
its intended task in the presence of a given number of faults [57]. So, fault-tolerant
design involves detection of faults as well as correcting them once they occur. Since we
are primarily interested in faults that cause errors, we speak generally about ED/EC.
Again, here one should realize that two other terms that are frequently utilized, namely
dependability and reliability, are not the same. Dependability can be quantified and
it depends on the type of faults the system can detect and recover from. Reliability
is the probability that the system can perform its designed function at time t = x.
However, one can say that reliability includes dependability. In practice fault-tolerant
computing is also referred to as reliable computing. It is also a misunderstanding that
a fault-tolerant design is automatically highly dependable. It may be the case that the
FT-design is able to detect and correct faults of type A, but if it does not detect faults of
type B which occur more frequently, the system is still not highly dependable. Therefore
it is very important to understand as much as possible about the types of faults that
can occur and the chance that they occur.

A permanent hardware fault is the most simple fault to detect and handle. It
occurs at a certain point in time, and the fault remains present forever (e.g. breaking of
a wire or short circuiting of wires due to overheating). There exist many fault models to
discriminate their locality of occurrence, like the stuck-at fault model (fixed value to a
signal), the bridging fault model (a short between a group of signals), and the stuck-open
fault model (i.e. one transistor is permanently open) [58]. The most frequently utilized
model is the stuck-at model, primarily because it has a higher abstraction level. The
stuck-at model is applicable at gate-level, while the other two models are only applicable
at transistor level (which requires technology level knowledge, which not every computer
engineer is very familiar with). There are however more types of faults that are much
more complicated to detect and/or handle: transient and intermittent faults. A
transient fault occurs only once and then disappears. In most cases these faults are
caused by cross-talk, noise or some kind of external interference [44]. Errors caused
by transient faults are known as soft errors, since the hardware itself is not actually
damaged. Soft errors occur more frequently when technology scales, when voltage level
reduction is applied, and at very high speeds [59]. Such soft errors may affect only one
bit or a number of consecutive bits. In the first situation we call it a random error, in
the latter a burst error. Intermittent faults manifest themselves repeatedly. One cause
for intermittent faults are, e.g., bad connections. If the temperature of the chip varies,
so does the resistance of the connection. At a certain temperature the connection may
function properly, while at other temperatures the connection is broken. The varying
temperatures of the chip are in most cases also the cause of the bad connection in the first
place. Intermittent errors are sometimes treated as permanent faults, and sometimes as
transient ones (often depending on the rate of occurrence) [60]. Since soft errors do not
damage hardware, but do corrupt results, it makes it difficult to handle them. If we
immediately shut down a part of the hardware when an error is detected and activate a
redundant (backup) circuit to be able to proceed with the computational work, we waste
valuable hardware (and power) if the error was only a transient error. In such situations
it would be better to mask the error. In section 6.11 we will discuss this topic in more
detail. However, in this thesis we do not distinguish between permanent and soft errors.
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This decision is made based on two reasons. First, it certainly simplifies designing the
fault-tolerant ScAU, so there is a possibility that it will also simplify the complexity
of the design (and thus saves power and area). Second, this simplification allows us to
explore the entire range of ED/EC schemes, and not just a subset.

All error-detection schemes discussed in this thesis are commonly referred to as CED
schemes. CED stands for Concurrent Error Detection, and means that the error
detection is continuously operational: every result that is produced is checked by the
error-detection hardware. Another variant of error detection is non-concurrent error
detection, i.e. checking for errors periodically [61].

6.3 Boolean difference and Hamming distance

Any combinational logic circuit can be described by one or more logic functions. Assume
X = x1, x2, ..., xn is the input of function F and F (X) is its output. If we want to know if
an error at a particular input has effect on the output, we need to compute the Boolean
difference [62]. The Boolean difference can be computed by:

dF (X)

dxi
= F (x1, ..., xi, ..., xn)⊕ F (x1, ..., x̄i, ..., xn)

Note that this is not a differential equation, but the Boolean difference between F (X)
with correct inputs, and F (X) with an incorrect value at input xi (called a single
error). This difference can be obtained by a bitwise exclusive-or of the two output
values. There are three possible outcomes: the result is either zero, one, or a new
function G(X). The incorrect value at input xi leads to an erroneous result in F (X)
when the Boolean difference is one. Then the error is always detectable. When zero,
F (X) has not changed in the presence of the error at the input and therefore the error
is undetectable. If the Boolean difference is a new function G(X), then an error in xi
will cause an error in F (X) if and only if G(X) = 1, i.e. the error is detectable but only
under specific circumstances. We can determine the Boolean difference as well, if two
inputs are erroneous (two errors occur at the same time, a.k.a. double errors), called
the double Boolean difference:

d2F (X)

dxidxj
= F (x1, ..., xi, ..., xj , ..., xn)⊕ F (x1, ..., x̄i, ..., x̄j , ..., xn) = G(X)

Here G(X) is either one (error always detectable), zero (error never detectable), or
any logic function (error detectable under specific circumstances). Another important
formula is:

d2F (X)

d(xi + xj)
=

dF (X)

dxi
+

dF (X)

dxj
= G(X)

Here we do not assume that both errors at the inputs occur at the same time (thus, this
is not a double error), but we question what happens if xi or xj is erroneous. Obviously,
we can expand the formula for all inputs of the function.

A convenient way to compute these Boolean differences for small circuits is to employ
Karnaugh maps. One can simply make two Karnaugh maps of the function F , one with
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correct inputs and one with one or multiple erroneous inputs. Exclusive-oring of all
corresponding positions in the Karnaugh maps results in the Karnaugh map of the
function G(X) and this function can thus be easily read out. Obviously, for large circuit
we will have to resort to special computer programs. In general, Boolean difference is an
important tool to investigate and prove if certain errors at the inputs of a system will
also result in erroneous outputs, and —when the answer is yes— under which specific
circumstances.

Another important term in fault-tolerant design is code distance. For example,
when we have three bit lines, we have eight possible binary settings. If we utilize these
bit lines to send messages, and we have eight distinct messages, then every time an
error occurs in either one of the three lines the original message is lost and a corrupted
message is given. The problem here is that the corrupted message is also a legal massage
so the error can never be detected. What we can do is create a situation where, if
an error occurs, the corrupted message is no longer part of the set of legal messages
(or values). Therefore the code distance between any two legal messages should be at
least two: meaning that any two messages from the legal set should differ by at least
two corresponding bit positions. Now, when the code distance is two, all single errors
result in illegal messages and thus all single errors can be detected. Obviously, this
means that for the same number of messages we need more bit lines. Code distance is
very important in designing communication buses and controllers.

Since Richard Hamming (1915-1998) was the first one who formally defined code
distance, code distance is generally referred to as Hamming distance. The Hamming
distance between two pairs of bit vectors (messages) X and Y can be formally described
by:

d(X,Y ) =
∑n

i=1
(xi ⊕ xj)

It represents the total number of corresponding bit positions where X and Y differ.
When a code has a distance ’d’, it can detect errors with a multiplicity of d-1 and lower.
For example, when d=3, we can detect all double and all single errors. Much more
information about Boolean difference and Hamming distance can be found in the book
of Sellers et al. [62].

6.4 Errors in adders

The basic element in adders is the full-adder. A full-adder is build by two (partially
shared) circuits, to implement the functions ’sum’ and ’carry’ [44, 62]:

sn = an ⊕ bn ⊕ cn−1 (I)

cn = an · bn + (an + bn)cn−1 (II)

Where (II) can be subdivided into a generate (III) and a transmit/propagate (IV)
function:

gn = an · bn (III)
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tn = an + bn (IV)

Such that:

cn = gn + tn · cn−1 (V)

A single fault in an adder circuit leads to an error which can fall into two different
categories: a single sum digit error or a burst of sum and carry digit errors [62]. A single
error occurs when the fault is caused by a fault in a sum circuit, a burst error by a fault
in a carry circuit. This makes the error characteristics of adders special, since burst
errors normally only occur as a result of soft errors. We will explain this special error
type in more detail.

A single error in an, bn, or cn−1 will always cause an error in sn (I). An error in a
carry digit cn−1 will always propagate and cause an error in sn as well. So, a fault in a
carry circuit will cause two errors at the minimum: one carry digit error and one sum
digit error. Now, if the situation is such that due to the error the incoming carry cannot
be absorbed in stage n, carry digit cn will be erroneous and so will be sn+1. This way,
the burst error can become arbitrarily long. Because of this phenomena, carry errors are
of primary concern in adder error detection [62].

Instead of reasoning, we can utilize Boolean difference equations (commonly referred
to as error functions) here to provide proof. For the sum circuitry:

dsn
dan

= (an ⊕ bn ⊕ cn−1)⊕ (an ⊕ bn ⊕ cn−1)

dsn
dan

= (an ⊕ an)⊕ (bn ⊕ bn)⊕ (cn−1)⊕ cn−1)

dsn
dan

= 1⊕ 0⊕ 0 = 1

Which means that errors in a always cause an error in s. The error functions for b and
cn−1 are similar.

And for the carry circuitry:

dcn
dgn

=
d(gn + tn · cn−1)

dgn
= tn · cn−1

dcn
dtn

= gn · cn−1

dcn
dcn−1

= gn · tn

Thus, in words, cn is in error if cn−1 is in error, if and only if gn · tn = 1. So, it depends
on the data if a carry error propagates or not. For the derivation of the error functions
above, we refer to chapter 6 of the book of Sellers [62].

If an error in cn causes an error in cn+q, then cn also causes an error in
cn+1, cn+2, ..., cn+q−1. Thus, one single fault in a carry circuitry can cause any number
of successive carry errors. And since:
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dsn
dcn−1

= 1

all carry errors lead to (successive) erroneous sum results as well. Thus, the results
sn+1, ..., sn+q+1 are in error too.

6.5 Important terminology employed in fault-tolerant

design

A circuit is said to be fault-secure for a set of faults F, if for every fault in F, the circuit
never produces an incorrect codeword at the outputs for correct codewords at the inputs.
Alternatively, it produces either correct code-space outputs or outputs in the error space
[62, 63]. Thus, for example, if an error-detection scheme covers 100% of all single errors in
a circuit, the circuit is fault-secure for single-errors. Self-testing means that every fault
from a prescribed set can be detected during normal operation. In other words, there
exists at least one input pattern in normal operation that produces an erroneous result
for each fault in the set. In fact, this property avoids the existence of redundant faults.
Such faults remain undetectable and could be combined with new faults occurring later
in the circuits, resulting in multiple faults that could destroy the fault secure property
[64, 65]. The totally self-checking (TSC) property can be achieved if the circuit is
both fault-secure and self-testing for the prescribed set of faults. Basically, the TCS
property guarantees that a fault is detected the first time it manifests itself as an error
at the outputs of the circuit. We speak about a strongly fault-secure (SFS) circuit
when the circuit is (I) totally self-checking, or (II) fault-secure and after the occurrence of
faults: guaranteed fault-secure or self-testing with respect to the accumulated faults [66].
Although not necessarily equal, in many cases the TCS and SFS properties are considered
to be equivalent. One of the two properties is sufficient for designing a trustworthy
self-checking circuit. A circuit is called code-disjoint if it maps codewords at the
inputs to codewords at the outputs and non-codewords at the inputs to non-codewords
at the outputs. This property is important for the design of checkers.

6.6 Achieving the fault-secure and self-testing property in

adders

According to Nicolaidis [65], the following goals have to be met for a self-checking adder
in order to be efficient: it should be totally self-checking or strongly fault secure for single
errors, it should have a low hardware overhead and be checked by a compact checker,
and it should be able to be combined with parity-checked data paths and memories
without using code translators. Self-checking (error-detecting) memories often utilize
parity prediction and fault-tolerant (error-detecting and -correcting) memory systems
utilize, e.g., Hamming SECDED (single error correcting, double error detecting) which
is compatible with parity prediction. Parity prediction is a type of error detection we
will explain later. We will also study if it is true that this particular type of ED is
the most efficient. However, Nicolaidis provides some very good guidelines here. The
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most important guideline is that the choice of the ED should not only be based on the
efficiency and applicability in the AU, but also in the entire architecture.

Since adders are well optimized circuits (ripple carry adders, but also carry-lookahead
adder, carry-skip adders, etc.), no redundancies exist in the adder designs. Thus, by
definition, the self-testing property holds true for all stuck-at errors in adders [65]. As
discussed in section 6.4, the fault-secure property (for all single errors) can be achieved
when we are able to detect single faults which manifest as single errors in the result and
single faults which manifest as burst errors in the result. Achieving the TSC property
in adders is not difficult. However, if we consider the error checker part of the circuit
(which means that the checker itself has to achieve the TSC goal as well), achieving the
TSC property is much harder as we will see in section 6.10.

6.7 Error detection by hardware duplication

The error-detection technique that appeals the most to one’s imagination is without
doubt hardware duplication. It is a technique that has been utilized for many
years and is known for its high fault coverage. When we have a certain circuit, we
simply duplicate the circuit and feed both outputs to a comparator. These systems
are also referred to as duplex or Duplication With Comparison (DWC) systems
[44, 62, 67, 68]. Almost all errors at the outputs can be detected this way, except
Common-Mode Failures (CMFs), where a single cause leads to multiple faults,
namely faults in both circuits. The chance that both circuits produce identical errors at
the same time is small, but certainly not impossible. One should realize that both circuits
have the same layout, are connected to the same power supply and are subject to the
same external disturbances. CMFs can be caused by, e.g., electromagnetic interference,
power-supply disturbances, and of course design errors. A solution exists to make the
hardware duplication technique less susceptible for CMFs: instead of adding an exact
copy of the original circuit (identical duplication), it is better to redesign the circuit,
with the same functionality, but a different implementation. This technique is called
diverse duplication and this increases the fault coverage even further [67]. The major
drawback of the duplex technique is the high costs. Since the circuit is fully duplicated
and also a comparator is required, area and power costs increase by more than 100%.
However, when reliability is crucial and power and area budgets are not that tight, this
method is a very good choice.

6.8 Error-detection codes

All error-detection codes are able to at least detect single errors, some of them can
also detect double errors, and other even triple errors, etc. In contrast with the
hardware duplication technique (which covers basically errors of any multiplicity), it
highly depends on the type of code what the fault coverage is. The general rule is, the
higher the fault coverage, the higher the hardware overhead, and the more check bits
are required. It is important to know that double errors occur much less frequently than
double errors. The chance of an occurrence of a triple error is even lower. This makes
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sense, since the chance that 2 or 3 errors occur in different parts of the circuit at exactly
the same time is statistically much smaller than the chance that a single error occurs.
So, for the majority of logic designs protection against (all) single errors is sufficient.
The extra protection against double or even triple errors does not add significantly to
the probability of detecting errors [62, 69]. Only in systems where reliability is of crucial
importance these codes may be desirable. However, often it will remain a trade-off
between reliability and cost.

Error-detection codes do not require full hardware duplication (sometimes partial
duplication), but in any case the ED-hardware introduces inherent diversity in the
system. This makes systems checked by error-detecting codes far less vulnerable to
CMFs than systems checked based on full hardware replication [67].

When an error-detecting code is utilized, all messaged need to be encoded. This
means that the original message is altered by adding additional (redundant) information.
If something goes wrong during processing the message, the decoding process will notify
this and signal an error. Since in this context we design an arithmetic unit, the messages
represent the operands that need to be added/subtracted.

The most common error-detection codes utilized in computer arithmetic are parity
prediction and residue checking. Less common ED codes are Berger and Bose-Lin
coding. These are the four ED codes that will be discussed in this chapter.

6.8.1 Parity Prediction

When utilizing parity prediction, the n-bit operand is extended by a single check
bit (the so-called parity bit). The parity bit of each operand needs to be generated
(encoding process) before the actual arithmetic operation is executed. The parity is
defined as (for binary systems):

P (N) =
∑n

i=0
xi mod 2 = xn ⊕ xn−1 ⊕ xn−2 ⊕ ...⊕ x0

where N = xn2
n + xn−12

n−1 + ... + x02
0 is the n-bit operand represented in the

conventional polynomial form. When there is an even number of one’s in the operand,
the sum of the operands is divisible by two, so the remainder will be zero. This is called
even parity. When the number of one’s is odd, the remainder is one, indicating odd
parity. Thus, the parity bit contains information about the evenness/oddness of the
number of one’s in the operand. The parity bits of the operands can be generated inside
the AU, or can be generated early in the pipeline when parity prediction is utilized for
error detection for more components in the architecture than just the AU. The choice,
whether to generate the parity bits inside the AU or not, has major consequences for the
power consumption and area requirements of the AU.

When an addition is performed, two operands are added, generating a result. Adding
two operands with both even parity, or both odd parity, leads to a result with even parity.
If one of the operands has even parity and the other has odd parity, the result has odd
parity. The scheme is called parity prediction, since the scheme contains a circuit which
predicts what the parity of the newly generated result will be. At the same time, the
parity of the result is generated in the same way as described for the operands. Finally,
the predicted and the actual parity of the result are compared. If they do not match,
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an error has occurred in the arithmetic operation. Parity prediction covers all errors,
which affect only a single bit. If multiple bits are affected, the detection depends on
the oddness/evenness of the number of affected bits. E.g. if two bits are erroneous, the
parity-prediction scheme will not detect any error, since the parity will not change (the
message is corrupted, but the message is still legal). Parity prediction has a wide range
of applications: it allows error checking in telecommunications, in arithmetic and logical
operations, and in memories.

With respect to the conclusions at the end of section 6.4, now it can be shown
clearly, that standard RCAs are not fault-secure for carry errors when checked by
parity-prediction schemes. If cn, ..., cn+q are in error because of a carry circuit fault,
and as a result of that sn+1, ..., sn+q+1 are in error as well, the total number errors in
the carries and sum are always even, regardless of ’q’. This is a major problem for
parity-prediction schemes, since they cannot detect an even number of errors, because
of the simple fact that the parity of the result is unaffected. Therefore the RCA needs
some modifications in order to be able to detect carry errors at all times. In section
6.16 three different parity-prediction schemes are discussed, which solve the problem of
undetectable carry-errors.

6.8.2 Residue Checking

A more advanced type of an ED-code is residue checking. For each integer ’A’ there
exists a unique residue (or remainder) ’R’ when the integer ’A’ is divided by another
integer ’m’, where R < m. In the case that two integers ’A’ and ’B’, both divided by
’m’, result in the same remainder ’R’, the numbers ’A’ and ’B’ are said to be congruent
modulo ’m’, which is denoted as A ≡ B mod m. The residue is formally defined as:

R(N) = N mod m = {∑n
i=0

xi · ri} mod m

where N = xn2
n + xn−12

n−1 + ... + x02
0 is the n-bit operand, ’r’ is the radix which is

2, and ’m’ represents the modulus. The modulus has to be chosen in such a way that
0 ≤ R(N) < m. Both operands need to be provided with check bits: the residue of the
numbers need to be generated prior to the arithmetic operation. The functionality of
the scheme is as follows: the residue of the result is predicted by adding the residues
of both operands in a modulo-m adder. The predicted residue is then compared with
the actual residue, generated by a modulo-m generator. If there is a mismatch, an error
occurred during the arithmetic operation. The scheme is depicted in figure 6.1. As
mentioned earlier, for each integer ’A’ there exists a unique remainder, when divided by
the modulus. Only when errors occur in such a way that the number ’A’ is corrupted
in a new number ’B’, and A ≡ B mod m, the errors remains undetected. In other
words: a residue code will detect all error patterns, except those when

∑n
i=0

ei · 2i = 0
mod m [62]. As long as a modulus is chosen, which is equal to the radix of the number
system plus one, all single errors can be detected. Thus, in our case with a modulus
of three we can cover all single errors. Modulus-3 checking has an error coverage of
50% of all double errors (like parity prediction). Note however, that the set of double
errors that is covered by this scheme is not the same set of double errors covered by the
parity-prediction scheme. We took a closer look to see what really happens. Therefore



102 CHAPTER 6. FAULT-TOLERANT DESIGN

¨©©ª« ¬© ¬«ª®¯©°ª±ª²ª«³´«¬© ¬³©©ª«
¬© ¬«ª®¯©°ª±ª²ª«³´«¬© ¬«ª®¯©°ª±ª²ª«³´« µ¶·

³¸ ³¹³¸ ³¸³¹ ³¹
³¸º³¹ »¸ »¹

¼³¸º³¹½¬© ¬ ¼»¸º»¹½¬© ¬
«ª®°¾́ ª«««

Figure 6.1: Residue Checking Scheme

we picked a number of 4-bit numbers and introduced all possible double errors in it. For
parity prediction, the error coverage of double errors is always 50%, regardless of the
actual number. Half of the total amount of double errors is detected, the other half is
not. Modulo-3 checking performs better or worse depending on the actual number we
chose. In some cases the error coverage is 33.3%, in others 66.7%. However, in a set of
numbers [0...n], the error coverage (of double errors) on average is 50%.

A major drawback of residue checking, is that it is only capable of checking arithmetic
operations (it is designed for checking arithmetic circuits only). It is however possible
with some modifications to enable checking logical operations as well, but this increases
the overhead of the scheme significantly.

The true power of this scheme is the ability to modify the modulus. The higher the
modulus, the higher the fault coverage of double errors, but also the higher the cost of
the scheme. Note that modulo-3 checking already requires 2 additional bits per operand
(parity prediction requires only one), and e.g. modulo-15 checking would require 4 extra
bits.

The paper of Langdon and Tang [70] teaches that, under certain circumstances,
modulo-3 checking can be cheaper than parity prediction. In section 6.15 a more detailed
comparison is made between parity prediction and modulo-3 checking, based on further
research. We will explain under which circumstances modulo-3 checking is advantageous
over parity prediction, and when it is not.

6.8.3 Berger and Bose-Lin Codes

For the Berger code, a code word is formed by appending a binary string representing
the number of logic ones (or zeros) in the given operand [67]. For an n-bit operand we
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need ⌈log2n⌉ check bits. Note, that for a 16-bit operand we already need four check
bits. The Berger code is based on unidirectional error detection, which means that
the code assumes that all errors are unidirectional: zeros are changed into ones or ones
are changes into zeros, but never both at the same time. To ensure that a single fault
causes an unidirectional error at the output, the logic circuit must be synthesized in
such a way that the circuit itself is free from inverters (only at the primary inputs of
the circuit inverters are allowed). This complicates the synthesis of such a circuit. Only
then the Berger code is capable of detecting all unidirectional errors. Whenever the
number of ones in the result differs from the predicted value, an error is detected. Thus,
Berger code can detect any number of one-to-zero (or zero-to-one) bit-flip errors, as long
as no zero-to-one (or one-to zero) errors occur in the same code word. This sentence
summarizes both the strength and the weakness of the code. Berger codes can be used
for error detection in telecommunications, arithmetic and logical operations [71].

When utilizing Berger code in adders, the ED-scheme is called Berger Check
Prediction (BCP). If we have two n-bit numbers X and Y , to obtain the sum S
with internal carries C, and N(X) denotes the number of binary ones in the number X,
then:

N(X) +N(Y ) + cin = N(S) + cout +N(C)

For an n-bit number X, Xc = n−N(X) where Xc is called the Berger check symbol
(which is actually the number of zeros in the binary number X). Together with the
formula above, we are able to predict the Berger check symbol of the sum of the addition:

Sc = Xc + Yc − cin − Cc + cout

And for 2’s complement subtractions:

N(X) +N(Ȳ ) + c̄in = N(S) + cout +N(C)

In the paper of Lo et al. [71] a BCP scheme for utilization in adders/ALUs is
presented. The scheme is depicted in figure 6.2. The circles with the plus sign in it
represent exclusive-or gates and the MCSA is a multi-operand carry-save adder (refer to
[71] for the implementation of the MCSA). The scheme is an analogous implementation
of the equations given above. According to this paper, the first important motivation
for utilizing the BCP scheme, is the inability of other error code based schemes, such as
parity prediction and residue checking, to check both arithmetic and logical operations.
It is true that residue checking is not capable of checking logical operations, but parity
prediction most certainly is, according to the proof given in the paper of Nicolaidis [65].
Thus, Lo et al. appears to be incorrect at this point. The second important motivation
for BCP is the fact that neither parity prediction nor residue checking are able to
achieve the TSC goal in their predictors (producing the predicted parity/residue). Note,
however, that only recently a TCS parity-prediction scheme is presented by Nicolaidis
[65]. This scheme will be discussed in section 6.16.3. BCP achieves the TCS goal in
the predictor (producing the Berger check symbol), with respect to any single fault in
the adder/subtracter. This makes BCP a very reliable ED-technique. BCP is capable
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Figure 6.2: Berger Check Prediction [71]

of detecting both single and double errors. On top of that, it is capable of detecting
all unidirectional errors. This in contrast with parity prediction, which is capable of
detecting unidirectional errors of odd multiplicity only. BCP is therefore superior to
parity checking, but still cannot measure itself with hardware duplication.

The Bose-Lin code is alike the Berger code but has a few fundamental differences.
The Berger code is able to detect all unidirectional errors, but in many systems there is
no need to cover all, but only a limited number of errors. The Bose-Lin code can detect
’t’ errors, and the value of ’t’ is basically up to the designer and is related to the number
of check bits ’r’ being utilized. The most common values for ’r’ are 2 (covering double
errors) or 3 (covering triple errors). Note that we are referring to unidirectional errors.
The other fundamental difference with the Berger code is that the Bose-Lin code has
a fixed number of check bits ’r’, independent of the number of information bits. This
is possible because Bose-Lin check prediction is based on modulo operations (also the
number of ones is represented as a residue; mod 4 and mod 8 are utilized for t=2 and t=3,
respectively) [72, 67]. Altogether, this makes the Bose-Lin check prediction a lot cheaper
than BCP (how much depends on the selected value of ’t’). According to Gorshe et al.
[73], Bose-Lin check prediction assures fault-secureness for single errors in adders.
Also, Bose-Lin check prediction is capable of checking all logical operations as well.

Unfortunately, neither Lo et al. or Gorshe et al. provide a comparison between
Berger/Bose-Lin check prediction and other ED-techniques based on hardware costs.
The paper of Mitra and McCluskey [67] clearly shows that the area cost of Berger
check prediction is very high compared to parity prediction, and even higher than full
(identical/diverse) duplication. But that raises the question why the BCP scheme has
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never been dismissed. A later published paper by Lo et al. [74] explains that is difficult
to say whether the BCP scheme is doing better or worse than duplication in terms of
hardware requirements. It depends on the exact implementation of the BCP scheme but
also on the architecture. E.g., if we utilize Berger code to check both the ALU and the
memory/data transfers, we might save code translators. According to Lo et al. [74] the
application of BCP to an Intel 8080 processor proves to be an efficient method to design
a strong fault-secure self-checking processor.

6.9 RESO

All previously discussed error-detection techniques are based on hardware redundancy.
The most obvious one is full duplication, but also error-detection codes introduce a
significant amount of redundant hardware. RESO, short for Recomputed with
Shifted Operands, is based on time redundancy [68]. The operation requires two
steps. In the first step, the operands X and Y are applied to the arithmetic unit in the
normal way and the result is stored in the result register. If we would repeat this step
and compare the result to the previous result, only a transient error occurring during
either of two computation steps could be detected. Obviously, we want to detect all
errors: soft errors and permanent errors. The way to do that is to encode the operands
in the second step, before applying them to the AU, and after processing decode the
result in order to compare is with the result from step one. Thus, if f(x) represents the
computation inside the AU, and the functions d(x) and c(x) represent the decoding and
encoding respectively, then d(c(f(x))) = f(x). The reason why we want this, is because
the AU is now computing with different operands: instead of with X and Y the AU is
now working with c(X) and c(Y ). After decoding, normally the result will be the same,
but any errors in the AU will now manifest at different positions in the result, compared
to the result of step one. In most cases the RESO scheme is implemented as depicted in
6.3. The encoding is performed by a simple shift left, and the decoding by a shift right.
More about the RESO ED-scheme can be found in the paper of Patel and Fung [75].áâ
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Figure 6.3: Error detection using RESO [68]

It is clear that this ED-scheme requires very little redundant hardware. The scheme
requires two left- and one right-shifter, and the AU must be one bit wider than the
n-bit operands. On top of that an n-bit comparator is necessary. On the other hand, the
speed penalty is huge, since two computational steps actually means two clock cycles per
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operation. Even when this does not result in problems with the throughput, there will
arise problems with the energy consumption. RESO will most probably have one of the
lowest power consumptions of all ED-schemes, since the required amount of hardware is
low. This means that the energy consumption of the AU per cycle will not increase much
when the RESO scheme is added. But, since two cycles are needed, the required amount
of energy per operation is huge: well over 100% more than without ED (referring to
power consumed in combinational logic only, not register power). Apart from checking
arithmetic operations, RESO is also capable of checking logical operations.

6.10 Achieving the TSC goal for predictors and checkers

As mentioned in section 6.6, adders are by definition TSC circuits. This is not the case
for added ED logic. As explained in section 6.8.3, predictors predicting the check bits
of the result of the calculation may or may not be TSC circuits. But even when the
Berger check predictor is said to achieve the TSC goal, is does not mean that the entire
ED circuit achieves the TSC goal. This can be confusing. There is a difference between
producing the check bits and producing the error signal. In the discussion about the
BCP in the paper of Lo et al. an important component is missing: the checker. A
checker should here contain a counter to count the number of ones in the actual result
(real check symbol) and a comparator to compare the predicted check symbol with the
real check symbol. If the checker does not meet the TSC goal, the entire ED scheme does
not meet the TSC goal. Nevertheless, if the predictor meets the TSC goal, the reliability
of the scheme is always enhanced.

Often, the checkers utilized in ED schemes, are simple comparators. There might
occur a situation where, for example, the output of a comparator gets stuck-at-0. Then,
in the case when an adder starts producing erroneous results, the error-correction scheme
will not intervene, since it seems there is no error present. This makes the comparators
crucial elements in the ED/EC scheme. To cope with this problem, a checker must
preferably be self-testing [76]. Thus, for each modeled fault, there must be a code input
for which the checker produces a non-code output. Obviously, this is impossible with a
single-output circuit such as a comparator.

The first implication of the self-testing property is that a checker must have at least
two outputs [77]. This means would have to implement the comparator by an alternative
technique, if we want to meet the self-checking goal, in order to increase the reliability of
the circuit. A common technique to do so is to employ dual-rail checkers, which have
two outputs (a dual-rail checker cell is in terms of functionality identical to a XOR-gate
and therefore dual-rail checkers are very applicable for performing comparisons). A
dual-rail checker cell is depicted in figure 6.4. Then, e.g., the output of the checker
”01” would indicate a correct result, and ”10” an erroneous result (an error in the
adder). The other two possible outcomes would indicate an error in the checker. Dual-rail
checking however increases hardware overhead. If the self-testing checker also satisfies
the code-disjoint property, the checker meets the TSC goal. A predictor which meets the
TSC goal is presented in 6.16.3. Because of limited time, none of the predictors/checkers
that are actually implemented (section 6.17) have been designed to meet to TSC goal.
This would be a topic for future work.
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Figure 6.4: A dual-rail checker cell

6.11 Error correction

As discussed earlier, detection of errors is the first but not sufficient step to make a
system fault-tolerant. We need to be able to correct errors as well. There are, basically,
two methods of error correction: masking the error or (online) repair/reconfiguration
[57]. By masking the error, the circuit itself is designed in such a way that it dynamically
corrects a generated error, without having to reconfigure or resort to backup circuits
(thus, the error itself is not fixed). In the case of repair/reconfiguration, the circuit
is dynamically repaired when an error is detected. This means that faulty circuits are
eliminated, replaced, or bypassed. For example, a particular erroneous circuit can be
shut down, a backup circuit can be activated, and the data path reconfigured.

An example of an ED/EC-adder purely based on hardware replication is the
TMR (Triple Modular Redundancy). Here we have three adders, operating
simultaneously, and feeding their results to a majority voter. This voter seeks for a
match between any two of the three results, and forwards that result to the output. So,
when one of the adders is producing erroneous results, the TMR still functions correctly.
Note that the TMR is based on error masking. Even though an adder is producing
erroneous results, the adder is not shut down, nor is another adder activated, nor is
there a reconfiguration of any kind. Another ED/EC-adder based on pure hardware
replication is the QMR (Quadruple Modular Redundancy). Two adders and a
comparator form together an SCA, a Self-Checking Adder. If an error is detected,
we need to resort to another SCA. Note, that it is impossible to obtain information about
which of the two adders inside the SCA is producing erroneous results and therefore, the
QMR contains two SCAs, with both outputs attached to a multiplexer. In total, the
QMR scheme contains four adders. Also the QMR is an example or error masking
[44, 57].

Another example of error masking are error-correction codes (ECCs). These
codes are more advanced than error-detection codes (error correction is much more
complicated than error detection) and have the ability to both detect and correct an
error [57]. We, however, will not discuss ECCs in this thesis. In the general case, ECCs
are (disproportionally) expensive, especially for tiny architectures as the ones we are
interested in. For example, a very common ECC is based on the Hamming code, which
is often employed for single-error correction. For this ECC we need (log2N) + 1 check
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bits, where N is the word-width [78]. So, in our case, where the word-width is 16 bits,
we would already require 5 check bits. Also an ECC based on residue coding would
require multiple residues [79]. This will have a major impact on the area and power
costs of the arithmetic unit, as well as on the entire micro-architecture if these check
bits/digits are generated early in the pipeline. According to the book of Chen (section
IX, chapter 8.2) [79], in arithmetic circuits ECCs are incompatible with other methods.
However, we are well-aware that there may be certain error-correcting schemes (with
acceptable levels of error correction) that are cheaper in terms of power consumption
and area requirements than some of our more expensive reference designs, such as the
QMR. Without underestimating the importance of this topic, practical time limitations
of this thesis work do not permit delving into such special issues. We consider this as an
important direction for future work.

When utilizing error-detection codes, like parity prediction, we can build an SCA
without replicating the adder inside. However, when the scheme detects an error, we
still need to resort to duplicated hardware (backup hardware) in order to be able to
recover from the error. The solution is then to implement two SCAs (as well as the
required EC logic and a multiplexer, based on the scheme of the DAU-RAS which was
explained in chapter 5, section 5.4). When the active SCA is erroneous, it is shut down,
the backup SCA is activated, the data path is reconfigured, and the calculations proceed
by employing the backup SCA. This is a scheme based on online repair/reconfiguration.

Note that the comparators in the DAU-RAS and QMR scheme, and the voter in the
TMR scheme, are critical elements and the weak links in the design, since they are not
checked for errors. It is possible to apply self-checking design to these components as well
(checking the checkers). Another solution is self-testing design (as explained in section
6.5, a circuit is self-testing if there exists at least one input pattern in normal operation
that produces an erroneous result for each fault in the faults set). Ideally the entire
design, including the error-detection (checkers and predictors, as discussed in section
6.10) and -correction logic, should therefore meet the self-testing property. To give an
example of self-testing design is to employ double-rail checking for the comparators in
the QMR (double-rail checking was also discussed in section 6.10).

6.12 Minimal required error coverage in ScAU

As mentioned in section 6.8, single errors occur much more often than double errors.
The fault coverage does not increase significantly if we decide to extend the ED-scheme
for double errors or errors of even higher multiplicities. What does certainly increase
quite dramatically, is the overhead of the ED scheme. What we must realize is that
the AU is to be designed for application within the SiMS micro-architecture, and thus,
for utilization within medical implantable devices. Then it is obvious that reliability is
crucial. Even though the chance that a double error occurs is small, the chance is not
zero, so ideally we should check for double errors as well.

On the other hand, as explained previously in chapter 1, there is a reason why the
SiMS micro-architecture is so minimalistic and why the power and area budgets are so
low. In biomedical implants, batteries should have a very long life span and since the
physical dimensions of the implant are bounded (implants tend to become smaller and
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smaller, enabling them to be implanted in parts inside the body where there is not much
space), and the vast amount of area within the implant is used for the battery pack and
the electrodes, the available chip area is very limited. So, increasing reliability might
lead to intolerable power and area requirements (which would lead to significantly shorter
battery lifetimes, or require larger batteries, which is not a preferred option) and larger
circuit area (which leaves less space for other core structures which have been shown to
benefit implant operation, such as caches [7]). So also for a highly mission-critical device
such as a biomedical implant, the decision to be made is based on a trade-off between
reliability and cost, like it is the case for virtually every application. We ultimately made
the decision to have the design be at least fault-secure for single errors. So, we decided to
choose for the minimum possible fault coverage. We believe this is justifiable because of
the following. First, we established earlier that single errors occur much more frequently
than errors of higher multiplicities. The extra protection against double or even triple
errors does not add significantly to the probability of detecting errors. Second, since
the AU will not be employed all the time and will be idle for longer periods of time
(within the SiMS application), the intention is to periodically run online tests with a set
of predetermined test vectors to check the full functionality of the AU. This way, some
errors may not be covered by the ED-scheme, but ultimately they will be captured by
the online testing.

6.13 Applicable ED/EC techniques for the ScAU

Whether an ED scheme is applicable for implementation in the ScAU depends on two
factors: first, the cost of the scheme should be acceptable, and second, the scheme should
be compatible with the scalability feature. Since the ScAU is subdivided into two adder
segments (in normal operation mode placed in series with each other), we can apply the
ED-scheme to each of the segments independently. However, achieving fault-secureness
for single errors in the ScAU as a whole is difficult when two independent ED-schemes
are employed, as we will see later on in section 6.17.7. Duplication to enable error
correction is not necessary in the ScAU: if one segment fails, we shut it down, together
with the ED logic, and continue with the other segment. The QMR and TMR do have
a phenomenal fault coverage (capable of detecting all errors of any multiplicity, except
common-mode errors), but the costs of these ED/EC schemes are very high. For the
QMR scheme the power and area costs are at least 400% the costs of the unchecked AU,
because of the simple fact that we need four adders. Therefore, the QMR scheme is not
interesting for implementation in the ScAU. The TMR will probably be cheaper than
the QMR (we will actually prove this in section 6.17.6), but still the costs will be very
high (3 adders operating simultaneously), and therefore also the TMR is not applicable
for implementation in the ScAU.

Both parity prediction and modulo-3 checking seem, based on the literature,
interesting ED-techniques for implementation in the ScAU. The fault coverage of both
schemes is identical and sufficient for our purpose: both schemes are fault-secure for
single errors and cover 50% of all double errors. However, it is not easy to predict which
technique is most suitable for the ScAU. In the literature, parity prediction is said to be
cheaper than modulo-3 checking, but Langdon et al. [70] proves otherwise if we meet a
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number of conditions. On top of that, comparison is complicated, since more than one
parity-prediction scheme exists. Therefore we decided to make a detailed comparison
between parity-prediction and modulo-3 checking, based on thorough research, before
we decide if we implement modulo-3 checking or not (see section 6.15). In section 6.16,
three different parity-prediction schemes are discussed and two of them are implemented
in order to compare the costs. Since both parity prediction and modulo-3 checking are
error codes, they work with check digits. Regardless of where we generate the check bits
of the operands (inside the AU or early in the pipeline), check bits generated for 16-bit
operands are useless when we decide to check the upper and lower byte, as we do when
we check both segments independently. If we decide to generate the parity bits early in
the pipeline we must generate two check digits per operand (lower and higher byte), or
we must derive the lower and higher check digit from the 16-bit check digit inside the
ScAU. Later will be shown which method is the most cost-effective.

We consider Berger check prediction (BCP) not suitable for implementation in the
ScAU, since the hardware cost is at least close to that of full hardware duplication
(but most probably more costly). Apart from that, we do not need the high fault
coverage that BCP offers (covering single and double arithmetic errors, and covering
all unidirectional errors). Also the area cost of Bose-Lin check prediction is reported
to be (prohibitively) high, but Mitra and McCluskey [67] do not mention how many
code-bits they utilized. However, since Gorsche et al. [73] reports that in a 16-bit adder,
with 2 Bose-Lin code bits (capable of detecting single arithmetic errors, and double
unidirectional errors), the area cost is significantly lower than when utilizing Berger
check prediction, Bose-Lin check prediction (with a limited number of code bits) might
be cheaper than hardware duplication. Implementation and analysis would be necessary
to provide us an answer, since it cannot be found in the literature. It is, however, highly
unlikely that Bose-Lin check prediction will ever be cheaper than parity prediction. After
all, unlike parity prediction, Bose-Lin check prediction is designed for detecting multiple
errors and requires at least two check bits. Because of the costs, Bose-Lin check prediction
is most likely not applicable for implementation in the ScAU. However, Bose-Lin check
prediction is without doubt an interesting code when we require a (slightly) higher error
coverage than parity prediction or modulo-3 checking. Since there is not much literature
available about Bose-Lin check prediction, and we only have limited time, future research
is desired to study the exact costs of Bose-Lin coding and make an accurate comparison
with other ED schemes (such as residue checking).

As discussed previously, RESO is superior to most (if not all) other ED-techniques
when we consider area cost, but the energy per operation more than doubles since we
need dual-cycle operations. Note, however, that only the AU, shifters, and comparator
need to be active in the second cycle, so the operand and result registers which consume
a significant portion of the total power consumption, can be clock-gated to prevent
switching activity. But even then, the expectations are that the energy per instruction
when utilizing RESO will exceed by far the energy per instruction when utilizing
single-cycle techniques such as parity prediction. Since we assign a higher weight to
power than to area savings (as discussed in chapter 1), the RESO technique is less
suitable. There is another reason why RESO is not suitable for implementation in the
ScAU. In normal mode, the ScAU performs one operation/cycle. When applying RESO,
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this would become one operation per two cycles. But in downscaled mode, when a AU
segment is damaged, we would have to switch to one operation per four cycles. So,
RESO complicates the design of the pipeline dramatically and, in case of errors, leads
to a throughput that is most likely unacceptably low.

6.14 Reference designs

Even though QMR and TMR schemes are too costly for implementation in a
micro-architecture with very low-power and low-area budgets, like the SiMS architecture,
the decision was made to implement these schemes anyway. The first reason for
that is because these schemes are very common and provide the comparison of other
ED/EC designs with more depth: by including these schemes we provide a much more
extensive comparison between different ED/EC schemes and we can actually prove that
the QMR and TMR schemes are not suitable when we have to cope with very small
power and area budgets. Second, by including these schemes as well, we provide a
more general comparison. The intentions are the same as with the adder study in
chapter 4. The results of this ED/EC study can be utilized by anyone who requires
a fault-tolerant arithmetic unit in their design. Another less obvious reason for the
QMR being implemented is because the original design can be optimized for lower power
consumption. As explained, the QMR contains two SCAs, both simultaneously active.
There is, however, no need for both SCAs to be active simultaneously. What we did
is modify the design in such a way that only one SCA is active at a time. When the
active SCA detects an error, this affected SCA is shut down and the non-active SCA is
activated. This modification will increase the area of the scheme, but we are interested
in the power savings. Note that this QMR scheme (we call it QMR-RAS; Redundant
Adder Shut down), is no longer an error-masking scheme. Since the failing component
is shut down, a new component is activated and the data path is reconfigured, this
scheme is now based on repair/reconfiguration. Further, the last and most important
reference design is the DAU-RAS, or Duplicated Arithmetic Unit. This design is built
by two AUs, each of them checked by a certain error-detection code. Also this scheme
is power-optimized (based on repair/reconfiguration): only one AU is active at a time
(therefore the naming RAS).

6.15 Parity Prediction vs. Modulo-3 checking

According to Mitra and McCluskey [67], modulo-3 is never economical unless the
operands are already provided with the modulo-3 check bits. This has to do with the
generation of the check bits: generating modulo-3 check bits (the residue) is considerably
more expensive than generating parity bits [67, 70]. According to Langdon and Tang [70]
themodulo-3 predictor is cheaper than the parity predictor, as long as the operands
are already provided with the check bits. The reason why modulo-3 checking can be
cheaper than parity prediction is because the modulo-3 checker itself is cheaper than
the parity checker; a modulo-3 adder to predict the residue of the result is significantly
cheaper than the circuit predicting the parity bit of the result [70].
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A closer look shows that Langdon and Tang [70] utilize a carry-lookahead adder and a
high-speed parity-prediction circuit. The high-speed parity-prediction circuit is employed
to avoid unnecessary delays by the ED [62]. Since the predicted parity is available
considerably later than the result, this affects the throughput of the adder. Ideally,
the result and the predicted parity should be available at the same time. High-speed
parity-prediction does, however, increase the costs of the ED scheme. Our primary
concerns are low-power consumption and low-area. If some delay has to be traded for
lower power and area usage, this will be tolerable (the SiMS architecture’s operating
frequency is relatively low, so we have enough time to perform relatively slow ED
operations, especially given the speed of modern CMOS technology). What is more,
high-speed parity prediction is not even applicable to RCAs, the type of adder we employ
in our AU. By omitting the employment of high-speed parity prediction, the costs of
modulo-3 checking will no longer be lower than those of parity prediction. Langdon and
Tang [70] do not explicitly mention this in their paper.

As mentioned before, generating the residues inside the AU is not efficient. This
implies that there must be use for the modulo-3 check bits for other error-checking
purposes in the architecture as well, apart from the AU. When an architecture contains
for example multiple adders/subtracters, a multiplier and a divider, modulo-3 checking
can perfectly be employed to check all these units. Modulo-3 checking can also be
employed to check data transfers and memories. Modulo-3 checking does, however, not
seem to be particularly interesting for our purpose: in the SiMS architecture we have
only one AU, and no multiplier or divider. Apart from the AU, the ALU contains also
an LU (logical unit), but modulo-3 checking is an arithmetic error-detection code and
cannot be employed for checking logical operations (as discussed in section 6.8.2). It
is possible to modify the AU including modulo-3 checker to check logical operations as
well, but this requires additional hardware. What is more, this approach makes it unable
to separate the AU and LU, which is undesirable if long sequences of logical operations
occur frequently (simulations of the SiMS architecture show that this is the case). On
top of that, checking memories and data transfers by parity prediction is more efficient
since we require only one parity bit per data word.

Thus, the following conclusion can be drawn: modulo-3 checking can be cheaper
than parity checking for larger, fast adders (provided that the check bits are already
present and that the architecture has use for the check bits in more cases than just the
adder, e.g. when also a multiplier is present in the architecture). But still, in most
situations parity checking is to be preferred over modulo-3 checking, when we consider
the two major drawbacks of the scheme mentioned in the previous paragraphs. For
this reason, a modulo-3 checked arithmetic unit is not implemented in this study. The
decision is made to implement a parity-prediction scheme, to compare the results with
the previously mentioned hardware replication techniques.

In general, if we desire a higher degree of error detection (higher than fault-secure for
single errors and 50% coverage of double errors), residue checking becomes interesting.
Note that area and power increases significantly when we increase the modulus (the
overhead scales linearly with the amount of check bits utilized). Particularly, for our
specific purpose (small-size adder/AU), the overhead of utilizing a larger modulus would
be dramatic. The QMR(-RAS) scheme would probably be a better (cheaper) approach,
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if a higher degree of error detection is desired.

6.16 Selection of parity-prediction scheme

There exist several parity-prediction schemes which are fault-secure for single errors. We
will discuss three of them. These three schemes are chosen since they appeared the most
promising in terms of low-power consumption, low-area, and reliability.

6.16.1 Duplicated-Carry Scheme

Any parity-prediction scheme for adders contains the following parts:

• Parity generators to produce the parities PA and PB of the operands (XOR-trees)

• Parity generator for the internal carries to produce PC

• Parity generator to produce the parity of the sum PS

• Predictor/comparator which requires PA, PB , and PC to predict PS and compare
it with the real PS , and signals an error when they do not match

As established earlier, carry errors always manifest as several errors of even
multiplicity. Therefore, the parity-prediction scheme normally would not be able to
detect these type of errors. Sellers et al. [62] proposed a parity-prediction scheme with
duplicated-carry circuits, as one of the first parity-prediction schemes which is fault-secure
for single errors (i.e. also capable of covering all carry errors).
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Figure 6.5: Parity checking with duplicated carries

When the carry circuit of every full-adder cell is duplicated, we are able to compare
the carry output of the full-adder cell and the duplicated-carry circuit. Since we aim for
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fault-secureness for single errors, only one carry circuit is assumed to be erroneous at
a time. If we feed these compare signals to the checker, we are now able to detect this
single carry error since the maximum number of detected carry circuit errors is one, and
thus odd. Sellers called this scheme ”Duplicate carry with parity check I”. The actual
comparison between the ’normal’ carries and duplicated carries can be avoided to simplify
the scheme. It is sufficient to generate PC based on the duplicated carries (instead of the
normal ones) to achieve the fault-secure property, since the total number of errors in the
sum plus the total number of errors in the duplicated carries will always be odd in case
of a carry error. The reason for this is that the corresponding duplicated-carry circuit of
the normal carry circuit, which contains the fault, does not produce an erroneous result.
This means that the total amount of carry errors in the duplicated carries contains always
one error less than in the normal carries. This scheme is called ”Duplicate carry with
parity check II”. The duplicate carry with parity check II scheme is depicted in figure
6.5. Note that the PA/PB parity generators are omitted in this figure. The ODD circuit
is the checker, PS , and PC generator all in one. The design is nothing more than an
n-input XOR. If the number of ones at the inputs is even, the output is zero, otherwise
it is one.

6.16.2 Carry-Dependent Sum Adder Scheme�� ���� �� ��������

����
Figure 6.6: The carry-dependent sum (full-)adder [80]

The parity-prediction scheme based on the carry-dependent sum adder (CDSA)
was proposed by Hsiao and Sellers [80, 62]. The most elementary distinction with
the previous scheme is that the carry circuits are not duplicated. As explained in
section 6.4, if an error in cn causes an error in cn+q, then cn also causes an error in
cn+1, cn+2, ..., cn+q−1. All carry errors lead to (successive) erroneous sum results as well:
the results sn+1, ..., sn+q+1 are in error too. Since carry errors always cause an even
number of errors (which makes them undetectable), in the CDSA scheme the full-adder
cells are modified in such a way that this is no longer the case. The idea is to make sure
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that when the error occurs in cn, also sn is in error. If that can be done, sn, ..., sn+q+1 is
in error, having one error more than before, turning the total amount of sum and carry
errors into an odd number. This is what the carry-dependent sum (full-)adder does.
As the name suggests, the sum is dependent on the carry. If the carry is affected by a
fault, so is the sum. A carry-dependent sum full-adder cell is depicted in figure 6.6. The
checker can be implemented by a simple ODD circuit:

error = PA ⊕ PB ⊕ PC ⊕ PS

6.16.3 Nicolaidis’s Scheme

Nicolaidis [65] proposed a new carry-checking/parity-prediction scheme. It is based on
the duplicated-carry scheme but has been optimized in several ways. This scheme is
the only parity-prediction scheme discussed in this thesis where a large portion of the
prediction/checking logic (PC generator and the the carry-checker) meets the TSC goal
as well. The reliability of this scheme is, therefore, higher than the previous ones. The
scheme is a combination of double-rail checking of the carries and parity prediction for
the outputs. Normally, double-rail checking results in high overheads, but there are three
hardware reduction techniques applied to limit the costs. First, the double-rail checker
and the carry parity generator collapse into a single block. Second, the scheme avoids
duplicating complex blocks, such as the carry-lookahead or carry-skip block required for
performing carry checking. Third, some hardware can be saved by employing partial
carry duplication, instead of duplicating the carry circuitries entirely (by sharing some
logic between the normal and duplicated-carry circuits). The primary function of the
double-rail checker is to check the normal carries with the (partially) duplicated carries.
Both the (inverted) normal carry and the duplicated carry are provided to the double-rail
checker. Note that the individual comparison of the normal and duplicated carry per
bit-slice can be omitted, as explained in section 6.16.1. Nicolaidis decided to choose this
approach because it enables the implementation of a double-rail checker which increases
the reliability of the checking logic. The reason why the double-rail checker and the parity
generator can be merged is because double-rail checkers have a one-to-one correspondence
with parity trees: they can be seen as parity generators with double-rail in- and outputs.
Thus, apart from checking the carries, the double-rail checker immediately provides Pc
as well, with no need for extra hardware. Since double-rail checkers are self-testing, the
PC predictor meets the TSC goal. Note that this is the only known parity-prediction
scheme which meets this property. Even though the costs of this scheme are said to
be low, we have sufficient reasons to believe that the costs of this scheme will not be
any cheaper than the costs of the duplicated-carry and CDSA schemes. More likely,
the costs will be higher. One of the hardware reduction techniques (the second one) is
not applicable in our situation, since we work with simple RCAs, not with fast adders
such as CLAs. It is true that the carry checker and carry generator are collapsed into
one double-rail checker and that carry circuits are only partially duplicated, but still,
double-rail checkers have much higher overheads than normal parity generators (area of
a double-rail checker cell vs. area of a XOR-gate = 18 vs. 11 logic units, according to
the UMC 90nm databook). Ultimately, implementation, synthesis and analysis of this
scheme would be required to make an accurate comparison with the previously discussed
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parity-prediction techniques and to draw a conclusion based on hard evidence. Because
of limited time, we omitted this work and we mark it for future research.

6.16.4 Final choice

The final choice between the duplicated-carry and CDSA scheme will be based on costs,
since the fault coverage of both schemes is equal. In the CDSA scheme, the full-adder
cells are more complex, but the carry circuits are no longer duplicated. However, it is to
be expected that the costs of the CDSA are lower but in the literature no comparison
between the two parity schemes could be found. Therefore, in the next section both
schemes are implemented, synthesized and analyzed. Our assumptions turn out to be
correct. It is the CDSA scheme that is chosen for implementation in the ScAU.

The TSC property of the parity-prediction scheme of Nicolaidis provides, however,
a significant advantage in reliability, so ultimately the scheme of Nicolaidis might be a
better choice, provided that the costs of the scheme are acceptable. Since the exact costs
of this scheme are unknown, this is a topic for future research.

Note that for implementations of the ScAU in other architectures than the SiMS
micro-architecture, another error-detection scheme might be more suitable, for example
with a higher fault coverage. We believe, however, that this study provided sufficient
information about various error-detection techniques for any designer to make a
well-considered choice.

6.17 Implementation of ED/EC in ScAU and reference

designs

In this section will be explained how the ED/EC scheme we selected in the previous
sections are implemented in the ScAU and in the most important reference design; the
DAU-RAS. Also the implementation of the other reference designs (the TMR, QMR,
and QMR-RAS) will be discussed. An important aspect of this chapter is that we no
longer focus on plain adders, but on arithmetic units: units capable of both addition and
subtraction. Also, the computation of the zero and overflow signals is part of the AU’s
task.

6.17.1 Subtraction

So far, the error detection of binary addition has been discussed. Obviously, an arithmetic
unit is also capable of subtracting numbers so it is a legitimate question whether the
error-detection methods described are capable of checking subtractions as well. First
of all, subtraction is no different than addition, except from the fact that operand B
needs to be negated. In our case all numbers are in 2’s complement representation.
Negating an operand thus requires a 1’s complementation and an addition of a binary ’1’.
Chapter 5 discussed subtraction in detail. What matters here, is what the impact of the
complementer is on the error-detection scheme. When the operand has an even number
of bits, the complementation will not change the parity of the operand. However, every
single error in the complementer will change the parity. Then, the operand enters the
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Figure 6.7: The TMR scheme with word-voter [81]

adder with a parity bit that does not match, thus results in a detected error. Obviously,
a double error (in fact, all errors with an even multiplicity) in the complementer will
remain undetected, but this is also true for 50% of all double errors in the adder itself.
The conclusion is that none of the error-detection schemes designed for checking adders
needs to be modified for handling subtractions as well.

6.17.2 The TMR

The TMR is implemented by the word-voter scheme proposed by Mitra and
McCluskey [81], which is depicted in figure 6.7 (note that this is a two-bit TMR).
The fundamental difference with regular TMR schemes is the error output of the
voter. Regular voters mask erroneous outputs originating from one adder. But if two
or all three adders produce errors (multiple errors/ common-mode errors), the TMR
scheme does not signal this (it is simply unaware), creating a situation where erroneous
computations pass the ED freely. The word-voter is an entirely different approach.
Instead of voting the results bit-by-bit, the results are first —as a word— compared by
three comparators as depicted in figure 6.8. All possible combinations (X,Y), (X,Z),
and (Y,Z) are compared. If adder X, Y, and Z all produce different results, either
two or all three adders are damaged. In that case, the error signal is ’1’. As long as
two adders produce identical results, error=’0’. It is obvious that the addition of the
comparators increases the hardware cost of the voter significantly. On the right side
in the figure the voting logic is depicted. Thanks to the comparators, the voting logic
can be simpler than in regular voters. In regular voters the result at bit position ’n’ is:
Rn = Rn,x ·Rn,y+Rn,y ·Rn,z+Rn,x·Rn,y. But since we already know whether the word Rx

is equal to the word Rz (γ = Rx ·Rz), we can simplify the logic to Rn = γ ·Rn,x+γ ·Rn,y.

6.17.3 The QMR and QMR-RAS

Implementation of the QMR is very simple. The figure of the DAU (Duplicated
Arithmetic Unit) in chapter 5 (figure 5.3) is essentially the basis of the design. Instead of
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Figure 6.8: Implementation of the word-voter with error output [81]

two AUs we placed two SCAs: each containing 2 AUs and a comparator. In the standard
case the left SCA is active. The moment the comparator signals an error, the input of
the multiplexer selects the output of the right SCA. If the error is temporary, the left
SCA takes over again. Finally, there is a fail signal which is asserted when both SCAs
are in error.

The design of the QMR-RAS (the power-optimized version of the QMR, where only
one self-checking adder is active at a time) is similar, with the difference that the inputs
of the SCAs are input-gated by tri-state buffers. If an error occurs, the occurrence is
stored in a register and at the next rising clock edge the erroneous SCA is disabled and
the backup SCA is activated. So, in case of an error, the QMR-RAS produces no useful
result for a single cycle, before the other SCA takes over. The pipeline will have to build
in a repetition cycle to be able to obtain the correct result of the operation that was
corrupted earlier (the same operands have to be applied again). Even if the error was
temporary, the scheme will never switch back to the left SCA. The reason for this is as
follows: if the error is an intermittent one, occurring frequently, the pipeline would have
to build in repetition cycles continuously, compromising the throughput severely. Also,
here a fail signal is present. If the right SCA reports an error as well, the fail signal is
asserted. The right SCA remains always active, so in the case the error was temporary,
we might be able to continue with the operations.

6.17.4 The PC-DAU-RAS

The PC-DAU-RAS is a version of the DAU-RAS (the DAU-RAS, or power-optimized
duplicated AU was explained in chapter 5, sections 5.4 and 5.5.2), where both AUs
are equipped with parity prediction. An error-correction scheme is implemented which
transfers the computation to the other AU when an error is detected. Again we refer to
the DAU in figure 5.3. All adder inputs are tri-state buffered, except for the add/sub
signal. The reasoning was that the addition of extra tri-state buffers (which are expensive
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devices as we established earlier), would do more harm than good. Without a tri-state
buffer, some switching activity in the first full-adder of a disabled adder is then inevitable,
but manual (pen-and-paper) calculations showed that the power consumption of two
tri-state buffers (one pass, one closed) would exceed this switching power. Ultimately,
we decided to implement the tri-states anyway and found that our initial assumption
was wrong. A small reduction in power could be achieved, obviously at the expense of
some additional area. However, the power and area differences are small and because
of limited time we decided not to re-synthesize the all the results (for different adder
widths, technologies, clock frequencies, etc.) in chapter 5. We assume that the parity
bits of the operands are generated at an early stage in the pipeline (thus, not in the AU
itself), since the parity bits can be utilized for several error-checking purposes of other
components in the architecture as well. Therefore, the parity bit generation circuits are
not part of the ED/EC scheme, which saves already a significant amount of power and
area. The left AU is active as long as no error is detected by the parity-prediction
scheme. If an error is detected, the occurrence is stored, and on the next rising
clock edge the erroneous AU is disabled and the backup adder is enabled. Now, the
calculations can proceed. Note that also here we require a repetition cycle. For the
PC-DAU-RAS we both implemented the parity-prediction scheme based on the CDSA
and the duplicated-carry scheme, in order to compare the two parity prediction schemes
based on power consumption, area, and delay. Based on these results, the cheapest parity
prediction scheme is chosen for implementation in the ScAU, as explained in section
6.16.4. The internal circuitry of the 16-bit parity-checked AUs can be compared with
the 8-bit parity-checked AU-segments (CDSA scheme) depicted in figure 6.11. When the
duplicated parity scheme is implemented, the implementation simply changes according
to figure 6.5. Note that, in the latter case, regular full-adder cells are utilized.

6.17.5 The PC-ScAU

The PC-ScAU is a version of the ScAU (the implementation of the ScAU was explained
in chapter 5, section 5.3 and 5.5.2), where both AU segments are equipped with parity
prediction. An error-correction scheme is implemented which disables the damaged
AU segment if an error is detected, downscales the structure, and proceeds with the
computation with the remaining AU segment. Since in normal operation both adder
segments are active, there is no need for tri-state buffering the add/sub signal. Adding
tri-state buffers here would decrease the power consumption in downscaled mode, but
slightly increase it in normal mode. That is certainly not what we want as it would
make the the difference in power between the ScAU and the DAU-RAS slightly larger
than presented in the results of chapter 5, in in favor of the DAU-RAS. We assume
that the parity bits are generated at an early stage in the pipeline, like we did for the
PC-DAU-RAS. In section 6.13 we already mentioned the problem with the parity bits
in the PC-ScAU. Parity bits generated for 16-bit operands are useless when we decide
to check the upper and lower byte independently. So, either we must generate two check
digits per operand (one of the lower order byte and one of the higher order byte: Plow

and Phigh), or we must derive the Plow and Phigh from the 16-bit check digit P . For the
first option (the so-called split-parity), we generate Plow and Phigh early in the pipeline,
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which means that each pipeline register must have room for two parity bits instead of
one. Parity checkers in the architecture which need the parity of the full 16-bit operand
P , can easily compute it by exclusive-oring Plow and Phigh. Obviously, this results in
additional overhead. The second option, where we derive Plow and Phigh from P , would
require an eight-bit parity generator to generate Plow. Then, Phigh can be computed
by exclusive-oring P and Plow. Also here we have additional overhead, however we save
three (two at the input, one at the output) flip-flops in the design (since the pipeline
registers are incorporated in the PC-ScAU design). Implementation and synthesis of
both options showed that option two is slightly more expensive in terms of power (0.8%)
and area (3.7%), from the arithmetic unit’s point of view. Therefore, we decided to
implement option one. However, from the point of view of the overall pipeline option 1
is more expensive. Since the SiMS architecture is very minimalistic and has only a small
number of pipeline stages, the overhead due to the extra flip-flop in the pipeline registers
will most likely be marginally. We require, however, some future research in order to
determine the exact impact on the costs of the pipeline.

The schematics of the design of the PC-ScAU are depicted in figure 6.9. All
components related to ED/EC are displayed in green. The split-parity bits at the inputs
are fed to multiplexers. In case a segment is shut down, the parity bits can be rerouted
this way. Pr,h and Pr,l represent the split-parity bits of the result. The FSM of the
EC-controller (error-correcting controller) is depicted in figure 6.10. The main task
of the EC-controller is to reconfigure (downscale) the PC-ScAU when it receives an
error notification from one of the parity checkers and (2) signal the cycle-controller
(which keeps track of the current cycle) on if and how the ScAU is reconfigured. Both
the EC-controller and the cycle-controller provide all the control signals for the various
multiplexers, tri-state buffers, etc. in the design. The FSM of the cycle-controller is
identical to the one depicted in chapter 5 (figure 5.4). The internal circuitry of the 8-bit
parity-checked segments is depicted in figure 6.11. Px and Py represent the input parity
bits, Pz the output parity. Note that the checker is essentially no different than the
parity generators (generating Pz and Pc): those are all ODD-circuits (XOR-trees).

6.17.6 Synthesis results

After crafting all designs in VHDL, they are synthesized and analyzed for area, power,
and delay at a clock frequency of 20MHz, which turned out to be the optimal frequency
for the ScAU in chapter 5 and a realistic system frequency for the SiMS architecture.
The results can be observed in table 6.1 and figures 6.12, 6.13, and 6.14. Also the
power-area, area-delay, and power-delay-area products are depicted, in figure 6.15. The
PC’-DAU-RAS represents the parity-checked duplicated adder based on duplicated
carries. The PC-DAU-RAS represents the same structure, but now checked by parity
prediction based on the CDSA. The PC-ScAU is also checked by parity prediction based
on the CDSA. The abbreviations ’nm’ and ’dm’ represent the characteristics of the
PC-ScAU in normal and downscaled mode, respectively.

It is immediately clear that the QMR and TMR schemes perform far worse than
the others when we consider the costs. These schemes are, however, the fastest. The
QMR-RAS, optimized for power, does indeed result in significant power savings (22%).
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Figure 6.10: FSM of the EC-controller

ED/EC scheme Area Total Power Dynamic Power Leakage Power Delay

[units] [µW] [µW] [µW] [ns]

TMR 3380 51.48 47.88 3.60 3.67
QMR 3842 58.76 54.38 4.38 3.34
QMR-RAS 4308 45.88 40.97 4.91 3.73
PC’-DAU-RAS 3615 40.02 36.10 3.92 4.26
PC-DAU-RAS 3435 37.88 34.18 3.70 4.75
PC-ScAU (nm) 2884 40.64 34.47 3.17 4.18
PC-ScAU (dm) 2884 29.22 26.00 3.22 <4.18

Table 6.1: Synthesis results of AU with different ED/EC schemes

This makes the scheme, in terms of power, even more attractive than the TMR. The
area cost is, however, quite dramatic (12.1% higher than that of the standard QMR,
which already had a very high area cost). But in an environment where there is a
need for detecting multiple errors at a relatively low-power cost, the QMR-RAS is a
suitable candidate, as long as the high area cost is not a problem. In architectures
where we currently focus on, with both power and area budgets being very limited, the
QMR-RAS is obviously not an option. Thus, we prove here that we have to resort to
error-detection codes when area budgets are very tight, since all all ED-schemes based
on full hardware replication result in high area costs.
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Figure 6.11: The parity-checked AU (CDSA scheme)

Area

3380

3842

4308

3615
3435

2884

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

TMR QMR QMR-RAS PC'-DAU-
RAS

PC-DAU-
RAS

PC-ScAU

u
n

it
s

Figure 6.12: The area requirements of the AU with different ED/EC schemes

Synthesis provides us the information we expected: the parity-prediction scheme
based on the CDSA is cheaper than that based on duplicated carries. The CDSA
scheme requires 5.0% less area and 5.3% less power. This is the reason why we have
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Figure 6.14: The delay of the AU with different ED/EC schemes

implemented the CDSA scheme in the ScAU. The PC-DAU-RAS (the implementation
with the CDSA scheme) does, however, have a longer delay than the implementation
with the duplicated-carry scheme (PC’-DAU-RAS). This is because the carry-dependent
full-adders are more complex and, consequently, slightly slower.

What is remarkable, is the delay of the PC-ScAU. It is lower than that of the
PC-DAU-RAS, while in chapter 5, this was (without ED/EC) exactly the other way
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Figure 6.15: The PA, AD, and PDA product of the AU with different ED/EC schemes

around. There are two different causes that explain this. First, the path through the
ED logic is shorter in the PC-ScAU, than it is in the PC-DAU-RAS. The critical path
goes through the first 8-bit adder segment, then —via the carry-out, connecting logic,
and carry-in— through the 8-bit second adder segment, and finally through the 8-bit
parity tree of the sum of the second adder segment. In the PC-DAU-RAS, the critical
path goes through the 16-bit adder and then through the 16-bit parity tree of the sum.
Obviously, an 8-bit parity tree is faster than a 16-bit version. Second, the critical path
of the PC-DAU-RAS was altered by adding the tri-state buffers as input-gating for the
add/sub signal. The adder and complementer cannot perform any useful computations
until the add/sub signal has arrived. Since there is a tri-state buffer present in this
path that is controlled by the EC-controller, this path is somewhat lengthened. Thus
to summarize, the critical path of the PC-ScAU was not lengthened to the same extend
as the PC-DAU-RAS by the ED logic, and the critical path of the PC-DAU-RAS has
become longer due to the input gating of the add/sub signal.

Unfortunately, we have to establish that the PC-ScAU performs slightly worse in
terms of power than the PC-DAU-RAS. In chapter 5 we concluded that the power
consumption of the ScAU and DAU (without ED/EC) was more or less the same
at a clock frequency of 20 MHz. The reason why the PC-ScAU has a higher
power consumption than the PC-DAU-RAS is because of the additional multiplexers
(multiplexing the split-parity bits), the additional split-parity bit registers, and the added
EC-controller in the PC-ScAU. The required area of the PC-ScAU is remarkably low.
Of all ED/EC implementations it requires, by far, the least amount of area. So, even
though the PC-ScAU performs slightly worse in terms of power than the PC-DAU-RAS,
the significant area savings makes the PC-ScAU the design with the lowest PDA and PA
product, as depicted in 6.15. It also has the lowest AD product of all AUs with EC/ED.
We present a qualitative overview of the fault-tolerant AUs we have implemented and
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studied in this chapter in table 6.21.

ED/EC scheme Area Latency/ FT Momentary Energy/
operation Power operation

TMR �/+ + ++ – –
QMR – ++ ++ – – – –
QMR-RAS – – + ++ � �

PC-DAU-RAS �/+ – � ++ ++
PC-ScAU (nm) ++ � –/� + +
PC-ScAU (dm) ++ – – –/� ++ – –

Table 6.2: Qualitative comparison between different ED/EC schemes

In figure 6.15, all objectives (power, area, and delay) have an equal weight. In chapter
1, we established that power savings are of greater significance than area savings. To
which extend, we do not know yet. Therefore we assigned various weights to the power
consumption in the PA product, as can be observed in table 6.3. For assigning additional
weight to power, we utilize exponentiation. We explore the effect on the PA product
if we assign additional weight, and try to find the twist point where the PC-ScAU
is no longer advantageous over the PC-DAU-RAS. The table shows that the PC-ScAU
is beneficial according to the PA metric if we utilize an exponent up to 2 (lowest PA
products are displayed in boldface in the table). In table 6.4, the PDA product can be
observed with different weights assigned to power and delay. Since we care much more
about power and area than we do about delay, it is fair to assign smaller weights to
delay. Again we seek the twist point, until where the PC-ScAU is beneficial. Only when
power is raised to the fourth power, and delay is square rooted, the ScAU is no longer
advantageous over the PC-DAU-RAS in terms of the PDA-product.

AU PA P2A P3A P4A
x105 x106 x108 x1010

TMR 1.74 8.96 4.61 2.37
QMR 2.26 13.27 7.79 4.58
QMR-RAS 1.98 9.07 4.16 1.91
PC’-DAU-RAS 1.45 5.79 2.32 0.93
PC-DAU-RAS 1.30 4.93 1.87 0.71
PC-ScAU 1.17 4.76 1.94 0.79

Table 6.3: Custom metrics based on the PA product with different weights assigned to
power

6.17.7 Scalable structure destroys fault-secureness property

As mentioned before, the parity scheme that is utilized for the ScAU is fault-secure
for single errors. This means that the two separate 8-bit adders inside the ScAU are

1Meaning of the indicators: ++ represents the best, + a good, � a moderate, – a relatively poor, and
– – the least attractive implementation according to the criteria involved.
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AU PDA P2DA P4DA PD
1

2A P2D
1

2A P4D
1

2A
x105 x107 x1010 x105 x107 x1010

TMR 6.39 3.29 8.71 3.33 1.72 4.55
QMR 7.54 4.43 15.13 4.13 2.42 8.37
QMR-RAS 7.37 3.38 7.12 3.82 1.75 3.69
PC’-DAU-RAS 6.16 2.47 3.95 2.99 1.19 1.91
PC-DAU-RAS 6.18 2.34 3.36 2.84 1.07 1.54
PC-ScAU 4.90 1.99 3.29 2.40 0.97 1.61

Table 6.4: Custom metrics based on the PDA product with different weights assigned to
power and delay

fault-secure for single errors. Nevertheless, the two 8-bit adders connected together by
the required logic for the scalability feature, which forms the 16-bit scalable adder, is
not fault-secure for single errors as we found out during the design of the PC-ScAU.
This is caused by a small number of so-called ’weak spots’ in the error detection: logic
parts along the data path that are not checked for errors. The parity-prediction scheme
assumes that the carry input of the adders is correct. However, the carry input (which is
the add/subtract signal) is not connected directly to the carry inputs of both 8-bit adders.
Because of the scalable nature of the scheme, the carry-inputs have some multiplexers
and latches attached to these inputs. When, for example, a stuck-at fault occurs at
the output of such a multiplexer or latch, the carry input is erroneous and also the
computation is erroneous, which is not detected by the ED scheme. There are two
methods to overcome this problem:

1. Since the self-testing property of the 16-bit adder is not compromised by
the additional logic, an error is by definition still detectable. In the SiMS
micro-architecture there is sufficient time to self-test the arithmetic unit on a
regular basis with a predetermined set of test vectors to test the entire ScAU
for errors.

2. The logic components that are not covered by the parity-prediction scheme can
be duplicated and the outputs can, e.g. , be compared with a simple XOR gate.
The outputs of the XOR gates can be considered as additional error signals, which
should be logically added to the existing error signal. Obviously, this comes at a
(small) price. It is estimated that area will increase by 60 units (2.1%) and power
by 0.5 µW (1.2%), but accurate estimations are difficult to make. By implementing
this method, we are able to achieve the fault-secure property for single errors of
the 16-bit ScAU.

Which option is viable ultimately depends on the demands of the application and the
exact power/area budgets. If an incorrect result is intolerable at all times, option two
is the only legitimate option (if higher cost is allowed), since option one might pass
incorrect results in between self-tests.

We decided to opt for method 1. The reason for this is that the unchecked logic
that forms the ’weak spots’ in the ED is only a very small fraction of the total amount
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of logic. Statistically considered, the chance that an error occurs in these parts of the
hardware is very small. Further, an additional increase in power consumption of the
PC-ScAU would be highly undesirable: an additional 0.5 µW increases the gap in power
consumption between the PC-DAU-RAS and the PC-ScAU even further.

6.17.8 Some notes regarding the power consumption of the PC-ScAU

As we have shown before, the PC-ScAU is capable of significant area (and delay) savings
when compared to the PC-DAU-RAS. Even though the difference is very small, the
higher power consumption of the PC-ScAU, however, is a disadvantage in comparison
with the PC-DAU-RAS. There are, however, situations (some of them targeting other
architectures than SiMS ), where this disadvantage can possibly be eliminated, for
example:

1. When the adder is wider, e.g. 32 bits. While the adder itself scales linearly with the
word-size, the largest part of the control logic of the PC-ScAU (overhead) remains
constant. Thus, the overhead of the PC-ScAU becomes a less significant portion
of the total (as discussed in chapter 5).

2. When the adder needs to operate at high frequencies/when a high throughput is
desired. Then, we would have to pick a faster adder (e.g. the CLA). Since fast
adders are larger and consume more power, the overhead of the ScAU becomes a
less significant portion of the total (as discussed in chapter 5). Note, that with
modern technologies, we are talking about hundreds of MHz, more than a tenfold
of the clock frequency we require in the SiMS architecture.

3. The power numbers we obtained of the PC-ScAU and the PC-DAU-RAS are close.
It is very well possible that, even though the duplicated adder is the winner in
terms of power in the technology we utilized (UMC 90nm SP), this does not hold
true for another technology. One should note that the size of the PC-ScAU is
considerably smaller than that of the PC-DAU-RAS. In 90nm technology, static
power is only a relatively small portion of the total power consumption. However,
if we decide to employ the newest technologies, like 45nm CMOS, it is possible that
the impact of the static power becomes so large, that the PC-ScAU utilizes the
least amount of power after all, simply because it is a smaller design and, therefore,
has a smaller leakage power component.

4. Again, because the post-synthesis power numbers we obtained of the PC-ScAU
and the PC-DAU-RAS are so close, there might be some deviation in the final
result after place and routing. Synopsys PrimeTime-PX can give good estimates
on power consumption, but ultimately, we will only know the real results after
layout (utilizing e.g. Cadence Encounter). It is possible that the differences in
power consumption become even smaller, with a small chance that in the end the
ScAU might be the winner in power consumption after all. However, the difference
in power could as well grow larger. There is no way to predict this. What we do
know is that we do not expect large differences between pre-layout and post-layout
results (based on the study in chapter 5).
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6.17.9 Adding error detection for zero and overflow signals

As an optional part in this thesis work, we decided to investigate what the impact on the
area and power results is, if we implement ED/EC for the zero and overflow computation
inside the arithmetic unit as well. Error detection of zero/overflow signals in AUs is
crucial according to Townsend et al. [68]. For example, the zero and overflow signals
are utilized by the Compare Unit in the ALU, which enables so-called ’test-and-set’
instructions in order to compare operands A and B, such as SEQ (set if equal), SNE (set
if not equal), SGT (set if A greater than B), SLT (set if A less than B), etc. We have only
studied the impact of error checking in zero/overflow signals for those ED/EC schemes
which are the most interesting for implementation in the SiMS micro-architecture in
terms of costs.

First, we analyze the PC’-DAU-RAS (duplicated-carry scheme). If we have another
look at figure 6.5, we can see the leftmost duplicated-carry circuit is not utilized
by the checker. Thus, the synthesizer will optimize this block, which means it will
normally remove the block. However, if we want to check the overflow computation, this
duplicated-carry signal is vital. The overflow signal ovfl = cn ⊕ cn−1, where cn is the
carry-out and cn−1 is the last internal carry. Before we can check the overflow signal,
we must be sure that the inputs are correct. The last internal carry is always correct:
this is already checked by the parity-prediction scheme. The carry-out signal can easily
be checked by comparing cn, with cn,dupl, with a simple XOR-gate. Then, we only have
to add this error signal to the existing error signal by an OR-gate. It is inefficient to
actually check the overflow signal itself, since it is computed by a single XOR-gate. So,
to be correct, we check the carry-out signal for errors, not the overflow signal.

In the PC-DAU-RAS and PC-ScAU (CDSA scheme), the situation is different. We do
not have duplicated-carry circuits, so we cannot compare the carry output with anything
in order to see if the signal is correct. Fortunately, we do not have to. Since the carry is
dependent on the sum, and since the parity-prediction scheme checks the last sum bit,
then the carry-out bit is checked indirectly as well. In other words, we do not need to
check anything here: cn and cn−1 are both checked by the parity-prediction scheme. The
zero signal can be checked for errors in a straightforward way in all three designs: the
zero-generator is duplicated and the outputs are compared. The additional error signal
is added to the existing error signal by an OR-gate.

In table 6.5 the hardware overhead and power/area overhead as a result of ED in
zero/overflow signals can be observed. Note that two components of each type are
required, since the PC-DAU-RAS/PC’-DAU-RAS and the PC-ScAU have two separate
AUs or AU segments including error detection. The area and power costs of the
PC’-DAU-RAS are higher than that of the PC-DAU-RAS, which is obvious since we
check the carry-out signal for errors in the PC’-DAU-RAS and in the PC-DAU-RAS we
do not. This is another reason why the CDSA scheme is superior to the duplicated-carry
scheme. The area overhead of the PC-ScAU is significantly lower than the PC-DAU-RAS.
This is because the ScAU has two 8-bit AU segments, while the PC-DAU-RAS has two
16-bit AUs. The power overhead is however significantly higher because both segments
in the PC-ScAU are always active (in normal mode), while the PC-DAU-RAS has only
one AU active at a time. If only one AU is active, then only one ED-scheme is also active,
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ED/EC scheme PC’-DAU-RAS PC-DAU-RAS PC-ScAU

Required hardware 2 x XOR2 2 x XOR2 2 x XOR2
zero checking 2 x 16-bit zero- 2 x OR2 2 x OR2

generator 2 x 16-bit zero- 2 x 8-bit zero-
2 x OR2 generator generator

Required hardware 2 x duplicated carry
overflow checking 2 x XOR2

2 x OR2

Total area cost [units] 138 108 61
Total power cost [µW] 0.72 0.47 0.73

Table 6.5: Area and power overheads when error checking zero/overflow signals

ED/EC scheme Area Total Power Delay

[units] [µW] [ns]

PC’-DAU-RAS 3753 40.74 4.35
PC-DAU-RAS 3543 38.35 4.79
PC-ScAU (nm) 2945 41.37 4.23
PC-ScAU (dm) 2945 29.56 <4.23

Table 6.6: Synthesis results of AU with different ED/EC schemes, including ED of
zero/overflow signal

and the other one is disabled. Table 6.6 is analogous to table 6.1, only here the results
represent the version of the PC-ScAU including the ED of the zero/overflow signals.

6.18 Conclusions

In this chapter we focused on fault-tolerant design. Sources and different types of
errors are discussed, as well as the most important terminology that is employed in
fault-tolerant design. The concept of Boolean difference is introduced, which is an
important tool to investigate and prove if, and under which circumstances, certain errors
at the input of a system will result in erroneous outputs. Errors in adders appear to
be different in nature than in any other type of logic structure, since single faults can
result in arbitrarily long bursts of sum and carry errors. Several error-detection schemes
are presented, such as hardware duplication, various error-detection codes, and
a scheme based on time redundancy (RESO) instead of hardware redundancy. By
definition, adders are TSC circuits. That does not hold true for prediction circuits and
checkers. It requires special attention to design these components to meet the TSC
property. But when they do, the reliability of the entire design (adder plus ED) is
significantly enhanced.

Error detection is important, but does not make a circuit fault-tolerant on its own.
Therefore, we need to be able to recover from errors as well. There are two types of
error correction: masking and online repair/reconfiguration. The QMR and TMR
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are examples of error masking, since an erroneous adder is not disabled or replaced. The
DAU-RAS is an example of online repair. The erroneous adder is disabled and another
adder is activated. In this thesis we have not explored error-correcting codes. In the
general case, ECCs are (disproportionally) expensive, especially for tiny architectures
as the ones we are interested in. However, we are well-aware that there may be certain
error-correcting schemes that are cheaper in terms of power and area than some of our
more expensive reference designs. We consider this as a direction for future work.

We have discussed what the minimal fault coverage of the ScAU should be in the
SiMS micro-architecture. Even though we desire a very high reliability, we are forced to
limit the fault coverage because of the low-power and low-area budgets. The decision has
been made to choose an ED scheme which is fault-secure for single errors. We believe
this is justifiable, if and only if, the ScAU (in fact, the entire ALU) is self-tested on a
regular basis by a predetermined set of test vectors which ensures a higher fault coverage
than single errors alone. The regular self-tests are to be planned by the designers of the
SiMS architecture anyway, since the ALU will not be utilized continuously. The ALU
can be employed for self-tests whenever it is idle (i.e. no meaningful computations are
required from it).

Hardware duplication leads to excellent FT results, but incurs high costs. The area
and power costs of RESO are low, but the energy consumption per instruction is quite
dramatic. Therefore, we resort to ED codes. Berger check prediction has a high fault
coverage, is designed for covering multiple errors and indications in the literature suggest
very high costs. Bose-Lin check prediction is also designed for covering multiple errors
but the error coverage can be adjusted by choosing the number of check bits. Even
though Bose-Lin check prediction will have lower costs than Berger check prediction,
indications can be found that also this ED scheme is not cheap in terms of power and
area. This leaves only parity prediction and residue checking behind. After a thorough
study we learned that residue checking is not efficient for RCAs with a modulus of 3.

The QMR and TMR schemes have high costs and are not suitable for implementation
in the ScAU. However, they are implemented with regular AUs, in order to present a more
general comparison which might be useful to a broad audience. Also, the QMR has been
optimized for power by having only one SCA active at a time (QMR-RAS). The TMR is
implemented with a word-voter, which enables the detection of multiple AUs being in
error. Further, the DAU-RAS has been implemented with two different types of parity
prediction, in order to find out which one is the cheapest in terms of power consumption
and area. For the implementation of a parity-prediction scheme in the ScAU, we had to
overcome an obstacle: since the adder segments have their own separate ED, the parity
bits based on the 16-bit operands can not be utilized in a straightforward manner. The
best way to cope with this is to provide the operands with two parity bits: one per
byte, or so-called split-parity. All previously mentioned designs are synthesized and
analyzed for power consumption, area, and delay, at a clock frequency of 20MHz.

The QMR has the highest power consumption, followed by the TMR. The QMR-RAS
does display significant power savings in comparison with the conventional QMR (-22%),
resulting in a power consumption that is even much lower than that of the TMR,
but the area requirements are dramatic. However, the QMR-RAS is suitable for a
low-power/power-aware architecture which demands a very high error-coverage and has
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no tight area budget.
We have shown that the PC-DAU-RAS equipped with a parity-prediction scheme

based on the carry-dependent sum adder is cheaper in terms of area (-5.0%) and power
(-5.3%) with respect to the scheme based on duplicated carries (PC’-DAU-RAS). The
delay of the latter is, however, shorter (-10.3%). The PC-ScAU is —due to these
results— equipped with the parity-prediction scheme based on the carry-dependent sum
adder. Unfortunately, the PC-ScAU appears to have a slightly higher power consumption
(+7.3%) than the PC-DAU-RAS (in contrast with the results in chapter 5, which were
about equal at 20 MHz). This is caused by the more complex ED/EC logic required
in the scalable structure. The area savings of the PC-ScAU are significant : -16%
compared to the PC-DAU-RAS. Also the delay is shorter (-12%). The PA product of
the PC-ScAU is lower than that of the PC-DAU-RAS (-9.9%), and the PDA product is
much lower (-20.7%). We believe that the PC-ScAU is a very interesting alternative for
the PC-DAU-RAS. We have presented a qualitative overview of the fault-tolerant AUs
we have implemented and studied in this chapter in table 6.2.

Ultimately, whether the PC-ScAU is suitable for the SiMS micro-architecture is not
just a trade-off between power and area, but obviously depends on the absolute maximum
power budget as well. The slightly higher power consumption of the PC-ScAU is the
only disadvantage in comparison with the PC-DAU-RAS. There are, however, situations
(some of them targeting other architectures than SiMS), where this disadvantage can
possibly be eliminated, for example: when the adder is wider (e.g. 32 bits), when we
would require a faster adder (e.g. the CLA), or both. Also, since the power numbers
we obtained of the PC-ScAU and the PC-DAU-RAS are so close, it is very well possible
that, even though the duplicated adder is the winner in terms of power in the technology
we used (UMC 90nm SP), this does not hold true for another technology. Finally, there
might be some deviation in the final result after layout. It is possible that the differences
in power consumption become even smaller, with a small chance that in the end the ScAU
might be the winner in power consumption after all. However, the difference in power
could as well grow larger.

The power consumption of the PC-ScAU is significantly lower in downscaled mode
than in normal mode (41.37 vs. 29.56 µW, which is a reduction of 28.5%). Obviously,
the power consumption does not drop by 50%, because the scalable adder requires a
significant amount of hardware overhead to make the two-cycle operations possible. In
normal mode, most of this logic does not consume dynamic power, because there is no
switching activity. In downscaled mode, these components become active. This means
that the energy per instruction increases by 42.9% in downscaled mode (and of course,
latency doubles). Essentially this is the price we pay for the smaller size of the PC-ScAU
in comparison with the PC-DAU-RAS. This again emphasizes the essential need for a
very small-sized arithmetic unit in a certain architecture, to consider the PC-ScAU as a
viable option.
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7.1 Conclusions

This thesis work presented a hands-on study of the field of low-power design, power-aware
design, fault-tolerant design, and their practical implementations in ASIC technology.
Besides, a significant time was spent on setting up appropriate tool flow, understanding
the fine details of the different tools, and improving skills in VHDL design and synthesis.
We have presented a relatively short, but rather comprehensive tutorial on the required
software and the setup details of a tool flow involved in ASIC design, with some basic
information about all the tools involved. Based on these studies, a new arithmetic
unit (AU), the scalable arithmetic unit (ScAU), has been proposed and built as an
attractive solution in implant design.

Prior to the design of the ScAU, we have performed an extensive study on plain
adders and compared the results obtained by us with those found in the literature.
There were several motivations for performing the adder study. One of them was to
explore adder structures that are suitable for segmentation: a necessity for the scalability
feature of the arithmetic unit we were about to design. Another motivation was that
all previously published adder studies employ outdated technology. Even though the
differences in speed and area between our study and older studies were only small, the
differences in power consumption were significant. There are many variables that can
influence the exact implementation of the design, and thus, the characteristics of the
design. A couple of examples are the synthesis tool (synthesis algorithms may vary
significantly between different synthesis tools), the technology library, and the effort and
optimization levels that have been set during synthesis. We cannot provide a decisive
answer explaining the large differences in power consumption, since we have no access
to the actual designs employed in the literature studies. The RCA is the adder of choice
for the ScAU for the investigated technology node, as long as it meets the system timing
requirements. If not, the CSK is the best second choice. Both the RCA and CSK are
applicable in low-power, resource-constrained systems on a chip.

Our ScAU is a newly proposed design for an AU, with the goal to increase the
reliability and to save power and/or area compared to regular, non-scalable, fault-tolerant
designs. The ScAU is able to downscale its calculations from single-cycle operations to
double-cycle operations once an error has occurred in one of the adder segments inside the
ScAU. It is in essence a design with graceful degradation support: the throughput is
compromised, however, the precision of the calculation is preserved. We have presented
the initial design of the ScAU, various optimizations, and its final design. We have
shown that input gating of combinational logic is much more efficient by utilizing
tri-state buffers, than by utilizing latches; at least, in the currently utilized CMOS
libraries. Also, it has been shown that tri-state buffers can be employed simultaneously
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as a multiplexer network and input gates to achieve optimal efficiency. When only
multiplexing is required, gate-based multiplexers are to be preferred over tri-state-based
ones, since the latter require additional area and power, if the number of inputs is small.

Unfortunately, the ScAU does not appear to be as interesting for power savings as we
expected (since the ScAU requires a significant amount of additional hardware to enable
the scalability feature), but is certainly capable of significant area savings, compared to
the DAU (duplicated AU). We have also shown that an 8-bit ScAU is not as efficient as
16-bit version which performs much better: since most of the control logic is constant
and does not depend on the word size, the impact of the control logic becomes smaller
as the adder’s data path width increases. The ScAU becomes also more efficient when
fast adders are employed.

The ScAU has been implemented in several technologies in our attempt to find the
optimal design point. We showed that the ScAU performs best in UMC 90nm and
worst in TSMC 65nm technology and provided strong evidence that technology is a
very important variable in the results of the entire design process. Even simple and
tiny designs as our arithmetic units show considerable differences in their area and
power trends when implemented in different technologies. The source of the differences
lies in the total set of available cells and the different ways cells are implemented in
different technology libraries. Low-leakage technology proves to increase dynamic power
for frequencies above 10 MHz, so low-leakage technology does not seem useful for our
purpose, considering the fact that the leakage power is only a small fraction of the total
power consumption. In order to validate that the promising low-area characteristics of
the ScAU will hold after layout, we utilized a place-and-route tool to verify these data.
The post-synthesis results appeared to be remarkably accurate. One disadvantage of the
ScAU is the increased energy per operation in downscaled mode. We have presented a
number of possible approaches to diminish these effects. Also, we proposed a couple of
alternative applications of the proposed ScAU, such as the precision-scalable AU and
the ScAU employed for dynamic thermal management.

In respect to fault tolerance, first the sources of errors and the error types —in
general, but in particular in adders— have been discussed. Errors in adders appear
to be different in nature than in any other type of logic structures, since single faults
can results in arbitrarily long bursts of errors in the sum and internal carry signals.
Several error-detection schemes are discussed, such as full hardware duplication, error
detection codes, and a scheme based on time redundancy: RESO. Hardware duplication
leads to an excellent error coverage, but has high costs. RESO, on the other hand, has
low area and power costs, but the increased energy per instruction is dramatic. Since we
are targeting low-power/energy and low-area solutions, we had to resort to ED schemes
based on ED codes. Residue checking is capable of covering single and multiple errors
(depending on the residue), and parity prediction is a cheap scheme to detect single
errors. Berger and Bose-Lin Check Prediction are designed for covering multiple errors,
but Berger Check Prediction has very high costs. Available literature has been very
scarce about the actual costs of Bose-Lin Check Prediction, but it is clear that the costs
are significantly lower than Berger Check Prediction.

We had to make a decision about the minimum required fault coverage of the ED in
the ScAU. Ideally, we want it to be as high as possible, but we are limited by extremely
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tight power and area constraints. The decision was made to have the ScAU at least
fault-secure for single errors. This is sufficient, provided that the ScAU is tested by a
predetermined set of test vectors on a regular basis (whenever the ALU is idle), in order
to cover multiple errors as well. The actual choice for the ED scheme was then narrowed
down to residue checking (modulo-3 checking), and three different implementations of
parity prediction: the duplicated carry, the carry-dependent sum adder(CDSA), and
Nicolaidis’s scheme.

Based on a thorough literature study, as well as implementation, synthesis,
and analysis of two different parity-prediction schemes, we found that the CDSA
scheme is the most cost-effective scheme. Modulo-3 checking is never efficient for
RCAs, only under specific conditions can it be efficient for fast adders. The CDSA
parity-prediction scheme is the ED scheme that is implemented in our ScAU (now called
PC-ScAU). Implementation of a parity-prediction scheme in the ScAU was, however,
not straight-forward, since the parity bits are based on 16-bit numbers, while the upper
and lower 8-bit adder segments are checked for errors independently. The ED of both
adder segments individually is fault-secure for single errors, but unfortunately, the 16-bit
adder as a whole is not, due to a few ’weak spots’ in the design. This is caused by some
control logic which resides in the ripple-carry adder path. We presented two methods to
overcome this problem: add additional error detection or leave the detection up to the
periodical self-tests. Apart from error detection, error correction is required as well, in
order to make a system fault-tolerant. We decided to employ hardware duplication
for error correction, and not to utilize error-correcting codes because of their high costs.

The PC-ScAU has been compared to a number of other fault-tolerant arithmetic
units, such as the TMR, the QMR, the QMR-RAS (optimized for low-power), and
the DAU-RAS with the same ED scheme as the PC-ScAU, in order to provide
a comprehensive and meaningful comparison. The QMR has the highest power
consumption, followed by the TMR. The QMR-RAS we optimized for low-power
consumption consumes significantly less power than both the QMR and TMR. It provides
a relatively low-power and a very high fault coverage solution. The area increase is
however dramatic, so this design is not applicable for resource-constrained designs.
The two designs that are truly interesting for our purpose are the PC-DAU-RAS
and the PC-ScAU. The PC-ScAU has a slightly higher power consumption than the
PC-DAU-RAS (+7.3%), but a significant lower area (-16%) and delay (-12%). This
means that the PA product of the PC-ScAU is almost 10% lower and the PDA product
almost 21% lower than that of the PC-DAU-RAS. Considering these results, we believe
the PC-ScAU is a very interesting alternative for the PC-DAU-RAS. Especially because
area is of great importance in the SiMS architecture, the designer might want to trade
some power for a significant area reduction.

The slightly higher power consumption of the PC-ScAU can be further reduced under
certain circumstances. As mentioned previously, the efficiency of the ScAU increases
when when a wider adder is utilized (e.g. 32 bits) and/or a fast adder is required.
Possibly, the higher power consumption can even be avoided. In UMC 90nm technology
the PC-DAU-RAS may be the winner in terms of power consumption, but that does not
mean this is necessarily the case for all other technologies as well, especially considering
the fact that the power values are so close together. Moreover, there may always be some
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deviation between the post-synthesis and post-layout results. Again, since the results
are so close, this is something to take into consideration as well. Note, however, that this
argument can go both ways, the difference in power consumption can also grow larger
after layout.

7.2 Future work

A number of directions for future research can be extracted from this thesis work. For
example, we have still no clear answer whether adiabatic CMOS logic is really capable
of achieving larger energy savings than aggressive low-power design in standard
CMOS. If it is, it might be a very interesting logic style for the ScAU (provided that
the reliability of adiabatic CMOS logic is comparable with standard CMOS logic), and
possibly for the entire SiMS architecture, since we do not require high performances.
The larger area requirements of adiabatic CMOS logic does not necessarily have to be a
problem, since the ScAU is very small-sized. Trading area for significant energy savings
may then be justifiable, considering the fact that battery lifetime is a number-one priority.

What needs a thorough investigation is the necessary modification of the pipeline in
order to support multi-cycle operations (in cases where the ScAU works in downscaled
mode). It is important to know how this can be done efficiently, what the overhead is,
and what the system-wide effects will be. The so-called split-parity we require for the
PC-ScAU, which means that each pipeline register must have room for two parity bits
instead of one, requires some future research in order to determine the exact impact on
the costs of the pipeline.

Further research into the Bose-Lin error-detection scheme for implementation
in the ScAU is desired, since it appears to be a relatively cheap scheme for covering
multiple (unidirectional) errors, but there is not much information available about this
scheme in the literature. Since we only had a limited amount of time, we were not
able to implement, synthesize, and analyze Nicolaidis’s parity prediction/carry
checking scheme. Since Nicolaidis does not provide any solid comparisons with other
parity-prediction schemes, it is interesting to know whether this new scheme is efficient
for implementation in the ScAU, since the carry checker/parity predictor meets the TSC
(Totally Self Checking) property and thus enhances the reliability of the ED scheme.

An important topic for future work is exploring error-correcting codes. Because
of limited time we were not able to delve into this. However, it would be very interesting
to examine if error-correcting codes exist which have very limited costs. Considering
the conditions we have set regarding the minimum error coverage of the ScAU, a simple
single-error correcting scheme would suffice. Implementing an error-correcting code in
the ScAU instead of an error-detecting code would have a major advantage. Single
errors could be corrected by the code without having to downscale the ScAU (which
saves valuable hardware and energy). Only when the error-correcting code is no longer
able to correct the erroneous result, the ScAU can downscale and actually shut down an
adder segment. This would also solve the problems with soft errors: the occurrence of
a soft error would no longer lead to the immediate shutdown of the adder segment where
the error occurred.

Regarding the alternative applications of the ScAU we have discussed, it should be
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investigated whether a situation could occur where it would be necessary to downscale the
ScAU, not only when a fault occurs, but also when a critical temperature is reached.
By downscaling the ScAU, momentary power decreases, and heat dissipation diminishes.
Although it is unknown how much heat the entire SiMS chip will generate, this is an
interesting topic regardless, since the ScAU can be employed in other architectures as
well, where excessive heat dissipation might be problematic. Another direction for future
work is to equip the PC-ScAU with a parity prediction scheme whose predictor/checkers
fully meet the TSC goal, to improve the self-testability of the ScAU. This will ensure
that an error in the ED-hardware will be detected as well.

Voltage scaling is desired for the ScAU and for the SiMS architecture in general,
but it is unknown if the supply voltage for the SiMS architecture can be reduced as
aggressively as for the ScAU. If this is not the case, we might opt for multi-Vdd, where
the ScAU operates on a lower supply voltage than its surrounding environment. This
would require level shifters which add extra power and area costs. It is unknown if
this approach is cost-effective in this particular case. It would be interesting to find out
whether this is the case or not.

Finally, the arithmetic unit is, of course, not the only unit in the ALU. There is
also the logical unit, the shift unit, and the comparator unit. These units have to
be designed under the exact same design constraints: very low-power consuming, very
resource-constrained, and as reliable as possible under the previously mentioned design
constraints. It would be interesting to investigate whether the gracefully degradable
scaling technique from the ScAU could be employed in these other units as well. At the
very least one would have to think about what to do if the ScAU is downscaled because
of a fault, and a fault-free other unit (say, the logical unit) is utilized. Is the entire ALU
downscaled to double-cycle operations, or do we switch back to single-cycle operations
when the logical unit is utilized? All these questions need answering when the entire
ALU is designed.
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Appendix A - Synthesis Script

Files

The following script is utilized for synthesis in Synopsys DC:

### Synopsys Design Compiler script ###

### Jun 2010, D.P. Riemens ###

### Delft University of Technology ###

### DEFINE VARIABLES ###

set CLOCK_PERIOD 50.0

set INPUT_DELAY 1.00

set OUTPUT_DELAY 1.00

set OUTPUT_LOAD 0.01

### CLEAN UP FOR START ###

reset_design

remove_design -all

### SET CLOCK GATING STYLE ###

set_clock_gating_style -minimum_bitwidth 8

### DESIGN ENTRY ###

read_file -format vhdl {ArithUnit.vhd, ScalingController.vhd}

read_file -format vhdl {PCA.vhd, ParityTrees.vhd, ZeroDetector.vhd}

read_file -format vhdl {RCA.vhd, CDSFA.vhd, f.vhd, Carry.vhd}

current_design arith_unit

check_design

### SETUP OPERATING CONDITIONS ###

set_operating_conditions TCCOM

### SETUP CLOCK ###

create_clock clk -period \$CLOCK_PERIOD

set_dont_touch_network clk

### INPUT DRIVES ###

set INPUTPORTS [remove_from_collection [all_inputs] clk]

set_driving_cell -lib_cell BUFX1 \$INPUTPORTS

set_drive 0 clk
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### OUTPUT LOADS ###

set_load \$OUTPUT_LOAD [all_outputs]

### INPUT & OUTPUT DELAYS ###

set_input_delay \$INPUT_DELAY -clock clk \$INPUTPORTS

set_output_delay \$OUTPUT_DELAY -clock clk [all_outputs]

### AREA AND POWER CONSTRAINTS ###

set_max_area 0

set_max_dynamic_power 0

### COMPILE AND WRITE NETLIST ###

compile_ultra -gate_clock -no_autoungroup

### GENERATE VHDL NETLIST ###

change_names -rule vhdl -hierarchy

write -format vhdl -hierarchy -output arith.vhd

### SAVE MAPPED DESIGN ###

write -hierarchy -format ddc -output arith.ddc

### Generate SDF data ###

write_sdf -version 3 arith.sdf

### GENERATE VERILOG NETLIST ###

# The design is reloaded from scratch to avoid potential naming problems

# when using the netlist for placement and routing

remove_design -all

read_file -format ddc arith.ddc

change_names -rule verilog -hierarchy

write -format verilog -hierarchy -output arith.v

### SAVE SYSTEM CONSTRAINTS

write_sdc -nosplit arith.sdc

### CREATE REPORTS ###

report_area > area.rpt

report_area -hierarchy >> area.rpt

report_timing -from [all_inputs] -to [all_registers -data_pins] > timing.rpt
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report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] >> timing.rpt

report_timing -from [all_registers -clock_pins] -to [all_outputs] >> timing.rpt

report_timing -from [all_inputs] -to [all_outputs] >> timing.rpt

report_design > synthesis.rpt

report_constraint -all_violators -verbose >> synthesis.rpt

report_hierarchy >> synthesis.rpt

report_reference >> synthesis.rpt

report_cell >> synthesis.rpt

report_clock_gating -structure >> synthesis.rpt

The following script is utilized for timing and power analysis in Synopsys PrimeTime:

### Synopsys PrimeTime script ###

### Jun 2010, D.P. Riemens ###

### Delft University of Technology ###

### DEFINE VARIABLES ###

set CLOCK_PERIOD 50.0

set INPUT_DELAY 1.00

set OUTPUT_DELAY 1.00

set OUTPUT_LOAD 0.01

### PX SETTINGS ###

set power_enable_analysis TRUE

#set power_clock_network_include_register_clock_pin_power FALSE

### DEFINE DESIGN AND READ NETLIST ###

read_vhdl ./arith.vhd

current_design arith_unit

### ANNOTATE SWITCHING ACTIVITY ###

read_saif -strip_path "testbench/dut" ./arith.saif

### SETUP OPERATING CONDITIONS ###

set_operating_conditions TCCOM

### SETUP CLOCK ###

create_clock clk -period \$CLOCK_PERIOD

### INPUT DRIVES ###

set INPUTPORTS [remove_from_collection [all_inputs] clk]
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set_driving_cell -lib_cell BUFX1 \$INPUTPORTS

set_drive 0 clk

### OUTPUT LOADS ###

set_load \$OUTPUT_LOAD [all_outputs]

### INPUT & OUTPUT DELAYS ###

set_input_delay \$INPUT_DELAY -clock clk \$INPUTPORTS

set_output_delay \$OUTPUT_DELAY -clock clk [all_outputs]

### DELAY CONSTRAINTS ###

set_max_delay \$CLOCK_PERIOD -from [all_inputs] -to [all_outputs]

set_max_delay \$CLOCK_PERIOD -from [all_inputs] -to [all_registers -data_pins]

set_max_delay \$CLOCK_PERIOD -from [all_registers -clock_pins] -to [all_registers -data_pins]

set_max_delay \$CLOCK_PERIOD -from [all_registers -clock_pins] -to [all_outputs]

### CREATE REPORTS ###

check_timing

update_timing

report_timing -from [all_inputs] -to [all_registers -data_pins] > ./pt_timing.rpt

report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] >> ./pt_timing.rpt

report_timing -from [all_registers -clock_pins] -to [all_outputs] >> ./pt_timing.rpt

report_timing -from [all_inputs] -to [all_outputs] >> ./pt_timing.rpt

check_power

update_power

report_power

report_constraint -all_violators

report_power -verbose > ./px_power.rpt

report_power -hierarchy >> ./px_power.rpt

report_power -leaf -clocks ClockGen_1 >> ./px_power.rpt

report_power -groups clock_network >> ./px_power.rpt

report_power -net_power >> ./px_power.rpt

create_power_waveforms -output "vcd"
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Make a plan
Set a goal
Work toward it
But every now and then, look around
Drink it in
’Cause, this is it
It might all be gone tomorrow

From: ”Grey’s Anatomy” (ABC)


