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Abstract. Masonry structures, integral components of architectural
heritage, are diffuse worldwide and continue to be interwoven within
modern infrastructures. The complex nature of their constituents has
driven active research toward understanding their mechanical behavior.
Accurately and robustly representing the nature of masonry constituents
is essential for structural analysis, design, and preservation tasks. This
study adopts an adjustable contact constitutive model recently pro-
posed to simulate bond behavior in masonry assemblages subjected to
in-plane shear-compression loading. The adopted contact constitutive
model, recently proposed by the authors within the Distinct Element
Method (DEM) framework, addresses the intricate behavior of unit-
mortar interfaces by employing a piecewise linear softening function
controlled by the user to capture the softening regime in tension and
shear. Meanwhile, the compressive region of the masonry interfaces is
controlled by a compressive cap with a radial return algorithm under the
explicit time-marching integration scheme of DEM to implicitly couple
the shear and compressive behavior. The performance of the constitutive
model was assessed on a set of calcium silicate wall experiments tested
under in-plane shear and compression loading and presented a compre-
hensive variety of failure modes. The experimental and numerical results
are compared on each system’s global and local behaviors. The findings
underscore the robustness of the proposed contact constitutive model in
accurately capturing the complex mechanical response of masonry and
highlight its potential for structural analysis and damage prediction of a
diverse spectrum of masonry structures.

Keywords: Masonry - Distinct element method - Contact constitutive
model - Piecewise linear softening - Multi-surface plasticity - In-plane
shear-compression tests
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1 Introduction

Unreinforced masonry (URM) structures are recognized as one of the earliest
human-made constructions because of their remarkable capacity to endure grav-
itational forces, cost efficiency, and straightforward construction process. It is
also generally known that URM structures are susceptible to damage due to
significant lateral loads, such as strong wind or earthquake loads. Considering
this, the study of the mechanical properties of URM structures has consistently
been a prominent area of research despite the declining global use of URM struc-
tures caused by the emergence of more modern construction materials, such as
reinforced concrete and steel.

In recent decades, with the increase in computational power, numerous
numerical modeling techniques have been proposed to investigate the mechanical
behavior of URM structures. These techniques vary in modeling complexity and
the tradeoff between computational time and prediction accuracy. The computa-
tional modeling of masonry structures is largely categorized into three groups [8]:
Macro-modeling approaches [1,11,13] where masonry is assumed as a continuum
body with no separation between masonry units and mortar joints so the dis-
crete nature of masonry is represented by either calibrated constitutive models
or homogenized procedures; Simplified micro-modeling approaches [2,4,6] where
bricks are continuum elements and mortar joints are defined as zero-thickness
interfaces where the system nonlinearity is lumped. and Detailed micro-modeling
approaches [3,14,15] where brick units, mortar layers, and the interfaces between
them are modeled separately. The numerical strategy proposed in this research
follows the simplified micro-modeling approach as it balances the modeling sim-
plicity offered by the macro-modeling approaches and the increased accuracy and
representation of localized damage in the detailed micro-modeling approaches.

This paper adopts a novel contact constitutive model, recently introduced
by the authors [10], to be utilized in a distinct element method (DEM) frame-
work within the simplified micro-modeling strategy to simulate a set of calcium
silicate masonry walls tested under in-plane shear-compression loading condi-
tions. The contact constitutive model includes the multi-surface plasticity con-
cept by Lourengo and Rots [7] with damage evolution law. The contact model
is adjustable as user-defined piecewise linear softening functions are used on the
tension and shear post-peak regimes, while hardening/softening law is defined
for the compression regime.

Numerical simulations of URM walls subjected to shear-compression loading
under different boundary conditions and shear ratios are conducted to demon-
strate the capability of the constitutive model under DEM in simulating the
complex responses of URM structures.

2 Brief Background of the Distinct Element Method

The contact constitutive model in this paper is developed within the DEM frame-
work, which uses the explicit time-marching integration solver to obtain equilib-
rium within the equations of motion. Under DEM, the units can be modeled as
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rigid or deformable blocks with linear elastic laws. The nodal displacement at
node point ¢ is obtained via a simple equation shown in Eq. (1).

T

U;

=l it At (1)

where u!" and u!  are the displacements at ¢ + At/2 and t — At/2, respectively,
At is the time increment, and ”Liit+ is the nodal velocity vector at t + At/2,
obtained through the equation of motion in Eq. (2). This is defined according to
the finite difference form of Newton’s second law of motion.

- At
U:it+ _ U:it + (EFl(t) _ Fdl) —
’ m

(2)
where ;' is the nodal velocity vector at the time ¢ — At/2, m is the nodal mass,
EFi(t) is the total force, and F; is the nodal damping force, defined in Eq. (3).

Fy;= a|EFi(t)|sgn(ut_) (3)

The damping force is based on a proportion of the total force, controlled by
a non-dimensional damping constant « set equal to 0.8, and the direction of the

velocity vector (owned by the sign function). Meanwhile, the total force EFi(t)
is defined in Eq. (4).

Fy=F + F{ + F] + F{ (4)

where F7? is the force due to internal stress at the deformable blocks, F; force
at the contact point, F! is the external load, and F? is the gravitational force.

The force at the contact point F¢ in Eq. (4) exists only at the nodal points of
the block that are in contact with the other blocks, i.e. along the block boundary.
This force is zero at nodal points outside the block boundary. The contact force
Ff is formulated in Eq. (5).

2
FC:Fn-nJrZFs,j (5)
j=1

where n is the unit normal vector towards the contacting bodies, F;, and Fj
are the normal and shear force vectors, respectively. The normal and shear force
vectors are respectively formulated in Eqgs. (6), (7).

F, := F, + AF, where AF, =k, - AU, - A, (6)
F,; :=F,;+ AF,; where AFs,j =k AU, ;- Ac (7)

where the superscript j denotes the two shear directions (j = 1,2), k,, and k, are
the normal and shear stiffnesses, respectively, AU,, and AU ; are the normal
and shear displacement increments, respectively, and A, is the subcontact area,
calculated as 1/3 of the triangular faces’ areas where the subcontact lies.
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At each timestep, the law of motion in Eq. (2) is applied, and the subcon-
tact force-displacement relations are defined. The integration of the equation of
motion gives new block positions and the contact displacement increments (Eq.
(1). The subcontact force-displacement law (Egs. (6), (7) under linear elastic
condition) is then implemented to obtain new subcontact forces, which are then
applied to Eq. (4) and subsequently Eq. (2). This cycle is repeated until either
equilibrium or failure is achieved. The latter refers to the condition where the
evaluated node is unable to find a steady-state flow as it accelerates to infinity.

3 Contact Constitutive Model

The forces at the contact points behave as indicated in Eq. (5) under the linear
elastic law. If elastoplastic laws are implemented to the contact points, the force
vector needs to be corrected to limit the failure load specified by the applied
contact laws. The contact constitutive law that is typically used for masonry
structures within the DEM framework is the Coulomb slip contact model.

In this model, the shear and normal stresses in tension develop according to
the linear elastic law until the stresses reach the peak strength. Upon damage in
each regime, the shear strength drops to the residual strength while the tensile
strength drops to zero. It is clear that this model provides a brittle representa-
tion of the unit-mortar interfaces, which is sufficient in predicting the ultimate
capacity of masonry structures. In reality, post-peak softening does occur in
masonry structures in tension and shear regimes [5]. Furthermore, the Coulomb
slip model assumes an infinite strength in the compression regime, whereas, in
reality, compressive crushing at both unit and mortar does occur on masonry
structures subjected to high axial stress or higher aspect ratio.

The novel contact constitutive model proposed in this paper utilizes the
multi-surface plasticity combined with the damage mechanics to address the
mechanical behavior of masonry constituents in tension, shear, and compres-
sion. This constitutive model is developed within the DEM framework under
the small displacement theory, where no new contacts are generated throughout
the numerical simulation. This is done to avoid unreasonable contact interpen-
etration upon compressive crushing at the unit-mortar interfaces.

The proposed contact model utilizes the multi-surface plasticity model, pre-
sented in Fig. 1. The yield function consists of three surfaces: a tension cut-off
region represented by Fj, the Coulomb-slip region defined in F5, and an ellip-
tical curve as a compression ‘cap’ to control the shear-compression in F3. The
mathematical functions for the yield surfaces are shown in Eq. (8).

Fi=o— fi(ul) (sa)
Fy = |7| 4+ otan ¢(us) — fs(us) (8b)
Fy=Cpp 02 +Css 72+ Cp, 0 — f2(u) (8¢)

where u¢ and u!, are the relative normal subcontact displacement in compression
and tension, respectively, o is the normal stress, T is the shear stress, ¢(us) is the
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Fig. 1. Two-dimensional yield surfaces in normal stress vs shear stress space

friction angle correlated to the shear displacement, f;(ul)) is the tensile strength
that evolves in accordance with the positive normal displacement, fs(us) is the
cohesive strength correlated to the shear displacement, f.(u) is the compressive
strength that evolves in accordance with the negative normal displacement, C,,,,
Css, and C), are the controlling parameter of the compression cap in Fig. 1.

An associated flow rule is implemented for F; and Fj, while the non-
associated flow rule is used for the Fy yield surface to address the dilatancy
of the mortar joints upon shear damage [16]. The mathematical function of the
plastic potential Gy is presented in Eq. (9).

G2:|T|+Utan1/}_fs(us) (9)

where 9 is the dilatancy angle.

The strength degradation of the contact points at the onset of damage is
controlled by damage parameters corresponding to damage in tension (d;), shear
(ds), and compression (d.). A similar approach to Pulatsu [12] is considered
where the tension and shear softening are coupled. This is achieved by combining
the damage parameters in shear and tension into a combined damage parameter
ds defined in Eq. (10).

dis = dy(tin) + ds (1) — (dy(tir,)ds (7)) (10)

The post-peak softening of the tensile strength is given in Eq. (11), where f;
is the peak tensile strength.

felug) = fe(1 = dys) (11)
The tensile damage parameter d;(ug) in Eq. (10) is a user-defined value that
depends on the normal displacement ratio, defined in Eq. (12).

ul ft
2— where upp = —
Unp,t kn

(12)

Uy =
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The tabulated values provided by the users are the table of pairs (up,d:),
where u, begins at 1 at the peak and decreases to zero at the residual state,
while d; starts at zero at the peak and increases to 1 at the residual state. The
tabulated values allow users to approximate any given shapes of the post-peak
softening curve in tension through a piecewise linear function.

The formulation in shear is similar to the tension, where the shear displace-
ment ratio controls the shear damage parameter ds(as) in Eq. (10), shown in
Eq. (13).

Us
Us = 13
&= (13)

where ug), is the displacement at peak shear strength, defined in Eq. (14).

T,
Usp = k—z (14)
where 7, is the peak shear strength defined in Eq. (15).

Tp = ¢p — 0 tan(gp) (15)

where ¢, and ¢, are the peak cohesion strength and friction angle, respectively.

The post-peak shear strength is formulated according to the Mohr-Coulomb
envelope where the cohesion ¢ and the friction angle depend on a user-defined
shear damage parameter ds, as shown in Eq. (16).

T('as) = C(ﬂs) - Utan(¢) (ﬂs) (16)

where c(us) and tan(¢)(us) are the post-peak cohesion and friction angle, respec-
tively, formulated in Eq. (17).

c(ts) = ¢ + (cp — ) (1 — dys) (17a)

tan(¢)(us) = tan(¢,) + (tan(dp) — tan(dy))(1 — dis) (17b)

Similar to the tension regime, the shear damage parameter is defined by a
table of pairs (us,ds) where u; starts at 1 at peak and reduces to zero at residual
state while ds starts at zero at peak and increases to 1 at residual state.

Finally, the behavior of the contact model in compression is controlled
by a hardening/softening law. The hardening phase starts after the initial
linear-elastic phase, typically observed between 30% to 40% of the compres-
sive strength. The hardening phase is defined by a parabolic function shown in
Eq. (18).

2u; vel u2
UC(UZ) =0 + (pr - fc;el) —ne . —inel (18)

Uep Uep
where o.(uf,) is the current compressive stress during the hardening phase, fe.e
is the elastic compressive stress (set at 30% of the compressive strength by
default), fcp is the peak compressive strength, u., is the normal compressive
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displacement at peak compressive strength and w;,e; is the inelastic normal
compressive displacement.

The inelastic displacement is the irrecoverable displacement calculated as the
total joint displacement (u¢) subtracted by the displacement at elastic compres-
sive stress. The peak compressive displacement is formulated in Eq. (19), which
is controlled by a non-dimensional parameter n, the factor of the supposed dis-
placement at peak compressive strength under the initial stiffness.

PR ) 19
Uep n kn ( )

The compressive damage is assumed to be initiated after the peak compres-
sive strength is reached. The current compressive strength o.(uf), after peak

strength is reached, is shown in Eq. (20).

oe(uy) = (L —de) - fep (20)

The compressive damage parameter d. in Eq. (20) is based on the implemen-
tation by Lourengo and Rots [7], defined in Eq. (21).

0, Uy, < Ueyp
c_ 2
do= 4 (1) () ey U, <o (21)

1 — &) _ fc?’r}c_pfm‘ exp <O[}L;L*ucm> u% Z Uem

fcp cm_fcr

where f.,, is the intermediate compressive stress between peak and residual com-
pressive strength, defined as the point of inflection from quadratic to exponential
softening, f., is the residual compressive strength, u.,, is the displacement at
intermediate compressive strength, and « is the parameter defining the slope of
the exponential function in Eq. (22).

O[:2fcm7fcp (22)

Uem — ucp
The intermediate compressive strength is fixed as the average value between
peak and residual compressive strength. Similar to the displacement at peak
compressive strength in Eq. (19), the displacement at intermediate compressive
strength is controlled by a non-dimensional parameter m as a factor to the
displacement at peak compressive strength, as defined in Eq. (23).

Uem = M - Uep (23)

where the non-dimensional parameter m is defined in Eq. (24).

2
Ge— 0502 — 0.65(ttep — Ueser) fop + 0.75% + 0.25¢
m= n (24)
K+¢&
where G, is the compressive fracture energy, u..; is the displacement at elastic
compressive stress fe.;, defined as fe.e1/kn, & and € are defined in Eq. (25).
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R = ucpfcp and 5 = Ucpfcr (25)

By correlating the m parameter to the compressive fracture energy, the frac-
ture energy under the hardening/softening law can be approximated to that
calculated based on the multi-linear softening law. The contact model is imple-
mented in $DEC, the commercial software package for DEM, as a user-defined
contact constitutive model. In the following section, this modeling strategy will
be validated against an experiment on calcium silicate masonry walls subjected
to shear-compression loading under different boundary conditions and shear
ratios.

4 Numerical Simulations of Calcium-silicate Masonry
Walls Subjected to In-Plane Shear-Compression
Loading

The structural response of four walls with different shear ratios and bound-
ary conditions from the experimental campaign reported by Messali et al. [9] is
simulated to show the suitability of the proposed numerical modeling strategy
to predict the performance of such type of structures. Two couples of calcium
silicate (CS) squat and slender walls with double-clamped and cantilever config-
urations were selected. The CS walls were subjected to vertical pre-compression
and quasi-static in-plane loads until the near-collapse condition was reached.
However, the numerical modeling in this paper is limited to only monotonic in-
plane loads. Hence, the global response in terms of the force-displacement curve
is compared to the envelope curve from the experimental results, as well as the
crack pattern.

4.1 Experimental and Numerical Setups

The geometrical properties of the walls are presented in Table 1. The masonry
wall specimen comprises 34 courses of CS bricks with nominal dimensions of 210
x 71 x 102 mm (L x H x W) with 10mm of mortar layers. For the numeri-
cal simulation, the masonry unit is expanded to account for the zero-thickness
interfaces representing the mortar joints. Therefore, the unit dimensions for the
numerical simulation are set to 220 x 81 x 102 mm.

The experimental crack patterns observed at the end of the tests for the
selected specimens are presented in Fig. 2. The behavior of the slender walls
was mostly governed by a rocking mechanism with the opening of bed joints
at the top and bottom corners of the wall for the double-clamped specimen
(TUD-COMP-0a) and only the bottom corner for the cantilever specimen (TUD-
COMP-1). The opening of the bed joints was then followed by short diagonal
cracks that opened slightly close to the corners. After the peak load was achieved,
splitting of the brick units and sliding along the bed joints occurred along with
toe crushing, defining the failure mechanism of the slender walls.
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Table 1. Geometrical properties of validated wall specimens [9]
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Specimen name

TUD-COMP-1 1.1 x 2.76 x 0.102
TUD-COMP-4 4.0 x 2.76 x 0.102 0.35
TUD-COMP-6 4.0 x 2.76 x 0.102 0.80
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Meanwhile, the behavior of the squat walls was governed by shear-dominated
failure. For both cases of TUD-COMP-4 and TUD-COMP-6, the diagonal shear
cracks initiated from regions close to the center and then propagated towards the
corners of the walls. The diagonal cracks of the TUD-COMP-4 were apparent and
localized without any change of inclination during each loading cycle. Meanwhile,
the diagonal cracks of the TUD-COMP-6 specimen were more dispersed, with
several diagonal cracks parallel to the main diagonal, followed by the splitting
of the brick units along the diagonal cracks.

A single set of material properties was selected for all numerical simulations.
The adopted values are listed in Table 2. The material properties are obtained
from the material companion tests. The tensile strength, cohesive strength, and
compression peak ratio of the interfaces were calibrated to match the global
experimental responses.

Table 2. Material properties of the calcium silicate masonry walls

Properties Symbol/Unit  |[Value
Bed joint|Head joint

Unit properties

Modulus of elasticity Ey MPa 4800
Poisson’s ratio v - 0.16

Density o kg m~3/1800

Interface properties

Modulus of elasticity F. MPa [3174 2212

Mortar compressive strength |f,, MPa 6.59
Mortar modulus of elasticity® Ey, MPa [1973.7

Tensile strength® ft MPa 0.1

Cohesive strength® fs MPa |0.11

Friction coeflicient 7 - 0.43
Compressive strength fe MPa |7.55 5.93
Compressive fracture energy |G, N m~! 15000 31500
Peak ratio® n -] 68.5

*Value derived from equations reported in Jafari et al. [5]
bValues calibrated to match global experimental responses

The normal and shear stiffnesses, required for correlating the contact force
and displacement in Eqs. (6), (7), respectively, are defined in Eq. (26) [8]. The
stiffnesses are calculated from the properties of the masonry constituents and
the joint thickness.

EvE, K,

fy = ——Em o =
tm(Ey — By 21 + v)

(26)
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where t,, is the mortar thickness, set to 10mm for this experimental validation.

The user-defined softening functions in shear and tension are defined by the
exponential functions by Lourengo and Rots [7] divided into 200 segments. The
post-peak softening behaviors are presented in Fig. 3. The scalars plotted in
Fig. 3 are non-dimensional.

ds_ratio| dt_ratio
1 1
0.8 0.8
0.6 0.6
= <

0.4 0.4

0.2 —ds CS 0.2 —dtcs
0 0

0 50 100 150 200 250 300 0 50 100 150 200 250
s U
(a) d; ratio (b) d; ratio

Fig. 3. Shear and tensile post-peak softening behaviors for the CS wall test

For all validated walls, the loads and supports are applied via blocks with
high modulus of elasticity connected to the wall models with linear elastic contact
law. The block discretization of the model for slender and squat walls is shown in
Fig. 4. For the sake of simplicity, only the representative model is presented
in Fig. 4, i.e. TUD-COMP-1 and TUD-COMP-4 for the cantilever-slender and
double-clamped-squat walls, respectively. For the walls with the cantilever con-
figuration, the in-plane rotation of the top ’rigid’ block is freed, with the block
height extended to the point where zero moment is observed according to the
wall shear ratio. This is to ensure that the applied lateral load imposed the
correct amount of moment at the wall base.

For the walls with the double-clamped configuration, the in-plane rotation of
the top block is fixed, and since the location of the applied load does not matter in
this case, the height of the top block is equal to the bottom block. The loading
sequence is the same for both cantilever and double-clamped configurations.
The wall system is first brought to equilibrium under gravity load. The pre-
compression load is then applied as distributed loads at the top surface of the
top block, and the equilibrium is solved again. Once stabilized, the lateral load
is applied as velocity with a constant rate of Imm s~'.

The velocity is only applied at the nodes at the top surface of the top block
for the cantilever configuration, while the velocity is applied to the entire top
block in the double-clamped configuration. The lateral reaction force is obtained
at the bottom rigid block, while the lateral displacement is recorded at the top
block. The simulation is stopped once the maximum displacement at the top
rigid block reaches the net displacement corresponding to each experimental
result.
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TUD-COMP-1 TUD-COMP-4

Fig. 4. Brick discretization of the CS wall test.

4.2 Predicted Structural Performance

In this section, the results of the numerical validations of the four benchmark
walls are presented. The global behavior in terms of the force-displacement curve
and local behavior in terms of the damage pattern are compared and discussed.

Comparison of Global Behavior The comparison of the force-displacement
curves across all four wall models against the experimental envelope curves is
presented in Fig. 5. It is important to note that only experimental envelope
curves on the loading direction aligned with the numerical simulation are con-
sidered in the comparison. In general, the global behavior of the numerically
predicted values is in agreement with the experimentally observed responses.

It can be observed, for the slender wall cases, that the numerical model
overestimated the maximum observed base shear compared to the experimental
responses. The TUD-COMP-0a model predicted the maximum peak load within
20% of the experimentally observed value, while the peak load predicted by the
TUD-COMP-1 model was 40% higher compared to the experimental results.
However, similar to the experimentally observed behavior, both slender wall
models exhibited a ductile response with force degradation observed at the later
stage of the analysis for the TUD-COMP-0a model, while no force degradation
occurred on the TUD-COMP-1 model until the end of the analysis.

It is important to highlight that even though the numerical response of TUD-
COMP-0a overestimated the experimentally observed envelope curve in the pos-
itive direction (the direction that aligned with the numerical loading direction),
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Fig. 5. Comparison experimental and numerical force-displacement curves.

the numerical force-displacement response underestimated the envelope curve in
the negative direction, indicating the asymmetric response of the experimental
TUD-COMP-0a specimen. This shows that the accumulation of damage during
cyclic loading in one direction could affect the behavior in the other direction.

Furthermore, while the peak load was also overestimated for the case of
TUD-COMP-1, it has been reported in Messali et al. [9] that the measured peak
load of TUD-COMP-1 wall specimen was considerably lower than the predicted
values from analytical and numerical simulations. It was also reported in the
experimental findings that in the subsequent test of TUD-COMP-2 with the
same aspect ratio and boundary condition, the observed peak load was only
15% lower than TUD-COMP-1 even though the vertical pre-compression stress
was 28.5% lower.

In contrast to the slender wall specimens, the peak shear load observed in
the squat wall specimens was considerably higher, but the squat walls failed
at a smaller drift when compared to the slender wall specimens. The numeri-
cal force-displacement response of the squat wall models predicted by the pro-
posed modeling strategy was also in good agreement with the experimentally
observed responses with strength degradation observed after the peak capacity
was reached. While both slender wall models overestimated the experimentally
observed peak capacity, both squat wall models underestimated the peak capac-
ity with less than 10% relative error. Nevertheless, it can be seen that the global
behavior of the experimental wall specimens was predicted by the numerical
model with an acceptable accuracy.

Comparison of Local Behavior The numerically predicted crack patterns of
all wall models at the end of the analysis are presented in Fig. 6. The crack
pattern was magnified 30 times, with the undeformed configuration shown in
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Fig. 6. Crack pattern of the models at the end of the analysis (Def factor: 30).

grey shading, for better visualization. It is evident from the numerical crack
patterns that the predicted local behaviors of all models were in good agreement
with the experimentally observed crack patterns, shown in Fig. 2.

For the double-clamped slender wall model (TUD-COMP-0a), it is clear that
a diagonal shear crack opened at the bottom section of the wall model and prop-
agated from one corner to the other. Furthermore, flexural cracks that opened
from one end to the other occurred at the top-most course of the wall model,
which also existed in the experimentally observed crack pattern. Crushing of the
compressed toe was observed at the top-left and bottom-right sections of the
wall, visualized in the form of block interpenetration in Fig. 6.

The localization of the damage in the double-clamped squat wall model
(TUD-COMP-4) was also in relatively good agreement with the experimentally
observed response. The diagonal shear crack opened and localized in one major
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diagonal crack until the end of the analysis. No splitting of the brick units was
found along the diagonal crack, which was consistent with the experimental find-
ings. Toe crushing was observed at the bottom right corner of the wall model at
the later stage of the analysis.

The damage pattern in the cantilever slender wall of TUD-COMP-1 was
slightly different compared to the experimental response, where three flexural
cracks occurred at the bottom section of the wall with no occurrence of diagonal
cracks. However, consistent with the experimental response, no flexural cracks
were found at the top section of the wall model.

Finally, the damage pattern in the cantilever squat wall model of TUD-
COMP-6 was somewhat in good agreement with that observed in the experi-
ment. In contrast with the double-clamped model of TUD-COMP-4, the diago-
nal crack was slightly dispersed with several splitting of the brick units at the
bottom-right corner of the wall close to the compressed toes. Further dispersion
of the diagonal cracks into multiple cracks was determined in the experiment
due to the cyclic loading condition and could, therefore, not be captured via the
monotonic loading condition imposed on the numerical simulation. Toe crushing
was also observed at the bottom-right corner of the wall, represented as block
interpenetration.

With the lateral velocity of 1.0mm s~! and the average tetrahedral aspect
ratio (ratio of shortest edge-length to longest edge-length) of 0.61, the required
timestep to achieve stability for all models was set at 3.6x1076. The total elapsed
time for the squat wall models was 3 days using the commercial Windows laptop
with a 2.6 GHz Intel Core 19 processor and 32 GB of memory. Meanwhile, the
total elapsed time for the slender wall models was 5 days using a Windows
workstation with a 3.2 GHz Intel Xeon processor and 512 GB of memory. The
elapsed time was longer in the slender wall models since the wall drift was larger
compared to the squat wall models.

It is clear that the numerical modeling strategy lacks computational efficiency
with regard to the time required to complete the analysis, as the explicit time-
marching integration scheme was conditionally stable depending on the time
steps required to achieve stability. However, it is also important to note that in
contrast to the implicit-based numerical simulations, the DEM framework was
able to conduct the whole analysis in one run without any intervention in between
the simulations due to convergence issues or numerical instabilities. Therefore,
the stopping criterion also needs to be properly defined by the modelers, e.g.
by imposing a limiting displacement that stops the analysis when the maximum
displacement of the system reaches the limit.

5 Conclusions

In this paper, a robust contact constitutive model recently proposed by the
authors within the simplified micro-modeling approach using the distinct element
method (DEM) is adopted to simulate the structural response of unreinforced
masonry (URM) walls subjected to in-plane shear-compression loading. The con-
stitutive model uses a multi-surface plasticity concept with damage mechanics to
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account for the tension, shear, compression, and mixed modes failure. Piecewise
linear softening functions are used to define the post-peak degradation in tensile
and shear regimes, while the hardening/softening function is implemented in the
compressive regime.

The proposed contact model is used to simulate a set of experiments on
calcium-silicate walls subjected to pre-compression and cyclic in-plane lateral
loads with different aspect ratios and boundary conditions. The global behavior
in terms of the force-displacement curve simulated by the numerical models
was in good agreement with the experimentally obtained curve, even though
the experimental peak load was overestimated in the slender wall models and
underestimated in the squat wall models. The local behavior in terms of predicted
failure mechanisms also matched those from the experiments with localization
of the crack pattern clearly represented in the numerical models. Even though
the robustness is clear in terms of the fact that convergence issues and numerical
instabilities are alleviated in the explicit integration scheme, the computational
efficiency in terms of elapsed time could still be improved.

The proposed numerical modeling strategy is just the first stage of the imple-
mentation of the contact model for masonry structures within the DEM frame-
work. Refinements of this model will include the stiffness degradation in the
unit-mortar interfaces and potential crack surfaces of the brick units to accom-
modate the behavior of masonry structures when subjected to cyclic loading and
the study of the variability of material properties to assess the stochastic nature
of masonry structures.
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