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Abstract
The present study introduces an automated multidisciplinary optimization (MDO) workflow that, for the first time, couples 
an explicit dynamic bird strike analysis with a post-impact static stress check. This joint problem is solved during prelimi-
nary wing sizing by integrating batch Bayesian optimization on Kriging surrogates with a variance-based variable screen-
ing procedure. The optimization problem comprises 19 thickness design variables and two highly non-linear constraints, 
imposing a maximum leading edge penetration and a maximum post-impact front spar stress while minimizing wing mass. 
The workflow is demonstrated on a five-bay metallic wing segment, yielding a 43% weight saving over the best-performing 
design during initial data generation while respecting CS 25.631 crashworthiness limits. Results demonstrated substantial 
computational savings by variable screening and highlighted the necessity of the stress constraint, as designs satisfying only 
the penetration depth requirement could still experience critical post-impact stress levels.

Keywords  Crashworthiness · Bird strike · Design · Bayesian optimization · Kriging · Variable screening

1  Introduction

Often perceived as rare anomalies, bird strikes are in real-
ity a significant threat to aviation safety. Goraj and Kus-
tron (2018), who conducted a review on research trends in 
both bird strike and hail impact simulations on wing lead-
ing edges, estimate that one bird strike occurs every 2,000 
flights. The International Civil Aviation Organization, 
ICAO, has put in place the ICAO Bird Strike Information 
System, IBIS, which has been collecting and analysing wild-
life strike reports since 1980. Between 2016 and 2021, the 
International Civil Aviation Organization (2023) concluded 

that 3% of such incidents resulted in damage to aircraft com-
ponents, 14% of which affected the wings.

Taking into account these three estimates, the chance of 
wing damage from a bird strike stands at a seemingly neg-
ligible 0.00021%. However, the sheer volume of air traf-
fic amplifies this risk. In 2024 alone, Europe recorded 10.7 
million flights (Eurocontrol 2025), suggesting that approxi-
mately 22 aircraft may have experienced wing damage due 
to bird strikes. These approximate calculations underscore 
that bird strikes are not mere statistical outliers, but persis-
tent threats requiring robust design.

Acknowledging this hazard, the European Union Avia-
tion Safety Agency (EASA) has established stringent struc-
tural requirements to safeguard aircraft integrity, such as 
CS 25.631:

 “The aeroplane must be designed to assure capability 
of continued safe flight and landing of the aeroplane 
after impact with a 4 lbs bird when the velocity of the 
aeroplane (relative to the bird along the aeroplane 
flight path) is equal to Vc at sea-level or 0.85 Vc at 
8000 ft, whichever is more critical. Compliance may 
be shown by analysis only when based on tests carried 
out on sufficiently representative structures of similar 
design.” 
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Designing aircraft structures to withstand bird strikes 
while simultaneously meeting diverse performance criteria 
requires a careful equilibrium of competing design factors. 
Compliant structures are ideal for absorbing the kinetic 
energy of an impact through large deformations, but fall 
short on static strength requirements which favour rigidity 
under normal operational loads. These conflicting demands 
call for multidisciplinary design optimization (MDO), which 
was also used by Schuhmacher et al. (2002) in the pre-
liminary sizing of the wingboxes for the Fairchild Dornier 
regional jet family. The authors highlighted that focusing 
on a limited number of load cases in aircraft design can 
neglect essential criteria, leading to costly revisions when 
the full set of requirements is assessed later. Therefore, the 
preliminary design process should ideally consider as many 
requirements as possible.

Yet, incorporating crashworthiness into optimization is 
no small feat. Crash analyses are computationally inten-
sive due to their highly non-linear nature, involving large 
deformations, material non-linearities, multiple contacts and 
progressive fracture. Furthermore, high strain rates require 
knowledge about additional material parameters that might 
not be readily available. As a consequence, gradient infor-
mation cannot be acquired easily, limiting the applicability 
of many traditional optimization strategies.

To navigate these challenges, surrogate models emerge 
as a powerful solution, capable of approximating highly 
non-linear functions. Although optimization can be car-
ried out on such approximations directly, coupling them 
with Bayesian optimization offers a systematic approach to 
efficiently balance exploration and exploitation within the 
design space. Specifically, Bayesian optimization leverages 
the uncertainty quantification provided by surrogate models 
such as Kriging to guide sampling, enabling the solution of 
constrained optimization problems without gradient infor-
mation, while simultaneously reducing the required number 
of computationally expensive crash analyses compared to 
using surrogate models alone.

Additionally, the preliminary design process often 
involves a high number of variables, leading to the infa-
mous ‘curse of dimensionality’, which was first put for-
ward by Bellman and Kalaba (1959). While their study was 
related to a mathematical framework for adaptive control 
processes using dynamic programming, it was acknowl-
edged that increasing the dimensionality of a design space 
leads to an exponential increase in the number of neces-
sary data points and to difficulties in model fitting. The 
same is reiterated by Viana et al (2021), who conducted a 
review on surrogate modelling in the context of multidis-
ciplinary structural optimization, recommending to reduce 

the dimensionality of the problem if there are more than 
10 variables.

Surrogate models have been identified as a viable solu-
tion by other studies related to crashworthiness optimization 
as well. Bisagni et al (2002) conducted structural optimi-
zation on a helicopter subfloor structure using Artificial 
Neural Networks. A sensitivity study was carried out by 
performing multiple finite element analyses, and the most 
influential variables were kept for the optimization process. 
Building on this work, Lanzi et al (2004) decomposed the 
entire structure into smaller interconnected substructures, 
leading to a lower-fidelity model. The behaviour of each 
substructure was approximated using Artificial Neural 
Networks utilized within a genetic algorithm optimization. 
While crash efficiency improved less (12% vs. 25%), sig-
nificant CPU time savings enhanced the optimization pro-
cess, as only 93 finite element analyses were required, while 
employing genetic algorithms without surrogate models 
was expected to necessitate 73,500 analyses for 23 design 
variables.

With respect to dimensionality reduction, Craig et al 
(2005) conducted variable screening in the crashworthiness 
field by integrating analysis of variance (ANOVA) with lin-
ear approximations of crash-related parameters, effectively 
ranking variables based on their influence. This innovative 
strategy led to a computational time reduction exceeding 
30% compared to tackling the same problem without vari-
able screening.

Turning to bird strike crashworthiness requirements 
specifically, Pahange and Abolbashari (2016) conducted a 
multi-objective optimization aiming to reduce both the mass 
and leading edge intrusion of a riveted metallic wing struc-
ture under bird strike conditions. Beginning with a Taguchi 
design of experiments, they identified the most significant 
variables using ANOVA as well. The multiple objectives 
were combined into a single response function through Grey 
Relational Analysis. However, this study did not utilize sur-
rogate models, which could have enabled the exploration 
of a wider range of designs and potentially a more efficient 
optimization.

Another study conducted by Ollar et al (2017) started 
from the assumption that a bird strike is a local event, 
allowing significant components to be identified through 
engineering judgment. Surrogate models for the structural 
response of the wing impacted at various locations were 
constructed, enforcing a maximum intrusion constraint in 
the leading edge region.

The present optimization framework for bird strike crash-
worthiness brings two advances. First, it embeds an explicit 
dynamic impact simulation and a subsequent static stress 
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check inside the same optimization loop. Second, it solves 
the resulting 19-variable, two-constraint sizing problem 
with a Bayesian surrogate optimizer that incorporates the 
variance-based variable screening procedure of Schonlau 
and Welch (2006). One constraint limits the penetration 
depth of the leading edge during impact, while the other 
caps the peak stress in the damaged front spar under rep-
resentative ‘get-home’ loads. Because the static analysis is 
run on the deformed geometry and material state produced 
by the impact simulation, the link between dynamic damage 
and residual strength remains fully consistent. This combi-
nation represents a unique approach of taking bird strike 
crashworthiness requirements into consideration during an 
optimization procedure.

The paper is structured as follows: section 2 details the 
case study and how the objective and constraint data are 
gathered. The proposed methodology is then outlined in 
section 3, including initial data generation, model fitting, 
variable ranking, and Bayesian optimization techniques. The 
results are presented in section 4, where each step of the 
methodology is discussed, with a particular focus on the 
impact of the variable ranking procedure on optimization 
efficiency. Finally, section 5 offers brief conclusions and 
recommendations for future research.

2 � Case study

2.1 � Problem description

A five-bay metallic wing segment impacted by a 1.81 kg bird 
at 150 m/s is examined. The wing structure is adapted from 
the Fokker F27 Friendship and Fokker 50 aircraft, which 
are selected due to their relatively low cruise velocities of 
approximately 150 m/s , simplifying bird strike analyses 
thanks to the lower kinetic energy the leading edge must 
absorb and the lower anticipated strain rates. Table 1 sum-
marizes all relevant geometric data.

As illustrated in Fig. 1, 6 stringers are placed on the lower 
and upper skin panels, respectively. Six nose ribs are present, 
positioned in the same planes as the corresponding wingbox 
ribs. For simplicity, it is assumed that the material of all 
components is Aluminium 2024-T3, whose properties are 
given in Sect. 2.2.1. The optimization problem comprises 
19 design variables, each representing specific thicknesses 
within the wing structure, as depicted in Fig. 1, with their 
respective ranges and labels detailed in Table 2.

The objective of this case study is to minimize the weight 
of the wing while accounting for two constraints. The first 
constraint ( c1 ) relates to bird strike crashworthiness, imposing 
a maximum penetration depth of 240 mm, corresponding to 

Fig. 1   The geometry of the wing model used for methodology dem-
onstration along with explanatory notes on the design variables. Note: 
upper skin panels not included for clarity

Table 1   Summary of the geometrical features of the wing

Property or component Geometrical features

Airfoil NACA 0015
Span 2250 mm

Chord 2400 mm

Spars Flange width: 14 mm

Front spar at 20% chord
Rear spar at 80% chord

Omega stringers Lower flange width: 15 mm

Upper flange width: 20 mm

Height: 25 mm

Ribs Flange width: 14 mm

Table 2   Summary of all design variables and their respective ranges. 
Note: ‘SP’, ‘WR’, ‘RS’, ‘FS’, ‘NR’ and ‘St’ stand for skin panel, 
wingbox rib, rear spar, front spar, nose rib and stringer, respectively

Design variable Thickness range [mm]

Spars: 2 variables, FS & RS 1.5 – 3.5
Stringers: 6 variables, St1-6 0.8 – 2.0
Ribs: 2 variables, NR & WR 0.8 – 2.5
Skin panels: 9 variables, SP1-9 1.0 – 3.5
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half the distance between the leading edge and the front spar. c1 
is therefore computed as the difference between the actual and 
desired maximum penetration depth. It is assumed that analys-
ing this limited portion of the entire wing is sufficient for dem-
onstrating the proposed methodology, and that the critical bird 
strike location is at the middle bay leading edge. The second 
constraint ( c2 ) relates to the remaining static strength of the 
damaged wing, emulating the ‘get-home’ flight conditions fol-
lowing a bird strike, as specified in CS 25.631, herein imple-
mented as a maximum allowable stress of 80% of the yield 
stress on all the elements of the front spar, i.e., 295 MPa as will 
be given in Sect. 2.2.1 concerning material properties. Simi-
larly, c2 is computed as the difference between the actual and 
desired maximum stress. Denoting by D the 19-dimensional 
design space [1.5, 3.5]2 × [0.8, 2.0]6 × [0.8, 2.5]2 × [1.0, 3.5]9 
as explained back in Table 2, the optimization problem can be 
written as follows:

2.2 � Analysis workflow

Figure 2 illustrates the proposed analysis workflow, consist-
ing of the following steps: 

1.	 Modal analysis: Extract the first natural frequency of 
the model to apply Rayleigh damping for the dynamic 
relaxation of the bird impact simulation, detailed in 
Appendix A.

2.	 Explicit dynamic bird strike simulation to extract c1 , the 
maximum penetration depth constraint. Dynamic relaxa-
tion is applied to reach a quasi-static state within a rea-
sonable analysis time, as detailed in Appendix A. The 
analysis is terminated once stabilization of the kinetic 
and strain energies occurs. Automatic checks are made 

(1)
minimize weight(x)

with respect to x ∈ D

subject to c1,2(x) ≤ 0,

Fig. 2   Analysis workflow and details to obtain the constraints: 1) maximum penetration depth; 2) stresses at the front spar of the damaged wing
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to ensure that the hourglass strain energy remains below 
5%. Hourglass is present due to the use of the computa-
tionally efficient S4R elements.

3.	 Static analysis to evaluate the remaining static strength 
and extract the maximum stress experienced on the front 
spar.

In all cases, the boundary condition consists of the root rib 
being clamped.

2.2.1 � Material properties

The Johnson-Cook model with strain rate dependency is 
employed for the plasticity model, as defined in Eq. 2. A, 
B, n, and C are material parameters, where �y represents the 
yield stress, �p is the equivalent plastic strain, and 𝜀p denotes 
the equivalent plastic strain rate. All material parameters are 
provided in Table 3, based on data from Lesuer (2009, p. 8).

Due to the deletion of elements upon failure, a progres-
sive damage criterion is necessary. Although Lesuer (2009) 
provides parameters for the Johnson-Cook damage initiation 
criterion, it is applicable only to Abaqus/Explicit (Dassault 
Systèmes 2023a, Johnson-Cook criterion section). Since the 
static analysis is carried out in Abaqus/Standard based on 
the results from the explicit simulation, this criterion cannot 
be employed. Consequently, a ductile damage criterion in 
tabular format will be used, with data provided by Vershinin 
(2015). As for damage evolution, the plastic displacement 
formulation has been chosen, as its value of upl

f
= 0.001 mm 

was readily found in Klosak et al (2021).

(2)𝜎y =
[
A + B(𝜀p)

n
][
1 + C ln 𝜀p

]

2.2.2 � Explicit dynamic bird strike analysis

To model the bird impact, a Smoothed Particle Hydro-
dynamics (SPH) formulation was employed for the bird, 
generated internally within GKN Fokker following the 
Extended Weighted Voronoi Tessellation (EWVT) algorithm 
proposed by Siemann and Ritt (2019). The resulting bird 
model comprises 10,000 particles and is shaped as a cylinder 
with hemispherical caps, maintaining a length-to-diameter 
ratio of 2 and material density of 950 kg/m3 . The equation 
of state, relating pressure to volumetric strain, was defined 
using tabular data provided by Marulo and Guida (2014), 
as given in Table 4.

Abaqus/Explicit’s General Contact Algorithm was used, 
which handles efficiently node-into-face and edge-to-edge con-
tact across an all-inclusive contact surface for the entire model.

Assuming a perfectly rigid target, a rough calculation based 
on the bird velocity and length yields an impact duration of 
approximately Lbird∕Vinitial ≈ 1.5 ms . However, the actual 
simulation time needs to be extended beyond this estimate 
due to the flexibility of the target and the necessity for the 
stabilization of elastic strain and kinetic energies within the 
wing structure, which is crucial to ensure that the subsequent 
static analysis can reach equilibrium. The time required for the 
dynamic relaxation may vary for each specific case, influenced 
by factors such as different damping ratios and structural fail-
ure modes. To address this variability, an Abaqus Python script 
was implemented to monitor the elastic strain and kinetic ener-
gies of the structure in real-time. The simulation automatically 
terminates once the energies have remained relatively constant. 
Specifically, the relative differences between consecutive his-
tory outputs are monitored, and when they reach less than 3% 
over 10 outputs, amounting to 0.02 s, the analysis is terminated 
at the next restart checkpoint.

Assuming that a bird strike is a localized event, the mesh 
density is increased in both chordwise and spanwise directions 
starting from the impacted bay, as illustrated in Fig. 2. The 
mesh size for the impacted bay was fixed after conducting a 
convergence study on an isolated leading edge with a clamped 
front spar and subject to the same bird velocity, keeping all 
design variables at their minimum values to ensure conver-
gence throughout the entire design space. A small element 
size of 5 mm was needed to prevent large hourglass effects. 
Further studies investigated different mesh growth ratios in 
the spanwise and chordwise directions, settling to the ones 
depicted in Fig. 2.

Table 3   Aluminium 2024-T3 
material constants used in the 
analysis, as given by Lesuer 
(2009)

Property Value

Density 2,770 kg/m3

Young’s modulus 74.66 GPa
Poisson ratio 0.3
A 369 MPa
B 684 MPa
n 0.73
C 0.0083

Table 4   Data for the bird 
equation of state, as given by 
Marulo and Guida (2014)

Volumetric strain [-] 0 −0.105 −0.118 −0.128 −0.137 −0.154 −0.169 −0.183 −0.195 −0.217

Pressure [MPa] 0 237 425 586 727 972 1180 1370 1540 1840



	 R.-I. Ciobotia et al.  236   Page 6 of 18

2.2.3 � Static analysis for remaining strength

For the static analysis, only the main wingbox is considered, 
as illustrated in Fig. 2, ignoring the leading edge skin and nose 
ribs. An adaptive automatic damping algorithm is used, as 
presented in Dassault Systèmes (2022). A maximum allow-
able ratio of 5% of the stabilization energy to the total strain 
energy is imposed, although it was found that the automatic 
stabilization algorithm overestimates the maximum ratio, and 
that, usually, a ratio of approximately 2% is obtained.

Lift and pitching moment coefficients have been used 
from van der Vaart and Muhammad (1983, pp. 31–34) to 
derive the static loads. To simplify the analysis, the entire 
wing is modelled as a beam with a constant line load act-
ing perpendicular to it, representing the aerodynamic lift 
distributed along the span. This approach yields a distrib-
uted upward force and an associated bending moment that 
varies along the spanwise direction, approximated as con-
centrated forces and moments acting at specific reference 
points located on each wingbox rib, positioned at a quarter 
of the chord length. These reference points then distribute 
the loads to the nodes on all four rib flanges, as depicted in 
Fig. 2. The resulting concentrated forces and moments are 
summarized in Table 5.

3 � Proposed methodology

The proposed methodology consists of several key steps as 
illustrated in Fig. 3. Firstly, an initial dataset is acquired 
and divided into training and validation sets. Two Kriging 
surrogate models are then constructed using exponential 
and squared-exponential kernels, selected for their suit-
ability with functions of varying smoothness. The model 
demonstrating the best performance based on the root mean 
squared error (RMSE) is chosen. Subsequently, a variable 
ranking procedure is conducted, and the surrogate model 
is retrained on the reduced design space identified through 

this process. These steps are repeated individually for each 
constraint. Finally, the refined surrogate models are incorpo-
rated into a Bayesian optimization framework. Each of these 
steps is detailed in the subsequent subsections.

3.1 � Initial data generation

Constructing the initial surrogate model for variable ranking 
requires a careful balance between ensuring enough train-
ing points to accurately identify significant variables, while 
also minimizing computational effort due to the intensive 
nature of data acquisition. While some recommend using 10 
times the number of variables for initial sampling (Schonlau 
et al 1998), studies by the same authors have shown that 
3–4 times the number of variables can suffice even for non-
linear problems (Jones et al 1998; Welch et al 1992). Since 
optimization prioritizes the ability of the surrogate model 
to find minima over global accuracy (Viana et al 2009), an 
initial dataset of 4 times the number of variables is proposed. 
Approximately one-third of these samples are reserved for 
validation, following the recommendation by Viana et al 
(2021).

The samples are generated using the Sliced Latin Hyper-
cube Design (SLHD) algorithm proposed by Ba et al (2015), 

Table 5   Concentrated forces and moments applied to reference nodes 
situated on the wingbox ribs, at a quarter-chord length from the lead-
ing edge. Note: the wingbox ribs are numbered from 1 to 6 in the 
spanwise direction, and a clamped boundary condition is applied on 
the first rib

Wingbox rib 
number

Torsion moment 
[Nm]

Transverse force 
[N]

Bending 
moment 
[Nm]

6 1,812 0 0
5 1,812 2,250 −506.250
4 1,812 4,500 -2,025.000
3 1,812 6,750 -4,556.250
2 1,812 9,000 -8,100.000

Fig. 3   Flowchart of the proposed methodology
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which has a space-filling nature that prevents two data points 
from sharing the same coordinate in any dimension.

The constraints c1 and c2 are obtained with the analysis 
workflow in section 2. However, in certain instances, extract-
ing these constraints was not feasible. For example, during 
the bird strike analysis, if there is a surge in total energy or if 
the ratio of artificial hourglass to total strain energy is high, 
the penetration depth cannot be determined. Similarly, the 
static analysis might fail to converge, or the ratio between 
stabilization energy and total strain energy may also be too 
high, preventing data extraction once again. Denoting by Nf  
the number of failed analyses where constraint data could 
not be extracted during the initial data generation, it is pro-
posed to fit a Kriging surrogate model as detailed in the 
next subsection and to supplement it with Nf  additional data 
points that maximize the variance of the model, enhancing 
its global accuracy (Wang et al 2020, 2022). The maximum 
acceptable ratio of artificial hourglass to total strain energy 
in this study is 5%.

3.2 � Initial model fitting

A comprehensive explanation on the derivation of the 
Kriging surrogate models is presented in Forrester et al 
(2008, Chapter 2) or Jones (2001). The final form of the 
ordinary Kriging model is given in Eq. 3, where f̂  is the 
predictor at an unknown point x:

The first term stems from the prior assumption of the ordi-
nary Kriging that the observational random variables Y 
which models the data are normally distributed with mean � 
and variance �2 . Their maximum likelihood estimates, 𝜇̂ and 
𝜎2 , are obtained by maximizing the likelihood of the obser-
vational random variable yielding the responses in the train-
ing set, y , based on the normal distribution aforementioned. 
r denotes the correlation vector between the new point and 
the training points, and R is the correlation matrix among 
the training points. The correlation Corr

[
Y(x(1)), Y(x(2))

]
 

between the observational random variables of two points 
x
(1) and x(2) is assumed to have the form given in Eq. 4, 

where 𝜃l > 0, pl ∈ [1, 2] are hyperparameters:

As the design space has k dimensions, the training process 
involves estimating the 2k + 2 hyperparameters. However, 
in the present study the exponential or squared-exponential 
functions will be used, fixing pl = 1 and pl = 2,∀l ∈ 1, k , 
respectively, because of their ability to model functions 
of different smoothness and their ease of implementation 

(3)f̂ (x) = 𝜇̂ + r
T
R
−1
(y − 1𝜇̂)

(4)exp

(
−

k∑
l=1

�l
|||x

(1)

l
− x

(2)

l

|||
pl

)

in the variable screening process that is detailed next. The 
most suitable kernel is chosen by computing the root mean 
squared error using the validation dataset. To tune the hyper-
parameters, the chosen package, Trieste, maximizes the 
logarithmic marginal likelihood, which is found by integrat-
ing the likelihood over the prior, using the gradient descent 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

Last but not least, the variance s2(x) at an unknown point 
x is given by Eq. 5, which is a prediction error estimate:

3.3 � Variable ranking

Once the initial model is trained, the significance of the 
variables can be ranked using the analysis of variance 
(ANOVA) on the Kriging surrogate. In this manner, 
not only the main effects of the variables, but also the 
higher-order interactions among them can be captured. 
This approach was previously introduced in conjunction 
with Universal Kriging surrogates by Schonlau and Welch 
(2006). However, for simplicity, the present study employs 
ordinary Kriging models instead. For a more detailed deri-
vation of all the terms presented in this section, the reader 
is referred to Ciobotia (2024).

Intuitively, this method quantifies how much of the total 
variance exhibited by the surrogate model across the entire 
design space is attributable to a specific set of variables. 
Let � denote the entire design space, which is assumed to 
be the Cartesian product of the one-dimensional domains 
of the individual variables:

If e is a subset of 1, k , the notation x
e
 will be used to rep-

resent the variables whose effects are under investiga-
tion, while x−e denotes the remaining variables in the set 
{1,… , k} − e . Accordingly, the input vector can be parti-
tioned as x = (x

e
, x−e) . The notation x

e
 is essentially the 

canonical projection of x ∈ � onto the subspace ⊗j∈e𝜒j . 
Note that for the study of main effects, e will contain only 
a single element.

The so-called marginal effect f̂
e
 of x

e
 is computed by 

integrating out all other variables, effectively yielding 
the mean value of the predictor given only these selected 
dimensions. From a statistical perspective, this effect cor-
responds to the expected value of the predictor f̂  condi-
tioned on the variables xi, i ∈ e , i.e., �[f̂ |Xi, i ∈ e] , which 
will be denoted by f̂

e
(x

e
) and has the following form:

(5)𝜎̂2

[
1 − r

T
R
−1
r

(1 − r
T
R
−1
r)2

1
T
R
−1
1

]

(6)𝜒 = ⊗k
j=1

𝜒j
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In Eq. 7, the weight wj(xj) is the probability of the value xj 
occurring in the jth dimension of the design space, �j . It is 
assumed that the thicknesses acting as design variables fol-
low the simple uniform distribution given in Eq. 8:

where xu
j
= max(�j) , xlj = min(�j) . The product of the 

weights in Eq. 8 will be comprised in w(x) =
∏k

j=1
wj(xj) . 

The variance of the predictor in the whole design space is:

To estimate the significance of a set of variables, the 
ANOVA decomposition utilizes the so-called corrected mar-
ginal effects. In particular, the first-order and second-order 
corrected marginal effects are defined as follows:

Finally, the ANOVA decomposition states that the overall 
variance of the predictor is the sum of the variances of the 
main and joint effects of all possible sets of variables:

The contribution of the main effects or joint interactions 
to the total variance represents the importance of the 
variable(s) within the model. This importance is quanti-
fied by expressing these terms as percentages of the total 
variance. Accordingly, the importance of variable xj will 
be Var[f̂ |Xj]∕Var[f̂ ] ⋅ 100% , with the importance of the 
interaction between two variables xj and xl defined as 
Var[f̂ |X{j,l}]∕Var[f̂ ] ⋅ 100% in a similar manner. Note that 

(7)f̂
e
(x

e
) = ∫

⊗
j∉e

𝜒j

f̂ (x
e
, x−e)

∏
j∉e

wj(xj)dxj

(8)wj(xj) =
1

xu
j
− xl

j

,∀j ∈ 1, k,

(9)
Var

[
f̂
]
= ∫

𝜒

[
f̂ (x) − �[f̂ ]

]2
w(x)dx, where

�[f̂ ] = ∫𝜒

f̂ (x)w(x)dx

(10)

𝜇j(xj) = f̂j(xj) − �[f̂ ],∀j ∈ 1, k

𝜇jl(xj, xl) = f̂jl(xj, xl) − 𝜇j(xj)

− 𝜇l(xl) − �[f̂ ],∀j, l ∈ 1, k

(11)

Var[f̂ ] =
∑

e⊆{1,2,...,k}

Var[f̂ |X
e
]

=

k∑
j=1

∫
𝜒j

𝜇2
j
(xj)wj(xj)dxj

+

k−1∑
j=1

k∑
l=j+1

∫
𝜒l
∫
𝜒j

𝜇2
jl
wj(xj)wl(xl)dxjdxl

+…+ ∫
𝜒

𝜇2
1…k

(x1,… , xk)

k∏
j=1

wj(xj)dxj

the symbol Xj refers to a random variable, while the lower-
case notation xj is used to indicate a specific realization of 
the random variable Xj.

In addition to these significance measures, evaluating 
the total variance coverage of a subset can help determine 
whether the reduced design space reliably captures the 
information from the entire domain. To further ensure 
accurate variable screening, plotting the marginal effects 
of various variable pairs can be used for visualization 
purposes. Moreover, assessing error metrics such as the 
RMSE or cross-validation errors of the surrogates within 
the reduced design space is advisable. As the sample den-
sity increases in this reduced-space, the accuracy of the 
surrogate model is expected to improve accordingly.

3.4 � Optimization procedure

The constrained expected improvement (cEI) approach pro-
posed by Schonlau et al (1998) is used as an acquisition 
function during the Bayesian optimization procedure, which 
has the following form:

In Eq. 12, �[I(x)] is the expected improvement of the objec-
tive function. However, in this specific case, the weight func-
tion can be expressed analytically due to the choice of design 
variables, i.e., the thicknesses of various structural compo-
nents. As a result, the wing does not undergo any architec-
tural changes, and all components maintain a constant area. 
Therefore, the expected improvement can be replaced by a 
known improvement, as shown in Eq. 13.

The term P[ci(x) ≤ 0] represents the probability of feasibil-
ity for one of the constraint functions, ci(x) . For ordinary 
Kriging surrogate models utilizing squared-exponential cor-
relation functions, this probability can be derived as shown 
in Eq. 14:

The optimization procedure aims to maximize the acquisi-
tion function, balancing exploration and exploitation within 
the design space. When the expected improvement is signifi-
cant but the probabilities of feasibility are low, the optimizer 
explores new regions, seeking potential optimal solutions in 
uncertain areas. Conversely, when the probabilities of fea-
sibility are high but the expected improvement is minimal, 

(12)�[I(x)]c = �[I(x)]

2∏
i=1

P[ci(x) ≤ 0]

(13)�[I(x)] → weightmin − weight(x)

(14)∫
0

−∞

1√
2𝜋si(x)

exp

⎡
⎢⎢⎣
−
1

2

�
t − f̂i(x)

si(x)

�2⎤
⎥⎥⎦
dt,

∀i ∈ {1, 2}



Incorporating bird strike crashworthiness requirements within the design of wing structures﻿	 Page 9 of 18    236 

the optimizer exploits known feasible regions to refine the 
solution.

However, difficulties may arise if the optimization algo-
rithm selects a design that results in a non-converged analy-
sis or a failed design in this context. This issue is addressed 
by Forrester et al (2008, p. 133), who propose a method to 
impute data for such failed designs to steer the optimizer 
away from these problematic regions. The approach involves 
initially training the surrogate model using all data points 
corresponding to successful (converged) analyses. For each 
failed design point x , an imputed observation is generated 
using f̂ (x) + s2(x) . The surrogate model is then retrained on 
the entire dataset, including these imputed values. Subse-
quently, the constrained expected improvement function is 
maximized to determine the next sampling point. This pro-
cess is iteratively repeated until a suitable convergence cri-
terion is achieved for the Bayesian optimization procedure.

Using f̂ (x) + s2(x) for imputed data ensures that the 
smoothness of the surrogate model remains unaffected. 
If a failed data point xf  is very close to a training point 
x
(i) , i.e., ||xf − x

(i)|| → 0 , the variance s2(xf ) approaches 
zero. Since the predictor interpolates the data, it follows 
that f̂ (xf ) + s2(xf ) → yi , where yi is the observation at the 
training point. Conversely, if the variance is high at xf  , the 
imputed value becomes significantly larger, discouraging the 
optimizer from sampling in that region due to the increased 
likelihood of violating the constraint function.

An important aspect to consider is the convergence cri-
terion of the Bayesian optimization procedure. In practical 
applications, time and computational resources are often 
the most decisive factors. However, setting these aside, a 
straightforward convergence criterion can be formulated: the 
optimization process can be terminated when the acquisition 
function remains relatively constant over a specified number 
of iterations.

In order to accelerate the optimization process, two 
approaches are compared: 

1.	 Sequential approach: Each new data point is obtained 
by maximizing the acquisition function only after the 
Abaqus workflow for the previous data point has com-
pleted. This method ensures that each point is the true 
maximizer of the acquisition function at that iteration.

2.	 Batch approach: More data points are obtained simul-
taneously by maximizing the acquisition function while 
‘fantasizing’ unknown results via the ‘Kriging believer’ 
method (Ginsbourger et al 2008; Sun et al 2020), where 
the value is fantasized to be the predictor itself, similar 
to imputing data for unresolved analyses. The number 
of data points in the batch depends on available compu-
tational resources, such as licenses or processing power. 
Although this approach is expected to minimize total 

wall time, the data points may not be the exact maximiz-
ers of the acquisition function due to the fantasized data.

3.5 � Analytical validation problem

The proposed methodology will first be validated on the 
non-linear Rosenbrock function proposed by Rosenbrock 
(1960), constrained to a disk:

The known global solution of Eq. 15 is x∗ = (1.0, 1.0) and 
the objective function value is 0. The challenge of this func-
tion is therefore given by the optimum lying on the feasi-
bility border, inside a long valley, which is very flat along 
its centreline but steep across it. Moreover, in order to test 
the variable screening, the variables will be normalized and 
the search space will be extended to a 20-dimensional unit 
hypercube.

A Latin Hypercube Sampling (LHS) of 80 initial points 
was created. The exponential and squared-exponential ker-
nels were compared in terms of RMSE using a 27-point vali-
dation dataset. This validation set was selected by generating 
106 random samples and choosing the one with the smallest 
discrepancy, which is a measure of how uniformly samples 
fill the design space, in order to ensure that the accuracy 
of the model is assessed on the whole design space. The 
squared-exponential kernel demonstrated superior perfor-
mance for the objective function and constraint.

The variable screening process identified correctly only 
the first two variables as important for the objective and con-
straint functions, with more than 99.95% variance coverage 
from their main and joint effects for the objective function, 
as presented in Table 6. No interaction was identified for the 
constraint function, as expected. The other effects for both 
functions did not exceed 0.0014%.

Both the sequential and the batch strategies were left to 
run until the acquisition function was smaller than 10−6 for 
10 consecutive iterations. The surrogate model seems to be 
unable to approximate well the steep valley near the true 

(15)
minimize (1 − x1)

2 + 100(x2 − x2
1
)2

with respect to x ∈ [−1.5, 1.5]2

subject to x2
1
+ x2

2
− 2 ≤ 0

Table 6   Variance coverage for the Rosenbrock function

Function Variables Variance coverage

x1 34.57%
Objective x2 40.49%

x1, x2 24.90%
x1 50.10%

Constraint x2 49.86%
x1, x2 0.002%
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optimum. However, the solutions were feasible and rendered 
a satisfactory objective value, the batch approach converging 
in a smaller number of iterations, as presented in Table 7.

4 � Results and discussion

4.1 � Initial data generation and model fitting

To generate the initial dataset, an LHS of 76 samples 
was created using the package developed by Ba (2015). 
Due to the extensive design space, a wide range of fail-
ure modes was observed in the analyses. These modes 
varied from designs exhibiting minimal penetration and 
slight deformation of the nose ribs as depicted in Fig. 4, to 
more severe cases where the leading edge skin completely 
ruptured and the nose ribs were significantly crushed, as 
shown in Fig. 5.

Out of the 76 initial data points generated, two bird 
strike analyses failed due to high artificial hourglass strain 
energies, and an additional nine static analyses did not 
converge. To evaluate the performance of the surrogate 
models, the exponential and squared-exponential kernels 
were compared in terms of RMSE using a 25-point valida-
tion dataset. This validation set was generated in the same 
manner as for the Rosenbrock benchmark function.

Ultimately, the squared-exponential kernel demon-
strated superior performance for both constraints. How-
ever, the depth surrogate model exhibited an RMSE of 
approximately 125 mm, which exceeds half of the maxi-
mum acceptable penetration depth, indicating insufficient 
global accuracy. In contrast, the front spar stress surro-
gate model achieved an RMSE of less than 52 MPa, cor-
responding to less than 15% of the yield strength of the 
spar material, and was therefore considered acceptable. 
Due to the high RMSE of the depth surrogate, the remain-
ing 11 data points were added by selecting locations that 
maximized the variance of the model, thereby improving 
the global accuracy of the surrogate.

4.2 � Variable ranking

The models are retrained on the entire dataset, also incor-
porating the validation points. This retraining ensures that 
the surrogate models capture more reliably the underlying 
functions, improving the effectiveness of the variable rank-
ing process.

4.2.1 � Spar stress constraint

Figure 6 illustrates the main and interaction effects as per-
centages of the total variance of the model. Main effects are 
positioned along the diagonal, while interaction effects are 
located in the lower-right section of the plot. For simplicity, 
effects below 0.1% are masked. Interestingly, despite the 
exclusion of the leading edge skin and nose ribs from the 
Abaqus static analysis model, the variable screening method 
identified them as the most significant variables affecting the 
stresses in the front spar, including their interaction.

Furthermore, the wingbox rib was determined to be 
important, even though it does not interact with other vari-
ables. Components of the wingbox, such as stringers and 
skin panels, were likely identified as significant due to their 

Table 7   Sequential and batch approaches comparison for the Rosen-
brock function

Approach Sequential Batch

Solution (0.832099, 0.831337) (0.830477, 0.828131)
Number of iterations 143 31 batches of 4 points 

each
Objective value 0.000211 0.000286
Constraint value −0.019340 −0.048041

Fig. 4   Small penetration and small nose rib distortion

Fig. 5   Large penetration, leading edge skin rupture and severe nose 
rib crushing
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contribution to the torsional stiffness of the wingbox, given 
the substantial magnitude of the torsion moment. This 
rationale will be detailed shortly by plotting the marginal 
effect of the wingbox rib.

It is noteworthy that the front spar does not contribute 
significantly to the response despite the maximum Mises 
stress being derived from it. This may be attributed to the 
transverse loads applied not being sufficient to substan-
tially increase the stress on the spar. Figure 7 demonstrates 
a strong correlation between maximum stresses before and 
after load introduction, with a Pearson correlation coeffi-
cient of 0.90 and an R-squared value of 0.82, indicating a 
linear relationship between the two. However, since these 
correlations are not perfect, the stress after load introduc-
tion is not entirely explained by the initial stress. This 

partial explanation underscores the importance of other 
design variables influencing the overall response.

Figure 8 presents a bar plot illustrating the evolution 
of variance coverage as the number of included variables 
increases. Note that the variables are added in the specific 
order which maximizes the variance coverage with that 
particular number of variables. It is evident that higher-
order interactions are present, as the variance coverage 
remains below 95% despite the inclusion of all variables. 
Beyond eight variables, the benefit of adding additional 
dimensions in terms of variance coverage decreases to 
less than 1%, indicating that further inclusion of vari-
ables yields minimal gains in the variance coverage of 
the model.

Another aspect aiding in decision-making involves refit-
ting surrogate models within the reduced design space 
using the initial training dataset and evaluating their mean 

Fig. 6   Main and interaction effects, in percentages, for the maximum 
Mises stress constraint on the front spar. Note: all effects with a value 
of less than 0.1% have been masked

Fig. 7   Scatter plot between the maximum stress before and after load 
introduction, along with the best linear predictor and a ±10% error 
area

Fig. 8   Variance coverage versus number of included variables for the 
maximum stress constraint. The order of variable addition: SP1, NR, 
St4, St3, SP5, RS, St1, WR, SP2, SP6, St6, St2, SP4, SP7, St5, SP9, 
SP3, SP8, FS

Fig. 9   The mean squared and 5-fold cross-validation errors for 
reduced-space surrogates for the stress constraint
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squared and cross-validation errors, illustrated in Fig. 9. 
The latter significantly underestimates the MSE and does 
not align with its trend. Curiously, both errors exhibit a sud-
den decrease at the five-variable threshold. This reduction is 
disregarded due to only 88% of the total variance being cov-
ered, which is insufficient. Beyond eight variables, both error 
metrics stabilize, except for a slight anomaly in the MSE at 
fourteen to seventeen variables. It is important to recognize 
that MSE estimates global accuracy and may be influenced 
by artefacts or fortunate hyperparameter optimization within 
the specific reduced design space. Nonetheless, the error 
measures of the eight-dimensional surrogate model remain 
comparable to those of the nineteen-variable model, indicat-
ing that the reduced metamodel maintains adequate accuracy 
despite the presence of higher-order interactions. This sug-
gests that the variable screening procedure effectively retains 
the most significant parameters without compromising the 
reliability of the surrogate model.

In total, eight significant variables were identified: the 
leading edge skin, nose ribs, wingbox ribs, three stringer 
stations, one material zone of the skin panel, and the rear 
spar. The exclusion of certain stringer stations and additional 
skin panel material zones may appear odd. This limitation 
suggests that higher-order interactions with other variables 
were not fully captured, exposing a potential weakness in 
the current methodology.

A final safeguard against the erroneous identification of 
significant variables involves evaluating the marginal effect 
plots, illustrated with two examples. The significance of 
the wingbox rib, attributed to its contribution to torsional 
stiffness, is confirmed by the linear, decreasing relation-
ship shown in Fig. 10, where a thicker rib will lead to lower 
stresses on the front spar. The marginal effect of the lead-
ing edge skin, the most significant variable, is depicted in 
Fig. 11, exhibiting a parabolic shape: a very thin skin results 
in substantial penetration and rupture of the front spar, while 
an excessively thick skin may become overly rigid, reducing 

its energy absorption capacity and transferring more kinetic 
energy to the rest of the structure, including the front spar.

4.2.2 � Penetration depth constraint

Despite the high RMSE associated with the penetration 
depth constraint, only a few significant variables are identi-
fied, as illustrated in Fig. 12. The leading edge skin stands 
out as the most influential factor, accounting for 88.60% of 
the total variance. It interacts with the nose rib, contrib-
uting an estimated 1.35%, even though the nose rib itself 
has a modest main effect of 0.78%. It is acknowledged that 
the variance coverage for the nose rib seems low, and that 
the values may be erroneous due to the high RMSE of the 
surrogate.

The wingbox rib also plays a notable role, with a main 
effect of 1.31%, although it does not interact with other 

Fig. 10   Marginal effect of the wingbox rib

Fig. 11   Marginal effect of the leading edge skin

Fig. 12   Main and interaction effects for the penetration depth con-
straint. Note: all effects with a value of less than 0.1% have been 
masked
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variables. Interestingly, stringer 2 has a main effect of 0.44% 
and is estimated to interact with the leading edge skin by 
1.89%. However, this interaction may be inaccurately identi-
fied due to the poor global accuracy of the surrogate model.

Figure 13 illustrates the variance coverage, while Fig. 14 
displays the mean squared and cross-validation errors. It 
is evident that increasing the number of variables beyond 
four yields minimal improvements in variance coverage. 
Notably, the three-dimensional design space achieves sub-
stantial variance coverage and an impressive 80% reduction 
in MSE compared to the full-dimensional model. How-
ever, the cross-validation errors significantly overestimate 
the global accuracy of the model and do not align with the 
trend observed in the MSE. This discrepancy suggests that 
the cross-validation metric may not reliably reflect the true 
accuracy of the surrogate model.

The importance of examining the marginal effects of indi-
vidual variables becomes clearer in the case of the maximum 
penetration depth constraint. While it is apparent from the 
marginal effect illustrated in Fig. 15 that the leading edge 
has a significant contribution, a highly multimodal landscape 
is predicted. Figure 16 showcases the marginal effect of the 
leading edge and the second stringer station, whose interac-
tion was predicted rather high. However, the presence of 
bands of constant values suggests that the metamodel may 
lack sufficient accuracy.

Based on engineering judgment, the leading edge, nose 
ribs, and wingbox ribs are selected as significant variables, 
while the second stringer station is excluded from further 
consideration. Following this selection, a re-evaluation of 
the error metrics within the design space shows an improve-
ment in the MSE, decreasing from 7532.61 to 6269.87 mm2. 
On the other hand, the cross-validation error increased 
from 192.54 to 643.8 mm2, reinforcing the necessity of 

Fig. 13   Variance coverage versus number of included variables for 
the penetration depth constraint. The order of variable addition: SP1, 
WR, St2, NR, St3, SP3, St6, St4, SP6, SP4, SP9, St1, St5, SP5, SP8, 
FS, SP7, SP2, RS

Fig. 14   The mean squared and 5-fold cross-validation errors for 
reduced-space surrogates the penetration depth constraint

Fig. 15   Marginal effect of the leading edge skin for the penetration 
depth constraint

Fig. 16   Marginal effect of the second station stringer and the leading 
edge skin for the penetration depth constraint
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maintaining a separate validation set to ensure the reliability 
of the surrogate models.

The fact that the variables have been well chosen is also 
supported by the marginal effect of the leading edge skin 
in the reduced design space: the high modality is no longer 
present, as depicted in Fig. 17.

4.3 � Optimization procedure

After the variable screening procedure, all training points are 
projected onto the reduced eight-dimensional design space, 
with insignificant variables maintained at their minimum 
values. It is assumed that this projection would not alter the 
constraint observations. As a consequence, it is assumed that 
the weight of the optimal design among the initial dataset 
decreases from 78.83 kg before projection to 52.58 kg after, 
which amounts to a 33.31% reduction. Figure 18 depicts the 
damage extent of the optimal design among the initial data-
set, showing moderate penetration and rib crushing with a 
depth of 161.64 mm. The maximum Mises stress on the front 

spar after load introduction reached 239.72 MPa, highlight-
ing opportunities for further improvement.

4.3.1 � Sequential approach

For this approach, no fantasizing is conducted, and the con-
strained improvement acquisition function is maximized 
at each iteration to determine the next design to be evalu-
ated. Note that another strategy to reduce the optimization 
search space involved utilizing the minimum observed fea-
sible weight. Since the initial optimal weight was rather low 
right after the variable screening process, much of the search 
space had zero constrained improvement due to having guar-
anteed larger weights. Consequently, the maximum thick-
nesses for these variables were adjusted to exclude regions 
with guaranteed null improvement. This adjustment was 
feasible due to the analytical formulation of weight, which 
ensured null improvement in these regions.

The optimization process proceeded for 64 iterations, out 
of which 12 were feasible. Figure 19 presents the evolution 
of the optimal weight over the optimization iteration, the 
final feasible design having a weight of 44.53 kg, represent-
ing a 15.31% reduction compared to the initial optimum after 
projection. The optimizer effectively exploited increased 
wing compliance to enhance kinetic energy absorption of the 
leading edge, thereby reducing the stresses on the spar while 
balancing the maximum penetration depth, the final design 
being depicted in Fig. 20. The final weight and constraint 
values, along with the weight reductions, are summarized 
in Table 8.

4.3.2 � Batch approach

The unresolved or ongoing observations of optimization 
points were estimated by fantasizing data according to the 
Kriging believer method. In batch optimization, analyses 

Fig. 17   Marginal effect of the leading edge skin for the penetration 
depth constraint in the reduced design space

Fig. 18   The damaged structure of the initial optimal design. Note: the 
upper skin has been hidden

Fig. 19   Evolution of the optimal weight versus optimization iteration 
for the sequential approach
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typically do not complete simultaneously. Additionally, in 
the case of some static analyses not converging, their input 
files may be adjusted, such as requesting more iterations, 
reducing the minimum increment, or switching the auto-
matic stabilization parameters, thus increasing the wall 
time of a single simulation. To maximize resource utiliza-
tion, results were saved immediately upon completion of 
each Abaqus workflow step, allowing the submission of 
additional design points based on available data and fan-
tasized values whenever possible. The optimization search 
space was reduced in the same manner as for the sequential 
approach.

The optimization process comprised 89 points, with 14 
feasible designs. However, the cumulative wall time was 
significantly smaller than for the sequential approach, with 
33 days and 10 h versus 55 days and 18 h. Table 8 presents 
the improvements of the batch approach over the sequential. 
Moreover, Fig. 21 illustrates the evolution of the optimal 
weight with respect to the cumulative wall time. Conver-
gence is reached faster, as depicted in Fig. 22, which pre-
sents the evolution of the acquisition function with respect 
to cumulative wall time.

In the end, the final optimal design exhibits a simi-
lar response to the one depicted in Fig. 20. Its weight is 
44.59 kg, which represents a 15.20% reduction compared 
to the initial optimum after the variable screening process. 

These findings substantiate the use of the ‘Kriging believer’ 
method in the case of computationally intensive analyses 
instead of the traditional sequential approach, as the opti-
mum has nearly the same weight, but at only 60% of the 
wall time.

5 � Conclusions and recommendations

This study successfully integrated bird strike crashworthi-
ness requirements into a multidisciplinary optimization 
(MDO) framework for aircraft wing design, achieving 
significant weight savings while satisfying critical safety 
constraints which require highly non-linear analyses. By 
employing Bayesian optimization in conjunction with 
Kriging surrogate models and a variance-based variable 
ranking procedure, the methodology effectively man-
aged the high-dimensional design space comprising 19 
variables. The variable screening process reduced the 

Fig. 20   Final optimal design in the sequential approach. Note: upper 
skin hidden

Table 8   Summary of optimal designs

Sequential Batch

Optimal weight [kg] 44.53 44.59
Weight reduction before projection [%] 43.51 43.44
Weight reduction after projection [%] 15.31 15.20
Penetration constraint value [mm] 235.32 235.61
Stress constraint value [MPa] 283.76 285.04
Cumulative wall time [hours] 1,338 802

Fig. 21   Evolution of the optimal weight versus cumulative wall time

Fig. 22   Evolution of the constrained improvement acquisition func-
tion versus cumulative wall time
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dimensionality to eight parameters, improving computa-
tional efficiency without compromising the reliability of 
the surrogate models.

Applied to a five-bay metallic wing segment, the opti-
mization process attained a weight reduction of 43.44% 
compared to the lightest feasible design in the initial data-
set before variable ranking. However, the study identified 
limitations in the surrogate modelling process, particularly 
concerning the penetration depth constraint, which exhibited 
a high RMSE. This indicates a need for improved surrogate 
accuracy for certain constraints. Additionally, the variable 
screening procedure, while effective in reducing dimen-
sionality, cannot capture higher-order interactions among 
all design variables.

Recommendations for future research include: 

1.	 Include higher-order interactions: The variable 
ranking procedure should be enhanced to identify and 
account for higher-order interactions among design vari-
ables.

2.	 Develop a recovery mechanism: The variable screening 
procedure would greatly benefit from a recovery mecha-
nism against erroneous identification of the significant 
variables. In this particular case study, investigating the 
marginal effects revealed that the surrogate model was 
clearly inaccurate in a particular dimension, and engi-
neering judgment could be applied. However, in more 
black-box type of functions, this may not be possible.

3.	 Validation on other crashworthiness requirements: 
The generalizability of the methodology should be vali-
dated across various design challenges.

4.	 Validation on geometrical parameters: The method-
ology should be tested against other design variables 
which would also change the architecture of the wing 
structure, such as spar positions, number of nose ribs, 
and different materials. Another valuable adjustment 
would be to vary the thickness along the wing span, as 
the farther the location is from the bird impact site, the 
smaller the effect is expected to be.

Dynamic relaxation of the explicit dynamic 
bird strike analysis

Dynamic relaxation of the explicit dynamic analysis is nec-
essary when coupling the outcome of the explicit analysis, 
i.e., the damaged wing, with a subsequent static analysis. 
In the present work, the static analysis aims to evaluate the 
remaining static strength of the damaged wing. The dynamic 
relaxation consists of reducing the kinetic energy and reach-
ing a quasi-static equilibrium after the bird strike event, pre-
serving all plastic deformation and damaged state.

During the initial phases of this work, it was observed 
that without incorporating damping in the explicit dynamic 
simulations, the kinetic energy of the wing decreased very 
slowly or sometimes not at all. While extending the simula-
tion time could mitigate this issue, the absence of energy 
dissipation is unrealistic since metallic structures inherently 
exhibit some damping. Therefore, a damping ratio of 0.02 
was sought to be enforced, considered a reasonable estimate 
for continuous metallic structures as recommended by Orban 
(2011).

However, defining a constant damping ratio directly 
in Abaqus/Explicit is not feasible. As a result, Rayleigh 
damping can be employed, which assumes that the damp-
ing matrix is a linear combination of the mass and stiffness 
matrices, as given in Eq. A1, where � and � are the mass and 
stiffness-proportional damping coefficients, respectively. For 
a given mode with natural frequency � , the corresponding 
damping ratio � is related to the Rayleigh coefficients by 
Eq. A2.

However, as demonstrated by Dassault Systèmes (2023b), 
the stiffness-proportional damping coefficient � can signifi-
cantly reduce the stable time increment in explicit dynamic 
simulations. To circumvent this issue, only mass-propor-
tional damping is applied by setting � = 0 and calculating 
the mass damping coefficient � using the first natural fre-
quency from Eq. A2. For higher frequencies, this approach 
results in a reduced damping factor, preventing overdamping.

Tools

Addressing the time-consuming and repetitive nature of 
exploring multiple structural concepts, complicated by the 
involvement of various disciplines, GKN Fokker’s Center of 
Competence in Design developed a Knowledge-Based Engi-
neering (KBE) multidisciplinary design system (van den 
Berg and van der Laan 2021). The Multidisciplinary Mod-
eller (MDM) is a Python package that automates the genera-
tion of products like flaps, wingboxes, and movables.

By allowing users to define these products through 
Python dictionaries, MDM facilitates efficient design space 
exploration for trade studies and enables rapid, consistent 
generation of analysis models. Moreover, MDM encom-
passes various modules such as an automatic mesh generator 
and an Abaqus Interface. The latter aims to generate ready-
to-run input files containing all the necessary information 

(A1)C = �M + �K

(A2)� =
�

2�
+

��

2
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for the creation of finite element (FE) models based on these 
products, and was used extensively here for data generation.

In addition to the tools previously mentioned, two open-
source Python packages were utilized throughout this study: 
the Surrogate Modeling Toolbox (SMT) (Saves et al 2024), 
and Trieste (Picheny et al 2023). Both packages provide 
continuous and mixed-integer surrogate models, bench-
mark functions, and optimization algorithms. SMT was 
employed for the variable ranking procedure, while Trieste 
was used for Bayesian optimization on the reduced design 
space. Apart from Abaqus, which was necessary for finite 
element analyses, no other commercial software was used 
in this project, ensuring that the methodologies developed 
are accessible and reproducible.
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