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Abstract

The present study introduces an automated multidisciplinary optimization (MDO) workflow that, for the first time, couples
an explicit dynamic bird strike analysis with a post-impact static stress check. This joint problem is solved during prelimi-
nary wing sizing by integrating batch Bayesian optimization on Kriging surrogates with a variance-based variable screen-
ing procedure. The optimization problem comprises 19 thickness design variables and two highly non-linear constraints,
imposing a maximum leading edge penetration and a maximum post-impact front spar stress while minimizing wing mass.
The workflow is demonstrated on a five-bay metallic wing segment, yielding a 43% weight saving over the best-performing
design during initial data generation while respecting CS 25.631 crashworthiness limits. Results demonstrated substantial
computational savings by variable screening and highlighted the necessity of the stress constraint, as designs satisfying only

the penetration depth requirement could still experience critical post-impact stress levels.

Keywords Crashworthiness - Bird strike - Design - Bayesian optimization - Kriging - Variable screening

1 Introduction

Often perceived as rare anomalies, bird strikes are in real-
ity a significant threat to aviation safety. Goraj and Kus-
tron (2018), who conducted a review on research trends in
both bird strike and hail impact simulations on wing lead-
ing edges, estimate that one bird strike occurs every 2,000
flights. The International Civil Aviation Organization,
ICAO, has put in place the ICAO Bird Strike Information
System, IBIS, which has been collecting and analysing wild-
life strike reports since 1980. Between 2016 and 2021, the
International Civil Aviation Organization (2023) concluded
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that 3% of such incidents resulted in damage to aircraft com-
ponents, 14% of which affected the wings.

Taking into account these three estimates, the chance of
wing damage from a bird strike stands at a seemingly neg-
ligible 0.00021%. However, the sheer volume of air traf-
fic amplifies this risk. In 2024 alone, Europe recorded 10.7
million flights (Eurocontrol 2025), suggesting that approxi-
mately 22 aircraft may have experienced wing damage due
to bird strikes. These approximate calculations underscore
that bird strikes are not mere statistical outliers, but persis-
tent threats requiring robust design.

Acknowledging this hazard, the European Union Avia-
tion Safety Agency (EASA) has established stringent struc-
tural requirements to safeguard aircraft integrity, such as
CS 25.631:

“The aeroplane must be designed to assure capability
of continued safe flight and landing of the aeroplane
after impact with a 4 Ibs bird when the velocity of the
aeroplane (relative to the bird along the aeroplane
flight path) is equal to V. at sea-level or 0.85 V_ at
8000 ft, whichever is more critical. Compliance may
be shown by analysis only when based on tests carried
out on sufficiently representative structures of similar
design.”

@ Springer
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Designing aircraft structures to withstand bird strikes
while simultaneously meeting diverse performance criteria
requires a careful equilibrium of competing design factors.
Compliant structures are ideal for absorbing the kinetic
energy of an impact through large deformations, but fall
short on static strength requirements which favour rigidity
under normal operational loads. These conflicting demands
call for multidisciplinary design optimization (MDO), which
was also used by Schuhmacher et al. (2002) in the pre-
liminary sizing of the wingboxes for the Fairchild Dornier
regional jet family. The authors highlighted that focusing
on a limited number of load cases in aircraft design can
neglect essential criteria, leading to costly revisions when
the full set of requirements is assessed later. Therefore, the
preliminary design process should ideally consider as many
requirements as possible.

Yet, incorporating crashworthiness into optimization is
no small feat. Crash analyses are computationally inten-
sive due to their highly non-linear nature, involving large
deformations, material non-linearities, multiple contacts and
progressive fracture. Furthermore, high strain rates require
knowledge about additional material parameters that might
not be readily available. As a consequence, gradient infor-
mation cannot be acquired easily, limiting the applicability
of many traditional optimization strategies.

To navigate these challenges, surrogate models emerge
as a powerful solution, capable of approximating highly
non-linear functions. Although optimization can be car-
ried out on such approximations directly, coupling them
with Bayesian optimization offers a systematic approach to
efficiently balance exploration and exploitation within the
design space. Specifically, Bayesian optimization leverages
the uncertainty quantification provided by surrogate models
such as Kriging to guide sampling, enabling the solution of
constrained optimization problems without gradient infor-
mation, while simultaneously reducing the required number
of computationally expensive crash analyses compared to
using surrogate models alone.

Additionally, the preliminary design process often
involves a high number of variables, leading to the infa-
mous ‘curse of dimensionality’, which was first put for-
ward by Bellman and Kalaba (1959). While their study was
related to a mathematical framework for adaptive control
processes using dynamic programming, it was acknowl-
edged that increasing the dimensionality of a design space
leads to an exponential increase in the number of neces-
sary data points and to difficulties in model fitting. The
same is reiterated by Viana et al (2021), who conducted a
review on surrogate modelling in the context of multidis-
ciplinary structural optimization, recommending to reduce

@ Springer

the dimensionality of the problem if there are more than
10 variables.

Surrogate models have been identified as a viable solu-
tion by other studies related to crashworthiness optimization
as well. Bisagni et al (2002) conducted structural optimi-
zation on a helicopter subfloor structure using Artificial
Neural Networks. A sensitivity study was carried out by
performing multiple finite element analyses, and the most
influential variables were kept for the optimization process.
Building on this work, Lanzi et al (2004) decomposed the
entire structure into smaller interconnected substructures,
leading to a lower-fidelity model. The behaviour of each
substructure was approximated using Artificial Neural
Networks utilized within a genetic algorithm optimization.
While crash efficiency improved less (12% vs. 25%), sig-
nificant CPU time savings enhanced the optimization pro-
cess, as only 93 finite element analyses were required, while
employing genetic algorithms without surrogate models
was expected to necessitate 73,500 analyses for 23 design
variables.

With respect to dimensionality reduction, Craig et al
(2005) conducted variable screening in the crashworthiness
field by integrating analysis of variance (ANOVA) with lin-
ear approximations of crash-related parameters, effectively
ranking variables based on their influence. This innovative
strategy led to a computational time reduction exceeding
30% compared to tackling the same problem without vari-
able screening.

Turning to bird strike crashworthiness requirements
specifically, Pahange and Abolbashari (2016) conducted a
multi-objective optimization aiming to reduce both the mass
and leading edge intrusion of a riveted metallic wing struc-
ture under bird strike conditions. Beginning with a Taguchi
design of experiments, they identified the most significant
variables using ANOVA as well. The multiple objectives
were combined into a single response function through Grey
Relational Analysis. However, this study did not utilize sur-
rogate models, which could have enabled the exploration
of a wider range of designs and potentially a more efficient
optimization.

Another study conducted by Ollar et al (2017) started
from the assumption that a bird strike is a local event,
allowing significant components to be identified through
engineering judgment. Surrogate models for the structural
response of the wing impacted at various locations were
constructed, enforcing a maximum intrusion constraint in
the leading edge region.

The present optimization framework for bird strike crash-
worthiness brings two advances. First, it embeds an explicit
dynamic impact simulation and a subsequent static stress
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check inside the same optimization loop. Second, it solves
the resulting 19-variable, two-constraint sizing problem
with a Bayesian surrogate optimizer that incorporates the
variance-based variable screening procedure of Schonlau
and Welch (2006). One constraint limits the penetration
depth of the leading edge during impact, while the other
caps the peak stress in the damaged front spar under rep-
resentative ‘get-home’ loads. Because the static analysis is
run on the deformed geometry and material state produced
by the impact simulation, the link between dynamic damage
and residual strength remains fully consistent. This combi-
nation represents a unique approach of taking bird strike
crashworthiness requirements into consideration during an
optimization procedure.

The paper is structured as follows: section 2 details the
case study and how the objective and constraint data are
gathered. The proposed methodology is then outlined in
section 3, including initial data generation, model fitting,
variable ranking, and Bayesian optimization techniques. The
results are presented in section 4, where each step of the
methodology is discussed, with a particular focus on the
impact of the variable ranking procedure on optimization
efficiency. Finally, section 5 offers brief conclusions and
recommendations for future research.

Wingbox ribs (WR) with the

same thickness
‘~ “{‘ Rear spar (RS)
WA WA O segments with
“““/ the same

. e W MMM thickness
VR B W v T

Nose ribs (NR)
with the same
thickness

Front spar (FS)
segments with the
same thickness
Omega stiffeners
with individual

. ) thicknesses (St1-6)
19 thickness design
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and upper
stringers to have
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Skin pockets \
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Assumed lower 1
and upper skin )
pockets to have
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Fig.1 The geometry of the wing model used for methodology dem-
onstration along with explanatory notes on the design variables. Note:
upper skin panels not included for clarity

2 Case study
2.1 Problem description

A five-bay metallic wing segment impacted by a 1.81 kg bird
at 150 m/s is examined. The wing structure is adapted from
the Fokker F27 Friendship and Fokker 50 aircraft, which
are selected due to their relatively low cruise velocities of
approximately 150 m/s, simplifying bird strike analyses
thanks to the lower kinetic energy the leading edge must
absorb and the lower anticipated strain rates. Table 1 sum-
marizes all relevant geometric data.

As illustrated in Fig. 1, 6 stringers are placed on the lower
and upper skin panels, respectively. Six nose ribs are present,
positioned in the same planes as the corresponding wingbox
ribs. For simplicity, it is assumed that the material of all
components is Aluminium 2024-T3, whose properties are
given in Sect. 2.2.1. The optimization problem comprises
19 design variables, each representing specific thicknesses
within the wing structure, as depicted in Fig. 1, with their
respective ranges and labels detailed in Table 2.

The objective of this case study is to minimize the weight
of the wing while accounting for two constraints. The first
constraint (c,) relates to bird strike crashworthiness, imposing
a maximum penetration depth of 240 mm, corresponding to

Table 1 Summary of the geometrical features of the wing

Property or component Geometrical features

Airfoil NACA 0015

Span 2250 mm

Chord 2400 mm

Spars Flange width: 14 mm
Front spar at 20% chord
Rear spar at 80% chord

Omega stringers Lower flange width: 15 mm
Upper flange width: 20 mm
Height: 25 mm

Ribs Flange width: 14 mm

Table2 Summary of all design variables and their respective ranges.
Note: ‘SP’, “‘WR’, ‘RS’, ‘FS’, ‘NR’ and ‘St’ stand for skin panel,
wingbox rib, rear spar, front spar, nose rib and stringer, respectively

Design variable Thickness range [mm)]

Spars: 2 variables, FS & RS 1.5-3.5
Stringers: 6 variables, St1-6 0.8-2.0
Ribs: 2 variables, NR & WR 0.8-25
Skin panels: 9 variables, SP1-9 1.0-3.5

@ Springer
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half the distance between the leading edge and the front spar. c;
is therefore computed as the difference between the actual and
desired maximum penetration depth. It is assumed that analys-
ing this limited portion of the entire wing is sufficient for dem-
onstrating the proposed methodology, and that the critical bird
strike location is at the middle bay leading edge. The second
constraint (c,) relates to the remaining static strength of the
damaged wing, emulating the ‘get-home’ flight conditions fol-
lowing a bird strike, as specified in CS 25.631, herein imple-
mented as a maximum allowable stress of 80% of the yield
stress on all the elements of the front spar, i.e., 295 MPa as will
be given in Sect. 2.2.1 concerning material properties. Simi-
larly, c, is computed as the difference between the actual and
desired maximum stress. Denoting by D the 19-dimensional
design space[1.5,3.5]> x [0.8,2.0]° x [0.8,2.5]> x [1.0,3.5]°
as explained back in Table 2, the optimization problem can be
written as follows:

Dynamic analysis in Abaqus/Explicit

« Launch bird strike dynamic analysis
* Monitor kinetic and strain energies
« Stop the analysis at the first restart checkpoint once the
energies stabilize
» Extract maximum penetration depth among all output fields

Explicit analysis

5mm S4R elements and
adaptive mesh with

Bird model with

Mass-proportional RP used for
Rayleigh damping clamped rib
C =aM + K \

B = 0 for larger stable
time increment

a=2¢w
& assumed 0.02

w is the first natural
frequency of the
pristine structure

Hourglass energy check

artificial strain energy
total strain energy

minimize weight(x)
with respect to x € D 6))
subject to c1x) <0,

2.2 Analysis workflow

Figure 2 illustrates the proposed analysis workflow, consist-
ing of the following steps:

1. Modal analysis: Extract the first natural frequency of
the model to apply Rayleigh damping for the dynamic
relaxation of the bird impact simulation, detailed in
Appendix A.

2. Explicit dynamic bird strike simulation to extract c;, the
maximum penetration depth constraint. Dynamic relaxa-
tion is applied to reach a quasi-static state within a rea-
sonable analysis time, as detailed in Appendix A. The
analysis is terminated once stabilization of the kinetic
and strain energies occurs. Automatic checks are made

Non-linear static analysis in Abaqus/Standard

» Import geometry and material state from Abaqus/Explicit
restart file

» Launch static analysis
* In case of no convergence: use/tweak adaptive automatic

damping algorithm or use/tweak the Quasi-Newton solution
technique
» Extract maximum stress at front spar

Non-linear static analysis

RPs used for
running loads

10k EWVT L

SPH particles, e eon e e, < 5%

cylinder with 227 mm gpgngrie((sm) an Stopping criterion

hemispherical directions: o -

caps CR1=SR1=SR2=1.5: stabilization of kinetic
113.5mm CR2=20 - and strain energies

Constraint 1
b d
maximum penetration depth < %

l Constraint 2
stress at damaged front spar < 80% yield stress

Fig.2 Analysis workflow and details to obtain the constraints: 1) maximum penetration depth; 2) stresses at the front spar of the damaged wing

@ Springer
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to ensure that the hourglass strain energy remains below
5%. Hourglass is present due to the use of the computa-
tionally efficient S4R elements.

3. Static analysis to evaluate the remaining static strength
and extract the maximum stress experienced on the front
spar.

In all cases, the boundary condition consists of the root rib
being clamped.

2.2.1 Material properties

The Johnson-Cook model with strain rate dependency is
employed for the plasticity model, as defined in Eq. 2. A,
B, n, and C are material parameters, where o, represents the
yield stress, €, is the equivalent plastic strain, and €, denotes
the equivalent plastic strain rate. All material parameters are
provided in Table 3, based on data from Lesuer (2009, p. 8).

o, =[A+B(,)"|[1+ Cln¢)] 2)

Due to the deletion of elements upon failure, a progres-
sive damage criterion is necessary. Although Lesuer (2009)
provides parameters for the Johnson-Cook damage initiation
criterion, it is applicable only to Abaqus/Explicit (Dassault
Systemes 2023a, Johnson-Cook criterion section). Since the
static analysis is carried out in Abaqus/Standard based on
the results from the explicit simulation, this criterion cannot
be employed. Consequently, a ductile damage criterion in
tabular format will be used, with data provided by Vershinin
(2015). As for damage evolution, the plastic displacement
formulation has been chosen, as its value of ﬁ;’l = 0.001 mm

was readily found in Klosak et al (2021).

Table 3 Aluminium 2024-T3

: ! Property Value
material constants used in the
analysis, as given by Lesuer Density 2,770 kg/m®
(2009 Young’s modulus  74.66 GPa
Poisson ratio 0.3
A 369 MPa
B 684 MPa
n 0.73
C 0.0083

2.2.2 Explicit dynamic bird strike analysis

To model the bird impact, a Smoothed Particle Hydro-
dynamics (SPH) formulation was employed for the bird,
generated internally within GKN Fokker following the
Extended Weighted Voronoi Tessellation (EWVT) algorithm
proposed by Siemann and Ritt (2019). The resulting bird
model comprises 10,000 particles and is shaped as a cylinder
with hemispherical caps, maintaining a length-to-diameter
ratio of 2 and material density of 950 kg/m>. The equation
of state, relating pressure to volumetric strain, was defined
using tabular data provided by Marulo and Guida (2014),
as given in Table 4.

Abaqus/Explicit’s General Contact Algorithm was used,
which handles efficiently node-into-face and edge-to-edge con-
tact across an all-inclusive contact surface for the entire model.

Assuming a perfectly rigid target, a rough calculation based
on the bird velocity and length yields an impact duration of
approximately Ly, ;/ Vi = 1.5 ms. However, the actual
simulation time needs to be extended beyond this estimate
due to the flexibility of the target and the necessity for the
stabilization of elastic strain and kinetic energies within the
wing structure, which is crucial to ensure that the subsequent
static analysis can reach equilibrium. The time required for the
dynamic relaxation may vary for each specific case, influenced
by factors such as different damping ratios and structural fail-
ure modes. To address this variability, an Abaqus Python script
was implemented to monitor the elastic strain and kinetic ener-
gies of the structure in real-time. The simulation automatically
terminates once the energies have remained relatively constant.
Specifically, the relative differences between consecutive his-
tory outputs are monitored, and when they reach less than 3%
over 10 outputs, amounting to 0.02 s, the analysis is terminated
at the next restart checkpoint.

Assuming that a bird strike is a localized event, the mesh
density is increased in both chordwise and spanwise directions
starting from the impacted bay, as illustrated in Fig. 2. The
mesh size for the impacted bay was fixed after conducting a
convergence study on an isolated leading edge with a clamped
front spar and subject to the same bird velocity, keeping all
design variables at their minimum values to ensure conver-
gence throughout the entire design space. A small element
size of 5 mm was needed to prevent large hourglass effects.
Further studies investigated different mesh growth ratios in
the spanwise and chordwise directions, settling to the ones
depicted in Fig. 2.

Table 4 Data for the bird
equation of state, as given by

Volumetric strain [-] 0 —0.105

—0.118 —0.128 -0.137 —0.154 -0.169 —0.183 -0.195 —0.217

Marulo and Guida (2014)

Pressure [MPa] 0 237

425 586 727 972 1180 1370 1540 1840

@ Springer
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2.2.3 Static analysis for remaining strength

For the static analysis, only the main wingbox is considered,
as illustrated in Fig. 2, ignoring the leading edge skin and nose
ribs. An adaptive automatic damping algorithm is used, as
presented in Dassault Systémes (2022). A maximum allow-
able ratio of 5% of the stabilization energy to the total strain
energy is imposed, although it was found that the automatic
stabilization algorithm overestimates the maximum ratio, and
that, usually, a ratio of approximately 2% is obtained.

Lift and pitching moment coefficients have been used
from van der Vaart and Muhammad (1983, pp. 31-34) to
derive the static loads. To simplify the analysis, the entire
wing is modelled as a beam with a constant line load act-
ing perpendicular to it, representing the aerodynamic lift
distributed along the span. This approach yields a distrib-
uted upward force and an associated bending moment that
varies along the spanwise direction, approximated as con-
centrated forces and moments acting at specific reference
points located on each wingbox rib, positioned at a quarter
of the chord length. These reference points then distribute
the loads to the nodes on all four rib flanges, as depicted in
Fig. 2. The resulting concentrated forces and moments are
summarized in Table 5.

3 Proposed methodology

The proposed methodology consists of several key steps as
illustrated in Fig. 3. Firstly, an initial dataset is acquired
and divided into training and validation sets. Two Kriging
surrogate models are then constructed using exponential
and squared-exponential kernels, selected for their suit-
ability with functions of varying smoothness. The model
demonstrating the best performance based on the root mean
squared error (RMSE) is chosen. Subsequently, a variable
ranking procedure is conducted, and the surrogate model
is retrained on the reduced design space identified through

Table 5 Concentrated forces and moments applied to reference nodes
situated on the wingbox ribs, at a quarter-chord length from the lead-
ing edge. Note: the wingbox ribs are numbered from 1 to 6 in the
spanwise direction, and a clamped boundary condition is applied on
the first rib

Wingbox rib Torsion moment  Transverse force Bending

number [Nm] [N] moment
[Nm]

6 1,812 0 0

5 1,812 2,250 —506.250

4 1,812 4,500 -2,025.000

3 1,812 6,750 -4,556.250

2 1,812 9,000 -8,100.000

@ Springer

Generate an initial SLHD sample of size 4 times
larger than the number of dimensions. Memorize
the number of failed analyses, Nf

Initial data
generation

Split the dataset for training and validation in a 2:1
ratio. Compare kernels by assessingtheir RMSE.
Supplement the initial dataset with Ny designs
which exhibit the highest variance

Initial model
fitting

Plot variance coverage, RMSE and marginal effects
of each surrogate model. Choose the most
significant variables and retrain the surrogates in
their reduced space

Variable
ranking

For each failed analysis impute a value off(x) +
s2(x). Find the design which maximizes cEl and
evaluate it; repeat the process until cEl is relatively
constant for a number of iterations.

procedure

Optimization

Fig.3 Flowchart of the proposed methodology

this process. These steps are repeated individually for each
constraint. Finally, the refined surrogate models are incorpo-
rated into a Bayesian optimization framework. Each of these
steps is detailed in the subsequent subsections.

3.1 Initial data generation

Constructing the initial surrogate model for variable ranking
requires a careful balance between ensuring enough train-
ing points to accurately identify significant variables, while
also minimizing computational effort due to the intensive
nature of data acquisition. While some recommend using 10
times the number of variables for initial sampling (Schonlau
et al 1998), studies by the same authors have shown that
3—4 times the number of variables can suffice even for non-
linear problems (Jones et al 1998; Welch et al 1992). Since
optimization prioritizes the ability of the surrogate model
to find minima over global accuracy (Viana et al 2009), an
initial dataset of 4 times the number of variables is proposed.
Approximately one-third of these samples are reserved for
validation, following the recommendation by Viana et al
(2021).

The samples are generated using the Sliced Latin Hyper-
cube Design (SLHD) algorithm proposed by Ba et al (2015),



Incorporating bird strike crashworthiness requirements within the design of wing structures

Page70f18 236

which has a space-filling nature that prevents two data points
from sharing the same coordinate in any dimension.

The constraints ¢, and ¢, are obtained with the analysis
workflow in section 2. However, in certain instances, extract-
ing these constraints was not feasible. For example, during
the bird strike analysis, if there is a surge in total energy or if
the ratio of artificial hourglass to total strain energy is high,
the penetration depth cannot be determined. Similarly, the
static analysis might fail to converge, or the ratio between
stabilization energy and total strain energy may also be too
high, preventing data extraction once again. Denoting by N,
the number of failed analyses where constraint data could
not be extracted during the initial data generation, it is pro-
posed to fit a Kriging surrogate model as detailed in the
next subsection and to supplement it with N, additional data
points that maximize the variance of the model, enhancing
its global accuracy (Wang et al 2020, 2022). The maximum
acceptable ratio of artificial hourglass to total strain energy
in this study is 5%.

3.2 Initial model fitting

A comprehensive explanation on the derivation of the
Kriging surrogate models is presented in Forrester et al
(2008, Chapter 2) or Jones (2001). The final form of the
ordinary Kriging model is given in Eq. 3, where f is the
predictor at an unknown point x:

feoy=a+r"R'(y-1p) )

The first term stems from the prior assumption of the ordi-
nary Kriging that the observational random variables Y
which models the data are normally distributed with mean u
and variance o2. Their maximum likelihood estimates, /i and
o2, are obtained by maximizing the likelihood of the obser-
vational random variable yielding the responses in the train-
ing set, y, based on the normal distribution aforementioned.
r denotes the correlation vector between the new point and
the training points, and R is the correlation matrix among
the training points. The correlation Corr[Y M)y, Y(x(z))]
between the observational random variables of two points
x and x® is assumed to have the form given in Eq. 4,
where 6, > 0, p, € [1, 2] are hyperparameters:

k
exp (— > o - %”I’”) @)

=1

As the design space has k dimensions, the training process
involves estimating the 2k + 2 hyperparameters. However,
in the present study the exponential or squared-exponential
functions will be used, fixing p; = 1and p, =2,VI € ﬁ
respectively, because of their ability to model functions
of different smoothness and their ease of implementation

in the variable screening process that is detailed next. The
most suitable kernel is chosen by computing the root mean
squared error using the validation dataset. To tune the hyper-
parameters, the chosen package, Trieste, maximizes the
logarithmic marginal likelihood, which is found by integrat-
ing the likelihood over the prior, using the gradient descent
Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm.

Last but not least, the variance s>(x) at an unknown point
x is given by Eq. 5, which is a prediction error estimate:

(1 —rTR-1p)?

~2 T p-1
6°|1—-r'R'r
1R 11

&)

3.3 Variable ranking

Once the initial model is trained, the significance of the
variables can be ranked using the analysis of variance
(ANOVA) on the Kriging surrogate. In this manner,
not only the main effects of the variables, but also the
higher-order interactions among them can be captured.
This approach was previously introduced in conjunction
with Universal Kriging surrogates by Schonlau and Welch
(2006). However, for simplicity, the present study employs
ordinary Kriging models instead. For a more detailed deri-
vation of all the terms presented in this section, the reader
is referred to Ciobotia (2024).

Intuitively, this method quantifies how much of the total
variance exhibited by the surrogate model across the entire
design space is attributable to a specific set of variables.
Let y denote the entire design space, which is assumed to
be the Cartesian product of the one-dimensional domains
of the individual variables:

X =@ ©)

If e is a subset of I,_k, the notation x, will be used to rep-
resent the variables whose effects are under investiga-
tion, while x_, denotes the remaining variables in the set
{1,...,k} —e. Accordingly, the input vector can be parti-
tioned as x = (x,,x_,). The notation x, is essentially the
canonical projection of x € y onto the subspace ®,e, 1;-
Note that for the study of main effects, e will contain only
a single element.

The so-called marginal effect fe of x, is computed by
integrating out all other variables, effectively yielding
the mean value of the predictor given only these selected
dimensions. From a statistical perspective, this effect cor-
responds to the expected value of the predictor f condi-
tioned on the variables x;,i € e, i.e., [ED?|XI-, i € e], which
will be denoted by f,(x,) and has the following form:

@ Springer
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fe) = [ Feex ) [T wieay, %)

gilj Jge

In Eq. 7, the weight w;(x;) is the probability of the value x;
occurring in the j™ dimension of the design space, x- Itis
assumed that the thicknesses acting as design variables fol-
low the simple uniform distribution given in Eq. 8:

u 1’
X, —X.
J J

where xj”.‘ = max(y;), le. =min(y;). The product of the
weights in Eq. 8 will be comprised in w(x) = Hle w;(x;).

The variance of the predictor in the whole design space is:

Var[f] = / [F(x) - E71] wix)dx, where
X

. . ©))
Elf1= / J)w(x)dx
X

To estimate the significance of a set of variables, the
ANOVA decomposition utilizes the so-called corrected mar-
ginal effects. In particular, the first-order and second-order
corrected marginal effects are defined as follows:

w(x) = fix) — Ef1.Yj € Tk
p (%) = Fy o, x) — ;) (10)
- ux) — E[f1.Vj.l € Lk

Finally, the ANOVA decomposition states that the overall
variance of the predictor is the sum of the variances of the
main and joint effects of all possible sets of variables:

Y Varff|X,]

eC{1.2,..k}
k

= / | 17 (5w (x;)d;

4
/ / yizle(xj)wl(xl)dxjdx,
adz

k
+...+ / yf_..k(xl, ,xk)ij(xj)dxj
x =1

Var [f] =

Y

The contribution of the main effects or joint interactions
to the total variance represents the importance of the
variable(s) within the model. This importance is quanti-
fied by expressing these terms as percentages of the total
variance. Accordingly, the importance of variable x; will

be Var[lej]/Var[f] - 100%, with the importance of the
interaction between two variables x; and x; defined as

Var[le{j,,}]/Var[f] - 100% in a similar manner. Note that

@ Springer

the symbol X; refers to a random variable, while the lower-
case notation x; is used to indicate a specific realization of
the random variable X;.

In addition to these significance measures, evaluating
the total variance coverage of a subset can help determine
whether the reduced design space reliably captures the
information from the entire domain. To further ensure
accurate variable screening, plotting the marginal effects
of various variable pairs can be used for visualization
purposes. Moreover, assessing error metrics such as the
RMSE or cross-validation errors of the surrogates within
the reduced design space is advisable. As the sample den-
sity increases in this reduced-space, the accuracy of the
surrogate model is expected to improve accordingly.

3.4 Optimization procedure

The constrained expected improvement (cEI) approach pro-
posed by Schonlau et al (1998) is used as an acquisition
function during the Bayesian optimization procedure, which
has the following form:

2
E[/(0)]. = E[/(x)] HP[ci(X) <0] 12)
i=1

In Eq. 12, E[/(x)] is the expected improvement of the objec-
tive function. However, in this specific case, the weight func-
tion can be expressed analytically due to the choice of design
variables, i.e., the thicknesses of various structural compo-
nents. As a result, the wing does not undergo any architec-
tural changes, and all components maintain a constant area.
Therefore, the expected improvement can be replaced by a
known improvement, as shown in Eq. 13.

E[/(x)] — weight,,;, — weight(x) (13)

The term P[c;(x) < O] represents the probability of feasibil-
ity for one of the constraint functions, c;(x). For ordinary
Kriging surrogate models utilizing squared-exponential cor-
relation functions, this probability can be derived as shown
in Eq. 14:

/O 1 1 -7@\
—exp|—= dt,
—o A /27rs,»(x) 2 5;(x) (14)

Vvie {1,2)

The optimization procedure aims to maximize the acquisi-
tion function, balancing exploration and exploitation within
the design space. When the expected improvement is signifi-
cant but the probabilities of feasibility are low, the optimizer
explores new regions, seeking potential optimal solutions in
uncertain areas. Conversely, when the probabilities of fea-
sibility are high but the expected improvement is minimal,
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the optimizer exploits known feasible regions to refine the
solution.

However, difficulties may arise if the optimization algo-
rithm selects a design that results in a non-converged analy-
sis or a failed design in this context. This issue is addressed
by Forrester et al (2008, p. 133), who propose a method to
impute data for such failed designs to steer the optimizer
away from these problematic regions. The approach involves
initially training the surrogate model using all data points
corresponding to successful (converged) analyses. For each
failed design point x, an imputed observation is generated
using f‘ () + s2(x). The surrogate model is then retrained on
the entire dataset, including these imputed values. Subse-
quently, the constrained expected improvement function is
maximized to determine the next sampling point. This pro-
cess is iteratively repeated until a suitable convergence cri-
terion is achieved for the Bayesian optimization procedure.

Using f(x) + s2(x) for imputed data ensures that the
smoothness of the surrogate model remains unaffected.
If a failed data point ¥’ is very close to a training point
x® ie., [|¥ —x?|| = 0, the variance s>(x/) approaches
zero. Since the predictor interpolates the data, it follows
that f(x") + s>(x’) — y,, where y, is the observation at the
training point. Conversely, if the variance is high at x/, the
imputed value becomes significantly larger, discouraging the
optimizer from sampling in that region due to the increased
likelihood of violating the constraint function.

An important aspect to consider is the convergence cri-
terion of the Bayesian optimization procedure. In practical
applications, time and computational resources are often
the most decisive factors. However, setting these aside, a
straightforward convergence criterion can be formulated: the
optimization process can be terminated when the acquisition
function remains relatively constant over a specified number
of iterations.

In order to accelerate the optimization process, two
approaches are compared:

1. Sequential approach: Each new data point is obtained
by maximizing the acquisition function only after the
Abaqus workflow for the previous data point has com-
pleted. This method ensures that each point is the true
maximizer of the acquisition function at that iteration.

2. Batch approach: More data points are obtained simul-
taneously by maximizing the acquisition function while
‘fantasizing’ unknown results via the ‘Kriging believer’
method (Ginsbourger et al 2008; Sun et al 2020), where
the value is fantasized to be the predictor itself, similar
to imputing data for unresolved analyses. The number
of data points in the batch depends on available compu-
tational resources, such as licenses or processing power.
Although this approach is expected to minimize total

wall time, the data points may not be the exact maximiz-
ers of the acquisition function due to the fantasized data.

3.5 Analytical validation problem

The proposed methodology will first be validated on the
non-linear Rosenbrock function proposed by Rosenbrock
(1960), constrained to a disk:

minimize (1 =2x)* + 100(x, — X%)z
with respect to x € [—1.5, 1.5]? (15)
subject to x% + x% -2<0

The known global solution of Eq. 15 is x* = (1.0, 1.0) and
the objective function value is 0. The challenge of this func-
tion is therefore given by the optimum lying on the feasi-
bility border, inside a long valley, which is very flat along
its centreline but steep across it. Moreover, in order to test
the variable screening, the variables will be normalized and
the search space will be extended to a 20-dimensional unit
hypercube.

A Latin Hypercube Sampling (LHS) of 80 initial points
was created. The exponential and squared-exponential ker-
nels were compared in terms of RMSE using a 27-point vali-
dation dataset. This validation set was selected by generating
10° random samples and choosing the one with the smallest
discrepancy, which is a measure of how uniformly samples
fill the design space, in order to ensure that the accuracy
of the model is assessed on the whole design space. The
squared-exponential kernel demonstrated superior perfor-
mance for the objective function and constraint.

The variable screening process identified correctly only
the first two variables as important for the objective and con-
straint functions, with more than 99.95% variance coverage
from their main and joint effects for the objective function,
as presented in Table 6. No interaction was identified for the
constraint function, as expected. The other effects for both
functions did not exceed 0.0014%.

Both the sequential and the batch strategies were left to
run until the acquisition function was smaller than 1075 for
10 consecutive iterations. The surrogate model seems to be
unable to approximate well the steep valley near the true

Table 6 Variance coverage for the Rosenbrock function

Function Variables Variance coverage
X 34.57%
Objective Xy 40.49%
x|, %X 24.90%
X 50.10%
Constraint X5 49.86%
X1, X, 0.002%
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Table 7 Sequential and batch approaches comparison for the Rosen-
brock function

Approach Sequential Batch

Solution (0.832099, 0.831337) (0.830477, 0.828131)

Number of iterations 143 31 batches of 4 points
each

Objective value 0.000211 0.000286

Constraint value —0.019340 —0.048041

optimum. However, the solutions were feasible and rendered
a satisfactory objective value, the batch approach converging
in a smaller number of iterations, as presented in Table 7.

4 Results and discussion
4.1 Initial data generation and model fitting

To generate the initial dataset, an LHS of 76 samples
was created using the package developed by Ba (2015).
Due to the extensive design space, a wide range of fail-
ure modes was observed in the analyses. These modes
varied from designs exhibiting minimal penetration and
slight deformation of the nose ribs as depicted in Fig. 4, to
more severe cases where the leading edge skin completely
ruptured and the nose ribs were significantly crushed, as
shown in Fig. 5.

Out of the 76 initial data points generated, two bird
strike analyses failed due to high artificial hourglass strain
energies, and an additional nine static analyses did not
converge. To evaluate the performance of the surrogate
models, the exponential and squared-exponential kernels
were compared in terms of RMSE using a 25-point valida-
tion dataset. This validation set was generated in the same
manner as for the Rosenbrock benchmark function.

Fig.4 Small penetration and small nose rib distortion
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Fig.5 Large penetration, leading edge skin rupture and severe nose
rib crushing

Ultimately, the squared-exponential kernel demon-
strated superior performance for both constraints. How-
ever, the depth surrogate model exhibited an RMSE of
approximately 125 mm, which exceeds half of the maxi-
mum acceptable penetration depth, indicating insufficient
global accuracy. In contrast, the front spar stress surro-
gate model achieved an RMSE of less than 52 MPa, cor-
responding to less than 15% of the yield strength of the
spar material, and was therefore considered acceptable.
Due to the high RMSE of the depth surrogate, the remain-
ing 11 data points were added by selecting locations that
maximized the variance of the model, thereby improving
the global accuracy of the surrogate.

4.2 Variable ranking

The models are retrained on the entire dataset, also incor-
porating the validation points. This retraining ensures that
the surrogate models capture more reliably the underlying
functions, improving the effectiveness of the variable rank-
ing process.

4.2.1 Spar stress constraint

Figure 6 illustrates the main and interaction effects as per-
centages of the total variance of the model. Main effects are
positioned along the diagonal, while interaction effects are
located in the lower-right section of the plot. For simplicity,
effects below 0.1% are masked. Interestingly, despite the
exclusion of the leading edge skin and nose ribs from the
Abaqus static analysis model, the variable screening method
identified them as the most significant variables affecting the
stresses in the front spar, including their interaction.
Furthermore, the wingbox rib was determined to be
important, even though it does not interact with other vari-
ables. Components of the wingbox, such as stringers and
skin panels, were likely identified as significant due to their



Incorporating bird strike crashworthiness requirements within the design of wing structures

Page110f 18 236

2
SP9 10
SP8
Sp7
SP6 -

SP3 - 10°

[%2]
o
i)
/M
[}

X
w0
0
Wi

=2
X
M
[m|
M
[m|

0nunun
ORG
brh
HEE]
Sopmmy
SP1 A

L 100

i

)
3
CNNT 0o AR
nnhnhnnnZ FAH AR

SP5

O~ o
oo o
nunun

SP9

Fig.6 Main and interaction effects, in percentages, for the maximum
Mises stress constraint on the front spar. Note: all effects with a value
of less than 0.1% have been masked

4004 @ data points ®
—— linear best fit
350 1 +10% error ®

300 A

250

200 A

150 A

100 A

100 150 200 250 300 350 400
Maximum stress before load introduction [MPa]

Maximum stress after load introduction [MPa]

Fig.7 Scatter plot between the maximum stress before and after load
introduction, along with the best linear predictor and a +10% error
area

contribution to the torsional stiffness of the wingbox, given
the substantial magnitude of the torsion moment. This
rationale will be detailed shortly by plotting the marginal
effect of the wingbox rib.

It is noteworthy that the front spar does not contribute
significantly to the response despite the maximum Mises
stress being derived from it. This may be attributed to the
transverse loads applied not being sufficient to substan-
tially increase the stress on the spar. Figure 7 demonstrates
a strong correlation between maximum stresses before and
after load introduction, with a Pearson correlation coeffi-
cient of 0.90 and an R-squared value of 0.82, indicating a
linear relationship between the two. However, since these
correlations are not perfect, the stress after load introduc-
tion is not entirely explained by the initial stress. This
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Fig.8 Variance coverage versus number of included variables for the
maximum stress constraint. The order of variable addition: SP1, NR,
St4, St3, SP5, RS, Stl, WR, SP2, SP6, St6, St2, SP4, SP7, St5, SP9,
SP3, SP8, FS
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Fig.9 The mean squared and 5-fold cross-validation errors for
reduced-space surrogates for the stress constraint

partial explanation underscores the importance of other
design variables influencing the overall response.

Figure 8 presents a bar plot illustrating the evolution
of variance coverage as the number of included variables
increases. Note that the variables are added in the specific
order which maximizes the variance coverage with that
particular number of variables. It is evident that higher-
order interactions are present, as the variance coverage
remains below 95% despite the inclusion of all variables.
Beyond eight variables, the benefit of adding additional
dimensions in terms of variance coverage decreases to
less than 1%, indicating that further inclusion of vari-
ables yields minimal gains in the variance coverage of
the model.

Another aspect aiding in decision-making involves refit-
ting surrogate models within the reduced design space
using the initial training dataset and evaluating their mean
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squared and cross-validation errors, illustrated in Fig. 9.
The latter significantly underestimates the MSE and does
not align with its trend. Curiously, both errors exhibit a sud-
den decrease at the five-variable threshold. This reduction is
disregarded due to only 88% of the total variance being cov-
ered, which is insufficient. Beyond eight variables, both error
metrics stabilize, except for a slight anomaly in the MSE at
fourteen to seventeen variables. It is important to recognize
that MSE estimates global accuracy and may be influenced
by artefacts or fortunate hyperparameter optimization within
the specific reduced design space. Nonetheless, the error
measures of the eight-dimensional surrogate model remain
comparable to those of the nineteen-variable model, indicat-
ing that the reduced metamodel maintains adequate accuracy
despite the presence of higher-order interactions. This sug-
gests that the variable screening procedure effectively retains
the most significant parameters without compromising the
reliability of the surrogate model.

In total, eight significant variables were identified: the
leading edge skin, nose ribs, wingbox ribs, three stringer
stations, one material zone of the skin panel, and the rear
spar. The exclusion of certain stringer stations and additional
skin panel material zones may appear odd. This limitation
suggests that higher-order interactions with other variables
were not fully captured, exposing a potential weakness in
the current methodology.

A final safeguard against the erroneous identification of
significant variables involves evaluating the marginal effect
plots, illustrated with two examples. The significance of
the wingbox rib, attributed to its contribution to torsional
stiffness, is confirmed by the linear, decreasing relation-
ship shown in Fig. 10, where a thicker rib will lead to lower
stresses on the front spar. The marginal effect of the lead-
ing edge skin, the most significant variable, is depicted in
Fig. 11, exhibiting a parabolic shape: a very thin skin results
in substantial penetration and rupture of the front spar, while
an excessively thick skin may become overly rigid, reducing
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Maximum Mises stress [MPa]

182.5 1

180.0 1, r T T T T T T
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Fig. 10 Marginal effect of the wingbox rib
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Fig. 11 Marginal effect of the leading edge skin

its energy absorption capacity and transferring more kinetic
energy to the rest of the structure, including the front spar.

4.2.2 Penetration depth constraint

Despite the high RMSE associated with the penetration
depth constraint, only a few significant variables are identi-
fied, as illustrated in Fig. 12. The leading edge skin stands
out as the most influential factor, accounting for 88.60% of
the total variance. It interacts with the nose rib, contrib-
uting an estimated 1.35%, even though the nose rib itself
has a modest main effect of 0.78%. It is acknowledged that
the variance coverage for the nose rib seems low, and that
the values may be erroneous due to the high RMSE of the
surrogate.

The wingbox rib also plays a notable role, with a main
effect of 1.31%, although it does not interact with other
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Fig. 12 Main and interaction effects for the penetration depth con-
straint. Note: all effects with a value of less than 0.1% have been
masked



Incorporating bird strike crashworthiness requirements within the design of wing structures

Page130f 18 236

)

S 100

9]

1%}

C

©

= 801

©

>

s

o 601

S

1]

(oo} Eul 'al "ol [°X [=2) k=N
IR EEERER R R
SI~fojofjojo o

840- mmmmmmmmmmmmmmmmmmm
C

kel

=]

2 204

T

=

C

5]

o |

123456 7 8 910111213141516171819
Number of variables included in the surrogate model

Fig. 13 Variance coverage versus number of included variables for
the penetration depth constraint. The order of variable addition: SP1,
WR, St2, NR, St3, SP3, St6, St4, SP6, SP4, SP9, Stl, St5, SP5, SPS,
FS, SP7, SP2, RS

25000 B Mean squared error

mmm 5-fold cross-validation error
20000

15000 -

10000 -

5000 -

Error measure of the model [mm*]

123456 7 8 910111213141516171819
Number of variables included in the surrogate model

Fig. 14 The mean squared and 5-fold cross-validation errors for
reduced-space surrogates the penetration depth constraint

variables. Interestingly, stringer 2 has a main effect of 0.44%
and is estimated to interact with the leading edge skin by
1.89%. However, this interaction may be inaccurately identi-
fied due to the poor global accuracy of the surrogate model.

Figure 13 illustrates the variance coverage, while Fig. 14
displays the mean squared and cross-validation errors. It
is evident that increasing the number of variables beyond
four yields minimal improvements in variance coverage.
Notably, the three-dimensional design space achieves sub-
stantial variance coverage and an impressive 80% reduction
in MSE compared to the full-dimensional model. How-
ever, the cross-validation errors significantly overestimate
the global accuracy of the model and do not align with the
trend observed in the MSE. This discrepancy suggests that
the cross-validation metric may not reliably reflect the true
accuracy of the surrogate model.
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Fig. 15 Marginal effect of the leading edge skin for the penetration
depth constraint
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Fig. 16 Marginal effect of the second station stringer and the leading
edge skin for the penetration depth constraint

The importance of examining the marginal effects of indi-
vidual variables becomes clearer in the case of the maximum
penetration depth constraint. While it is apparent from the
marginal effect illustrated in Fig. 15 that the leading edge
has a significant contribution, a highly multimodal landscape
is predicted. Figure 16 showcases the marginal effect of the
leading edge and the second stringer station, whose interac-
tion was predicted rather high. However, the presence of
bands of constant values suggests that the metamodel may
lack sufficient accuracy.

Based on engineering judgment, the leading edge, nose
ribs, and wingbox ribs are selected as significant variables,
while the second stringer station is excluded from further
consideration. Following this selection, a re-evaluation of
the error metrics within the design space shows an improve-
ment in the MSE, decreasing from 7532.61 to 6269.87 mm?.
On the other hand, the cross-validation error increased
from 192.54 to 643.8 mm?, reinforcing the necessity of
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Fig. 17 Marginal effect of the leading edge skin for the penetration
depth constraint in the reduced design space

maintaining a separate validation set to ensure the reliability
of the surrogate models.

The fact that the variables have been well chosen is also
supported by the marginal effect of the leading edge skin
in the reduced design space: the high modality is no longer
present, as depicted in Fig. 17.

4.3 Optimization procedure

After the variable screening procedure, all training points are
projected onto the reduced eight-dimensional design space,
with insignificant variables maintained at their minimum
values. It is assumed that this projection would not alter the
constraint observations. As a consequence, it is assumed that
the weight of the optimal design among the initial dataset
decreases from 78.83 kg before projection to 52.58 kg after,
which amounts to a 33.31% reduction. Figure 18 depicts the
damage extent of the optimal design among the initial data-
set, showing moderate penetration and rib crushing with a
depth of 161.64 mm. The maximum Mises stress on the front

Fig. 18 The damaged structure of the initial optimal design. Note: the
upper skin has been hidden
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spar after load introduction reached 239.72 MPa, highlight-
ing opportunities for further improvement.

4.3.1 Sequential approach

For this approach, no fantasizing is conducted, and the con-
strained improvement acquisition function is maximized
at each iteration to determine the next design to be evalu-
ated. Note that another strategy to reduce the optimization
search space involved utilizing the minimum observed fea-
sible weight. Since the initial optimal weight was rather low
right after the variable screening process, much of the search
space had zero constrained improvement due to having guar-
anteed larger weights. Consequently, the maximum thick-
nesses for these variables were adjusted to exclude regions
with guaranteed null improvement. This adjustment was
feasible due to the analytical formulation of weight, which
ensured null improvement in these regions.

The optimization process proceeded for 64 iterations, out
of which 12 were feasible. Figure 19 presents the evolution
of the optimal weight over the optimization iteration, the
final feasible design having a weight of 44.53 kg, represent-
ing a 15.31% reduction compared to the initial optimum after
projection. The optimizer effectively exploited increased
wing compliance to enhance kinetic energy absorption of the
leading edge, thereby reducing the stresses on the spar while
balancing the maximum penetration depth, the final design
being depicted in Fig. 20. The final weight and constraint
values, along with the weight reductions, are summarized
in Table 8.

4.3.2 Batch approach
The unresolved or ongoing observations of optimization

points were estimated by fantasizing data according to the
Kriging believer method. In batch optimization, analyses

48.0

47.5 4

47.0

46.5

46.0

45.5 A

45.0

44.5 -

Optimum feasible design weight [kg]

10 20 30 40 50 60
Iteration

Fig. 19 Evolution of the optimal weight versus optimization iteration
for the sequential approach
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Fig.20 Final optimal design in the sequential approach. Note: upper
skin hidden

Table 8 Summary of optimal designs

Sequential Batch
Optimal weight [kg] 44.53 44.59
Weight reduction before projection [%] 43.51 43.44
Weight reduction after projection [%] 15.31 15.20
Penetration constraint value [mm] 235.32 235.61
Stress constraint value [MPa] 283.76 285.04
Cumulative wall time [hours] 1,338 802

typically do not complete simultaneously. Additionally, in
the case of some static analyses not converging, their input
files may be adjusted, such as requesting more iterations,
reducing the minimum increment, or switching the auto-
matic stabilization parameters, thus increasing the wall
time of a single simulation. To maximize resource utiliza-
tion, results were saved immediately upon completion of
each Abaqus workflow step, allowing the submission of
additional design points based on available data and fan-
tasized values whenever possible. The optimization search
space was reduced in the same manner as for the sequential
approach.

The optimization process comprised 89 points, with 14
feasible designs. However, the cumulative wall time was
significantly smaller than for the sequential approach, with
33 days and 10 h versus 55 days and 18 h. Table 8 presents
the improvements of the batch approach over the sequential.
Moreover, Fig. 21 illustrates the evolution of the optimal
weight with respect to the cumulative wall time. Conver-
gence is reached faster, as depicted in Fig. 22, which pre-
sents the evolution of the acquisition function with respect
to cumulative wall time.

In the end, the final optimal design exhibits a simi-
lar response to the one depicted in Fig. 20. Its weight is
44.59 kg, which represents a 15.20% reduction compared
to the initial optimum after the variable screening process.
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Fig.22 Evolution of the constrained improvement acquisition func-
tion versus cumulative wall time

These findings substantiate the use of the ‘Kriging believer’
method in the case of computationally intensive analyses
instead of the traditional sequential approach, as the opti-
mum has nearly the same weight, but at only 60% of the
wall time.

5 Conclusions and recommendations

This study successfully integrated bird strike crashworthi-
ness requirements into a multidisciplinary optimization
(MDO) framework for aircraft wing design, achieving
significant weight savings while satisfying critical safety
constraints which require highly non-linear analyses. By
employing Bayesian optimization in conjunction with
Kriging surrogate models and a variance-based variable
ranking procedure, the methodology effectively man-
aged the high-dimensional design space comprising 19
variables. The variable screening process reduced the
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dimensionality to eight parameters, improving computa-
tional efficiency without compromising the reliability of
the surrogate models.

Applied to a five-bay metallic wing segment, the opti-
mization process attained a weight reduction of 43.44%
compared to the lightest feasible design in the initial data-
set before variable ranking. However, the study identified
limitations in the surrogate modelling process, particularly
concerning the penetration depth constraint, which exhibited
a high RMSE. This indicates a need for improved surrogate
accuracy for certain constraints. Additionally, the variable
screening procedure, while effective in reducing dimen-
sionality, cannot capture higher-order interactions among
all design variables.

Recommendations for future research include:

1. Include higher-order interactions: The variable
ranking procedure should be enhanced to identify and
account for higher-order interactions among design vari-
ables.

2. Develop a recovery mechanism: The variable screening
procedure would greatly benefit from a recovery mecha-
nism against erroneous identification of the significant
variables. In this particular case study, investigating the
marginal effects revealed that the surrogate model was
clearly inaccurate in a particular dimension, and engi-
neering judgment could be applied. However, in more
black-box type of functions, this may not be possible.

3. Validation on other crashworthiness requirements:
The generalizability of the methodology should be vali-
dated across various design challenges.

4. Validation on geometrical parameters: The method-
ology should be tested against other design variables
which would also change the architecture of the wing
structure, such as spar positions, number of nose ribs,
and different materials. Another valuable adjustment
would be to vary the thickness along the wing span, as
the farther the location is from the bird impact site, the
smaller the effect is expected to be.

Dynamic relaxation of the explicit dynamic
bird strike analysis

Dynamic relaxation of the explicit dynamic analysis is nec-
essary when coupling the outcome of the explicit analysis,
i.e., the damaged wing, with a subsequent static analysis.
In the present work, the static analysis aims to evaluate the
remaining static strength of the damaged wing. The dynamic
relaxation consists of reducing the kinetic energy and reach-
ing a quasi-static equilibrium after the bird strike event, pre-
serving all plastic deformation and damaged state.

@ Springer

During the initial phases of this work, it was observed
that without incorporating damping in the explicit dynamic
simulations, the kinetic energy of the wing decreased very
slowly or sometimes not at all. While extending the simula-
tion time could mitigate this issue, the absence of energy
dissipation is unrealistic since metallic structures inherently
exhibit some damping. Therefore, a damping ratio of 0.02
was sought to be enforced, considered a reasonable estimate
for continuous metallic structures as recommended by Orban
(2011).

However, defining a constant damping ratio directly
in Abaqus/Explicit is not feasible. As a result, Rayleigh
damping can be employed, which assumes that the damp-
ing matrix is a linear combination of the mass and stiffness
matrices, as given in Eq. A1, where « and § are the mass and
stiffness-proportional damping coefficients, respectively. For
a given mode with natural frequency w, the corresponding
damping ratio ¢ is related to the Rayleigh coefficients by
Eq. A2.

C =aM + fK (A1)
f= 422 (A2)

However, as demonstrated by Dassault Systémes (2023b),
the stiffness-proportional damping coefficient § can signifi-
cantly reduce the stable time increment in explicit dynamic
simulations. To circumvent this issue, only mass-propor-
tional damping is applied by setting f = 0 and calculating
the mass damping coefficient a using the first natural fre-
quency from Eq. A2. For higher frequencies, this approach
results in a reduced damping factor, preventing overdamping.

Tools

Addressing the time-consuming and repetitive nature of
exploring multiple structural concepts, complicated by the
involvement of various disciplines, GKN Fokker’s Center of
Competence in Design developed a Knowledge-Based Engi-
neering (KBE) multidisciplinary design system (van den
Berg and van der Laan 2021). The Multidisciplinary Mod-
eller (MDM) is a Python package that automates the genera-
tion of products like flaps, wingboxes, and movables.

By allowing users to define these products through
Python dictionaries, MDM facilitates efficient design space
exploration for trade studies and enables rapid, consistent
generation of analysis models. Moreover, MDM encom-
passes various modules such as an automatic mesh generator
and an Abaqus Interface. The latter aims to generate ready-
to-run input files containing all the necessary information
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for the creation of finite element (FE) models based on these
products, and was used extensively here for data generation.

In addition to the tools previously mentioned, two open-
source Python packages were utilized throughout this study:
the Surrogate Modeling Toolbox (SMT) (Saves et al 2024),
and Trieste (Picheny et al 2023). Both packages provide
continuous and mixed-integer surrogate models, bench-
mark functions, and optimization algorithms. SMT was
employed for the variable ranking procedure, while Trieste
was used for Bayesian optimization on the reduced design
space. Apart from Abaqus, which was necessary for finite
element analyses, no other commercial software was used
in this project, ensuring that the methodologies developed
are accessible and reproducible.
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