
Delft Center for Systems and Control

A Study on Yaw-Misaligment:
Combined Optimization of
Wind Farm Power Production
and Structural Loading

Mike T. van Dijk

M
as

te
ro

fS
cie

nc
e

Th
es

is





A Study on Yaw-Misaligment:
Combined Optimization of Wind
Farm Power Production and

Structural Loading

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Mike T. van Dijk

September 5, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was supported by the TU Delft University fund

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

Climate change gives incentive for the transition to sustainable energy sources such
as wind energy. To make wind energy cost competitive with fossil fuel sources, wind
turbines are commonly placed in groups. As wind turbines extract energy from the wind,
a wake occurs behind the turbine characterized by reduced a wind speed and increased
turbulence. This wake causes down stream turbines to incur decreased power production
and increased loading. Due to this aerodynamic interaction between these turbines, the
energy production is sub-optimal. A control strategy to mitigate these losses is by
imposing yaw misalignment with the incoming wind flow. This induces a lateral force
which will cause the wake to deflect, with the goal to avoid downstream turbines. A side
effect of wake deflection is partial wake overlap which has the potential to increase the
fatigue loading of wind turbines. One way to decrease the cost of energy, is to increase the
power production without significantly affecting the loads. Therefore, this thesis aims
to quantify the load variations due to partial wake overlap and evaluate the benefits of
a combined optimization of power and loads over traditional control strategies. For this
purpose, we design a computational framework which computes the wind farm power
production and the wind turbine rotor loads based on the yaw settings. To investigate
the influence of partial wake overlap on the rotor fatigue, the differential flapwise and
edgewise bending moments at hub height are computed. FLORIS is used to compute
the power and CCBlade to determine the loads, supplemented with an algorithm to
find the velocity distributions as hub height. The optimal yaw settings are found using
a gradient-based optimization algorithm algorithm. The simulation results show that
partial wake overlap can significantly increase asymmetric loading of the rotor and that
yaw misalignment is beneficial in situations where the wake can be sufficiently directed
away from the downstream turbines. Furthermore, a combined optimization of power
and loads in all wind directions has been found to increase the average power production
by 1.53% and decrease the average differential flapwise and edgwise loads by respectively
42.67% and 45.70% compared to greedy control settings. Although results are promising,
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further improvements are required to confirm that mixed-objective optimization of power
and loads is beneficial. We recommend the use of dynamic models to allow for more
accurate load computations, validation of the results using high-fidelity models and
investigating the influence of turbulence and Individual Pitch Control.
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Chapter 1

Introduction

1-1 Motivation

The increasing demand for energy is polluting the atmosphere with carbon dioxide and
other global warming emissions. Among many factors that contribute to global warming,
the burning of coal, natural gas and oil for electricity and heat is the largest single
source Edenhofer et al. [2014]. This gives incentive for a transition to sustainable energy
sources such as wind energy, which is plentiful, reliable, renewable, widely distributed
and produces no greenhouse gas emissions during operation Fthenakis and Kim [2009],
Denny [2009], Lewis [2007], Sims et al. [2003], Sullivan et al. [2015], Ashuri et al. [2013].

To stimulate the global rate of implementation of wind energy, it is important that wind
energy is cost competitive with other energy sources. Data shows that research and
innovation have greatly increased the affordability of wind energy over the past three
decades Lantz et al. [2012]. Yet, the cost of wind generated electricity is generally higher
than that of traditional energy resources such as coal Bolinger and Wiser [2009]. This
incites continued development of the design and operation of wind turbines with the
objective of reducing the cost of energy Ashuri et al. [2016b], Blanco [2009], Ashuri et al.
[2016a], Spinato et al. [2009], Ashuri et al. [2014], Echavarria et al. [2008], Ashuri and
Zaaijer [2007], Jamieson [2011], Van Wingerden et al. [2008].

Wind turbines are generally clustered to save space and to reduce the costs associated
with maintenance and cabling. A disadvantage of this setup is the aerodynamic inter-
action between the turbines that negatively affects the total electrical power production
and the loads on the wind turbines Bianchi et al. [2006], Corten and Schaak [2003], Leit-
head et al. [1991]. As wind turbines extract energy from the free stream air flow, a speed
deficit occurs in its wake. Any subsequent turbine in this turbulent wake will therefore
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2 Introduction

experience reduced power production. Hence, the control parameters of upstream tur-
bines are coupled with the power production and loads of downstream turbines. The
significance of such coupling manifests for smaller turbine spacing, as the wake has less
time to recover. The power loss due to this phenomenon can be in the order of 10%, but
is dependent on layout and atmospheric conditions Schepers and Van der Pijl [2007].

One way of mitigating these power losses is by the use of supervisory control strategies.
Traditionally for below-rated wind speeds, each wind turbine aims to maximize its indi-
vidual power production. This strategy is often referred to as greedy. It has been shown
that this causes sub-optimal wind farm power production Steinbuch et al. [1988]. By
taking into account the aerodynamic interaction between the turbines, it is possible to
mitigate these losses Fleming et al. [2015a]. A innovative control strategy is to redirect
the wake of upstream turbines away from downstream turbines using yaw-misalignment.
Besides enhancing energy capture, this might result in partial wake overlap of down-
stream rotor blades. Therefore, yaw misalignment has the potential to influence the
loads of the turbines in a wind farm Kanev and Savenije [2016].

One of the ways to decrease the cost of energy, is to increase the power production of
a wind farm without significantly affecting the loads. In this thesis, we aim to achieve
this by increasing the performance of a wind plant without compromising the loading
due to the applied control strategies.

1-2 Objective

In this thesis, we aim to gain more insight into the phenomenon of asymmetric loading of
the rotor blade due to partial wake overlap. Also, we investigate how the loading due to
partial wake overlap can be included in the search for optimal yaw settings that improve
the power production. To tackle this subject in an organized manner, we identify three
separate research objectives that will help achieve these goals:

1. Objective 1: Quantify the significance of asymmetric loading of the rotor that is
caused by partial wake overlap.

2. Objective 2: Analyze the potential of the mitigation of loading due to partial
wake overlap for yaw-misalignment control strategies, which aim to increase the
power production of a wind farm. The leverage of the wind direction is taken into
account.

3. Objective 3: Perform an optimization of power for a wind farm without compromis-
ing the fatigue loads. This mixed-objective optimization is performed in all wind
directions to establish the benefits of such a strategy over traditional optimization
approaches.
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1-3 Outline 3

These objectives will provide guidance in establishing whether a control strategy that
includes both power production and fatigue loading due to partial wake overlap is ben-
eficial over traditional strategies.

To achieve the objectives, a computational framework is created to study the effect of
wakes on the power production and loading. The considered loads are the differential flap
and edgewise moments. The framework consists of a model to describe the steady-state
wake properties on a wind farm level and a model to compute the power production and
loading at each wind turbine. The optimal yaw angles for all turbines are found using
an optimizer.

1-3 Outline

To efficiently answer the research objectives, this thesis is divided into 5 chapters. The
outline is as follows:

1. Chapter 2: An introduction to the most prominent wind farm control methods is
given. The reader is informed about the state-of-the-art and each method is briefly
discussed.

2. Chapter 3: In this chapter, we introduce the computational framework that is
essential for obtaining the results. The framework is split into several sub-models,
each explained individually.

3. Chapter 4: Here, the results are presented of 3 simulation studies. The first results
quantify the load variations due to partial wake overlap. Furthermore, optimization
results are presented of a 2-turbine setup and a wind farm.

4. Chapter 5: The work is concluded and recommendations are given for future work.
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Chapter 2

An Introduction to Wind Farm
Control

Reduced wind farm power production due to aerodynamic interaction between the tur-
bines can be mitigated by changing the lay-out and by using wind farm control tech-
niques. Generally wind turbine controllers are set to maximize their individual power
production while mitigating loads. This control strategy is also referred to as greedy.
It has been suggested that higher level wind farm supervisory control is advantageous
over this strategy, as this takes into account the total power production Steinbuch et al.
[1988], Spruce [1993]. In this chapter, two popular control strategies are explained: Ax-
ial induction control and yaw-misalignment. Furthermore, insight is given into possible
loading issues as a result of yaw-misalignment.

2-1 Axial Induction Control

One control strategy to mitigate the energy losses is axial induction control. The axial
induction factor a describes the relation between the velocity of the incoming wind
stream and the velocity of the wind leaving the rotor plane of the turbine Bianchi et al.
[2006]. Therefore its an indicator of the amount of aerodynamic energy extracted from
the wind by the turbine. Wind turbines have internal controllers that try to maximize
the energy capture P at below rated wind conditions by changing the pitch of the blades
and the torque of the generator. In Figure 2-1 an array of wind turbines is displayed,
with axial induction factors as inputs and power as outputs. By decreasing the axial
induction factor of an upstream turbine, the velocity deficit in the wake will decrease and
subsequent turbines will experience increased power production. This method has the
potential to increase the total power production of the wind farm Annoni et al. [2015].
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6 An Introduction to Wind Farm Control

Figure 2-1: An arbitrary array of wind turbines aligned in the prevailing wind direction
Gebraad et al. [2014b]

Various authors have done research on the benefits of axial induction control, primarily
using simulation tools. The majority of the authors used a model-based approach. Heer
et al. [2014] maximized the wind farm energy output by designing a MPC controller
using the Jensen wake model Jensen [1983]. An increase in power production of 1% was
reported, but with a side-note that the gain greatly depends on the wake model used.
Authors like Herp et al. [2015] and Behnood et al. [2014] solved the problem using a
model similar to the Jensen model. Herp et al. [2015] used a sequential optimization
in a model-based approach and produced mixed results. Specifically, the power gain
appeared to rely heavily on the wake expansion parameter which has a negative effect
on the potential gain of the power optimization. Behnood et al. [2014] used a particle
swarm optimization and found a total energy increase of 1.86% for a 4x4 turbine wind
farm. Horvat et al. [2012] also used a sequential programming function in Matlab, but
used a static engineering model published by Brand [2009]. They reported a power gain
of 2.85% at lower wind speeds. At higher wind speeds, the goal was to optimize the
wind farm loads. They showed that the loads in the wind farm can be equalized among
all turbines by axial induction control. Serrano Gonzalez et al. [2013] used a genetic
algorithm in combination with a static wake model by Frandsen et al. [2006] to optimize
a row of wind turbines. They performed a sensitivity analysis of the spacing between
turbines on the potential power gain by a wind farm controller. It was found that the
rate of improvement declined as the distance between turbines increased. The authors
chose for a distance of six times the rotor diameter for their simulation, but did not
provide a clear motivation.

While the previously mentioned authors focused on using engineering models, Goit and
Meyers [2015] used a high fidelity simulation to obtain data on the wake interaction
between turbines. They optimized the total energy output using a conjugate gradient
optimization. They found that the increases in energy extraction for a row of 6 turbines
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2-2 Wake Deflection through Yaw-Misalignment and Loading 7

is in the order of 6%, for a simulation time of one hour.

Other authors focused on model-free approaches with the benefit that no knowledge of
the aerodynamic interaction between turbines is required. For instance, Marden et al.
[2013] proposed a game-theoretic approach. They showed that under stationary atmo-
spheric conditions, it is possible to optimize the power without the use of a model. Two
simplistic wind farm examples were simulated, and efficiency gains in upwards of 25%
were observed compared to the greedy algorithm. Gebraad et al. [2013] implemented a
gradient-based optimization algorithm in a distributed control setting for a row of wind
turbines, and later for a wind farm [Gebraad and van Wingerden, 2015]. In the latter,
it was shown that the presented algorithm converged faster than the game-theoretic
optimization. A similar gradient-descent algorithm was used by Kim et al. [2014] in a
model-free approach. They decreased the convergence time of the algorithm by imple-
menting a variable-step size according to wind conditions. Yang et al. [2013] optimized
the power of a row of wind turbines using extremum seeking control. Here the turbines
are optimized in a nested-loop framework, from downstream to upstream units in a
sequential manner. This results in a power gain of 9.09% for a row of three turbines.
Their simulation results suggested that the optimal control settings are invariant with
the wind speed. Rotea [2014] has shown that wind farm power optimization problems
may be solved with dynamic programming, which reduces the complexity of the opti-
mization and provides a formal mechanism for computing limits of performance in wind
farms, as well as rigorous proof that the nested loop extremum seeking control approach
advanced in Santoni et al. [2015] is optimal. A Bayesian optimization algorithm was
implemented with a modified sampling procedure by Park and Law [2015]. Bayesian
optimization builds a model using a gaussian process which is utilized to find new inputs
that yields improvement of the total power production. The authors implemented the
algorithm on an experimental setup of two turbines in a wind tunnel. Results showed
that, although the algorithm was not able to reach the global optimum, it significantly
improved the wind turbine power by executing only a small number of control actions.
Corten and Schaak [2003] performed a wind tunnel experiment of three rows of 8 scaled
turbines and concluded that the power extraction could be increased by derating the
upstream turbines.

2-2 Wake Deflection through Yaw-Misalignment and Loading

A more innovative technique is to redirect the wake away from downstream turbines by
creating yaw misalignment of the turbine with the incoming wind Knudsen et al. [2014].
Although yawing a turbine decreases its power production, the wake deflection can
reduce the wake overlap with the downstream turbine (Figure 2-2). As the downstream
turbine will experience a higher effective wind velocity, it will generate more power.

A few sources have performed both simulation and experimental studies, to investigate
the benefits of yaw-misalignment. Gebraad et al. [2014b] designed and used a model
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8 An Introduction to Wind Farm Control

Figure 2-2: Example of reducing the wake overlap with turbine 2 (T2) turbine using yaw
misalignment of turbine 1 (T1)Jiménez et al. [2010]

to perform a power optimization using a game theoretic algorithm and validated the
results with a high-fidelity simulation. A power increase of 13% was observed with
respect to the greedy case. Fleming et al. [2015b] optimized both the layout and the
power production of the wind farm using a steady-state model to describe the wake
properties and a sequential quadratic programming method. It was found that the best
overall improvement was achieved by the coupled control and position optimizations.
Schottler et al. [2016] found through a wind tunnel test of two scaled turbines that the
power production of the downstream turbine was coupled with the yaw of the upstream
turbine. They suggested that yawing the upstream turbine can increase the total power
production. Park and Law [2015] implemented the bayesian ascent algorithm on an
array of two turbines in a wind tunnel, where they optimized both the yaw and the axial
induction factors. The algorithm suffered from measurement noise, but was nonetheless
able to increase the total power generated by the two wind turbines.

Various results have been reported on wind turbine loading due to yaw misalignment.
Boorsma [2012], Ashuri and Zaaijer [2008] and Capponi et al. [2011] found that the
blade edgewise moments are mainly dominated by gravity forces and are not heavily
coupled with yaw-misalignment. Similar results were found by Fleming et al. [2015a]
using SOWFA Fleming et al. [2013]. They also discovered an increase in out-of-plane
bending moments, drivetrain torsion and tower-base bending moments of the down-
stream turbine. These loads are likely caused by the transition from full to partial wake
overlap and turbulence in the wake. Kragh and Hansen [2014] suggested that the blade
out-of-plane bending moments of upstream turbines decrease by a yaw-misalignment in
the range of -10◦ to 30◦. Churchfield et al. [2015] showed an increase in the blade out-of-
plane bending moments of downstream turbines due to yaw misalignment. This shows
that while upstream turbines generally benefit, downstream turbines can experience in-
creased loads. Finally, Eggers et al. [2003] found that wind shear significantly increased
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2-3 Other 9

the rotor fatigue loads. Extending this to horizontal wind shear suggests partial wake
overlap can similarly influence the fatigue loads.

Limited research has been done on rotor loading due to partial wake overlap. When a
wake is deflected, the downstream turbine might experience partial wake overlap. As the
velocity of the incoming wind flow can be much lower on the side of the rotor blade that
overlaps with the wake, it will experience asymmetric loading. This has the potential
to increase the fatigue loads of the turbine. This was shown by Kanev and Savenije
[2016], whom found that partial wake overlap increased the Damage Equivalent Loads
(DEL) by 15-20% when the wake center would be at the edge of the rotor. Note that
the magnitude of the increase in DEL depends on many factors such as turbine spacing,
wind direction and other atmospheric properties.

2-3 Other

Besides yaw-misalignment, other ideas exist on how to redirect the wake. One method
would be to tilt the rotor, to redirect the wake towards the ground. Unfortunately,
modern day turbines at the time of writing are not designed to allow rotor tilting. This
could be solved by the use of individual pitch control to tilt the rotor. But this comes
with the disadvantage of significantly increasing the structural loads Fleming et al.
[2014].

Furthermore, a number of experimental solutions have been patented, but no records
of these being built exist at the time of writing Quek [2012]. These solutions focus on
increasing the wake recovery. One of the solutions describes a device at the front of
the turbine drawing in air and expelling the accelerated stream, in the form of a vortex
flow, at the rear of the turbine (Figure 2-3). Another solution proposes curved rotor
blades with the aim to create a vortex in the wake such that it recovers faster. Finally,
Churchfield et al. [2014] suggested to relocate the turbines for floating wind farms such
that the wakes of upstream turbines are evaded.

2-4 Discussion

Not all the methods discussed beforehand are equally suitable to mitigate the power
losses due to aerodynamic interaction within a wind farm. Most positive results for
axial induction control are obtained under stationary atmospheric conditions and using
simplified models. As these studies present small potential gains in power production,
one can question the effectiveness of axial induction control on a real wind farm. A lack
of experimental research further feeds this uncertainty.

Studies on yaw-misalignment have presented some promising results on the wind farm
power production. Unfortunately, this control method is relatively new and therefore
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10 An Introduction to Wind Farm Control

Figure 2-3: A patented solution to increase the wake recovery behind a wind turbine Quek
[2012]

hasn’t been investigated to the full potential yet. Similar to axial induction control, full-
scale experimental studies lack so the effectiveness can’t be verified. The research done
on the structural loading due to yaw misalignment mostly reports load reduction, but
fails to address the topic of partial wake overlap. Therefore, more research is required
to verify the applicability of this method.

The remaining methods all have obvious disadvantages to them or are impossible to
implement on the modern generation of wind turbines. Therefore, yaw-misalignment
is the most promising control method to mitigate the power losses in a wind farm but
requires further research of the effects on structural loading.
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Chapter 3

The Computational Framework

A computational framework has been developed to analyze the impact of wake effects on
the power production and loading. The framework consists of steady-state models which
are computationally efficient, in order to limit the computational resources required
for optimization. A wind farm consisting of NREL 5MW baseline turbines Jonkman
et al. [2009] is used. As the use of steady-state models eliminates the possibility to use
dynamic methods for load representation, the loads considered are the maximum-to-
minimum difference of the flap (∆Mf ) and edgewise (∆Me) moments (Section 3-3) at
hub height. These are chosen to capture the asymmetric load distribution on a rotor
blade due to partial wake overlap. To facilitate this, an algorithm that computes the
velocity distribution at the rotor disk is implemented as described in Section 3-1-1.

Figure 3-1 shows the framework that consists of a modified version of the FLOw Redirec-
tion and Induction in Steady-state (FLORIS) model Gebraad et al. [2014a], a modified
version of CCBlade Ning [2013] and an optimizer12. In the FLORIS* module, the ef-
fective wind velocities and velocity distributions in the lateral direction at hub height
at each wind turbine are calculated. The module ’Find Ω’ determines the optimal rotor
velocity for every turbine based on the effective wind velocity. The optimal rotor velocity
and the velocity distribution are used to compute the power production and the loads
at every turbine in the module CCBlade*. The Optimizer subsection closes the loop by
including the power production and the loads of the wind farm in one cost function, and
is used to find the optimal yaw settings.

1FLORIS: https://github.com/WISDEM/FLORISSE, accessed: 04-March-2016
2CCBlade: https://github.com/WISDEM/CCBlade, accessed: 04-March-2016
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12 The Computational Framework

Model

FLORIS*
Computes the effective ve-
locities Ueff,i and velocity
distributions Ũi at hub
height at each turbine i

CCBlade*
Compute the power

production Pi and the
loads {∆Mf ,∆Me}i
for each turbine i

Find Ω
Find the opti-

mal rotor speed

Optimizer
Optimizes the yaw set-
tings γi of each turbine
i in the wind farm

{Ũi}

{Ueff,i}
{Ω∗i }

{Pi}, {∆Mf ,∆Me}i

γi

Figure 3-1: Schematic of the optimization framework. The optimizer uses the power and
load measurements obtained from the model to optimize the yaw settings of the wind farm.
The shorthand notation {ζi} is used to indicate that {ζi|i ∈ U} where ζi corresponds to
a property of wind turbine i and U = {1, 2, ..., N} is the set of indices that number all
turbines in a wind farm.
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3-1 FLORIS* 13

3-1 FLORIS*

FLORIS* is used to compute the effective wind velocities Ueff and the velocity distribu-
tions at hub height Ũ of each turbine. These are respectively used for the computation
of the power and the differential flapwise and edgewise loads, as will be explained in
Section 3-3. FLORIS* is an extended version of FLORIS, in that it adds an algorithm
to compute the velocity distributions at hub height Ũ .

3-1-1 FLORIS

FLORIS is a data-driven model that describes the steady-state wake characteristics as
a function of axial inductions and yaw-misalignment. It uses the velocity profiles of the
wakes to compute the power of each individual turbine. The wake is modeled using
an augmented version of the Jensen model Jensen [1983]. The fidelity of the model is
increased by dividing the wake in three zones with individual expansion and velocity
properties (Figure 3-2). Therefore, the velocity is assumed to be uniform in lateral
direction within a wake. The wake deflection due to yaw-misalignment and rotational
effects is characterized as in Jiménez et al. [2010].

γ1

U∞

Turbine 2

Turbine 1

Zone 1
Zone 2
Zone 3

y

x
y′x′

Φ

Figure 3-2: A schematic overview of a wake deflected by yaw misalignment, as modeled
by FLORIS. The different wake zones are indicated.

The model contains a small amount of parameters to describe the properties of the wake
and the computation of the power. These parameters can be tuned such that the power
predicted by FLORIS can be fit to the time-averaged results from high-fidelity simulation
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14 The Computational Framework

data of wind farms. The benefit of FLORIS is that it is computationally efficient yet
relatively accurate due to the identification using high-fidelity simulation data. FLORIS
defines a local (x, y), and a global (x′, y′) coordinate system to accommodate for different
wind directions Φ (Figure 3-2). The yaw γi of a turbine i is used to compute its wake
deflection. For a wake caused by turbine j, the velocity in each corresponding wakezone
z at the x-coordinate of a turbine i is defined by Uj,i,z, z ∈ {1, 2, 3}.
FLORIS computes the effective wind velocity, Ueff,i, at a downstream turbine i by
combining all the overlapping wakes at its rotor disk. This is done by weighting the
wake velocities Uj,i,z by their overlap of the corresponding wake zones with the rotor
using the root-sum-square method of Katic et al. [1986]. For a detailed description of
the FLORIS model, the reader is referred to Gebraad et al. [2014a].

Velocity Distribution

FLORIS* computes the velocity distributions at hub height which are used by CCBlade*
to compute the differential loads. For this purpose, we introduce the set of indices
U = {1, 2, ..., N} that number all turbines in a wind farm. Each turbine j ∈ U \{i} has a
velocity distribution over turbine i denoted by Ũj,i(yr,i). We define the local y-coordinate
yr,i on the rotor disk of turbine i at hub height as shown in Figure 3-3.
Because FLORIS assumes the velocity within a wake zone to be uniform in lateral
direction, the nature of the velocity distribution Ũ is discrete. This has been shown
to cause local minimums in the cost function (i.e. Figure 4-2), obstructing the use of
gradient-based optimization algorithms. To solve this, the discrete velocity distribution
is transformed to a smooth velocity distribution with the use of a curve-fitting algorithm.

Curve-fitting

The discrete nature of the velocity distribution modeled by FLORIS causes local min-
imums to appear in the cost-function. In a real wake, this is also unrealistic as the
velocity will gradually decrease as the center of the wake is approached. Therefore, a
smooth velocity distribution is estimated based on the information of the discrete ve-
locity distribution. Note that the problem of local minimums is no concern when global
optimization algorithms are used. Therefore, smoothing the velocity distribution was
only applied for the results published in Section 4-3.
We smooth out the velocity distribution by fitting a function to the discrete wake data.
For this purpose, a Gaussian distribution function is chosen:

fgauss(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (3-1)

The parameters µ and σ can be used to transform the shape of the function. To properly
fit the Gaussian distribution function to the discrete velocity distribution, some modi-
fications are made. The function is inverted, and some parameters to allow scaling are
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Uj,i,1

Uj,i,2

Uj,i,3

U∞

Uj,i,1

Uj,i,2

Uj,i,3

U∞

Ũj,i(yr,i) [m/s]

−R 0 R yr,i [m]

Ψ

Wake of turbine j
Rotor of turbine i

Figure 3-3: Velocity distribution Ũj,i(r) at hub height of a wind turbine i with radius R,
partially overlapped by the wake of turbine j
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16 The Computational Framework

added. The resulting inverted Gaussian distribution is defined as follows:

Ũfit,j,i(yr,i) = U∞ − Cs
1.0
σ
√

2π
e−

(yr,i−µ)2

2σ2 (3-2)

where µ (-), σ (-), Cs (-) are parameters used for fitting and U∞ (m/s) is the incoming
free-stream wind velocity. Note that most these parameters are dimensionless as they
are only used to obtain a good fit to the discrete velocity distribution. The parameters
are found using a non-linear least squares curve fitting algorithm Markwardt [2009].

A comparison is made between a discrete and Gaussian velocity profile of a wake in
Figure 3-4. It can be seen that the smooth velocity distribution resembles the discrete
distribution.
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Figure 3-4: An example of a smooth gaussian distribution, fitted to a discrete velocity
distribution. The curve-fitted parameters (Equation 3-2) are approximately: µ = 0, σ2 =
150, Cs = 500 and U∞ = 8 m/s.

Combining wakes

When several wakes overlap the same turbine, the velocities in the wake zones have to
be combined in order to obtain the velocity distribution. This is done for every turbine
in the wind farm similar to FLORIS, by applying the root-sum-square method.

To limit the amount of unnecessary wake combinations that have to be computed, only
the wakes of upstream turbines are taken into account. Therefore, for each turbine i the
set Fi ⊂ U|xj<xi of upstream turbines j is introduced.
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3-2 Computation of the Optimal Rotor Velocities 17

Now each turbine j will have a velocity distribution over downstream turbine i (i.e.
Figure 3-2). To obtain the combined velocity distribution Ũi(yr,i), the velocities of each
wake that overlaps with the rotor of turbine i with radius R have to be combined. Hence,
for any yr,i in the range [−R,R], Ũi(yr,i) is obtained as follows:

Ũi(yr,i) =


U∞

1−

√√√√√∑
j∈F

(
1− Ũfit,j,i(yr,i)

U∞

)2
 for Fi 6= ∅, (3-3)

U∞ for Fi = ∅. (3-4)

where U∞ is the velocity of the incoming wind flow. If the turbine has no upstream
turbines, the set Fi will be empty and its velocity distribution will be set equal to the
incoming wind speed U∞.

In Figure 3-5, an example is shown of the wake combination for an array of 3 turbines.
The velocity distributions of the first 2 turbines over the rotor of turbine 3 (Ũ1,3, Ũ2,3)
are combined (Ũ3). The rotor has a radius of R = 63 m.

yr

Figure 3-5: An example of a wake combination of two discrete velocity distributions on a
downstream turbine

3-2 Computation of the Optimal Rotor Velocities

Each turbine is assigned a steady-state rotational speed based on the effective wind
velocity Ueff it experiences. It is assumed that every turbine’s internal controller will
try to maximize its power production at below rated wind speeds Leithead et al. [1991],
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18 The Computational Framework

Ashuri et al. [2010]. This corresponds to maximizing the power coefficient Cp. The
power coefficient describes the ability of a wind turbine to capture energy and is defined
as:

Cp = PD
PV

(3-5)

where PD is the aerodynamic energy extracted by the rotor and PV is the energy in
the wind fed to the turbine. The power coefficient is typically modeled as a function of
tip-speed-ratio λtip and blade pitch β Bianchi et al. [2006], Ashuri [2012]. An example of
a typical Cp(λtip, β) graph is shown in Figure 3-6. The optimal tip-speed-ratio λ∗tip and
blade pitch β∗ that maximize the power coefficient Cp are indicated. The tip-speed-ratio

Cp(λ∗tip, β∗)

Figure 3-6: An example of a Cp table for a variable-pitch wind turbine Bianchi et al. [2006]

of turbine i is defined as:

λtip,i = RΩi

Ueff,i
(3-6)

Now the blade pitch β is assumed to be 0 as the turbine operates in below-rated wind
conditions, hence the power coefficient is Cp(λ, 0). The definition of the tip-speed-ratio
can be used to estimate the optimal steady-state rotor speed Ω∗i for turbine i as follows:

Ω∗i =
λ∗tip,i ∗ Ueff,i

R
(3-7)

where λ∗tip,i is the tip-speed-ratio that maximizes the corresponding power coefficient
Cp,i(λ∗i , 0) and Ueff,i is the local effective wind velocity. The Cp-table for the NREL
5MW turbine is obtained using WT perf Platt and Buhl [2012] which is a simulation
tool developed by NREL that uses blade-element momentum theory (Section 3-3) to
predict the performance of wind turbine blades.
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3-3 CCBlade* 19

3-3 CCBlade*

CCBlade* is an extended version of CCBlade, in that it adds an algorithm to compute
the load variations due to partial wake overlap. CCBlade is an implementation of a
reliable method to solve the blade element momentum (BEM) equations Ning [2014]
and predicts the aerodynamic power production and loading of wind turbine blades.

3-3-1 CCBlade

CCBlade is an implementation of the BEM equations and analyzes the aerodynamic
forces on a radial blade element of infinitesimal length. The analysis is carried out
by dividing the stream tube containing the rotor swept area into concentric infinitely
small tubes which are each treated independently. For practical purposes, the length
of each blade is divided up into S segments, where each segment is indicated by s ∈
{ 1
SR,

2
SR, ..., R}. Similarly, the rotor swept area is also divided intoM angular segments

along the azimuth angle indicated by m ∈ { 1
M 2π, 2

M 2π, ..., 2π}. An example of the
forces on a radial blade element can be seen in Figure 3-7. As the rotor rotates, the
blade element will move at a relative speed Vrel in the wind flow. Therefore for a blade
element s at angular segment m, Vrel can be computed from the effective wind velocity
Ueff and the tangential blade element speed rΩr:

Vrel,s,m =
√

(Ueff ∗ (1− as,m))2
(
rsΩr ∗ (1 + a′s,m)

)2
(3-8)

where as,m is the axial induction factor and a′s,m is the tangential axial induction factor.
The axial induction factors and the local flow direction φb,m are computed for each
blade element s and each angular segment m using a technique described in Ning [2014].
Each blade element has its individual lift coefficient CL,s, drag coefficient CD,s and cord

Ueff (1 − a)

rΩr(1 + a′)

Vrel

Φb

Φb

α
β

fr

fD

fL

FTΦb

Figure 3-7: An example of the forces on a radial blade element s Bianchi et al. [2006]
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length cs. The local axial thrust force Qp,s,m and local torque Tp,s,m for each segment
are computed using these parameters as follows:

Qp,s,m = ρcs
2 V 2

rel,s,m(CL,s(α)cos(φb,s) + CD,s(α)sin(φb,s))

Tp,s,m = ρcs
2 V 2

rel,s,mr(CL,s(α)sin(φb,s) + CD,s(α)cos(φb,s))
(3-9)

where α is the incidence angle computed using the angle between the local flow direction
and the rotor plane (φb,s), the blade pitch angle (β) (see Ning [2014]). Now the total
thrust force Ftot and torque Qtot over one rotor rotation can be determined by integrating
the local axial thrust force and torque over all blade elements and azimuth segments:

Ftot = Nb

∫ 2π

0

∫ R

0
Qp,s,m dsdm, Qtot = Nb

∫ 2π

0

∫ R

0
Tp,s,m dsdm (3-10)

where Nb represents the number of blades (Nb = 3). The aerodynamic power for a
turbine i, assuming an optimal rotor speed, can be computed by:

Pi = Qtot,iΩ∗i (3-11)

3-3-2 Computation of the Differential Loads

The selected loads are the maximum-to-minimum differential flapwise and edgewise
bending moments at hub height. Because steady-state models are utilized, it is not pos-
sible to use advanced methods for computing fatigue loads such as Rainflow-counting
Downing and Socie [1982]. Furthermore, certain effects such as the transition from full
to partial wake overlap, wind shear and turbulence aren’t modeled. Hence, we seek a
measure to describe the effect of partial wake overlap on the fatigue loads of the rotor.
To measure the loads on the rotor, the flapwise and edgewise bending moments are
chosen. Throughout one full rotation of a rotor blade, the maximum and minimum
bending moments resulting from partial wake overlap are expected to occur in any order
at the azimuth angles Ψ = 90◦ and Ψ = 270◦. This corresponds to the bending moments
when a blade is at hub height. By taking the difference in bending moments between
these locations, the load variation of the rotor during one rotation is obtained. This will
be used analogously to the fatigue due to partial wake overlap.
Finally, the maximum-to-minimum difference of the flap and edgewise moments are
determined. To be able to detect the influence of partial wake overlap on the loading,
CCBlade* is expanded to take into account a velocity distribution. The flapwise and
edgewise bending moments at Ψ = 90◦ and Ψ = 270◦, are obtained using the velocity
distribution Ũi(yr,i) at hub height (Section 3-1-1). For this purpose, Ũi(yr,i) is split into
two distributions of S elements defined as:

Ũi,s,Ψ=90◦ = Ũi(yr,i) where yr,i ∈ {0,
1
S
R,

2
S
R, ..., R}

Ũi,s,Ψ=270◦ = Ũi(yr,i) where yr,i ∈ {0,−
1
S
R,− 2

S
R, ...,−R}

(3-12)
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3-4 Optimizer 21

Now the local axial thrust force Qp,s,m and local torque Tp,s,m on each blade element are
obtained by:

Qp,s,Ψ=90◦ = ρcs
2 Ũ2

i,s,Ψ=90◦(CL,s(α)cos(φb,s) + CD,s(α)sin(φb,s))

Qp,s,Ψ=270◦ = ρcs
2 Ũ2

i,s,Ψ=270◦(CL,s(α)cos(φb,s) + CD,s(α)sin(φb,s))

Tp,s,Ψ=90◦ = ρcs
2 Ũ2

i,s,Ψ=90◦r(CL,s(α)sin(φb,s) + CD,s(α)cos(φb,s))

Tp,s,Ψ=270◦ = ρcs
2 Ũ2

i,s,Ψ=270◦r(CL,s(α)sin(φb,s) + CD,s(α)cos(φb,s))

(3-13)

These are used to obtain the flapwise and edgewise bending moments at Ψ = 90◦ and
Ψ = 270◦:

Mf,Ψ=90◦ =
∫ R

0
sQp,s,Ψ=90◦ds, Mf,Ψ=270◦ =

∫ R

0
sQp,s,Ψ=270◦ds

Me,Ψ=90◦ =
∫ R

0
Tp,s,Ψ=90◦ds, Me,Ψ=270◦ =

∫ R

0
Tp,s,Ψ=270◦ds

(3-14)

Finally, the maximum-to-minimum flapwise and edgewise bending moment differences
are computed as follows:

∆Mf = |Mf,Ψ=90◦ −Mf,Ψ=270◦ |, ∆Me = |Me,Ψ=90◦ −Me,Ψ=270◦ | (3-15)

3-4 Optimizer

The optimizer will search for the yaw-settings that maximize the power and minimize the
loads. For the results presented in Section 4-2 a game-theoretic optimization approach
was utilized Marden et al. [2013], and for the results shown in Section 4-3 a gradient-
based optimization algorithm. In the remainder of this section, the optimization problem
will be formulated and these optimization approaches will be explained.

3-4-1 Optimization Problem

The goal of the optimizer is to find the set of yaw-settings γ = {γ1, γ2, ..., γN} that
minimizes the cost function (Section 4-2). To achieve the objective, a constrained mini-
mization problem is defined as follows:

minimize
γ

c(γ)

subject to |γi| ≤ γmax, i = 1, . . . , N
(3-16)

where γmax is the maximum allowable yaw angle and is chosen to be γmax = 40◦. This
constraint is added to limit the search space. The cost functional c(γ) combines the
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power and the loads of a turbine i ∈ U as follows:

c(γ) = −λ
(

N∑
i=1

)
P i(γ)︸ ︷︷ ︸

power

+(1− λ)
2N

(
N∑
i=1

∆Mf,i(γ) +
N∑
i=1

∆M e,i(γ)
)

︸ ︷︷ ︸
loads

P i(γ) = Pi(γ)
P̃max

, ∆Mf,i(γ) = ∆Mf,i(γ)
∆M̃f,max

, ∆M e,i(γ) = ∆Me,i(γ)
∆M̃e,max

(3-17)

where P i, ∆Mf,i and ∆M e,i are respectively the normalized power and the maximum
variation in the flapwise and edgewise bending moments of turbine i. The tuning pa-
rameter of the optimization objective is λ, where λ = 1 corresponds to a single-objective
optimization of the power production and λ = 0 of the loads. Any intermediary values
would define a multi-objective optimization. Finally, P̃max, ∆M̃f,max and ∆M̃e,max are
respectively the estimations of the maximum possible values of the power, differential
flapwise bending moment and differential edgewise bending moment of a turbine at a
certain wind speed which are obtained through a series of simulations (see Section 4-1).
This method ensures that power and loads are balanced (i.e. for λ = 0.5, power and
loads are weighted equally).

3-4-2 Game-theoretic optimization

For the optimization results of a 2-turbine setup (Section 4-2) a game-theoretic approach
was utilized. The game-theoretic approach works by making random perturbations to
the yaw settings and using these as the new baseline if they yield an improvement over the
previous baseline. Using this approach, the global minimum is iteratively approximated.

The decision for this algorithm was based on the discovery of many local minimums in the
objective function which are caused by the discrete nature of the velocities in the different
wake zones. As the game-theoretic optimization approximates the global optimum, it’s
not very sensitive to local minimums. The downside of the game-theoretic approach
is that, depending on the size of the search space, a significant amount of function
evaluations might be required. Fortunately, the computational framework consisting of
a 2-turbine setup only takes 0.76 seconds to evaluate on a 3.30 Ghz machine. Also, the
problem only has 2 unknown yaw-settings. Therefore, computational feasibility is not a
problem.

The game-theoretic algorithm is applied similar to Gebraad et al. [2014a] and can be seen
in Algorithm 1. In the lines 1− 5 the algorithm is initialized and the set of discretized
yaw-settings γ are given initial values. The remainder of the code is looped till a number
of iterations Kmax is executed. In line 8 the value of the cost-function c(γ) is updated
using the yaw-settings. In the lines 9 − 12 the updated cost-function and yaw-settings
are set as the baseline cost c̄ and yaw-settings γ̄ if they yield an improvement over the
previous baseline. Finally, in the lines 13−20 the yaw-settings for the next iteration are
chosen randomly from the set of available yaw-settings based on a uniform distribution
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D(γmin, γmax). The exploration factor Ee is used to determine the likelihood that the
algorithm chooses a new yaw-setting and doesn’t keep the previous one.

Algorithm 1 The pseudocode below demonstrates how the set of optimal yaw-settings
γ is found, similar to Gebraad et al. [2014a]. The maximum number of iterations is
Kmax and D indicates an uniform distribution. The cost-function c(γ) is described in
Equation 3-17 where γmin and γmax are the constraints on the search space. Ee Is the
exploration factor.

1: γi ← 0∀i ∈ U
2: k ← 0
3: update c(γ)
4: c̄← c(γ)
5: γ̄i = γi∀i ∈ U
6: while k ≤ Kmax do
7: k ← k + 1
8: update c(γ)
9: if c(γ) > c̄ then

10: γ̄i ← γi∀i ∈ U
11: c̄← c(γ)
12: end if
13: for i ∈ U do
14: R1 ← random value ∼ D(0, 1)
15: if R1 < Ee then
16: γi ← D(γmin, γmax)
17: else
18: γi ← γ̄i
19: end if
20: end for
21: end while

3-4-3 Gradient-based optimization

For the simulation results presented in Section 4-3, a gradient-based algorithm was
used. The decision for this algorithm was motivated by the fact that an evaluation of
the model of a 9-turbine setup takes 9.8s on a 3.30 GHz machine. The search space of 9
yaw-settings is sufficiently large to render any global optimization approach unfeasible
with the computational resources available for this work. Therefore, the necessity for a
more efficient optimization approach arises.

Gradient-based optimization algorithms are susceptible to local minimums. The discrete
wake zones that FLORIS maintains cause local minimums to occur in the search space.
Smoothing out the wake zones by fitting a curve removes this problem (Section 3-1-
1). To further speed up the optimization procedure, the algorithm was adapted for
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multi-threading using mpi4py Dalcín et al. [2008].

A limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to opti-
mize the yaw settings Avriel [2003]. This quasi-Newton algorithm uses an approximation
of the inverse Hessian to steer its search through the design space. Note that the search
space is not guaranteed to be convex, so this method doesn’t guarantee finding the global
optimum.
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Chapter 4

Simulation results

In this section, the results of three simulation scenarios are presented. In the first
scenario, a downstream turbine is swept through the wake of an upstream turbine in
order to study the effects of partial wake overlap on the power and the loads. The
second scenario will consist of various cases in which the yaw settings of an array of
2 turbines are optimized using a GT-approach. The final scenario performs a mixed-
objective optimization of power and loads of a 3x3 wind farm in all wind directions
using a gradient-based optimization approach. All simulations are done assuming a
constant wind velocity of U∞ = 8 m/s, air viscosity µ = 1.81206e−5 m3/s and air
density ρ = 1.225 kg/m3. Only the final simulation utilizes smoothing of the velocity
distribution, as described in Section 3-1-1.

4-1 The Effect of Partial Wake Overlap on Power Production
and Loads

The first simulation setup consists of an array of two wind turbines (Figure 4-1), spaced
6 rotor diameters apart in the x direction while both turbines are yawed into the wind
(γ = 0). The effects of partial wake overlap are investigated by sweeping turbine 2
through the wake of turbine 1 in the y-direction. The distance from the center of turbine
1 to the y-coordinate of turbine 2 is indicated by dY. The results of this simulation are
used to obtain the maximum values P̃max, M̃f,max and M̃e,max in the cost functional
(Equation 3-17).

The results are shown in Figure 4-2. It can be seen that partial wake overlap results in
a significant increase in the loads, which is unfavorable. Furthermore, the loading and
power production are not completely symmetric over the range of dY. The maximum
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loading is higher when the center of turbine 2 is above the wake center. This is likely
caused by the effect of the rotational direction of the rotor blade on the wake. Further-
more, several degrees of wake overlap differently affect the power production and the
loads. Full symmetric wake overlap (dY=0 m) results in close-to-minimum loading but
also sub-optimal power production. Partial wake overlap (i.e. dY=80 m) comes with an
increased power production, but also significantly increases the loads. Finally, no wake
overlap (i.e. dY=170 m) maximizes both the power and minimizes the loads. In the sit-
uation where dY=0, these optima might not be feasible by just yawing turbine 1 as the
maximum amount of wake deflection through yawing is limited. This forms motivation
for the claim that the potential load reduction while increasing the power production
for a given wind farm layout will strongly depend on the wind direction. This problem
is further addressed in the next section.

x [m]

y [m]

dY

Turbine 1

Turbine 2

Figure 4-1: Lay-out consisting of 2 turbines with an incoming wind velocity of U∞ = 8
m/s. Turbine 2 is swept through the wake of turbine 1

4-2 Optimization of the Power and the Loads for a 2-turbine
case

In this section, the optimization results are presented for an array of two turbines which
corresponds to Figure 4-1 for dY=0. The optimization is performed using a mixed-
objective cost-function (Equation 3-17) for the wind directions Φ ∈ {0◦, 5◦, 10◦}. The
results are obtained using the game-theoretic optimization approach (Section 3-4-2).
Through experiments it was determined that Kmax = 4000 iterations were sufficient for
the algorithm to closely approximate the global maximum with an exploration factor
Ee = 0.4. For each wind direction, the following cases will be considered:
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Figure 4-2: The total power production (P ), differential flapwise moment (∆Mf ) and
edgewise moment (∆Me) of turbine 2 versus dY
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• Baseline: The yaw-settings are chosen such that both turbines maximize their
individual power production. These settings are referred to as greedy.

• Case 1 (λ=1): Single-objective optimization of the power.

• Case 2 (λ=0.97): Multi-objective optimization of both the power and the loads.

• Case 3 (λ=0.90): Similar to Case 2, with a stronger emphasis on the loads.

• Case 4 (λ=0): Single-objective optimization of the loads.

The results are presented in Table 4-1. The optimized yaw settings are shown in Table 4-
2. A trend can be seen in each case over all wind directions. An optimization of the power
(λ = 1) will steer the wake of turbine 1 away from the downstream turbine, striving for
zero wake overlap. The optimizer also yaws the downstream turbine to accommodate
for rotational effects in the wake. The minimization of the loads (λ = 0) will set the yaw
of turbine 1 so that the wake is evenly distributed over the rotor disk of the downstream
turbine, or if possible, is avoided all together. The combined optimizations (λ = 0.97
and λ = 0.90) find a trade-off between the two objectives.
In general, optimizing the power production through yaw-misalignment heavily increases
the loads for Φ = 0, and decreases the loads for Φ = 5◦ and Φ = 10◦. In the case of
Φ = 0◦, there is only a small reduction in loads possible without heavily penalizing the
power production. For Φ = 5◦ and Φ = 10◦, Case 1-3 will result in both an increase in
power, and a great reduction in loading compared to the baseline. This has to do with
the fact that partial wake overlap was already present before the optimization. Case
2 and 3 are able to achieve additional reductions in loading opposed to Case 1 at the
expense of a small amount of power production.
The Pareto fronts of the cumulative power and differential loading for various wind
directions are depicted in Figure 4-3. It can be seen that for Φ = 0◦, increasing the
power comes with an inevitable increase of differential loading. For Φ = 5◦ and Φ = 10◦,
more of a trade-off can be made between power and loading. The use of a mixed-
objective optimization is most beneficial for Φ = 10◦, as a significant loading decrease
can be obtained at the expense of a small amount of power production.

4-3 Optimization of the Power and the Loads for a wind farm

This section presents the results of a omnidirectional optimization of a wind farm. A
wind farm consisting of 3 arrays of 3 wind turbines is optimized in all wind directions
Φ ∈ {0◦, 5◦, ..., 355◦}. The resulting power productions and loadings are averaged over all
wind directions and presented. The optimization is performed using a mixed-objective
cost-function (Equation 3-17) and the following cases will be considered:

• Baseline: The yaw-settings are chosen such that both turbines maximize their
individual power production. These settings are referred to as greedy.
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Table 4-1: Optimization results for various cost functions and wind directions of a 2-turbine
array. The results are expressed in % change compared to the baseline case

Φ Ptot
∑

∆Mf
∑

∆Me

0◦
λ = 1 3.75 342.71 352.89
λ = 0.97 3.58 304.53 313.06
λ = 0.90 -1.02 -93.99 -96.17
λ = 0 -18.69 -95.35 -96.76

5◦
λ = 1 5.49 -5.14 163.90
λ = 0.97 5.39 -10.07 150.97
λ = 0.90 5.39 -10.07 150.97
λ = 0 -53.01 -93.21 -84.20

10◦
λ = 1 0.98 -66.35 -93.01
λ = 0.97 0.92 -86.98 -96.95
λ = 0.90 0.68 -95.59 -99.38
λ = 0 -57.85 -98.45 -99.67

Table 4-2: Resulting yaw settings of the various optimizations

Baseline Case 1 (λ = 1) Case 2 (λ = 0.97) Case 3 (λ = 0.90) Case 4 (λ = 0)
γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

Φ = 0◦ 0◦ 0◦ 15.5◦ 0.3◦ 15.2◦ 0.3◦ −4.9◦ 0.3◦ −6.8◦ −40◦
Φ = 5◦ 0◦ 0◦ −13.6◦ 0.4◦ −15.2◦ 0.3◦ −15.2◦ 0.3◦ 39.9◦ −39.9◦
Φ = 10◦ 0◦ 0◦ −5.2◦ 0.3◦ −6.5◦ 0.4◦ −7.9◦ 0.3◦ −40◦ −40◦
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(a) Wind direction of 0◦

(b) Wind direction of 5◦

(c) Wind direction of 10◦

Figure 4-3: Pareto fronts of total power and cumulative differential loading for various
wind directions
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• Case 1 (λ = 1): Single-objective optimization of the power.

• Case 2 (0 < λ < 1): Multi-objective optimization of both the power and the loads.

• Case 3 (λ = 0): Single-objective optimization of the loads.

In Figure 4-4 and 4-5, the yaw-settings of a power-only optimization and a combined
optimization are compared. As the figure shows, the power optimization yawed the
first column of turbines to increase the power production of the second column. The
combined optimization did not, as that would have significantly increased the differential
loads. Nonetheless, the power production due to the optimized settings is still higher
than the baseline.

The results of the single-objective optimization of the power (λ = 1) are presented in
Figure 4-6a, 4-6c and 4-6e. It can be seen that for most of the wind directions, a gain in
power production can be obtained over the baseline. The differential flap and edgewise
loads decrease in wind directions where partial wake overlap was already present in
the baseline case. Situations where symmetrical wake overlap occurred in the baseline
case show significantly increased differential loads of up to 200% of the baseline when
optimized. This reveals a necessity for a trade-off between potential power gain and
change of differential loads.

500 1000 1500 2000 2500 3000

x [m]

500

1000
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2000

2500

3000

y
 [
m
]

Wind direction: 0 deg

P = 1.61 MW P = 0.55 MW P = 1.24 MW

P = 1.61 MW P = 0.50 MW P = 1.18 MW

P = 1.64 MW P = 0.64 MW P = 0.95 MW

Total power: 9.91 MW
mean dMf: 328.24 kNm
mean dMe: 69.47 kNm

Figure 4-4: Single-objective optimization of the power (λ = 1.0) for Φ = 0◦. As a
reference, the baseline power is

∑9
i=1 Pi = 8.92 MW, and the mean differential flapwise

and edgewise moments are respectively 168.03 kNm and 43.67 kNm

The results of the combined-objective optimization (λ = 0.8) are presented in Figure
4-6b, 4-6d and 4-6f. Compared to the single-objective optimization, it can be seen that
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500 1000 1500 2000 2500 3000
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Wind direction: 0 deg

P = 1.84 MW P = 0.32 MW P = 1.08 MW

P = 1.83 MW P = 0.24 MW P = 1.10 MW

P = 1.78 MW P = 0.25 MW P = 1.09 MW

Total power: 9.52 MW
mean dMf: 109.63 kNm
mean dMe: 26.21 kNm

Figure 4-5: Multi-objective optimization of power and loads (λ = 0.8) for Φ = 0◦. As
a reference, the baseline power is

∑9
i=1 Pi = 8.92 MW, and the mean differential flapwise

and edgewise moments are respectively 168.03 kNm and 43.67 kNm.

the magnitude of the optimized power has slightly reduced in most wind directions. On
the other hand loads at Φ = 0◦ and Φ = 120◦ have also decreased as the optimizer
sacrificed power production to decrease the loading.

Several optimization strategies with different weights for loads and power are presented
in Figure 4-7 and in Table 4-3. For each wind direction, the total power production,
mean differential flapwise and edgwise bending moments are measured (Section 3-4). The
results are averaged over all wind directions to obtain the final results. It can be seen
that both the power optimization λ = 1 and combined optimizations λ = {0.9, 0.8, 0.7}
result in increased power production over the baseline and reduced mean loading in the
wind farm.

A loads-only optimization reveals the greatest reduction in loading that can be achieved,
but suffers from reduced power production and is therefore not desirable. The mixed-
objective optimization sacrifices some power production for a much larger decrease of
the average differential loading of the wind farm. The mixed-objective optimization with
λ = 0.7 produces similar mean power as the baseline, but comes with a load reduction
of 40−45%. This suggests that yaw-misalignment could be used as a method to reduce
fatigue loading due to partial wake overlap.

A combined optimization for a single wind direction took on average 216 s on a 3.4 GHz
8-core system. The total simulation time for one tuning parameter in all wind directions
was 4.3 hours.

Mike T. van Dijk Master of Science Thesis



4-3 Optimization of the Power and the Loads for a wind farm 33

(a) Optimized power for various wind directions
(λ = 1.0)

(b) Optimized power for various wind directions
(λ = 0.8)

(c) Optimized ∆Mf for various wind directions
(λ = 1.0)

(d) Optimized ∆Mf for various wind directions
(λ = 0.8)

.

(e) Optimized ∆Me for various wind directions
(λ = 1.0)

(f) Optimized ∆Me for various wind directions
(λ = 0.8)

Figure 4-6: Simulation results for the full spectrum of wind directions. All results are
expressed as part of the baseline.
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Figure 4-7: Comparison of respectively the mean total wind farm power P , mean differential
flapwise ∆Mf and edgewise ∆Me loading for all wind directions Φ. The maximum and
minimum turbine loading for any wind direction that occurred in the wind farm are indicated.
The tuning parameter ’C’ is used analogous to λ.

Table 4-3: Comparison of respectively the mean total wind farm power P , mean differential
flapwise ∆Mf and edgewise ∆Me loading for all wind directions Φ. Results are expressed
in % change to the baseline.

mean P mean ∆Mf mean ∆Me

λ = 1 2.85% −8.17% −12.48%
λ = 0.9 2.74% −15.75% −20.10%
λ = 0.8 2.49% −26.12% −30.12%
λ = 0.7 1.53% −42.67% −45.70%
λ = 0 −18.72% −84.21% −85.04%
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Chapter 5

Conclusion, Discussion and
Recommendations

5-1 Conclusion and Discussion

This thesis aims to quantify the load variations due to partial wake overlap and inves-
tigates the effect thereof on the optimal yaw settings. Furthermore, the benefits are
evaluated of including differential loads in a wind farm power optimization using yaw
misalignment. The optimization is multi-objective in that it maximizes the power pro-
duction while taking into account the load variations. The power production and loads
were computed using an optimization framework that modeled yaw misalignment, wake
interaction and partial wake overlap for multi-turbine setups.

The results of the first simulation show that partial wake-overlap greatly increases the
differential flapwise and edgewise bending moments compared to full symmetrical wake
overlap. The results suggest that in cases where greedy settings would result in full wake
overlap, power optimization by yaw misalignment might not be desirable. This depends
on whether the wake can be redirected as to avoid the downstream turbine, because
partial wake overlap might cause the differential blade loading to increase significantly.

Various simulation cases of a 2-turbine setup for several wind directions confirmed this.
It was shown that optimizing for power will result in a significant increase in differential
rotor loading in situations where greedy settings would result in full symmetric wake
overlap. A decline was observed when the optimal yaw settings were able to greatly
decrease the wake overlap. The optimal yaw settings resulted in an increase in loading
of up to 350% for Φ = 0 but in a decrease for Φ = 5 and Φ = 10. This suggests that
yaw misalignment is a desirable method to increase the power in situations where the
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wake can be sufficiently directed away from the downstream turbine, as this positively
affects the rotor fatigue loads.

Finally, a mixed-objective power and loads optimization was performed on a wind farm
in all wind directions. A power only optimization was found to increase the mean
total omnidirectional power by 4% compared to the greedy settings and decrease the
mean differential flap and edgewise loads by respectively 19% and 21%. The mixed-
objective optimization found an omnidirectional power production of 1.9% and a mean
differential flap and edgewise loading decrease of respectively 41% and 50% compared to
greedy settings. This shows that yaw-misalignment can be beneficial to both increase the
power and decrease differential loading due to partial wake overlap if the optimization
algorithm takes into account the topology and the loading.

This work presents preliminary results of mixed-objective wind farm optimization using
yaw misalignment and is bound to a number of limitations. The optimization frame-
work used for this thesis utilizes steady-state models for the purpose of computational
efficiency. The use of dynamic models could increase the understanding of how partial
wake overlap affects wind turbine loading. Phenomena such as turbulence and the tran-
sition from full to partial wake overlap could be investigated. Furthermore, individual
pitch control might be able to mitigate a portion of the loading caused by partial wake
overlap.

The optimization utilizes the same tuning parameter λ (Equation 3-17) in every wind
direction while the shape of the cost-function might change. Since the parameter isn’t
tuned for every individual wind direction, the presented results might not be optimal.
Also, for the final simulation results the power and load results are averaged over all
wind directions, in stead of using a realistic wind spectrum. Doing so might provide
different results. Furthermore, the cost function is not convex and therefore the results
are not guaranteed to be optimal. Nonetheless, they are a notable improvement over the
baseline.

5-2 Recommendations

This work presents preliminary results and further research is required to provide con-
clusive evidence on the benefits of mixed-objective wind farm optimization using yaw-
misalignment. First of all, the use of dynamic models could increase the understanding
of how partial wake overlap affects wind turbine loading. Phenomena such as turbulence
and the transition from full to partial wake overlap could be investigated.

The implementation of a dynamic model would also allow more sophisticated techniques
for computing fatigue loads, such as Rainflow counting Downing and Socie [1982]. This
would necessitate increasing the computational efficiency of the model or access to more
powerful computational resources to keep the optimization time feasible. To verify that
the optimized yaw settings will indeed decrease the rotor fatigue loading while increasing
the power, a validation using high fidelity models and realistic wind data is required.
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Including other loads such as the flapwise bending moment, edgwise bending moment,
drivetrain torsion and tower bending moment in the cost function might provide different
optimal yaw settings. Also, the effect of wind shear is interesting to include as it has
been shown to affect the wind turbine fatigue Eggers et al. [2003].

Individual pitch control might be able to mitigate a portion of the rotor loads caused by
partial wake overlap. Therefore, it is recommended to evaluate the fatigue loading due
to partial wake overlap on a turbine with active individual pitch control.

Finally, it would be interesting to develop an online controller that simultaneously max-
imizes the power while mitigating the differential loads. A candidate model would be
FloriDyn Gebraad et al. [2015], a modified version of FLORIS with a delay model. The
computational efficiency of FloriDyn would allow for online optimization, and results can
be validated with high-fidelity simulation data. This would yet bring the state-of-the-art
one step closer to online optimization of power and loads of a real wind farm.
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