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Abstract Sediment of different size are transported in rivers under the action of flow. The first and still
most popular sediment continuity model able to deal with mixed sediment is the so-called active layer model
proposed by Hirano (1971, 1972). In this paper, we consider the one-dimensional hydromorphodynamic
model given by the Saint-Venant equations for free-surface flow coupled with the active layer model. We per-
form a mathematical analysis of this model, extending the previous analysis by Ribberink (1987), including
full unsteadiness and grainsize selectivity of the transported load by explicitly considering multiple sediment
fractions. The presence of multiple fractions gives rise to distinct waves traveling in the downstream direc-
tion, for which we provide an analytical approximation of propagation velocity under any Froude regime. We
finally investigate the role of different waves in advecting morphodynamic changes through the domain. To
this aim, we implement an analytical linearized solver to analyze the propagation of small-amplitude pertur-
bations of the bed elevation and grainsize distribution of the active layer as described by the system of gov-
erning equations. We find that initial gradients in the grainsize distribution of the active layer are able to
trigger significant bed variations, which propagate in the downstream direction at faster pace than the “bed”
wave arising from the unisize-sediment Saint-Venant-Exner model. We also verify that multiple “sorting”
waves carry multiple associated bed perturbations, traveling at different speeds.

1. Introduction

River beds are usually characterized by the presence of mixed sediment. The grainsize distribution can be
unimodal and well sorted, as in the case of most sand-bed rivers, or poorly sorted showing varying degrees
of bimodality as in the case of most gravel bed rivers [Parker, 2004].

The mathematical description of mixed-sediment morphodynamics requires a proper sediment continuity
model, relating bed load transport to the size of sediments available at the bed surface and keeping track
of the development of stratigraphy. Hirano [1971, 1972] was the first to develop such a model. He discre-
tized the bed material using a finite number of classes characterized by a unique grainsize value and put
forward the concept of exchange layer (active layer in the English literature), i.e., a fully mixed layer located
just under the bed surface. The active layer represents the volume of sediment that interacts with the flow
giving rise to bed load fluxes and regulates the exchange with the substrate located underneath.

Despite the more recent introduction of a refined vertical-continuous approach to the modeling of size
stratification [e.g., Parker et al., 2000; Blom and Parker, 2004; Blom et al., 2008], the active layer model has
been the most popular approach to mixed-sediment morphodynamics over the last four decades: it has
been used to study, e.g., static bed armoring [Ashida and Michiue, 1971], sediment sorting induced by dunes
[Ribberink, 1987], sediment sorting in bends [Parker and Andrews, 1985], bed load sheets [Seminara et al.,
1996], river bars [Lanzoni and Tubino, 1999], and patterns of longitudinal sorting [Hoey and Ferguson, 1994].
More details on its applications are given in Parker et al. [2000] and references therein.

To serve different purposes, it has received numerous improvements and modifications by various authors:
Armanini and Di Silvio [1998], Parker [1991], and Di Silvio [1992] introduced a term describing the time evolu-
tion of the storage of sediment in a thin bed load layer on top of the active layer; Armanini and Di Silvio
[1998], Holly and Rahuel [1990], and Di Silvio [1992] developed a formulation for suspended load transport;
Parker [1991] introduced a formulation for particle abrasion; Parker [1991], Hoey and Ferguson [1994], and
Toro-Escobar et al. [1996] modified the formulation for the depositional flux to the substrate; Ribberink
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[1987] and Di Silvio [1992] introduced an additional layer below the active layer to account for vertical sedi-
ment exchange due to occasionally deep bed form throughs; Sieben [1997] included an adaptation length
in the bed load formulation for the stabilization of the model; and Sloff et al. [2001] subdivided the substrate
into different layers for bookkeeping purposes.

The active layer model is also, by large extent, the most widely used strategy to account for mixed sediment
in numerical models: it has been used for studying, e.g., sediment overloading [Ribberink, 1987], morphody-
namic evolution of mountain streams [Sieben, 1997] and sediment pulses in mountain streams [Cui and
Parker, 2005], downstream fining by selective transport [Hoey and Ferguson, 1994], development of size
stratification of the bed [Viparelli et al., 2010], and pool-riffle dynamics [Mazza de Almeida and Rodriguez,
2011] and is implemented in mainstream morphodynamic software, e.g., Delft3D [Sloff et al., 2001] and
BASEMENT [Vetsch et al., 2006-2013].

Yet despite its widespread use, the mathematical behavior of the active layer model has not been com-
pletely explored. A fundamental contribution is due to Ribberink [1987]. He analyzed the system of govern-
ing equations neglecting grainsize selectivity of bed load and assuming quasi-steady flow. He developed
approximations to the speed of the “bed wave” and “sorting wave,” where the latter is the speed associated
with a model for the evolution of the average diameter in the mixture (resembling all the active layer equa-
tions) and the former is identical to the celerity of bed perturbations in the uniform-size (unisize)-sediment
case [De Vries, 1965]. These outcomes have been used to interpret both field data [Mosselman et al., 2008]
and numerical results [Sloff and Mosselman, 2012] in sorting-dominated contexts. An alternative analysis
was performed by Suzuki [1976], who derived approximations to the characteristic speeds of the system by
retaining independent active layer equations. His analysis, still limited by the assumption of quasi-steady
flow, identifies distinct “sorting” celerities associated with the distinct active layer equations. More refine-
ments have been put forward by Sieben [1997]. He obtained a graphical representation of the characteristic
celerities for the unsteady model in a two-fraction setup, developed simplified analytical models under
quasi-steady flow approximation and analyzed the features of numerical solutions.

The analysis of Ribberink [1987] also addressed in a simplified manner the question whether the model is
hyperbolic, i.e., characterized by real characteristic celerities. This is of paramount importance since only
hyperbolic models are adequate for representing time-advancing problems [e.g., Toro, 2001], which are fully
determined by the initial and boundary conditions. Otherwise, if the wave speeds are complex, which may
happen for the Saint-Venant-Hirano model when the active layer degrades into a finer substrate [Ribberink,
1987], the problem becomes elliptic. Elliptic problems require boundary conditions to be set over the entire
boundary for all the independent variables. This is acceptable for steady problems, where all independent
variables are spatial coordinates, but does present a severe conceptual problem if one of the independent
variables is time, as in the present case. Here the required condition at the upper time boundary implies the
present to depend on the future, which is physically nonsensical [Mosselman, 2012]. Thus, the Hirano model
in the elliptic range is unsuitable for morphodynamic predictions [Ribberink, 1987; Sieben, 19971.

In the present paper, we aim at performing a more complete mathematical analysis of the Hirano active
layer model coupled with the unsteady Saint-Venant equations for one-dimensional free-surface flow. After
rewriting the problem in matrix-vector form, we will develop approximations to all the system eigenvalues,
which provide the speeds of the small-amplitude waves described by the model, and we will determine its
hyperbolicity domain.

Our analysis extends the available wave speed estimates by Ribberink [1987] by considering all the “sorting”
characteristic directions associated with each individual active layer equation, i.e., avoiding reduction of the
active layer model to a single equation for the average diameter. Here, by “sorting” characteristic directions
we mean those directions along which most of the changes in the grainsize distribution of the active layer
are advected. Our approach enables us to develop approximations to all the wave speeds in the system
under high-transport conditions, and to show that, if grainsize selectivity is considered, the “sorting” waves
propagate at different speeds. Furthermore, it allows us to consider low and partial transport conditions, in
which only some fractions are transported by the flow.

Finally, we consider the role of each wave in propagating morphodynamic changes. In this respect, we show
that each “sorting” wave issuing from an infinitesimal localized perturbation in the grainsize distribution of
the active layer also carries significant changes in the bed profile, due to the associated bed load gradients.
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The paper proceeds as follows. In section 2, we set the coupled Saint-Venant-Hirano model and rewrite it in
matrix-vector form. In section 3, we analyze its eigenstructure in order to develop analytical approximations
for its eigenvalues and to determine the hyperbolicity domain, and numerically test these achievements. In
section 4, we develop an analytical solver for the linearized problem and apply it to study the wave dynam-
ics driven by the mixed-sediment model. Finally, in section 5, we discuss the validity of our assumptions
and some implications of our analysis, and conclusions are drawn in section 6.

2. The Mathematical Model

We consider a one-dimensional hydrostatic model, which describes unsteady free-surface flow over a cohe-
sionless bottom composed of mixed sediment. Friction exerted by flow over sediment induces sediment
transport, which is assumed to occur only as bed load. The active layer approach of Hirano [1971, 1972] is
employed in order to allow for changes in the grainsize distribution of the bed surface and to account for
the development of size stratification. The resulting mathematical model is composed of a set of governing
equations expressing physical principles (conservation of water and sediment mass and the momentum
principle) and by closure relations for friction and sediment transport.

2.1. System of Governing Equations
The one-dimensional, nonlinear system of partial differential equations (PDEs) considered in this paper
includes equations for conservation of water mass (the continuity equation),

oh  0q

&"‘& 0, (M

for the momentum principle for the water phase,

aq 0 (q* 1 , on
—+—(--+4+-gh*)|+gh—=—gh 2
ot 8x(h 29 ) Fh G = ghsr @
and for the conservation of sediment mass (the Exner equation):
I Ogp
—+2=0.
ot 0Ox ®

In (1)-(3), h(x, t)[m] denotes flow depth, g(x, t) [m?s~ ] flow discharge per unit width, g=9.81 ms~2 is the
acceleration due to gravity, 1(x, t) [m] is bed elevation, S¢(x, t) is the dimensionless friction slope, and gy
(x,t) [m2s™"] represents total sediment discharge per unit width multiplied by the factor 1/(1—p), where p
is bed porosity. We furthermore define water velocity as u(x,t)=q/h [ms~']. Equations (1)-(3) constitute the
Saint-Venant-Exner model, describing one-dimensional morphodynamics under the assumption of unisize
sediment, i.e., if only one representative sediment diameter is considered.

To deal with mixed sediment, we adopt (i) a representation of the sediment mixture using discrete fractions,
(ii) a vertical discretization of the river bed, in order to keep track of size stratification, and (iii) a grainsize-
specific sediment continuity model.

The sediment mixture is discretized using N fractions, each one characterized by one representative grain
diameter d, where k is an index spanning the range from 1 to N. The sediment discharge of each size frac-
tion gy is defined using appropriate closure relations, which will be described in section 2.2. The total sedi-
ment discharge gy, to be used in (3) is then given by

N
qp= Z Gk - (4)
k=1

For vertical discretization of river bed size stratification, following Hirano [1971] and Parker [1991, 2004], we
consider two layers (see Figure 1). The active layer is a moving volume, having thickness L, [m], located
immediately under the bed surface. Though L, can in principle vary with space and time, in this paper we
restrict our attention to constant active layer thickness. Thus, the vertical displacement of the active layer
varies with the bed elevation 5(x, t). Below the active layer, the substrate is found, and the interface
between the active layer and the substrate is located at elevation z=#—L, (see Figure 1). The active layer is
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Figure 1. Sketch and notation of the vertical discretization of the river bed and sediment fluxes.

assumed to be vertically mixed [Hirano, 1971] and the vertically averaged volume fraction content of size
fraction k is denoted with Fa (X, t). The substrate, instead, is not vertically mixed and its fraction content is
denoted with fy(x,z, t).

The active layer provides a source of sediment to be entrained into the flow, giving rise to sediment dis-
charge g The grainsize distribution of the active layer F, is assumed to be representative of that of the
bed surface in the evaluation of bed load, as we shall see in section 2.2. The substrate layer instead does
not contribute to bed load discharge. Exchange of sediment between the two layers occurs only by net
aggradation and degradation of the interface at z=n—L,. This results in a vertical flux of sediment mass,
which is compensated by consumption or creation of new substrate on top of the layer.

The following constraints over the sediment fraction values hold

0<Fu<1, 0<fy<1 for T<k<N (5)
and
N N
D Fa=1, Y fy=1. (6)
k=1 k=1

For each size fraction, we define two sets of conserved variables, i.e., variables for which physically meaning-
ful balance laws can be established [see e.g., Toro, 2009]. They are

—Lq

Mak=FakLa , Msk:J fsk(z)dza (7)

Mo
where 74 is a constant reference elevation datum well embedded in the substrate (see Figure 1). M, and
Mg have the dimension of lengths ([m]) and represent the sediment mass of the kth fraction per surface
area in the active and substrate layer, divided by the constant sediment density, in the active and substrate
layer. For this reason, M, and Mg, will be termed sediment mass variables.

The constraint (6) can be rewritten as

N N
ZMak:Lm ZMSk:’?_La_"IO- @8)
k=1 k=1

Finally, the required grainsize-specific continuity model is defined imposing the mass conservation principle
in the active layer,

OMay , 0 0quk
=1 2 (—Lq)— I
o~ gt
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and in the substrate

OMsk —fl 2
at kot

In (9) and (10), f}(x, t) denotes the volume fraction content at the interface between the active and sub-

strate layer. Since at that location a discontinuity in fraction content is allowed, following Hirano [1971] and

Ribberink [1987] its value at the interface is evaluated as

(n—La). (10)

.0
Fak |fa(n Lg) >0
fl= an
fu(z=n—La) it 2 (n-12) <0
sk N—La ot N—La

Equation (11) states that the fraction content at the active-substrate interface to be used in (9) and (10) is
equal to that of the active layer in case of aggradation of the active-substrate layer interface and to that of
the top of the substrate layer otherwise. Alternative relations (not used in this paper) have been proposed
by Parker [1991], Hoey and Ferguson [1994], and Toro-Escobar et al. [1996]. By the definition (11) and the con-
straint (5), the interface fraction content is subject to the constraint

0<fl<1 for1<k<N. (12)
The final form of equations (9) and (10) is found using the Exner equation (3) to evaluate the term 91/0t
and considering temporal constancy of the active layer thickness, i.e.

oo
0 13

We obtain the following active layer conservation equations:

OMak | 0ok Oqy
+ P — _— =
ot ox fi ox

and substrate layer conservation equations:

OMg +fl aqp _

ot ox (15)

Notice that by constraints (8) and the assumption (13), only N — 1 independent active layer and substrate
layer equations can be set.

In summary, the coupled Saint-Venant-Hirano model is finally given by 2N+1 PDEs, namely
1. the Saint-Venant-Exner equations (1)-(3) (3 PDEs) and
2. the active and substrate layer mass conservation equations (14) and (15) (2(N—1) PDEs)

and by the definition (4) and constraints (8). It is worth mentioning that the model automatically reduces to
the Saint-Venant-Exner model (1)-(3) for unisize sediment if only one sediment fraction is considered.

2.2. Closure Relations

Closure relations are required for the evaluation of the friction slope S¢in the momentum equation (2) and
bed load transport of each fraction in equations (14) and (15). The bed load transport of each fraction is
also required for the evaluation of total bed load flux (4), to be used in (3), (14), and (15).

The theoretical analysis in this paper focuses on the propagation of small-amplitude waves. These waves
are the fastest carriers of information described by the model and propagate hydromorphodynamic
changes along the characteristic directions over short temporal and spatial scales. In this case, the effect of
friction in the momentum equation is commonly assumed to be negligible, see e.g., Lyn [1987] and Lyn and
Altinakar [2002] for the unisize-sediment case and Ribberink [1987] for the present mixed-sediment case.
Thus, throughout the paper we set S;= 0 in equation (2), and this assumption is discussed in section 5.

The sediment discharge gy of each fraction is given by
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M,
Gok =FakQuk= Tak Qpk (16)
a

where Qu is the transport capacity for the case that the bed would consist only of the size fraction k (in the
following, simply termed as the transport capacity of fraction k). Qu shall be evaluated using a bed load
transport relation, as function of the local hydrodynamic conditions.

Ribberink [1987] neglected grainsize selectivity of bed load in his characteristic analysis of the Saint-
Venant-Hirano model (chapter 5.1.1 in the thesis), that is, all the classes are characterized by the same
transport capacity. This idealized assumption can be acceptable only when sediment transport is very
intense but is far away from standard and realistic conditions in rivers. A distinctive feature of the anal-
ysis in this paper is the assumption of grainsize selectivity. The present analytical framework can
accommodate any bed load relation able to account for grainsize selectivity, e.g., those of Ashida and
Michiue [1972], Parker [1990], or Wilcock and Crowe [2003]. Among them, we use the bed load transport
relation of Meyer-Peter and Muller [1948] in conjunction with the hiding-exposure correction of Egiazar-

off [1965], which reads
\/9gAd3, .
p max ((ek_ékGC)7o) ) (17)

Qpk=sign (q) A -
where p (constant) is the bed porosity, A and B are dimensionless constant parameters, and 0. is the critical
Shields stress. Throughout this paper, we use p = 0.4, A =8, B=3/2, and 0.=0.047. Furthermore, we define
A=p,/p—1, where p,=2650kgm~3 and p=1000 kg m~3 are sediment and water density. 0, is the Shields
stress relative to the kth sediment fraction, defined as

7

0=— 1
K~ AdyC2gh?”’

(18)
where C is the dimensionless Chézy coefficient, here assumed as constant. Finally in (17), & is the hiding
factor for the kth fraction, which reads

2

| 19
f= | —2102 | (19)

)
Iog10(19d::>

where d_5=Zf:1 Fakdsk is the mean sediment diameter in the active layer. The hiding factor reduces the
mobility of fine grains in the mixture compared to the unisize-sediment case and increases that of coarse
grains, thus promoting conditions closer to equal mobility with respect to the case without hiding correc-
tion (&,=1). In other words, the hiding-exposure correction reduces the grainsize selectivity of the transport
process, but in our case not to the extent that grainsize selectivity is fully neglected. We emphasize since
now that considering the hiding correction in the form (19), or in a different form, e.g., in the power law
form set by Parker [1990], or simply neglecting it, does not have significant impact over our eigenstructure
analysis, since it only affects the values of transport capacity and threshold of motion, but not our conclu-
sions on the wave celerities under different transport regimes, on the physical role of waves, on hyperbolic-
ity of the mathematical model.

2.3. The System in Matrix-Vector Form
The system given by (1-3), (14), and (15), assuming S;= 0, can be recast in matrix-vector form as

%—‘3+A%—?= , (20)
with
;
Q=|h,q, 1, Mar, ..., Man—1, Ms1, ... ;Mon—1 | 21
N-1 N—1
and
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In (21) and (22), Q has size (2N+1)X1 and A has size (2N+1)X(2N+1). In order to accommodate an arbi-
trary number N — 1 of active and substrate layer equations, the matrix A is here defined by blocks, whose
size is indicated at its bottom and right. The integer indices k and / span the range between 1T and N — 1
and identify the column and row numbering within these blocks, respectively. The matrix includes as 3 X 3
upper-left block the system matrix of the Saint Venant-Exner model for unisize sediment and reduces to
that if one single sediment class (N = 1) is considered. For the sake of clarity, the matrix is rewritten in
extended form in Appendix A.

3. Mathematical Analysis

In this section we will analyze the eigenstructure of the system matrix (22). In detail, we will provide approx-
imations to the system eigenvalues, which yield the celerities of small-amplitude perturbations as described
by the model, and provide an interpretation of the role of these waves in propagating hydrodynamic and
morphodynamic changes. We will also determine under which physical conditions these eigenvalues are
complex, denoting loss of hyperbolic behavior of the model. These results will be tested numerically.

3.1. Preliminaries
We aim at rewriting the system matrix (22) into a more compact form for subsequent analysis, highlighting
the dependences on physically meaningful parameters. We introduce

Fed_ y=d% (23)

Vah?
where F, is the Froude number and s represents the variation in total bed load discharge per unit variation
in water discharge. The latter parameter, already used by several authors, e.g., De Vries [1965] and Lyn and
Altinakar [2002], represents a measure of the intensity of total bed load in the flow.

We observe that the last N — 1 rows in A (22), which correspond to the substrate layer equations (15), are
linearly dependent on the third row resembling the Exner equation (3), since they contain the same entries
multiplied by the scalar f/, and that the last N — 1 columns are null. Therefore, N — 1 of the eigenvalues A
are readily found to be identically equal to zero. In the following analysis, for the sake of simplicity, the cor-
responding lines and columns will be discarded, without altering the remaining eigenvalues. We will thus
consider the reduced matrix which only contains the upper 3 X 3 Saint-Venant-Exner block and the N — 1
additional rows and columns of the active layer equations. After some algebraic manipulations, which are
presented in detail in the supporting information to this article, the reduced matrix is written as

0 1 0 [0] H
1 u?
2 — i
u (F_rz 1) 2u P 0] M
_ Qb1— Qo
A= — <ol <oV 24
r w0 e N I 4)
< Qo Qu—Quy
Condl ) (0] | [on 2 2
Sl Bl O %, L] e
1 1 1
L N—1 J
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where Jy is the Kronecker delta function, taking the value of 1 if k =/and 0 otherwise. In (23), the dimen-
sionless parameter

w=ck—f, (25)
is defined as the difference between the grainsize distribution

o 1 00k _ 0a51/0q
Y 9q  0qv/0q

and the grainsize distribution measured at the interface between the active and substrate layer f}. In (26),

the term dqpk/Oq represents the variation of bed load discharge of the kth fraction for a unit variation of

water discharge. Hence, with the definition of i/ (23), ¢, represents the increase in the transport of the kth

fraction relative to the increase of total bed load, with increasing water discharge. By the definitions (25),

(23), and (4) and the condition (12), the constraint

(26)

1<y <1 for 1<k<N (27)

holds.

While specifying the diameter of each class, we stipulate that sediment fractions are ordered by increasing
diameter, i.e.

dsk < d5k+1 for 1 < k < N-1 5 (28)

which gives rise to decreasing transport capacities, i.e., |Quk| > |Qupk+1|, as predicted by the bed load
relation (17).

It can be proven that the third line in A, (23) resembling the Exner equation (3) and the N — 1 lines located
underneath, which arise from the active layer equation (14), are linearly independent, provided the trans-
port capacity of each fraction, predicted by (17), is nonzero. The system eigenstructure is thus markedly
dependent on the considered transport regime. For transport rates from moderate to high, when all the
fractions are mobile, N — 1 independent active layer equations are retained and N — 1 waves having non-
zero celerity will arise from them. This case is analyzed in section 3.2. Conversely, under partial transport
conditions, when only P sediment fractions are mobile, with 1 <P < N, a number N—P of linearly dependent
active layer equations will be found, which will produce a corresponding number of waves having null
celerity, as we shall see in section 3.6.

Finally, for the subsequent hyperbolicity analysis in section 3.3, we specify the matrix for the particular case
of a two-fraction mixture, which reads

i 0 1 0 0 i
1 u?
HH=—-1) 2u =
Ag) w5 °
A= —Ul// lﬁ 0 Qp1—Qp2 ) (29)
Lq
1—f! Qp +f’Qb2
—upy Yy 0 (1)+
L a d
with
n=a—f (30)
and

. _ 1990 _9951/09
¥ 9g  0qv/0q
¢, (31) represents the increase in the transport of fine material (fraction 1) relative to the increase of total
bed load, with increasing water discharge. Thus, y; (30) is positive if ¢; (31) is higher than the content f{ of
fine material in the mixture found at the active layer-substrate interface, and it is negative otherwise. As we
show in the supporting information, ¢, is always higher than the content of the first fraction in the active

€1))
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layer F,, provided a grainsize-selective bed load relation such as (17) is used. From this observation, it fol-
lows that, by assuming grainsize selectivity and considering two mobile fractions, only the case y; > 0is
allowed under aggradational conditions, i.e,, when f1’ (11) is equal to Fgy, and that the case y;, < 0 can only
occur in case of degradation into a substrate which has finer grainsize distribution than that given by ¢,
(31). Under partial transport conditions instead, when the second fraction is immobile, the case 7, > 0'is
always found both under aggradational and degradational conditions, since in that case ¢; (31) is found to
be identically equal to 1.

3.2. High Sediment Transport: Analytical Eigenvalue Approximations

In this section, we derive analytical approximations for the eigenvalues of the system matrix (23) written for
an arbitrary number N of sediment fractions. These eigenvalues provide the speeds of small-amplitude
waves as described by the system of governing equations, under the assumption that all fractions are trans-
ported by the flow giving rise to relatively high total sediment discharge. Initially in this section, we will
make the hypothesis that these eigenvalues are real, i.e., that the system is hyperbolic; the conditions for
hyperbolicity will be discussed in the next section.

The unisize-sediment case (N = 1), in which the model reduces to the Saint-Venant-Exner model, has been
thoroughly analyzed by De Vries [1965], Lyn [1987], Lyn and Altinakar [2002], and Lanzoni et al. [2006]. In par-
ticular, Lyn [1987] and Lyn and Altinakar [2002] use a first-order perturbation approach in terms of the small
parameter ¥/ (23), which in alluvial rivers typically has magnitude 0(10’2) or lower [Lyn, 1987; Lanzoni

et al., 2006]. Their approximations to the system eigenvalues have the form

1
- /‘L;: l// ]
F, 1-F2

A== (32)
where A7 =J;/u (i=1, 2, 3) are the dimensionless eigenvalues. This approximation is valid under well-
developed sub or supercritical regime, under the condition |1—F?| > O(\/J) in practice, in the ranges F,
< 0.8 and F, > 1.2. Physically, the characteristic speed 2; (32) has been identified as the celerity of bed per-
turbations in the quasi-steady analysis of De Vries [1965]. Thus, from now on, we will term this celerity and
the associated wave as the “bed” celerity and “bed” wave. The “bed” wave travels in the downstream direc-
tion under (well-developed) subcritical flow, when its celerity is positive, and propagates in the upstream
direction under supercritical flow [e.g., Lyn and Altinakar, 2002]. The speeds 17 ,, which are equal to those of
the fixed-bed shallow water model, identify the celerity of waves mainly carrying perturbations of the flow
variables [Lyn and Altinakar, 2002].

Close to critical conditions, i.e., for [1—F2| < O(y/) (roughly for 0.8 < F, < 1.2), the quasi-steady flow
approximation is not valid since A5 in (32) tends to infinity. In this case, a different perturbation approach
[Lyn, 1987; Lyn and Altinakar, 2002] yields

1 1 1 1\* 8y 301
Po=—(1-= )=/ (1-5 ) +=, MA=Z+—. (33)
' 4( F?) 4 < F,Z) AT

Lyn and Altinakar [2002] show that under transcritical conditions both of the waves having celerity 4] , (33)
convey most of perturbations in bed elevation in the upstream and downstream direction simultaneously,
while the fast downstream-traveling wave /; is essentially a hydrodynamic wave.

Let us now consider the multiple-fraction case. Ribberink [1987] performed a characteristic analysis of the
system under the following simplifying assumptions:

1. use of a simplified sorting model, resembling all the active layer equations in one equation for the aver-
age diameter d;=>"1_, Faxds;

2. quasi-steady flow: only the Exner equation (3) and the equation for d; are considered;
3. that the total sediment discharge depends only on water velocity and mean sediment diameter; and

4. that in aggradational conditions (0(1—Lg)/0t > 0), the grainsize distribution of bed load is equal to that
at the interface between the active layer and the substrate.

It is worth noticing that the last hypothesis implies that grainsize selectivity is neglected. Under aggrada-
tional conditions (9;(n—Lg,) > 0), the analysis yields two real characteristic celerities
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o VG

Ja= R . 34
3T 44 ul, (34)

Here /3 is identical to /3 in (32) and has the same physical meaning, while ; represents the propagation
celerity of perturbations in the average diameter of the mixture, associated with changes in the grainsize
distribution in the active layer. We term it hereinafter as the celerity of the “sorting” wave. A more refined
expression for the “sorting” celerity is derived by Mosselman et al. [2008], taking also into account the differ-
ence in the mean diameter between the bed load and the active layer material.

In (34), 4, is positive for any Froude and its magnitude is proportional to the inverse of active layer thick-
ness: a thinner active layer gives rise to higher values of the eigenvalues and then faster “sorting” wave
propagation. The ratio 1, /45 is found to be in the range 0.3+4 [Ribberink, 1987] or 28 [Sloff and Mossel-
man, 2012]. This implies that the “sorting” wave is at least as fast as the “bed” wave and possibly several
times faster. However, a limit to the minimum active layer thickness must be set based on the celerity 4,,
since it would be unreasonable for the “sorting” wave to travel faster than perturbations in the flow varia-
bles [Sieben, 1997].

The solution (34) and its variation [Mosselman et al., 2008] have the following three limitations:
1. due to the quasi-steady flow assumption, they do not apply to transcritical conditions;

2. they only include a single, representative celerity for the evolution of the average diameter, i.e., ; in (34),
rather than distinct celerities due to various size fractions; and

3. being developed in aggradational conditions, they can be applied to degradation only if the top of the
substrate layer has the same grainsize distribution as the active layer, as is done by Mosselman et al.
[2008].

Suzuki [1976] performed an alternative characteristic analysis of the Saint-Venant-Hirano model, by retaining
independent active layer equations for all the fractions. The analysis, which assumes quasi-steady flow and
thus applies to well-developed sub or supercritical Froude conditions only, yields distinct “sorting” celerities,
having the form

Qok+Far 52
K K OFak (35)

/L =
3+k ul,

in addition to the three celerities of the unisize-sediment model in (32).

A fully unsteady analysis of the Saint-Venant-Hirano model in the particular case of two sediment fractions
was put forward by Sieben [1997] under any Froude regime. He found one additional, “sorting” characteristic
celerity with respect to those of the unisize-sediment case, which is positive throughout the Froude domain.
However, his analysis does not provide a closed-form expression for the characteristic celerities of the Saint-
Venant-Hirano model, but only their graphical representation for various values of the active layer
thickness.

It is worth pointing out since now that, though in general the “sorting” wave takes a prominent role in prop-
agating changes in the grainsize distribution in the active layer, in principle all the other waves can contrib-
ute to streamwise sorting processes, to larger or lower extent. Thus, the name of “sorting” wave shall only
serve as a useful, though in principle incorrect, definition. The same considerations hold for the “bed” wave
73 of De Vries [1965], which might be not the only wave along which significant bed changes are propa-
gated, especially if sorting processes are considered, as we shall show in section 4. Therefore, while taking
advantage of these definitions for rapidly identifying the main physical role of these waves, we will always
retain quotation marks.

Next, retaining flow unsteadiness, we will derive an analytical expression for the eigenvalues of the system,
written for N fractions. Our analysis still relies on the first-order perturbation approach by Lyn [1987] and
Lyn and Altinakar [2002], where the solution is expanded in terms of the small parameter i/ (23). The present
study is restricted to high-transport conditions, in which all the size fractions are mobile and are character-
ized by transport capacities having similar magnitude. The latter hypothesis, the details of which are
explained in the supporting information, still allows the transport capacities of different fractions Qy to
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have distinct (albeit not too different) magnitude, thus allowing for grainsize selectivity, and the case set by
Ribberink [1987] in which grainsize selectivity is neglected is included as a particular case.

The assumption of transport capacities having similar magnitude allows one to simplify terms (’)(lﬁz) or
smaller in the characteristic polynomial of A, (23), which are not of interest in the present first-order analy-
sis. Then, a first-order perturbation solution in terms of i still yields the three eigenvalues of the Saint-
Venant-Exner model (32) or (33), which are identical to those found by Lyn [1987] in the unisize-sediment
case. In addition to them, N — 1 eigenvalues are found, having the form

. Qbk(1 _f/i)+f;£QbN

= ato for 1 <k <N-1. (36)

The latter eigenvalues represent the propagation velocity of N — 1 distinct “sorting” waves as defined
above. They are always positive and have magnitude proportional to the inverse of the active layer thick-
ness, like 2, (34). The full solution is then given by (36) together with the eigenvalues of the Saint-Venant-
Exner model (32) or (33) in the relevant Froude regime, thus including N + 2 eigenvalues, in addition to the
N — 1 null eigenvalues which arise from the substrate conservation equations (see section 3.1). The present
approximation improves the estimates (34) in three respects:

1. by inclusion of the fully unsteady Saint-Venant model, it correctly describes all the Froude regimes; thus,
the full set of three eigenvalues related to the Saint-Venant-Exner part of the system is explicitly
considered;

2. it considers one eigenvalue for each active layer equation, yielding distinct celerities of N — 1 distinct
sorting waves; and

3. it naturally applies also to degradational conditions, provided the problem is hyperbolic (see section 3.5).

In the particular case in which grainsize selectivity is neglected, all the distinct “sorting” eigenvalues in (36)
collapse on the “sorting” celerity 1, (34). This is readily found observing that, if the transport capacities of all
fractions Qpx have the same value, Q, are equal to total bed load g, by (4), (16), and (6). Our analysis also
improves that of Suzuki [1976], which yields the eigenvalues approximations (32) and (35), in that it retains
flow unsteadiness, thus being able to describe also transcritical conditions.

Finally, we wish to specify the dimensionless parameters which are needed for unique identification of the
characteristic celerities. To this aim, the celerities can be given in the self-similar form

A
A*:a:funCt(Fﬁw7 :k7LZ7Fak>fsk(Z='1_La)) ) (37)

provided the constants g, A, ¢, are defined. In (37), F, and i are given by (23); d}, are the dimensionless
sediment diameters (one for each sediment fraction); and L} is the dimensionless active layer thickness,
which are defined as

% L* La

d:k: h’ a:F’

(38)
where the flow depth h is related to the flow velocity u by the Froude value. To prove that the wave celer-
ities are entirely defined by the dimensionless numbers in the right-hand side of (37), we analyze the
dependencies in the entries of the system matrix in the form (23). Here F, and / appear explicitly, and
dependence on F, and fy(z=n—L,) can be found in f/ (11). Moreover, in the ratio

Qok _ Qbk

=bk_y 7
Lq qlL;

39

which appears in numerous entries of A, (23), Qux/q can be uniquely recovered given d}, Fai, Fr, and ¥, by

expressing the Shields stress of each fraction (18) as

R
Ad}, C?

Ok (40)

and setting the dimensionless Chézy coefficient C such that the derivatives of the bed load transport rela-
tion (17) return the adopted y value (23). Finally, 7« (25) is also uniquely determined from 0y (40) and f}.
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3.3. Domain of Hyperbolicity

A system of PDEs is hyperbolic if the eigenvalues of the system matrix, describing the propagation speeds
of waves carrying variations in variables, are all real. Furthermore, it is said strictly hyperbolic if the eigenval-
ues are all distinct. In this section, we aim at determining for which values of parameters the Saint-Venant-
Hirano model is hyperbolic. This is of paramount importance since only hyperbolic models are adequate for
representing time-advancing problems, in which the system evolution is entirely determined by the initial
condition and appropriate boundary conditions [e.g., Toro, 2001]. Otherwise, if the system eigenvalues are
complex, the problem becomes elliptic and requires conditions to be set over the full boundary of the
space-time domain, including boundary conditions from future to past. An elliptic model is thus conceptu-
ally inadequate for morphodynamic predictions. Furthermore, such change in the mathematical behavior
determines marked oscillations in numerical solutions and failure of numerical solvers [Toro, 2009; Sieben,
1997], as it is has been clearly shown for another system of PDEs by Castro-Diaz et al. [2011].

A first analysis of the hyperbolicity domain for the Saint-Venant-Hirano model has been put forward by Rib-
berink [1987], under the simplifying assumptions reported in section 3.2. He found that the model is always
hyperbolic under aggradational conditions, while hyperbolicity can be lost when the active layer degrades
into a finer substrate, depending on the values of parameters. Sieben [1997] identifies one subcase charac-
terized by unconditional ellipticity under degradational conditions which he terms “crossing of eigenval-
ues.” This happens if the “bed” celerity /3 (34) is equal to the “sorting” celerity 1, (34) and the substrate is
finer than the active layer.

The present hyperbolicity analysis removes some of the simplifying assumptions made by Ribberink [1987].
In particular, here we consider the fully unsteady model, thus including any Froude regime. Moreover, we
include grainsize-selective conditions, then extending previous conclusions to sediment transport relations
of practical use, e.g., (17). In order to analytically treat the problem, our study is carried out for the two-
fraction model (29), for which analytical manipulation is still feasible, using an approach analogous to that
presented by Cordier et al. [2011]. The present study both applies to the case of two movable fractions, and
to the case of partial transport, in which the coarsest fraction (the second fraction) is immobile. In section
3.5, the analysis will be extended to multiple fractions through numerical computation of eigenvalues.

With respect to the y; parameter in (30), we consider the following three cases:

1. y,=0. This is typically found in aggradational conditions assuming that the grainsize distribution of the
bed load and active layer coincides. It corresponds to the aggradational case without grainsize selectivity
considered by Ribberink [1987].

2. 7y, > 0. Under the assumption that both fractions are mobile, this case is associated with aggradational
conditions using grainsize-selective transport relations or to degradation into a coarser substrate. Under
the assumption that the second fraction is immobile, this case represents all the aggradational and deg-
radational conditions.

3. 79, < 0. This is found when the active layer degrades into a finer substrate and both fractions are mobile.

By performing the analysis, of which the details are given in the supporting information, we prove the fol-
lowing Propositions:

1. if y;=0 the system is always hyperbolic;
2. if y; > 0 the system is always strictly hyperbolic; and

3. if y; < 0 hyperbolicity cannot be proven and the system may turn out to be elliptic, depending on the
particular values of y and other parameters. At least one subcase is found for which the system is elliptic
for any y, < 0. This happens if the second-largest wave speed of the Saint-Venant-Exner model A;\(,é)
which is given by the second-largest eigenvalue in the set (32) or (33) in the relevant Froude regime, has
the same magnitude as the “sorting” wave speed approximation (36):

Pc (1=1]) Qo1 +£{ Qb2
SVE ul .
a

The subcase (41) includes the above “crossing of eigenvalues” case found by Sieben [1997].
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Various strategies to avoid the occurrence of elliptic behavior are documented in the literature. Ribberink
[1987] developed a three-layer model, in which the presence of an intermediate layer located between the
substrate and the active layer smoothens the transition into finer substrate. This strategy reduces but does
not fully prevent possible loss of hyperbolicity [Sieben, 1997]. Sieben and Sloff [1994] tweak the active layer
thickness, so as to avoid cases of the type (41). Finally, Sieben [1997] developed a stabilization strategy by
relaxing the assumption that bed load is in equilibrium with the local transport conditions and thus intro-
ducing an adaptation length in the sediment transport formulation.

Apart from these model modifications, possible ellipticity may indicate that the purely advective behavior
of the Exner equation (3) and Hirano equations (14) used in conjunction with usual bed load transport rela-
tions (17) is too crude an approximation of the physics. Recent theoretical and experimental analysis of sedi-
ment transport has shown that the bed load flux also includes a diffusive component [Ancey and Heyman,
2014; Furbish et al., 2012; Ballio et al., 2014]. The findings of Gray and Ancey [2011] regarding a model for
particle-size segregation in shallow granular avalanches suggest that the ill-posed behavior of the Saint-
Venant-Hirano model might be cured by introducing these diffusion terms in the definition of bed load
discharge.

3.4. Numerical Verification of Eigenvalue Approximations
In this section, we test our wave speed estimates given by (32), (33), and (36) against the reference solution
obtained by numerical computation of the eigenvalues of the system matrix in the form (22).

Results are presented in the dimensionless form (37) as function of the Froude number and keeping the
remaining parameters constant. Consistently with the hypotheses upon which the analytical estimates are
based, all simulations refer to relatively high total sediment transport, given by 1y=0.0075. The dimension-
less diameter of all fractions d is prescribed setting the mean diameter d;,, and a spread parameter A}, in
the form

% * A* A*
Sk=dsmf7d+N—_d1(kf1). (42)

The mean sediment diameter d;;, (38) and spread parameter A; and the dimensionless active layer thick-
ness L} (38) are specified with reference to two sets of real-world cases. The first set refers to the bed form-
dominated beds of mild-sloping, lowland rivers (e.g., the Dutch Rhine), for which we consider d;;, =0.002
and A;=0.002. For these rivers, the dimensional L, is usually prescribed as a fraction of dune height, which
scales with the flow depth [Ribberink, 1987]. Thus, the dimensionless L} will be here assigned as an inde-
pendent constant, set equal to L} =0.2. The second set of simulations refers to plane-bed gravel bed rivers
of moderate to high slope, having mean diameter d;;,=0.01 and spread parameter A’;=0.01. In plane-bed
rivers, L, is usually taken as a multiple of a reference diameter, e.g., L,=1.5+3 dog [Parker, 2004]. For the
sake of simplicity in the model setup, we here assume L =3d; =0.03. Likewise, L} only depends on the
mean diameter.

Results are illustrated in Figures 2 and 3. In both figures, the left side presents bed form-dominated cases
under subcritical conditions (0.2 < F, < 0.8), whereas the right side show plane-bed cases under sub, trans,
and supercritical conditions (0.2 < F, < 1.6). We compare our approximate solution (colored lines) with the
reference solution obtained numerically (black, dashed lines). In detail, red lines in our plot indicate the
wave speeds related to the Saint-Venant-Exner model (32) and (33) and green lines indicate the “sorting”
celerities (36). In bed form-dominated cases, results are complemented by the wave speed estimates (34)
by Ribberink [1987]. The “bed” and “sorting” wave speeds are depicted by square and circular markers,
respectively.

Figure 2 reports the eigenvalues computed in the two-fraction case for aggradational conditions, using the
grainsize distribution F41 =F;,=0.5 in the active layer. In Figures 2a and 2b, we give an overview of all celer-
ities, while in Figures 2c and 2d we provide zooms to Figures 2a and 2b, respectively, to better observe the
behavior of the smallest eigenvalues. Our analytical solution provides an accurate approximation to all
eigenvalues. In Figure 2¢, our solution is seen to exactly coincide with Ribberink’s solution (34), which, how-
ever, does not include the largest and smallest eigenvalue in the set, as seen in Figure 2a.

Three of the considered eigenvalues are positive, indicating downstream-propagating waves, and one is
negative (upstream-propagating wave). In particular, as shown in Figure 2d, the “sorting” eigenvalue is
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Figure 2. Plot of the system eigenvalues in aggradational conditions as a function of the Froude parameter, under high sediment transport. Our estimates and those due to Ribberink
[1987] are denoted with SSB and R, respectively. Parameters are 1y=0.0075, N = 2, and F41 =F4,=0.5. (a, ¢) Bed form-dominated cases (L;=0.2, d;,, =0.002, A;=0.002). (b, d) Plane-bed
cases (L;=0.03,d;,,=0.01,A;=0.01). Figures 2a and 2b: full plot. Figures 2c and 2d: zoom in correspondence of the slowest waves of the set.
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always positive throughout the Froude domain, in agreement with our approximation (36) and with the
results obtained by Sieben [1997], and weakly dependent of the Froude number.

Moving from the bed form-dominated case in 2(c) (L;=0.2 and d},=0.002) to the plane-bed case in 2(d)
(L;=0.03 and d;,,=0.01), the speed of the “sorting” wave is seen to significantly increase with decreasing
active layer thickness, in spite of the corresponding increase in sediment diameter of both size fractions.
Thus, in a setup typical of plane-bed rivers, the “sorting” waves are expected to travel several times faster
than in a bed form-dominated river under the same value of F, and .. In the bed form case of Figure 2c, the
“sorting” eigenvalue intersects the second-largest eigenvalue of the Saint-Venant-Exner model, i.e., the
“bed” celerity, for F, ~ 0.6. Thus, here for low Froude numbers, the “sorting” wave speed is larger than the
bed wave speed, as highlighted by Sloff and Mosselman [2012], while this is not true for higher, still subcriti-
cal Froude values. In the plane-bed case of Figure 2d, the intersection of the “sorting” eigenvalue and of the
second-largest eigenvalue of the Saint-Venant-Exner model is shifted to higher, quasi-critical Froude value
as consequence of higher “sorting” wave speed.

In Figure 3, we analyze the eigenvalues obtained under the same parameter setup as in Figure 2, in aggra-
dational conditions, but considering five sediment fractions. We initially focus on Figures 3a-3d, where a
rectangular distribution F = 0.2 for all fractions has been set for the active layer. Figures 3a and 3b, report-
ing the full eigenvalue set, and 3c and 3d, showing zooms of Figures 3a and 3b, respectively, demonstrate
overall good agreement between our approximation and the reference numerical solution. The four “sort-
ing” eigenvalues, depicted in green, are weakly dependent of the Froude number. They are all positive and
characterized by similar but different magnitude, which is comparable to that of the only “sorting” eigen-
value of the two-fraction case in Figures 2c and 2d. In Figure 3¢, it is also worth noticing that the “sorting”
wave speed estimate of Ribberink (circles), providing one single characteristic speed related to the evolu-
tion of the mean diameter, is incapable of describing the four distinct “sorting” celerities.

In Figures 3e and 3f, we study the sensitivity of eigenvalues to the grainsize distribution of the active layer
represented by F.. Here we impose a very sharp Gaussian grainsize distribution in the active layer, which
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Figure 3. Plot of the system eigenvalues in aggradational conditions as function of the Froude parameter, under high sediment transport. Our estimates and those due to Ribberink
[1987] are denoted with SSB and R, respectively. N = 5 fractions and 1/=0.0075 are considered. (a, ¢, €) Bed form-dominated cases (L;=0.2, d;,,=0.002, A;=0.002). (b, d, f) Plane-bed

cases (L, =0.03, d;,

,d;,=0.01,A;=0.01). Figures 3a-3d: rectangular distribution of active layer fractions F, = 0.2 for all size fractions. Figures 3c and 3d represent a zoom of Figures 3a and
3b, respectively. Figures 3e and 3f: sharp Gaussian distribution of active layer fractions (Fg1 =Fg5=0, Fg =F44=0.000004, F;3=0.999992).

gives rise to the discrete values of fractions Fg1 =F5=0, Fg2 =F44=0.000004, and F,3=0.999992. Comparing
Figures 3e and 3f to 3c and 3d, respectively, we observe a very moderate modification in the reference solu-
tion, which suggests that the “sorting” wave speeds depend weakly on the grainsize distribution in the active
layer. Our estimates (36) turn out to be more accurate in the present case than in that of Figures 3¢ and 3d.

We have carried out some additional computations (figures not shown here) by neglecting the hiding factor
of Egiazaroff [1965], i.e., setting &, =1 for all fractions. Apart from a moderate additional spread in the celer-
ity of the “sorting” waves, which can be explained by increased difference between the transport capacities,
these results are similar to those in Figure 3, which suggests that the hiding factor does not significantly
influence the wave celerities.

3.5. Numerical Study of Hyperbolicity in Degradational Conditions

Here we carry out a numerical study of the hyperbolicity domain in a multiple-fraction setup (five fractions)
in degradational conditions to complement our analytical study for two-fraction mixtures in section 3.3. We
use a substrate finer than the active layer, which may trigger elliptic behavior for some parameter values. In
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Figure 4. Plot of the system eigenvalues in degradational conditions as function of the Froude parameter, with finer substrate under high-transport conditions. Our estimates and those
due to Ribberink [1987] are denoted with SSB and R, respectively. N = 5 fractions and 1y=0.075 are considered. We use a sharp Gaussian distribution of active layer fractions
(Fa1=Fas =0, F42=F4q4=0.000004, F43=0.999992. (a, c) Bed form-dominated cases (L;=0.2, d;, =0.002, A;=0.002). (b, d) Plane-bed cases (L;=0.03, d;,=0.01,A;=0.01). Figures 4a and
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4b: slightly finer sharp distribution of substrate layer fractions (f;; =f;s =0, f;; =0.010986943, f;; =0.989013056, f,4 =0.000000001). Figures 4c and 4d: moderately finer sharp distribution
of substrate layer fractions (fs =f;4 =fs =0, f;, =f;3=0.5).

this case, in the ellipticity range, the reference eigenvalues are not plotted. Our solution, (32), (33), and (36),
is not able to automatically detect the ellipticity range and mistakenly provides real eigenvalues even in an
elliptic domain. Results are shown in Figure 4. Here bed form-dominated cases are presented in Figures 4a
and 4c and plane-bed cases in Figures 4b and 4d, obtained with the same parameter setup as for Figures
3e and 3f, respectively.

Let us focus on Figures 4a and 4b. Under the imposed degradational conditions, the grainsize distribution
at the interface between the active and substrate layer f] is equal to that in the substrate (11), which is
imposed assuming a sharp Gaussian distribution with mean diameter slightly finer than that in the active
layer. In detail, such mean diameter is just 8% finer than that in the active layer, giving rise to the discrete
fraction distribution fy; =f;s=0, f;, =0.010986943, f,3=0.989013056, and f,=0.000000001.

In Figure 4a (bed form-dominated conditions), a small region of ellipticity appears around F,=0.63, where
the second-largest Saint-Venant-Exner eigenvalue (red line), here representing the “bed” celerity of De
Vries [1965], has similar magnitude as the “sorting” wave speeds (green lines). This confirms our findings
in section 3.3, by which unconditionally elliptic behavior is found in degradational conditions if the “sort-
ing” eigenvalue has the same magnitude as the second-largest eigenvalue of the Saint-Venant-Exner
model and gives a visual explanation of the term “crossing of eigenvalues” adopted by Sieben [1997] for
this case. Outside the ellipticity region in Figure 4a, our eigenvalue approximation is still accurate. The
same behavior is found in the plane-bed case in Figure 4(b), which is characterized by a small ellipticity
region around F, = 1.

In Figures 4c and 4d, we use a much finer substrate, having mean diameter 12.5% smaller than that in the
active layer, namely f; =f4,=f;s=0,and f;; =f;3=0.5. In both figures, the ellipticity range is wider compared
to that in Figures 4a and 4b and still embraces the region around the intersection of the second Saint-
Venant-Exner eigenvalue with the “sorting” eigenvalue. In Figure 4c, the presence of an ellipticity range is
seen to alter the reference solution throughout the hyperbolicity range, with respect to the solutions shown
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Figure 5. Plot of the system eigenvalues in aggradational conditions as a function of the Froude parameter, under low and partial transport conditions. Our estimates and those due to
Ribberink [1987] are denoted with SSB and R, respectively. Parameters are 1y=0.00005, N = 2, and F41 =F4,=0.5. (a, ¢) Bed form-dominated cases (L} =0.2, d;;,=0.002, A;=0.002). (b, d)
Plane-bed cases (L;=0.03, d;,,=0.01,A;=0.01). Figures 5a and 5b: full plot. Figures 5c and 5d: zoom in correspondence of the slowest waves of the set.

in Figure 4a. Both in Figures 4c and 4d, our “sorting” wave estimates turn out to be rather inaccurate even
in the hyperbolicity range, since the underlying hypotheses (see the supporting information) are not met.

3.6. System Eigenvalues Under Partial Transport

Under partial transport conditions, i.e., if the flow is not able to transport the coarsest fractions, the overall
picture drawn in the previous sections considerably changes. We consider a sediment mixture where only
the first P sediment fractions are mobile, with P < N, while N — P sediment fractions are immobile. In this
case, N — P waves in the system are readily found to have zero speed, i.e., they are steady waves, which
retain the associated signal locally, without advecting it through the domain. This happens since N — P null
eigenvalues are found in the reduced system matrix (23). These eigenvalues arise from the last N — P lines
in the matrix (23), corresponding to the active layer conservation equations for the immobile fractions,
which, under the considered partial transport conditions, are linearly dependent on the third line (arising
from the Exner equation) and on the lines related to the other P — 1 active layer equations.

The wave speed approximations (32), (33), and (36) developed under the hypothesis that all the fractions
are mobile, with transport capacities having the same order of magnitude, are now invalid. Therefore, it is
no longer possible to split the set of characteristic celerities into the three celerities of the Saint-Venant-
Exner model (32) and (33), and additional “sorting” celerities (36).

Since the analysis of the system eigenstructure under partial transport conditions is not easily amenable to
analytical treatment, we proceed by numerical computation of the eigenvalues. For simplicity, we restrict
our attention to the two-fraction model. Our setup is identical to that used for Figure 2, except for
y=0.00005, which sets low and partial transport conditions. Results are presented in Figure 5. We consider
a bed form-dominated case in Figures 5a and 5c¢ and a plane-bed case in Figures 5b and 5d. Top figures
present a full view, while bottom figures provide a zoom to the smallest wave speeds.

Let us initially focus on the bed form-dominated case on the left side of Figure 5. Figure 5a shows that the
speeds of the fastest waves in the Saint-Venant-Exner model are not appreciably altered under the assumed
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transport conditions, hence the approximations A; ,=1%1/F, is still valid. Their physical interpretation is
analogous to the high-transport cases: these waves mainly carry changes in the hydrodynamic variables.
Focusing on the slowest waves in Figure 5¢, we observe that the reference numerical solution (black dashed
lines) markedly differs from that reported in Figure 2c for the corresponding high-transport case. Here for
Froude numbers smaller than about 0.7, one wave is steady (null celerity) since in that Froude region the
coarse fraction is immobile. Conversely, for higher Froude numbers, the coarse fraction is transported and
that wave assumes a positive, albeit very small, celerity. Throughout the considered Froude regime, another
wave having positive speed is found in the numerical solution. Approximate solutions developed for high-
transport conditions, i.e., our solution (32)-(36) and that due to Ribberink [1987] are unable to capture the
steady wave behavior for F, < 0.7 and underpredict the speed of the fastest of the two waves.

Let us move to the plane-bed case on the right side of Figure 5. Here in the full view of Figure 5b, two celer-
ities in the reference solution closely match the celerities 2 ,=1%1/F, (32), depicted by red lines, under well-
developed sub or supercritical conditions. Switching to Figure 5d, we observe that one wave in the numerical
solution (black, dashed line) has null celerity throughout the Froude domain, since, with the adopted setup of
sediment diameters and / value, the coarsest fraction is always immobile. Under subcritical Froude, the
numerical solution yields another wave having positive celerity, as in Figure 5c. Focusing on the supercritical
range, a peculiar behavior can be observed. Here approximately for F, > 1.07, no wave having negative celer-
ity is found, which implies that the system does not propagate information in the upstream direction, under
the assumed partial transport conditions. This represents a marked difference with the high-transport case
studied in the previous sections, where a wave with negative celerity was always found throughout the
Froude domain, as can be seen from the eigenvalue pattern in Figure 2d, and with the unisize-sediment case
analyzed by Lyn and Altinakar [2002]. Such behavior is indeed closer to that of the fixed-bed Saint Venant
model, for which information is not conveyed in the upstream direction for F, > 1. Only in the small transcriti-
cal region around F, = 1, the celerities 4, ; (33) of the Saint-Venant-Exner model better approximate the
numerical solution when their absolute magnitude diverges from that of the steady wave.

In the present case of low and partial transport, we cannot link the celerities given by the numerical solution
in Figures 5c and 5d to a physical process (i.e., “bed” and “sorting” wave) by simply matching their celerity
to that given by our approximate solution. Therefore, the interpretation of the physical role of these waves
is not straightforward. Our results show that the fastest between these two waves carries most of sorting
effects in the downstream direction (i.e., “sorting” wave behavior), under both well-developed sub and sub-
critical Froude conditions. The slowest (or steady) wave mainly carries (or locally retains) bed elevation
changes (“bed” wave behavior) with negligible to moderate associated sorting.

4, Linearized Problem: Dynamics of Small-Amplitude Waves

In this section, we aim at determining how the dynamics of waves of small amplitude is modified in the
mixed-sediment case with respect to the unisize case studied by Lyn and Altinakar [2002], with particular
reference to the waves affecting the bed elevation profile. In detail, we will highlight the role of the newly
introduced “sorting” waves in advecting morphodynamic changes through the domain and we will show
that initial localized perturbations in the grainsize distribution of the active layer carried by these waves are
able to determine significant bed aggradation or degradation due to the associated bed load gradients.

The study is carried out by application of a linearized analytical solver, which is suitable for studying the
propagation of small-amplitude waves. We consider a reference state of variables Qg, which represents the
base flow and transport conditions, and a perturbation of that reference state having infinitesimal ampli-
tude. A linearized problem, having the form

%—? +Ag 2—3 =0, (43)
is obtained from the nonlinear system (20) by freezing the system matrix around the values of variables
given by the reference state, i.e, Az=A(Qg). In the following, the reference values will be indicated with
subscript R. The analytical solution to the linearized problem governed by (43) can be computed from the
eigenstructure of the matrix Ag, which is uniquely determined once the dimensionless parameters on the
right-hand side of (37) are specified for the reference state. Details on the solution algorithm are given in
the supporting information.
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4.1. Simulation Setup

We assume as initial condition the reference state throughout the domain, except for a localized smooth
perturbation of the grainsize distribution of the active layer in the proximity of x = 0. In detail, the reference
grainsize distribution is equal for all fractions, i.e., Fair=1/N. For one of the fractions in the mixture, the Kth
fraction, we prescribe a Gaussian longitudinal perturbation of equal distribution

2
Far(x,0)= % +Ar exp (— (ﬁ) ) , (44)

where —1/N < Af < 1—1/N is the amplitude of the perturbation. Such amplitude is assumed to be small
to comply with the hypothesis of linearity. Positive (negative) values of Ar denote a higher (smaller) content
of the Kth fraction around x = 0. The content of the other fractions is given by

FaK(X7 0)

Farlx,0)= 1% for k£ K. (45)

The initial grainsize distribution in the substrate is equal to that in the active layer, i.e., f(x,z,0) =Fg(x, 0).
Therefore, no elliptic behavior is expected to occur in computations. The initial bed profile is flat throughout
the domain, except for a localized perturbation around x = 0 given by a Gaussian hump, having infinitesi-
mal amplitude A, and standard deviation g:

n(x,0)=A, exp (— (\/);_a)2> . (46)

Since the Gaussian function fastly decreases and vanishes for |x| > 30, the bed and active layer setup
smoothly connect with the reference state. Flow is from negative to positive x. The initial condition for flow
depth is prescribed assuming constant specific discharge g, by analytically integrating the inviscid back-
water profile

oh 1 _On
a——ﬁ( &) “n

with boundary condition h(L/2,0)=hg or h(—L/2,0)=hg under sub or supercritical conditions, respectively.

4.2, Results

Here we apply our linearized solver to three test cases, under high-transport conditions. In Tests 1 and 2, we
will consider a two-fraction setup (one active layer equation) under sub and supercritical flow conditions
(section 4.2.1) using various kinds of initial perturbation under high-transport conditions (low grainsize
selectivity). Finally, in Test 3 (section 4.2.3), we will analyze the wave dynamics for a five-fraction mixture.

The initial bed profile is prescribed by (46) using the dimensionless quantities

A’/_ "TR 0= ugtout ’ (48)
in which ug=qgr/hg is the reference flow velocity. The initial active layer grainsize distribution is set using
(44) and (45) after choosing Ar and selecting the Kth fraction in (44). The substrate is assumed to have the
same initial grainsize distribution as the active layer. The solution profiles will be presented using the
dimensionless variables

h_hR n Fak—1/N
h*= = _ Ff=-=_1" 49
an bl '7 ar/ ’ ak aF ) ( )

where g, =max (A,,, 10’5hR) and ar=max (|Ae|, 1073) are identical to the perturbation amplitude except
for a correction in case of vanishing imposed perturbation. We will use the dimensionless abscissa

X
*
The proposed dimensionless solution is independent from t*“* and up.
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Ar=—10"3inTest 1.1 and Ar=10"3in
Test 1.2 with respect to the first fraction
(K= 1), with ¢*=0.004. The initial condition for scaled depth h*, bed elevation #*, and active layer content
of the first fraction F;; (49) is graphically represented in Figure 6. Here Figure 6a refers to Test 1.1 and Figure
6b to Test 1.2. In both figures, the reference value F};, =0 corresponds to equal fraction content in the refer-
ence state F}, =0.5, while the Gaussian peak value F:, =1 denotes the perturbed value F,; =0.5F10>.

Figure 6. (a) Test 1.1 and (b) Test 1.2: initial condition.

The initial grainsize distribution in the active layer is characterized by an initial localized perturbation
around x*=0. Therefore, although the initial condition represents an equilibrium state for the hydrodynamic
variables (i.e., constant discharge and depth throughout the domain), it is associated with an imbalanced
setup of total bed load around x*=0, due to the local perturbation in the grainsize distribution of the active
layer. At t = 0, a movable-bed computation starts and such imbalance triggers four waves, which eventually
travel through the domain at the speed and in the direction given by (32) and (36). See also Figure 2 for a
graphical representation of the wave speeds of the two-fraction model.

We use (42) to set the reference dimensionless sediment diameters, with d;

=0.01 and A}, =0.015, giving
d}g=0.0025 and d},;,=0.0175. The active layer setup refers to a plane-bed case with L},=4d;, ,=0.04. We set
2 =0.0075, corresponding to relatively high sediment transport conditions. Concerning the Froude regime,

we consider a subcritical case with F,z = 0.65 and a supercritical case with F,z = 1.35, for both Tests 1.1 and 1.2.

Results are presented in Figure 7. Figures 7a and 7b refer to Test 1.1, while Figures 7c and 7d to Test 1.2.
Subcritical cases are presented on the left side (a) and (c), supercritical cases on the right side (b) and (d).
Let us initially focus on the solution profiles to Test 1.1 in Figures 7a and 7b. Under both sub and supercriti-
cal flow conditions, four traveling perturbations, corresponding to the four waves, are produced.

Three of these waves travel at similar speed as those of the Saint-Venant-Exner model in the respective
Froude regime (32). Among them, the fastest, downstream-traveling wave which propagates at speed 2" =1
+1/F, is located at x* ~ 2.54 and x* ~ 1.74 in the sub and supercritical case, respectively. However, the
associated perturbations in h* and 1* are in practice not noticeable in a full view due to insufficient ampli-
tude. Hence, the corresponding region is left out of the plot. The second-fastest wave in absolute value,
traveling at speed 1*=1—1/F in the upstream direction (x* ~ —0.55) under subcritical conditions and in
the downstream direction (x* ~ 0.26) under supercritical conditions, carries a modest perturbation in depth
and a negligible bed change. The slowest among these waves travels in the downstream direction

(x* ~ 0.01) in the subcritical case (Figure 7a) and in the upstream direction (x* ~ —0.01) in the supercritical
case (Figure 7b) and carries a major bed elevation change and associated flow depth change. Thus, the role
of these three waves in advecting bed and free-surface changes is entirely analogous to that found for the
unisize-sediment case by Lyn and Altinakar [2002]. In Figure 7, none among these three Saint-Venant-Exner
waves carries any significant perturbation in the volume fraction content of the active layer Fy;.

The remaining, downstream-traveling wave, located at x* ~ 0.055 in Figures 7a and 7b, is the only wave
associated with the advection of significant changes in the grainsize distribution of the active layer, which
justifies the adoption of the name of “sorting” wave. The displacement of this wave is thus clearly indicated
by a perturbation of the active layer volume fractions at x* ~ 0.055, almost retaining the initial amplitude
F:,=—1.Together with perturbations in the grainsize distribution, the “sorting” wave carries nonnegligible
bed elevation changes, which are caused by bed load gradients associated with spatial variations in the vol-
ume fraction content in the active layer, and the resulting major perturbations in water depth.
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Figure 7. Test 1.1 and 1.2: wave propagation governed by the Saint-Venant-Hirano model for two fractions, induced by perturbation of the grainsize distribution in the active layer.

Vg =0.0075, N = 2, d};,=0.0025, d},=0.0175,and L}, =0.04. (a, b) Test 1.1, perturbation amplitude of the first fraction content A-=—10"2 (localized initial coarsening); (c, d) Test 1.2,
perturbation amplitude of the first fraction content Ar=10"3 (localized initial fining). Figures 7a and 7c: subcritical regime (F,z = 0.65); Figures 7b and 7d: supercritical regime (F,z = 1.35).
Perturbation: A, =0, *=0.004. The flow depth and bed elevation profile are nondimensionalized with a,,:10’5hg.

Immediate consequence of the introduction of a two-fraction mixture with respect to the unisize-sediment
case is thus, under subcritical conditions, that bed elevation changes are advected not only along the “bed”
wave 43 (32) but also along the faster “sorting” characteristic direction (36). Under supercritical conditions,
the “sorting” wave introduces a novel downstream-propagating effect on bed elevation, in addition to the
upstream-propagating “bed” wave of the unisize-sediment model.

We now focus on the amplitude of the perturbations in 1* associated with the “bed” and “sorting” waves
and analyze why they are negative (degradation) or positive (aggradation). This can be explained consider-
ing the initial perturbation of the grainsize distribution in the active layer. In the present test, the initial
imbalance causing wave propagation is given by reduced bed load transport around x* =0 associated with
local coarsening. A negative (positive) bed load gradient is produced upstream (downstream) of the initial
perturbation and is associated by the Exner equation (3) to temporal increase (decrease) in bed elevation.
This perturbation in bed load is then advected along the “sorting” wave (x* ~ 0.055), thus determining an
associated downstream-traveling scour in the bed profile. To retain the sediment mass balance, the scour is
compensated by the formation of a sediment hump, which is advected along the “bed” wave. Sorting is
thus shown here to be very effective in triggering perturbations of bed elevation, starting from a minimal
initial perturbation in the grainsize distribution of the active layer (Ar=—1073).

A different behavior can be obtained with a different initial perturbation. In Test 1.2, the initial bed shows
local initial fining (Ar=10"3), giving an opposite perturbation of total bed load with respect to that in Test
1.1. Since the two tests have identical reference state Qg and matrix Ag, they are characterized by identical
wave speeds under the assumption of linearity.

Results for Test 1.2 are shown in Figures 7c and 7d. In the bed profile, degradation (aggradation) in Test
1.2 corresponds to aggradation (degradation) in Test 1.1. This behavior can be explained by analogous
arguments as those used for Test 1.1 and highlights the influence of the initial perturbation on the final
profiles.

STECCA ET AL.

©2014. American Geophysical Union. All Rights Reserved. 21



@AG U Water Resources Research 10.1002/2014WR015251

Finally, we have performed an additional test analogous to Test 1.2, but with increased grainsize selectivity,
which was obtained by reducing the i value, i.e,, the total bed load transport. Our results, not graphically
presented here, demonstrate that, under subcritical flow, the amplitude of the perturbation in the grainsize
distribution of the active layer F,; carried by the downstream-traveling “bed” wave increases with increas-
ing size selectivity, although the faster “sorting” wave always carries the great majority of the initial imposed
perturbation in F4;. Under supercritical flow instead, even with increased grainsize selectivity, the amplitude
of the perturbation in the grainsize distribution of the active layer carried by the “bed” wave in the
upstream direction always remains infinitesimal, and a perturbation in F4; which almost retains the initially
imposed unit amplitude is seen to travel along the “sorting” eigenvalue in the downstream direction. This
confirms the conclusion that most of sorting effects are always conveyed in the downstream direction,
regardless of the Froude and sediment transport regime.

4.2.2. Test 2: Influence of Bed Perturbations on Sorting

Having shown that sorting has a considerable feedback on bed elevation changes, we aim here at showing
that the opposite feedback is much less pronounced and hardly noticeable. We solve an identical problem
asin Tests 1.1 and 1.2 in the previous section, but with a different initial condition. We consider an infinitesi-
mal bed hump having amplitude A, =10">hg (46) without any active layer perturbation, i.e., Ar = 0 in (44).
Thus, in this case, the bed load imbalance triggering wave propagation is caused by flow acceleration
(deceleration) in the initial backwater profile (47) under subcritical (supercritical) conditions. For further clar-
ification, we refer the reader to Lyn and Altinakar [2002], who have analyzed the wave pattern arising from
this initial setup in the unisize-sediment case.

Results are displayed in Figures 8a (subcritical case) and 8b (supercritical case), where the region occupied
by the fastest wave, showing minimal perturbations in variables, has been left out of the plot. Since the ref-
erence matrix Ag and its eigenstructure are identical to those in Tests 1.1 and 1.2, the wave celerities do not
change. However, the present wave pattern significantly differs from that given in Figure 7. Under both sub
and supercritical conditions (see Figure 8), the only wave having any impact on bed elevation is the bed
wave 43 (32), which carries the initial bed perturbation without noticeable amplification or damping with
respect to the initial condition.

The “sorting” wave at x* ~ 0.055 now carries a very small perturbation in the grainsize distribution of the
active layer (not visually noticeable in Figure 8) and thus is not able to trigger any significant river bed
change. Other computations (figures not reported here) show that such feedback remains relatively small
and hardly noticeable even by adopting a setup characterized by higher grainsize selectivity.

The dynamics of waves having an impact on the bed profile with this initial condition very closely resembles
that predicted by the Saint-Venant-Exner model for unisize sediment [Lyn and Altinakar, 2002]. Thus, a very
small feedback effect due to gradients in bed elevation and hydrodynamic variables shall be expected on
sorting processes, at least for the smooth problem described here.

4.2.3. Test 3: Multiple-Fraction Mixtures and Sorting Wave Separation

In this test, we analyze the bed profiles obtained using a multiple-fraction mixture (N = 5 fractions). Fraction
diameters are assigned using (42) with d, ,=0.02 and A}, =0.025. We consider a subcritical test case with
Frr = 0.65, in which all waves are expected to travel at distinct pace as shown in section 4.2.1. We set /=
0.01 and consider a plane-bed case with L}, =3d; .=0.06. The bed and flow depth profile are initially flat
(A;,=0). Concerning the initial perturbation of the grainsize distribution in the active layer (44), we set ampli-
tude Ar=10"3 and longitudinal extent ¢*=0.00035. We consider two different setups: in Test 3.1, we apply
the perturbation to the second fraction, which results in a localized initial increase in total bed load, and in

Test 3.2 to the third fraction, which results in an initial decrease in total bed load.

Results are displayed in Figure 9a for Test 3.1 and in Figure 9b for Test 3.2 in terms of profiles for the varia-
bles h*, 5%, and F}, (49), including the profiles of fractions from 1 to 4. For clarity, only the region corre-
sponding to the waves having significant impact on bed elevation, namely the “bed” wave and the four
“sorting” waves, is shown. We have verified that the fastest and slowest wave, not shown in the figure, carry
negligible bed changes, as in the two-fraction case of Test 1.

In both sides in Figure 9, the “bed” wave is revealed by degradation of the bed profile at x* ~ 0.016, while
the four faster “sorting” waves are indicated by positive and negative peaks of the volume fraction content
in the active layer. These waves, traveling in the downstream direction at the speed given by the distinct
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Figure 8. Test 2: wave propagation governed by the Saint-Venant-Hirano model for two fractions, induced by an initial bed hump. /3, =0.0075, N = 2, d},,=0.0025, d},,=0.0175,and
L;,=0.04. (a) Subcritical regime (F,z = 0.65) and (b) supercritical regime (F,z = 1.35). Perturbation: A;:10’5and ¢*=0.004. The active layer fraction profile is scaled with ag=1073.

“sorting” eigenvalues (36), have separated. As for the two-fraction case, each of these waves is associated
with local perturbation of the bed elevation profile due to the total bed load gradients associated with per-
turbations in the volumetric fraction content in the active layer. The resulting, downstream-traveling pertur-
bations of bed elevation also generate perturbations of the flow depth profile at x* ~ 0.016. Thus, by
including multiple fractions in the model, the hydromorphodynamic profiles become significantly more
complex than those for two fractions, even adopting the present linearized solution approach. It is also
seen that all the “sorting” waves carry perturbations of the volume fraction content in all fractions. Compar-
ing the two sides in Figure 9, the solution profiles in all variables are seen to significantly depend on the ini-
tial condition.

This test shows that in the case of multiple “sorting” waves, which arise due to multiple active layer equa-
tions in case the number of size fractions exceeds 2, each “sorting” wave induces a distinct perturbation of
the bed profile. With respect to the previously considered two-fraction case, here multiple “sorting” waves
are seen to separate while traveling downstream at distinct pace, and to create multiple degradational and
aggradational patterns having significant amplitude. In practical cases, the number of fractions employed in
the discretization of a granulometric curve is thus expected to significantly affect the propagation speed of
disturbances and the final river bed configuration.

5. Discussion

For the purpose of analysis, the model has been made inviscid by neglecting the frictional source terms in
the momentum equation. This is a reasonable assumption when focusing on the small-amplitude waves
that develop and propagate over short time and length scales (a few seconds and meters in real streams),
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Figure 9. Test 3: wave propagation governed by the Saint-Venant-Hirano model for multiple fractions, under subcritical flow conditions. 1/, =0.01, N= 5, d; »,=0.02, A}, =0.025,and L},=0.06. Per-
turbation A} =0, Ar= 1073,and ¢*=0.00035. (a) Test 3.1, perturbation applied to the second fraction and (b) Test 3.2, perturbation applied to the third fraction. The water depth and bed elevation

profile are nondimensionalized with a, = 10> hg.
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as was done by, e.g., Lyn [1987], Lyn and Altinakar [2002], and Ribberink [1987]. In the unisize-sediment case,
Lyn and Altinakar [2002] have analyzed the impact of this assumption by performing numerical computa-
tion on the propagation of small-amplitude wave issuing by a bed hump, with and without accounting for
friction. They have found that, in the solution including friction, the basic features of the linear problem can
still be discerned in spite of some marked distortions in the bed profile. In detail, for short times, the “bed”
wave assumes an amplitude quite close to that predicted by the inviscid linear solution and the wave celer-
ities are not significantly altered. Based on this, we consider the linearized inviscid solutions of this paper
reliable provided the restrictions with respect to short time and spatial scales and small amplitude of pertur-
bations are met.

It is worth noticing that several attempts to extend the validity of linear inviscid solutions beyond the limit
of these hypotheses are found in the literature. For instance Mosselman et al. [2008] and Sloff and Mossel-
man [2012] have used an approximation to the “bed” and “sorting” celerities of the inviscid model to study
the propagation of morphodynamic changes at the reach scale. This approach is useful for simple concep-
tual interpretation but can only provide rough estimates in a quantitative sense. In fact, frictional source
terms should be introduced while considering hydromorphodynamic changes affecting the river long pro-
file. These “long waves” could be studied using a perturbation approach, in a similar manner as was done
by Lanzoni et al. [2006] and Fasolato et al. [2009] for unisize sediment. Further work on this point is needed.

Iseya and lkeda [1987], Kuhnle and Southard [1988], and Recking et al. [2009] have shown that bed load
transport, measured at the downstream end of a flume with constant hydraulic conditions and constant
sediment feed composed of mixed sediment, presents an inherent fluctuating behavior, which, according
to Recking et al. [2009], is correlated with fluctuations of the bed slope. This may suggest legacies with our
analytical solution of the Saint-Venant-Hirano model in the multiple-fraction case in Figure 9, where pulsa-
tions in total bed load are associated with the traveling perturbations in the grainsize distribution of the
active layer and in the bed profile. However, in spite of these analogies, some behavioral differences
between the outcomes of laboratory experiments and of our analysis must be remarked. The periodicity
reported by Recking et al. [2009] includes a continuous spectrum of time scales, i.e., from the very low fre-
quencies due to complex long-term surface changes to the intermediate frequencies of bed load sheets,
until the high frequency of changes happening within bed load sheets. The one-dimensional Saint-Venant-
Hirano model in our analysis is incapable of reproducing the instability mechanisms which are responsible
of bed load sheets, for which the more complex, two-dimensional model proposed by Seminara et al.
[1996] is needed. Thus, the fluctuations carried by the “sorting” waves in our linearized analysis could possi-
bly only be associated with the fastest variations in the study of Recking et al. [2009], which however have
been filtered out in their analysis. Mismatch is also found in the amplitude of the signal, since the infinitesi-
mal amplitude of perturbations in our linear solution is not compatible with the huge amplitude of bed
load fluctuations in the experiments. It is then an open question whether at least the highest frequency per-
turbations in the experiments could be modeled as the result of some instability mechanism triggered by
the small-amplitude fluctuations studied in this paper, thus producing finite-amplitude perturbations hav-
ing the required frequency. This could be analyzed using a numerical implementation of the present model
in a multiple-fraction setup, so as to remove the hypothesis of linearity.

Our analysis, as well as the previous results of Ribberink [1987] and Sieben [1997], reveals that the model
may loose its hyperbolic character under degradational conditions, thus denoting ill-posedness in those
cases. This may suggest that the purely advective behavior of the Exner and Hirano equations used in con-
junction with usual bed load transport relations is a too crude approximation of the physics. In fact, recent
analysis of sediment transport has shown that the bed load flux also includes a diffusive component [Ancey
and Heyman, 2014; Furbish et al., 2012; Ballio et al., 2014]. In future work, it might be worth analyzing
whether the possibly ill-posed behavior of the Saint-Venant-Hirano model can be cured by introducing
these diffusion terms in the definition of bed load discharge, adopting a similar approach to that proposed
by Gray and Ancey [2011] for another system of PDEs.

In fact, most of the advances presented in this paper, which belong to the improvement of the mathemati-
cal understanding of continuity models for mixed sediment, pave the way for improvement in numerical
solution techniques and applications. The linearized solutions presented in section 4 can serve as bench-
mark for assessing the convergence and accuracy of numerical models. Moreover, detailed knowledge of
the propagation direction and speed of hydrodynamic and morphodynamic perturbations, as described by
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the system of governing equations, can be used to properly impose the boundary conditions. For instance,
the fact that, as shown by the linearized solution, perturbations in the grainsize distribution in the active
layer mainly travel in the downstream direction, suggests that physically meaningful conditions for these
variables shall be imposed at the upstream boundary. Finally, the developed matrix-vector (nonconserva-
tive) formulation is suitable for the application of modern path-conservative methods [Dal Maso et al., 1995;
Pareés, 2006], for instance those of Canestrelli et al. [2009] and Dumbser and Toro [2011]. Since our formula-
tion preserves the full unsteadiness of the mathematical problem and all the equations are solved simulta-
neously, the resulting numerical algorithms will be optimal for handling trans- and supercritical flows, as
pointed out by Sieben [1997], and the transitions between them.

6. Conclusions

In this paper, we have studied the system of partial differential equations arising from the coupling of the
unsteady Saint-Venant model with the Hirano active layer model for mixed-sediment morphodynamics.
After rewriting the system of PDEs in matrix-vector form, we have analyzed the system eigenstructure, in
order to study the propagation of small-amplitude hydromorphodynamic waves as described by the model.

The two distinctive features of the present analysis are that full unsteadiness of the problem is retained and
that multiple size fractions are considered, thus accounting for grainsize selectivity of bed load transport.
This allows us to develop approximations to all the characteristic speeds in the model written for an arbi-
trary number of fractions under any Froude regime. Our analysis focuses on the N — 1 characteristic direc-
tions, which are described by the model set for N fractions, in addition to the three characteristic directions
of the unisize-sediment case. Under high sediment transport conditions, i.e., when all the size fractions are
transported, we have analytically shown that all the N - 1 “sorting” celerities are positive, denoting
downstream-traveling waves, and that if grainsize selectivity is assumed, these celerities are distinct, denot-
ing waves which travel at different pace. By retaining individual equations for each size fraction in the analy-
sis, we have also been able to analyze the case of partial transport. In this case, we have found a number of
steady waves (i.e., having null celerity) equal to the number of immobile fractions.

We have assessed the hyperbolicity of the model analytically in the two-fraction setup, retaining grainsize selec-
tivity. We have proven that the system is strictly hyperbolic in aggradational conditions and when the active
layer degrades into a coarser substrate, whereas it may be elliptic if degradation takes place into a finer sub-
strate. In the latter case, the model is unsuitable for morphodynamic predictions, because an elliptic problem
would also require a boundary condition in time from future to past, which is physically meaningless.

By means of linearized solutions, we have studied the impact of the “sorting” waves on the propagation of
perturbations in bed elevation. We have shown that a localized change in the grainsize distribution of the
active layer is mainly advected in the downstream direction along the “sorting” characteristic directions.
The resulting imbalances in total bed load trigger downstream-traveling bed perturbations, which are con-
veyed along the same waves together with the above-mentioned perturbations in the grainsize distribution
of the active layer. The overall sediment mass balance is then preserved by the creation of another bed per-
turbation, which travels at slower pace in the downstream (upstream) direction under subcritical (supercriti-
cal) conditions along the bed wave. Since the “sorting” waves are usually faster than the “bed” wave, the
mixed-sediment model predicts that perturbations in riverbed elevation propagate at faster pace than in
the unisize-sediment case governed by the Saint-Venant-Exner model. Moreover, under supercritical condi-
tions, the “sorting” wave of the mixed-sediment model introduces a novel downstream-propagating effect
on bed elevation, in addition to the upstream-propagating “bed” wave of the unisize-sediment model. Con-
versely, a smooth initial perturbation of bed elevation and hydrodynamic variables does not trigger signifi-
cant “sorting” effects, and the resulting perturbation in the grainsize distribution of the active layer keeps
modest even in case of strong grainsize selectivity.

Finally, in a multiple-fraction case (N > 2), the distinct “sorting” waves carry distinct downstream-traveling
associated perturbations of the bed elevation. The final pattern of bed perturbations is thus shown to mark-
edly depend on the number of sediment fractions which is employed in the discretization of the granulo-
metric curve. At present, our analysis is not able prescribe the most convenient discretization of a
granulometric curve in practical cases, but only to foresee its consequences in terms of wave propagation.
In future work, this issue could be thoroughly explored employing a numerical implementation of the
model, by comparison with detailed laboratory data.
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Appendix A: The System Matrix in Extended Form

We rewrite the system matrix A (22) in extended form, i.e., not making use of indices k and /. We use the
block notation

&1 &2 03><(N*'I)
A= A1 AZ o(N—1)><(N—1) . (A”
ST 82| On—1)x(n-1)

Here 0 are the matrices containing only 0 entries, whose size is indicated by their subscripts, and the other
blocks are given by
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