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SUMMARY

Reservoir history matching is a process of iteratively adjusting reservoir model param-
eters using measurements. This process can be computationally demanding, particularly
when numerous simulations with a high-dimensional reservoir model have to be per-
formed. In the community of petroleum engineering, the use of surrogate modelling tech-
niques have recently gained more and more popularity to improve the efficiency of history
matching. However, it is still not possible to fully utilize their potential in realistic applica-
tions. One of the challenges is to retain high accuracy while increasing the computational
efficiency using a surrogate model. In order to address this problem, two approaches for
surrogate modeling are proposed and analyzed in this dissertation: A projection-based
reduced-order model and a data-driven deep convolutional neural network.

In the first part of the thesis, a non-intrusive subdomain POD-TPWL method for solv-
ing gradient-based reservoir history matching problems is presented. It is a projection-
based reduced-order modelling approach wherein the adjoint model of the original high-
dimensional non-linear model is approximated by a subdomain reduced-order linear model.
Domain decomposition and radial basis function interpolation are integrated with trajec-
tory piece wise linearization to form the subdomain POD-TPWL algorithm. This subdo-
main POD-TPWL has the advantage of avoiding simulator-code intrusion. This is very
attractive because the source code of the model is often not available for users of com-
mercial code. Furthermore, by introducing domain decomposition for the reduced-order
model and by restricting the number of uncertain parameter patterns to the subdomains,
the number of full order simulations required for the derivation of this surrogate model is
reduced drastically. The proposed local parameterization enables the application of sub-
domain POD-TPWL to large-scale parameter estimation problems since the number of
full-order model simulations depends primarily on the number of the local parameters
patterns in each subdomain. By projecting the reconstructed local parameter patterns
onto numerous predefined global parameter patterns, smooth global parameter patterns
are finally obtained.

The advancement of deep neural network (DNN) architectures and the availability of
popular deep learning packages have particularly stimulated research on data-driven sur-
rogate modelling for high-dimensional nonlinear systems. In the second part of the thesis,
we propose two kinds of deep-learning inversion frameworks for efficiently solving large-
scale history matching problems. The first deep-learning deterministic inversion frame-
work primarily explores the possibility of applying a DNN surrogate to approximate the
gradient of the objective function by making use of auto-differentiation (AD). In combi-
nation with the DNN surrogate, the AD enables us to evaluate the gradients efficiently in
a parallel manner and without the need of explicitly coding of the adjoint model. Fur-
thermore, we investigate the benefits of using a stochastic gradient optimizer instead of
the full gradient optimizer, as the latter is the most common option used in the commu-
nity of data assimilation. The second framework is the deep-learning stochastic inversion
which constructs a deep-learning surrogate based on an image-oriented distance param-
eterization for ensemble-based seismic history matching. Instead of directly assimilat-

xi



xii SUMMARY

ing spatially dense seismic data, image-oriented distance parameterization is employed
to extract valuable information from the water fronts. Inspired by the methodologies de-
veloped for image segmentation in the field of computer vision and image processing, we
propose an advanced image-segmentation network for accurately predicting water fronts
with highly-complex spatial discontinuities. In comparison with the conventional work-
flows entirely based on high-fidelity simulation models, experimental results show that
the proposed surrogate-supported workflow achieves an accuracy equal to or better than
the conventional workflow at significantly lower cost.

A comparative study of these two surrogate approaches reveals that DNN is efficient
in assessing model uncertainty by generating an ensemble of realizations. However, DNN
requires high-performance computing resources, e.g., GPUs, while the physical interpre-
tation of the results is often lacking. The implementation of subdomain POD-TPWL is rel-
atively flexible and easier to diagnose. However, the sensitivity of subdomain POD-TPWL
with respect to the domain decomposition scheme used cannot be ignored, while the
choice of the decomposition is still rather subjective. For small sample sizes the physics
based subdomain POD-TPWL is more efficient while for larger sample sizes the improve-
ment of the accuracy of subdomain POD-TPWL tends to be limited for a given domain
decomposition scheme. On the other hand, the DNN surrogate approach does not yield
satisfactory results for small sample sizes, but gets better and better with larger samples
sizes.



1
INTRODUCTION

Nowadays it becomes increasingly important to produce fossil fuels, e.g., oil and gas re-
sources, in an economical and environmental friendly manner. The concept of close-loop
reservoir management has proven to be a mature and practically feasible methodology for
resources recovery in an optimal control strategy. This chapter describes a generic concept
of simulation-based reservoir management as an effective and automatic means for the re-
covery of oil gas resources and presents the motivation on quantification and reduction of
oil reservoir model-form uncertainties with a focus on data-driven surrogate-assisted ap-
proaches. The research questions are also explicitly introduced in this chapter.

1



1

2 1. INTRODUCTION

1.1. SIMULATION-BASED CLOSED-LOOP RESERVOIR MANAGE-
MENT

Traditional fossil fuels, e.g., oil and gas resources, are the key supply to the energy con-
sumption around the world nowadays, even though a transition to more clean and envi-
ronmental friendly natural resources production is imperative [1]. On the one hand, the
rapid progress of our society exacerbates the consumption of oil and gas resources [2]. On
the other hand, it is now becoming more and more tough to extract new oil and natural
gas fuels. For example, our attention has been shifted from onshore to offshore, e.g., deep
sea [3], from conventional fossil resource to unconventional combustible ice in polar re-
gion [4]. Therefore, the need to efficiently and economically produce limited oil reserves
has increasingly gain popularity [5]. An important technique, named simulation-based
closed-loop reservoir management (CLRM), has been proposed to increase the oil recov-
ery in an economical and effective manner [6]. It is an emerging research topic based on
smart oilfield technology. Taking the oilfield production system as the object, the numer-
ical simulation technology based on the mathematical model is used to organically com-
bine two processes of data assimilation and production optimization. Briefly speaking,
the process of CLRM updates the reservoir geological model by continuously fusing the
observed data and determining the distribution of reservoir fluids, and then uses optimal
control algorithms to optimize oilfield development [6, 7].

Measurements

OutputInput NoiseNoise

Data assimilation

 Production

optimization

Updated reservoir model

True reservoir model

Figure 1.1: The diagram of simulation-based closed-loop reservoir management [6]. In this diagram, the red
and blue parts represent the data assimilation and production optimization, respectively.

The inspiration for this CLRM concept mainly stems from data assimilation techniques
commonly used when dealing with large-scale flow models in meteorology and oceanog-
raphy [8], as well as model-based control theories [9]. CLRM considers reservoir develop-
ment as a simulation-based closed-loop control process, and its core mainly includes two
aspects: model update based on data assimilation [10, 11] and well-control optimization
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based on reservoir model [12]. Fig.1.1 displays reservoir management as a simulation-
based control process. As shown in the red part of this figure, reservoir engineers usu-
ally employ assisted history matching methods to characterize reservoir geological mod-
els and fluid parameters by fitting reservoir production data. The conventional logging,
well testing and other methods have long data collection periods and small amounts of
data, which easily lead to very large model errors and limited prediction accuracy. Smart
well permanent down-hole sensor technology makes direct acquisition of more and more
reservoir parameters. The accumulation of a large amount of detection data has created
conditions for the application of history matching algorithm in the field of reservoir devel-
opment. The blue part of the figure shows how to apply the most effective control theory
to reservoir production and development based on the model update, and determine the
optimal production strategy to maximize net present value via producing the oil/gas re-
sources as much as possible.

Mathematical model constitutes an indispensable part of production optimization and
data assimilation in closed-loop reservoir management framework [13]. Therefore, it must
be closely connected with the key elements of CLRM process. Currently, a broad feature of
the reservoir flow system is a mathematical model that is represented by a set of equations
coupled with boundary and/or initial conditions [14]. The form of the model equation
mainly depends on the nature of the reservoir, that is, rocks, fluids and their dynamic in-
teractions in porous media. The knowledge of rock and fluid properties is usually very
limited, although it is essential for creating accurate and representative reservoir models.
The fact that rock properties usually vary in space (i.e., heterogeneity) causes other diffi-
culties as well [15].

The concept of closed-loop reservoir management framework originally stems from
the control theory, but it is often impractical to directly convert to reservoir management
due to the high complexity of the realistic reservoir models [16–18]. The two processes of
reservoir closed-loop management are both large-scale optimization problems, which re-
quire highly computational cost. Although computing resources increase rapidly, model
complexity tends to increase at the same rate, especially for the field-scale applications.
Therefore, to make the optimization workflow truly effective, it is necessary to significantly
shorten the simulation time. This makes model simplification technology or alternative
fast emulation method an important research area. In this dissertation, we mainly con-
centrate on developing efficient solutions to resolve the data assimilation process.

1.2. SURROGATE-ASSISTED DATA ASSIMILATION METHODS

1.2.1. DATA ASSIMILATION

We address the problem of computationally efficient estimation of spatially varying
parameters in large-scale simulation models. Simulation models typically contain 105 −
106 spatially related but largely unknown model parameters, data are sparse and frequently
indirect, and relationships between parameters and data tend to be highly nonlinear. The
unknown parameters include, amongst others, the properties of discrete volumes of porous
rock at depths up to a few kilometers, and functional models of interaction between fluids
that are present in the pores of that rock. Measured data are typically obtained at wells
that are drilled from the surface and are used to either produce fluids from the reservoir
or inject fluids into it in order to displace the fluids present in the reservoir. These wells
are normally sparsely distributed over large areas, leaving the generally heterogeneous
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reservoir rock in-between the wells unobserved. Alternative ways of gathering informa-
tion are based on geophysical techniques, such as reflection seismic, which register the
arrival time and amplitude of acoustic waves that are reflected at contrasts in acoustic
impedance, which in turn is affected by the density and mechanical properties of the rock
and fluids. Such geophysical information is often of low spatial resolution (especially in
the vertical, or depth, direction). All these aspects make the reservoir history matching a
challenging computational and mathematical problem.

In the field of ocean modelling and numerical weather prediction, data assimilation
has been extensively studied for several decades. Generally, the sequential and variational
data assimilation algorithms are the two classical categories in the data assimilation com-
munity. Naevdal et al for the first time applied the ensemble kalman filter (EnKF) to cali-
brate the reservoir geological parameters [19] around the well position, and a literature re-
view about the applications of the EnKF in petroleum engineering is referred to [20]. Chen
et al was the first to use the adjoint method [21] to effectively resolve the predefined ob-
jective function in variational algorithms. Subsequent works have applied this method to
the reservoir history matching and production optimization [22–24]. A review on adjoint-
based reservoir optimization is given in [25]. The computational burden has been always
one of the most severe challenges and hence strongly restricts the applications of data
assimilation algorithms to more practical reservoir history matching problems [26–30].

1.2.2. SURROGATE MODELLING

Surrogate modelling aims at providing a faster emulation with a simplified relation be-
tween the inputs and outputs of a complex model. Surrogate models with a reduced com-
plexity have been extensively applied in various fields with the aim of reducing computa-
tional cost. Reviews of surrogate modelling can be found in [31, 32]. To the best knowledge,
the surrogate models can be roughly classified into three categories: hierarchical-based,
projection-based reduced-order modelling (ROM) and data-driven surrogate models. In
hierarchical-based methods the surrogate is created by simplifying the representation of
the physical system, such as by ignoring certain processes, or reducing the numerical res-
olution or the complexity, e.g., upscaling and grid coarsening [33, 34]. Reduced-order
modelling approaches have been always increasing popularity as one of the most effective
means to reduce the computational effort of model-based workflows through reducing
the model dimensionality. The main idea behind projection-based ROM is to construct
a (linear) low-order surrogate model by projecting the dynamics of the system onto the
subspace of dominant variability of the model dynamics. Most ROM strategies employ
proper orthogonal decomposition (POD) [35, 36] of time series of model state ’snapshots’
to identify an orthogonal set of basis functions of the subspace [37, 38]. Such ROM strategy
has been applied with success in speeding up model simulations in computational fluid
mechanics [39–41], subsurface flow simulations [42–44], and air pollution [45, 46].

Data-driven approaches purely depend only on data (simulated or real data) to accu-
rately build the relations between input and quantities of interest as much as possible,
such as polynomial chaos expansion [47] and fully-connected artificial neural networks
[48]. Recently, the availability of high-performance units, e.g., GPU, and more and more
available data greatly prompt a major advancement of machine learning methods, espe-
cially those based on deep learning techniques. This advancement subsequently stim-
ulates some successful applications of deep-learning methods in various research areas,
especially for the image recognition [49, 50] and natural language processing [51, 52]. The
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advancement of deep neural networks has strongly stimulated their successful applica-
tions with promising performance [53–57]. The popularity of these methods is further
enhanced by the availability of open access machine learning frameworks, such as Ten-
sorFlow [58] and PyTorch [59].

1.2.3. RESEARCH OBJECTIVE

This dissertation aims at developing surrogate-assisted methods to efficiently address
large-scale reservoir history matching problem in the community of petroleum engineer-
ing. Although several optimization algorithms are capable of providing a robust way to
infer unknown parameters for strongly nonlinear models, in some cases it may not be
feasible to perform the history matching within an acceptable short time frame. This lim-
itation has stimulated the development of efficient optimization strategies in oil reservoir
engineering. The surrogate modelling is currently identified as one of the most promising
means to improve the efficiency of reservoir simulations. In this dissertation, incorporat-
ing surrogate modelling techniques into data assimilation algorithms will be systemati-
cally investigated.

1.3. RESEARCH QUESTIONS
The contribution of this dissertation to the reservoir data assimilation community

are two types of data-driven surrogate models and illustrations of their applicability to
speedup reservoir history matching problems. Overall, we will address below five research
questions:

Research question 1: The commonly used reduced-order modeling aims primarily at
approximating the dynamic response of the full model as accurately as possible. Can ap-
proximate gradients estimated by non-intrusive Reduced Order Modelling (ROM) be used
to efficiently estimate geological parameters of reservoir models with sufficient accuracy?

Research question 2: From a computational point of view, the global parameters are
decomposed in each subdomain separately should be very attractive. Can local param-
eterization by subdomain-based decomposition help to improve the computational effi-
ciency of ROM-based parameter estimation for large-scale problems?

Research question 3: The reduced-order modeling approach is shown to be applica-
ble for certain problems. How can alternative surrogate modelling approaches inspired
by recent advances in deep learning technology be used to speed up the history matching
process?

Research question 4: Since both deep-learning surrogate model and reduced-order
model are intentionally used for the gradient-based history matching, what are the rela-
tive benefits and disadvantages of deep-learning and reduced order surrogate modelling
approaches for gradient-based history matching?

Research question 5: As an alternative to gradient-based seismic history matching,
how can ensemble-based history matching approaches benefit from the use of deep learn-
ing surrogate models, especially for the challenging application of large-scale seismic his-
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tory matching?

1.4. THESIS LAYOUT
The main content of this dissertation is arranged in the “manuscript” format (“multi-

paper” format), in which the main chapters , e.g., from Chapter 3 to Chapter 7, are the full
or part of journal/conference papers (published or submitted). The chapters that address
similar topics may share similar motivations, arguments and materials.

Chapter 1 describes the background of simulation-based reservoir management work-
flow and presents the motivation on surrogate-assisted approaches for speeding up reser-
voir history matching. The research questions are also explicitly described in this chapter.

In Chapter 2, we first introduce the research application of this dissertation, e.g., the
reservoir history matching problem, through a mathematical definition of objective func-
tions. A generic literature review about the data assimilation algorithms in the context of
petroleum engineering is also given. Finally, the adjoint-based deterministic optimization
method and ensemble-based stochastic optimization method, are derived briefly.

To answer Research question 1, Chapter 3 presents a projection-based subdomain
POD-TPWL for approximating the gradient of the original high-dimensional non-linear
reservoir model. In Chapter 4, we explore the potential of applying the above reduced-
order model to large-scale reservoir parameter estimation problem by representing the
spatial parameters in each subdomain individually. The influences of decompositions
on scalability of the methodology are investigated as well. The results of this chapter are
used to answer Research question 2. Since our proposed projection-based reduced-order
modelling is very sensitive to the domain decomposition schemes, Chapter 5 presents
an adaptive decomposition strategy for mitigating the negative effects of inappropriate
domain decomposition schemes. In order to resolve Research question 3 and Research
question 4, Chapter 6 mainly focuses on developing an efficient deep-learning determin-
istic inversion framework to efficiently address the gradient-based history matching. This
chapter primarily explores the possibility of applying deep-learning surrogate to approx-
imate the gradient of seismic history matching by using the auto-differentiation (AD).
We also conduct a comparative study between subdomain POD-TPWL and deep-learning
surrogate to investigate their scalable efficiency and accuracy in large-scale applications.
Corresponding to the last Research question 5, Chapter 7 proposes a hybrid workflow
through combining deep-learning model and image-oriented distance parameterization
for ensemble-based seismic history matching. Specifically, a deep neural network for im-
age segmentation is constructed to predict the water fronts, from which valuable informa-
tion can be extracted along with a significant reduction of data volume.

Finally, the last Chapter 8 concludes the dissertation by highlighting the key contribu-
tions and discussing possible research directions for the future work.
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2
PROBLEM DESCRIPTION AND

FORMULATIONS

In this chapter, the system of equations governing the flow of oil and water through a reser-
voir is briefly described. Both the gradient-based and ensemble-based data assimilation
algorithms are introduced. Furthermore, the mathematical definition of reservoir history
matching is described, on the basis of which numerical experiments throughout this thesis
will be conducted.
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2.1. DEFINITION OF RESERVOIR HISTORY MATCHING
Water flooding is the most widely used developing strategy to increase the oil recovery

after the primary oil recovery stage. Our research mainly focuses on history matching ge-
ological parameters of a reservoir with the oil/water two phase flowing system. The reser-
voir model is used to simulate a water-flooding system for producing oil resources. The
effectiveness of the sweep of the oil by the injected water depends on, amongst other fac-
tors, the spatial heterogeneity of reservoir geological characteristics, most importantly the
porosity and permeability. Without loss of generality, we simplify an explicit formula for a
single simulation step of a discretized two-phase oil-water reservoir system as follows,

xn = fn(xn−1,β), n = 1, · · ·, Nt (2.1)

where, fn+1 represents a nonlinear model operator. xn+1 represents the state vector (pres-
sure and saturation in all gridblocks). n and n+1 represents two consecutive timesteps.
Nt denotes the total number of simulation steps. β denotes a vector of reservoir geological
parameters, which are the spatial permeability fields in our study. More details about the
discretization of the governing equations can be referred to [1].

The relationship between the measured data ym and the model state and reservoir
parameters can be described by a measurement operator hm

ym = hm(xm ,β)+ rm , m = 1, · · ·, Nobs (2.2)

where,Nobs is the number of time steps at which the measurements are taken (a subset of
the Nt simulation time steps), and rm is a vector of measurement errors for the data gath-
ered at time step m. These errors are assumed to satisfy a Gaussian distribution G(0,Rm)
where Rm is the measurement error covariance matrix. The specific formula of this nonlin-
ear operator depends on the type of measured data. In this study we consider two types of
data, namely well data (fluid rate and bottom-hole pressure measured at the well locations
only), and grid-based saturations (assumed to be observed in all gridblocks). Grid-based
saturations are used to mimic time-lapse seismic data from which water saturation can be
interpreted from a seismic inversion [2].

The history matching process calibrates the uncertain parameters by minimizing an
objective function defined as a sum of weighted squared differences between observed
and simulated data. Incorporating prior information into the objective function can fur-
ther regularize the history matching problem [3]. In general, the objective function can be
described by a sum of two terms

J (x1, · · ·,xn , · · ·,xNt ,β) = 1

2
(β−βb)T Rb

−1(β−βb)

+ 1

2

Nobs∑
m=1

[dm
obs −hm(xm ,β)]T (Rm)−1[dm

obs −hm(xm ,β)] (2.3)

where, dm
obs represents a vector of observed data at timestep m. The reservoir parameters

β is assumed to follow a Gaussian distribution G(βb ,Cb). In validation experiments, dm
obs is

generated by adding some noise, e.g., rm , to the simulated data from the reference model.
The randomized maximum likelihood (RML) procedure [4, 5] enables the assessment

of the uncertainty by generating multiple ’samples’ from the posterior distribution. Each
of these samples is a history matched realization, which also honors any conditioning
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data, e.g., well data and seismic data in our study. We also should note that RML is not
an exact but rather an approximate method to generated a sample (set) of the posterior
distribution. Proper correction steps are required to yield an unbiased quantification of
uncertainty [6, 7]. This is not the main issue here and therefore a standard RML procedure
will be implemented in this thesis.

In order to generate multiple posterior realizations using RML procedure, we need to
minimize the objective functions corresponding to a set of perturbed measurements,

J i
RML(x1, · · ·,xn , · · ·,xNt ,β) = 1

2
(β−βi

b)T Rb
−1(β−βi

b)

+ 1

2

Nobs∑
m=1

[dm,i
obs −hm(xm ,β)]T (Rm)−1[dm,i

obs −hm(xm ,β)] (2.4)

In Eq.2.4, βi
b ∼ G(βb ,Rb) and dm,i

obs ∼ G(dm
obs ,Rm) for i = 1,2,· · ·,Ne , where Ne is the number

of perturbations to be generated. History matching is to minimize the objective functions
using data assimilation algorithms which can be used to determine a parameter set that
is not too far away from the prior information while minimizing the misfit between the
observed and simulated data. This dissertation mainly focuses on addressing the above
reservoir history matching problems in an efficient manner.

2.2. DATA ASSIMILATION IN PETROLEUM ENGINEERING
The aim of data assimilation is to infer model parameters or states through combin-

ing the dynamic model and available measurements. Data assimilation (DA) has been
investigated for several decades in various fields, such as ocean modeling and numerical
weather prediction. The sequential and variational algorithms are the two classical cate-
gories in the DA community. One branch of the sequential data assimilation technique is
the ensemble-based Kalman filter (EnKF) proposed in [8] and its variants, including en-
semble kalman smoother (EnKS), ensemble smoother (ES), ensemble square root filter
(EnSQR), etc, which have been successfully applied to various fields [9–11]. Typically a
suit of dynamic models runs independently forward in time (forecast step), and is contin-
uously updated as new measurements become available (analysis step). To tackle unphys-
ical updating problems of the sequential data assimilation methods [12], iterative schemes
with an outer-loop are applied in the presence of non-linearity, for example the water-oil
two phase reservoir model studied in this thesis. The fluid properties, e.g. oil/water den-
sity and relative permeability curves, depend on the primary state variables, i.e., pressure
and phase saturation. This dependence introduces non-linearity in the history match-
ing. The most thorough method among them is to rerun the forward model from the ini-
tial time using the updated parameters, and can be referred to restarted EnKF (REnKF)
[13, 14]. Similarly, as variants of EnKF, iterative ES also subsequently have been devel-
oped [15–17]. In the community of reservoir engineering, Naevdal et al. first proposed
the application of the ensemble kalman filter (EnKF) to calibrate the reservoir geological
parameters [18], and a literature review about the applications of the EnKF in petroleum
engineering is referred to [19].

Variational data assimilation, e.g., 4D-Var, is an another option to address reservoir
history matching problem. Comparing to the aforementioned sequential data assimila-
tion, 4D-Var is not limited to search the optimal solution in a prescribed finite ensemble
subspace as done in the EnKF scheme. A particular efficient approach to solve 4D-Var
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inversion problems is the gradient-based minimization algorithm, where the gradients of
objective function with respect to the uncertain variables are efficiently obtained by incor-
porating an adjoint model [20]. In reservoir engineering, Chen et al was the first to use the
adjoint method [21], subsequent works have applied this method into the reservoir his-
tory matching and production optimization problems [22–24]. A review on adjoint-based
reservoir optimization can be found in [25]. The adjoint approach has high computational
efficiency because just a single forward simulation and a single backward simulation of the
adjoint model are required to compute one gradient, independent on the number of un-
certain parameters. However, implementing the adjoint model generally requires access
to the source code and generally requires an overwhelming programming effort, especially
for high dimensional complex system. Moreover quite often the code of the forward model
is not always available, especially for commercial simulators.

2.3. ADJOINT-BASED OPTIMIZATION METHOD
The key step of an adjoint gradient estimation is to determine the gradient of the ob-

jective function with respect to the parameters using the adjoint model [25]. One option
to formulate the adjoint model is to employ Lagrange multipliers to replace the PDE-
constrained optimization problem by an unconstrained optimization. We define an new
objective function Ĵ through adjoining the system equation (Eq.2.1) to the original objec-
tive function J (x1, · · ·,xNt ,β) as follows

Ĵ (x1, · · ·,xn , · · ·,xNt ,β) = J (x1, · · ·,xn , · · ·,xNt ,β)+
Nt∑

n=1
[λn]T [xn − fn(xn−1,β)] (2.5)

where λT
n represents the adjoint variables at time instance n. And then we can further

obtain the total variation of Ĵ with respect to dxn , for n=1,· · ·,Nt , and dβ is

d Ĵ = d J +
Nt∑

n=1
λT

n dxn −
Nt∑

n=1
λT

n
∂fn

∂xn−1
dxn−1 −

Nt∑
n=1

λT
n
∂fn

∂β
(2.6)

We can rearrange the above equation by changing the terms xn−1

d Ĵ = d J +
Nt∑

n=1
λT

n dxn −
Nt−1∑
n=0

λT
n+1

∂fn+1

∂xn
dxn −

Nt∑
n=1

λT
n
∂fn

∂β
dβ (2.7)

and further reformulating the limits of the sums involving xn produces

d Ĵ = d J +
Nt∑

n=1
(λT

n −λT
n+1

∂fn+1

∂xn
)dxn −λT

1
∂f1

∂x0
dx0 +λT

Nt+1

∂fNt+1

∂xNt

dxNt −
Nt∑

n=1
λT

n
∂fn

∂β
dβ

(2.8)

Since we focus on the uncertainty of geological parameters mand other conditions,
e.g., boundary condition and initial condition are not time-varying, the term λT

1
∂f1
∂x0

dx0

involving the initial condition should be 0. The termλT
Nt+1

∂fNt +1

∂xNt
dxNt which relates to the

last time index also should be zero for any differential xNt , which implies thatλNt+1 = 0. In
addition, the sum of the variations of the original objective function J , which is shown to
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be the first term of Eq. 2.8, represents the total variations with respect to all state variables
xn and parameters β

d J =
Nt∑

n=1

∂J

∂xn
dxn + ∂J

∂β
dβ (2.9)

Substituting the above equation into Eq.2.8 yields

d Ĵ =
Nt∑

n=1
{
∂J

∂xn
+λT

n −λT
n+1

∂fn+1

∂xn
}dxn −

Nt∑
n=1

λT
n
∂fn

∂β
dβ+ ∂J

∂β
dβ (2.10)

We set all coefficients of dxn to zero, and then take the transpose of the above equa-
tions. Finally, the system of the adjoint equations is given as follows

(
∂J

∂xn
)T +λn − (

∂fn+1

∂xn
)Tλn+1 = 0 (2.11)

for n = 1, · · ·, Nt . Given the aforementioned ending condition λNd+1 = 0 which can be re-
garded as the initial conditional of the adjoint system equation that has to be solved back-
wards in time. The total variation of Ĵ can then easily be obtained and the total derivatives
of J with respect to the model parameters β is given by

d J

dβ
= ∂J

∂β
−

Nt∑
n=1

λT
n
∂fn

∂β
(2.12)

We note that the dynamic system equation is nonlinear, whereas the adjoint equa-
tion Eq.2.5 is linear. The Newton-Raphson method which are generally used to iteratively
solve the dynamic equation requires several iterations to converge at each time instance,
whereas the adjoint model uses the sensitivity of the system, e.g., ∂fn+1

∂xn
and ∂fn+1

∂β , at the
converged solution of the Newton-Raphson method. Therefore it requires only one sys-
tem equation at each time instance to be solved. If the derivatives of system equation fn

with respect to xn and β are available for n = 1, · · ·, Nt , the adjoint method can easily be
used to obtain the gradient of the objective function J , which can subsequently be used
for the procedure of gradient-based history matching.

2.4. ENSEMBLE SMOOTHER WITH MULTIPLE DATA ASSIMILA-
TION

In this subsection, a commonly used ensemble-based data assimilation method will be
briefly described. The ensemble smoother with multiple data assimilation (ES-MDA) was
introduced in [15] originally for the purpose of calibrating the reservoir model by condi-
tioning to spatially dense seismic data. The main idea of ES-MDA is to divide the analysis
step over a predefined number of partial updates, effectively creating an iterative scheme.
At each analysis step, the measurement error covariance R, e.g., a concatenation of Rm at
all timesteps, is inflated to εk R, where εk is an inflation coefficient. The choice of inflation
coefficients should satisfy the condition that their harmonic sum over Na repeated imple-
mentations of the updating step is equal to one. i.e.,

∑Na
k=1

1
εk

=1. In this study, we choose a
special inflation coefficient εk such that εk = Na for k=1,· · ·,Na [26].
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The ES-MDA analysis equation can be presented as follows:

βk
i =βk−1

i +Kk [dobs +ek
i −g(βk−1

i )], i = 1, · · ·,Ne (2.13)

where, we need randomly re-sample the observation errors ek
i at each iteration step with

the inflated covariance, i.e., ek
i ∼G(0,εk R). Using a compact notation, the measurements

operator g(β) is a concatenation of hm(xm ,β) for the each time step, e.g., [h1(x1,β),h2(x2,β),
· · · ,hNobs (xNobs ,β)]. The Kalman gain for ES-MDA is formulated as

Kk = Ck−1
βd (Ck−1

dd +εk R)−1 (2.14)

Thus, the ES-MDA algorithm is as follows:

1. Initialize the iteration number Na and the inflation coefficients εk for k = 1, · · · ,Na .

2. For k = 1, · · · ,Na :

• Run the ensemble forward models g(βk
0 ) from initial time, i.e., i =0.

• Sample the observation errors using ek
i ∼ (0,εk R) for each ensemble member

• Update each ensemble member using Eq. 2.13

As indicated in Eq.2.14, the implementation of ES-MDA typically requires the inversion
of a matrix C ∈ RNobs×Nobs (where Nobs = Nd ×Nt represents the total number of measure-
ments) given by

C = Ck−1
dd +εk R (2.15)

where, Ck−1
dd is a symmetric positive semi-definite matrix. Eq. 2.15 indicates that matrix C

will be real-symmetric positive-definite as well if we choose R positive-definite. However,
the matrix C may be poorly conditioned [27] in the situations where a small ensemble size
is used. To address this issue when implementing the ES-MDA algorithm, we generally
need to compute a pseudo-inverse of matrix C by use of a truncated singular value de-
composition (TSVD) [28]. We also should note that other schemes that address the case of
large numbers of data do not explicitly construct C are provided by Evensen (2004) [29].
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3
NON-INTRUSIVE

PROJECTION-BASED SUBDOMAIN

POD-TPWL

This chapter presents a non-intrusive subdomain POD-TPWL algorithm for reservoir his-
tory matching through integrating domain decomposition (DD), proper orthogonal decom-
position (POD), radial basis function (RBF) interpolation and the trajectory piecewise lin-
earization (TPWL). It is an efficient approach for model reduction and linearization of gen-
eral non-linear time-dependent dynamical systems without the need of access to the legacy
source code. In the subdomain POD-TPWL algorithm, firstly, a sequence of snapshots over
the entire computational domain are saved and then partitioned into subdomains. From
the local sequence of snapshots over each subdomain, a number of local basis vectors is
formed using POD, and then the RBF interpolation is used to estimate the derivative matri-
ces for each subdomain. Finally, those derivative matrices are substituted into a POD-TPWL
algorithm to form a reduced-order linear model in each subdomain. This reduced-order lin-
ear model allows an easy implementation of the adjoint and results in an efficient adjoint-
based parameter estimation procedure. Comparisons with the classic finite-difference based
history matching show that our proposed subdomain POD-TPWL approach obtains a com-
parable accuracy at a much lower computational cost.

Parts of this chapter have been published in Computational Geosciences. Xiao, C., Leeuwenburgh, O., Lin, H.X.
and Heemink, A., 2019. Non-intrusive subdomain POD-TPWL for reservoir history matching. Computational
Geosciences, 23(3), pp.537-565.
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3.1. INTRODUCTION
History matching problems can be efficiently solved using a gradient-based minimiza-

tion algorithm [1]. In general, significant effort is required to obtain and maintain a correct
implementation of the adjoint model for complex nonlinear simulation models. Such im-
plementations are generally intrusive, that is, they require access to the model code, which
may not always be possible. Many efforts have been taken to make the implementation
of the adjoint model more feasible. One way is to replace the original complex model
with a surrogate that the construction of the adjoint model becomes easier. Courtier et
al. [2] proposed an incremental approach by replacing a high resolution nonlinear model
with an approximated linear model. Liu et al. [3, 4], developed an ensemble-based four-
dimensional variational (4DEnVar) data assimilation scheme where the approximated lin-
ear model is constructed using an ensemble of model forecasts. Recently, to extend the
ensemble-based tangent linear model (TLM) to more realistic applications, Frolov and
Bishop et al. [5, 6] incorporated a local ensemble tangent linear model (LETLM) into 4D-
Var scheme. The LETLM has the ability to capture localized physical features of dynamic
models with relatively small ensemble size. However, it will become intractable for high-
dimensional systems. Proper Orthogonal Decomposition (POD), a model order reduction
method, is a possible approach to decrease the dimensionality of the original model. The
POD approach has been applied to various disciplines, including reservoir model simula-
tions [7, 8], and has in some cases shown significant speed up [9] .

The combination of model linearization and model reduction techniques has the po-
tential to further ease the implementation of adjoint models for high-dimensional com-
plex dynamic systems. Vermeulen et al [10] combined a non-intrusive perturbation-based
linearization method and POD to build a reduced-order linear approximation of the orig-
inal high-dimensional non-linear model. The adjoint of this reduced-order linear model
can be easily constructed and therefore the minimization of the objective function can be
handled efficiently. Altaf et al. [11] and Kaleta et al. [12] applied this method to a coastal
engineering and reservoir history matching problem, respectively.

Alternatively, the Trajectory Piecewise Linearization (TPWL) can be classified as a model-
intrusive linearization method. In TPWL, a number of full-order ‘training’ runs is first
simulated, and then a linear model is generated through first-order expansion around
the ’closest’ training trajectories. In reservoir engineering, Cardoso et al. [13] were the
first to integrate POD and TPWL methods and applied this strategy to oil production opti-
mization. He et al applied the POD-TPWL method to both reservoir history matching and
production optimization [14, 15]. These studies suggested that POD-TPWL has the po-
tential to significantly reduce the runtime for subsurface flow problems [16]. A drawback,
however, is that the POD-TPWL method requires access to derivative matrices used inter-
nally by the numerical solver, and therefore cannot be used with most commercial simu-
lators [14, 17]. And while non-intrusive reduced-order linear model construction is possi-
ble [10–12], the required derivative information is estimated using a global perturbation-
based finite difference method, which needs a large number of full-order simulations and
is therefore computationally demanding. Furthermore, the global perturbation also hin-
ders the extension of this method to large-scale reservoir history matching which requires
retaining many POD patterns [12]. In order to avoid model intrusion and numerous full-
order simulations, we propose to incorporate domain decomposition (DD) and radial ba-
sis function (RBF) interpolation into POD-TPWL to develop a new non-intrusive subdo-
main POD-TPWL algorithm.
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RBF interpolation is mainly used to construct surrogate models [18], and has been ap-
plied e.g. to reservoir engineering and fluid dynamics [19–21]. Recently, Bruyelle et al. [22]
applied the neural network-based RBF to obtain the first-order and second-order deriva-
tive information of a reservoir model and estimate the gradients and Hessian matrix for
reservoir production optimization. The accuracy of RBF-based gradient approximation
is determined by the sampling strategies of the interpolation data [22]. For high dimen-
sional problems, the classical global RBF interpolation algorithm requires a large number
of interpolation data to capture the flow dynamic as much as possible [23]. Moreover, the
global RBF algorithm can cause some spurious long-distance correlations, which implies
the possibilities to avoid some redundant interpolation data. This motivates us to de-
velop a subdomain RBF interpolation technique for reservoir models where the domain
decomposition (DD) technique potentially allows us to apply the methodology to large-
scale problems. Different local RBF interpolation schemes are considered based on the
details of local flow dynamics in each subdomain. The domain decomposition technique
first introduced in the work of Przemieniecki [24] has been applied to various fields [25].
Lucia et al. [26] first introduced the DD method to model-order reduction for accurately
tracking a moving strong shock wave. Subsequently, the DD method has also been applied
to non-linear model reduction problems [27–29].

We presents a new non-intrusive subdomain POD-TPWL algorithm for subsurface flow.
The key idea behind this subdomain POD-TPWL is to integrate the DD method and RBF
interpolation into a model linearization procedure based on POD-TPWL. In this study, we
construct the reduced-order linear model (TLM) piecewise for each subdomain instead of
each state variable. After constructing the reduced-order linear model using the subdo-
main POD-TPWL algorithm, because of the linearity in the reduced-order subspace, the
implementation of adjoint model is easy and, thus, it is convenient to incorporate this
reduced-order linear model into a gradient-based reservoir history matching procedure.
The runtime speedup and the accuracy of the new history matching algorithm have been
assessed.

This chapter is organized as follows. The classical adjoint-based solution approach
are described in Section 2. Section 3 contains the mathematical background of the con-
ventional POD-TPWL. Section 4 gives the mathematical descriptions of domain decom-
position (DD) and radial basis function (RBF) interpolation, which are used to develop
the non-intrusive subdomain POD-TPWL. In addition, a workflow for combining subdo-
main POD-TPWL with an adjoint-based history matching algorithm is described. Section
5 discusses and evaluates an application of the new history matching workflow to two nu-
merical ’twin’ experiments involving synthetic reservoir models.

3.2. PROBLEM DESCRIPTION

In this chapter, we mainly focus on an efficient gradient-based optimization method
for iteratively minimizing an objective function that quantifies the misfit between simu-
lated and observed data, which has been defined in Chapter 2. The key step of a gradient-
based minimization algorithm is to determine the gradient of the cost function with re-
spect to the parameters by using an adjoint model. In the adjoint approach, a modified
function Ĵ is obtained by adjoining the model equation to the objective function J which
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has been defined in Chapter 2.

Ĵ (x1, · · ·,xn , · · ·,xN ,β) = J (x1, · · ·,xn , · · ·,xN ,β)+
N∑

n=1
[λn]T [xn − fn(xn−1,β)] (3.1)

And then, the gradient of the cost function is formulated after introducing the adjoint
model as follows (more details about the mathematical derivation can be found in Chap-
ter.2,

[
d J

dβ
]T = Rp

−1(β−βp )−
N∑

n=1
[λn]T ∂fn

∂β
−

N0∑
m=1

[
∂hm(xm ,β)

∂β
]T Rm

−1(dm
o −hm(xm ,β)) (3.2)

where the adjoint model in terms of the Lagrange multipliersλn is given by

λn = [
∂fn+1

∂xn ]λn+1 + [
∂hn(xn ,β)

∂xn ]T Rn
−1(dn

o −hn(xn ,β)) (3.3)

for n = N, · · ·1 with an ending condition λN+1 = 0. This adjoint approach has a high com-
putational efficiency because just one forward simulation and one backward simulation
are required to compute the gradient, independent on the size of the variable vector. It

should be pointed out that four derivative terms, e.g, ∂hm (xm ,β)
∂β , ∂hn (xn ,β)

∂xn , ∂fn

∂β and ∂fn+1

∂xn ,
are required in the adjoint method. We will give detailed descriptions of how to efficiently
obtain these four terms using our proposed subdomain POD-TPWL algorithm in the fol-
lowing sections.

3.3. POD-TPWL ALGORITHM
In the TPWL scheme, one or more full order “training” runs using a set of perturbed

parameters are simulated first. The states and the derivative information at each time
step from these runs are used to construct the TPWL surrogate. Given the state xn and pa-
rameters β, the state xn+1 is approximated as a first-order expansion around the training
solution (xn+1

tr ,xn
tr ,βtr ) as follows,

xn+1≈xn+1
tr +En+1(xn −xn

tr )+Gn+1(β−βtr ) (3.4)

where

En+1 = ∂fn+1

∂xn
tr

, Gn+1 = ∂fn+1

∂βtr
(3.5)

The training solution (xn+1
tr ,xn

tr ,βtr ) is chosen to be as ’close’ as possible to the state
xn . A detailed description of a criterion for closeness can be found in [30]. The matrices
En+1 ∈ R2Ng ×2Ng and Gn+1 ∈ R2Ng ×Ng represent the derivative of the dynamic model as
Eq.3.1 at timestep n+1 with respect to states xn

tr and parameters βtr respectively. Eq.3.5 is,
however, still in a high-dimensional space, e.g, xn+1 ∈ R2Ng , and β ∈ RNg , which motivates
the development of the POD-TPWL algorithm [30].

POD provides as means to project the high-dimensional states into an optimal lower-
dimensional subspace. The basis of this subspace is obtained by performing a Singular
Value Decomposition (SVD) of a snapshot matrix containing the solution states at selected
time steps (snapshots) computed from training simulations. The state vector x can then be
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represented in terms of the product of a coefficient vectorψ and a matrix of basis vectors
Φ

x =Φψ (3.6)

Let Φp and Φs represent separate matrices of basis vectors for pressure and saturation
respectively [31]. In general there is no need to contain all columns of the left singular
matrix inΦp andΦs and a reduced state vector representations are obtained by selecting
only the first columns according to an energy criterion; see e.g.,[30]. To normalize the
reduced state vector, the columns of Φp are determined by multiplying the left singular
matrix Up with the singular value matrix Σp (and similarly for saturation), i.e.

Φp = UpΣp , Φs = UsΣs (3.7)

These two matrix are then assembled into a single basis matrixΦ as follows:

x =Φψ=
[
Φp 0

0 Φs

]
ψ=

[
Φp 0

0 Φs

][
ψp

ψs

]
(3.8)

We also use Karhunen-Loeve expansion (KLE) or principal component analysis (PCA)
to parameterize the parameter space. KLE reduces the dimension of the parameter vector
by projecting the high-dimensional parameter into an optimal lower-dimensional sub-
space [32]. The basis of this subspace is obtained by performing an eigenvalue decom-
position of the background parameter covariance matrix Rb . If this covariance matrix is
not accessible the basis can alternatively be obtained from an SVD of a matrix holding an
ensemble of prior parameter realizations with ensemble mean βb . Including normaliza-
tion of the reduced parameter vector, a random parameter vector sample β is generated
as follows,

β=βb +Φβξ, with Φβ = UβΣβ (3.9)

where Φβ denotes the matrix of parameter basis vectors, Uβ and Σβ are the matrix of
left singular vectors and singular value matrix respectively, and ξ denotes a vector with
independent Gaussian random variables with zeros mean and unit variance. A reduced
parameter space representation is obtained by selecting only the first several columns of
Φβ. The number of retained columns for basis matrix (denoted as lp and ls for pressure
and saturation, lβ for parameter, respectively) is determined through an energy criterion
[30]. We take Φp as an example. We first compute the total energy Et , which is defined
as Et = ∑L

i=1ν
2
i , where νi denotes the i-th diagonal element of singular value matrix Σp .

The energy associated with the first lp singular vectors is given by Elp = ∑lp

i=1νi
2. Then

the smallest lp is determined such that Elp exceeds a specific fraction of Et , e.g., 95%. The
same procedure is applied to determine ls and lβ.

Substituting Eq.3.8 and Eq.3.9 into Eq.3.4, we obtain the following POD-TPWL formula,

ψn+1≈ψn+1
tr +En+1

ψ (ψn −ψn
tr )+Gn+1

ξ (ξ−ξtr ) (3.10)

En+1
ψ =ΦT ∂fn+1

∂xn
tr
Φ, Gn+1

ξ =ΦT ∂fn+1

∂βtr
Φβ (3.11)

Similarly, the well model is also linearized around a close training solution (ψn+1
tr ,ξtr )

in the reduced space as follows,

ym+1≈ym+1
tr +Am+1

ψ (ψm+1 −ψm+1
tr )+Bm+1

ξ (ξ−ξtr ) (3.12)
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Am+1
ψ = ∂hm+1

∂xm+1
tr

Φ, Bm+1
ξ = ∂hm+1

∂βtr
Φβ (3.13)

Eq.3.10 and Eq.3.12 represent the POD-TPWL system for reservoir model and well
model in the reduced-order space, respectively. In general the traditional POD-TPWL
method modifies the source code to output all derivative matrices [30]. In this paper, ra-
dial basis function interpolation is used to approximately estimate these derivative matri-
ces. These derivative matrices then are substituted into POD-TPWL algorithm to form a
subdomain reduced-order linear model.

3.4. ADJOINT-BASED OPTIMIZATION USING REDUCED-ORDER

MODELLING
This section describes the mathematical background of domain decomposition (DD),

and radial basis function (RBF) interpolation, which are used to construct a non-intrusive
subdomain reduced-order linear model. And then a procedure to incorporate this reduced-
order linear model into an adjoint-based history matching is given in the last subsection.

3.4.1. DOMAIN DECOMPOSITION METHOD

We denote a 2D or 3D computational domain as Ω. The entire domain Ω is assumed
to be decomposed into S non-overlapping subdomains Ωd , d ∈ {1,2, · · ·,S} (such that
Ω = ⋃S

d=1Ω
d and Ωi ∩Ω j = 0 for i 6= j ). Each subdomain has local unknowns, e.g., lo-

cal pressure and saturation variables. In each subdomain Ωd , the generated snapshots
within that subdomain are used to construct a set of local POD basis functionsφd and the
corresponding POD coefficients ψd ,n+1 at the timestep n+1 as described in the previous
section. The dynamic model is replaced by an interpolation model relating neighboring
subdomain POD coefficients at the current and previous time step.

ψd ,n+1 = £d ,n+1(ψd ,n ,ψsd ,n+1,ξ) (3.14)

Similarly, the dynamic well model is replaced by a second interpolation model ex-
pressed in terms of the local subdomain POD coefficientψd ,m+1 and ξ

yd ,m+1 =ħd ,n+1(ψd ,m+1,ξ) (3.15)

where, vector ψd ,n denotes the set of POD coefficients at the time level n for the sub-
domainΩd ,ψsd ,n+1 denotes the set of POD coefficients at time level n+1 for the surround-
ing subdomainsΩsd . In a 2-D case, the number of surrounding subdomains associated to
subdomain Ωd is between 2 and 4. Fig.3.1 shows a maximum of four surrounding sub-
domains connected with the subdomain Ω5, three surrounding subdomains connected
with the subdomainΩ2,Ω4,Ω6,Ω8, and two surrounding subdomains connected with the
subdomainΩ1,Ω3,Ω7,Ω9.

We propose to use RBF interpolation to obtain the derivative matrices that are required
by the POD-TPWL. In addition, domain decomposition has the abilities to efficiently cap-
ture localized physical features [23], and therefore has the potential to improve the deriva-
tive estimation by local low-dimensional RBF interpolation which will be described in the
next subsections.
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Figure 3.1: Illustration of domain decomposition in a 2-D case

3.4.2. RADIAL BASIS FUNCTION INTERPOLATION
RBF interpolation can be classified as a data-driven interpolation method [18–20].

High-dimensional interpolation needs a large number of data to obtain a satisfactory ac-
curacy, a phenomenon often referred to as the “curse of dimensionality”. To remedy this
difficulty, DD approximates the global domain by the sum of the local subdomains, and
therefore can be applied to form a locally low-dimensional RBF interpolation.

For subdomainΩd , let £d ,n+1(ψd ,n ,ψsd ,n+1,ξ) denote a RBF interpolation function for
the POD coefficientψd ,n+1 at the time level n+1. The RBF interpolation function is a linear
combination of M radial basis functions in the form of,

£d ,n+1(ψd ,n ,ψsd ,n+1,ξ) =
M∑

j=1
ωd ,n+1

j ×θ(||(ψd ,n ,ψsd ,n+1,ξ)− (ψd ,n
j ,ψsd ,n+1

j ,ξ j )||) (3.16)

where, ||(ψd ,n ,ψsd ,n+1,ξ)− (ψd ,n
j ,ψsd ,n+1

j ,ξ j )|| is a scalar distance using L2 norm. ωd ,n+1

is a weighting coefficient vector of size M. θ is a set of specific radial basis functions.
The specific coefficient ωd ,n+1

j is determined so as to ensure that the interpolation

function values £d ,n+1 at the training data points (ψd ,n
j ,ψsd ,n+1

j ,ξ j ), match the given data

ψd ,n+1
j exactly. This can be expressed by,

Dd ,n+1ωd ,n+1 = Zd ,n+1 (3.17)

where

Dd ,n+1 =
 θ(l n+1(1,1)) ... θ(l n+1(1, M))

. θ(l n+1(i , j ) .
θ(l n+1(M ,1)) ... θ(l n+1(M , M))


l n+1(i , j ) = ||(ψd ,n

i ,ψsd ,n+1
i ,ξi )− (ψd ,n

j ,ψsd ,n+1
j ,ξ j )||,

i = 1, · · ·, M ; j = 1, · · ·, M (3.18)

ωd ,n+1 = [ωd ,n+1
1 ,ωd ,n+1

2 , · · ·,ωd ,n+1
M ]T (3.19)

Zd ,n+1 = [ψd ,n+1
1 ,ψd ,n+1

2 , · · ·,ψd ,n+1
M ]T (3.20)
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The weighting coefficients are determined by solving the linear system Eq.3.17. We
chose Multi-Quadratic RBF in our case. l represents a Euclidean distance. ε denotes the
shape parameters, which can be optimized using greedy algorithm [21]. Clearly, a Multi-
Quadratic RBF monotonically decreases with Euclidean distance. Multi-Quadratic RBF is
local and is the msot commonly used across several applications. Other type of RBF can
be chosen with more specific purpose [33]. A list of well-known RBF are provided in Table
3.1.

After the construction of RBF interpolation, we can analytically estimate the derivative
at the ’closest’ training data point, e.g., (ψd ,n

i ,ψsd ,n+1
i ,ξi ), by differentiating the RBF as

follows,

∂£d ,n+1

∂ξ
|ξ=ξi

=
M∑

j=1
ωd ,n+1

j ×
∂θ(||(ψd ,n ,ψsd ,n+1,ξ)− (ψd ,n

j ,ψsd ,n+1
j ,ξ j )||)

∂ξ
|ξ=ξi

(3.21)

∂£d ,n+1

∂ψsd ,n+1
|
ψsd ,n+1=ψsd ,n+1

i
=

M∑
j=1
ωd ,n+1

j ×

∂θ(||(ψd ,n ,ψsd ,n+1,ξ)− (ψd ,n
j ,ψsd ,n+1

j ,ξ j )||)
∂ψsd ,n+1

|
ψsd ,n+1=ψsd ,n+1

i
(3.22)

∂£d ,n+1

∂ψd ,n
|
ψd ,n=ψd ,n

i
=

M∑
j=1
ωd ,n+1

j ×
∂θ(||(ψd ,n ,ψsd ,n+1,ξ)− (ψd ,n

j ,ψsd ,n+1
j ,ξ j )||)

∂ψd ,n
|
ψd ,n=ψd ,n

i

(3.23)

Table 3.1: Some well-known radial basis functions

Functions Definition

Gaussian θ(l ) = e−( l
ε )2

Linear Spline θ(l ) = l

Multi-Quadratic θ(l ) =
p

l 2 +ε2

Inverse Caddric θ(l ) = 1
l 2+ε2

Cubic Spline θ(l ) = l 3

Thin Plate Spline θ(l ) = l 2log l
Inverse Multistory θ(l ) = 1p

l 2+ε2

Similarly, the approximation Eq.3.15 also can be constructed using RBF interpolation
method as follows,

yd ,m+1 ≈ħd ,n+1(ψd ,m+1,ξ) =
M∑

j=1
εd ,m+1

j ×θ(‖(ψd ,m+1,ξ)− (ψd ,m+1
j ,ξ j )‖) (3.24)

The derivative at the training data by differentiating the RBF function Eq.3.14 with re-
spect to (ψd ,m+1

i ,ξi ) can be given by

∂ħd ,n+1

∂ξ
|ξ=ξi

=
M∑

j=1
εd ,m+1

j ×
∂θ(‖(ψd ,m+1,ξ)− (ψd ,m+1

j ,ξ j )‖)

∂ξ
|ξ=ξi

(3.25)
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∂ħd ,n+1

∂ψd ,m+1
|
ψd ,m+1=ψd ,m+1

i
=

M∑
j=1
εd ,m+1

j ×
∂θ(‖(ψd ,m+1,ξ)− (ψd ,m+1

j ,ξ j )‖)

∂ξ
|
ψd ,m+1=ψd ,m+1

i

(3.26)

where, εd ,m+1 is a weighting coefficient vector of size M (number of training data sets),
and these matrices are reconstructed for each time step correspondingly.

3.4.3. SUBDOMAIN POD-TPWL ALGORITHM
By considering the dynamic interaction between neighboring subdomains as in Eq.3.14,

the coefficientsψd ,n+1 for the subdomainΩd can be obtained as follows,

ψd ,n+1 ≈ψd ,n+1
tr +Ed ,n+1

ψtr
(ψd ,n −ψd ,n

tr )

+Esd ,n+1
ψtr

(ψsd ,n+1 −ψsd ,n+1
tr )+Gn+1

ξtr
(ξ−ξtr ) (3.27)

Coupling domain decomposition and radial basis function interpolation, the deriva-
tive matrices required by POD-TPWL for the subdomainΩd are estimated as follows

Ed ,n+1
ψtr

≈ ∂£d ,n+1

∂ψd ,n
|
ψd ,n=ψd ,n

tr

Esd ,n+1
ψtr

≈ ∂£d ,n+1

∂ψsd ,n+1
|
ψsd ,n+1=ψsd ,n+1

tr

Gn+1
ξ ≈ ∂£d ,n+1

∂ξ
|ξ=ξtr

(3.28)

where subindex tr refers to the nearest training point determined in terms of of vector
(ψd ,n ,ψsd ,n+1,ξ).

Similarly, substituting Eq.3.24-Eq.3.25 into Eq.3.12, the simulated measurements yd ,m+1

of the subdomainΩd are reformulated as

yd ,m+1 ≈ yd ,m+1
tr +Ad ,m+1

ψtr
(ψd ,m+1 −ψd ,m+1

tr )+Bm+1
ξtr

(ξ−ξtr ) (3.29)

Ad ,m+1
ψ ≈ ∂ħd ,m+1

∂ψd ,m+1
|
ψd ,m+1=ψd ,m+1

tr
,Bm+1
ξtr

≈ ∂ħd ,m+1

∂ξ
|ξ=ξtr

(3.30)

The implementation of POD-TPWL is local in each subdomain, which has the poten-
tial to capture features dominated by local dynamics better than global approximations.
Therefore, we could refer to the subdomain POD-TPWL algorithm. The subdomain POD-
TPWL consists of an offline stage and an online stage. (1) During the offline stage, we
construct a set of local RBF and estimate the derivative information for each subdomain.
Firstly, the solutions of the full-order model are saved as a sequence of snapshots over the
whole computational domain and then partitioned into subdomains. From the local se-
quence of snapshots over each subdomain, a number of local basis vectors is formed using
POD. Unlike the traditional practices in which RBF is used to construct a set of surrogates
for each subdomain, we use RBF to estimate the derivative matrices for each subdomain.
Finally, those estimated derivative matrices are substituted into POD-TPWL algorithm to
form a reduced-order linear model in each subdomain. (2) The online stage consists of
the time evolution of the dynamic state of the reduced model by iterative implementation
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and solution of the subdomain POD-TPWL equations. Referring to Eq.3.27, we represent
the dynamic interactions among neighboring subdomains using an implicit formula. the
variables of one subdomain at current time level can be linearized around the variables of
this subdomain at previous timestep and variables of neighboring subdomains at current
timestep, which have not been determined. Thus, additional iterations are required. The
non-adjacent subdomains almost have no direct dynamic interactions, this kind of sub-
domain POD-TPWL algorithm can be easily parallelized. Referring to Fig.3.1, subdomains
Ω1,Ω3,Ω5,Ω7,Ω9 have no direct interactions, and therefore the subdomain POD-TPWL al-
gorithm can be simultaneously implemented in these five subdomains. This is similar for
the subdomains Ω2,Ω4,Ω6,Ω8. This parallelization for subdomain POD-TPWL is known
as block red-black ordering [34]. The k-th iterative description of Eq.3.26 is as follows.

ψd ,n+1
k ≈ψd ,n+1

tr +Ed ,n+1
ψtr

(ψd ,n −ψd ,n
tr )

+Esd ,n+1
ψtr

(ψsd ,n+1
k−1 −ψsd ,n+1

tr )+Gn+1
ξtr

(ξ−ξtr ) (3.31)

The iteration for subdomain POD-TPWL is very cheap, thus, we do not limit the max-
imum number of iterations. The iteration will be stopped when no further changes in the
estimate of state, .e.g., pressure and saturation occur,

|ψk+1 −ψk |
max{|ψk+1|,1}

< ηψ (3.32)

Nonetheless, the parallelisation is not explored in this thesis and is left as a future area of
research.

3.4.4. SAMPLING STRATEGY
In our proposed subdomain POD-TPWL algorithm, training points are required for

both RBF interpolation and to construct the POD basis. For POD, the snapshot matrix
generated from the training simulations should accurately characterize the dynamic be-
havior of the system. The training simulations used to construct the RBF interpolation
model should allow for accurate computation of derivative matrices. The procedure for
choosing these training points will be described here.

Sampling strategy for POD. A small initial set of model parameter vectors is sampled
and used as input for full-order model (FOM) simulations from which a snapshot matrix
is constructed. The singular value spectrum is computed for this initial set of samples.
The number of samples is then increased one at a time, i.e. adding one FOM simulation,
and the SVD is recomputed, until no significant changes are observed in the singular value
spectrum.

Sampling strategy for RBF. The accuracy of the RBF interpolation will be reduced if too
few data points are chosen, while the computational cost increases with the number of
data points, which will be prohibitive if too many points are chosen. To limit the number
of FOM simulations used to construct the interpolation model for the POD coefficients
we use 2-sided perturbation of each coefficient ξ j resulting in 2× lβ+1 points. In some
experiments we add additional points by simultaneous random sampling of perturbations
∆ξ. An alternative could be use to use Smolyak sparse grid sampling [35].

3.4.5. ADJOINT-BASED HISTORY MATCHING ALGORITHM
After constructing the linear reduced-order model using the proposed subdomain POD-

TPWL methodology, it can be used within an adjoint-based history matching workflow.
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The cost function evaluated using the reduced-order linear model is given as follows,

(ξ) =1

2
(βb +Φβξ−βp )T Rp

−1(βb +Φβξ−βp )

+ 1

2

S∑
d=1

N0∑
m=1

[dd ,m
o −yd ,m

tr −Ad ,m
ψtr

(ψd ,m −ψd ,m
tr )−Bm

ξtr
(ξ−ξtr )]T

(Rm)−1[dd ,m
o −yd ,m

tr −Ad ,m
ψtr

(ψd ,m −ψd ,m
tr )−Bm

ξtr
(ξ−ξtr )] (3.33)

After augmenting this cost function with the model equation Eq.3.27, the gradient with
respect to the model parameters is obtained as

[
d 

dξ
]T =(φβ)T Rp

−1(βb +φβξ−βp )

−
S∑

d=1

N0∑
m=1

[Bm
ξtr

]T (Rm)−1[dd ,m
o −yd ,m

tr −Ad ,m
ψtr

(ψd ,m −ψd ,m
tr )

−Bm
ξtr

(ξ−ξtr )]−
S∑

d=1

N∑
n=1

[Gn
ξtr

]Tλd ,n (3.34)

where λd ,n is obtained as the solution of the adjoint model for the subdomain Ωd as fol-
lows

[I− (Ed ,n
ψtr

)T ]λd ,n =
S∑

d=1
[Ad ,n
ψtr

]T Rn
−1[dd ,n

o −yd ,n
tr

−Ad ,n
ψtr

(ψd ,n −ψd ,n
tr )−Bn

ξtr
(ξ−ξtr )]+ [Esd ,n

ψtr
]Tλd ,n+1 (3.35)

The minimization of the cost function Eq.3.33 is performed using a steepest descent algo-
rithm [36] and is stopped when either one of the following stopping criteria is satisfied

• No further changes in the cost function

| (ξk+1)− (ξk )|
max{| (ξk+1)|,1}

< η  (3.36)

• No further changes in the estimate of parameters,

|ξk+1 −ξk |
max{|ξk+1|,1}

< ηξ (3.37)

• The maximum number of iterations has been reached. i.e

k <= Nmax (3.38)

where η  and ηξ are predefined error constraints and Nmax is the maximum number of
iterations.

As mentioned in [12], the solution of the reduced and linearized minimization prob-
lem based on Eq.3.33 is not necessarily the solution of the original problem. Therefore an
additional stopping criterion should be introduced for the original model as follows [37],

Nd N0 −2
√

2Nd N0 É 2J (βk ) É Nd N0 +2
√

2Nd N0 (3.39)
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where, N0 is the number of timesteps where the measurements are taken, Nd is the num-
ber of measurements at each timestep, βk represents the updated parameters vector at
the k-th outer-loop. J is the cost function computed using the original reservoir model
simulations.

Figure 3.2: The illustration of the reconstruction method of subdomain POD-TPWL algorithm

If the objective function does not meet the stopping criterion as Eq.3.39, then addi-
tional outer-loops are required to reconstruct new reduced-order linear models using the
updated parameters, and the aforementioned iterative inner-loop is performed again.

Our proposed non-intrusive subdomain POD-TPWL has computational advantages
over the traditional construction of reduced-order linear models using perturbation-based
finite-difference method proposed in [12], especially when the reduced-order linear model
is required to be reconstructed for each outer-loop. Instead of re-perturbing the param-
eter and state variables one by one to approximate the derivative matrices as proposed
in [12], which would require (lp +ls +lβ+1) FOM simulations, our algorithm runs only one
additional FOM simulation using updated parameters. The updated parameters and sim-
ulated snapshots are added into the previous group of sampling interpolation points and
corresponding snapshots. The derivative matrices for the updated parameters are approx-
imated based on the updated group of interpolation points and snapshots.

3.5. NUMERICAL EXPERIMENTS AND DISCUSSION
In this section, two numerical experiments are presented that aim to demonstrate

and evaluate our proposed adjoint-based history matching algorithm. The first experi-
ment is based on a small 2D synthetic model containing 9 wells. The second experiment
uses a reservoir model with 13 wells based on the SAIGUP benchmark case [38]. In our
numerical experiments, MRST, a free open-source software for reservoir modeling and
simulation[39], is used to run the FOM simulations.

3.5.1. CASE 1 - 2D RESERVOIR WITH 9 WELLS

DESCRIPTION OF MODEL SETTINGS

A 2D heterogeneous oil-water reservoir is considered with two-phase imcompressible
flow dynamics. The reservoir contains 8 producers and 1 injector, which are labeled as P1

to P8, and I1 respectively, see Fig.3.3. Detailed information about the reservoir geometry,
rock properties, fluid properties, and well controls is summarized in Table 3.2.

REDUCED MODEL CONSTRUCTION

We generate an ensemble of 1000 Gaussian-distributed realizations of log-permeability.
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Figure 3.3: The well placement in the 2-D reservoir model for case 1

We also assume that the generated log-permeability fields are not conditioned to the per-
meability values at the well locations. The log-permeability fields and the corresponding
porosity fields are described by the following statistics:

σβ = 5 (3.40)

Cβ(xi 1, j 1; yi 2, j 2] =σ2
βe

−[(
|xi 1−xi 2 |

χx
)2+(

|yi 1−yi 2 |
χy

)2]
(3.41)

χx

Lx
= 0.2,

χy

Ly
= 0.2 (3.42)

φ= 0.25(
eβ

200
)0.1 (3.43)

Here, σβ is the standard deviation of log-permeability β; Cβ is the covariance of β;
xi 1, j 1=(xi 1,y j 1) denotes the coordinates of a grid block; χx (or χy ) is the correlation length
in x (or y) direction; and Lx (or Ly ) is the domain length in x (or y) direction. The back-
ground log-permeability βb is taken as the average of the 1000 realizations. One of the
realizations was considered to be the truth, and is illustrated in Fig.3.4(a). The perme-
ability field was parameterized using KL-expansion and about 95% energy is maintained,
resulting in 18 permeability patterns with lβ = 18 corresponding independent PCA coef-
ficients, which are used in the workflow as a low-dimensional representation of the 2500
grid block permeability values. Fig.3.4(b) shows the projection of the ’true’ permeability
field in this low-dimensional subspace which shows that the truth can be almost perfectly
reconstructed in this subspace. Four realizations for log-permeability field generated are
additionally shown in Fig.3.5.

After having reduced the parameter space, the next step is to reduce the reservoir
model. The first step is to generate a set of training runs from which snapshots will be
taken. Since the required number of training runs is not known a priori we follow the fol-
lowing procedure: (1) generate a sample PCA coefficient vector by sampling from the set
{−1,1}, (2) run a full-order model simulation with these parameters, (3) extract snapshots
and form the snapshot matrix, (4) compute the singular value decomposition of the snap-
shot matrix (5) repeat steps (1) to 4) until changes in the singular values are insignificant.



3

32 3. NON-INTRUSIVE PROJECTION-BASED SUBDOMAIN POD-TPWL

Table 3.2: Experiment settings using MRST for case 1

Description Value
Dimensions 50 × 50 ×1
Grid cell size 20 × 20 × 10
Number of wells 8 producers, 1 injector
Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP·s, 2 mP·s
Initial pressure 30 MPa
Initial saturation So=0.80, Sw =0.20
Connate water saturation Swc =0.20
Residual oil saturation Sor =0.20
Corey exponent, oil 4.0
Corey exponent, water 4.0
Injection rate 200 m3/d
BHP 25 MPa
History production time 5 year
Prediction time 10 year
Timestep 0.1 year
Measurement timestep 0.2 year
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(a) ’True’ model in original full-order space
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(b) Projected ’true’ model in reduced-order subspace

Figure 3.4: Comparison of the ’true’ reservoir model in full-order space and in reduced-order space for Case 1

For Case 1 this produced a set of 15 training runs and 240 snapshots for pressure and sat-
uration each.

ERROR QUANTIFICATIONS

The performance of the subdomain POD-TPWL model can be investigated by compar-
ing the errors relative to FOM simulation for quantities of interest. Here, errors are quanti-
fied in terms of the mismatch of the fluid rate, water-cut and primal variables, i.e., pressure
and saturation between the FOM solution dFOM and subdomain POD-TPWL simulations
dROM . For example, the average fluid rate error E f r or the average water-cut error Ewct is
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Figure 3.5: Examples of realizations of the log-permeability field generated from PCA coefficients sampled
randomly from the set {-1, 1} for Case 1

calculated as

E f r or Ewct = 1

N Nd

N∑
i=1

Nd∑
j=1

|(di , j
FOM −di , j

ROM )|
di , j

FOM

(3.44)

Where, d represents the fluid rate or water-cut. Similarly, the pressure error Ep and satu-
ration error Es are formulated as

Ep or Es = 1

N Nd

N∑
i=1

Nd∑
j=1

|(xi , j
FOM −xi , j

ROM )|
xi , j

FOM

(3.45)

Where, x represents the saturation or pressure in each gridblock at each timestep.
In our case, the initial 37 sampling points are selected as described in subsection of

sampling strategy, where the j-th element ξ j
i of the i-th PCA coefficient vector ξ j is per-

turbed sequentially in 2 opposite directions (positive and negative) by a specific amplitude

perturbation∆ ξ j
i . These 37 sampling points are used to build a subdomain reduced-order

linear model. Four factors, e.g, domain decomposition, projection energy, testing interval
and training interval, are considered to analyze the sensitivity of model errors. The exper-
iment settings are shown in Table 3.3. We specify the stopping criterion ηψ = 10−3.

The detailed information about the error quantification can be found in our Supple-
mentary file, the main results are summarized here. Fig.3.6 shows the error in fluid rate,
water-cut, pressure and saturation as a function of the four factors. A relatively small sub-
domain size of 3 x 3 cells produced the most accurate results for this case. Accuracy is also
improved by increasing the energy threshold and retaining more POD patterns, albeit at
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an increased computational cost. Retaining 95% of the total energy during projection pro-
duces an acceptable accuracy in this case. Increasing the testing interval, which represents
the maximum discrepancy between test model and linearized training model, severely de-
teriorates the reduced model accuracy, with the best results obtained with the [-0.1, 0.1]
interval. an appropriate iteration step-length for the history matching process should be
set as 0.1 based on our numerical experiments.

In terms of computational effort, the runtime for a single FOM simulation for this case
was about 2 seconds on a machine with i5-4690 Intel CPUs (4 cores, 3.5GHz) and 24 GB
memory using Matlab-R2015a. The subdomain POD-TPWL models, in contrast, required
less than 0.2 seconds. However, the construction of subdomain POD-TPWL requires simu-
lating 52 training models, POD, derivative estimation using RBF, plus additional overhead,
which severely increases the cost. Therefore, it would not make sense to construct the
subdomain POD-TPWL model unless it is to be used for a large number of simulations.
Because many simulations are required in history matching applications, the subdomain
POD-TPWL model should be applicable in this context. The use of subdomain POD-TPWL
in conjunction with an adjoint-based data assimilation procedure is presented in the fol-
lowing parts.

Table 3.3: Experiment design of error quantification for case 1

Domain decomposition Projection energy Testing interval training interval
3×3 90% [-0.1,0.1] [-0.1,0.1]
4×4 95% [-0.2,0.2] [-0.5,0.5]
5×5 99% [-0.3,0.3] [-1,1]

HISTORY MATCHING PROCEDURE

Based on the error sensitivity analysis presented above, we divide the entire domain
into 9 (3 × 3) rectangle subdomains as illustrated in Fig.3.7. The choice of subdomains is
fairly arbitrary at this point since we have no formal algorithm to determine the best num-
ber and design of the subdomains. The previously collected global snapshots for pressures
and saturations are divided into local snapshots. For each subdomain, two separate eigen-
value problems for pressure and saturation are solved using POD. The number of reduced
parameters and state patterns for each subdomain and for the global domain are listed in
Table 3.4 where specific projection energy, e.g, 95% and 95%, are preserved for the pressure
and saturation respectively in each subdomain.

The history period is 5 years during which observations are taken from 8 producers and
1 injector every second simulation time step (nearly 73 days) resulting in 25 time instances.
Noisy observations are generated from the model with the “true” permeability field and
include bottom-hole pressures (BHP) in the injector and fluid rates and water-cut (WCT)
in the producers. As a result we have 200 fluid rates and 200 WCT values measured in the
producers and 25 bottom-hole pressures measured in the injector, which gives in total 425
measurement data. Normal distributed independent measurement noise with a standard
deviation equal to 5% of the ’true’ data value, was added to all observations. The generated
measurements are shown in Fig.3.8.

To analyze the results, we define two error measures based on data misfits eobs and
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Figure 3.6: Average subdomain POD-TPWL errors for test case as a function of domain decomposition,
projection energy, testing interval and training interval for case 1. Results are for TPWL models constructed

using 37 training simulations

Table 3.4: Summary of the number of reduced variables for the global domain and after domain decomposition
for case 1 (Note:s refers to saturation, p refers to pressure)

Domain Decomposition Global Domain
Index of subdomain β s p β s p

1

18

14 7

18 72 36

2 13 6
3 12 5
4 13 4
5 16 7
6 14 6
7 13 5
8 15 6
9 12 5

Total number 18 122 51 18 72 36
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Figure 3.7: Illustration of the applied domain decomposition for Case 1.

parameter misfits eβ as follows,

eobs =

√√√√∑No
i=1

∑Nd
j=1(di , j

obs −di , j
upt )2

No Nd
(3.46)

eβ =

√√√√∑Ng

i=1(βi
tr ue −βi

upt )2

Ng
(3.47)

where, di , j
obs and di , j

upt represent the measurements and simulated data using the updated

model respectively; βi
tr ue and βi

upt denote the grid block log-permeability from the ’true’
model and updated model respectively.

Figures 3.9, 3.10 and 3.11 and Table 3.5 show the results of the first numerical exper-
iments, including the updated log-permeability field, the value of cost function at each
iteration and the mismatch between observed data and predictions. To demonstrate the
performance of our proposed methodology, we compared the results with those of finite-
difference (FD) based history matching algorithm without domain decomposition and
model order reduction. The total computational cost of any minimization problem strongly
depends on the number of parameters. In our work, for a fair comparison, we use the same
parameterization to reduce the number of parameters and implement FD based history
matching in this reduced-order parameter subspace. The cost function for FD based his-
tory matching can be defined as follows,

J (ξ) =1

2
(βb +φβξ−βp )T Rp

−1(βb +φβξ−βp )

+ 1

2

N0∑
m=1

(dm
o −hm(xm ,ξ))T (Rm)−1(dm

o −hm(xm ,ξ)) (3.48)

The FD method is used to compute the numerical gradient of the cost function as
Eq.3.48 with respect to 18 PCA coefficients. A FD gradient is determined by one-sided
perturbation of each of the 18 PCA coefficients. Thus, 19 full-order model (FOM) simula-
tions are required for each iteration step. The stopping criteria are set η  = 10−4, ηξ = 10−3,
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Figure 3.8: Measured quantities for case 1. Blue solid line: reference model (truth), black dashed line: noisy data.

and Nmax =30. As can be seen from Fig.3.10 and Table 3.5, the model-reduced approach
needs 55 FOM simulations, among them, 15 FOM simulations are used to collect the snap-
shots and 37 FOM simulations are used to construct the initial reduced-order linear model
in the first outer-loop. The remaining 3 FOM simulations are used to reconstruct three
new reduced-order linear models in the next three outer-loops and to calculate the cost
function in the original space. Fig.3.9 shows the true, initial and final estimates of log-
permeability field. In this case, the main geological structures of the the ’true’ model can
be reconstructed with both methods. However, the parameter estimates obtained with
proposed methodology more accurately reproduce the true amplitudes than those ob-
tained with FOM based history matching. From Fig.3.11 and Table 3.5, we can both qual-
itatively and quantitatively observe that the history matching process results in an im-
proved prediction in all of the eight production wells. Fig.3.11 illustrates the data match
of fluid rate and water-cut up to year 5 and an additional 5-year prediction until year 10
for all 8 producers. The prediction based on the initial model is far from that of the true
model. After history matching, the predictions from the updated model match the obser-
vations very well. Also the prediction of water breakthrough time is improved for all of the
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production wells, also for wells that show water breakthrough only after the history period.
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Figure 3.9: True, initial and updated log-permeability fields using SD POD-TPWL, GD POD-TPWL, and the FD
method for case 1

Table 3.5: comparison between SD POD-TPWL and FD method for case 1

- Iterations FOM J (ξ) ×104 eobs eβ
Initial model - - 1.69 28.38 2.28

SD POD-TPWL 103 55 0.0160 3.35 0.68
FD 52 988 0.0153 3.28 0.72

’True’ model - - 0.0068 2.12 0

One of the key issues for the subdomain POD-TPWL is the implementation of the do-
main decomposition technique. Our proposed subdomain POD-TPWL (SD POD-TPWL)
can be easily generalized to the global domain POD-TPWL (GD POD-TPWL). The dif-
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Figure 3.10: Cost function value decrease using (a) finite-difference method, and (b) subdomain POD-TPWL for
case 1. OL-i means the i-th outer-loop
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Figure 3.11: Forecasts of the liquid rate and water-cut for case 1 from the initial model (green line), the reference
model (blue line), and the model updated using the SD POD-TPWL (red line). Measured data are indicate by

open circles.

ferences between SD POD-TPWL and GD POD-TPWL are: a) model order reduction in
global domain versus reduction in each subdomain separately; b) derivative estimation
using RBF interpolation in the global domain versus interpolation for each subdomain. As
shown in Table 3.4, the total dimension of the reduced-order linear model is 18+122+51=191
for domain decomposition and 18+72+36 =126 for the global domain. Table 3.6 shows
the total number of the reduced variables in each subdomain and in the global domain.
While the total sum of the reduced variables in each subdomain is larger than that of the
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global domain, the number of reduced variables in each individual subdomain is relatively
small. Furthermore, these local reduced variables have the surprisingly abilities to accu-
rately capture the flow dynamics, as suggested by Fig.3.12. Fig.3.12 shows the distribution
of pressure and saturation at the final time. In this case, the reconstructions of the satu-
ration and pressure field using a small number of patterns in each subdomain are compa-
rable with those of the global domain. In addition, as shown in Table.3.7, both GD POD-
TPWL and SD POD-TPWL can converge to satisfactory results. The SD POD-TPWL needs
55 FOM simulations, while the GD POD-TPWL algorithm requires 73 FOM simulations
(15 FOM simulations are run to collect the snapshots, 55 FOM simulations are used to
construct the initial reduced-order linear model in the first outer-loop, and the remaining
3 FOM simulations are used to reconstruct the reduced-order linear models in the follow-
ing three outer-loops). Therefore, compared to the global RBF interpolation, the proposed
local RBF interpolation technique requires only a small number of reduced variables per
subdomain and is much more computationally efficient. If the dimension of the under-
lying model would be much larger, the GD POD-TPWL would result in a reduced-order
linear model with a higher dimension and therefore more interpolation points would be
required in the RBF scheme. In the SD POD-TPWL algorithm this problem is avoided since
for large-scale problems the dimension of the reduced-order linear model for the subdo-
main does not increase significantly, we only need to activate more subdomains.

Table 3.6: The number of interpolation variables in each subdomain and global domain for case 1. Ωd is the
d-th subdomain

Domain Decomposition Global Domain
Ω1 75=21(Ω1)+19(Ω2)+17(Ω4)+18

126 =72 +36+18

Ω2 98=21(Ω1)+19(Ω2)+17(Ω3)+23(Ω5)+18
Ω3 74=19(Ω2)+17(Ω3)+20(Ω6)+18
Ω4 97=21(Ω1)+17(Ω4)+23(Ω5)+18(Ω7)+18
Ω5 118=19(Ω2)+17(Ω4)+23(Ω5)+20(Ω6)+21(Ω8)+18
Ω6 95=17(Ω3)+23(Ω5)+20(Ω6)+17(Ω9)+18
Ω7 74=17(Ω4)+18(Ω7)+21(Ω8)+18
Ω8 97=23(Ω5)+18(Ω7)+21(Ω8)+17(Ω9)+18
Ω9 76=20(Ω6)+21(Ω8)+17(Ω9)+18

For Case 1, history matching results using GD POD-TPWL are slightly better than those
from the subdomain POD-TPWL, especially for the high-permeable zone, e.g, the red area
in Fig.3.9. The water-front of the waterflooding process propagates forward quickly (as the
blue area in Fig.3.12) and therefore there are strong dynamic interactions within this area.
Our chosen domain decomposition may artificially cut off this inherent dynamic interac-
tion between the east-south corner and the west-north corner. A flow-informed domain
decomposition technique may therefore be required to identify the relevant dynamic in-
teractions, especially for strongly heterogeneous reservoir models such as those based on
strongly contrasting facies distributions or channels.

3.5.2. CASE 2 - 2D BENCHMARK MODEL WITH 13 WELLS

DESCRIPTION OF MODEL SETTINGS

In the second numerical experiment, the SAIGUP model [38] is used to test our pro-
posed adjoint-based history matching approach. The first layer containing a total of 3895
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Figure 3.12: Water saturation and pressure fields from the full-order model and from SD POD-TPWL and GD
POD-TPWL based models for case 1

active and 905 inactive grid cells is chosen for our test case. The realistic geological proper-
ties, e.g, faults, are preserved. The reservoir model describes an oil–water two-phase flow
system with six producers and seven injectors, which are labeled from P1 to P6, and I1

to I7, see Fig.3.13. Some detailed information about reservoir geometry, rock properties,
fluid properties, and well controls are shown in Table 3.8.

DESCRIPTION OF REDUCED MODEL PROCEDURE

Similarly, as Eq.3.40-Eq.3.41, we generate an ensemble of 1000 Gaussian-distributed
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Table 3.7: comparison between SD POD-TPWL and GD POD-TPWL for case 1

- FOM J (ξ) ×104 eobs eβ
Initial model - 1.69 28.38 2.28

SD POD-TPWL 55 0.0160 3.35 0.68
GD POD-TPWL 73 0.0140 3.21 0.61

FD 988 0.0153 3.28 0.72
’True’ model - 0.0068 2.12 0

Figure 3.13: The 3-D view of the well placement for case 2

realizations of log-permeability. One of these realizations was considered to be the truth,
as Fig.3.14(a). To efficiently implement our methodology in this much more realistic case,
the log-permeability field was parameterized using a KL-expansion described above and
about 90% energy is maintained, resulting in 44 permeability patterns to represent the
uncertainty in all 3895 active grid cells. Fig.3.14(b) represents the ’true’ permeability field
projected onto the subspace spanned by these lβ=44 PCA coefficients. Most parts of the
properties of the original ’true’ model is reconstructed in the reduced-order parameter
subspace, while parts of properties are lost, e.g, the high-permeable area around the pro-
ducer P2. Four realizations for log-permeability field generated from random coefficients
sampled from the set {-1, 1} are illustrated in Fig.3.15.
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(a) ’True’ model in original full-order space
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(b) Projected ’true’ model in reduced-order subspace

Figure 3.14: The comparison of the ’true’ reservoir model in full-order space and reduced-order space for case 2



3.5. NUMERICAL EXPERIMENTS AND DISCUSSION

3

43

Table 3.8: Experiment settings using MRST for case 2

Description Value
Dimension 40×120×1
Number of wells 6 producers, 7 injectors
Constant porosity 0.2
Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP·s, 2 mP·s
Initial pressure 30 MPa
Initial saturation So=0.80, Sw =0.20
Connate water saturation Swc =0.20
Residual oil saturation Sor =0.20
Corey exponent, oil 4.0
Corey exponent, water 4.0
Injection rate 250 m3/d
BHP 25 MPa
History production time 10 year
Prediction time 15 year
Timestep 0.1 year
Measurement timestep 0.2 year

20 40 60 80 100 120

5

10

15

20

25

30

35

40

I1 I2

I3 I4

I5

I6

I7

P1

P2

P3

P4

P5
P6

2

3

4

5

6

7

(a)

20 40 60 80 100 120

5

10

15

20

25

30

35

40

I1 I2

I3 I4

I5

I6

I7

P1

P2

P3

P4

P5
P6

2

3

4

5

6

7

(b)

20 40 60 80 100 120

5

10

15

20

25

30

35

40

I1 I2

I3 I4

I5

I6

I7

P1

P2

P3

P4

P5
P6

2

3

4

5

6

7

(c)

20 40 60 80 100 120

5

10

15

20

25

30

35

40

I1 I2

I3 I4

I5

I6

I7

P1

P2

P3

P4

P5
P6

2

3

4

5

6

7

(d)

Figure 3.15: The comparison of the ’true’ reservoir model in full-order space and reduced-order space for case 2

Experiments showed that the changes in singular value spectrum of the snapshot ma-
trix are insignificant when the snapshots at every timestep are selected from 20 or more
FOM simulations. These 20 FOM are also sampled from the interval {-1, 1} to effectively
preserve the dynamic behavior. Finally, we collect 2000 snapshots for pressures and satu-
rations separately. Comparing to the previous synthetic model, the existence of the faults
and strong heterogeneity makes the flow dynamic o f SAIGUP more complicated. The er-
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ror quantification for subdomain POD-TPWL is also implemented and we obtain some
consistent results with the Case 1, thus, the detailed implementation of error quantifica-
tion is not described here. To effectively capture the local physical features, we divide the
whole model domain into 40 subdomains (4 subdomains in x direction times 10 subdo-
mains in y direction) as in Fig.3.16. The inactive grids are intentionally considered to con-
vert the original irregular model into a rectangle reservoir model, and subsequently this
regular model can be conveniently decomposed into subdomains. In addition, to increase
the efficiency, we do not construct the reduced-order linear model in the subdomain if the
number of active grids is less than 5. For each subdomain, two eigenvalue problems sep-
arately for pressure and saturation are solved using POD. Both decompositions preserve
90% of the energy, and the number of reduced variables for each subdomain is shown in
Fig.3.17.
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Figure 3.16: The 2-D view of domain decomposition in the ’true’ model for case 2
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The history period is 10 years during which observations are taken from these 13 wells
every 0.2 years, resulting in 300 fluid rates and 300 WCT values measured in the producers
and 350 bottom-hole pressures measured in the injectors, which give in total 950 data
points. The generated measurements for producing wells are shown in Fig.3.18.
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Figure 3.18: Example of synthetic measurements for case 2: Blue solid line: reference model (truth), black
dashed line: noisy data.

HISTORY MATCHING RESULTS

The accuracy of RBF interpolation depends on the interpolation points, and the num-
ber of interpolation points depends on the number of interpolation variables. In the previ-
ous synthetic model (retaining 18 PCA coefficients), the number of sampling points using
the simple two-sides perturbation strategy is sufficient to represent the interval {-1, 1}.
However, in this case, retaining 44 PCA coefficients forces us to sample much more inter-
polation points. We also compare the results with those of the FD based history matching
algorithm, which is implemented in the reduced-order parameter subspace spanned by
the 44 log-permeability patterns. The one-side FD method is used to compute the numer-
ical gradient of cost function as Eq.3.48 with respect to 44 PCA coefficients. Thus, 45 FOM
simulations are required for each iteration step. The stopping criteria are set to η  = 10−4,
ηξ = 10−3, Nmax =50 in this case.

Fig.3.19, Fig.3.20 and Table 3.9 show the updated log-permeability field using differ-
ent numbers of sampling points. In our case, the sampling strategy is that the first 2×
lβ sampling points are selected from the set {-1,1} through perturbing each PCA coeffi-
cient sequentially in 2 opposite directions (positive and negative), and then the remaining
sampling points are chosen randomly within the interval [-1, 1]. During the minimization
procedure, a small iteration step is used to ensure a decreasing cost function when we use
a small number of sampling points, e.g, 2×lβ, which leads to a less accurate approximate
gradient.
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Fig.3.20 shows that using 2 ×lβ sampling points leads to relatively slow convergence.
In our predefined stopping criteria, totally 221 iteration steps with five outer-loops are re-
quired. Fig.3.19 illustrates that the ’true’ log-permeability field is approximately calibrated
when increasing the number of sampling points, e.g, 3×lβ and even 4×lβ in our case. It is
easily recognized that using small number of sampling points leads to bad quality of ap-
proximate gradients derived from the subdomain reduced adjoint model, which will dete-
riorate the minimization procedure. We continue the iteration process when using 2×lβ
sampling points, to investigate whether there are potentials to obtain comparable results
with that of FD method. As Fig.3.20, the vertical blue dash line represents the starting
point using new stopping criterion, and the dash line represents the corresponding cost
function of the new iteration process. Another 122 iteration steps and 2 outer-loops are re-
quired to reach convergence. In contrast to the old stopping criterion, the final cost func-
tion is decreased by 4.9% in this case. We should note that these additional 122 iteration
steps just require 2 new FOM simulations for the two outer-loops. This property makes
our methodology significantly attractive because much more iteration steps do not ex-
plosively increase the FOM simulations. Comparison between Fig.3.19(c) and Fig.3.19(d)
also shows that the log-permeability filed has slight improvement when continuing the
iteration process. Comparison between Fig.3.19(f) and Fig.3.19(g) demonstrates that our
model-reduced approach obtains comparable updated log-permeability field with the FD
method using 4×lβ sampling points, e.g, 199 FOM simulations, and among them, 20 FOM
simulations are run to collect the snapshots, 176 FOM simulations are used to construct
the initial reduced-order linear model in the first outer-loop, the remaining 3 FOM simula-
tions are used to reconstruct the reduced-order linear models in the next three outer-loops
and calculate the cost function in original space, while the FD method requires 3510 FOM
simulations.

Table 3.9: Comparison between SD POD-TPWL and FD method using different number of sampling points for
case 2. SD POD-TPWL1 ×2 means the stopping criteria η  = 10−4, ηξ = 10−3, Nmax =50, while SD POD-TPWL2

×2 means the stopping criteria η  = 10−5, ηξ = 10−4, Nmax =50

- Iterations FOM J (ξ) ×105 eobs eβ
Initial model - - 1.1417 73.5892 0.7078

SD POD-TPWL1 ×2 221 113 0.2117 18.1208 0.7837
SD POD-TPWL2 ×2 343 115 0.1998 16.3524 0.7797
SD POD-TPWL×3 194 155 0.1931 14.8523 0.5017
SD POD-TPWL×4 189 199 0.1892 11.0852 0.4182

FD 78 3510 0.1935 11.2532 0.3925
’True’ model - - 0.1777 9.2531 0

Alternatively, we limit the sampling points within a relative small interval {-0.1, 0.1} so
that only a small number of sampling points, e.g, two-side perturbations (2×44+1=89), is
required to efficiently construct a subdomain reduced-order linear model. Four realiza-
tions for log-permeability field generated from this small interval {-0.1, 0.1} are illustrated
in Fig.3.21. Fig.3.22, Fig.3.23 and Fig.3.24 and Table 3.10 show the results of these numeri-
cal experiments, including the updated log-permeability field, iterative value of cost func-
tion and the mismatch between observed data and predictions. As Fig.3.24 and Table 3.10,
both SD POD-TPWL and FD method are able to converge to a satisfactory minimum cost
function value. FD method has relatively high convergence ratio over our SD POD-TPWL,
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(a) ’True’ Permeability
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(b) Initial Permeability
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(c) Updated Permeability using 2 × lβ
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(d) Updated Permeability using 2 × lβ via continuing
iterations
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(e) Updated Permeability using 3× lβ
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(f) Updated Permeability using 4× lβ
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(g) Updated Permeability using finite-difference
method

Figure 3.19: The updated permeability under different number of sampling points for case 2. The stopping
criteria for (c),(e), (f) and (g) is η  = 10−4, ηξ = 10−3, Nmax =50, while The stopping criteria for (d) is η  = 10−5,

ηξ = 10−4, Nmax =50

e.g., 78 and 195 iteration steps with 4 outer-loops separately, and also yields slightly more
accurate updated log-permeability. However, our model-reduced approach only needs
112 FOM simulations, while the FD method requires 3510 FOM simulations. Both PCA-
based parameterization and POD-based model reduction introduce some inherent ap-
proximation errors into this minimization procedure, therefore, the SD POD-TPWL and
the FD method in this case generally do not decrease the cost function to the reference
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Figure 3.20: Comparison of the cost function value using different number of sampling points for case 2. The
extended dash line represents the cost function using a new stopping criterion η  = 10−5, ηξ = 10−4, Nmax =50
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Figure 3.21: Four random realizations of the log-permeability field generated in the interval {-0.1, 0.1} for case 2

value illustrated as the bold red line. In addition, POD-based model reduction also makes
our method theoretically less accurate than that of the FD method, which is demonstrated
as the black line and blue line in the Fig.3.22.

There is a trade-off between the number of sampling points and the parameter inter-
val. On the one hand, a large parameter interval generally has high possibilities to include
the parameter space containing the ’true’ model, thus the ’true’ solution is likely to be
found while needs to use a large number of sampling points. On the other hand, we also
can choose a small number of sampling points within a small interval. Although there is
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a larger possibility that the ’true’ solution is not contained in this interval, a valid solution
(based on an acceptable data mismatch) can most likely be found using a relatively small
number of sampling points. Therefore, it is highly significant to choose reasonable param-
eter interval in practice. If we have poor prior information for the ’true’ model, a relatively
large parameter interval is preferable to provide relatively more accurate results, e.g., find-
ing the ’true’ solution, of history matching process, as a compensation, a large number of
sampling points are required to implement our SD POD-TPWL. On the contrary, if we have
good prior information for the ’true’ model, a small parameter interval can be perturbed
around the prior parameter field. Using a small number of sampling points enables us to
obtain satisfactory history matching results.
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(a) ’True’ Permeability
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(b) Initial Permeability
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(c) Updated Permeability using new method
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(d) Updated Permeability using finite-difference

Figure 3.22: Comparison of the initial, ’true’ and updated log-permeability using interval {-0.1, 0.1} for case 2

Table 3.10: Comparison of subdomain POD-TPWL and FD method using interval {-0.1, 0.1} for case 2

- Iterations FOM J (ξ) ×105 eobs eβ
Initial model - - 1.1417 73.5892 0.7078

SD POD-TPWL 195 112 0.1928 11.1802 0.4685
FD 78 3510 0.1935 11.2532 0.3925

’True’ model - - 0.1777 9.2531 0

3.5.3. COMPUTATIONAL ASPECTS
This section discusses the computational aspects of our proposed adjoint-based reser-

voir history matching algorithm. The offline computational costs for subdomain POD-
TPWL algorithm comprise (1) executing parameterization using eigenvalue decomposi-
tion of the covariance matrix, (2) implementing model order reduction using POD in each
subdomian, (3) conducting RBF interpolation and computing the derivative matrices. The
cost of eigenvalue decomposition and POD is negligible for small models, while it will be-
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Figure 3.23: Cost function value of SD POD-TPWL and FD method using interval {-0.1, 0.1} for case 2
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Figure 3.24: Forecast of the liquid rate and water-cut using interval {-0.1, 0.1} for case 2: green line-initial model,
blue line-reference model, red line-updated model by subdomain POD-TPWL

come significant for large-scale models. In our cases, the required number of FOM simula-
tions is roughly 2-3 times the number of PCA coefficients, e.g, 54 simulations for the syn-
thetic model, 113 (sampling within a small interval [-0.1, 0.1]) and 199 (sampling within
a relative large interval [-1,1]) FOM simulations for the modified version of 2D SAIGUP
model, respectively. This process is code non-intrusive without the need of large program-
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ming effort. Besides, this process is also easily parallelized. Once available, the costs of
running the reduced model are negligible. We should note that the gradient-based reser-
voir history matching generally requires O(102 − 104) FOM simulations, thus, an offline
cost of O(10−102) FOM simulations in these settings is attractive. For large-scale reservoir
history matching, the main computational cost is dominated by the required number of
FOM simulations. In our proposed method, most part of the FOM simulations is mainly
in offline stage, which means that our method is easily implemented.
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4
SUBDOMAIN POD-TPWL WITH

SMOOTH LOCAL

PARAMETERIZATION

This chapter presents a new local parameterization that decouples the computational cost
of the algorithm from the number of global principle components and therefore provides
attractive scaling for models with a very large number of uncertain parameter patterns. For
each subdomain, we restrict to a small number of uncertain local parameter patterns, and
consequently the number of full order simulation required for the derivation of the reduced
order models can be reduced drastically. The computational effort of the new methodology
hardly increases when the number of parameter patterns increases. We apply the new algo-
rithm to a large-scale reservoir model parameter estimation test problem, where only 90 full
order model runs are needed to estimate 282 parameter patterns while keeping satisfactory
accuracy.

Parts of this chapter have been published in Journal of Computational physics. Xiao, C., Leeuwenburgh, O., Lin,
H.X. and Heemink, A., 2021. Efficient estimation of space varying parameters in numerical models using non-
intrusive subdomain reduced order modeling. Journal of Computational Physics, 424, p.109867.
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4.1. INTRODUCTION
Projection-based reduced order model (ROM) approaches have received attention as a

way of reducing the computational effort of model-based workflows through dimension-
ality reduction. These reduced-order model approaches aim primarily at approximating
the dynamic response of the full model as accurately as possible. Our objective here, on
the other hand, is to effectively and efficiently estimate uncertain full order model param-
eters through approximation of the adjoint of the original high-dimensional non-linear
model.

A non-intrusive POD-based method to build reduced-order linear approximations of
high-dimensional non-linear subsurface flow models was proposed by Vermeulen and
Heemink [1]. The adjoint of this reduced-order linear model can be easily constructed
and the minimization of the model-data mismatch can therefore be handled efficiently.
Altaf et al. [2] and Kaleta et al. [3] applied this method to a coastal engineering and reser-
voir history matching problem, respectively. This algorithm considers any simulator as
black box and is completely non-intrusive with respect to the simulation code. How-
ever, the model linearization is realized through a perturbation-based finite difference
method, which requires a significant number of full-order model simulations and is there-
fore computationally less attractive for large scale problems with many uncertain param-
eters. The projection-based ROM methods have restricted their applications on complex
dynamic problems mainly due to the intrinsic stability and robustness problems [4]. Be-
sides, projection-based ROMs are highly code-intrusive and their speedup potential is re-
stricted by the strong nonlinearity [5].

In Chapter 3, we have proposed a non-intrusive approach, e.g., subdomain POD-TPWL,
that combines dimensionality reduction, piece-wise linearization and domain decompo-
sition, and demonstrated this approach on an example from the field of subsurface reser-
voir engineering. Compared to the POD-TPWL approach proposed in [6], this subdomain
POD-TPWL has two advantages: (1) Instead of taking global basis functions to define the
low-order subspace, the snapshots of dynamic states are first partitioned according to the
domain decomposition strategy and then local basis functions are obtained from these
partitioned snapshots. (2) The derivative matrices required in the process of model lin-
earization are separately approximated in each subdomain using a radial basis function
(RBF) interpolation method [7], such that access to the underlying model code is not re-
quired. A drawback of that approach was that only the dimension of the model state space
was reduced in ’local’ subdomains, whereas the number of parameters was still deter-
mined by a ’global’ Principle Component Analysis (PCA) decomposition of the parameter
space over the entire spatial domain. Based on numerical experiments, it was found that
the total number of full-order model simulations required for subdomain POD-TPWL is
roughly 2-4 times the number of global parameters. This computational cost is still too
high for large-scale parameter estimation problems with a large number of uncertain pa-
rameters.

In this chapter we therefore propose a new method that incorporates a local parameter
decomposition into the subdomain POD-TPWL approach. We will show that the resulting
reduction in the dimensionality of the local PCA parameterizations is much larger than
that obtained through global PCA parameterization. As a result a much smaller number of
full-order model simulations will need to be run to solve the parameter estimation prob-
lem. A consequence of the decomposition of the spatial parameter field into spatial non-
overlapping subdomains is the potential loss of smoothness. When implementing param-
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eterization techniques such as PCA [8], KPCA [9], DCT [10] and DWT [11] in the global
domain, it is guaranteed that the reconstructed spatial parameter field is smooth. How-
ever, applying these techniques in each subdomain separately to obtain local parametriza-
tions will introduce discontinuities at the boundaries between neighboring subdomains.
We therefore introduce an approach that resolves the non-smoothness at the boundaries
of neighboring subdomains by projection of the estimated local PCA patterns onto global
PCA patterns. This smooth local parameterization simultaneously inherits the advantages
of global PCA (e.g., smoothness and differentiability) and of local PCA (computational effi-
ciency). We combine this parameterization method with subdomain POD-TPWL to dras-
tically speed up the solution of parameter estimation problems with many uncertain pa-
rameters. The methodology is assessed in detail by analyzing its performance in example
applications to petroleum reservoir history matching problems.

The remainder of the chapter is organized as follows. A brief description of subdo-
main POD-TPWL with global parameterization and its limitation are introduced in Section
2. Section 3 describes the smooth local parameterization method to represent parameter
patterns in each subdomain individually while preserving smoothness. The procedure of
subdomain POD-TPWL combined with the smooth local parameterization is presented in
Section 4. Section 5 describes the basic settings of two case-studies using a 2D reservoir
simulation model. Section 6 analyses in detail the results of numerical experiments.

4.2. LIMITATIONS OF SUBDOMAIN POD-TPWL
It can be seen in Chapter 3 that the main idea behind the subdomain POD-TPWL is to

approximate the dynamical evolution of reduced states within subdomains by a reduced-
order piece-wise linear model analogous. Introducing an extra term to allow for dynamical
interaction between each subdomainΩd and its neighboring subdomainsΩsd , we postu-
late that the local POD coefficients ψd ,n in subdomain Ωd can be approximated by ψ̂d ,n

as follows

ψd ,n ≈ ψ̂d ,n =ψd ,n
tr +Ed ,n

ψtr
(ψd ,n−1 −ψd ,n−1

tr )+Esd ,n
ψtr

(ψsd ,n −ψsd ,n
tr )+Gd ,n

ξtr
(ξ−ξtr ) (4.1)

where

Ed ,n
ψtr

= ∂£d ,n

∂ψd ,n−1
tr

, Esd ,n
ψtr

= ∂£d ,n

∂ψsd ,n
tr

, Gd ,n
ξtr

= ∂£d ,n

∂ξtr
(4.2)

Analogously, the measurements yd ,m taken in subdomainΩd are approximated by ŷd ,m as
follows

yd ,m ≈ ŷd ,m = yd ,m
tr +Ad ,m

ψtr
(ψd ,m −ψd ,m

tr )+Bd ,m
ξtr

(ξ−ξtr ) (4.3)

with

Ad ,m
ψtr

= ∂ħd ,m

∂ψd ,m
tr

, Bd ,m
ξtr

= ∂ħd ,m

∂ξtr
(4.4)

Above we have introduced new, so far undefined, functions £d ,n(ψd ,n−1,ψsd ,n ,ξ) and
ħd ,m(ψd ,m ,ξ) of the local reduced statesψd ,n andψsd ,n and of the global reduced param-
eters ξ. Note that only the derivatives of these models appear in our proposed subdomain
formulation and that we are in principle free to choose the form of these functions. We
apply the reasoning that we would like to be able to evaluate their derivatives (Eq.4.2) ef-
ficiently and that, when used in Eq.4.1, they deliver the best possible approximation ŷd ,m

of the full statesψd ,n .
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We proposed to define £d ,n and ħd ,m in terms of a radial basis function (RBF) interpo-
lation model. The RBF interpolation model can be represented as a linear combination of
M radial basis functions

£d ,n(ψd ,n−1,ψsd ,n ,ξ) =
M∑

j=1
ωd ,n

j ×θ(||(ψd ,n−1,ψsd ,n ,ξ)− (ψd ,n−1
j ,ψsd ,n

j ,ξ j )||) (4.5)

and similarly,

ħd ,m(ψd ,m ,ξ) =
M∑

j=1
εd ,m

j ×θ(‖(ψd ,m ,ξ)− (ψd ,m
j ,ξ j )‖) (4.6)

respectively, where the subscripted index j identifies one of M training runs, which signif-
icantly depends on the number of inputs, e.g., ψd

j and ξ j . A discussion of how to choose

M was provided in Chapter 3. Subdomain POD-TPWL uses analytical RBFs £d ,n and ħd ,m

to approximate the time series of full model state snapshots, which also allows us to derive
the derivative matrices Ed ,n

ψtr
, Esd ,n

ψtr
, Gd ,n

ξtr
, Ad ,m

ψtr
, and Bd ,m

ξtr
analytically. More information on

the specific formula of the radial basis function θ, and the determination of the weighting
coefficientsω can be found in Chapter 3.

It can be seen from Eq.4.1 and Eq.4.3 that the subdomain POD-TPWL system is defined
in terms of local POD patterns of the model dynamics, and global patterns representing
the uncertain parameter space. Our previous numerical experiments have shown that
the total number of full-order model simulations required to construct the subdomain
POD-TPWL model is approximately 2-4 times the number of global parameter patterns.
Decreasing the number of preserved global parameter patterns will reduce the computa-
tional cost, but will result in a loss of accuracy. The dependence of the computational cost
on the dimension of the global reduced parameter space will inevitably limit the applica-
tion of subdomain POD-TPWL to inverse problems with a limited number of uncertain
parameters or with parameters fields containing smooth and large-scale spatial correla-
tions.

From a computational point of view, implementing subdomain POD-TPWL in terms
of local parameter patterns in each subdomain, similar to the treatment of the dynamic
states, therefore seems attractive. Firstly, the number of local patterns in each individual
subdomain will be smaller than the number of global patterns, this description might be
almost valid in some practical problems, secondly, the computational cost of the param-
eter estimation procedure is proportional to the typical number of local patterns in any
one subdomain, this statement has been partially verified in Chapter 3. where the global
parameter patterns are optimized. Such an approach we aim at proposing in this work
would rely on the validity of assumption that it is possible to reconstruct global parame-
ter fields from the local parameter solutions that satisfy criteria for acceptable solutions
in the global domain. In the following section we will introduce a smooth local parameter
reduction method that addresses the computational limitations associated with the use of
global parameter reduction and produces smooth global space parameter patterns.

In the following section we will introduce a smooth local parameter reduction method
that addresses the computational limitations associated with the use of global parameter
reduction but satisfies the three assumptions above.
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4.3. SMOOTH LOCAL PARAMETERIZATION
In this section, we first discuss global PCA and local PCA based representations of spa-

tial parameter patterns in the global domain and in the subdomains, respectively. The
disadvantages of each are investigated to motivate the development of the smooth local
parameterization (SLP).

4.3.1. GLOBAL AND LOCAL REPRESENTATIONS OF SPATIAL PARAMETERS
In analogy to the global PCA-based parameter reduction described above, the local

parameter vector βd in subdomainΩd can be expressed as

βd =βd
m +Φd

βξ
d , d = 1, · · ·,S (4.7)

whereΦd
β

is the basis matrix that projects the high-order parameter patterns onto the low-

order subspace of dimension N d
l for subdomain d . Again, an energy criterion or a basis

optimization procedure can be employed to reduce the number of basis vectors [12].
In order to illustrate the global and local PCA procedures described above to recon-

struct parameter fields we generate Nr = 1000 random Gaussian realizations of the model
parameter vector, representing the log-permeability for all gridblocks of the 2D reservoir
model that will be used in the numerical experiments presented later. The model is de-
composed into 20 non-overlapping subdomains (4 subdomains in one direction and 5
subdomains in the second direction) as illustrated in Fig.4.2(a). NG = 48 global PCA pat-
terns are required to construct a reduced order representation that retains 95% of the en-
ergy (variability) in the original 1000 realizations. The number of local PCA patterns N d

l
for each subdomain obtained by the same procedure and the same energy criterion (but
now applied in each subdomain separately) is summarized in Fig.4.1. Results for other
decompositions are summarized in Table 4.1. Decomposition with a larger number of
subdomains results in fewer local PCA coefficients in each subdomain. The maximum
number of local patterns in any one subdomain is substantially smaller than NG .
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Figure 4.1: The number of local PCA coefficients in each subdomain for a domain decomposition consisting of 4
× 5 subdomains

The first two panels of Fig.4.2 show two examples of parameter patterns for random
realizations of global (ξ) and local (ξd ) PCA coefficients. It can be seen that sampling
arbitrary local PCA coefficients will result in a non-smooth reconstructed global param-
eter field, while global PCA produces a smooth parameter field in a relatively high-order
subspace. The maximum number of local patterns required in any subdomain is much
smaller, however, than the number of global patterns that is needed. This motivates us
to develop a smooth local parameterization that exploits the advantages of global PCA
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Table 4.1: Total number of local PCA and global PCA patterns, and the maximum number of local PCA patterns
among all subdomains corresponding to three different domain decomposition strategies, e.g., 3×4, 4×5 and

5×6, respectively.

Domain decomposition
SLP Global PCA

NL =∑S
d=1 N d

l max{N 1
l ,...,N d

l ,...,N S
l } NG

3 × 4 236 18
484 × 5 275 15

5 × 6 312 12

(smooth representation) and local PCA (computationally efficiency). We will demonstrate
the gain in computational efficiency in the following sections.
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Figure 4.2: Example parameter reconstructions using (a) global PCA, (b) local PCA, respectively.

4.3.2. SMOOTH LOCAL REPRESENTATION OF SPATIAL PARAMETERS

The results shown in Fig. 4.2(b) suggest that direct reconstruction of the global param-
eter field from local subdomain parameter solutions, and then stitching all subdomains
together, tends to produce non-smooth results. We therefore add a post-processing step
that finds the best matching global PCA reconstruction. This solution is found by min-
imizing an objective function consisting of the sum of squared differences between the
local solution based reconstruction in terms of ξd and a global reconstruction in terms of
global PCA coefficients ξ,

J (ξ) = 1

2
[

S∑
d=1

Td (βd
m+Φd

βξ
d )−βm−Φβξ]T C−1[

S∑
d=1

Td (βd
m+Φd

βξ
d )−βm−Φβξ]+1

2
ξT ξ (4.8)

where, Td∈RNg ×N d
l is a transformation matrix with elements equal to 0 or 1 that maps a

grid position in subdomain Ωd to the corresponding grid position in the global domain,
and N d

l denotes the total number of local parameter patterns in subdomain Ωd . The
squared differences between global and local reconstructions are weighted by the ma-
trix C, which is the covariance matrix quantifying the prior variability of the Gaussian-
distributed random parametersβ. A regularization term is included to constrain the mag-
nitude of solutions for ξ. The minimizing solution is obtained by setting the derivative of
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J (ξ) with respect to ξ equal to zero, resulting in

ξ= 1

2
ΦT
βC−1

S∑
d=1

TdΦd
βξ

d (4.9)

The parameter field can then be reconstructed by insertion of the solution in the for-
mula of PCA solution, resulting in

β=βm + 1

2
ΦβΦ

T
βC−1

S∑
d=1

TdΦd
βξ

d (4.10)

It can be seen that smooth solutions for the parameter field can be expressed directly
in terms of the local coefficients ξd . Furthermore, this smooth local parameterization
(SLP) is a differentiable and linear transformation, which makes the parameter estima-
tion problem suitable for use of gradient-based minimization. The last panel of Fig.4.3
shows reconstructed parameter fields using proposed SLP approach. Table 4.1 summa-
rizes the maximum number of local PCA coefficients, e.g., max {N d

l } and total number

of local PCA patterns, e.g., NL=
∑S

d=1 N d
l , d= 1,2,...,S, among all subdomains for different

domain decomposition strategies. Decomposition with a larger number of subdomains
results in fewer local PCA coefficients in each subdomain.
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Figure 4.3: Illustration of parameter reconstruction, left: local PCA; right: SLP

A final question to be addressed is the number of local PCA patterns that need to be
retained. In order to guarantee smoothness and full reconstruction of the global solution
space, many local PCA patterns may be required. However, previous experiments [13]
have indicated that the overall computational cost is proportional to the number of PCA
patterns. We will discuss here a procedure to estimate the minimum number of required
patterns that delivers efficiency and guarantees a desired accuracy.

Eq.4.9 can be written in a compact form as follows

ξ= TGL ξL (4.11)

where ξL = [ξ1T
, ...,ξS T

]T . TGL ∈RNG×NL is a transformation matrix for converting local
PCA coefficients into global PCA coefficients, which, after unfolding, can be expressed as

TGL = 1

2
ΦT
βC−1[T1Φ1

β,T2Φ2
β, · · ·,TdΦd

β, · · ·,TSΦS
β] (4.12)
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The global projection basis matrixΦβ can be written in unfolded form as follows

Φβ = [φ1,φ2, · · ·,φi , · · ·,φNG
] (4.13)

whereφi ∈RNg ×1, i ∈ {1,2, ···, NG } is one global basis vector (we have dropped the subscript
β on the individual basis vectors for notational clarity). Defining ei as the unit column
vector with a 1 at position i and zeros elsewhere, each individual global basis vector can
be extracted as follows

φi =Φβ ei , i = 1,2, ..., NG (4.14)

The solution space for the full parameter field is spanned by the global PCA patterns.
SLP must therefore be able to produce any solution for the global PCA coefficients ξ. In
another words, the following set of equations should have solutions ξi

L ,

TGLξ
i
L = ei , i = 1,2, · · ·, NG (4.15)

The transformation matrix TGL should be full-row rank, which implies the total num-
ber of local PCA patterns NL must be equal to or larger than that of global PCA patterns
NG . The rank of transformation matrix TGL cannot be explicitly determined from Eq.4.12.
Therefore, we propose a numerical procedure to determine a minimum for the total num-
ber of local patterns NL . We assume that ξi

L(NL) and φ∗
i (NL) as functions of preserved

number of local PCA coefficients NL are the solution of the i th equation and the recon-
structed i the global PCA basis vector, respectively. We define a root mean square error
RMSEi (NL) to quantitatively characterize the accuracy of the reconstructed global PCA
basis vector φ∗

i . The total RMSE(NL) is the average root mean square error of all global
PCA basis vector reconstructions. The minimum NL is determined by minimizing the total
RMSE(NL) as follows

NL = argmin
NL

RMSE(NL) = argmin
NL

NG∑
i=1

RMSEi (NL) (4.16)

where
RMSEi (NL) = ‖φi −φ∗

i (NL)‖2 = ‖φi −Φβ×TGLξ
i
L(NL)‖2 (4.17)

We solve this problem by simply evaluating the cost function (Eq.4.16) for increasing
values of NL until a minimum is found. Fig.4.4 shows the evolution of the RMSE(NL) as
a function of the number of local PCA patterns NL for 2 different global energy criteria.
It can be seen that a minimum NL can been obtained that makes RMSE(NL) equal to
zero. Table 4.2 summarizes the minimum number of local PCA patterns corresponding
to different domain decomposition strategies. We can confirm that the minimum total
number of local PCA patterns NL is equal to or slightly larger than the number of global
PCA patterns NG . Fig.4.5 and Fig.4.6 show the 1st global basis vectorφ1, 72nd global basis
vector φ72 and their corresponding reconstructed φ∗

1 and φ∗
72 when different number of

local PCA patterns are retained. The global basis vectors are perfectly reconstructed as
long as we retain at least the minimum number of local PCA patterns. The accuracy of
the parameter estimation will be investigated in the next section. This analysis only show
that in case we have a sufficient number of local PCA patterns, the reconstructed local
PCAs contain information about all global PCA patterns. It does not guarantee that the
reconstructed global PCAs are always accurate.
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Table 4.2: The minimum number of local PCA patterns corresponding to different domain decomposition
strategies when RMSE = 0.

Energy for global PCA 95% 98%
NG 48 72

Domain Decomposition min{N 1
l ,...,N d

l ,...,N S
l } NL min{N 1

l ,...,N d
l ,...,N S

l } NL

2×3 8 48 12 72
3×4 4 48 6 72
4×5 3 60 4 80
5×6 2 60 3 90
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Figure 4.4: The RMSE for different number of local PCA patterns in each subdomain. Four domain
decomposition strategies are considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.

4.4. ADJOINT-BASED HISTORY MATCHING WITH SMOOTH LO-
CAL PARAMETERIZATION

We can generate reduced-order linear models for each large subdomain individually.
On the contrary, each small subdomain has to generate reduced-order linear models by
considering the effects of the neighboring subdomains. This will increase the number
of interpolation variables used in the RBF and hence results in additional computational
cost. To speed up model linearization, we assume that each subdomain is sufficient “large
”so that it can be handled individually. We should note that it will never be possible to
easily clarify these local dependencies in realistic applications, and the definition of “large
”or “small ”is subjective. An inappropriate domain decomposition strategy, e.g., too “large
”or too “small ”subdomains, adversely causes spurious long-distance dependency or cuts
off real dependencies among neighboring subdomains and hence deteriorates the quality
of the reduced-order models. We will provide a comprehensive analysis of sensitivity with
respect to the domain decomposition strategy in the section with numerical experiments.

After integrating subdomain POD-TPWL with smooth local parameterization, which
is referred to as LSPT, the local POD coefficients ψ̂d ,n of subdomain Ωd are reformulated
by directly replacing the variables ξ and ξtr defined in Eq.4.1 - Eq.4.6 with the new vari-
ables ξd and ξd

tr . LSPT consists of an off-line stage and an on-line stage. (1) The off-line
stage constructs SLP and reduced-order linear models for each subdomain. (2) The on-
line stage implements LSPT given a set of new parameters.

The proposed LSPT approach can be incorporated into a parameter estimation algo-
rithm based on the adjoint method. As an approximation to the original objective function
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Figure 4.5: The reconstructed 1st global basis vectorφ1 using different domain decomposition strategies and
different number of local PCA patterns in each subdomain. Four domain decomposition strategies are

considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.

J , a new objective function JROM computed using reduced-order models is defined as

JROM (ξL) =1

2
[

S∑
d=1

Td (βd
m +Φd

βξ
d )−βm]T C−1[

S∑
d=1

Td (βd
m +Φd

βξ
d )−βm]

+1

2

S∑
d=1

Nobs∑
m=1

[dd ,m
obs − ŷd ,m]T (Rm)−1[dd ,m

obs − ŷd ,m] (4.18)

We introduce an adjoint model to compute the gradient of the objective function JROM

with respect to local PCA coefficients ξL where we follow the mathematical derivation pro-
vided in Chapter 3. A modified objective function ˆJROM (ξL) is obtained by adjoining the
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Figure 4.6: The reconstructed 72nd global basis vectorφ72 using different domain decomposition strategies
and different number of local PCA patterns in each subdomain. Four domain decomposition strategies are

considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively.

reduced-order linear model, resulting in

ĴROM (ξL) = JROM (ξL)

+
S∑

d=1

N∑
n=1

[ψ̂d ,n −ψd ,n
tr −Ed ,n

ψtr
(ψd ,n−1 −ψd ,n−1

tr )−Esd ,n
ψtr

(ψsd ,n −ψsd ,n
tr )

−Gn
ξd

tr
(ξd −ξd

tr )]Tλd ,n (4.19)

The gradient of JROM with respect to ξd for each subdomainΩd is derived as

d JROM (ξL)

dξd
= d ĴROM (ξL)

dξd
−

N∑
n=1

[Gn
ξd

tr
]Tλd ,n (4.20)



4

66 4. SUBDOMAIN POD-TPWL WITH SMOOTH LOCAL PARAMETERIZATION

where

d JROM (ξL)

dξd
= (Φd

βTd )T C−1[Td (βd
m +Φd

βξ
d )−βm]

−
N0∑

m=1
[Bd ,m
ξtr

]T Rm
−1[dd ,m

obs −yd ,m
tr −Ad ,m

ψtr
(ψd ,m −ψd ,m

tr )−Bm
ξd

tr
(ξd −ξd

tr )] (4.21)

The adjoint model is expressed in terms of the Lagrange multipliers λd ,n for subdomain
Ωd and is given by

[I− (Ed ,n
ψtr

)T ]λd ,n = [Ad ,n
ψtr

]T Rn
−1[dd ,n

obs −yd ,n
tr −Ad ,n

ψtr
(ψd ,n −ψd ,n

tr )−Bn
ξd

tr
(ξd −ξd

tr )]

+ [Esd ,n
ψtr

]Tλd ,n+1 (4.22)

for n = N, · · ·,1 with an ending condition λd ,N+1 = 0. The solution of the adjoint model
Eq.4.22, together with the solution of Eq.4.21, can be used in Eq.4.20 to obtain the desired
total derivative with respect to the local PCA coefficients in subdomainΩd . The full gradi-
ent with respective to all local PCA coefficients can be obtained as

5 J = [
d JROM (ξL)

dξ1 , ...,
d JROM (ξL)

dξd
, ...,

d JROM (ξL)

dξS
]. (4.23)

Once the gradient 5Jk at the k th iteration step is available, a steepest descent update of
coefficients ξL

k+1 is obtained by

ξk+1
L = ξk

L −αk
5Jk

‖5Jk‖∞
(4.24)

Where αk is the step length at the k th iteration step [14]. The minimization process ter-
minates when either one of the following three stopping criteria is satisfied: There is no
significant change in the objective function,

|JROM (ξk+1
L )− JROM (ξk

L)|
max{|JROM (ξk+1

L )|,1}
< η JROM , (4.25)

there is no significant change in the parameter estimate,

|ξk+1
L −ξk

L |
max{|ξk+1

L |,1}
< ηξL , (4.26)

or the maximum number of iterations has been reached,

k = Nmax , (4.27)

where η JROM , ηξL and Nmax denote predefined constants and maximum iterative steps

respectively. In our experiments η JROM = 10−4, ηξL = 10−3. More strict criteria could pos-
sibly lead to more accurate results but we did not investigate this. Since the simulation
of the reduced-order model is very cheap, we do not limit the maximum number of iter-
ations Nmax for the inner-loop. The initial step size α0=0.1. Once the objective function
increases, the step size is divided by 2 to improve convergence.
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Oliver et al. [15] discussed the expected range of the optimal objective function. If
the relationship between the simulated data and the parameters is linear, and assuming a
tolerance of five standard deviations from the mean, the optimal objective function value
J (ξL) should satisfy the inequality

Nobs −5
√

Nobs É 2 J (ξL) É Nobs +5
√

Nobs (4.28)

where J is the objective function for the full order model and Nobs is the total number of
measurements. Since we employ an approximate reduced order model in the minimiza-
tion we apply a less strict criterion. Throughout this study, we use the following criterion

J (ξL) É 5 Nobs (4.29)

J (ξL) represents the objective function computed using the full-order model. This crite-
rion or tolerance can be considered to be an upper-bound to judge whether a set of accept-
able optimized parameters has been obtained. Since the reduced-order model in Eq.4.18
is not an exact representation of the full-order model, outer-loops are typically required to
update the reduced-order linear models. After convergence of an inner loop, the updated
parameters are used as input for a full model simulation, which is added to the training
set. An updated reduced order model is constructed as described in Sections 3 and 4, af-
ter which a new inner loop (minimization of Eq.4.18 using the reduced order model) is
started. In the numerical experiments we use a fixed number of 10 outer-loop iterations,
which appear to be sufficient for near-convergence in all cases, after which we evaluate
the criterion Eq.4.29 for J (ξk

L). An overview of the full workflow is provided in Algorithm 1
for the offline stage and Algorithm 2 for the online stage. We will refer to this workflow as
Local Subdomain POD-TPWL (LSPT).

Algorithm 1: Parameter and state reduction

1 Create a large set of model realizations βi for i = 1, ..., Nβ;
2 Form global basis matrixΦβ and coefficients ξ;

3 Partition the global domain into subdomainsΩd ;

4 For local basis matricesΦd
β

and coefficients ξd ;

5 Simulate a training set of model realizations ξd
tr and collect snapshots xn

tr ;

6 Compute local basis coefficientsψd ,n
tr ;

4.5. RESERVOIR HISTORY MATCHING EXPERIMENTS
In this section, the LSPT method is applied to a history matching example problem

based on a 2D reservoir model describing a two phase water-oil reservoir system contain-
ing 6 producers and 7 injectors, labeled P1 to P6, and I1 to I7 respectively (see Fig.4.7).
The triangles and circles in the figures denote the injectors and producers, respectively.
Some relevant properties of the reservoir geometry, rock properties, fluid properties, and
well controls are shown in Table 4.3. An open-source reservoir simulator [16] is used to
simulate the reservoir model.

We consider numerical experiments with 2 variations of LSPT. In the first one (LSPT1),
we will minimize the number of local PCA patterns using (Eq. 4.16), while in the second
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Algorithm 2: Adjoint-based parameter estimation with LSPT

1 Choose an initial ξ0
L , set k = 0;

while J (ξL) > 5 Nobs do
2 Construct the RBF model in all subdomains (Eqs. 4.5-4.6);
3 Compute the derivative matrices in all subdomains (Eqs. 4.2-4.4);

while not converged do
4 Simulate the RBF model (Eqs. 4.5, 4.6;
5 Solve the adjoint model (Eq. 4.22;
6 Calculate the gradient (Eqs. 4.20-4.21);

7 Update the parameter solution ξk
L → ξk+1

L (Eq. 4.24);

8 Evaluate the reduced model objective function JROM (ξk+1
L ) (Eq. 4.18);

9 Check convergence (Eqs. 4.24-4.27);
end

10 Simulate the full model with solution ξL ;

11 Update the training set with (ξd ,ψd ,n);
12 Evaluate the full-order model objective function J (ξ) ;
13 Check convergence (Eq. 4.29)

end

experiment (LSPT2) we use the local PCA patterns obtained by use of an energy cutoff
criterion. For comparison purposes, the LSPT results will be compared against subdo-
main POD-TPWL with global parameterization (GSPT) and against results obtained with
finite-difference (FD) gradients with respect to both global PCA and local PCA parameter
representations, referred to as GP-FD and LP-FD respectively.

Table 4.3: Reservoir, fluid and well properties of the 2D reservoir model

Description Value
Dimension 40×120×1
Number of wells 6 producers, 7 injectors
Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mPa·s, 2 mPa·s
Initial pressure 25 MPa
Initial saturation So=0.80, Sw =0.20
Connate water saturation Swc =0.20
Residual oil saturation Sor =0.20
Corey exponent, oil 4.0
Corey exponent, water 4.0
Injection rate 200 m3/d
Producer BHP 20 MPa
History production time 10 year
Prediction time 15 year
Model timestep 0.1 year
Measurement timestep 0.2 year
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4.5.1. DESCRIPTION OF HISTORY MATCHING SCENARIOS
Experiments are presented for 2 history matching scenarios. Scenario S1 is charac-

terized by the combination of a parameter field dominated by large spatial scales and a
relatively small number of well data (fluid rate and watercut (WCT) at the producing wells
and bottom-hole pressure (BHP) at the injector wells). In Scenario S2 the spatial scales of
the parameter field are substantially smaller. At the same time, a much larger data set is
available in this scenario, saturation values in all grid cells, such that it is possible to inves-
tigate the scaling of computational efficiency of our proposed methodology with the size
of the problem. In both scenarios we will investigate the impact of different decompo-
sitions of the model domain into rectangular subdomains. Fig.4.7(a) and Fig.4.9(a) show
a base case decomposition based on a 4 × 5 grid. Note that for this decompositon some
subdomains contain no wells, while one of the subdomains contains 2 wells.

SCENARIO S1
We select 1 out of 1000 generated model realizations as the truth for scenario S1 (see

Fig.4.7(a)). A global reduction of the parameter space using a 95% energy cutoff criterion
results in NG = 48 preserved global PCA patterns. The number of local PCA coefficients
retained in each subdomain is shown in Fig.4.1. The total number of local PCA coeffi-
cients NL = ∑S

d=1 ld = 275. Fig.4.7 (a) and Fig.4.7 (b) separately represents the projected
’true’ permeability field using SLP and local PCA. We follow the procedure described in
[13] to determine the number of full order model (FOM) simulations for the selection of
snapshots. 22 simulations were run using random global PCA coefficients sampled from
the set {−1,1}, from which a total of 2200 snapshots of both pressure and saturation were
extracted. For each subdomain, two separate eigenvalue problems for pressure and satu-
ration are solved using POD on the two sets of 2200 snapshots, where 95% energy is pre-
served, and the number of POD patterns for each subdomain is shown in Fig.4.8.

SCENARIO S2
Scenario S2 aims to investigate the possibility of estimating a much larger number of

parameters than in S1, given the availability of a much larger number of measured data.
As in S1, a 4 × 5 subdomain decomposition is chosen as a base-case (see Fig.4.9(a)). A
second set of 1000 Gaussian-distributed log-permeability fields is generated resulting in
a set of NG = 282 preserved global PCA patterns. Fig.4.9 shows the "true", and projected
"true" permeability fields using local PCA and smooth local PCA (SLP) respectively. For
this scenario 32 FOM simulations were run to select snapshots. The resulting number of
local POD patterns in each subdomain is shown in Fig.4.10.

4.5.2. CONSTRUCTION OF THE REDUCED ORDER MODEL
In scenario S1, a total of 53 = 22+ 2× 15+ 1 full order model (FOM) simulations are

run to construct the subdomain reduced-order model. 22 FOM simulations are used to
collect the snapshots to construct the bases for the states, 1 FOM simulation is the specific
training trajectory that is used in the linearization, and an additional M = 30 = (2× 15)
FOM simulations are run with perturbed parameter inputs to construct the subdomain
reduced-order linear model (Eq. 17-18). The vectors of PCA coefficients which correspond
to these 53 training models are sampled from a training interval ξ ∈ [−1,1] by use of a two-
sided perturbation method centered on βtr . The detailed strategy for sampling training
models has been described in Chapter.3.
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(a) ’True’ model
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(b) Projected "true" model using LP
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(c) Projected "true" model where the local
PCA’s results are projected onto the global

PCA’s

Figure 4.7: Comparison of the "true" reservoir model in full-order space and reduced-order space for Scenario
1. The triangles and circles denote the injectors and producers, respectively. The global saturation and pressure

snapshots are decomposed into 20 rectangle subdomains. The red dash lines represent the boundary of
subdomains.
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Figure 4.8: The number of reduced pressure and saturation POD patterns in each subdomain for Scenario 1.
The global saturation and pressure snapshots are decomposed into 20 rectangle subdomains.

In terms of computational effort, the runtime for a single FOM simulation for this case
was about 9.8 s on a machine with i5-4690 Intel CPUs (4 cores, 3.5GHz) and 24 GB memory
using Matlab-R2015a. The LSPT base case models for both scenarios, by contrast, required
less than 0.3 s. However, the LSPT models for two scenarios separately require simulating
53 and 72 training models plus additional overhead, which significantly increases the cost.
Therefore, it would not make sense to construct the LSPT model unless it is to be used for
a large number of simulations. Because many simulations are required in history match-
ing applications, the use of LSPT models should be attractive. The results of applying of
LSPT in conjunction with an adjoint-based data assimilation procedure is presented in the
following parts.

4.5.3. ERROR QUANTIFICATION

To assess the performance of LSPT, we define the following relative errors with respect
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(a) ’True’ model
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(b) Projected ’true’ model using local PCA
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(c) Projected ’true’ model where the local PCA’s
results are projected onto the global PCA’s

Figure 4.9: Comparison of the "true" reservoir model in full-order space and reduced-order space for Scenario
2. The triangles and circles denote the injectors and producers, respectively. The global saturation and pressure

snapshots are decomposed into 20 rectangle subdomains. The red dash lines represent the boundary of
subdomains.
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Figure 4.10: The number of reduced pressure and saturation POD patterns in each subdomain for Scenario 2.
The global saturation and pressure snapshots are decomposed into 20 rectangle subdomains.

to the full model simulation reference,

Ed = 1

N Nd

N∑
i=1

Nd∑
j=1

|(di , j
FOM −di , j

ROM )|
di , j

FOM

(4.30)

where d represents the data vector (fluid rates, WCT , BHP and/or water saturation), and

Ex = 1

N Nd

N∑
i=1

Nd∑
j=1

|(xi , j
FOM −xi , j

ROM )|
xi , j

FOM

(4.31)

where, x represents the state vector (saturation and/or pressure in each gridblock).
We analyze the dependence of the model errors with respect to domain decomposi-

tion, energy cutoff criterion, testing interval and training interval. The testing interval or
training interval represent the predefined perturbation intervals from which the testing
and training samples are selected. Fig.4.11 shows the RMSE error in fluid rate, water-cut,
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pressure and saturation as a function of these four factors for scenario S1. For scenario S2,
Fig.4.12 shows predictions of gridblock saturation and the corresponding relative errors
at day 1825 and day 3650 using FOM and LSPT simulations for a relatively small subdo-
main size of 3×4 cells, which produced the most accurate results for this case. Accuracy is
also improved by increasing the energy threshold and thus retaining more POD patterns,
albeit at an increased computational cost. Retaining 95% of the total energy during pro-
jection produces an acceptable accuracy in this case. The testing intervals and training
intervals represent the magnitude of two-side perturbations around the linearized trajec-
tory corresponding to ξtr . The testing case and training models will be randomly sampled
from these two intervals, respectively. Increasing the testing interval, which represents the
maximum discrepancy between test model and linearized training model, deteriorates the
accuracy of the reduced model, with the best results obtained here with a [-0.1, 0.1] inter-
val. For this choice of training interval an appropriate iteration step size for the history
matching process should therefore be set as 0.1.

In order to evaluate the quality of parameter estimation results, we will compare the
value of the final objective function value against the tolerance (Eq.4.29) and against refer-
ence objective function values for the true model (reflecting the impact of the data noise)
and the projected true model (that is the best possible reconstruction of the truth given the
selected PCA patterns) will be provided as well. Reconstructed parameter maps will pro-
vide a visual indication of smoothness and uniqueness of the solution. For all approaches
we will list the computational cost expressed in terms of the number of full order model
simulations.

4.5.4. GENERATION OF NOISE MEASUREMENTS

The historic production period is 10 years, during which well measurements are taken
at 0.2 year intervals, resulting in 50 time instances in total. Normal distributed indepen-
dent measurement noise with a standard deviation equal to 5% of the ’true’ data value was
added to all measurements. The complete well data set consist of 300 fluid rates and 300
WCT values measured in the producers and 350 bottom-hole pressures measured in the
injectors (950 measured data points in total).

The seismic data used in scenario S2 correspond to the saturation values from the ’true’
model simulation after 1825 days (1st monitor) and 3650 days (2nd monitor) of produc-
tion, mimicking the collection of data from 2 seismic monitor surveys. For this scenario
there are in total 8920 measurements. The noisy measurements for the two monitor sur-
veys are shown in Fig.4.13.

4.6. RESULTS

4.6.1. SCENARIO S1
BASE-CASE

Fig.4.14 and Table 4.4 summarize the decrease in the objective function over the outer
and inner iteration loops, and the initial and final values respectively. (Note that the jumps
of the cost function values in the inner-loop iterations as Fig.4.14(a) are the starts of new
outer-loop iterations.) Fig.4.15 and Fig.?? show the true, initial (prior) and estimated (pos-
terior) log-permeability fields, and Fig.4.16 shows the prior and poster data mismatches.

Fig.4.14 shows that GP-FD, LP-FD and GSPT obtain similar cost function values after
the minimization, while our proposed LSPT obtains a slightly less accurate result. As can
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Figure 4.11: Average LSPT errors as a function of domain decomposition, projection energy, testing interval and
training interval for scenario 1. Results are for LSPT models constructed using 53 training simulations for the

test case.
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Figure 4.12: Predictions of saturation distribution and its corresponding relative errors at day 1825 and day 3650
using FOM and LSPT for scenario 2. The first row is at day 1825, while the second row is at day 3650.
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Figure 4.13: Noise distribution of water saturation for scenario S2. Normal distributed independent
measurement noise with a standard deviation equal to 5% of the ’true’ data value, was added to all observations

be seen from Table 4.4, both LSPT1 and LSPT2 need 62 FOM simulations (9 FOM simu-
lation are used to update the reduced-order linear model in 9 outer-loops. GSPT needs
22+ (4×48+1)+9 = 224 FOM simulations.

Fig.4.15 shows the true, initial and final updated log-permeability fields. Although
LSPT2 obtains relatively low cost function values, the updated log-permeability field is
non-smooth, which severely violates the (geological) assumptions underlying the model,
and would therefore have to be rejected. LSPT1 produces an acceptable solution in terms
of final objective function value and in terms of the spatial properties of the reconstructed
parameter field. In Fig.4.15 (c) one example area (red dashed rectangle) is highlighted in
which the log-permeability field is not correctly reconstructed due to lack of observations
(no wells are present in the corresponding subdomain). The choice of domain decom-
position may therefore have a significant influence on the performance of LSPT. We will
further investigate this issue in the following sections.

Fig.4.16 illustrates the match for fluid rate and water-cut data up to year 10 and an
additional 15-year prediction for all six producers. The prediction based on the initial
model is far from that of the true model. After the history matching, the predictions of the
updated model match the observations very well. Also the prediction of the water break-
through time is improved for all production wells, including the wells that show water
breakthrough only after the history matching period.

Table 4.4: The number of required FOM simulations and final objective function values for LSPT1, LSPT2, GSPT
and FD method for Scenario 1. The reference values of true model and projected true model are also shown

here. The domain decomposition for this base-case is 4×5.

- Iterations FOM JFOM (ξ)
Initial model - - 4.49×105

LSPT1 10 62 = 22+(2×15+1)+9 912.93
LSPT2 10 62 = 22+(2×15+1)+9 697.32
GSPT 10 224 = 22+(4×48+1)+9 587.83
LP-FD 61 4421 573.94
GP-FD 47 2773 571.73

Tolerance - - 4750
Ref - Projected True - - 528.1

Ref - True - - 447.4



4.6. RESULTS

4

75

Inner-loops

0 100 200 300 400 500 600 700 800 900 1000

J R
O

M

10
2

10
3

10
4

10
5

10
6

LSPT1

LSPT2

GSPT

LP-FD

GP-FD

Tolerance

Ref - True

Ref - Projected True

(a)

Outer-loops

1 2 3 4 5 6 7 8 9 10 11

J F
O

M

10
2

10
3

10
4

10
5

10
6

LSPT1

LSPT2

GSPT

Tolerance

Ref - True

Ref - Projected True

(b)

Figure 4.14: Evolution of the objective function values using LSPT, GSPT, LP-FD and GP-FD method for Scenario
1 as a function of outer-loops. The computation of the objective function for inner-loops and outer-loops uses

reduced-order linear model and full-order model, respectively. The two red dash-lines separately represent
reference objective function values for the true model (reflecting the impact of the data noise) and the projected

true model (that is the best possible reconstruction of the truth given the selected PCA patterns).
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Figure 4.15: Comparison of the updated logarithmic permeability fields from the LSPT1, LSPT2, GSPT, LP-FD
and GP-FD method for Scenario 1. The true model and initial model are displayed here for a comparison.

IMPACT OF DOMAIN DECOMPOSITION STRATEGY

Fig.4.17, Fig.4.18 and Table 4.5 show the effects of domain decomposition on the min-
imization process and the final estimate of the log-permeability field. Four designs are
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Figure 4.16: Forecast of the liquid rate, WCT and BHP for scenario S1: green line-initial model, blue line-’true’
model, solid red line - LSPT, dash red line - GSPT, solid cyan line - LP-FD, dash cyan line - GP-FD

considered, consisting of 2×3, 3×4, 4×5 and 5×6 subdomains respectively. To ensure that
all these four schemes converge to a final solution, we specified the maximum number
of outer-loops as 15 in this experiment. The total number of local PCA coefficients and
the maximum local PCA coefficients among all subdomains are summarized in Table 4.5.
It can be seen that a higher number of subdomains will result in a lower number of lo-
cal PCA patterns per subdomain. As a result, fewer FOM simulations are required. These
numerical results demonstrate our aforementioned motivation that The number of train-
ing models depends primarily on the maximum number of local parameters in a subdo-
main, not on the underlying full-order model, which can be decreased by refining the do-
main decomposition. Fig.4.17 and Fig.4.18 demonstrate that the domain decomposition
strategy has significant influence on the performance of LSPT. All four domain decompo-
sition strategies obtain an acceptable cost function value after minimization. However,
the updated log-permeability fields differ significantly, which implies that different local
minimas are generated using different domain decomposition strategies. The design of
decomposition should be implemented with much cares.

QUANTIFICATION OF DIFFERENT SOURCES OF ERRORS

Three main sources of errors (SOE) contribute to the over-all quality of the history
matching result: (1) approximation errors of the subdomain POD-TPWL (SOE1), e.g., POD,
RBF, and domain decomposition; (2) the loss of global PCA patterns due to an insufficient
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Figure 4.17: Evolution of the objective function values of LSPT using different domain decomposition strategies,
2×3, 3×4, 4×5 and 5×6, for Scenario 1.

Table 4.5: The number of required FOM simulations and cost function values of LSPT using different domain
decomposition strategies, e.g., 2×3, 3×4, 4×5 and 5×6, for Scenario 1.

Domain decomposition NL max{ld },d = 1,2, ..,S NG Iterations FOM JFOM (ξ)

Initial model - - - - - 4.49×105

2×3 112 20

48

15 77 = 22+(2×20+1)+14 901.69
3×4 205 18 15 73 = 22+(2×18+1)+9 878.21
4×5 275 15 15 67 = 22+(2×15+1)+9 912.93
5×6 322 12 15 61 = 22+(2×12+1)+9 869.01

Tolerance - - - - - 4750
Ref - Projected True - - - - - 528.1

Ref - True - - - - - 447.4

number of local PCA patterns (SOE2); and (3) only a fraction, e.g. 95%, of the full energy is
preserved by the gloabl PCA (SOE3). To distinguish and quantify these three error contri-
butions, LSPT and FD are consecutively implemented. After minimizing the cost function
using LSPT, continuing minimization using FD-LP can quantify the SOE 1, while further
minimization using FD-GP can quantify the sum of SOE1 and SOE2. To quantify SOE3, the
cost function is minimized by successively preserving an increasing fraction of the global
PCA energy, e.g., 95%, 98%, 99% and 99.5%.

We estimate the different error contributions in Table 4.6, Table.4.7 and Fig.4.19 for a
decomposition strategy with 2×3 subdomains and a fixed number of outer loop iteratons
(15). The impact of the number of retained local PCA patterns is tested using values of
2, 8 and 20 in all subdomains. Table 4.6 summarizes the initial, final and reference cost
function values, the total sum of local PCA patterns, and the required FOM simulations.
The numerical minimum of local PCA patterns required to fully cover the 48 global PCA
patterns is 8. Table 4.6 (last column) and the yellow curve in Fig. Fig.4.19(b), whosing
the sum of SOE1 and SOE2, suggest that not much further improvement can be obtained
if a GP-FD minimization is performed, suggesting that 8 local patterns are indeed nearly
sufficient for obtaining a almost identical solution. Note, however, that a much smaller
number of FOM simulations is required. We will further investigate to what extent this
finding remains valid when assimilating a large number of measurements in the second
case-study. Fig.4.19(a) shows that the continued objective function minimization using
LP-FD does not significantly decrease the cost function except in the case that only 2 local
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Figure 4.18: Updated logarithmic permeability fields using different domain decomposition strategies, e.g., 2×3,
3×4, 4×5 and 5×6, for Scenario 1.

patterns are retained. This implies that the SOE1 contribution is very small and almost
can be ignored, as long as a minimum number of local patterns are retained. SOE2 can
be decreased by increasing the number of local PCA patterns, but at the cost of additional
FOM simulations.

Fig.4.19(c) and Table.4.7 indicate that SOE3 will gradually decrease with an increasing
fraction of retaining (global) energy. Retaining 98% energy is sufficient to accurately rep-
resent the original parameter field in this case. An additional increase of 60 global PCA
patterns from 48 to 108 requires an additional 10 local PCA patterns in each subdomain.
This only requires 20 new FOM simulations.
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Figure 4.19: Evolution of the cost function values when the LSPT and FD are sequentially implemented. (a)
continuing minimization using FD-LP; (b) continuing minimization using FD-GP; (c) the cost function is

minimized through preserving more and more global PCA energy, e.g., 95%, 98%, 99% and 99.5%. The vertical
black line represents the starting point of minimization using the FD method.
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Table 4.6: The number of FOM simulations and the cost function values when quantifying SOE1 and SOE2 for
scenario S1. A same number of local PCA patterns ld is retained among all subdomains.

objective function JFOM (ξ)

Initial model 1.01×105

Tolerance 4750
Ref - Projected True 528.1

Ref - True 447.4
ld NL NG FOM LSPT LP-FD GP-FD
2 12

48
53 = 22+(8×2+1)+14 2276.15 1441 886.3

8 48 53 = 22+(2×8+1)+14 902.48 869.24 860.24
20 120 77 = 22+(2×20+1)+14 892.21 854.69 860.24

Table 4.7: The number of FOM simulations and the final objective function values when quantifying SOE3 for
Scenario S1. A same number of local PCA patterns ld is retained among all subdomains. The first column
represents the preserved energy of global PCA. A decomposition strategy with 2×3 subdomains is used.

- NL ld NG Iterations FOM JF OM(ξ)

Initial model - - - - - 1.01×105

95% 48 8 72 15 53 = 22+(2×8+1)+14 902.48
98% 72 12 72 15 61 = 22+(2×12+1)+14 738.25
99% 96 16 92 15 69 = 22+(2×16+1)+14 694.18

99.5% 108 18 104 15 73 = 22+(2×18+1)+14 621.52
Tolerance - - - - - 4750

Ref - Projected True - - - - - 528.1
Ref - True - - - - - 447.4

4.6.2. SCENARIO S2
For the S2 scenario with a large number of measurements, three different domain de-

composition strategies, i.e., 3×4, 4×5 and 5×6, are formed. The required minimum num-
ber of local PCA patterns corresponding to the different domain decomposition strategies
is summarized in Table 4.8 while the objective function evolution over the history match-
ing process is shown in Fig.4.20. The 4×5 domain decomposition strategy is seen to lead to
the smallest objective function value in this case. Figure 4.21 shows that the true param-
eter field can be reconstructed very accurately when a large number of measurements is
available. Only the 5×6 decomposition leads to a poor spatial reconstruction, consistent
with a relatively high objective function value. Fig.4.22 shows the predicted saturation be-
fore and after the history matching. Compared to the initial model, the model predictions
have been significantly improved.

Figure 4.23 shows the simulated and measured well data up for the 10-year history pe-
riod, and simulated data for an additional 15-year prediction period. Results are shown
for the initial model and for the estimated models for the three different domain decom-
positions, as well as for the GP-FD solution. The prediction of especially the fluid rate and
bottom-hole pressure based on the initial model is quite poor. After the history match-
ing, the predictions of all the updated model are consistent with the measurements (and
associated errors).

Compared to S1, the number of global PCA patterns has been increased from 48 to 282,
however, taking the 4 × 5 decomposition as an example, the required number of FOM sim-
ulations has only increased from 53 to 72. The degree of freedom for the history matching
problem depends on the number of global PCA patterns, while the required FOM simula-
tion depends on the number of local PCA patterns. It is therefore very attractive to increase
the degree of the freedom by adding local PCA patterns in all subdomains. Taking the 5 × 6
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domain decomposition scheme as an example, adding one local PCA pattern in each sub-
domain allows us to retain another 30 global PCA patterns, while only 2 more FOM simu-
lations are added to the entire history matching procedure. These numerical results fur-
ther demonstrate that introducing local parameterization makes subdomain POD-TPWL
highly scalable. In other words, the required number of FOM simulations does not grow
rapidly with an increasing number of uncertain parameters.
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Figure 4.20: Evolution of the objective function values as a function of outer-loops using LSPT for Scenario 2.
The computation of the objective function for the outer-loops uses full-order model simulations. The two red
dash-lines separately represent reference objective function values for the true model (reflecting the impact of

the data noise) and the projected true model (that is the best possible reconstruction of the truth given the
selected PCA patterns).

Table 4.8: The number of FOM simulations and the final objective function values of LSPT using different
domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, for Scenario 2. A same number of local PCA patterns

ld is retained among all subdomains.

- ld NL NG Iterations FOM JFOM (ξ)

Initial model - - - - - 6.39×104

3×4 24 288
282

10 90 = 32+(2×24+1)+9 7508
4×5 15 300 10 72 = 32+(2×15+1)+9 6783
5×6 10 300 10 62 = 32+(2×10+1)+9 9601

Tolerance - - - - - 2.75×104

GP-FD - - - - - 6416
Projected ’True’ model - - - - - 5685

’True’ model - - - - - 5149

4.6.3. COMPUTATIONAL COMPLEXITY
The computational cost of the proposed parameter estimation approach can be split

into two main parts. The cost of the offline stage consists of constructing the subdomain
reduced-order linear model. The cost of the online stage consists of the cost of solving the
reduced system and the parameter estimation problem. We will now discuss these two
stages in more detail below.

OFFLINE STAGE

The cost of executing parameterization using eigenvalue decomposition of the global
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Figure 4.21: Comparison of updated permeability fields using LSPT and GP-FD for scenario S2

covariance matrix and local covariance matrix in each subdomain is negligible for small
models, while it will become more significant for large-scale models. The approximate
computational complexity is of order O(N 3

β
). An equivalent formulation can be derived in

which the eigenvalue problem is formulated in the snapshots coordinate Ĉ by
XT

c Xc
Nr −1 . It is a

so-called method of snapshots [17]. An alternative way to calculate PCA patterns is to per-
form a singular value decomposition (SVD) on the matrix Xc . It can avoid the calculation of
the covariance matrix C or Ĉ. The costs of these two efficient alternatives are proportional
to O(N 3

r ) and O(NβN 2
r ), respectively. Both of them have a numerical advantage, because

typically Nr ¿ Nβ.
Generating snapshots is an essential part of the POD method. The actual generation of

the snapshots is done by sampling an ensemble of parameter realizations around an initial
mean field. For each member in the newly generated ensemble the FOM is simulated,
and the values for the state variables at each time step are saved. The computational cost
of performing this part of the process, expressed in number of FOM runs is equal to the
number of members in the generated ensemble, namely O(FOM). Here O(FOM) denotes
the computational complexity for one full-order model simulation, which is associated
with the model dimension Nβ, the number of simulation time steps N , and the efficiency
of the numerical solver of the forward modelling code. Taking Newton-Raphson iteration
as an example, the corresponding computational complexity is O(log2(Nβ)N ) [18].

The cost of solving the reduced eigenvalue problem to construct the POD is equivalent
to the cost of a Singular Value Decomposition of the snapshot matrix. Since the dimension
of the snapshot matrix in each subdomain is relatively low, this cost is also low.

The cost of approximating derivatives using the RBF interpolation represents the most
computationally expensive part of constructing the subdomain reduced-order linear model.
The computational time expressed in number of FOM runs is several times the number of
local PCA patterns generated, or O(log2(Nβ)N ).

ONLINE STAGE

The cost of solving a system of model-reduced linear equations can be neglected in
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Figure 4.22: Predictions of water saturation using LSPT for Scenario 2. The subfigures (a) - (d) present the results
at the 1st monitor, subfigures (e) - (h) present the results at the 2nd monitor. Large errors occur at the water

fronts. Three domain decomposition strategies, e.g., 3×4, 4×5 and 5×6, are conducted.

comparison with all other contributions.

The cost of the model-reduced optimization procedure is proportional to the number
of times that a new subdomain reduced-order linear models is constructed which requires
one FOM run with a cost of O(log2(Nβ)N ).

In short, the total computational cost in terms of order analysis is (O(N 3
β

)+O(log2(Nβ)N )).

The process is code non-intrusive and does not involve overwhelming programming ef-
forts. As the adjoint model is not always available, especially for commercial simulators,
the finite-difference method can be used to approximate the gradient for use in an ob-
jectve function minimization procedure. In that case, O(103 −104) FOM simulations will
typically be required for large-scale parameter estimation problems. An offline cost for our
proposed approach of O(10−102) FOM simulations is therefore a significant improvement.
For large-scale parameter estimation problems, the computational cost is dominated by
the required FOM simulations. In our proposed method, most of the FOM simulations are
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Figure 4.23: Forecast of the liquid rate, WCT and BHP for scenario S2: green line - initial model, blue line - ’true’
model, red line - LSPT with 3×4 domain decomposition, magenta line-LSPT with 4×5 domain decomposition,

cyan line - LSPT with 5×6 domain decomposition, yellow line - GP-FD

performed in the offline stage.

Figure 4.24 summarizes the required FOM simulations as a function of number of sub-
domains in this study. These results indicate computational efficiency can benefit from in-
creasing the number of subdomains. On the other hand, the numerical results presented
in Fig.4.17 indicate that the quality of the parameter field estimate may deteriorate if too
small subdomains are formed. It is therefore important to find an appropriate trade-off in
efficiency and accuracy by optimizing the domain decomposition strategy.
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Figure 4.24: Summary of the required FOM simulations for scenario S1 and S2 in the numerical experiments.
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5
SUBDOMAIN POD-TPWL WITH

ADAPTIVE DOMAIN

DECOMPOSITION STRATEGY

Since the performance of our proposed projection-based subdomain POD-TPWL is very sen-
sitive to how the domain is decomposed, inappropriate domain decomposition schemes
negatively influence the accuracy of subdomain POD-TPWL. This chapter presents an adap-
tive decomposition strategy, named smooth weighted local parameterization (SWLP). The
SWLP strategy progressively enlarges the weighting coefficient corresponding to the appro-
priate domain decomposition scheme in the process of objective function minimization.
Experiment results with a 3D benchmark reservoir model have demonstrated an effective
means to improve the history matching results tested on a 3D benchmark reservoir model.
The solution, however, is completely restricted within a predefined group of domain decom-
position schemes, and the results of this proposed adaptive strategy can always converge to
the best domain decomposition scheme from this group.

Parts of this chapter have been submitted to Journal of Petroleum Science and Engineering. Xiao, C., Leeuwen-
burgh, O., Lin, H.X. and Heemink, A., 2020. Conditioning of Deep-Learning Surrogate Models to Image Data with
Application to Reservoir Characterization. Journal of Petroleum Science and Engineering.

86



5.1. ADAPTIVE DOMAIN DECOMPOSITION STRATEGY

5

87

5.1. ADAPTIVE DOMAIN DECOMPOSITION STRATEGY

The results of numerical experiments in Chapter 4 show that the performance of sub-
domain POD-TPWL is very sensitive to the domain decomposition scheme. Inappropriate
decompositions lead to poor accuracy of subdomain POD-TPWL. This has motivated us
to develop an adaptive decomposition strategy, namely smooth weighted local parame-
terization (SWLP).

This adaptive decomposition strategy defines a new objective function by weighing the
results of a number of domain decomposition schemes simultaneously. The weighting
coefficients ω = [ω1 ... ωLl p ]T (Ll p represents the number of domain decomposition
schemes) are assigned to each decomposition schemes correspondingly. The process of
minimizing this new objective function adaptively adjusts the weighting coefficients and
hence selects the optimal domain decomposition correspondingly. Hereinafter we define
a group of various domain decomposition schemes as a dictionary.

For the l -th domain decomposition scheme, the entire domain is decomposed into Sl

subdomains and the corresponding vector of local PCA coefficients is ξl
L= [ξ1,..,ξd ,...,ξSl ].

The objective function JROM (which is equivalent to Eq.4.18 in Chapter 4) is reformulated
as a weighted sum of objective-function ĴROM corresponding to different domain decom-
position schemes

ĴROM =
Ll p∑
l=1
ωl JROM (ξl

L),
Ll p∑
l=1
ωl = 1, 0 Éωl É 1 (5.1)

Instead of minimizing this new objective function with respect to the local PCA coeffi-
cients ξl

L for all domain decomposition schemes, we can minimize global PCA coefficients

ξ alternatively based on a linear relationship between ξl
L and ξ, e.g., defined as Eq.4.12 in

Chapter 4. Tl
GL represents a transformation matrix for mapping the local PCA coefficients

ξl
L to the global PCA coefficients ξ for the l -th domain decomposition scheme, that is, ξ =

Tl
GL ξ

l
L .

It is noticeable that Eq.5.1 is a constrained optimization problem, which is generally
not easy to deal with. In this study, we represent an easy-to-use approach by reformu-
lating the weighting coefficients as functions of a new variable α and therefore make the

constraint, i.e.,
∑Ll p

l=1ωl = 1 and 0 É ωl É 1, automatically satisfied. We also should note
that our proposed approach cannot completely represent the original constrained opti-
mization problem, and hence might lead to negative effects. Fortunately, the negative
effects almost can be negligible based on the following numerical results. Some available
formulas of weighting coefficients are listed in Table 5.1

Table 5.1: Summary of the used formulas of weighting coefficients as functions of variable α.

ω= [ω1 ... ωLl p ]T

Type 1: ω1= 1∑Ll p
l=1 α

2(l−1)
, ..., ωLl p = α

2(Ll p−1)∑Ll p
l=1 α

2(Ll p−1)

or

Type 2: ω1= 1∑Ll p
l=1 e(l−1)α

, ..., ωLl p = e
(Ll p−1)α∑Ll p

l=1 e
(Ll p−1)α
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Both the global PCA coefficients ξ and the new variable α need to be optimized simul-
taneously, the gradients can be given by

ĝROM = [
∂ ĴROM

∂ξ
,
∂ ĴROM

∂α
] (5.2)

where

∂ ĴROM

∂ξ
=

Ll p∑
l=1
ωl

∂JROM (ξl
L)

∂ξ
=

Ll p∑
l=1
ωl

∂JROM (ξl
L)

∂ξl
L

dξl
L

dξ

∂ ĴROM

∂α
=

Ll p∑
l=1

JROM (ξl
L)

dωl

dα
(5.3)

In order to compute the gradient ĝROM , three terms, e.g.,
∂JROM (ξl

L )

∂ξl
L

,
dξl

L
dξ and dωl

dα re-

quired in Eq.5.3 can be computed as follows:

• The term
∂JROM (ξl

L )

∂ξl
L

.

The original objective function can be reformulated as a quadratic function by re-
placing the non-linear operator with a set of subdomain reduced-order linear mod-
els as defined in Eq.4.5 of Chapter 4. More details about the construction of reduced-
order linear models using subdomain POD-TPWL algorithm can be found in Chap-
ter 4. After formulating this new objective function, for example JROM (ξl

L) for the

l-th domain decomposition scheme, its gradient with respect to ξdl can be derived
by introducing a model-reduced adjoint model.

• The term
dξl

L
dξ .

The formulation of derivative term
dξl

L
dξ represents the transformation between the

global PCA coefficients ξ and the local PCA coefficients ξl
L for the l -th domain de-

composition scheme. As has been mentioned in Chapter 4, transformation matrix
Tl

GL is fully row-rank and therefore a pseudo-inversion can be used to approximate
this derivative term.

dξl
L

dξ
= [Tl

GL]+ (5.4)

where, superscript + represents a pseudo-inversion operation for a matrix.

• The term dωl
dα . The formulation of derivative term dωl

dα depends on the selected
weighting function defined in Table 5.1. An analytical formulation of this term can
be easily obtained in Table 5.2.

Once the gradient ĝk
ROM at the k-th iteration step is available, the optimal parameters

for the next iteration that minimize the objective function is updated by gradient descent
iterations,

[ξ,α]k+1 = [ξ,α]k −εk ĝk
ROM (5.5)
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where εk is a step-length at the k-th iteration step. The gradient descent algorithm is con-
sidered to have sufficiently converged when either one of the following two stopping cri-
teria is satisfied.

• The objective function defined in Eq.5.1 hardly changes, i.e.,

| ĴROM (ξ,α)k+1 − ĴROM (ξ,α)k |
max{| ĴROM (ξ,α)k+1)|,1}

< η ĴROM
(5.6)

• The estimate of parameters almost does not change, i.e.,

|(ξ,α)k+1 − (ξ,α)k |
max{|(ξ,α)k+1|,1}

< ηξ,α (5.7)

where, η ĴROM
and ηξ,α denote the predefined error constraints, respectively. In our exper-

iments, we set η ĴROM
= 10−4 and ηξ,α = 10−3. Since simulation runs of the reduced-order

model are very cheap, we do not limit the maximum number of iterations.

Table 5.2: Summary of the formulation of derivative term
dωl
dα .

ω= [ω1 ... ωLl p ]T

Type 1: ω1= 1∑Ll p
l=1 α

2(l−1)
, ..., ωLl p = α

2(Ll p−1)∑Ll p
l=1 α

2(Ll p−1)

or

Type 2: ω1= 1∑Ll p
l=1 e(l−1)α

, ..., ωLl p = e
(Ll p−1)α∑Ll p

l=1 e
(Ll p−1)α

Once the gradient is available, various optimization methods, such as the steepest de-
scent, can be used to minimize the objective function ĴROM defined as Eq.5.1. Since the
projection-based subdomain POD-TPWL cannot exactly represent the original FOM, after
obtaining the optimized parameters corresponding to the specific subdomain POD-TPWL
surrogate model, the objective function must be evaluated using the full-order model
in order to check whether a satisfactory accuracy has been obtained. If it is necessary,
some additional outer-loop iterations can be performed by reconstructing new subdo-
main reduced-order linear models around the currently updated parameters and then
performing the iterative inner-loop again until convergence.

5.2. NUMERICAL EXPERIMENT SETTINGS
The numerical experiments are tested on a 3D benchmark model used in the SAIGUP

project [1]. The model consists of 20 layers containing a total of 78720 active grid cells. The
reservoir model describes a water-flooding system with nine producers and nine injectors,
which are labeled from P1 to P9, and I1 to I9, see Fig.5.1. Details about reservoir geometry,
rock properties, fluid properties, and well controls are shown in Table 5.3. We also show
the relative permeability curve of this water-oil two-phase flooding system in Fig.5.2. In
our numerical experiments, the open-source simulator F low from the Open Porous Me-
dia (OPM) project for reservoir modeling and simulation [2], is used to run simulations.
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In this case-study, the logarithmic permeability field is heterogeneous and assumed to
be log-Gaussian random fields. We generate Gaussian-distributed realizations of logarith-
mic permeability using the Stanford Geostatistical Modeling Software (SGeMS) [3]. One
of the realizations is chosen to be the reference model as illustrated in Fig.5.1. Fig.5.1(b)
also shows the logarithmic permeability fields of the 1st, 10th and 11th vertical layer cor-
respondingly. We should note that the permeability realizations in this example are not
conditioned to the values in the wells. Separate random Gaussian distributions are used
to model the top nine layers (zone 1) and the bottom 10 layers (zone 2), which are isolated
by a vertically impermeable layer (layer 10, corresponding to zone 3). A global reduction
of the parameter space using a 95% energy cutoff criterion results in a total of 303 (i.e., 155
and 148 patterns for zone 1 and zone 2, respectively.) global PCA patterns, which are used
to approximately represent the original logarithmic permeability fields.

(a) The 3D view of geological realization
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(b) The 2D view of the 1st, 10th and 11th horizontal layer

Figure 5.1: The illustrations of the spatial logarithmic permeability for the 1st, 10th and 11th horizontal layer.
The triangles and circles denote the injectors and producers, respectively.

Table 5.3: Reservoir settings using OPM for 3D benchmark SAIGUP model.

Reservoir model settings
Dimension 40×120×20
Number of wells 9 producers, 9 injectors
Constant porosity 0.2
Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP·s, 2 mP·s
Bottom-hole pressure for producers 15 MPa
Bottom-hole pressure for injectors 30 MPa
Historical production time 5400 days
Simulation timestep 30 days
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Figure 5.2: The relative permeability curves of this water-oil two-phase flooding system.

The seismic data used in this study correspond to the saturation values from the ’true’
model simulation after 2700 days and 5400 days of production, which results in total 157440
measurements. The noisy measurements for the two monitor surveys are shown in Fig.5.3.
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(a) The 1st layer
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(b) The 11th layer

Figure 5.3: Distribution of noisy saturation at the days 2700 and days 5400 used in this comparative study.
Normal distributed independent measurement noise with a standard deviation equal to 5% of the ’true’ data

value, was added to all observations

To assess the history matching results, we define an error measure based on parameter
misfits em as follows,

em =

√√√√∑Nm
i=1(mi

tr ue −mi
upt )2

Nm
(5.8)

where, mi
tr ue and mi

upt denote the logarithmic permeability value of the gridblock i from
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the reference model and updated model, respectively.

5.3. CONSTRUCTION OF SUBDOMAIN POD-TPWL SURROGATE

MODEL
In Chapter 4, our proposed subdomain POD-TPWL is mainly tested on the synthetic

or simplified version of 2D models, in which we only need to consider the dynamic associ-
ations between one subdomain and its horizontal neighboring four subdomains. In order
to adapt subdomain POD-TPWL to 3D models, two domain decomposition strategies are
investigated as follows:

• Strategy 1: The entire vertical layers are coupled into one layer, and only the hori-
zontal domain decomposition is implemented. This strategy is very easy to be im-
plemented in practical applications, however, it shows a poor vertical scalability,
especially for the multi-layer reservoir models.

• Strategy 2: There are dynamic interactions among adjacent subdomains, e.g., one
specific subdomain and its neighboring six subdomains, namely the subdomains at
the left, right, forth, back, upward and downward direction, are considered. This
strategy has high scalability both in vertical and horizontal direction. In addition,
we are able to form different number of subdomains over each layer. This strategy is
particularly suitable to assimilate spatial seismic data.

It can be observed from Fig.5.3 that the water-flooded area in the upper layers is smaller
than that of lower layers, that is, the saturation and geological parameters have shorter-
distance correlations in the upper layers than that of the lower layers. We intentionally
design a 3D domain decomposition strategy that the zone 1 is decomposed into small
subdomains, while the zone 3 is decomposed into relatively large subdomains. The SLP
enables us to represent global PCA patterns using a relatively small number of local PCA
patterns in each subdomain. Table 5.4 shows the number of preserved local PCA patterns
in each subdomains for these two domain decomposition strategies. In strategy 1 we use a
2D decomposition, while in strategy 2 we use a quasi-3D decomposition consisting of two
independent 2D decompositions for zone 1 and zone 2, respectively.

Table 5.4: Summary of the number of local PCA patterns. l d is the number of local PCA patterns for the
subdomainΩd . (DD1

x × DD1
y , DD2

x × DD2
y ) denote the number of subdomains at the two horizontal

directions. The superscript 1 or 2 denote the zone 1 and zone 2, respectively.

2D domain decomposition 3D domain decomposition

(DDx × DD y ) l d NL (DD1
x × DD1

y , DD2
x × DD2

y ) l d NL

2×3 51 306 (3×4, 2×3) 26 312
3×4 26 312 (4×5, 3×4) 13 312
4×5 16 320 (5×6, 4×5) 8 320
5×6 11 330 (6×8, 5×6) 6 360

We follow the procedure described in Chapter 3 to determine the number of FOM sim-
ulations for the collection of pressure and saturation snapshots. 42 FOM simulations are
run for collecting a total number of 7560 (42 simulation models by 180 time steps) snap-
shots of both pressure and saturation. Instead of taking global basis functions to define
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the subspace, the snapshots are first partitioned into each subdomain and then local ba-
sis functions are obtained from these partitioned snapshots. That is, these 7560 global
saturation and pressure snapshots are decomposed into each subdomains. As a result,
the implementation of POD for a large number of snapshots will not pose severe compu-
tational problems in this 3D model application. The number of POD patterns for each
subdomain is shown in Fig.5.4 - 5.5 for these two domain decomposition strategies. In
comparison to the 2D domain decomposition, a small number of POD patterns could be
preserved for the 3D domain decomposition in each subdomain.
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Figure 5.4: The number of local POD patterns in each subdomain for the 2D domain decomposition.
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(a) Zone 1
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Figure 5.5: The number of local POD patterns in each subdomain for the 3D domain decomposition.

5.4. ASSESSMENT OF SURROGATE MODEL QUALITY

It is useful to analyze the relative error of the predicted saturation between the full-
order model simulation and the subdomain POD-TPWL surrogate model. The field-average
relative error in saturation over all Nt time intervals, denoted as γn

s , for all Ntest samples,
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is given by

γs = 1

Ntest Nm Nt

Ntest∑
i=1

Nt∑
n=1

Nm∑
j=1

‖x̂i ,n, j −xi ,n, j ‖
xi ,n, j

(5.9)

where, x̂i ,n, j and xi ,n, j separately denote the saturation predicted from HFM and surrogate
models for the testing sample i , in gridblock j at the timestep n.

Fig.5.6 shows the dependence of the field-average relative error γs with respect to
domain decomposition strategy and testing interval. The testing interval represents the
maximum discrepancy between test model and the linearized trajectory. It can be seen
in fig.5.6(a) that increasing the testing interval deteriorates the accuracy of the reduced
model, e.g., from 1.82% to 6.85% for the 3 × 4 2D domain decomposition. Similar re-
sults also can be observed for the 3D domain decomposition strategy, as illustrated in
Fig.5.6(b). The small γs values clearly indicate a high degree of accuracy in the saturation
maps predicted from the subdomain POD-TPWL surrogate models. In this case-study, the
field-average relative error γs is relatively more sensitive to the 2D domain decomposi-
tion than that of 3D domain decomposition strategy. In addition, the comparison of the
time-varying phase saturation between the subdomain POD-TPWL and HFM is used to
visually assess the accuracy. Fig.5.8 shows the predicted saturation distribution and the
corresponding absolute errors at day 2700 and day 5400 for the 3×4 2D domain decompo-
sition and (5×6, 4×5) 3D domain decomposition strategy, respectively. The testing model
sampled from a small interval [-0.1, 0.1] produces much better predictions than that of a
large interval [-0.3, 0.3].

In terms of computational effort, a single FOM simulation requires about 250 seconds
on a machine with i5-4690 Intel CPUs (4 cores, 3.5GHz) and 24 GB memory using OPM-
F low simulator. The subdomain POD-TPWL models, by contrast, require less than 1.5
seconds. However, the construction of subdomain POD-TPWL needs run many FOM sim-
ulations. Taking the 4×5 2D domain decomposition as an example, a total number of
123 HFM simulations are performed to construct the subdomain reduced-order model.
Among them, 42 FOM simulations are used to construct the basis for model reduction
and remaining 81 FOM simulations are used to construct the subdomain reduced-order
linear model.

5.5. HISTORY MATCHING RESULTS USING SUBDOMAIN POD-
TPWL

5.5.1. STUDY OF BASE-CASE
Fig.5.9 shows the evolution of the objective function values as a function of out-loop

iterations for these two domain decomposition strategies. In this case, 3×4 2D and (3×4,
2×3) 3D domain decomposition schemes obtain the best results for these two strategies,
respectively. Taking strategy 1 as an example, although other 2D domain decomposition
schemes almost have been convergent indicated by no further reductions of the objective
functions, the final objective functions are larger than that of 3×4 2D domain decompo-
sition scheme. This result can be partially explained by some local minimas and even
failed convergences. Inappropriate domain decomposition schemes inevitably deterio-
rate the performance of subdomain POD-TPWL surrogate model. Too small subdomains,
for example the (6×8, 5×6) 3D domain decomposition, might harmfully ignore intrinsic
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Figure 5.6: Field-average relative error γs as a function of domain decomposition, testing interval and number
of training samples. (a) - (b) are for the subdomain POD-TPWL with 2D and 3D domain decomposition,

respectively.

correlations among sudomains and hence cause unsatisfactory history matching results.
The required number of model simulations is shown in Table 5.5. For example, 2×3

2D domain decomposition requires 311 FOM simulations, among them, 42 FOM simula-
tions are used to construct the basis for model reduction, 256 FOM simulations are run to
construct the initial subdomain reduced-order linear model at the 1st out-loop, and addi-
tional 13 FOM simulations are required in additional 13 outer-loops. Both (3×4, 2×3) 3D
and 3×4 2D domain decomposition schemes achieve comparable results with 2×3 2D do-
main decomposition, however, they require 158 and 311 FOM simulations, respectively. In
this case-study, although 3D domain decomposition enables us to run fewer FOM simula-
tions, 2D domain decomposition obtains slightly better results indicated by smaller final
objective functions and parameter misfits em.

Fig.5.10 displays 2D horizontal cross sections of the initial and updated logarithmic
permeability fields. In this case study, the true logarithmic permeability fields almost can
be reconstructed, especially for the 3×4 2D domain decomposition scheme. The param-
eter misfits em have been drastically reduced, e.g., from 1.1142 to 0.6641. Some domain
decomposition schemes, e.g., 4×5 and 5×6 2D decompositions, yield unreasonable cal-
ibrations in some subdomains, e.g., the logarithmic permeabilities are undershooting or
overshooting. Overall, these results indicate that the performance of the subdomain POD-
TPWL is very sensitive to the domain decomposition schemes. In order to find satisfactory
history matching results, we should carefully design reasonable domain decomposition
schemes, such as the 3×4 2D domain decomposition or the (3×4, 2×3) 3D domain de-
composition in this case-study.

5.5.2. STUDY OF ADAPTIVE DOMAIN DECOMPOSITION STRATEGY
In order to determine the optimal solution from our predefined group of domain de-

composition schemes, we have to repeatedly implement the optimization process, which
generally requires intensive computations. To efficiently and automatically mitigate the
negative effects of inappropriate domain decomposition schemes, e.g., (6×8, 5×6) 3D de-
composition, we introduce an adaptive strategy, named smooth weighted local parame-
terization (SWLP).
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(a)

(b)

Figure 5.7: Illustration of time-varying phase saturation for a random parameter field predicted from
subdomain POD-TPWL, FOM and their residual errors at 2700 days and 5400 days of production. (a) Testing

interval [-0.1, 0.1]; (b) Testing interval [-0.3, 0.3].

Type 1 and Type 2 separately denote two formulas of the weighting coefficients given
in Table 5.6. As shown in Fig.5.10, Type 1 generates comparable objective function value
with the 3×4 2D domain decomposition scheme, while both Type 1 and Type 2 yield com-
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Figure 5.8: Evolution of the objective function values as a function of outer-loop iterations using subdomain
POD-TPWL. The calculation of the objective functions uses the high-fidelity models.

Table 5.5: The required number of HFM simulations and final objective function values for these two domain
decomposition strategies.

DD Iterations HFM J (HF M)×106 em
2D domain decomposition

2×3 14 311 0.1791 0.8115
3×4 14 160 0.1572 0.6641
4×5 12 134 0.2618 0.8376
5×6 7 104 0.3429 0.7430

3D domain decomposition
(3×4, 2×3) 12 158 0.1689 0.6534
(4×5, 3×4) 10 117 0.3319 0.9254
(5×6, 4×5) 9 107 0.2715 0.8300
(6×8, 5×6) 9 99 0.2973 0.9022

Ref - Projected True 0.0912
Ref - True 0.0785

parable objective function values with the (3×4, 2×3) 3D domain decomposition scheme.
Fig.5.10 also displays the evolution of the weighting coefficients as a function of outer-loop
iterations. We initialize an equal weight for each domain decomposition scheme, and then
SWLP could automatically identify the specific domain decomposition whose objective
function is easy to be minimized and then gradually increase its weighting coefficient cor-
respondingly or vice versa. For example, both Type 1 and Type 2 have identified that (3×4,
2×3) 3D domain decomposition scheme is better than other three domain decomposition
schemes in this case. This result is exactly consistent with the previous results. It also can
be seen that the performance of this adaptive strategy is slightly sensitive to the formulas
of weighting coefficients. Type 1 can produce a little better result than that of Type 2 for
the problem defined in this study. This adaptive strategy can help us optimize the domain
decomposition scheme effectively, particularly when a good prior knowledge of the stud-
ied problem is not available. We could consider various domain decomposition schemes
as much as possible, which increases the possibility to search the optimal solution.

The required number of HFM simulations for this adaptive strategy is approximately
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Figure 5.9: 2D horizontal cross sections of the updated logarithmic permeability fields from the subdomain
POD-TPWL surrogate models corresponding to different 2D and 3D domain decomposition schemes.

equivalent to the most expensive one among all considered domain decomposition schemes.
As shown in Table 5.6, Type 1 and Type 2 require 158 and 156 HFM simulations for the 3D
domain decomposition strategy, respectively. The results of this proposed adaptive strat-



5.5. HISTORY MATCHING RESULTS USING SUBDOMAIN POD-TPWL

5

99

egy can approximately converge to the best domain decomposition scheme, e.g., (3×4,
2×3). A consistent result is also obtained for the 2D domain decomposition scheme. Tak-
ing the 3D decomposition scheme as an example, we generate an ensemble of posterior
solutions through starting from different initial models. Fig.5.11 depicts a boxplot of the
weighting coefficients and the objective functions with and without the proposed adaptive
decomposition strategy. It is noticeable that the (3×4, 2×3) decomposition obtains larger
weighting coefficients for almost all ensemble members. The final objective functions also
can accurately converge to the (3×4, 2×3) 3D decomposition without the proposed adap-
tive decomposition strategy.

In this case-study, the proposed adaptive strategy always performs as well as the best
decomposition in our predefined dictionary of domain decompositions. Nevertheless,
limitations of the proposed method do exist. First, since some underlying mathemat-
ical structures are enforced by the weighting coefficients, such as exponential function
(Type 1) and power function (Type 2), the SWLP strategy possibly leads to sub-optimal so-
lutions, which are a little worse than that of the best domain decomposition scheme, as
shown in Fig.5.11. Second, we should not ignore the deficiency of the proposed adap-
tive strategy that the final solutions are always limited to our used domain decomposition
schemes, and therefore the performance of this approach strongly depends on the design
of these decompositions. To cope with this issue, we should consider various domain de-
composition schemes as much as possible. However, we have to construct reduced-order
models for all domain decomposition schemes simultaneously, which will increase addi-
tional computational overhead and memory requirements particularly for high-dimensional
models. Fortunately, the computational overhead is generally negligible when compared
to the full-order model simulations. In addition, on the basis of the first several iteration
steps, this adaptive strategy has correctly indicated the optimal decomposition scheme
based on the largest weighting coefficient, and then we can directly minimize the objec-
tive function correspondingly.

Table 5.6: The number of required HFM simulations and final objective function values using the proposed
adaptive strategy for 2D and 3D domain decomposition schemes.

- 2D domain decomposition 3D domain decomposition
- Iterations HFM J (HF M)×106 em Iterations HFM J (HF M)×106 em

Type 1 20 317 0.1539 0.6013 12 158 0.1691 0.6645
Type 2 10 307 0.2297 0.7399 10 156 0.1842 0.6875
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Figure 5.10: Evolution of the objective function values and their corresponding weights using subdomain
POD-TPWL as a function of outer-loops for the proposed adaptive domain decomposition strategy.
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Figure 5.11: Boxplot of the weighting coefficients and the final objective functions using the subdomain
POD-TPWL surrogate models. The 3D domain decomposition with adaptive strategy is implemented.
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6
HISTORY MATCHING USING

DEEP-LEARNING DETERMINISTIC

INVERSION

This chapter presents an efficient deterministic inversion to primarily explore the possibility
of applying deep neural network surrogate to approximate the gradient of seismic history
matching by using auto-differentiation (AD). The AD enables us to evaluate the gradients
efficiently in a parallel manner. Furthermore, the benefits of using stochastic gradient op-
timizers in the deep learning practice, instead of full gradient optimizers in conventional
deterministic inversions, is investigated. The proposed surrogate-assisted inversion with
stochastic gradient optimizer obtains a very fast convergence rate against the model noise
for the test case with a high-dimensional seismic history matching problem with a large
number of data and parameters. In addition, we also conduct several comparisons and
evaluations with the projection-based subdomain POD-TPWL approach in terms of the
computational efficiency and accuracy. Overall, the accuracy and computational efficiency
provided by these two kinds of surrogate models suggest that both of them can be used to
efficiently address large-scale seismic history matching problem.

This chapter has been submitted to Knowledge-Based Systems. Xiao, C., Lin, H.X., Leeuwenburgh, O. and
Heemink, A., 2020. Surrogate-Assisted Gradient-Based Seismic History Matching: Comparative Study between
Projection-Based Reduced-Order Modeling and Deep Neural Network. Journal of Petroleum Science and Engi-
neering.
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6.1. INTRODUCTION
Reservoir history matching can play a key role in improving geological characterization

and reducing the uncertainty of reservoir model predictions [1, 2]. Measured data are typ-
ically obtained at wells, which are normally sparsely distributed over large areas, leaving
the generally heterogeneous reservoir rock in-between the wells unsampled. Alternative
ways of gathering information are based on geophysical techniques, such as time-lapse
(4D) seismic data, which is affected by the density and mechanical properties of the rock
and fluids. The availability of such geophysical information is often less frequent in time
and of low spatial resolution, but much denser compared to the well measure points. In
contrast to sparse well data, seismic data generally provides sufficient spatial-information
about the dynamic changes in the oil reservoirs [3].

Incorporating 4D seismic data into the history matching workflow, hereinafter referred
to as seismic history matching (SHM), has been investigated for several decades. The op-
timization algorithms for addressing SHM problem in the field of petroleum engineering
have been investigated for several decades, among them, the gradient-based deterministic
inversion is one of commonly used approaches nowadays. We generally define a nonlin-
ear objective function as the sum of squares of the difference between the recorded data
and simulated predictions through running a reservoir model. Gradient-based optimiza-
tion, using the adjoint model, is used to minimize the objective function through itera-
tively adjusting the model parameters [4]. The high dimensionality of grid-based seismic
measurements and strong non-linearity, however, pose strong challenges, e.g., expensive
model simulations and algorithm convergence. Although many efforts have been taken
to make the implementation of the adjoint model feasible [5], a fast evaluation of the ob-
jective function and its gradient information still remains a big computational challenge.
In some cases it may not be feasible to perform the history matching rapidly, because it
requires numerous simulations, e.g, simulations of multiple models for the gradient ap-
proximation. The surrogate modeling is currently identified as one of the most promising
means to improve the efficiency of reservoir simulations. The main focus of this chapter
is on investigating surrogate-assisted optimization strategy for seismic history matching.

Surrogate modeling aims at providing a faster emulation with a simplified relation be-
tween the inputs and outputs of a complex model. It has the potential of accelerating
the gradient-based optimization problems. Existing surrogate modeling approaches can
be roughly classified into three categories: hierarchical-based, projection-based reduced-
order model (ROM) and data-driven surrogate models. Reviews of surrogate modeling can
be found in [6]. In hierarchical-based methods the surrogate is created by simplifying the
representation of the physical system, such as by ignoring certain processes, or reducing
the numerical resolution or the complexity, e.g., upscaling and grid coarsening [7, 8], or the
complexity, e.g., nonlinearity. Projection-based ROM approaches have received attention
as a way of reducing the computational effort of model-based workflows through dimen-
sionality reduction [9, 10]. The details about extensive applications of ROMs to various
research area can been found in Chapter 3.

The aforementioned ROM accurately represents the high-fidelity forward model in the
reduced subspaces spanned by the projection basis which contains the hidden physics.
By contrast, data-driven approaches solely depend on data (simulated or real data) to ap-
proximate the relation between input and output as accurately as possible, such as poly-
nomial chaos expansion [11] and fully-connected artificial neural networks [12]. These
data-driven surrogate models have demonstrated their feasible applicability to some de-
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gree, however their use is restricted only to relatively small-dimensional problems and
therefore suffer from the curse of dimensionality and fail to work for large-scale problems.
The deep neural network (DNN) has recently attracted attention because of successful ap-
plications in several fields, including computer vision [13] and image processing [14]. Re-
cent advances in DNN and their promising application results have prompted research on
deep-learning-based surrogate modeling for high-dimensional subsurface flow systems
[15]. The popularity of these methods is further enhanced by the availability of open ac-
cess machine learning frameworks, such as TensorFlow [16] and PyTorch [17].

Construction of surrogate models for high-dimensional and nonlinear subsurface flow
models becomes increasingly popular in various engineering application. For example,
Tripathy et al (2018) proposed a fully-connected deep neural network to approximate the
flow dynamic of a single phase subsurface water flow in porous media [18]. Zhong et
al (2019) proposed a generative surrogate models for the dynamic plume prediction of
CO2 capture and storage problem. This type of surrogate model was built on a genera-
tive adversarial network (GAN) [19]. Subsequently, motivated by the developments in the
community of image super-resolution and image segmentation tasks, the advanced DNN
structures dense block [20] and residual block [21] are introduced to further improve the
performance of the DNN architecture. The dense block and/or residual block enable us
to design much deeper neural networks while avoiding the vanishing/exploding gradient
problem. They have demonstrated impressive performance in effectively obtaining accu-
rate surrogate models for various applications.

The DNN models are generally trained by iteratively adjusting the trainable variables
that parameterize the neural network model, during which the auto-differentiation (AD)
is used to calculate the gradient of the loss function with respect to neural network param-
eters, e.g., weights and biases. There is a clear similarity in the way how DNN and SHM
iteratively update parameters, e.g., geological parameters in SHM. In this sense, the train-
ing of DNN is not that far from the gradient-based SHM. Due to the availability of AD and
high-performance computing units, the evaluation of gradients for DNN is much more
efficient than that of conventional SHM procedure. An interesting question remains how
to take full use of the computational advantage of DNN to address the SHM problem in a
short time frame.

The contribution of this chapter to the reservoir data assimilation community is inves-
tigating two kinds of surrogate models and verifying their applicability to speedup gradient-
based SHM problems. Specifically, the first objective of this work is to explore the possi-
bility of using the DNN surrogate to approximate the gradient for seismic history match-
ing, which has not been fully investigated yet. Addressing gradient-based SHM with the
use of a DNN surrogate has the advantage of facilitating the use of deep learning pack-
ages. It might benefit from powerful concepts such as AD in the deep learning packages
for obtaining gradients in a very efficient manner. Since both DNN surrogate and subdo-
main POD-TPWL are intentionally used for the gradient-based seismic history matching,
a comparative study between them is identified as the second research objective.

The remainder of this chapter is as follows: The gradient-based seismic history match-
ing framework is defined in Section 2. Section 3 describes the deep-learning surrogate
model, in which a residual U-Net and an explicit concatenation of time feature are inte-
grated to capture both spatial and temporal features. The gradient approximation for SGD
is described as well. Section 4 assesses the surrogate-assisted gradient-based inversion
framework on a 3D benchmark reservoir model. A comparative study between the DNN
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surrogate model and our previously proposed projection-based subdomain POD-TPWL is
also presented. Finally, Section 5 summarizes our contribution and discusses future work.

6.2. GRADIENT-BASED SEISMIC HISTORY MATCHING
History matching time-lapse seismic data requires the capability to compute seismic

data from a given reservoir model. The SHM workflow generally needs us to run two con-
secutive forward models: the fluid flow simulation model and the rock–physics model.
The former predicts the reservoir state variables (pressure and saturation), and then the
latter simulate the seismic response from the reservoir state variables. The Gassmann
model is one of the most commonly used rock–physics model in practice [22]. The re-
lationship between simulated saturation and spatial parameter fields can be described by
a nonlinear operator. To simplify the notation without loss of generality, one such generic
operator hn can be simply described as follows,

xn = hn(m), n = 1, · · ·, Nt (6.1)

where, m ∈ RNm denotes the vector of spatial parameters for reservoir model. Nm is the
total number of gridblocks. n denotes the simulation step. xn∈RNm represents the sat-
uration in all gridblocks, which are constrained to lie within a bound [0,1]. The seismic
data is directly related to fluid saturation and pressure changes and provides information
on the dynamic behavior of the reservoirs. For simplification, we directly measure fluid
saturation in each grid-block without running the rock–physics model for generating the
real elastic properties. That is to say, xn directly represents the simulated seismic data.

Gradient descent algorithms, or more specifically a full-gradient descent (FGD), are
generally used to minimize the objective function in an iterative manner. The general
gradient-based seismic history matching can be defined as a PDE-constrained least squares
optimization formula. The objective function, denoted as J here, is defined using full
dataset with high-fidelity model (HFM) as follows.

J (m) = 1

2
(m−mb)T R−1

m (m−mb)+ 1

2

Nt∑
n=1

(dn
obs −xn)T [Rn

obs ]−1(dn
obs −xn) (6.2)

where, the measurement errors for the data gathered at the timestep n are generally as-
sumed to satisfy a Gaussian distribution N (0,Rn

obs ), where Rn
obs represents the measure-

ment error covariance matrix. Here we want note that the terminology HFM is equivalent
to the FOM (full-order model) used in previous two chapters.

After defining the objective functions, the key step of a gradient-based minimization
algorithm is to determine the gradient of the objective function with respect to the param-
eters. In this paper, both projection-based ROM and DNN surrogate are used to approxi-
mate the gradients in an efficient manner.

6.3. SURROGATE MODELING USING DEEP NEURAL NETWORK
This section introduces the procedures of using a data-driven DNN to approximate

the relation between geological parameters and saturation. Specifically, the neural net-
work architecture, model training procedure and gradient approximation for the stochas-
tic gradient descent are described.
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6.3.1. NEURAL NETWORK ARCHITECTURE

A deep-learning based surrogate model representing the time-dependent process can
be presented as follows:

x̂n = ĥ
n

(m, t n ,θ), n = 1, · · ·, Nt (6.3)

where, x̂n ∈ RNx×Ny×Nz is the neural network prediction (a 3D image) for the input m ∈
RNx×Ny×Nz at the time tn . Nx , Ny and Nz represent the image size. θ denotes the trainable
parameters for the neural network model. In this model, the current output x̂n depends
only on the time-independent input permeability field m and time tn .

Recent applications of deep neural network to subsurface flow simulations have been
extensively reported. For example, Jin et al proposed a data-driven DNN surrogate model
with autoregressive structure for approximating the time-varying process in reservoir sim-
ulation problem [23]. Tang et al [24] developed a deep convolutional recurrent neural net-
work architectures, specifically a combination of auto-encoder and a convolutional long
short term memory recurrent network (convLSTM) [25]. Although autoregressive struc-
ture excels at temporal regression tasks, they will definitely encounter a time-dependent
error accumulation problem. The recurrent neural network might become computation-
ally demanding for the long time-serial models [26], although the time-dependent error
accumulation problem hardly occurs.

To address the aforementioned drawbacks, we use an alternative deep convolutional
neural network, namely time-conditioning residual U-Net (cR-U-Net), based on an inte-
gration of auto-encoder structure and the well-known Residual U-Net architecture, which
was originally proposed for bio-medical image segmentation [21]. The residual U-Net ar-
chitecture has demonstrated to be very effective for the cross-domain regression prob-
lem [19], such as the mapping from the spatial parameter fields to simulated saturation
field studied in the paper. To learn the temporal features of dynamic models, a time-
conditioning feature, as an additional channel, is concatenated to the low-dimensional
representation features after the encoder part [15]. The time feature is represented as a
map of the same dimension as the low-dimensional representation features. Each ele-
ment of the time feature map is equal to a specific time value. This is different from the
above two approaches that use either autoregressive or recurrent structures to capture the
time-serial dynamics and hence is capable of effectively mitigating the error accumulation
and computational issue for the long time-serial models.

The configuration of cR-U-Net is guided by the literature [24] where a similar R-U-Net
architecture is designed. This cR-U-Net architecture contains two symmetric units, e.g.,
an encoding path and a decoding path, to capture the spatial features of the input and the
output images. In addition, we also design a transition unit, including a stack of residual
blocks, for connecting the encoding and the decoding unit. Fig.6.1 illustrates a schematic
diagram of the proposed cR-U-Net which synoptically displays the arrangement of encod-
ing, transition and decoding unit.

Details of the architecture of the encoding, transition and decoding unit are depicted
in Figs.6.2-6.4. The encoding unit shown in Fig.6.2(a) then takes the reshaped geologi-
cal permeability maps as the inputs. A set of feature maps Fk (m) (k = 1, 2, 3, 4) are ex-
tracted from four consecutive convolutional blocks and will then be fed to the symmet-
ric decoding unit. From F1(m) to F4(m), the maps gradually contains much more com-
pressed and global features. Each convolutional block consists of three continuous op-
erations (Conv3D-B atchNor m-ReLU ), including a 3D convolutional layer (Conv3D), a
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Figure 6.1: Schematic illustration of the cR-U-Net architecture for a 2D input image following the literature [24].
The cR-U-Net is composed of encoding unit, transition unit and decoding unit. The multi-scale features

extracted in the encoding unit are concatenated with the upsampling features in the decoding unit to produce
the final output. The transition unit concatenates and forwards the extracted multi-scale features and time
feature, and then feeds them to the decoding unit. The gray shape in the transition unit represents the time

feature map.

batch normalization layer (B atchNor m) and a rectified linear activation unit (ReLU ), as
displayed in Fig.6.2(b).
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Figure 6.2: Schematic illustration of encoding unit. This unit consists of four convolutional blocks. The
encoding unit accepts the logarithmic permeability image as an input. The generated multi-scale features

Fk (m) ∈ RNw,k×Nh,k×Nd ,k (k = 1, 2, 3, 4), are sequentially fed to the decoding unit. Also the blue maps on the
right side are the same as F4(m).

The feature maps F4(m) produced from the encoding unit are fed to a transition unit,
see Fig.6.3(a). To learn the temporal features of the dynamic model, the time, as a con-
ditional feature channel, is concatenated to the low-dimensional representation features,
i.e., F4(m), after the encoding part. This transition net is composed of five residual-blocks.
The structure of the residual block, specifically residual convolutional (r esConv) block,
bypass the nonlinear layers through introducing an identity mapping. The nonlinear layer
follows the standard structure of Conv3D-B atchNor m-ReLU as illustrated in Fig.6.3(b).
This special architecture of r esConv block can help cope with the gradient vanishing/explosion
problem especially for the highly deeper network [27]. A residual block intentionally con-
structs connections between non-adjacent layers, designed to take full advantage of the
multi-scale features in the output of the previous layers [20]. For example, a residual block
with two convolutional layers is shown in Fig.6.3(b). The aim of transition unit is to pro-
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duce feature maps F5(m), which are the most complicated and informative feature maps
containing both the spatial and temporal information. These maps will be then provided
to the decoding unit.
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(b) Residual block
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Figure 6.3: Schematic illustration of transition unit. A stack of five residual blocks is used to propagate the
output of the encoding unit. In addition, the time feature as an additional channel is fed to this unit as well to

capture the flow dynamic.

Fig.6.4 illustrates the structure of the decoding unit. In this unit, the produced fea-
ture maps F5(m) from transition unit are gradually unsampled using four transposed 3D
convolutional blocks, and then the output feature maps of them are concatenated with
the previously extracted feature maps Fk (m) (k = 1, 2, 3, 4) in the corresponding encoding
unit, respectively. Finally, the decoding unit generates the target quantities of interest, e.g.,
saturation maps, in the final output layer. The transposed 3D convolutional (T Conv3D)
block or upsampling block is applied here for the purpose of upsampling operations. In or-
der to guarantee that the output x̂ is constrained to lie within the bound [0,1], the Si g mod
activation function is designed at the final output layer [28].
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Figure 6.4: Schematic illustration of decoding unit. This unit consists of four transposed convolutional blocks
corresponding to the encoding unit. Decoding unit accepts the extracted multi-scale features Fk (m) (k = 1, 2, 3,

4) to produce the target maps.

6.3.2. DATASET PREPARATION
In order to train the cR-U-Net architecture, the dataset has to contain mappings from

the various permeability fields to seismic maps, i.e., spatially grid-wise saturation in this
paper. In our proposed cR-U-Net surrogate model, the current output xi ,n depends only
on the input permeability image mi and time index t n . We re-arrange the saturation
snapshots obtained from one high-fidelity model simulation, i.e., saturation map (mi ;
xi ,1,· · ·,xi ,Nt ), as Nt consecutive training samples

{(mi ;xi ,1, · · ·,xi ,Nt )}Ns
i=1 ⇒ {(mi , t n ;xi ,n)}Ns ,Nt

i=1,n=1 (6.4)
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and we expect that the time-dependent relationship between the geological permeability
inputs and time-varying saturation outputs can be clearly captured in this time-conditional
network structure. Finally, the total number of training samples fed to this cR-U-Net be-
comes Ns × Nt .

6.3.3. TRAINING PROCEDURES
The choice of loss function is generally case-dependent. It is important to choose an

appropriate loss function with the aim of improving the performance of designed network
as much as possible. For this study, a loss function defined by the mean square error (MSE)
is used for this cross-domain image regression problem.

LMSE (θ) = 1

Ns Nt

Ns∑
i=1

Nt∑
n=1

‖x̂i ,n −xi ,n‖2
2 (6.5)

After configuring the neural network architecture, we use the popular Adam optimizer
to optimize the neural network parameters. Through using approximations of the first and
second order moments of the gradients, the Adam computes learning rates for different
parameters in an adaptive manner. The learning rate which controls the updates of model
parameters at each iteration is 5×10−3. A learning rate scheduler which drops ten times on
plateau training is also adopted to stabilize the training process. Details about the iterative
scheme of the Adam optimizer will be given in the next section. An overview of the full
workflow is provided in Algorithm 3 for the offline training stage. This network was built
and trained using the open-source deep learning package PyTorch [17].

Once the neural network is trained, the predictions corresponding to new inputs are
straightforward. Given an arbitrary input, repeated implementations of Eq.6.3 are used to
evolve this time-varying states for all Nt timesteps. Specifically, the saturation x̂n at the n-
th timestep is sequentially predicted by providing the permeability input m and the time
t n . The computational cost for the new predictions almost can be neglected as compared
to additional high-fidelity model simulations.

Algorithm 3: The cR-U-Net architecture: Offline training stage

1 Set an initial network trainable parameters θ0 ;
while epoch < nepoch do

while mi ni batch < Ns × Nt do
2 Calculate the gradient 5 LMSE (θ) using automatic-difference tool;
3 Update the parameter solution using Adam(θ) → θ ;
4 Evaluate the loss function function LMSE (Eq.6.5);
5 Check convergence;

end
end

6 Return the optimal parameters θ

6.3.4. GRADIENT APPROXIMATION USING AUTO-DIFFERENTIATION
The use of DNN surrogate model in SHM enables the entire SHM procedure com-

pletely implemented using the deep learning packages. It can benefit from the deep learn-
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ing practice of using minibatches of data with the stochastic-gradient descent (SGD) op-
timizers instead of the more conventional approach of applying an optimizer such as the
FGD, e.g., as defined in Eq.6.2. The robustness and faster convergence of SGD optimizers
have been extensively demonstrated in the deep-learning community [29]. In this work,
we explore the potential of applying SGD to improve seismic history matching perfor-
mance. The attractive benefits of using SGD stem from its efficiency for problems with
a large number of data and parameters and its effectiveness for problems with noisy gra-
dients.

Compared to FGD during which we have to run through all data points at Nt measured
time steps for a single update of the parameters in a particular iteration, SGD enables us
to use the data points at only one measured time step (e.g., n ∈ [1, Nt ]) or a subset bz of
[1, Nt ] (e.g., a collection of several random selections of indices from [1, Nt ]) to update the
parameters. If the size of dataset is huge, e.g., the spatially dense seismic data frequently
collected at some time steps, it may take too long for FGD to minimize the objective func-
tion because we need use the full dataset for updating the parameters in each iteration. In
contrast, SGD uses only one or a subset of data and it starts update the parameters rapidly.

We introduce the stochastic gradient as an approximation of the full gradient that can
be used to speed up calculations and algorithm convergence. After training the cR-U-Net
surrogate model, the approximated stochastic objective function, denoted as JN , can be
defined using a subset bz with trained neural network model correspondingly

JN = 1

2
(m−mb)T Rm

−1(m−mb)

+ 1

2

∑
n∈bz

[dn
obs − ĥ

n
(m, t n ,θ)]T [Rn

obs ]−1[dn
obs − ĥ

n
(m, t n ,θ)] (6.6)

and its corresponding stochastic gradient with respect to the parameters m using the sen-
sitivity or Jacobian matrix

gN ,1 = Rm
−1(m−mb)− ∑

n∈bz
[
∂ĥ

n

∂m
]T [Rn

obs ]−1[dn
obs − ĥ

n
(m, t n ,θ)] (6.7)

The computation of objective function gradient can be realized based on two meth-

ods. (1) The first method uses the model sensitivities ∂ĥ
n

∂m , to compute the gradient gN ,1,
e.g., Eq.6.7. Each element of this matrix is the derivative of the surrogate model outputs,
ĥ

n
(m), with respect to the parameters m. e.g., grid-based geological permeability. (2) The

second method directly calculates the gradient of the objective function JN with respect
to m, denoted to be gN . Deep-learning packages provide sufficient built-in modules to
efficiently compute the function with a least-square formula, e.g., Eq.6.6, and its gradient
using AD. That is, the second method does not explicitly involve the computation of sen-

sitivities. In general, gN is often cheaper to calculate than that of model sensitivities ∂ĥ
n

∂m
in terms of the computational complexity.

Once the SHM algorithm is implemented in the deep learning packages, some so-
phisticated evaluations, e.g., objective function evaluation (Eq.6.6) and gradient approxi-
mation (Eq.6.7) involving high-dimensional matrix-matrix/vector multiplications, can be
quickly computed. For example, they can be executed on multi-CPUs and GPUs, and run
in parallel across a distributed memory computer cluster. All these features form the main
motivation for investigating the use of DNN surrogate model for the SHM problem.



6.4. EXPERIMENTS AND DISCUSSION

6

111

6.3.5. STOCHASTIC GRADIENT DESCENT OPTIMIZATION

To minimize surrogate objective function JN , a standard stochastic gradient descent
(SGD) algorithm updates the parameters at k th optimization step

mk+1 ← mk −εk gk
N (6.8)

The aforementioned Adam optimization algorithm has recently seen broader appli-
cations in the community of deep learning. Adam leverages past gradient information
to retard the descent along large gradients. This information is stored in the momentum
vector u and squared element-wise gradient vector v as

uk = bu uk−1 + (1−bu)gk
N ; ûk = uk

1−uk

vk = bv vk−1 + (1−bv )[gk
N ]2; v̂k = vk

1−vk
(6.9)

where, ûk and v̂k are the unbiased momentum and squared gradient vectors, respectively.
The gradient descent step proceeds as follows

mk+1 = mk −ζk ûk√
v̂k +ε

(6.10)

The above update is performed element-wise and ε is a small number (e.g. 10−8) to avoid
any division by zero in the implementation. Here we use commonly recommended default
parameters values of εk =0.001, bu=0.9, bv =0.999 and ε=10−8.

For the implementation of the SHM procedure with the deep neural network surro-
gate, we have used the open access deep learning package PyTorch to build a hybrid CPU/GPU
computing framework, where the training data are generated using the open-source sim-
ulator OPM-F low [30] running on CPUs while both surrogate model training and seismic
history matching are implemented on GPUs. All these features prompt the application of
our proposed methodology to practical cases.

6.4. EXPERIMENTS AND DISCUSSION

6.4.1. DESCRIPTION OF MODEL SETTINGS

In the numerical experiment, we test our proposed surrogate-assisted seismic history
matching approach on a 3D benchmark model used in Chapter 5. One of the realizations is
chosen to be the reference model as illustrated in Fig.6.5. Details about reservoir geometry,
rock properties, fluid properties, and well controls also can be found in Chapter 5.

We show four Gaussian-distributed realizations of logarithmic permeability and their
corresponding predictions of water saturation in Fig.6.6. The geological model realiza-
tions and the saturation corresponding to day 2700 and day 5400 are consecutively dis-
played in this figure. It can be seen that the heterogeneity of the permeability fields results
in fairly large differences between the areas that are flooded in different model realiza-
tions.

In order to quantify the history matching results, we define an error measure based on
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Figure 6.5: The illustrations of the spatial logarithmic permeability for the 1st, 10th and 11th vertical layer. The
triangles and circles denote the injectors and producers, respectively.

Figure 6.6: Predictions of the time-varying saturation maps corresponding to four random realizations of
logarithmic permeability fields.

parameter misfits em as follows,

em =

√√√√∑Nm
i=1(mi

tr ue −mi
upt )2

Nm
(6.11)

where, mi
tr ue and mi

upt denote the logarithmic permeability value of the gridblock i from
the reference model and updated model, respectively.

In addition, the optimal objective function value J also should satisfy the following
inequality

J É 3 Nobs (6.12)

where, Nobs is the total number of measurements. This criterion can be used to quantify
the accuracy of history matching results.

To evaluate the quality of the parameter estimation results, we will compare the value
of the final objective function against both the criterion (Eq.6.12) and the reference ob-
jective function values for the true model. Reconstructed parameter maps will provide a
visual indication of quality of the solution. For all approaches we will list the computa-
tional cost expressed in terms of the number of HFM simulations.

6.4.2. CONFIGURATION OF CR-U-NET ARCHITECTURE
The details about cR-U-Ne architecture are described in Table 6.2. The input is the log-
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Table 6.1: he hyper parameter settings for training cR-U-Net model.

Training size (Ns ) 100,300,500,800,1000
Re-organized training size (Ns × Nt ) 1000,3000,5000,8000,10000
Testing size 200
Learning rate 0.001
Optimizer Adam
Batch size 10
Number of epochs 100

arithmic permeability m. For the first step, we reshape the geological permeability fields
into three-dimensional images with the size of Nx =40, Ny =120 and Nz =20. In the decoding
part, a set of feature maps Fk (m) (k = 1, 2, 3, 4) are extracted from four consecutive con-
volutional blocks. From F1(m) to F4(m), the maps gradually contains more compressed
features, as illustrated in Fig.6.7 After the decoding part, the input is compressed in 128
feature maps with the size 2 × 7 × 1 and then concatenated with an additional time fea-
ture map with the same size 2 × 7 × 1. These 129 feature maps are fed to the transition unit
for producing 128 feature maps with the constant size 2 × 7 × 1. Finally, these 128 feature
maps are provided to the decoding unit for the output, e.g., saturation, with the size of 40
× 120 × 20.

Five different number of training samples, i.e., Ns = 100, 300, 500, 800, and 1000 sam-
ples, are used to assess the performance of cR-U-Net with respect to the training sample
size. The model is run for 5400 days, and training data are collected at Nt =10 intervals
of 540 days each. After reorganizing the dataset, there are in total 1000, 3000, 5000, 8000
and 10000 training samples correspondingly. The hyper parameter settings for training
the cR-U-Net model are listed in Table 6.1.

Table 6.2: Illustration of cR-U-Net architecture. The size of a 3D image is Nx =40, Ny =120 and Nz =20 in this
case-study.

Unit Layer Output Size

Encoder unit

Input (geological permeability images) (40, 120, 20, 1)
Conv3D-B atchNor m-ReLU , 16 kernels of size (3,3,3,2) (20, 60, 10, 16)

Conv3D-B atchNor m-ReLU , 32 kernels of size (3,3,3,16) (20, 60, 10, 32)
Conv3D-B atchNor m-ReLU , 64 kernels of size (3,3,3,32) (10, 30, 5, 64)

Conv3D-B atchNor m-ReLU , 128 kernels of size (3,3,3,64) (10, 30, 5, 128)

Transition unit

Input (outputs of encoder unit + an additional time feature) (10, 30, 5, 129)
r esConv , 128 kernels (10, 30, 5, 128)
r esConv , 128 kernels (10, 30, 5, 128)
r esConv , 128 kernels (10, 30, 5, 128)
r esConv , 128 kernels (10, 30, 5, 128)
r esConv , 128 kernels (10, 30, 5, 128)

Decoder unit

Input (outputs of transition unit) (10, 30, 5, 128)
TConv3D-B atchNor m-ReLU , 128 kernels of size (3,3,3,128), (10, 30, 5, 128)
TConv3D-B atchNor m-ReLU , 64 kernels of size (3,3,3,128), (20, 60, 10, 64)
T Conv3D-B atchNor m-ReLU , 32 kernels of size (3,3,3,64), (20, 60, 10, 32)
T Conv3D-B atchNor m-ReLU , 16 kernels of size (3,3,3,32), (40, 120, 20, 16)

Conv3D-Si g moi d , 1 kernels of size (3,3,3,16), stride 1 (40, 120, 20, 1)

6.4.3. ASSESSMENT OF SURROGATE MODEL QUALITY
The performance of the cR-U-Net model can be investigated by comparing the pre-

defined metrics, e.g., the field-average relative error γs , relative to the number of training
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Figure 6.7: Schematic illustration of the cR-U-Net architecture using the 3D SAIGUP geological models as inputs.
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Figure 6.8: Comparison of the field-average relative error in saturation at all Ns =10 time intervals over the full
Ntest = 200 test samples. The cR-U-Net surrogate models are trained using Ns = 100, 300, 500, 800, and 1000

samples, respectively.

samples Ns for the quantities of interest, i.e., saturation values. Fig.6.8 shows the γs value
obtained on the training ensemble of Ntest = 200 realizations for the predicted saturation.
The γs metrics will gradually increase as the time propagation, which reflects the degraded
quality of network models. It has been demonstrated that training cR-U-Net model using
Ns = 1000 samples significantly improve the network quality through achieving relatively
low γs values. Through observing the evaluated relative errors in saturation maps over the
200 random test samples, we find the overall field-average relative errors γs are 2.83% and
5.37% for 1000 and 100 training samples, respectively. The small γs values significantly
indicate a high degree of accuracy in the saturation maps predicted from the cR-U-Net
model.

In addition, the plots of the time-varying saturation predictions from the two approaches
are used to visually assess the accuracy of the trained network. Fig.6.9 shows the predicted
saturation distribution at two time-instances, i.e., day 2700 and day 5400, corresponding
to the cR-U-Net models trained using Ns = 100 and 1000 samples, respectively. It clearly
can be seen that the cR-U-Net surrogate model is capable of predicting the water satura-
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Figure 6.9: Illustration of time-varying phase saturation predicted from cR-U-Net, HFM and their absolute
errors at day 2700 and day 5400. The cR-U-Net models are trained using Ns = 1000 and 100 training samples,

respectively.

tion profile with a high accuracy. In addition, the corresponding relative saturation error
γs at these two time instances are 3.92% and 2.87%, respectively. Thus, the results in Fig.6.9
can be considered to be representative in terms of surrogate model accuracy.

In terms of computational effort, the run time for a single HFM simulation for this case
is about 250 seconds on a machine with i5-4690 Intel CPUs (4 cores, 3.5GHz) and 24 GB
memory using OPM-F low simulator. The cR-U-Net is trained using a NVIDIA Tesla P100
GPU card. The simulation of trained neural network requires about 0.1 seconds. How-
ever, the training stage of this network is computationally intensive, which includes the
generation of training samples and additional overhead. It would be not useful to con-
struct the cR-U-Net surrogate model unless it is to be used in the situation where numer-
ous simulations are required. Because many simulations are required in seismic history
matching applications, the cR-U-Net surrogate models could be applicable in this context.
Although the training time can vary by case, it is just a small fraction of the time required
in the conventional seismic history matching where numerous HFM simulations must be
performed. The use of surrogate model in conjunction with the gradient-based seismic
history matching is presented in the following section.

6.4.4. HISTORY MATCHING RESULTS USING THE CR-U-NET SURROGATE

The measurements used in this case correspond to the saturation values from the ’true’
model simulation for every 540 days, mimicking the collection of a large amount of data,
with a total of 787200 measurements, from ten time instances. Normal distributed in-
dependent measurement noise with a standard deviation equal to 5% of the ’true’ data
value was added to all measurements. We will demonstrate the feasible applicability of
our proposed DNN-assisted history matching approach to assimilate a large number of
measurements.
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STUDY OF THE BASE-CASE

After training the cR-U-Net surrogate model, the gradients of the objective function
with respect to the logarithmic permeability are computed analytically using AD, and then
the Ad am optimizer is implemented to update the geological parameters efficiently. Batch
size of one (i.e. we randomly select data from one measured timestep) is used in this base-
case study. In addition to the default parameters for the Ad am optimizer, the learning rate
ε is set to be 0.05. We do not fix the maximum number of iterations since the cost of run-
ning the cR-U-Net models is almost negligible. The minimization algorithm is considered
to have sufficiently converged when either the criterion for minimum change of objective
function or the logarithmic permeability at two consecutive iterations is satisfied. These
two stopping criteria are set to be 0.0001 and 0.001, respectively.

Table 6.3 and Fig.6.10 display the history matching results, including the final objec-
tive functions, parameter misfits em and the required number of HFM simulations. The
cR-U-Net models are trained using Ns = 100,300,500,800 and 1000 samples, respectively.
The surrogate objective functions JN are iteratively minimized as shown in Fig.6.10. Since
the cR-U-Net cannot exactly represent the original HFM using a finite training set, we also
show the high-fidelity objective functions J using original HFM in Table 6.3. It can be seen
that the values of J are slightly larger than that of JN due to the fact that the cR-U-Net
surrogate model introduces additional approximation errors. In order to verify the history
matching results, we also display the metric (Eq.6.12) and the reference objective function
value. The final objective functions are very close to the reference value. After assimi-
lating a large amount of measurements, the parameter misfits em have been significantly
decreased, e.g., from 1.1141 to 0.4123 corresponding to Ns = 1000 training samples. The
accuracy of history matching results gradually improve as the number o training samples
as indicated by the reductions of em values.

Fig.6.11 shows the 2D horizontal cross sections of the updated logarithmic permeabil-
ity fields for the 1st and 11th vertical layer, which can be used to assess the accuracy of the
history matching results. The reference model is almost reconstructed by assimilating a
large number of measurements. Surprisingly, the cR-U-Net model trained with only Ns =
100 samples is already capable of achieving a posterior realization which is visually close
to the reference model. These results reveal the effectiveness of the proposed cR-U-Net
surrogate model for addressing seismic history matching problems, since it can provide a
useful direction to update the uncertain parameters correctly in this case-study.

To further illustrate the accuracy of the updated reservoir models, the predictions of
saturation at both two specific time instances (e.g., day 2700 and day 5400) before and after
history matching are depicted in Fig.6.12. Compared to the initial models, the saturation
predictions of the updated models are visually close to the predictions of the true model.
The correlation coefficients have been increased from the initial 70% to the final 98%.

EFFECT OF THE INITIAL MODELS

The gradient-based optimization methods inevitably get stuck in local minima for any
non-convex optimization problems, such as seismic history matching in this study. For-
tunately, without running additional HFM simulations at the history matching stage, the
proposed cR-U-Net surrogate model enables us to efficiently generate multiple posterior
solutions through starting from different initial models. Fig.6.13 depicts the parameter
misfits em after the history matching corresponding to three different initial models. The
differences among these three parameter misfits em indicate that several local minima
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Table 6.3: Summary of history matching results using cR-U-Net surrogate model trained with different sample
size. These are the results for SGD with batch size 1. We also show the tolerance (Eq.6.12) and the reference

objective function values for the true model (reflecting the impact of the data noise).

Ns em JN ×106 J ×106 Number of HFM simulations
100 0.7130 0.9262 1.0224 100
300 0.6075 0.8425 0.8754 300
500 0.5087 0.8376 0.8577 500
800 0.4368 0.7083 0.7235 800

1000 0.4123 0.6720 0.7011 1000
Reference 0.4027
Tolerance 2.362
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Figure 6.10: The surrogate objective function JN as a function of iterations. The cR-U-Net surrogates are trained
using Ns = 100,300,500,800 and 1000 training samples, respectively. The tolerance and the reference objective

function values for the true model (reflecting the impact of the data noise) are shown in red bash and bold lines.

have been found for different initial models. It can be further visually revealed in Fig.6.14
that the updated logarithmic permeability fields corresponding to these three initial mod-
els are significantly different. We also compare in Fig.6.15 the predictions of the well water
injection rate (WWIR) and well water-cut (WWCT) at all nine injectors and nine produc-
ers before and after history matching. Clearly, it can be observed that the spread of both
WWIR and WWCT is significantly reduced towards the predictions of the reference model.

In this study, the total number of HFM simulations is taken as an indicator of the com-
putational cost, since the GPU time for running cR-U-Net is negligible compared to that
for running HFM model. In order to assess the model uncertainty, we can generate multi-
ple posterior models through repeatedly implementing the gradient-based optimization.
We only need to run HFM simulations in the training stage and SHM process does not
involve additional HFM simulations. Our proposed surrogate-assisted history matching
method is highly efficient since the training of the cR-U-Net requires only a small number
of HFM simulations. For example, the cR-U-Net model trained with Ns = 100 samples is
already capable of achieving good history matching results in this case-study.
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Figure 6.11: 2D horizontal cross sections of the updated logarithmic permeability under different number of
sample size Ns = 100,300,500,800 and 1000 from the cR-U-Net. The 1st and 11th vertical layer are shown here.

FGD VERSUS SGD OPTIMIZERS

Since our proposed cR-U-Net model is not an exact representation of the high-fidelity
model, incorporating the cR-U-Net into the SHM procedure inevitably introduces an ad-
ditional source of uncertainty due to the approximation errors. In this section, the Adam
optimizer is used to demonstrate the effectiveness of SGD optimization in reducing the
approximation errors. The entire seismic data measured at 10 time instances is divided
using five different batch size, e.g., 1,2,3,4 and 5, respectively. Taking the batch size 2 as
an example, two random time index are selected from the 10 time steps, and then the cor-
responding seismic data at these two time instances are used to update the parameters
in one iteration. That is to say, the entire seismic data will be fully used to update the
parameters in 5 iterations.

Fig.6.16 shows the evolution of the surrogate objective function JN with respect to
the iterations and batch size for the Ad am optimizer. It clearly can be seen that using
a smaller batch size can achieve a faster convergence rate. For example, about 35 and 118
iterations are required for a batch size 1 and 5, respectively. By contrast, the FGD opti-
mizer requires much more iterations, e.g., after 220 iterations it still has a larger objective
function value.

Fig.6.17 displays an ensemble of parameter misfits em corresponding to different batch
size and the FGD optimization. It is noticeable that the SGD optimization achieves larger
reductions of the parameter misfits than that of the FGD optimization. SGD is more ef-
fective to address surrogate-assisted seismic history matching with approximation errors.
As a hyper parameter for the Ad am optimizer, we should chose the batch size with much
care. The evolution of the parameter misfits em corresponding to three initial models are
highlighted as well in Fig.6.17. It can be concluded that the optimal batch size depends
on the initial model and the quality of the cR-U-Net model. For example, for the cR-U-Net
trained with Ns = 1000 samples, batch size 3, 2 and 5 generate the best history matching
results for these three initial models, respectively.
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Figure 6.12: Predictions of water saturation before and after history matching and their absolute errors at 2700
days and 5400 days of production. The cR-U-Net models are trained using Ns = 100 and 1000 training samples,

respectively.

Fig.6.18 depicts the updated logarithmic permeability fields corresponding to one ran-
dom initial model using SGD and FGD optimization. The SGD optimization obtains sim-
ilar parameter fields corresponding to different batch size, which are very consistent with
the reference model, while the FGD optimization visually generates a different parameter
field. SGD has proven highly successful in the process of training DNN. There is a clear
similarity in the way how DNN and SHM iteratively update parameters, e.g., geological
parameters in the seismic history matching. The stochastic optimization methods might
easily move away from saddle points, while the FGD methods tend to get stuck in them.
That is to say, our adopted stochastic optimization method might be more possible to es-
cape from local minima. By contrast, the approximated gradients by FGD are inevitably
fraught with approximation errors of cR-U-Net surrogate model.

6.4.5. CR-U-NET VERSUS SUBDOMAIN POD-TPWL SURROGATE

Since both the DNN surrogate and our previously proposed projection-based reduced-
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Figure 6.14: 2D horizontal cross sections of the updated logarithmic permeability corresponding to three
random initial models. The cR-U-Net models are trained using Ns = 100 and 1000 samples, respectively.

order modeling, e.g., subdomain POD-TPWL, are intentionally used for the gradient-based
history matching, a comparative study between them is conducted in this section. More
details about the derivation of subdomain POD-TPWL and model-reduced adjoint ap-
proach for gradient approximation can be found in Chapter 5. In this case-study, we
choose a fixed domain decomposition scheme, e.g., (3×4, 2×3) decomposition. The seis-
mic data are measured corresponding to the saturation values from the ’true’ model simu-
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Figure 6.15: Forecast of the well water injection rate rate and well water-cut of all nine injectors and nine
producers: dark-gray lines-initial models, blue lines-reference model, red lines-updated model using the

cR-U-Net trained with Ns = 1000 samples.

lation after 2700 days and 5400 days of production, which results in total 157440 measure-
ments. The noisy measurements for theses two time instances are shown in Fig.6.19.

COMPARISON OF SURROGATE MODEL QUALITY

Fig.6.20 displays the dependence of the field-average relative error γs with respect to
domain decomposition strategy, testing interval and number of training samples. The
testing interval represents the maximum discrepancy between the testing model and the
reduced-order linear model. It can be seen from Fig.6.20(a) that increasing the testing in-
terval deteriorates the accuracy of the subdomain POD-TPWL surrogate model, e.g., from
1.52% to 5.04%, for the (3×4, 2×3) domain decomposition scheme. The cR-U-Net is al-
most not sensitive to the testing interval, which however has a significant influence on
the subdomain POD-TPWL surrogate model. For the testing model sampled from a small
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Figure 6.16: Evolution of surrogate objective function JN as a function of iterations and batch size for the Ad am
optimizer. The cR-U-Net surrogate models are trained with 1000 samples.

testing interval, e.g., [-0.1, 0.1], these two surrogate models almost obtain comparable ac-
curacy, however, the accuracy of the subdomain POD-TPWL decreases gradually as the
testing interval increases. More deep insights about these two types of surrogate mod-
els are worth explaining. Subdomain POD-TPWL constructs reduced-order linear model
around a specific trajectory using the first-order Taylor expansion. If the testing model is
far away from this trajectory, the accuracy inevitably will deteriorate. This leads to the ne-
cessity in frequently reconstructing subdomain POD-TPWL once the new testing models
have large discrepancies from the current reduced-order linear model. By contrast, the
cR-U-Net actually constructs a global surrogate model based on the entire training data
and hence retraining cR-U-Net surrogate model is not strictly required. Definitely, filling
the entire parameter space as much as possible using a large number of training samples,
e.g., 1000 in this study, substantially improves the accuracy.

COMPARISON OF HISTORY MATCHING RESULTS

Fig.6.21(a) shows the evolution of objective function values as a function of out-loop
iterations for the subdomain POD-TPWL approach. In this base-case study, (3×4, 2×3) 3D
domain decomposition has been almost convergence after 12 out-loop iterations. Fig.6.21(b)
and Table 6.4 display the final objective functions, the number of HFM simulations and
the parameter misfits em for the cR-U-Net and subdomain POD-TPWL, respectively. Al-
though the subdomain POD-TPWL obtains comparable and even smaller final objective
functions than that of cR-U-Net surrogate models, the parameter misfits em are relatively
larger. For example, the final objective functions are 0.1689×105 and 0.3890×105 for the
subdomain POD-TPWL and cR-U-Net trained with 300 samples, respectively, the param-
eter misfits em, however, are 0.6534 and 0.6370 correspondingly. This result indicates that
subdomain POD-TPWL is noticeably susceptible to the data noise and hence produces a
result, which is overfitting the noisy measurements. By contrast, the proposed cR-U-Net
with SGD optimizer yields small parameter misfits em, which are also gradually decreased
as the number of training samples.
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Figure 6.17: Boxplot of the parameter misfits em of logarithmic permeability before and after history matching
corresponding to 100 different initial models. The batch size of the Ad am optimizer is set to 1, 2, 3, 4 and

5, respectively.

In terms of the computational cost, the (3×4, 2×3) domain decomposition requires 158
HFM simulations, among them, 42 HFM simulations are used to collect the snapshots to
construct the bases for implementing POD, 105 HFM simulations are run to construct the
initial subdomain reduced-order linear model at the 1st out-loop, and additional 11 HFM
simulations are required in the following 11 outer-loops. In order to achieve comparable
parameter misfits em, the cR-U-Net surrogate model should be trained with at least Ns =
300 samples. We also present an alternative to compare these two surrogate models for
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Figure 6.18: 2D horizontal cross sections of the updated logarithmic permeability for the 1st and 11th vertical
layer under different batch size for SGD and FGD optimization methods. The cR-U-Net surrogate models are

trained using Ns 1000 training samples.
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Figure 6.19: Noise distribution of water saturation at the days 2700 and days 5400 used in this comparative
study. Normal distributed independent measurement noise with a standard deviation equal to 5% of the ’true’

data value, was added to all observations

almost the same computational cost. We increase the sampling points for constructing
the subdomain POD-TPWL surrogate models, which generally improves the accuracy of
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Figure 6.20: Field-average relative error γs as a function of domain decomposition, testing interval and number
of training samples. (a) Subdomain POD-TPWL; (b) cR-U-Net surrogate model.

the approximated gradients. As illustrated in fig.6.22, the parameter misfits em gradually
decreases but much slower than those for the cR-U-Net. Corresponding to the specific
domain decomposition scheme, such as (3×4, 2×3) in this case-study, the accuracy does
not infinitely improve as the number of training samples. These results further indicate
the importance of designing appropriate domain decompositions.

Fig.6.23 shows the 2D horizontal cross sections of updated logarithmic permeability
fields for a comparison of the history matching results using the cR-U-Net and subdomain
POD-TPWL surrogate models. It clearly can be seen that the true logarithmic permeability
fields almost can be reconstructed. In summary, subdomain POD-TPWL is slightly more
efficient than that of cR-U-Net surrogate model for generating one posterior realization
for this example application.. In addition, the implementation of subdomain POD-TPWL
is also relatively flexible without a strict requirement for the hardware, e.g., GPU cards.

Table 6.4: The final objective function values J (×106) for the subdomain POD-TPWL and cR-U-Net.

Subdomain POD-TPWL
cR-U-Net

Ns =100 Ns =300 Ns =500 Ns =800 Ns =1000

0.1689 0.4366 0.3890 0.2699 0.2083 0.2021

Initial 1.433

Ref - Projected True 0.0912

Ref - True 0.0785

In order to generate Ne posterior realizations for quantifying the model uncertainty,
the subdomain POD-TPWL has to be independently implemented for each ensemble mem-
ber, which requires us to repeatedly update the reduced-order models with several addi-
tional HFM simulations at the outer-iterations. 147 HFM simulations are required to con-
struct the initial reduced-order model at the 1st out-loop. If the number of outer-loops
for the i -th ensemble member is assumed to be N i

outer−l oop , the required total number of

HFM simulations for obtaining Ne posterior realizations should be (147 +
∑Ne

i=1×N i
outer−loop ).

By contrast, the cR-U-Net surrogate model obtains Ne posterior realizations through start-
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Figure 6.22: Parameter misfits em with respective to the number of HFM simulations for the cR-U-Net and
subdomain POD-TPWL, respectively. We gradually increase the HFM simulations for constructing the

subdomain POD-TPWL surrogate models.

ing from different initial models. As we have mentioned before, this process does not in-
volves additional HFM simulations. Fig.6.24 depicts the parameter misfits em of Ne = 100
posterior models for the cR-U-Net and subdomain POD-TPWL. It is noticeable that the
cR-U-Net generates smaller parameter misfits em than that of the subdomain POD-TPWL.
In terms of computational cost, the subdomain POD-TPWL requires about, for example
an average Nouter−loop =15 outer-loops, 1647 = 147+100×15 HFM simulations for generat-
ing these 100 posterior models, while the cR-U-Net only requires 100 HFM simulations for
achieving even better results. The computational saving will increase linearly with the en-
semble size. Overall, the cR-U-Net will be much more efficient than that of the subdomain
POD-TPWL for generating an ensemble of posterior realizations.

Both methods have their own advantages and disadvantages. On the one hand, our
previous results have indicated that the performance of subdomain POD-TPWL is very
sensitive to the domain decomposition schemes. How to choose the optimal domain de-
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Figure 6.23: 2D horizontal cross sections of the updated logarithmic permeability fields for assessing the
accuracy of the history matching results using the cR-U-Net and subdomain POD-TPWL surrogate models. The

1st and 11th vertical layer are shown here.

composition scheme is one of the most key steps for a successful implementation of the
subdomain POD-TPWL. On the other hand, although the construction of the cR-U-Net is
realized without being explicitly programmed with the hidden and highly complex gov-
erning physics, the choice of a DNN architecture is relatively subjective (although flex-
ible), and its outputs lack a clear understanding. The cR-U-Net takes advantage of the
high-performance computing units, such as the GPU cards, since the exiting deep learn-
ing packages can efficiently use them. The ability of a software program to fully utilize
GPUs is a big advantage.

6.4.6. ADDITIONAL REMARKS

One of the most prominent merit of the proposed surrogate-assisted seismic history
matching method with deep neural network is that it can perform massively parallel com-
putations on GPUs. Nevertheless, limitations of the proposed method do exist. First,
the choice of a neural network architecture is flexible, but it is still relatively subjective.
Second, our proposed surrogate-assisted seismic history matching does not involve ad-
ditional HFM simulations. Although the availability of GPU’s should be a precondition
for efficiently training the cR-U-Net surrogate model, this is not a big problem as GPUs
are relatively cheap and easy to install on existing computer systems. Third, the intrin-
sic disadvantage of the DNN method appears to be that it may not be clear beforehand
how many training samples are needed to obtain the desired accuracy. In order to obtain
highly accurate DNN model, we have to blindly increase the number of training samples
as much as possible in most cases. This inevitably leads to redundant model simulations
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Figure 6.24: Boxplot of the parameter misfits em of logarithmic permeability after the history matching using
cR-U-Net and subdomain POD-TPWL surrogate models. The 3D domain decomposition with adaptive strategy

is implemented.

sometimes when satisfactory results can be obtained using a small dataset. Some promis-
ing results have been obtained in this paper, however, further research is needed to gain
insights about how the DNN surrogate works for the gradient-based inversion, when it will
work (weak- or strong non-linear model) and the trade-offs between accuracy and compu-
tational complexity. The degree of model non-linearity dominates the convergence per-
formance of the gradient-based optimizations. Nevertheless, whether the non-linearity of
the high-fidelity model is correctly represented by the DNN surrogate model has not been
fully understood yet.

Our proposed DNN surrogate method has demonstrated to be very efficient in gen-
erating multiple posterior models. In the community of data assimilation, the ensemble-
based assimilation methods are particularly useful to quantify the models uncertainty for
the realistic cases and many successful applications have been reported in the literature
[31]. A direct application of the proposed DNN surrogates to field-scale models with a
large degree of freedom definitely poses huge computational challenges and memory re-
quirements for training them. This drawback seemingly makes the DNN approach less
attractive than that of the ensemble-based assimilation methods. However, directly as-
similating a huge amount of data has the high possibility to cause unreliable rank defi-
ciency and eventually ensemble collapse problem. In general, increasing ensemble size or
covariance localization have always been a standard approach to resolve this issue [32, 33].
However, it will definitely complicate the implementation of ensemble-based assimilation
methods in realistic applications. By contrast, the filter divergence issue hardly occurs in
our proposed DNN-assisted seismic history matching methodology.
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7
HISTORY MATCHING USING

DEEP-LEARNING STOCHASTIC

INVERSION

Imaging-type monitoring techniques are used in monitoring dynamic processes in many
domains, including medicine, engineering, and geophysics. This chapter presents an effi-
cient workflow for application of such data for the conditioning of simulation models. In
order to reduce the high computational cost and complexity of data assimilation workflows
for high-dimensional parameter estimation, a residual-in-residual dense block extension of
the U-Net convolutional network architecture is proposed, to predict time-evolving features
in high-dimensional grids. The network is trained using high-fidelity model simulations.
We present two examples of application of the trained network as a surrogate within an it-
erative ensemble-based workflow to estimate the static parameters of geological reservoirs
based on binary-type image data, which represent fluid facies as obtained from time-lapse
seismic surveys. The differences between binary images are parameterized in terms of dis-
tances between the fluid-facies boundaries, or fronts. We discuss the impact of the choice
of network architecture, loss function, and number of training samples on the accuracy of
results and on overall computational cost.

Parts of this chapter have been included in a manuscript submitted to Journal of Petroleum Science and Engi-
neering. Xiao, C., Leeuwenburgh, O., Lin, H.X. and Heemink, A., 2020. Conditioning of Deep-Learning Surrogate
Models to Image Data with Application to Reservoir Characterization. Knowledge-Based Systems.
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7.1. INTRODUCTION
Imaging-type monitoring techniques are relevant for monitoring of dynamic processes

in many application domains, and include for example X-Ray, computed tomography (CT)
and magnetic resonance imaging (MRI) techniques for medical imaging [1], satellite re-
mote sensing for earth observation [2, 3], and seismic and electromagnetic imaging of
the subsurface [4]. Applications in the earth observation domain include the prediction
of spreading of air pollution [5, 6] and e.g. typhoon tracks [7]. Geophysical applications
include the monitoring of CO2 storage in aquifers [8] and the displacement of fluids in
hydrocarbon reservoirs [9]. Imaging techniques deliver pixel-wise information in 2D or
3D and may be used to identify static features or anomalies or changes over time. We
are especially interested in the application of such data for the conditioning of simulation
models. Such applications are very common in the geosciences, where large-scale simu-
lation models and measured data are used to monitor the state of e.g. energy and water
systems, predict their future behaviour and optimize actions to achieve desired behaviour
of the system.

A challenge with the use of imaging techniques for these purposes is that they tend
to deliver very large number of data points that may have complex relationships to un-
derlying (poorly-known) model parameters. Therefore compromises are often needed to-
wards the data assimilation methods that are used to integrate the data into models, or to-
wards the description of the data and the associated measurement noise. We intend to use
state-of-the-art data assimilation (in fact, parameter estimation) methods that are able to
deliver a full uncertainty characterization, especially Iterative Ensemble Smoothers (IES)
[10]. Such methods characterize uncertainty in the model by a large ensemble of model re-
alizations, where each model realization is defined by a different set of randomly sampled
values for uncertain model parameters.

Two challenges are commonly recognized in the application of such data assimilation
methods to imaging data: (1) the use of large data sets can lead to artificial collapse of
the ensemble; (2) given the computational expense of simulating each model, the large
number of uncertain grid-based parameters, and the complexity in data-parameter rela-
tionships, many iterations of the IES with a large ensemble may be required, resulting in
huge over-all computational costs.

Several approaches have been attempted to deliver reduced representations of large
data sets, including coarse representations [11], wavelet decomposition [12], and nonlin-
ear reduction methods based on machine learning techniques [13]. In many cases, includ-
ing the earth observation and geophysical examples mentioned earlier, the purpose of the
monitoring is the identification of changes over time, which can often be characterized
by the displacement of a contour value in the image. Leeuwenburgh and Arts and Zhang
and Leeuwenburgh [14, 15] proposed a parameterization of monitoring data for such sit-
uations in terms of distances between corresponding contours (or iso-surfaces in 3D) in
the simulated and measured images respectively, and showed that the resulting reduction
in the number of data can help avoid ensemble collapse (e.g., see Trani et al [16], [17] and
[18] for related approaches). In its most basic form, the contours separate the domain into
regions belonging to one of two possible classes, effectively resulting in a binary image.

Here we address the second challenge, namely the high computational demand im-
posed by iterative parameter estimation workflows involving imaging data. In introduc-
ing the methodology we will focus on an application of time-lapse seismic monitoring for
reservoir model parameter estimation, also referred to as seismic history matching in the
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field of reservoir engineering [19]. Seismic data are obtained as waves that are registered
in grid-based distributions of sensor locations, after being first emitted into the ground at
source locations on the surface and subsequently reflected at so-called impedance con-
trasts in the subsurface, typically reflecting spatial changes in rock properties or fluid con-
tent. When a seismic survey is repeated at a later time, the differences between the imag-
ing data sets can often be interpreted as changes in the distribution of different types of
fluids. Examples include the displacement of water by CO2 [8] and the displacement of
oil by water or gas [9]. Given that direct access to the reservoirs, which are often found at
depths of a few kilometers, is possible only at locations where wells have been drilled into
the reservoir, this time-lapse seismic data can be the main source of information about
changes in the system.

In order to reduce the computation cost of seismic history matching reservoir mod-
els, surrogate (proxy) model methods such as upscaled models [20] and reduced-order
models[21] have been pursued. Disadvantages of these approaches are the loss of infor-
mation at high spatial resolutions and non-linearity respectively. Another approach is the
use of machine learning surrogates, where especially Artificial Neural Networks (ANN)
have recently started receiving renewed interest. This growing interest is related to the
appearance of modern architectures that support deep networks with enhanced capabil-
ity of relating large numbers of inputs and outputs. Several recent studies have explored
the use of Deep Neural Network (DNN) surrogates for prediction of single-phase [22, 23],
two-phase [24, 25], and multi-phase [26] subsurface flow dynamics. A detailed literature
review about the application of deep neural network can be found in Chapter 6. As far
as we are aware, however, such approaches have not been successful yet in the context
of grid-based parameter estimation based on large-volume imaging data. We will there-
fore propose a new surrogate modelling methodology based on machine learning or more
specifically deep learning approaches that aims to deliver high-quality parameter charac-
terization at a significantly decreased computational cost. This is motivated by rapid re-
cent advancements in the application of deep neural networks to simulation of dynamic
systems, and image processing [27], and wide availability of high-performance processing
units (GPU’s) and deep-learning frameworks (e.g., Tensorflow [28] and PyTorch [29]).

Motivated by the successful applications of hybridization workflow using neural net-
work methods in a variety of research domains, the aim of this work is to propose a hy-
brid deep learning-based workflow to characterize reservoir heterogeneities. Specifically,
a cheap-to-run surrogate model is constructed to efficiently predict imaging-type seismic
data. Representation of fluid-fronts position using binarized images is simply equivalent
to an image segmentation problem in the field of computer vision [30–32]. Deep learning
as a promising approach has shown potentials to effectively address this kind of problem.
This paper explores the potential of deep neural network to predict the spatially discon-
tinuous fluid fronts based on the concept of image segmentation. It has been extensively
acknowledged that a deeper network may approximate the predictions with higher com-
plexity, but at the cost of difficulty in training [33, 34]. Inspired by the successful applica-
tions of image super-resolution problems [35, 36], the state-of-the-art residual-in-residual
dense block (RRDB) acts as an effective means to train a deeper neural network. On the
basis of standard U-Net [37] which has shown prominent advantage and applicability for
object segmentation task, we adopt an improved U-Net architecture via multiple RRDB
structures.

The remainder of this chapter is structured as follows: Section 2 describes a hybrid
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deep-learning workflow for reservoir heterogeneity characterization. In Section 4, a sys-
tematic accuracy assessment of the proposed deep-learning segmentation model for pre-
dicting binarized fluid-fronts is presented. This section also discusses and evaluates an
application of proposed hybrid workflow to characterize a synthetic 2D non-Gaussian fa-
cies model and a benchmark 3D reservoir model [38]. Finally, Section 5 highlights our
contribution and points out some potential works.

7.2. IMAGE-ORIENTED DISTANCE PARAMETERIZATION
We will consider the situation in which the relevant information contained by the data

can be captured by contour (or iso-surfaces), which segment the image into binary cate-
gories (for similar applications in e.g. computer vision, see e.g. [30–32]). The underlying
assumption is that the information contained in the shape or outline of a feature (if it can
be extracted coherently) is generally more reliable and informative than the information
contained in the amplitude of individual grid cell values. We adopt a distance-based pa-
rameterization of the contour information that was designed for application to seismic
history matching of subsurface reservoirs [14, 15] where the contours represent the posi-
tion of the separation front between regions with high saturation of displacing and dis-
placed fluids respectively. The dimension of the resulting data space (e.g. the number of
points on fronts) is typically much lower than the original data space which is equal (or
proportional) to the number of grid cells. In the following the essential elements of the
parameterization are described in more detail.

In Fig.7.1, scalar values 0 and 1 are used to define binarized images IA and IB obtained
by pre-processing underlying images A and B (not shown). Contours defining the bound-
aries between the two categories contained in the images are shown as well. The similarity
between the two images is characterized by a map computing from the local Hausdorff
distance (LHD) [39]:

LHD(A,B) = IA ◦DB + IB ◦DA . (7.1)

where DA and DB represent distance maps for shapes A and B respectively, which are
computed here using a fast marching method [15]. In essence, LHD quantifies the simi-
larity of two images with two directed distance maps in complementary directions, i.e. IA

◦ DB (distance from B to A) and IB ◦ DA (distance from A to B). Based on Eq.7.1, three
parameterization approaches developed in [15] are as follows

PLHDC (Ac ,Bc ) = IAc ◦DBc ,

LHDC (Ac ,Bc ) = IAc ◦DBc + IBc ◦DAc ,

LHD A(Aa ,Ba) = IAa ◦DBa + IBa ◦DAa . (7.2)

where the subscripts c and a denote that the shapes in the images are represented by con-
tours (boundaries or fronts) or areas (for example, a flooded area) respectively. PLHDC is
the partial LHDC measuring the distance only from the simulated fronts to the “observed”
fronts. Because nonzero distance values exist only on the “observed” fronts, the number of
data is reduced from the number of grid points on the whole image to the number of grid
points on the “observed” fronts. Furthermore, the binary character of the image repre-
sentation is transformed into continuous data (distances) that can be handled by the data
assimilation methodology. These three distance parameterization approaches each have
their own advantages and disadvantages. PLHDC leads to the strongest reductions in the
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number of data, but not does capture the information in both images as well as LHDC
[15]. LHD A provides the most complete description of similarity and differences but does
not reduce the number of data. Therefore, in the remainder of this paper LHDC will be
used. In the ES-MDA procedure, the measurement innovation can now be replaced by the
image dissimilarity, e.g. LHDC .

In many cases it may not be feasible to perform reservoir history matching exactly be-
cause it requires numerous computationally costly simulations of the numerical model.
This limitation has stimulated research into efficient approximate methods, for example
for parameter estimation (also referred to as history matching) in subsurface reservoir
engineering applications. Surrogate modeling is currently identified as one of the most
promising means to improve the efficiency of parameter estimation procedures. In the
following We will consider the possibility of reducing the simulation cost by replacing
simulations of the high-fidelity model by simulation of a surrogate. Specifically we will
describe an efficient deep-learning segmentation model for predicting binarized images
as accurately as possible.
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Figure 7.1: Illustrative diagram of PLHDC , LHDC and LHD A schemes for the image IA and IB , respectively.
The first and second row shows the maps of contour, area and distances corresponding these two images. The

last row shows the dissimilarity maps of these two images using PLHDC , LHDC and LHD A scheme.

7.3. CONDITIONAL RESIDUAL-IN-RESIDUAL DENSE BLOCK U-
NET

This section introduces the procedures of using a deep neural network to perform pre-
dictions of spatially discontinuous shape features. The section discussing the preparation
of the training data-set introduces a pre-processing step to convert continuous maps into
binarized images. In the network training section, we define the training losses for both
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image regression and image segmentation. A two-stage training strategy consisting of al-
ternating minimization of the regression loss and the segmentation loss suggested in the
literature is applied to better approximate the discontinuous shapes in the images.

7.3.1. NEURAL NETWORK ARCHITECTURE

In this work we consider the cross-domain image segmentation problem of predicting
spatially discontinuous binarized images representing changes in dynamic systems. Some
recent studies has investigated the potential of using DNN surrogates to replace high-
fidelity model simulations. For example, Jin et al proposed a DNN surrogate model with
autoregressive structure for approximating time-varying reservoir dynamics [40]. Tang et
al [41] developed a deep convolutional recurrent neural network architecture, specifically
a combination of auto-encoder and a convolutional long-short-term memory recurrent
network (convLSTM) [42].

Our proposed hybrid workflow shares some similarities with the one proposed by Tang
et al. (2019) where also a deep-learning based history matching problem was pursued.
Tang et al [41] developed a surrogate for temporal prediction of spatially continuous pres-
sure and saturation snapshots for channelized oil reservoir models. The spatial pressure
and saturation predictions were the basis for predictions of well data such as fluid rate and
bottom-hole pressure, which were used in a history matching workflow aimed at charac-
terizing the channelized reservoir system. In this paper we will demonstrate how a similar
workflow could be used for parameter estimation based on (binary) imaging-type data.

The main task of the neural network is to perform an cross-domain image segmen-
tation from the Gaussian/non-Gaussian geological parameter field to the output binary
contour maps. Motivated by the changes in the data parameterization in terms of dis-
tances to the front instead of grid block saturations we develop an advanced deep con-
volutional neural network architecture based on the integration of a stack of residual-in-
residual dense blocks (RRDB) and U-Net architecture by adapting the previous cR-U-Net
proposed in Chapter 6. The overall neural network architecture is illustrated in Fig.7.2,
which is almost consistent with our previously proposed cR-U-Net in Chapter 6. The de-
tailed descriptions of each units, including encoding unit, transition unit and decoding
unit, can also be found in Chapter 6.

In the cR-U-Net architecture, the extracted features in the encoding path are copied
and concatenated onto the upsampled features in the decoding path, this enables the
multi-scale features extracted in the encoding path to be propagated to the corresponding
decoding path. The latent feature maps produced from encoding unit are propagated us-
ing a stack of residual-blocks. Our numerical results have shown that this residual blocks is
capable of capture the flow dynamic of the Gaussian model. In this chapter, we proposed a
time-conditioning Residual-in-Residual Dense U-Net (cRRDB-U-Net). Specifically, a stack
of residual-in-residual dense block embedded into the transition unit is used to connect
the encoding unit and the decoding unit. We should emphasize that this advanced RRDB
proposed in [36] originally used for image super-resolution recovery is adopted to further
enhance the performance of standard U-Net for the context that the oil/water transport
model with non-Gaussian parameter inputs and spatially discontinuous contour outputs
needs to be accurately approximated.

RESIDUAL-IN-RESIDUAL DENSE BLOCK

The latent feature maps F4(m) produced from the last block of encoding unit are fed
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to a transition unit, see Fig.7.3(c). To learn the temporal features of dynamic model, the
time, as a conditional feature channel, is concatenated to the low-dimensional represen-
tation features, i.e., F4(m), after the encoding part. This transition unit is composed of
two adjacent RRDB and conventional convolutional blocks. The aim of transition unit
is to produce feature maps F5(m), which are the most complicated and informative fea-
ture maps containing both the spatial and temporal information. These maps will be then
provided to the decoding unit. Specifically, the RRDB structure contains a well-designed
combination of dense blocks and residual blocks. A dense block intentionally constructs
connections between non-adjacent layers, designed to take full advantage of the multi-
scale features in the output of the previous layers [43]. For example, a dense block with
5 layers is shown in Fig.7.3(a). The structure of the residual block, specifically residual
convolutional (r esConv) block, bypass the nonlinear layers through introducing an iden-
tity mapping. This special architecture of r esConv block can help cope with the gradient
vanishing/explosion problem especially for the highly deeper network [44].

As we all know, a deeper network may approximate the map with higher complexity,
but at the cost of difficulty in training [33, 34]. Inspired by the successful applications of
image super-resolution problems [35, 36], the state of the art residual-in-residual dense
block (RRDB) is used to ease the training process of a deeper neural network. We display
the RRDB architecture in Fig.7.3(b). It contains a stack of special structures where the
dense blocks are embedded between two adjacent residual blocks. More details about
RRDB can be referred to [36]. The number of input feature maps of a dense block is N f

(Fig.7.3(a)) and is set to N f = 24.

TRANSITION UNIT BASED ON RESIDUAL-IN-RESIDUAL DENSE BLOCK

The network structures of the encoding and decoding units have been described in
previously proposed cR-U-Net. We employ the residual-in-residual dense block structure
in the transition unit of our cRRDB-U-Net network for surrogate modeling of oil/water
transport in media with non-Gaussian parameters. The transition unit is shown in Fig.7.3(c).
For 2D or 3D images (fields), the 2D and 3D operations (i.e., B N and Conv) are used
in the network without requiring any additional modifications to the network architec-
ture. The network contains four residual-in-residual dense blocks and the feature maps
are to go through a coarsen-to-refine process. A convolutional layer is first employed to
extract feature maps from the raw input image. The obtained features are then passed
through the residual-in-residual dense blocks and the transition convolutional layers for
downsampling/upsampling of the feature maps. We arrange an adjacent position of two
residual-in-residual dense blocks in the network (Fig.7.3(c)) to encourage the informa-
tion flow through the coarse feature maps. That is, two adjacent blocks are placed in the
most central part. An additional level of residual learning is implemented on the stacked
residual-in-residual dense blocks, resulting in a three-level residual learning structure in
the network.

To verify the effectiveness of RRDB structure, a comparative study of the standard U-
Net with and without this block is conducted. Specifically, we integrate a stack of residual
convolutional r esConv blocks [40] with the standard U-Net architecture, which can be
referred to as cR-U-Net and also has been used in Chapter 6. In addition to the transition
unit, the overall neural network architecture of the cR-U-Net is very similar to the cRRDB-
U-Net. In the cR-U-Net architecture, the feature maps produced from the encoding unit
are concatenated with the time value and then are fed to five residual-blocks. The archi-
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tectures of cRRDB-U-Net are summarized in Table 7.1.
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Figure 7.2: Schematic illustration of cRRDB-U-Net architecture. cRRDB-U-Net is composed of encoding unit,
transition unit and decoding unit, where the local features extracted in the encoding unit are concatenated with

the upsampling features in the decoding unit to produce the target images. The transition unit concatenates
and forwards the extracted local features and time feature, and finally feeds them to the decoding unit.
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Figure 7.3: Schematic illustration of transition unit. We arrange an adjacent position of two residual-in-residual
dense blocks in the network to encourage the information flow through the coarse feature maps. In addition,

the time feature as an additional channel is feed to this unit as well to mimic the flow dynamic.

7.3.2. DATASET PREPROCESSING AND PREPARATION

In order to train the cRRDB-U-Net surrogate model, we generate a set of training sam-
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Table 7.1: The network design of cRRDB-U-Net Architecture. This table shows the network structure for the 2D
model, which can be easily extended to 3D model by using 3D convolutional operations. Here Nx and Ny

denote the width and height of original images.

Unit filter size and stride Output Size

Encoding unit

Input (Nx , Ny , 1)
B N −ReLU −Conv2D , 16 filters of size (3,3), stride 2 (Nx /2, Ny /2, 16)
B N −ReLU −Conv2D , 32 filters of size (3,3), stride 1 (Nx /2, Ny /2, 32)
B N −ReLU −Conv2D , 64 filters of size (3,3), stride 2 (Nx /4, Ny /4, 64)

B N −ReLU −Conv2D , 128 filters of size (3,3), stride 1 (Nx /4, Ny /4, 128)

Transition unit

Input (Nx /4, Ny /4, 129)
B N −ReLU −Conv2D , 129 filters (Nx /4, Ny /4, 128)

RRDB , 128 filters (Nx /4, Ny /4, 128)
RRDB , 128 filters (Nx /4, Ny /4, 128)

B N −ReLU −Conv2D , 128 filters (Nx /4, Ny /4, 128)

Decoding unit

Input (Nx /4, Ny /4, 128)
B N −ReLU −TConv2D , 128 filters of of size (3,3), stride 1 (Nx /4, Ny /4, 128)
B N −ReLU −T Conv2D , 64 filters of of size (3,3), stride 2 (Nx /2, Ny /2, 64)

B N −ReLU −TConv2D , 32 filters of size (3,3), stride 1 (Nx /2, Ny /2, 32)
B N −ReLU −TConv2D , 16 filters of size (3,3), stride 2 (Nx , Ny , 16)

Conv2D , 1 filter of size (3,3), stride 1 (Nx , Ny , 1)

ples consisting of parameter grid as inputs and time series of binary fluid facies grid as
outputs. The deep-learning based surrogate model represents the time-varying process

ŷi ,n = ĥ
n

(mi , t n ,θ), n = 1, . . . , Nt ; i = 1, . . . , Ns . (7.3)

where ŷi ,n ∈ RNx×Ny is the network prediction (image) at time tn given the input mi ∈
RNx×Ny , θ denotes a vector containing all trainable parameters of the cRRDB-U-Net surro-
gate model, and i denotes the index of the training sample. Ns represents the total number
of training samples.

Training data yi ,n is generated by simulating a high-fidelity forward simulation model
(HFM) and selecting snaptshots of its output at times tn . We will assume that the simula-
tions produce maps of continuous state variables, which can be used for image regression
tasks. We employ a post-processing step to convert the continuous maps yi ,n to binary
maps yi ,n to address the image segmentation problem addressed in the paper. The binary
output is obtained by applying a pre-defined threshold value Scon and the grid blocks (pix-
els) are assigned a value 0 or 1. We define a pixel-wise indicators F as follows.

Fi ,n = 0,yi ,n >= Scon or Fi ,n = 1,yi ,n < Scon

F̂
i ,n = 0, ŷi ,n >= Scon or F̂

i ,n = 1, ŷi ,n < Scon . (7.4)

Fig.7.1 shows an example of continuous simulated HFM output (saturation maps) and
the corresponding binarized images (binary contour maps) by applying Eq.7.4.

The output yi ,n depends solely on the input image mi and time index t n . We rearrange
the data structure predicted from one high-fidelity model simulation, i.e., saturation map
(mi ; yi ,1,· · ·,yi ,Nt ), as Nt consecutive training samples

{(mi ;yi ,1, · · ·,yi ,Nt )}Ns
i=1 ⇒ {(mi , t n ;yi ,n)}Ns ,Nt

i=1,n=1. (7.5)

and the corresponding binarized maps

{(mi ;Fi ,1, · · ·,Fi ,Nt )}Ns
i=1 ⇒ {(mi , t n ;Fi ,n)}Ns ,Nt

i=1,n=1. (7.6)
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in this way, the temporal relationship between the inputs and time-varying outputs is
clearly captured in the time-conditional network structure. The total number of training
samples fed to this cRRDB-U-Net becomes Ns × Nt .

7.3.3. TRAINING PROCEDURES
The choice of loss function for training neural networks is generally case-dependent.

The choice of an appropriate loss function for the task at hand may strongly improve the
performance of the network. The binary cross entropy (BCE) loss function is generally
used for image segmentation tasks, while the mean square error (MSE) loss function is
more commonly used for image regression tasks. These two loss functions can be defined
as follows

LMSE (θ) = 1

Ns Nt

Ns∑
i=1

Nt∑
n=1

‖ŷi ,n −yi ,n‖2
2. (7.7)

and

LBC E (θ) = 1

Ns Nt Nm

Ns∑
i=1

Nt∑
n=1

Nm∑
j=1

Fi ,n, j log F̂
i ,n, j + (1−Fi ,n, j ) log(1− F̂

i ,n, j
). (7.8)

Algorithm 4 summarizes a conventional one-stage (OS) strategy for training the proposed
cRRDB-U-Net model for image segmentation based on the BCE lose function. A variant
of stochastic gradient descent optimizers, e.g., Adam, is used to train cRRDB-U-Net sur-
rogate model. Adam computes adaptive learning rates for different parameters using esti-
mates of the first and second order moments of the gradients. The learning rate controlling
the magnitude of updates of model parameters at each iteration is 5×10−3. In addition, a
learning rate scheduler which drops ten times on plateau training is applied to guarantee a
good convergence performance. This network is built and trained using the deep learning
package PyTorch [29].

Algorithm 4: Procedure of optimizing neural network parameters θ of cRRDB-U-
Net using conventional one-stage (OS) training strategy.

1 Set an initial network trainable parameters θ0 ;
while epoch < nepoch do

while mi ni batch < Ns × Nt do
2 Calculate the gradient 5 LBC E (θ) using auto-differentiation (AD) tool;
3 Update the parameters θ using Adam(θ) → θ ;
4 Evaluate the loss function function LBC E (i.e., Eq.7.8);
5 Check convergence;

end
end

6 Return the optimal parameters θ

Although DNNs have shown promising and impressive performance in approximating
the models with high-dimensionality and non-linearity, it is still very challenging to accu-
rately predict the position of spatially discontinuous outputs, such as the shapes captured
in binary images, as considered in this paper. It has been indicated in the literature that, in
such cases, a two-stage (TS) training strategy through alternatively minimizing regression
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and segmentation loss functions is likely to improve the performance [35]. Taking into ac-
count that the aim of our proposed cRRDB-U-Net surrogate model is to accurately predict
binary image data, we construct a combined loss function where a small weight is used
to regularize the MSE loss rather than the BCE loss as suggested in [35] where an accurate
prediction of spatially continuous grid-based fluid saturations was the final target. In our
network training process, we adopt a similar TS strategy. A hybridization of the MSE and
BCE loss functions with a predefined weighting coefficientω, i.e., can be defined as follows

J (θ) = LBC E (θ)+ωLMSE (θ) (7.9)

The procedure of iteratively updating the neural network parameters using the TS
training strategy is summarized in Algorithm 5. In each iteration, a subset of the training
samples is randomly chosen from the full dataset, and then the tunable network parame-
ters θ of cRRDB-U-Net model are adaptively adjusted twice in a consecutive manner. In
the first stage, the gradient of regression loss LMSE (θ) is used to compute a preliminary
update of the parameters. Then, in the second stage, the gradient of combined loss J (θ)
(i.e., Eq.7.9) is used to further adapt the network parameters. These two training stages
will be consecutively implemented for each data minibatch to update the parameters un-
til the training process reaches convergence. In numerical experiments presented later,
a comparative study of the trained cRRDB-U-Net using the TS (i.e., Algorithm 5) and OS
(i.e., Algorithm 4) training strategies will be conducted.

Advantages of TS training strategy can be expected from two contributions: (1) Through
ingesting the spatial continuities of state variables in the first training stage, the intrinsic
physical principles are partially considered, which can help facilitate the network training
by incorporating physical constrains. (2) Incorporating continuous state variable data acts
as an effective means to augment the training sample size, which in turn enables partial
mitigation of the overfitting problem and helps generalizing the CRRDB-U-Net surrogate
model to generic models.

Algorithm 5: Procedure of iteratively optimizing the neural network parameters
θ using the two-stage (TS) training strategy. The MSE loss weighting coefficientω
is set to 0.01.

1 Set an initial trainable network parameters θ0 ;
while epoch < nepoch do

while mi ni batch < Ns × Nt do
2 Stage (1) : Calculate the gradient of 5 LMSE (θ) using AD tool;
3 Update the parameters θ using Adam(θ) → θ ;
4 Stage (2) : Calculate the gradient 5 J (θ) (θ) using AD tool;
5 Update the parameters θ using Adam(θ) → θ ;
6 Check convergence;

end
end

7 Return the optimal parameters θ

Once the neural network is trained using either the one-stage or two-stage training
strategy, online prediction is straightforward. Given an arbitrary input m, iterative im-
plementation of Eq.7.3 is then used to predict outputs for all Nt time instances. Specifi-
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cally, each saturation output ŷn or binarized output Ŝ
n

at the n-th time instance is sequen-
tially predicted by providing the geological parameters m and the time index t n as inputs.
This procedure is computationally efficient as it does not involve any high-fidelity model
simulations. After training the cRRDB-U-Net surrogate model successfully, we can apply
the cRRDB-U-Net surrogate model within other workflows. Here we will consider its use
for estimation of the uncertain parameters m given binary image data using the ES-MDA
workflow.

7.4. EXPERIMENTS AND RESULTS
In this section, the proposed deep-learning hybrid framework will be applied to two

example cases representing subsurface flow model parameter estimation problems in which
2D and 3D seismic images are available as measured data respectively. Both cases con-
sider spatially heterogeneous reservoirs with immiscible two-phase (oil and water) flow
dynamics.

7.4.1. DESCRIPTION OF THE EXAMPLE CASES

The 2D reservoir model of Case 1 was created by [45] and consists of a single rock layer
representing a fluvial depositional setting containing high-permeable channels (river de-
posits) and a low-permeable background (clay or fine sand deposits). The high-permeable
and low-permeable channels represent two faices, which are indicated by binarized value
0 and 1, respectively. The value of log-permeability for these two facies has a large con-
trast. The permeability of clay facies and sand facies is 20 mD and 2000 mD, respectively.
Given the facies indicators m, we compute the permeability value for each grid using a
transformation function (20e log 100m). Fig.7.4 illustrates the distribution of facies indica-
tors in the high-fidelity model realization used to generate synthetic measurements, as
well as the locations of 3 vertical liquid producer well and 6 vertical water injection wells
labeled as P1 to P3, and I1 to I6 that are drilled into the reservoir. Note that the permeabil-
ity values follow a non-Gaussian distribution containing two modes with nearly constant
values, which is generally considered very challenging for parameter estimation methods.

The second example case (Case 2) is a frequently used 3D benchmark model used in
the SAIGUP project [38] with a realistic structure based on existing North Sea oil fields. The
3D SAIGUP benchmark model contains nine producers and nine injectors. The reference
model, model settings can be found as Fig.5.1 and Table.5.3 in Chapter 5 and Table.6.1 in
Chapter 6.

In our numerical experiments, the open-source simulator F low from the Open Porous
Media (OPM) project for reservoir modeling and simulation [46], is used to run the high-
fidelity (HF) model simulations and generate the training samples. The result of the sim-
ulations are pressure and saturation grids at the times of seismic repeat surveys and time
series of bottom-hole pressure (BHP) and flow rates of both oil and water in all wells. In
this study we will use the saturation grids (2D and 3D images for the two examples cases
respectively) simulated with the synthetic truth models as measurements. Some details
about reservoir geometry, rock properties, fluid properties, and well-control settings for
the 2D case are shown in Table 7.2.

7.4.2. TRAINING DATA GENERATION

The prior uncertainty in the gridblock values of permeability is captured by an en-
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Figure 7.4: The illustration of geological realization and well placement for the 2D non-Gaussian facies model.
(a) the true model. The high-permeable and low-permeable channels represent two faices, which are indicated
by binarized value 0 and 1, respectively; (b) the relative permeability curves of this water-oil two-phase flooding

system. The triangles and circles denote the injectors and producers, respectively.

Table 7.2: Experiment settings using OPM for the 2D non-Gaussian facies model.

Dimension, Nx × Ny × Nz 60×60×1
Number of injectors and producers 6, 3

Water/oil density 1014 kg/m3, 859 kg/m3

Water/oil viscosity 0.4 mP·s, 2 mP·s
Initial oil/water saturation So=0.80, Sw =0.20

Bottom-hole pressure for producers 25 MPa
Bottom-hole pressure for injectors 40 MPa

Historical production time 1800 days
Pre-defined threshold value Scon 0.35

semble of random realizations of the permeability field. For the 2D non-Gaussian facies
model, we use the 2000 facies realizations made available by [45]. For the 3D SAIGUP
benchmark model we generate Gaussian-distributed realizations of log-permeability us-
ing the Stanford geo-statistical modelling software (SGeMS) [47]. An optimization-based
principle component analysis (O-PCA) proposed in [45] and conventional PCA are applied
to re-parameterize the parameter fields for these two models, respectively. 70 and 304 PCA
coefficients are preserved to represent the original parameter fields in the two cases re-
spectively and then used to generate the training and validation samples. We should note
that O-PCA is particularly useful to preserve the non-Gaussian properties. It reformulated
the PCA as a bound-constrained optimization problem and introduced a regularization
term to generate binary or bi-modal parameter fields. More information can be referred
to [45]. We randomly generate an ensemble of the Gaussian-distributed PCA coefficients
and then get the facies models using O-PCA. Although we suggest that the facies indicators
should be binary 0,1, the generated realizations by O-PCA contain multiple colors (around
the channel edges) and not all grid cells are classified as either 0 or 1, e.g., see Fig.7.4-7.5.

Fig.7.5 and Fig.7.6 show the log-permeability (left) and simulation results at 2 times
for four realizations of the Case 1 and Case 2 models respectively. The simulations results
are the saturation images from which binarized images are derived based on a saturation
threshold value of Scon=0.35. The model realizations shown in Fig.7.5(a) and Fig.7.6(a) are
chosen to be the reference (synthetic truth) models for these two cases. It can be seen
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that, in both cases, the evolution of the fluid facies varies strongly among the different ge-
ological model realizations, resulting in high variability in the training dataset. We should
note that while we use the LHDC as innovations in the history matching step, we will be
showing the binarized fluid facies maps in subsequent figures, because they can be more
easily interpreted.

The simulation period in the cases are 1800 days and 5400 days respectively, and the
training sample data are collected at Nt =10 intervals of 180 days for Case 1, and Nt =10 in-
tervals of 540 days for Case 2. After reorganizing the dataset, 3000, 5000, 8000, 10000 and
15000 training images are created corresponding to 300, 500, 800, 1000, and 1500 simula-
tion runs respectively for the 2D non-Gaussian facies model.
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Figure 7.5: Predictions of the time-varying saturation maps and binarized contour maps corresponding to four
non-Gaussian realizations for the 2D synthetic non-Gaussian facies model. The contour maps are obtained

through applying a front threshold value of 0.35. Subfigures (a) - (d) represent four different model realizations
and their predictions at day 360 and day 1800.

7.4.3. PERFORMANCE METRICS
To evaluate the quality of cRRDB-U-Net surrogate model with respect to the number

of training samples, Ntest independent model simulations based on the HF and surro-
gate models are performed. We define an evaluation metric γn

s to represent the pixel-wise
mismatch between two binarized images at timestep n evaluated over Ntest validation
samples is defined as

γn
s = 1

Ntest Nm

Ntest∑
i=1

Nm∑
j=1

‖F̂ i ,n
j −F i ,n

j ‖, n = 1, . . . , Nt . (7.10)

and can be interpreted as the fraction of incorrectly labeled grid cells (pixels) in the grid
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Figure 7.6: Predictions of the time-varying saturation maps and binary contour maps corresponding to four
Gaussian realizations of logarithmic permeability for the 3D SAIGUP benchmark model. The contour maps are

obtained through applying a front threshold value of 0.35. Subfigures (a) - (d) represent four different model
realizations and their predictions at day 2700 and day 5400.

(image). F̂
i ,n
j and Fi ,n

j denote the binarized fluid facies maps predicted from the high-

fidelity model (HFM) and cRRDB-U-Net surrogate model respectively for validation sam-
ple i , gridblock j and timestep n. If the two images are equal, γn

s will attain it minimum
value of 0, if no two values in the images are identical, γn

s =0. Note that differences between
the binary images can be related to errors in the location of the fluid front that separates
the two fluid phases in the reservoir. The overall field-average values over all Nt time in-
stances, denoted as γs , is given by

γs = 1

Nt

Nt∑
n=1

γn
s . (7.11)

The binary facies indicators or log-permeability values are the only uncertain param-
eters and they are calibrated using the proposed ES-MDA framework using cRRDB-U-Net
surrogate model. With the aim of analyzing the history matching results, we introduce two
error metrics measured on data misfits eobs and parameter misfits em as follows,

eobs =

√√√√∑Nd
i=1

∑Nt
j=1(di , j

obs −di , j
upt )2

Nd Nt
, em =

√√√√∑Nm
i=1(mi

tr ue −mi
upt )2

Nm
. (7.12)

where, di , j
obs and di , j

upt represent the measurements and simulated data using the updated

model, respectively. mi
tr ue and mi

upt denote the binary facies indicators or logarithmic
permeability values from the ’true’ model and updated model, respectively.

7.4.4. TRAINING AND VALIDATION OF THE SURROGATE
The parameter settings for training the cRRDB-U-Net surrogate are summarized in

Table 7.3. The training parameter settings for the 3D SAIGUP model can be found as Ta-
ble.6.1 in Chapter 6. These parameters were used used to train the surrogate models for
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all listed training set and batch sizes. Taking the 2D synthetic model as an example, dur-
ing the training process, 100 training samples are randomly selected from the entire, e.g.,
20000, training dataset to optimize the neural network parameters in each iteration. In
the following we will discuss the quality of predictions (i.e. the fluid facies maps or im-
ages) generated with the trained surrogate.

Table 7.3: Training parameters settings for training cRRDB-U-Net model corresponding to the 2D case.

Training size (Ns ) 300,500,800,1000,1500
Re-organized training size (Ns × Nt ) 2000,6000,10000,16000,20000

Testing size (Ntest ) 200
Initial learning rate 0.005

Optimizer Adam
Batch size 100

Number of epochs 100

Fig.7.7 and Fig.7.8 show the fluid facies maps predicted by the HF and cRRDB-U-Net
surrogate models for the reference realizations of Case 1 and Case 2 respectively. It can
be seen in Fig.7.7 for Case 1 that the trained surrogate model is capable of predicting ac-
curate fluid distributions. For instance, the presence of single or multiple fluid fronts at
different times is correctly captured as seen in Fig.7.7. Small errors are noticeable, how-
ever, which are associated with small errors in predicted front locations. These errors are
seen to decrease with increasing number of training samples Ns . The impact of the num-
ber of training samples is particularly clear at early times where multiple isolated fluid
fronts are developing. Fig.7.8 displays analogous results at day 2700 and day 5400 for Case
2. in this case the possibility of vertical flow results in somewhat larger regions of error for
small training set size.

We further assess the quality of proposed surrogate model based on the γn
s and γs met-

rics which quantify the quality of image reconstruction, particularly taking into account
the structural similarity of edges inside the images. In order to verify the robustness of the
surrogate model, the values of γn

s corresponding to Ntest = 200 independent validation
samples are plotted in Fig.7.9. Increasing the number of training samples progressively
improves the values of γn

s metric. Values are relatively high at early times because the fluid
fronts have not yet expanded very strongly such that most of the domain will still con-
tain only the initial fluid phase (oil in this case) in all test cases. The values are gradually
decreasing with time as the injected fluid phase is replacing the initially present phase,
leading to expanding fluid fronts, and correspondingly higher chances of differences be-
tween the true and predicted front locations. The surrogate is obtaining relatively lower
γn

s for Case 2 than for Case 1. The overall field-average error γs is 4.24% for 1000 training
samples, suggesting a relatively high degree of accuracy.

7.4.5. HISTORY MATCHING RESULTS - CASE 1
In the previous section we verified the applicability of our proposed surrogate model

for predicting dynamic fronts. We now apply the surrogate model within a history match-
ing (i.e. data assimilation) workflow, where the image-oriented distance parameterization
is used to characterize differences between observed and simulated images, and the ES-
MDA method is used to minimize these differences by updating the underlying model



7

148 7. HISTORY MATCHING USING DEEP-LEARNING STOCHASTIC INVERSION

HFM

20 40 60

20

40

60

0 0.2 0.4 0.6 0.8 1

cRRDB-U-Net

20 40 60

20

40

60

HFM - cRRDB-U-Net

20 40 60

20

40

60

-1 0 1

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

N
s
 = 300

t = 360 days

N
s
 = 1500

t = 360 days

N
s
 = 1500

t = 1800 days

N
s
 = 300

t = 1800 days

Figure 7.7: Comparisons of time-varying fluid facies maps predicted from HFM, cRRDB-U-Net and their
absolute errors at day 360 and day 1800 for the 2D synthetic non-Gaussian facies model. The cRRDB-U-Net

models are trained using Ns = 300 and 1500 samples.

parameters. In the examples these parameters are the properties of the grid-cells (specif-
ically, the permeability) of the HF model. While the total number of active grid cells are
3600 for Case 1 and 78720 for Case 2, the PCA parameterzation has reduced this to 70 and
304 coefficients respectively (See Section 4.1). The observations correspond to the LHDC
metric derived from applying a threshold value of Scon = 0.35 to the saturation maps at day
360 or at day 1800 resulting from simulation of the HF reference (synthetic truth) model,
and the corresponding maps from a surrogate model simulation. The standard devia-
tion of the uncorrelated measurement errors is assumed to be 30 m, which is close to the
length of one grid block. Results from the hybrid workflow will be compared to results
obtained by using an ensemble of HF model realizations instead of the trained surrogate.
We choose Na = 15 iterations and an ensemble size of Ne = 500 as standard values for the
ES-MDA workflow and we compare results obtained with the hybrid workflow for a range
of training set sizes.

FIXED COMPUTATIONAL BUDGET

We first compare results from the hybrid workflow against results from the HF model
workflow for (a) a fixed number of HF model simulations (1500), and (b) a fixed number
of iterations (15). Fig.7.10 compares the data misfits for the prior and posterior ensemble
of realizations obtained with the DNN trained with Ns = 1500, and the posterior HF mode
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Figure 7.8: Comparisons of time-varying fluid facies maps predicted from HFM, cRRDB-U-Net and their
absolute errors at day 2700 and day 5400 for the 3D SAIGUP model. The cRRDB-U-Net models are trained using

Ns = 100 and 1000 samples.
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(a) 2D non-Gaussian facies model
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Figure 7.9: The plots of γn
s values of cRDDB-U-Net with respect to the number of training samples Ns = 300,

500, 800, 1000, and 1500 samples for the . (a) 2D non-Gaussian facies model; (b) 3D Gaussian SAIGUP model.

realizations resulting from Na = 15 iteration (HFM(15)) and Na = 3 iterations (HFM(3)).
Note that HFM(3) requires 3× 500 = 1500 HF model simulations, which is the equal to
the 1500 simulations used to train the DNN, while HFM(15) requires 15×500 = 7500 HF
model simulations. Results are presented for images obtained at 360 days and 1800 days
separately. The DNN-based data misfits are larger than those obtained with 15 ES-MDA
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iterations with the HF model, but smaller than those obtained with 3 iterations. These
results indicate that a significant reduction of computational cost should be feasible for
a given desired quality of the result. In this study, the total number of HFM simulations
is taken as an indicator of the computational cost, since the GPU time for running the
DNN surrogate model is negligible compared to the CPU time for running the HF model.
The runtime for training the DNN with data from Ns = 1000 samples is about 25 minutes,
which is equivalent to running 300 HF model simulations. In other word, the computa-
tional cost of the off-line training stage is equivalent to about 1300 HF model runs, while
the cost of HFM(15) is equal to 7500 HFM simulations. The use of cRRDB-U-Net as a sur-
rogate model reduces the computational time by a factor 5.8 for the 2D synthetic model
of Case 1. Note that the computational saving of our proposed deep-learning method will
increase linearly with the ensemble size.

Fig.7.11 displays the average effective number of data as a function of iterations. Pre-
processing the imaging-type data using distance-based parameterization can drastically
decrease the number of data, for example from original 3600 to 580 at day 1800. A small
effective number of data indicates a high degree of similarity of two images. The effec-
tive number of data gradually decreases as the iterations, revealing that the predicted wa-
ter fronts from the posterior models become closer to the observed water fronts and the
model uncertainty is hence reduced.

The ensemble mean and standard deviations of the updated ensemble of permeabil-
ity before and after history matching at 360 days and 1800 days are displayed in Fig.7.12.
These statistics are calculated as the per-grid-block averages and standard deviations over
the 500 realizations in the ensemble mNa

1 , . . . ,mNa
Ne

, where Ne = 500 and Na = 15. Values
are compared to the corresponding statistics calculated for the prior ensemble (iteration
0 instead of Na). The channel structures can be reconstructed almost perfectly from both
the 360 and 1800-day images. While the large standard deviations in the prior standard
deviation suggest that in the initial ensemble the locations of channel boundary positions
are strongly varying, a comparison of the posterior standard deviation maps and the true
parameter map indicates that the channel boundaries are consistently aligned with the
truth. Larger variability is mostly found in this bands a few grid blocks wide along the true
channel boundaries. The field-average posterior ensemble standard deviation has ap-
proximately decreased from 0.45 to 0.16, which indicates a significant reduction of model
uncertainty. We also should note that since the original realizations conditioned to per-
meability values at the well locations, the majority of realizations, e.g., the prior ensemble
mean, already seem to have channels at approximately the right locations.

EFFECTS OF TRAINING SAMPLE SIZE

We repeat the workflow for a series of increasing training sizes Ns = 300,500,800,1000
and 1500. Fig.7.13 shows the posterior parameter misfits as a function of the number of
training samples. It clearly can be seen that the accuracy of the hybrid workflow results
gradually improves as the number of training samples increases, especially for data gath-
ered at day 360. Results do not improve much for Ns > 800. For data gathered at 1800 days,
the best results results are obtained, somewhat surprisingly, for Ns = 500. Since the differ-
ent training scenarios rely on different random parameter realizations, the results of each
training stage could be impacted by the samples included in the training set. ES-MDA is a
statistical method and results could also vary slightly if the ensemble statistics are affected
by these results as well. One could, in principle, repeat each experiment with training sets
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Figure 7.10: Boxplots of data misfits and parameter errors using cRRDB-U-Net surrogate model and
high-fidelity models for the 2D non-Gaussian facies model. The cRRDB-U-Net surrogate model is trained by
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Figure 7.11: The over-all effective number of data during the iteration process.

containing different random samples, to quantify the impact of the random sample se-
lection on the results, but we have not done that here. The overall trends in the results,
however, clearly indicate that the accuracy of the surrogate model and its corresponding
history matching results will improve as the number of training samples increases.

Fig.7.14 shows the posterior ensemble mean and standard deviation (STD) for the dif-
ferent NS scenarios. It is evident that the main structure of binary channels can be suc-
cessfully reconstructed in all cases, also for the smaller values of Ns , and that the posterior
ensemble mean gradually becomes much closer to the true model as the number of train-
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Figure 7.12: Ensemble mean and standard deviation (STD) of binary facies indicators for the prior models and
posterior models at day 360 and day 1800.

ing samples increases. Based on Fig.7.13 Fig.7.14 it can be concluded that results with
similar quality as the HF model workflow requiring 7500 simulations can be obtained us-
ing the hybrid surrogate-supported workflow with 500-800 simulations. Overall, we can
collect more informative measurements at day 1800, and therefore obtain relatively better
results than that of day 360.

We summarize the posterior parameter misfits em and computational cost indicated
by the number of HFM simulations. It can be obviously seen that the proposed cRRDB-
U-Net surrogate model maintains a satisfactory accuracy even using a small number of
training samples. For example, the cRRDB-U-Net model using Ns = 500 training sam-
ples is still capable of generating satisfactory posterior models which are very similar to
the true model. In terms of computational efficiency, it clearly reveals that our proposed
history matching framework only needs a relatively small number of high-fidelity model
simulations, e.g., 500, in contrast to 7500 HFM simulations required by the conventional
ES-MDA method.

COMPARATIVE STUDY OF ONE-STAGE AND TWO-STAGE TRAINING STRATEGIES

The results presented so far were obtained using the two-stage training strategy de-
tailed in section 3.3.3. We repeated the training procedure for Ns = 300,500,800,1000,1500
in order to compare two-stage strategy with the one-stage strategy, which only considers
the BCE loss function which is commonly used for image segmentation tasks. Results from
the one-stage training procedure are illustrated in Fig.7.15. When comparing with the re-
sults shown in Fig.7.9(a), it is clear that the two-stage strategy achieves lower validation
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Figure 7.13: Boxplots of parameter misfits em using cRRDB-U-Net surrogate model as a function of the number
of training sample Ns . The two rows are corresponding to day 360 and day 1800, respectively.

errors than the one-stage strategy. Fig.7.16 shows a comparison of the posterior param-
eter misfits for these two training strategies for N s = 300 and Ns = 1500. When we train
the surrogate models with Ns =300 training samples, the one-stage strategy achieves γ val-
ues of 9.85% and 18.82% at day 360 and day 1800, which are larger than the 7.12% and
15.12% errors from two-stage strategy. However, the differences between these two train-
ing strategies decrease as the number of training samples increases. For example, when we
train the surrogate model using 1500 samples, the one-stage strategy achieves γs values of
3.01% and 5.18% at day 360 and day 1800, respectively, which are only slightly larger than
the values of 2.25% and 4.89% from the two-stage strategy. Overall, two-stage training is
found to improve the predictions, particularly when small numbers of training samples
are available.

We remind the reader that the first training aims to minimize the MSE loss expressed
in terms of continuous saturation values. In this study we have set the MSE loss weight
ω to 0.01. In general, a lager weight ω will lead to a better approximation of the spatially
continuous saturation. However, the aim of our proposed surrogate modelling and data
assimilation workflow is to accurately predict binary-type image data. Some limited ex-
perimentation with alternative values of omeg a suggested that larger values will lead to
less accurate reproduction of fluid facies. Based on visual inspection of results for differ-
ent values of omega, an value of 0.01 appeared to be a good choice, but that the optimal
value should be subject to further investigation.

COMPARISON WITH CONVENTIONAL RESIDUAL U-NET

To verify the effectiveness of the RRDB structure of the deep CNN, a comparative study
of cR-U-Net and cRRDB-U-Net was performed. Fig.7.17 show the parameter error met-
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Figure 7.14: Posterior ensemble mean and standard deviation (STD) of parameter estimates obtained for
300,500,800,1000 and 1500 training samples. (a) Posterior ensemble mean; (b) posterior ensemble STD.
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corresponding to Ns =1500 and Ns =300 training samples, respectively.

ric γs for the cR-U-Net surrogate model. Comparing to the results in Fig.7.9(a), the im-
provements from the RRDB structure are clearly indicated lower field-average relative er-
ror γs values, especially for the larger training set sizes. When we train the deep-learning
surrogate models using 300 samples, the cR-U-Net and cRRDB-U-Net obtain compara-
ble results with γs values around 18%. Although RRDB enables us to train deeper neural
networks for better approximations of spatially discontinuous fluid-fronts, more param-
eters are introduced by the RRDB structure that need to be trained as well. Training the
cRRDB-U-Net surrogate model with a small number of samples might cause overfitting
problems, and hence may not achieve desirable improvements in comparison to cR-U-
Net. As the number of training samples increases, however, the improvements in quality
of the cRRDB-U-Net surrogate model are much larger than that of cR-U-Net. For example,
when we train these two surrogate models using 1500 samples, cR-U-Net and cRRDB-
U-Net obtain γs values of 12.5% and 4.89% at day 1800, respectively. Overall, the RRDB
structure significantly improves the surrogate model’s ability to predict the positions of
fluid fronts, especially for large training set sizes. Fig.7.18 shows a comparison of the pos-
terior parameter misfits for the cRRDB-U-Net and cR-U-Net surrogate models. It clearly
can be seen that the RRDB structure outperforms standard U-Net in terms of the posterior
parameters errors.

7.4.6. HISTORY MATCHING RESULTS - CASE 2
In this section we present a more realistic application of the proposed surrogate model

that involves a more complex 3D reservoir model with uncertain permeability in all 78720
active grid cells. The dimension of the uncertainty space is reduced by capturing the spa-
tial relationships between individual grid block values in a total of 304 coefficients for cor-
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Figure 7.17: The γn
s values of cR-U-Net with respect to the number of training samples Ns = 300, 500, 800, 1000,

and 1500 samples, respectively.

Prior cRRDB-U-Net cR-U-Net Prior cRRDB-U-Net cR-U-Net

0.3

0.4

0.5

0.6

0.7

0.8

e
m

N
s
 = 1500

Prior cRRDB-U-NetcR-U-Net Prior cRRDB-U-NetcR-U-Net

0.3

0.4

0.5

0.6

0.7

0.8

e
m

N
s
 = 300

t = 360 days t = 1800 days

t = 360 days t = 1800 days

Figure 7.18: Boxplots of parameter misfits em using cR-U-Net and cRRDB-U-Net surrogate models. The two
rows are corresponding to Ns =1500 and Ns =300 training samples, respectively.

responding 3D patterns obtained by Principle Orthogonal Analysis of a large number of
plausible log-permeability realizations. The PCA coefficients are the only uncertain pa-
rameters, and are updated using the proposed hybrid workflow. We assume that satura-
tion images are available at either 2700 days or 5400 days, after inversion of time-lapse
seismic data. We furthermore assume that the data has sufficiently high resolution to en-
able estimation of saturation in all 22 layers of the reservoir. We use an ensemble size of
Ne = 500 and a fixed number of Ns = 10 iterations for the ES-MDA algorithm.

Fig.7.19 shows the parameter misfits em before and after history matching for training
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set sizes Ns = 100, 300, 500, 800 and 1000. Fairly consistent improvements in the accuracy
of the results can be observed with increasing training set size. In this case study, the sur-
rogate models trained with 100 and 300 samples obtain similar history matching results.
Similar results are also observed for the surrogate models trained with 500 and 800 sam-
ples. A possible explanation is that a random sampling strategy might generate some in-
effective training data, which have no significant contribution to the improvement of the
history matching results. One could imagine that procedures in which additional train-
ing samples are generated guided by intermediate history matching results could be more
effective, but we have not investigated this idea further.

Our proposed ES-MDA-DNN is able to generate history matching results comparable
to ES-MDA-HFM. However, to achieve the same accuracy, ES-MDA-DNN and ES-MDA-
HFM require respectively1000 and 5000 high-fidelity model simulations. The use of cRRDB-
U-Net as a surrogate model reduces the computational time by a factor of 5 for the prob-
lem defined in this case. We should emphasize that the computational saving will become
more substantial when a larger ensemble sizes are used. The ES-MDA-DNN hybrid wor-
fklow requires a relatively small number of high-fidelity model runs at the offline training
stage and the computational cost does not grow with the ensemble size. Compared to the
HFM(10) results, the hybrid DNN workflow is generally performing a little bit worse but
at a lower cost. The use of 500 initial realizations might be much larger than that would
be used in applications to complex fields, where an ensemble size of 200 is often consid-
ered as the realistic maximum. Fig.7.20 shows the posterior ensemble parameter errors
em as a function of ensemble size and number of ES-MDA iterations. It can be clearly seen
in Fig.7.20(a) that our proposed ES-MDA-DNN obtains a better solution that is at present
practically feasible at lower computational cost (e.g., 1000 simulations). By contrast, ES-
MDA-HFM would lead to a total number of 2000 HFM simulations over 10 iterations. Fur-
thermore, the obtained results with an HF model ensemble size of 100 suggest ensemble
collapse to some degree. As illustrated in Fig.7.20(b), for a fixed computational budget
(1000 simulations in this example), the hybrid surrogate-assisted workflow delivers more
accurate results than ES-MDA-HFM.

Fig.7.21(a) shows the fluid-front positions before and after history matching at day
2700 and day 5400. The fluid-fronts for the prior models are significantly different from
the observed front positions. There are nine completely discrete front contours around
the nine injectors at day 2700. After the history matching, the fluid-fronts almost match
the observed ones. Although the front positions are relatively more complex at day 5400
than at day 2700, a very good result still can be obtained. When the cRRDB-U-Net sur-
rogate models are trained with a small sample size, e.g., Ns = 300 or Ns = 500, several
fluid-front positions near injectors I1, I2 and I6 (the lower left part of the reservoir model)
are not well matched, and the permeability around these positions cannot be significantly
improved. In contrast, the fluid-front positions near the injector I9, I4 and I7 (the up-
per right part of the reservoir) are matched very well, which leads to good calibrations of
the reservoir models around this area. Fig.7.21(b) shows the average effective number of
data as a function of iterations. Comparing to the above 2D synthetic model, the use of
distance-based parameterization obtains a much larger reduction of effective data, e.g.,
from original 157,440 to 17,095 after history matching, which quantifies the reduction of
model uncertainty. This result also demonstrates a high scalability of our proposed hybrid
workflow to practical applications.

Fig.7.22 shows the posterior ensemble mean and standard deviation corresponding to
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different training sample sizes Ns =100, 300, 500, 800 and 1000, respectively. It clearly can
be seen that the posterior ensemble means are very close to the true model. The geolog-
ical parameters, e.g. highly permeable zones, are successfully reconstructed using even a
small number of training samples, e.g. Ns = 300. The true model is gradually reproduced
as the number of training samples increases. The significant reduction in the standard
deviation of the spread of parameter estimates, e.g., from approximately 2.5 in the prior
to 0.5 in the posterior ensemble, further indicates a high accuracy of the history matching
result. In order to further verify the reliability of the posterior models from our proposed
surrogate-based history matching approach, we compare predictions of the well water in-
jection rate (WWIR) and well water-cut (WWCT) for nine injectors and nine producers,
see Fig.7.23. These quantities were not used in the history matching procedure and can
therefore be viewed as independent validation data. In order to generate the predictions,
the permeability estimates obtained with the surrogate-assisted hybrid workflow are used
as input for simulations with the HF model simulator. Although the predictions of the ini-
tial models are significantly different from the true model, after history matching to the
binary image data, the mean and spread in rate predictions from the updated models are
much more consistent with the rates generated with the HF truth model.
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Figure 7.19: Boxplots of data misfits and parameter misfits using cRRDB-U-Net surrogate model and
high-fidelity model for the 3D benchmark SAIGUP model. The cRRDB-U-Net models are trained with Ns =100,

300, 500, 8000 and 1000 samples, respectively.
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Figure 7.21: Characteristics of the ensemble of innovations used by LHDC for 3D model. (a) Simulated
water-fronts after 2700 days and 5400 days in one posterior model realization before and after history matching
using the cRRDB-U-Net surrogate model. The observed and simulated fronts are denoted in blue and red lines,
respectively. This figure displays the water-fronts of the 11th vertical layer. (b) The over-all effective number of

data during the iteration process.

7.4.7. COMPUTATIONAL COST

In this section, we will briefly discuss the aspects of computation cost of the proposed
workflow for parameter estimation using cRRDB-U-Net surrogate modelling. We denote
the cost of a high-fidelity model simulation and a surrogate model simulation as CHF M

and CS respectively, the number of training data Ns , the ensemble size Ne and the number
of iterations Na , the total computational cost of the overall workflow based on HF model
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Figure 7.22: Comparison of the updated ensemble posterior realizations using cRDDB-U-Net surrogate model
with respect to the number of training samples Ns = 100, 300, 500, 800 and 1000, respectively. (a) The 1st vertical

layer; (b) The 11th vertical layer.

simulations only is
THF M = Na ·Ne ·CHF M . (7.13)

For the surrogate-assisted hybrid workflow, the total cost is

TS = Ns ·CHF M +Ctr ai n +Na ·Ne ·CS . (7.14)
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Figure 7.23: Predictions of water injection rate and watercut for the nine injectors and nine producers. The gray
lines-initial models, blue lines-reference model, red lines-updated models from the cRRDB-U-Net surrogate

trained with Ns = 1000 samples.

The runtimes of a single HF model simulation for the 2D model of Case 1 and the 3D model
of Case 2 are about 5.0 s and 250.0 seconds respectively on a machine with i5-4690 Intel
CPUs (4 cores, 3.5GHz) and 24 GB memory. In comparison, the runtime of the cRRDB-
U-Net surrogate model is about 0.1 seconds for both cases, so it is a factor of 102 − 103

smaller than the runtime for the HF model. The cRRDB-U-Net surrogate model is trained
on a NVIDIA GeForce GTX 745 GPU and separately takes about 25 minutes and 31.4 hours
using 1000 training samples for the 2-D and 3-D case respectively, which are equivalent
to run approximately 300 and 450 HFM simulations, respectively. For the comparison, we
set CS ≈ 10−3CHF M and Ctr ai n ≈ 10−1 ·Ns ·CHF M and determine cost reduction TS /THF M

expressed in terms of HF model simulations as a function of the parameters Ns , Ne and
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Na ,
TS

THF M
= Ns +10−1Ns +10−3Na Ne

Na Ne
≈ N s

Na Ne
. (7.15)

For typical values Ns = 1000, Ne = 200 and Na = 10, the cost ratio is about 0.5. For an
ensemble size of 500 this is about 0.2, and if the training size can be reduced to 500 as
well, the ratio becomes 0.1. We note that in the surrogate-assisted workflow the number
of iterations could be increased significantly without incurring higher computational cost
since the cost of simulating the proxy is almost negligible relative to simulating the HF
model. We may expect that a higher number of iterations can contribute to improved
performance of the ES-MDA algorithm to a certain extend.
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8
CONCLUSION AND FUTURE WORK

8.1. CONCLUSION
In this dissertation, we mainly focus on investigating two types of surrogate models,

i.e., projection-based subdomain POD-TPWL and deep neural network surrogate, for ef-
ficiently estimating geological parameters in oil reservoir models. The key findings and
main conclusions of this work corresponding to the five research questions described in
Chapter 1, section 1.3, can be summarized as follows:

1. Research question 1: The commonly used reduced-order modelling aims primarily
at approximating the dynamic response of the full model as accurately as possible.
Can the approximated gradients estimated by non-intrusive reduced-order mod-
elling be used to efficiently estimate geological parameters of reservoir models with
sufficient accuracy?

Geological parameters reduction and proper orthogonal decomposition techniques
are able to drastically reduce the reservoir model. The use of domain decomposition
further enables the large-scale applications since the number of required full model
simulations depends primarily on the number of the globally reduced parameters
and not on the dimension of the underlying full-order model. In addition, the use
of radial-basis function interpolation eases the construction of surrogate model by
avoiding a code intrusion problem. For the synthetic cases studied in Chapter 3, the
adjoint model of the original high-dimensional non-linear model can be effectively
replaced by the proposed subdomain reduced-order linear model for the gradient-
based history matching problem. The number of full-order model simulations re-
quired for history matching is roughly 2-3 times the number of global parameter
patterns in contrast to 4-5 times without applying domain decomposition. Exper-
iment results show that our proposed subdomain POD-TPWL approach achieves
similar accuracy as the classic finite-difference based history matching, but at much
lower computational cost.

2. Research question 2: From a computational point of view, decomposing the global
parameters in each subdomain individually should be very attractive. Can local pa-
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rameterization by subdomain-based decomposition help to improve the computa-
tional efficiency of ROM-based parameter estimation for large-scale problems?

A local parameterization method through combining principle component analysis
and domain decomposition is proposed to decompose the high-dimensional so-
lution space for the spatial parameter field into lower-order parameter subspaces
associated with individual spatial subdomains. The use of local parameterization
enables the application of subdomain POD-TPWL to large-scale problems since the
number of full-order model simulations depends primarily on the number of the
local parameters in each subdomain. The number of full-order model runs can be
limited by using a larger number of subdomains in which a smaller number of local
parameters will need to be retained. For the cases studied in Chapter 4, the number
of full-order model simulations required was roughly 2 times the maximum num-
ber of local parameter patterns among all subdomains. The method demonstrates
a very attractive scalability for a model with a much larger domain and when using
the same size of the subdomains the number of full-order model simulations will
hardly increase. The performance of our proposed subdomain POD-TPWL with lo-
cal parameterization is very sensitive to the domain decompositions, and we should
decompose the model domain with much cares.

3. Research question 3: The reduced-order modelling approach is shown to be appli-
cable for certain problems. How can alternative surrogate modelling approaches in-
spired by recent advances in deep learning be used to speed up the history matching
process?

We have introduced an efficient deep-learning inversion framework where the orig-
inal high-fidelity model is replaced by a time-conditioning residual U-Net (cR-U-
Net) surrogate model to speedup gradient-based seismic history matching. The
proposed surrogate model is used to estimate the unknown permeability fields of a
3D benchmark reservoir model by assimilating synthetic measurements. The main
contribution of this work is on using the DNN surrogate to approximate the objec-
tive function gradient by auto-differentiation. The inherent computational saving
stems from the use of GPU units, which is an absolute essential but also a major
benefit derived from the deep learning packages. The preliminary numerical results
show that the proposed methodology is highly efficient since the required number
of high-fidelity model runs for training the cR-U-Net surrogate model is relatively
small. In addition, the proposed deep-learning inversion algorithm with stochastic
gradient optimizer demonstrates an effective convergence performance against the
model and data noise for the considered high-dimensional seismic history match-
ing problem with a large number of measurements and parameters.

4. Research question 4: Since both deep-learning surrogate model and reduced-order
model are intentionally used for the gradient-based history matching, what are the
relative benefits and disadvantages of deep-learning and reduced order surrogate
modelling approaches for gradient-based history matching?

Both methods have their own advantages and disadvantages. The most important
step for successfully implementing subdomain POD-TPWL method is to determine
the optimal domain decomposition scheme. Although our proposed adaptive strat-
egy could partially circumvent the negative impacts of inappropriate domain de-
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composition schemes, the final solution is completely restricted by our predefined
dictionary of domain decompositions, and therefore the performance of this adap-
tive strategy strongly depends on the design of this dictionary. The choice of a DNN
architecture is relatively subjective (although flexible). The applications of cR-U-Net
have the underlying advantage to make full use of the high-performance computing
units, such as the GPU cards, since the exiting deep learning packages can efficiently
use them. The ability of a software program to fully utilize GPUs is a big advantage.

Subdomain POD-TPWL constructs reduced-order linear model around a specific
trajectory using the first-order Taylor expansion. If the testing model is far away
from this trajectory, the accuracy inevitably will deteriorate. This leads to the neces-
sity in frequently reconstructing the subdomain POD-TPWL once the new testing
models have large discrepancies from the current reduced-order linear model. In
contrast, the cR-U-Net actually constructs a global surrogate model based on the
globally distributed training samples, which are contrasted with the construction of
the linear model using local training samples, and hence retraining cR-U-Net surro-
gate model is not strictly required. Definitely, filling the entire parameter space as
much as possible using a large number of training samples, e.g., 1000 in this disser-
tation, substantially improves the accuracy.

There is a trade-off between accuracy and computational complexity. For small
sample sizes the physics based subdomain POD-TPWL is more efficient and that
for larger sample sizes the error of subdomain POD-TPWL at some point does not
improve any more for a fixed domain decomposition strategy. The DNN is less effi-
cient for small sample sizes, but gets better and better with larger samples sizes. A
direct application of the proposed DNN surrogates to field-scale models with a large
degree of freedom definitely poses huge computational challenges and memory re-
quirements for training them. This drawback seemingly makes the DNN approach
less attractive than that of the subdomain POD-TPWL. In order to generate multiple
posterior realizations for quantifying the model uncertainty, the subdomain POD-
TPWL has to be independently implemented for each ensemble member, which
requires us to repeatedly update the reduced-order models with several additional
high-fidelity model simulations. By contrast, the cR-U-Net surrogate model obtains
multiple posterior realizations through starting from different initial models, which
does not involves additional high-fidelity model runs. The computational saving
will increase linearly with the ensemble size. Overall, the cR-U-Net will become
much more efficient than that of subdomain POD-TPWL for generating an ensem-
ble of posterior realizations.

5. Research question 5: As an alternative to gradient-based seismic history matching,
how can ensemble-based history matching approaches benefit from the use of deep-
learning surrogate models, especially for the challenging application of large-scale
seismic history matching?

We present an efficient stochastic inversion framework where a deep convolutional
neural network is designed to fully replace the high-fidelity model, and then is inte-
grated with an image-oriented distance parameterization to deal with the challeng-
ing ensemble-based seismic history matching problem. An architecture of time-
conditioning Residual-In-Residual Dense Block U-Net (cRRDB-U-Net) consisting of
encoding, transition and decoding units, is trained to predict the spatially discon-
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tinuous water fronts. The proposed deep-learning based surrogate model is used
to calibrate the unknown permeability fields of a small 2D synthetic non-Gaussian
model and of a modified version of 3D benchmark model. For the first case, our
methodology accurately reconstructs the geological structures, e.g., binary chan-
nels, of the non-Gaussian models and shows comparable results with the high-fidelity
model. For the second case, training cRRDB-U-Net surrogate model with only 1000
high-fidelity models generates satisfactory results. Since the GPU time for running
cRRDB-U-Net surrogate model is negligible compared to that for running high-fidelity
model, the total number of high-fidelity model simulations is taken as an indicator
of the computational cost. In order to obtain comparable history matching accu-
racy, the use of cRRDB-U-Net as a surrogate model specifically reduces the compu-
tational times to by a factor 5 for the problem defined in Chapter 7. We should point
out that the overall computational saving is case-dependent and the data genera-
tion and training time required to create a surrogate model seems to be the major
limitation of the method, especially for the large-scale models.

8.2. FUTURE WORK
There are some other aspects of the proposed methodology that could possibly be im-

proved. In the following, a few potential research directions are listed for future investiga-
tion:

1. It has been observed that sampling strategy has to be chosen with care to obtain
an efficient implementation of the projection-based subdomain POD-TPWL. Some
diagnostics could possibly be devised to determine if and how many additional sam-
pling points need to be generated. All examples have shown that the choice of do-
main decomposition strategy has a significant impact on the history matching re-
sults. Although an adaptive strategy has been proposed, it also may be beneficial
to design a prior dictionary of domain decomposition schemes based on informa-
tion about the either the scales of variability of the parameter field or of the main
dynamical patterns. Since in reservoir applications these patterns are strongly af-
fected by the placement of producers and injectors the subdomain decomposition
could possibly be designed using the well lay-out. We have chosen somewhat ar-
bitrary decomposition of the global domain into rectangular subdomains. In this
thesis the distribution of the measurements was almost uniform across all subdo-
mains, and hence an uniform choice of the number of local PCA patterns in each
subdomain is appropriate. To improve efficiency of the approach, the number of lo-
cal parameters in each subdomain could possibly also be determined by taking into
account the number of available measurements.

2. Although some preliminary results have been obtained, it deserves to improve our
insights into how the DNN surrogate works for gradient-based inversion, e.g., when
it will work (weak- or strong non-linear) and the relation between accuracy and
computational complexity. The degree of model non-linearity dominates the con-
vergence performance, e.g., local or global minima, of the gradient-based optimiza-
tion. Nevertheless, whether the non-linearity of the high-fidelity model is correctly
captured by the DNN surrogate model is not very clear. In contrast, derivative-free
global optimization methods, e.g., particle-swarm optimization, genetic algorithm
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and evolutionary algorithm, could search solutions in the global space at the ex-
pense of numerous model runs. The high computational-efficiency of our proposed
deep-learning models definitely could facilitate the application of these global opti-
mization methods.

3. The currently proposed DNN surrogate model is built on a set of detailed full physics
simulations at the training stage, which is completely independent on the history
matching process. The history matching has the potential of instructing the con-
struction of DNN surrogate model, during which a set of locally accurate surrogates
are adaptively refined. The surrogate model could be trained with a small number
of initial training samples, and then be progressively enriched with many additional
training samples (i.e., re-sampled simulation runs) close to the target distribution at
the history matching process. Under this situation, the DNN surrogate can perhaps
be retrained relatively quickly if we only add one or several new data points and just
continue from the previously trained model. In order to prevent the model from
overfitting to these new training points, the fine-tuning or transfer learning strategy
should be useful [1, 2].

4. Incorporating the deep-learning surrogate model in history matching procedure in-
evitably introduces additional sources of uncertainty due to approximation errors
[3]. Investigating the influences of surrogate approximation errors on the history
matching process could contribute to achieve more accurate and reliable results
[4]. In the current work, the proposed methods were tested on synthetic or simpli-
fied benchmark problems. Their potential use in practical applications and other
complex systems deserves further exploration due to their data-driven and non-
intrusive nature.

5. The complementary advantage of projection-based ROM and DNN opens up an-
other opportunity of research and therefore deserves to be explored. A direct ap-
plication of DNN surrogates to real-world models with a large number of degrees
of freedom poses huge computational challenges for training them. We may expect
that a smart combination of ROM and DNN has the potential of enlarging the valid-
ity of ROM and hence to improve the accuracy through a DNN-based error correc-
tion. In particular, based on our preliminary results in [5] we can substantially im-
prove the accuracy of ROM by quantifying the discrepancy between the high-fidelity
model and the ROM outputs using a DNN. Or we can project the high-dimensional
model into the reduced-subspace as commonly done in ROM and then construct
DNN surrogate in the subspace, which results in a large reduction of computational
cost and memory requirement [6–8].
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