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Summary

The development of Autonomous Vehicles (AVs) is revolutionizing multiple sectors, includ-
ing automotive and maritime transportation. These innovations promise enhanced safety,
operational efficiency, and environmental sustainability. To fulfill these promises, the
navigation modules of these vehicles must be capable of handling complex environments,
responding to unexpected events, and ensuring reliable decision-making under uncertainty.
In this thesis, the focus is on Autonomous Surface Vessels (ASVs), aiming to enable safe and
reliable navigation in complex and mixed-traffic environments (i.e., a mix of autonomous
and non-autonomous vehicles) where uncertainties and faults pose significant challenges.

The central objective of this research is to develop fault-tolerant and rule-compliant
motion planning algorithms for ASVs. These algorithms must be capable of ensuring safety
even amidst component faults and other uncertainties while maintaining adherence to
established traffic regulations. This capability is crucial to facilitate the coexistence of
autonomous and human-operated vessels, especially during the transitional phase where
human presence is predominant in maritime traffic.

The thesis is structured around the following key contributions:

1. Model Predictive Trajectory Optimization for Rule Compliance: The first step
in ensuring safe navigation involves integrating maritime traffic rules into trajectory
optimization. This thesis introduces a Model Predictive Contouring Control (MPCC)
approach tailored to ASVs, which incorporates the International Regulations for Pre-
venting Collisions at Sea (COLREGs). The proposed method utilizes affine constraints
to formalize rule-compliant behavior within an optimization framework, allowing
ASVs to navigate safely in dense and dynamic traffic scenarios. This rule-based
approach enhances predictability and safety, enabling the ASV to interact seamlessly
with human-operated vessels.

2. Fault Diagnosis for Enhanced Operational Reliability: The thesis addresses
actuator faults that can compromise an ASV’s performance. Operational reliability
refers to the ASV’s ability to function safely despite faults and uncertainties, ensuring
continued safe navigation in dynamic environments. To achieve this, a model-based
Fault Diagnosis (FD) method is developed, using residual analysis and adaptive
thresholds to detect and isolate actuator faults in real-time. Simulation results
demonstrate its effectiveness in distinguishing faults from regular disturbances and
maintaining safety under faulty conditions.

3. Set-Membership Estimation for Robust Fault Parameter Identification: Ex-
panding on the fault diagnosis capabilities, the thesis enhances the Set-Membership
Estimation (SME) approach to robustly estimate fault parameters under the influ-
ence of uncertainties and noise. This method leverages the concept of unfalsified
parameter sets, extending it to nonlinear systems affected by both state disturbances



viii Summary

and measurement inaccuracies. The estimation process is crucial for accurately
identifying the extent of faults, enabling the system to adapt its behavior accordingly.

4. Fault-Tolerant Trajectory Optimization and Control with Contingency Plan-
ning and Robust Adaptive Model Predictive Control: Building upon the pro-
posed fault diagnosis and parameter estimation methods, the thesis proposes a
comprehensive motion planning framework that ensures both fault tolerance and
rule compliance. The developed Robust Adaptive Model Predictive Control (RAMPC)
integrates fault information into the trajectory optimization process, allowing the
ASV to dynamically adjust its path in response to detected faults while continuing
to adhere to traffic rules. This dual capability ensures that the ASV remains a reli-
able and predictable participant in mixed-traffic environments, even under faulty
conditions.

The contributions presented in this thesis have been validated through extensive
simulation studies, involving various traffic scenarios and fault conditions. The proposed
algorithms have demonstrated the ability to navigate safely in congested environments,
handle unexpected events, and adapt to faults without sacrificing safety or compliance with
maritime regulations. The framework is implemented in ROS, with the controller developed
in C++ and the ASV and other vessel simulators in Python. This choice streamlines future
integration with real-world platforms and facilitates experimental validation. This research
not only advances the state of the art in fault-tolerant motion planning for ASVs but also
provides a solid foundation for broader autonomous navigation applications.
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Samenvatting

De ontwikkeling van Autonomous Vehicles (AV’s) brengt een revolutie teweeg in ver-
schillende sectoren, waaronder de auto- en maritieme transportsector. Deze innovaties
beloven verbeterde veiligheid, operationele efficiëntie en milieuduurzaamheid. Om deze
beloftes waar te maken, moeten de navigatiemodules van deze voertuigen in staat zijn om
complexe omgevingen aan te kunnen, onverwachte gebeurtenissen het hoofd te bieden
en betrouwbare besluitvorming te waarborgen onder onzekerheid. In dit proefschrift ligt
de focus op Autonomous Surface Vehicles (ASV’s), met als doel veilige en betrouwbare
navigatie mogelijk te maken in complexe omgevingen met gemengd verkeer (d.w.z. een mix
van autonome en niet-autonome vaartuigen), waarin onzekerheden en fouten aanzienlijke
uitdagingen vormen.

Het centrale doel van dit onderzoek is het ontwikkelen van fouttolerante en regelcon-
forme bewegingsplanningsalgoritmen voor ASV’s. Deze algoritmen moeten veiligheid
garanderen, zelfs bij componentstoringen en andere onzekerheden, terwijl ze blijven
voldoen aan de geldende verkeersregels. Deze capaciteit is van cruciaal belang om de
coëxistentie van autonome en door mensen bestuurde vaartuigen mogelijk te maken, met
name tijdens de overgangsperiode waarin menselijke aanwezigheid nog dominant is in het
maritieme verkeer.

Het proefschrift is opgebouwd rond de volgende belangrijke contributies:

1. Modelvoorspellende Trajectoptimalisatie voor Regelconformiteit: De eerste
stap richting veilige navigatie is het integreren van maritieme verkeersregels in de
trajectoptimalisatie. Dit proefschrift introduceert een Model Predictive Contouring
Control (MPCC) benadering, specifiek afgestemd op ASV’s, die de International Reg-
ulations for Preventing Collisions at Sea (COLREGs) incorporeert. De voorgestelde
methode maakt gebruik van affiene beperkingen om regelconform gedrag formeel
vast te leggen binnen een optimalisatiekader, waardoor ASV’s veilig kunnen nav-
igeren in drukke en dynamische verkeersscenario’s. Deze regelgebaseerde aanpak
vergroot de voorspelbaarheid en veiligheid, en maakt naadloze interactie mogelijk
met door mensen bestuurde vaartuigen.

2. Foutdiagnose voor Verbeterde Operationele Betrouwbaarheid: Dit proefschrift
behandelt actuatorstoringen die de prestaties van een ASV kunnen ondermijnen.
Operationele betrouwbaarheid verwijst naar het vermogen van een ASV om veilig
te blijven functioneren ondanks storingen en onzekerheden, en zo veilige navigatie
te waarborgen in dynamische omgevingen. Daartoe wordt een modelgebaseerde
Fault Diagnosis (FD) methode ontwikkeld, waarbij gebruik wordt gemaakt van
residuanalyse en adaptieve drempelwaarden om actuatorstoringen in real-time te
detecteren en te isoleren. Simulatieresultaten tonen de effectiviteit aan van deze
methode in het onderscheiden van storingen ten opzichte van gewone verstoringen,
en het behouden van veiligheid onder foutieve omstandigheden.
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3. Set-Membership Schatting voor Robuuste Foutparameteridentificatie: Ter uit-
breiding van de foutdiagnosecapaciteiten, verbetert het proefschrift de Set-Membership
Estimation (SME) methode om foutparameters robuust te schatten onder invloed
van onzekerheden en ruis. Deze methode maakt gebruik van het concept van niet-
weerlegde parameterverzamelingen en breidt dit uit naar niet-lineaire systemen die
worden beïnvloed door zowel toestandsverstoringen als meetonnauwkeurigheden.
Dit schattingsproces is essentieel voor het nauwkeurig vaststellen van de ernst van
storingen, waardoor het systeem zijn gedrag dienovereenkomstig kan aanpassen.

4. Fouttolerante Trajectoptimalisatie en -controle met Contingentieplanning
en Robuuste Adaptieve Modelvoorspellende Controle: Voortbouwend op de
voorgestelde methoden voor foutdiagnose en parameterinschatting, stelt dit proef-
schrift een uitgebreid bewegingsplanningskader voor dat zowel fouttolerantie als
regelconformiteit waarborgt. De ontwikkelde Robust Adaptive Model Predictive
Control (RAMPC) integreert foutinformatie in het trajectoptimalisatieproces, waar-
door de ASV zijn pad dynamisch kan aanpassen in reactie op gedetecteerde storingen,
terwijl hij blijft voldoen aan de verkeersregels. Deze dubbele capaciteit zorgt er-
voor dat de ASV een betrouwbare en voorspelbare deelnemer blijft in gemengde
verkeersomgevingen, zelfs onder foutomstandigheden.

De contributies in dit proefschrift zijn gevalideerd via uitgebreide simulatiestudies,
waarin diverse verkeersscenario’s en foutcondities zijn onderzocht. De voorgestelde algo-
ritmen hebben aangetoond veilig te kunnen navigeren in drukke omgevingen, onverwachte
gebeurtenissen te kunnen verwerken en zich aan te kunnen passen aan storingen zonder
concessies te doen aan veiligheid of naleving van maritieme regelgeving. Het raamwerk
is geïmplementeerd in ROS, waarbij de controller in C++ is ontwikkeld en de ASV- en
andere vaartuigsimulatoren in Python. Deze keuze vergemakkelijkt toekomstige integratie
met fysieke systemen en experimentele validatie. Dit onderzoek levert niet alleen een con-
tributie aan de stand van de techniek op het gebied van fouttolerante bewegingsplanning
voor ASV’s, maar vormt ook een solide basis voor bredere toepassingen binnen autonome
navigatie.
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2 1 Introduction

1.1 Motivation & Challenges
Over the past few decades, we have witnessed our society moving rapidly towards an
increased level of automation. Initially adopted in industry, automation solutions have aided
in the design of more cost and energy-efficient means of production. While automation
systems have traditionally been deployed in deterministic environments for repetitive
tasks, recent advances in sensing and computing technology now enable their use in more
complex and dynamic settings, extending their applications to various aspects of human
activity.

The automotive industry is one of the most prominent areas to benefit from automation,
with great research efforts both in academia and in industry. Among the main societal
benefits presumed, the most interesting ones concern increased safety, improved traffic
efficiency, and better mobility options for example with on-demand ride-sharing solutions
(Figure 1.1). According to [1], road accidents are listed as one of the leading causes of
fatalities, accounting for nearly 1.2 million deaths each year with an additional 20-50
million people suffering non-fatal injuries which often result in long-term disabilities [2].
An estimated 94% (±2%) of these accidents are attributed to human error [3] including
impaired drivers due to alcohol consumption, speeding, distraction, and fatigue. Self-
driving car technology has then the potential to increase road safety while at the same time
improving traffic efficiency and mobility. Services such as on-demand ride-sharing can
provide greater mobility options to people who are unable to drive due to disabilities or
other reasons and also make commuting much more time and energy-efficient, especially in
densely populated urban environments. Automotive transportation is undergoing a major
transformation towards automation with a great societal impact in terms of economic and
environmental sustainability.

Figure 1.1: Autonomous vehicle technology is set to
revolutionize urban mobility, offering on-demand ride-
sharing services that promise reduced emissions, greater
accessibility, minimized urban parking space require-
ments, and enhanced safety for all users. [4]

Figure 1.2: Yara Birkeland is the world’s first fully elec-
tric and autonomous container vessel with zero emis-
sions. With this container vessel, Yara will reduce diesel-
powered truck haulage by 40.000 journeys (approxi-
mately 1.000 tonnes of CO2) a year. [5]

While the automotive industry has had the leading role in this trend, the maritime
sector is also progressing towards developing and utilizing autonomous maritime systems
in many applications including transportation, large-scale monitoring, and search and
rescue missions. This shift towards autonomy is motivated by numerous potential benefits
such as greater efficiency, reduced operational costs, and increased safety. According to
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[6], over the period 2014-2020, accidents of navigational nature (collisions, contacts, and
groundings/strandings) represented almost 43% of all occurrences. Since human actions
accounted for almost 61% of the contributing factors, autonomous maritime navigation may
significantly reduce the risk of collisions which often lead to human casualties, damaged
property, and devastating environmental disasters. In addition, many maritime tasks includ-
ing freight transport (Figure 1.2), environmental monitoring (Figure 1.3), and hydrographic
surveying (Figure 1.4), require the crew to be away from shore for extended periods and
often under dangerous weather conditions. Autonomous solutions can significantly reduce
risk exposure, time away from shore, and lack of family contact for extended periods which
greatly influences personnel’s social life.

Figure 1.3: The "Saildrone" unmanned surface vessel
collects scientific-grade data from extreme ocean envi-
ronments, aiding in climate research, weather forecast-
ing, and ecosystem monitoring with zero operational
carbon footprint. [7]

Figure 1.4: The "Otter" USV by Maritime Robotics is
designed for hydrographic surveying and bathymetric
mapping, offering a cost-effective, portable solution for
precise data collection in sheltered and shallow waters.
[8]

Moreover, it is often supported that autonomy in maritime vessels can lead to increased
energy efficiency and reduced gas emissions mainly in two ways. First, autonomous ships
can allow for increased slow-steaming1 which in turn can lead to considerable reductions
in fuel consumption. For example in some routes, a speed reduction of 5 knots can reduce
fuel consumption by 54% [9]. Second, autonomy can lead to the ground-up redesign of
ships since many personnel-related parts of a vessel (e.g., quarters, mess, stairs, bridge)
are going to be redundant. This removes design constraints to a point that ships can have
greater cargo capacity and less wind-resistant exterior design decreasing the specific 𝐶𝑂2
emissions per tonne-km significantly.

Last but not least, maritime automation can give rise to advanced cooperation frame-
works which in turn can yield numerous benefits: Cooperation among autonomous vessels
can further enhance safety by exploiting communication (sharing intentions and other
safety-critical information) and also improve traffic efficiency by coordinating their voyage
plans with infrastructure scheduling in order to avoid congestion at ports and make better
use of infrastructure resources [10]. Therefore, the huge potential benefits of automation
1The term "slow-steaming" describes the deliberate reduction in the cruising speed of a sea vessel which is
primarily done to reduce fuel consumption and pollution from emissions. Although lowering speed reduces the
power requirements, the overall benefits of speed reduction may be limited by other factors, such as economically
viable total voyage time.
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in the maritime sector justify the recent growth in research efforts we have witnessed in
the last decade.

Figure 1.5: An autonomous car caused a significant traf-
fic jam highlighting challenges in autonomous driving
in urban traffic. [11]

Figure 1.6: Marine traffic is also quite challenging, espe-
cially near ports and inland waterways where multiple
traffic participants need to cooperate. [12]

Despite the numerous benefits that autonomy has to offer in both the automotive and
maritime industries, it still remains a challenging task from a technological perspective.
In both areas, there will be a transition period in which Autonomous Vehicles1 (AVs) will
be expected to co-exist with human-operated vehicles. This gives rise to major societal
concerns about the capabilities of AVs to interact safely with non-autonomous vehicles
(operated by humans) in mixed-traffic conditions and to handle unexpected events, such as
faults, without causing disruptions or jeopardizing human safety. State-of-the-art solutions
rely either on the full knowledge of the other autonomous vehicles’ intentions using
communication or on simplifying assumptions such as assuming constant velocity for
the other traffic participants. The latter results in reactive collision avoidance actions
where the autonomous vehicle avoids collision in a passive, unstructured manner without
consideration of the traffic environment. The main difficulty in developing a safe motion
planning algorithm in mixed-traffic scenarios is the limited available information among
the vehicles that complicates decision-making and proactive planning.

As AVs will heavily rely on components such as sensors, actuators, computation units,
and various other sub-systems, a major concern revolves around the potential consequences
of component faults or complete failures during operation. Moreover, the existence of
underlying uncertainties in the measurements or models used can severely deteriorate the
performance or even pose considerable risks to the other traffic participants. For instance,
in March 2018, a self-driving Uber vehicle involved in a fatal collision (Figure 1.7) in
Tempe, Arizona, failed to properly identify a pedestrian crossing the street at night, partly
due to issues with the vehicle’s perception system which includes sensors and cameras
[13]. Additionally, Tesla faced scrutiny when more than 40.000 vehicles were recalled
due to a software update that miscalibrated the power steering, potentially leading to
loss of steering assist and increased risk of accidents [14]. This recall was highlighted
1The term "Autonomous Vehicles" is used in the general context in this report to describe both automotive
vehicles and maritime vessels that is, vehicles that navigate in dense traffic environments shared with other
traffic participants (Figures 1.5 and 1.6). When using the word "autonomous" we refer to at least level-4 autonomy
according to SAE and IMO that is, we assume full autonomy: The operating system is able to make decisions
and determine actions by itself in all conditions.
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by unexpected steering commands that could force drivers to exert much more effort
to control the vehicle, especially at lower speeds. The maritime industry has witnessed
similar issues for conventional vessels, such as in 2017 when a navy ship collided with a
container ship off the coast of Japan, a mishap partly attributed to failures in its navigation
system’s radar sensors [15]. More recently, in March 2023, a container ship experienced
a catastrophic power failure that led to a collision with the Francis Scott Key Bridge in
Baltimore (Figure 1.8), resulting in human casualties and significant disruptions [16]. These
incidents underscore the critical need for robust fault diagnosis and fault-tolerant systems
to ensure the safety and reliability of autonomous technologies.

Figure 1.7: "In 2019, a fault in a self-driving car led to a
deadly crash, emphasizing the need for improved safety
measures in autonomous driving technology. [17]

Figure 1.8: In 2024, a power failure on a container ship
led to a complete loss of maneuverability, resulting in a
crash that caused the Baltimore bridge to collapse. [18]

In conclusion, while AVs have the potential to significantly improve transportation in
many aspects, the aforementioned challenges underscore the need for advancements in AV
technology to ensure reliable operation under varied and unpredictable conditions. The
research goal of the thesis is to develop efficient, online motion planning algorithms to allow
autonomous vehicles to safely navigate in mixed traffic, i.e., among human-operated vehicles
even in the presence of faults. Our algorithms are initially developed for Autonomous Surface
Vessels (ASVs) as the primary platform, but they are designed to be adaptable for broader
applications in autonomous navigation.

1.2 ResearchQuestions
The main research question of this thesis is:

How can ASVs safely navigate in mixed traffic environments even in the presence of faults?

To answer the question above, we need to answer the following sub-questions:

Q1: How can ASVs navigate safely and efficiently in dense traffic environments while
ensuring compliance with maritime traffic rules?

Q2: How to detect and isolate actuator faults in ASVs to enhance overall operational
safety and reliability?
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Q3: How can fault parameters be accurately and robustly estimated under varying oper-
ational conditions, including the presence of disturbances and noise?

Q4: How can we jointly guarantee fault-tolerant and rule-compliant trajectories for ASVs
operating in mixed-traffic environments?

1.3 Approach
This thesis addresses the problem of fault-tolerant autonomous navigation within the
context of "mixed-traffic" environments, characterized by the interaction of autonomous
and human-operated vehicles. We assume that the state of the ASV including its pose and
velocity, is accurately determined through a set of suitable sensors with sufficient precision.
We further assume that another set of sensors effectively captures the environment of
the ASV, such as the positions, velocities, and dimensions of both static and dynamic
obstacles (i.e., other traffic participants). Further, we study the problem of faults in these
environments and their unexpected occurrence during navigation. Specifically, we devise
strategies to diagnose these faults and mitigate their effects.

The first goal is to devise a local motion planning algorithm that enables the ASV to
navigate safely and efficiently, adhering to traffic regulations while avoiding collisions. This
is particularly challenging due to the unpredictable nature of human-operated vehicles and
the lack of direct communication about their intentions. To address this, we integrate traffic
rules into the motion planning algorithm, using them as a proxy for communication. This
allows traffic participants to infer others’ likely actions based on simple observable metrics
like pose and velocity, thus creating a framework of mutual expectations and obligations.

Unexpected events, such as system faults, can further challenge navigation and severely
impact the ASV’s operational capabilities. Therefore, the second goal of our approach
involves enhancing the robustness of the motion planner to accommodate such faults
without compromising safety or causing disruptions. We achieve this by developing a
fault-tolerant planning strategy that ensures the AV remains a safe and compliant traffic
participant under faulty conditions.

The methodologies developed in this thesis primarily rely on two foundational pillars
designed to address the dual challenges of rule compliance and fault tolerance in motion
planning.

1.3.1 Model Predictive Control
The backbone of the methods presented in this thesis is Model Predictive Control (MPC),
also known as Receding Horizon Control (RHC) [19, 20]. MPC is fundamentally an ap-
proximation of an infinite horizon Optimal Control Problem (OCP). The central concept
involves controlling a dynamical system by minimizing a cost function, which typically
encapsulates the system’s objectives while adhering to both state and input constraints.
These constraints may arise from the physical properties of the system or be user-defined
to encourage desired behaviors. Within a defined time horizon, the system’s future states
are predicted using an established dynamical model and, unlike traditional OCP, MPC
tackles the optimization problem in real time over this finite horizon. At each control cycle,
an "optimal" control sequence is calculated. Feedback is introduced by applying the first
input from this sequence to the system, and the cycle repeats at the next iteration.
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Utilizing MPC as a strategy for motion planning offers significant advantages. Firstly, it
allows for proactive adjustments to changes in the system and its environment, transitioning
from a reactive to a proactive control approach by accommodating predictions about the
system and its environment. Additionally, OCP seamlessly integrates a wide range of
constraints—from model dynamics and input saturation to state restrictions—directly into
the optimization problem, eliminating the need for complex, cascaded control architectures.
Lastly, MPC’s framework readily extends to robust settings, effectively managing state and
output uncertainties, and to adaptive settings that can address unexpected, time-varying
effects such as faults.

1.3.2 Fault-Tolerant Control
In control systems, faults typically refer to the malfunction or improper operation of com-
ponents such as sensors, actuators, and processes. Fault-Tolerant Control (FTC) is essential
for detecting these faults and mitigating their effects to ensure continued operation or, at a
minimum, controlled degradation of system performance. This capability is particularly
critical in safety-sensitive applications, such as navigation among human-operated vehicles.
FTC typically consists of two key components: a Fault Diagnosis (FD) module that detects,
isolates and estimates faults, and a reconfiguration strategy that adjusts the controller
based on FD information.

Both FD and FTC can be classified as passive or active. Passive FD relies solely on
naturally occurring system inputs and outputs without modifying control actions, making
it suitable for applications where external intervention is not feasible. In contrast, active FD
enhances fault detectability by injecting test signals or modifying control inputs to provoke
measurable fault effects. This approach is particularly useful in safety-critical applications
where distinguishing between similar faults is essential. Similarly, FTC strategies can be
categorized as passive or active. Passive FTC designs controllers to be inherently robust
against faults, allowing the system to maintain stability without requiring reconfiguration.
Active FTC, on the other hand, relies on an FD module to detect, isolate, and estimate
faults, enabling adaptive responses to mitigate their effects dynamically, making it a less
conservative approach.

In this work, we leverage the flexibility of MPC to implement active FTC by recon-
figuring the controller in response to detected faults. This adaptation is supported by
a robust active FD module capable of detecting, isolating, and estimating faults despite
environmental disturbances, measurement noise, and model mismatches. Specific FD
modules are developed to continuously monitor the system’s operational conditions using
input-output measurements and identify deviations from expected behavior. Building on
this capability, the nominal MPC framework is extended to incorporate real-time system
health data, enabling it to mitigate the impact of faults immediately after their detection
and estimation.

1.4 Contributions
To reach the overall research goal established in Section 1.1 and answer the research
questions of 1.1, this thesis presents the following scientific contributions:

1. A Model Predictive Trajectory Optimization and Control Algorithm Considering
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Traffic Rules [21], as a response to Research QuestionQ1. The algorithm is tailored for
the application of Autonomous Surface Vessels (ASVs), and it contains the following
contributions concerning the state of the art on this topic:

• A formal derivation of affine constraints that guarantees rule compliance in a
convex search space.

• Simplified transition expressions in the traffic rule decision-making module
that rely on the design of the affine constraints.

• An algorithm that scales to multiple obstacles and allows the vessels to safely
navigate through dense traffic environments.

2. An active FD method that can robustly detect and isolate actuator faults based
on input-output measurements [22], as a response to Research Question Q2. The
method relies on residuals generated by a nonlinear observer, coupled with adaptive
thresholds and an active reconfiguration strategy of the MPC controller to enhance
isolability. The contributions with respect to the state of the art are:

• A planning-integrated active FD algorithm capable of detecting and isolating
actuator faults, enhancing overall safety by proactively accounting for actuator
faults.

• Adaptive thresholds that adjust dynamically to the system’s nonlinear behavior
for more accurate fault detection, considering noise and disturbances.

• Enhanced fault isolation using control redundancy and detailedmodel dynamics,
reducing the dependency on additional control allocation modules.

3. A passive FD method to detect and estimate fault parameters along with their feasible
set based on Set-Membership Estimation (SME) [23], as a response to Research
Question Q3. Fault detection relies on inverse tests and the estimation of faulty
parameters via the computation of their feasible parameter set. Key contributions
include:

• Set-membership estimation to nonlinear systems, accounting for both distur-
bances and measurement noise. This capability ensures false alarm immunity
by design, thereby increasing the robustness of the fault detection process.

• A tighter outer approximation of the feasible parameter set that balances ac-
curacy and computational efficiency, based on user-defined preferences. This
leads to improved fault detectability, reducing the risk of missed detections and
enhancing the system’s responsiveness to faults.

• Adaptive regularization in fault parameter estimation to handle cases of sparse,
non-informative measurement data, resulting in improved fault identifiability.

4. A fault-tolerant trajectory optimization and control framework that relies on a dual-
plan strategy comprising a primary and contingency trajectory. Both plans are
designed in a Robust Adaptive MPC (RAMPC) fashion that utilizes the FD of the
previous Chapter and is able to guarantee rule-compliant, fault-tolerant trajectories
for the ASV in mixed-traffic environments, as a response to Research Question Q4.
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1.5 Outline
The outline of this thesis is shown in Figure 1.9. Chapter 2 briefly reviews the state of the art
in rule-compliant motion planning and fault-tolerant motion planning. Chapter 3 presents
a trajectory optimization algorithm for rule-compliant collision avoidance in dynamic,
mixed-traffic environments (as response to Research Question Q1). Chapter 4 presents an
FD method developed based on residuals and adaptive thresholds (as response to Research
QuestionQ2) and Chapter 5 presents an FDmethod based on set membership estimation (as
response to Research Question Q3). Chapter 6 combines proposes a novel rule-compliant
and fault-tolerant motion planner in a RAMPC fashion (as response to Research Question
Q4). Finally, Chapter 7 concludes the thesis and provides recommendations for future
research.

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Model Predictive Trajectory Optimization

 for Autonomous Surface Vessels
 Conidering Traffic Rules

Chapter 4
Active Thruster 
Fault Diagnosis

Chapter 5
Set-Membership Estimation

for Fault Diagnosis

Chapter 6
Fault-Tolerant Trajectory
Optimization & Control

Chapter 7
Conclusions & Future Work

Q1

Q2 Q3

Q4

Figure 1.9: The outline of this thesis.
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2
Literature Review

This thesis addresses fault-tolerant motion planning inmixed-traffic environments. To facilitate
a deeper understanding of the subject, a comprehensive literature review is conducted to
summarize the current state of the art and identify existing research gaps. The chapter is
organized as follows: Section 2.1 provides a brief introduction to the topic of motion planning
and its evolution as a field in robotics. Section 2.2 delves into the challenges of motion planning
in mixed-traffic environments, particularly focusing on how traffic rules have been applied
in maritime navigation to mitigate uncertainties related to traffic participants. Section 2.3
explores the issue of fault-tolerant control in motion planning, with a special emphasis on
marine systems. Specifically, Section 2.3.1 examines the problem of fault diagnosis, while
Section 2.3.2 reviews various techniques employed for fault accommodation that work in
tandem with the diagnosis methods discussed. Fault diagnosis and fault tolerance methods in
the scope of marine systems are discussed in Section 2.3.3. Finally, Section 2.4 summarizes the
chapter and highlights the identified research gaps.
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2.1 Motion Planning for Autonomous Vehicles
Operating mobile robots requires interdisciplinary expertise, combining knowledge from
various fields to enable autonomous navigation in real-world environments. The main
question it addresses is "How can a mobile robot move unsupervised through real-world
environments to fulfill its task?" [24]. This question involves the solution and integration
of many different sub-problems such as perception, localization & mapping, cognition &
path planning and motion control which are often interconnected as illustrated in Figure
2.1.

Figure 2.1: The "see-think-act" control scheme of a mobile robot. [24]

This work focuses specifically on cognitive path planning (i.e., high-level decision-
making for trajectory generation and navigation in dynamic environments) (red block
in Figure 2.1) and motion control (blue block in Figure 2.1), assuming there is sufficient
information that we can exploit from the modules of perception and localization (yellow
and green blocks, respectively, in Figure 2.1). Path planning for mobile robots is a well-
established field in which various methodologies have been developed, spurred by both
theoretical interest and numerous applications. As discussed in [24], traditionally there are
two main competencies in mobile robot navigation: The first one is Path Planning which
involves identifying a trajectory that will cause the robot to reach a desired goal position,
given a map and its current position. The second one is Obstacle Avoidance which depends
on real-time sensor readings to modulate the trajectory of the robot in order to avoid
collisions. However, the complexity of motion planning in Urban and Marine Environments
has led to algorithms in which these attributes are inter-wined and often combined with
other important layers such as behavioral decision-making (usually included as part of the
cognition task shown in the red block of Figure 2.1). Since the scope of existing motion
planning algorithms is vast and varies a lot depending on the intended application, in
the following sections we focus on motion planning algorithms specifically for urban and
marine environments, in the context of mixed traffic, uncertainties, and faults.

According to [25], in motion planning for autonomous vehicles, the tasks of cogni-
tion, path planning, and motion control that are illustrated in Figure 2.1 are typically
hierarchically structured into route planning, behavioral decision-making, local motion
planning, and feedback control as shown in Figure 2.2. This modular representation that
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Figure 2.2: An hierarchical illustration (from left to right) of an AV’s decision-making processes. [25]

spans from the high-level task of route planning to the lower-level task of local feedback
control is especially helpful in discussing the suitability of various existing motion planning
algorithms.

Given the current position and a desired destination, route planning is the task of select-
ing a route through a given map that describes the traffic network and is usually considered
of a more "global" nature. This task is usually intended to be a one-time, pre-processing
step that returns an "optimal" higher-level path to be followed by the autonomous vehicle
[25]. Optimality criteria usually include a combination of traversed distance, time duration,
and energy consumption. This task is usually realized by representing the road network
as a directed graph with edge weights corresponding to the aforementioned criteria and
then utilizing a graph search algorithm to compute the minimum cost path. Algorithms
used for roadmap construction as a graph include Cell Decompositions [26], Visibility
Graphs [27, 28] or RRG [29]. Classical graph search algorithms include Dijkstra [30], A*
[31] and D* [32]. Lastly, in case discretization of the environment and consequent search is
computationally forbidden, sampling-based methods such as PRM [33], RRT [34] and their
variants are often employed.

Assuming that the autonomous vehicle is given the desired route in a global static
map, it then needs to traverse this route in the traffic network while interacting with other
traffic participants according to the prevailing conventions and traffic regulations. The
behavioral layer is responsible for selecting the appropriate set of actions according to these
regulations and the surrounding traffic participants. This module is especially difficult to
design for two main reasons. First, since the traffic rules are intended for human operators,
they are qualitative and too abstract for machine implementation in an algorithmic setting.
A common approach to automate this decision-making module is via Finite State Machines
(FSMs) (such as Moore or Mealy machines) by modeling each behavior as a state that
depends on the traffic situation of the vehicle. Such approaches have been utilized in [35].
While this addresses the problem at first glance, it is questionable to what extent it is
adequate as it is heavily based on heuristics. The second reason that makes the design of
such a behavioral layer difficult is the fact that urban and marine traffic environments are
characterized by an increased level of uncertainty over the intentions of the other traffic
participants. This problem has been addressed with both model-based approaches relying
for example on chance constraints [36, 37], MDPs [38, 39, 40, 41, 42] or game theory [43, 44,
45] and machine learning methods [46, 47, 48, 49]. Nevertheless, this module still remains
one of the most challenging to design with respect to the complexity of the task and the



2

14 2 Literature Review

need of formal safety guarantees that are not usually addressed in existing works.
The motion planning module is usually responsible for computing a local path for

the vehicle that follows the given, high-level route and also complies with the expected
behavior and existing motion constraints. The main task in local motion planning is usually
to provide a collision-free path with respect to both static (possibly uncharted obstacles)
and dynamic obstacles that are inferred from real-time sensor readings. A taxonomy of
obstacle avoidance techniques is described in [50]. In brief, the most notable mentions
includemethods of physical analogies which assimilate the obstacle avoidance problem, and
methods of subsets of controls which compute an intermediate set of motion controls, and
next they choose one of them as a solution. Among the methods of physical analogies, the
APF method [51] and its extensions [52, 53, 54], are known for their widespread use along
with some variants for example NFs [55, 56, 43]. The methods of subsets of controls can be
further distinguished in two types: Methods that compute a subset of motion directions
(VFH [57], ORM [58]) and methods that compute a subset of velocity controls like DWA
[59] or VO [60] and its extensions (GVO [61], RVO [62], AVO [63], ORCA [64]). Last but
not least, recent advances in computation technologies have rendered predictive control
algorithms a favorable option for motion planning including both gradient-based methods
such as MPCC [65, 66, 67], but also sampling-based methods such as MPPI [68, 69, 70].

The last module of local feedback control is responsible for the low-level control of
the actuators of the vehicle so that it follows the desired, local, collision-avoiding path.
This module is traditionally relying on classical control theory and the methods used span
from those designed for linear (or linearized) systems (e.g., state feedback, PID, LQR, etc.)
to those designed for nonlinear systems (e.g., Backstepping, SMC, IDA-PBC, etc.). Since
low-level control often needs to optimize performance criteria in the presence of actuator
limitations, predictive control (MPC, NMPC) is also commonly used if the system dynamics
are adequately slow compared to the required control rate.

Although the decision-making scheme described in [25] is intended for autonomous
urban vehicles, a similar approach is directly applicable to marine vessels. This is because
marine vessels need route planning, behavioral layers, motion planning, and motion control
as well. The research field of autonomous maritime navigation has adopted another control
scheme for ASVs. This control scheme is known as the Guidance, Navigation, and Control
(GNC) system, illustrated in Figure 2.3 for marine vessels. Although the control scheme
of Figure 2.3 seems different than the one shown in Figure 2.2, the underlying concepts
are essentially the same. The control block in Figure 2.3 corresponds to the local feedback
control of Figure 2.2, the navigation block in Figure 2.3 acts in a similar manner as the
behavioral layer block of Figure 2.2 since its task is situational awareness and lastly, the
blocks of route and motion planning of Figure 2.2 are combined in the guidance block of
Figure 2.3.
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Figure 2.3: The general structure of an ASV’s Guidance Navigation and Control System. [71]

2.2 Rule-Compliant Motion Planning
Uncertainties in the context of motion planning have various sources. The main ones
include i) uncertainties in the motion of other traffic participants, ii) uncertainties that stem
from sensor noise, iii) model uncertainties for model-based approaches and iv) disturbances
that usually stem from exogenous factors (e.g., wind). Perhaps the largest source of
uncertainty in mixed-traffic environments lies in the motion prediction of other traffic
participants. Although there are various ways to improve these predictions as discussed in
the previous section, there will still be uncertainties on the exact pose and intentions of
the other participants. To account for such uncertainties, [46, 66] follow a probabilistic
approach assuming a known posterior distribution describing the current and future state
of the other vehicles up to a certain number of time steps in the future. Uncertain behaviors
are formulated as a POMDP in [39, 41, 42] where they predict the probabilistic motion states
of the other vehicles over a finite horizon. In [72] the uncertainties on the surrounding
environment are boundedwith a safety corridor that is generated from vehicle data gathered
from a simulator. A reachability-analysis approach is found in [73] where they compute
the reachable set of other traffic participants by assuming a known motion model. Illegal
actions are then removed from the reachable set and an occupancy area that encloses the
positions of the surrounding traffic participants is predicted.

2.2.1 Rule-compliance in Autonomous Vehicles
Inference of the other traffic participants’ intentions is one of the main challenges in
autonomous navigation. A structured environment canmitigate this difficulty as it describes
expected actions explicitly. With this prospect, one of the main priorities for motion
planning in mixed-traffic environments should be the incorporation of existing traffic rules.
This is not only necessary for a real-world deployment but can further be exploited as
implicit communication among the traffic participants. Incorporating a set of rules in a
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Figure 2.4: The occupancy areas are depicted as the blue areas that contain the most likely behaviors of other
traffic participants (grey lines).[73]

motion planning algorithm is not straightforward however as it needs to merge "logical"
statements (intended for human interpretation) with the technicalities of the corresponding
algorithm. Consideration of traffic rules in mixed traffic environments is a topic that has
drawn a lot of attention in the last few years. In [74] a formalization of the traffic rules is
attempted via higher-order logic to ensure accountability of the autonomous vehicles. In [75,
76], reachability analysis in conjunction with formalized traffic rules is used to verify the
safety of maneuvers of AVs while in [77] the authors develop an ethical trajectory planning
algorithm with a framework that aims at a fair distribution of risk among road users while
accounting for violations of traffic rules in the risk distribution. Formal guarantees for AVs
are provided in [78] based on a behavioral contract that captures a set of explicitly defined
assumptions about how all agents in the environment make decisions.

Considering traffic rules in mixed-traffic environments is not only indispensable for
AVs so that they do not impede traffic, but can also be of great importance in the prediction
of other traffic participants’ intentions. Human drivers often predict the intentions of
other drivers by exploiting existing knowledge of traffic rules which constructs implicit
communication. In [79] the authors combine LTL with MDPs in a receding horizon
fashion to to predict the intentions of the other vehicles and then plan their own actions
with RRT*. The approach is tested in a simple road segment. In [80] they use CNNs for
motion prediction by considering "domain knowledge" which essentially includes motion
constraints and "rules of the road". Both constraints and rules place strong priors on likely
motions. While motion prediction is fundamentally challenging due to the uncertainty over
the intentions of other participants, their behaviors are constrained by both infrastructure
(like road limits or traffic lights) and the actions of others (e.g., other vehicles crossing).

2.2.2 Rule-compliance in Autonomous Surface Vessels
The exploration of integrating traffic rules into motion planning algorithms extends beyond
just autonomous vehicles on roads; it is equally pertinent to autonomous marine surface
vessels. Safety in autonomous maritime navigation is a broad and active topic (refer to
[81] for an overview). Ongoing research regarding safety has focused on the problem of
interpretation and incorporation of the International Regulations for Preventing Collisions
at Sea (COLREGs) [82] in autonomous navigation. Fuzzy logic [83], Dynamic Bayesian



2.2 Rule-Compliant Motion Planning

2

17

Networks (DBN) [84, 85] as well as Finite-State Machines (FSM) [86] have been proposed
for situational awareness and decision making. For the task of collision avoidance, methods
of subsets of controls, such Velocity Obstacles (VO) [87, 88] and some extensions like
Generalized Velocity Obstacles (GVO) [42], Probabilistic Velocity Obstacles (PVO) [89],
Dynamic Reciprocal Velocity Obstacles (DRVO) [90] or Optimal Reciprocal Collision Avoid-
ance (ORCA) [91] as well as methods of physical analogies, such as Artificial Potential
Fields (APF) [92, 93, 94] have been studied thoroughly to work along with COLREGs, as
they are methods of low computational complexity. This simplicity, however, comes at the
cost of being more reactive and difficult to combine with the full set of traffic regulations
which may require longer planning horizons. Moreover, these methods usually give a
rough direction of where the ASV should move while disregarding vessel dynamics unless
additional reachability approximations are used [90].

To plan over longer horizons, search-based methods like A* [95, 96, 97], Voronoi
Diagrams [98], and optimal Rapidly-exploring Random Trees (RRT*) [99, 100] have also
been employed. They search for a dynamically feasible path in a joint time-state space
by either creating artificial costs or obstacles in the discrete grid map to resemble rule-
compliant maneuvers. Because the trajectories are computed in the configuration space,
they are often non-smooth and their computation is expensive. Moreover, these methods
are hard to combine with the complete set of traffic regulations and may even ignore some
of the rules in multi-vessel situations [99]. Recently, learning-based methods have also
been investigated in conjunction with the traffic rules [101, 102], though drawbacks in
these methods often include poor generalizability, convergence to local minima, and lack
of formal guarantees.

A popular category for motion planning under COLREGs includes optimization-based
methods. The main benefit of these methods is the potential to combine multiple objectives
and constraints of different nature in a single control module. Among the limitations, the
most important ones include deadlocks (due to the local nature of the computed path) and
high computational demands (depending on the complexity of the formulated problem).
To circumvent these limitations, [103] established a sample-based MPC approach that
considers a finite space of control inputs. Unlike typical MPC formulations, these methods
do not identify the best action at every time step during trajectory generation. This work
was tested with extensive field verification [104, 105] and it was further extended in other
research directions such as Scenario-Based MPC [106, 107]. In [108], the task of navigation
under COLREGs is expressed as a multi-objective optimization problem where a particle
swarm optimization algorithm is used for its solution. While these methods are suitable in
cases of limited computation capacity, they are not guaranteed to converge, and thus, a
collision-free path may not be found.

Optimization-based algorithms that rely on conventional gradient-based methods have
been studied as well [109, 110, 111, 112] having the benefit of exploring the entire control
input space. However, all aforementioned approaches rely on a heuristic cost function
for rule compliance (that either combines hazard metrics or creates repulsive fields based
on the geometrical situation). The use of soft constraints for safety-critical tasks such as
rule compliance is questionable since there can be conflicts with other mission objectives
(e.g., trajectory tracking). Works in which rule compliance is enforced by introducing hard
state constraints to the optimization problem include [113, 114]. In [113] however, the
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designed constraint is too conservative as it restricts the heading of the ASV and it does
not take advantage of state predictions. In [114], hard constraints based on a half-space
definition for the domain of the encountered vessels are defined based on their relative
position with respect to the ASV and a deflection angle as a parameter. However, that
particular definition can lead to infeasibilities since the position of the ASV is not taken
into account while tuning this parameter. Moreover, the resulting constraints are nonlinear
which may complicate the solution of the optimization problem.

Overall, while the topic of rule-compliant motion planning has spurred significant
research activity, a critical gap remains in developing a straightforward implementation
that fully integrates traffic rules into motion planning. Such an implementation should
ensure rule compliance, generate dynamically feasible trajectories, and efficiently scale to
multiple traffic participants, each considered as a dynamic obstacle. Current approaches,
whether optimization-based, search-based, or learning-based, often fall short in at least one
of these aspects, either due to computational complexity, lack of scalability, or insufficient
integration of traffic rules. Addressing these challenges is essential for advancing the
real-world deployment of autonomous navigation systems in both terrestrial and maritime
environments.

2.3 Fault-Tolerant Motion Planning
Unexpected events such as faults differ from the aforementioned types of uncertainties in
that they manifest at discrete points in time, rather than continuously, and can severely
compromise the safe operation of a system. As autonomous systems expand into more
sectors, they increasingly depend on sophisticated technology and complex hardware,
escalating the intricacies of their operational framework. Relying on critical components
like sensors, actuators, and computational units introduces significant safety and reliability
challenges. Faults in these components can lead to failures, posing catastrophic risks and
jeopardizing safety. Ensuring safety and reliability in these technologies is of paramount
importance, necessitating robust mechanisms to manage and mitigate faults effectively.
For these reasons, faults in robotic systems have long been a critical concern across various
domains including robotic manipulators [115, 116, 117], ground [118, 119], marine [120, 121,
122, 22], aerial [123, 124, 125], and multi-agent systems [126]. Faults primarily undermine
system performance because they can impair the controllability and observability of the
system but also create a discrepancy between the system’s theoretical model and the
system itself. This mismatch compromises controller performance, potentially leading to
hazardous behavior.

When referring to faults, the two main topics of interest are Fault Diagnosis (FD) and
Fault Tolerance (FT), which are often interdependent and complement each other. FD is a
diagnostic procedure involving the detection, isolation, and identification of faults, typically
relying on monitoring the system’s behavior. Fault diagnosis is crucial for understanding
the health of a system and serves as a precursor to implementing corrective actions. FT,
on the other hand, focuses on maintaining the control system’s performance and stability
despite the presence of faults. When the system adapts to faults using real-time information
provided by an FD module, this is known as Active Fault Tolerance (AFT). This typically
involves reconfiguring the control strategy or switching to a backup system. A schematic
representation can be seen in Figure 2.5. The following sections will provide a detailed
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Figure 2.5: A schematic representation of the diagnosis and tolerance modules in an AFT control system. The
FD module relies on input 𝒖 and output measurements 𝒚 to monitor the system’s health while subjected to
disturbances 𝒅, noise 𝒏 and faults 𝒇 . The FD module is responsible for detecting and diagnosing an estimate of the
fault denoted as 𝒇 and updating the accommodation module with that information. The latter is then responsible
for reconfiguring the controller with a reconfiguration signal 𝒔 in order to adapt to the faulty conditions.

discussion on FD and FT, setting the foundation for identifying the most suitable methods
to be used in conjunction with motion planning in the context of this thesis.

2.3.1 Fault Diagnosis in Robotics
FD focuses on monitoring a system’s healthy operation and it is arguably the most challeng-
ing aspect regarding faults. The main challenge arises from various sources of discrepancies
such as model mismatch, environmental disturbances, and measurement noise, which com-
plicate the accurate detection, isolation, and identification of faults. To address these
challenges, FD methods can be broadly categorized into several groups. Model-based
methods leverage mathematical models of the system to generate and evaluate residuals or
estimate parameters. Signal-based methods analyze the characteristics of system signals in
various domains. Knowledge-based methods incorporate expert knowledge or data-driven
approaches like machine learning. Hybrid methods combine different techniques to en-
hance diagnostic capabilities. Finally, process history-based methods utilize historical data
and process trends to identify faults. Each category offers unique advantages and is suited
to different types of systems and fault scenarios. As the autonomy of robots increases, there
is an increasing importance of health monitoring that can be carried out quickly, online,
and onboard based on limited computational power. A thorough review of FD for robotic
systems can be found in [127] with a taxonomy of the main methods illustrated in Figure 2.6.
In this study, it is highlighted that model-based methods are usually of preference as they
usually pose a low computational burden compared to statistical data-driven approaches
such as outlier detection, but the quality of diagnosis depends heavily on the fidelity of the
model. Learning-based methods can offer quick online solutions if learning occurs offline
but this produces static models which may not fit new behaviors. Online learning offers a
dynamic model for FD but increases the computational load considerably.

Set-based methods have been increasingly popular for FD in robotics, mainly because
they eliminate the need for knowing statistical distributions of unknown signals by relying
solely on boundedness assumptions. In [128, 129] a bank of observers generates residual
zonotopes and tests their inclusion inside corresponding invariant sets. In [130] a new class



2

20 2 Literature Review

Figure 2.6: A taxonomy of Fault Detection and Diagnosis (FDD) methods for robotics. [127]

of sets called "constraint zonotopes" is introduced for set-based estimation and fault detec-
tion. An active, set-based FD method is developed in [131] based on convex polyhedrons to
characterize the system’s uncertainties with consistency checks of the outputs with unique
fault models. Nevertheless, these approaches focus on linear or Linear Parameter Varying
(LPV) systems.

Set Membership Estimation (SME) has been widely utilized for FD, offering a direct
approach, by employing inverse tests for fault detection and concurrently estimating the
feasible set from past input-output data. SME has the benefit that it can be extended to a
larger class of systems, namely nonlinear systems that are linear to the parameters. Specific
implementations of SME include zonotopic sets for fault detection, as demonstrated in
[132, 133], and employing ellipsoids to delineate the parameter set, as seen in [134, 135].
Other studies, such as [136], apply state SME for FD. However, the works mentioned above,
are limited to either linear and LPV systems or nonlinear systems but without considering
both state and output uncertainties.

2.3.2 Fault Tolerance in Robotics
FT is the concept of containing the consequences of faults and failures to ensure a system
maintains proper operation, even in the presence of errors. This is achieved primarily
through redundancy in components and subsystems, which provides alternative paths for
functionality when primary elements fail. FT algorithms typically work in tandem with
Fault Diagnosis (FD) algorithms; the FD algorithms detect, isolate, and estimate the faults,
providing detailed descriptions of any issues. The FT algorithms then use this information,
combined with the system’s redundancy, to devise and implement a recovery plan, thereby
preserving the system’s operational integrity.

Recently, there has been an increased interest in developing fault-tolerant systems to
enhance safety and reliability across a wide range of applications. While fault tolerance is
paramount in safety-critical tasks like navigation among human-operated vehicles, there
are not many works that combine motion planning and fault tolerance since the first is
usually seen as a higher-level task while the latter is usually combined with the model
of the system at a lower level. In [137] a fault-tolerant steering control design for AVs
is designed based on an adaptive state feedback controller. Actuator failures are also the
focus of [138] where an adaptive fault-tolerant controller is proposed based on a proposed
Lyapunov function to prove the stability of the adaptive control law. In [139] the authors
focus on sensor faults where the latter are considered as additive signals estimated by a
descriptor observer which considers the latter as a state variable of the vehicle model. An
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adaptive sliding mode observer is designed in [140] to ensure the vehicle’s safety when
sensor faults in acceleration information exist. This subsection is to be extended a bit after
studying for Chapter 6.

2.3.3 Fault Diagnosis and Fault Tolerance in Marine Systems
In the maritime domain, combinations of motion planning and fault-tolerant control
are usually limited since FD is considered a lower-level component. Both in [141] and
[142] the problem of path tracking is addressed with a fault tolerant control design to
accommodate actuator faults. In [142] the authors consider time-varying multiplicative
and additive actuator faults that are incorporated in the system’s model and design a
barrier Lyapunov function to prove that despite the presence of actuator faults and system
uncertainties, the tracking errors converge to zero. FD in [143], an actuator fault-tolerant
control scheme designed for an underwater Remotely Operated Vehicle (ROV) integrates
detection, isolation, and accommodation modules. This work relies on residual generation
modules for detection and exploits the specific actuator configuration for isolation through
the sliding surface of a designed sliding mode controller [144]. The same ROV was studied
in [145] where the authors focus on the problem of detection only, based on a nonlinear
Thau observer for residual generation and on a sequential change detection algorithm
for residual evaluation. A multiple sensor fault diagnosis scheme for ASVs is proposed
in [146], utilizing various monitoring modules based on nonlinear observers to detect
sensor faults. In addition, multiple fault isolation is achieved through a combinatorial
decision logic approach, where the available sensors are grouped into multiple sensor sets.
In [147] an active FD method is proposed for the same system so that actuator faults can
be discerned from other disturbances by applying an auxiliary sinusoidal input system that
is designed to propagate into the control system when a fault occurs while having minimal
impact on the system dynamics. In [148] a bank of observers is used for FD in cascade
with a nonlinear disturbance observer for fault estimation under the assumption that only
a single fault may occur. Fault detection was studied for an underactuated surface vessel
in [149] where a robust fault detection observer and a time-varying detection criterion
are presented to detect the actuator faults distinguished from uncertainties and external
disturbances. An Fault-Tolerant Control FTC strategy for linear systems is proposed in
[120] with active FD that relies on the control redundancy of an overactuated ASV by
constraining the inputs in prescribed configurations for Fault Detection, Isolation, and
Reconfiguration (FDIR). However, this work relied on the linearization of vessel dynamics,
assuming that the vessel’s rotation is negligible with respect to translation motion, which
might not hold in collision avoidance maneuvers.

2.4 Conclusions
The literature review highlights significant advancements and ongoing challenges in fault-
tolerant motion planning within mixed-traffic environments, particularly focusing on AVs
and ASVs. Motion planning encompasses route planning, behavioral decision-making, local
motion planning, and feedback control, all of which are essential for enabling autonomous
systems to navigate safely and efficiently. The review underscores the complexity of
integrating these competencies due to uncertainties arising from traffic participants, sensor
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noise, model inaccuracies, and external disturbances. A primary challenge in mixed-traffic
environments is predicting the behaviors of other traffic participants, which remains
inherently uncertain. Various probabilistic approaches have been proposed to address these
uncertainties. Additionally, the review explores the importance of incorporating traffic
rules into motion planning algorithms to enhance safety and predictability, highlighting
both the successes and limitations of current methodologies. Considering traffic rules
in motion planning is a promising way to simplify an inherently complex problem by
introducing structure to the dynamic environment. While there is substantial work focusing
on incorporating traffic rules into navigation algorithms for ASVs, there is a notable
lack of research addressing this problem alongside ensuring the dynamic feasibility of
the generated trajectories. Furthermore, existing studies often fall short of explicitly
considering all relevant navigation rules and demonstrating scalability with multiple
vessels (other traffic participants). Addressing these gaps is crucial for advancing the
real-world deployment of autonomous navigation systems, ensuring that they can operate
safely and effectively in diverse and dynamic environments.

Furthermore, fault-tolerant motion planning is identified as a crucial area of research to
ensure the reliability and safety of autonomous systems. Faults, whether in sensors, actua-
tors, or computational units, pose significant risks, necessitating robust mechanisms for FD
and FT. The literature categorizes FD methods into model-based, signal-based, knowledge-
based, hybrid, and process history-based approaches, each with unique advantages and
limitations. However, the integration of FD and FT with motion planning remains limited,
especially in marine environments where actuator faults and system uncertainties present
additional challenges. Techniques such as adaptive state feedback controllers, sliding mode
observers, and barrier Lyapunov functions have shown promise in accommodating faults
and maintaining system stability. However, to the authors’ knowledge, there are limited
results on the integration of FD and FT modules that provide a reconfiguration strategy for
the motion planner in case unexpected events such as faults occur.

Overall, while significant progress has been made in both rule-compliant and fault-
tolerant motion planning, several critical gaps remain. Addressing the challenges of
dynamic feasibility, comprehensive rule integration, and scalability in mixed-traffic envi-
ronments, along with developing robust reconfiguration strategies for fault-tolerant motion
planning, are essential for the advancement of autonomous navigation systems. This will
be crucial for their successful real-world deployment and operation in increasingly complex
and dynamic environments.

In the subsequent chapters, we focus on creating approaches that seamlessly integrate
traffic rules, FD, and FT with motion planning to ensure the safety, reliability, and efficiency
of autonomous systems in both urban and maritime contexts. Specifically, in Chapter 3,
we develop an MPC-based trajectory optimization algorithm that considers marine traffic
rules to generate feasible, rule-compliant trajectories for an ASV. Later, in Chapter 4, we
develop an active FD algorithm based on residuals and adaptive thresholds to detect and
isolate actuator (thruster) faults of the ASV. To identify the magnitude of these faults within
certain margins, we then develop a more general FD method for nonlinear mechanical
systems in Chapter 5, applying it to an ASV to robustly estimate thruster fault parameters
along with a feasible parameter set. In Chapter 6, we combine the findings from Chapter 3
and Chapter 5 to derive a motion planning algorithm that can reconfigure itself according
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to the system’s health while handling traffic rule constraints, resulting in a rule-compliant
and fault-tolerant motion planner. Finally, in Chapter 7, we summarize the findings of this
thesis, highlight existing limitations, and propose promising research directions for future
work.
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3
Model Predictive Trajectory

Optimization Considering
Traffic Rules

This chapter presents a rule-compliant trajectory optimization method for the guidance and
control of ASVs as a response to Research Question Q1: "How can ASVs navigate safely and ef-
ficiently in dense traffic environments while ensuring compliance with maritime traffic rules?"
The method builds on Model Predictive Contouring Control (MPCC) and incorporates the Inter-
national Regulations for Preventing Collisions at Sea (COLREGs) relevant to motion planning.
We use these rules for traffic situation assessment and to derive traffic-related constraints
that are inserted in the optimization problem. Our optimization-based approach enables the
formalization of abstract verbal expressions, such as traffic rules, and their incorporation in
the trajectory optimization algorithm along with the dynamics and other constraints that
dictate the system’s evolution over a sufficiently long planning horizon. The ability to plan
considering different types of constraints and the system’s dynamics, over a long horizon in a
unified manner, leads to a proactive motion planner that mimics rule-compliant maneuvering
behavior, suitable for navigation in mixed-traffic environments. The efficacy and scalability
of the derived algorithm are validated in different simulation scenarios, including complex
traffic situations with multiple Obstacle Vessels (OVs). Section 3.2 describes the trajectory
optimization problem. Section 3.1 presents a short introduction while Section 3.3 describes the
vessel dynamics and Section 3.4 the path-following task. Decision-making based on the traffic
rules is studied in Section 3.5 and the rule constraints are formulated in Section 3.6. Finally,
Section 3.7 presents simulation results and Section 3.8 concludes the chapter.

This chapter is based on � A. Tsolakis, RR Negenborn, V Reppa, and L Ferranti, "Model Predictive Trajectory
Optimization and Control for Autonomous Surface Vessels Considering Traffic Rules", IEEE Transactions on Intelligent
Transportation Systems, Feb 2024.
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3.1 Introduction
Over the past decade, we have witnessed the world of transportation rapidly advancing
towards an increased level of automation. While the automotive industry has had the
leading role in this trend, the maritime sector is also progressing towards developing and
utilizing autonomous maritime systems in many applications including transportation
[150], large-scale monitoring [151] or search and rescue missions [152]. Among the main
societal benefits, the most interesting ones concern greater efficiency, reduced operational
costs, and increased safety. According to [6], over the period 2014-2020, accidents of
navigational nature (collisions, contacts, and groundings/strandings) represented almost
43% of all occurrences while human actions accounted for almost 61% of the contributing
factors. Therefore, autonomous maritime navigation has the potential to significantly
reduce the risk of collisions, which often lead to human casualties, damaged property, and
devastating environmental disasters.

Despite the numerous benefits that autonomy has to offer in the maritime industry,
the deployment of ASVs in real traffic environments is still limited. One of the main
challenges to address relates to the transition period in which ASVs will be expected to
co-exist with human-operated vessels in dense traffic environments, such as ports and
inland waterways. This raises major societal concerns about the capabilities of the ASVs
to interact safely with human-operated vessels in mixed-traffic conditions without causing
disruptions or jeopardizing human safety. In this work, we propose a rule-compliant
trajectory optimization and control method for ASVs that allows navigation in mixed-
traffic environments.

In this chapter we extend the idea originally presented in [153] where we approached
the problem of navigation in mixed-traffic environments by introducing a trajectory op-
timization algorithm for computing safe and rule-compliant trajectories for ASVs based
on Model Predictive Contouring Control (MPCCs) since the latter has been proven to
be especially suitable for autonomous vehicle applications [66, 154, 67, 155, 153, 112].
In contrast to other works that rely on heuristic hazard metrics and soft constraints for
rule compliance, we rely on a purely geometric interpretation of the relevant rules and
formulate hard constraints to enforce rule-compliant maneuvers while the vessel follows
a time-invariant reference path. We formulate these constraints as affine expressions to
keep the structure of the optimization problem simple and the algorithm scalable with
respect to the number of Obstacle Vessels (OVs). While the collision-free space is generally
nonconvex [156], the specific design of our constraints establishes a convex search space,
encompassing homotopy-equivalent trajectories. Moreover, we leverage the predictive
nature of the controller resulting in proactive, less conservative actions for the ASV while
respecting the relevant traffic rules. Last but not least, we have also extended our work with
respect to [153] by considering the dynamic model of the vessel including input and state
constraints. The result is a trajectory optimization algorithm that achieves path following
by generating dynamically feasible, rule-compliant, collision-avoiding trajectories within
the prediction horizon while respecting actuator limitations as well. The contributions of
this work are:

• A formal derivation of affine constraints that guarantees rule compliance in a convex
search space.
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• Simplified transition expressions in the traffic rule decision-making module that rely
on the design of the affine constraints.

• An algorithm that scales to multiple obstacles and allows the vessels to safely navigate
through dense traffic environments.

3.2 Problem Formulation
Consider that the ASV is moving in a planar workspace  = ℝ2. The motion is described
by the discrete, nonlinear dynamical system:

𝒙(𝑡 +1) = 𝒇(𝒙(𝑡),𝒖(𝑡)), 𝑡 = 0,1,…, (3.1)

with state 𝒙 ∈  and control input 𝒖 ∈  known by an appropriate set of sensors. We
assume planar motion for 𝑛𝑜 OVs as well, with their state defined as 𝒙𝑖 ∈  𝑖, 𝑖 = {1,…,𝑛𝑜},
known to sufficient precision within an area around the ASV along with an estimate of
its length 𝑙𝑖 and width 𝑤𝑖 via a suitable perception framework [157, 158]. We take into
account the subset of COLREGs rules 1-18 that describes navigation of vessels in "sight of
one another". The state of the ASV is constrained by these rules expressed mathematically
as a set of state constraints denoted as (𝒙𝑘 ,𝒙𝑖𝑘).

Given the current state 𝒙(𝑡), a reference path parameterized by path parameter 𝑠
initialized at 𝑠(𝑡), and a prediction of each OV’s state 𝒙𝑖0∶𝑁 ∣𝑡 , we formulate a discrete-time,
constrained, receding horizon problem over a finite time horizon 𝑁 with the set of states
𝒙0∶𝑁 ∣𝑡 ∈ , set of inputs 𝒖0∶𝑁−1∣𝑡 ∈ , and set of path parameters 𝑠0∶𝑁 as decision variables:

min
𝒙⋅∣𝑡 ,𝒖⋅∣𝑡 ,𝑠⋅∣𝑡

𝑁−1
∑
𝑘=0

𝐽 (𝒙𝑘∣𝑡 ,𝒖𝑘∣𝑡 , 𝑠𝑘∣𝑡)+ 𝐽𝑁 (𝒙𝑁 ∣𝑡 , 𝑠𝑁 ∣𝑡) (3.2a)

s.t.: 𝒙𝑘+1∣𝑡 = 𝒇(𝒙𝑘∣𝑡 ,𝒖𝑘∣𝑡), (3.2b)
𝑠𝑘+1∣𝑡 = 𝑔(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡), (3.2c)
𝒙𝑘∣𝑡 ∈  ∩(𝒙𝑘∣𝑡 ,𝒙𝑖𝑘∣𝑡), (3.2d)
𝒖𝑘∣𝑡 ∈ , (3.2e)
𝒙0∣𝑡 = 𝒙(𝑡), 𝑠0∣𝑡 = 𝑠(𝑡), (3.2f)
𝑘 = 0,…,𝑁 −1, 𝑖 = 0,…,𝑛𝑜 (3.2g)

where we denote variables with subscript 𝑘 as the predicted ones in the receding horizon
problem. The solution to the receding horizon problem is the optimal input sequence
𝒖∗
0∶𝑁−1 of the ASV that minimizes cost function (3.2a), under system dynamics (3.2b), path

evolution (3.2c), state constraints (3.2d) and input constraints (3.2e). The cost function
(3.2a) consists of the stage cost that is the sum of the following terms:

𝐽 (𝒙𝑘∣𝑡 ,𝒖𝑘∣𝑡 , 𝑠𝑘∣𝑡) = 𝐽𝑣(𝒙𝑘∣𝑡)+ 𝐽𝒖(𝒖𝑘∣𝑡)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamic behavior

+𝐽𝑒(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡)+ 𝐽𝑢(𝒙𝑘∣𝑡)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
path following

(3.3)

and the terminal cost 𝐽𝑁 (𝒙𝑁 ∣𝑡 , 𝑠𝑁 ∣𝑡) that can be designed in order to ensure stability. The
first two terms are designed to achieve a desirable dynamic behavior discussed in Section
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Figure 3.1: Schematic method overview (light blue blocks). Given the measured states 𝒙(𝑡) and 𝒙𝑖(𝑡), we first
infer the traffic role of the vessels based on which a suitable set of constraints is generated. The latter is then
inserted in the optimization problem and the first step of the optimal input sequence, 𝒖∗

1 , is applied to the ASV at
each control cycle as 𝒖(𝑡).

3.3 and the last two for navigation objectives discussed in Section 3.4. The dynamics (3.2b)
and physical limitations of the state and inputs (3.2d), (3.2e) are detailed in Section 3.3
and the rule-compliance constraints (3.2d) that serve the task of rule-compliant collision
avoidance are activated according to the decision-making scheme of Section 3.5 and are
derived in Section 3.6. overview of our COLREGs-compliant navigation architecture is
provided in Figure 3.1. We first encode the traffic rules in an algorithmic framework for
situational awareness which is necessary for rule-compliant decision making. The module
"Traffic Rule Decision Making" attributes a specific traffic role to the vessels based on
which the "Constraint Generation" module generates a set of mathematical constraints
that are suitable for a receding horizon problem and can guarantee a rule-compliant
motion. The "Trajectory Optimizer" module then computes the trajectory for the vessel
while considering the aforementioned constraints and outputs the corresponding control
command to the ASV. Alternatively to previous works on MPCC [66, 154, 67, 155, 153, 112],
we consider dynamic collision avoidance implicitly by enforcing compliance to the traffic
rules.

We focus on the subset of the rules that are relevant to motion planning. They can
be grouped into three categories: Traffic Rule Decision Making (7, 13-18) that analyze the
situation and designate a traffic role to each vessel, Situation Invariant Rules (6, 8.a, 8.d) that
apply irrespective of the traffic situation, and Situation Dependent Rules (8.b, 8.c, 8.e, 13-17)
that vary according to the traffic role. The rest of the rules are either not implementable in
motion planning (rules 1-5, 11, and 12) or can be better included in a higher-level motion
planner that generates the reference path to be followed (rules 9 and 10).

3.3 Model Dynamics and Physical Limitations
For modeling vessel dynamics we rely on the maneuvering model described in [159]. The
ASV’s configuration is described by its position 𝒑 = (𝑥,𝑦)⊤, orientation 𝜓, longitudinal
and lateral velocities 𝑢, 𝑣, and yaw rate 𝑟 . Note that the velocities are expressed in the body
reference frame of the vessel. We then denote as 𝒙 = (𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟)⊤ ∈  ⊂ ℝ6 the system’s
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state and as 𝒖 = (𝜏𝑙 , 𝜏𝑟 , 𝜏𝑏 ,𝛼𝑙 ,𝛼𝑟 )⊤ ∈ ⊂ ℝ5 the control input of an ASV with two azimuth
thrusters at its beam and one bow thruster. Specifically, we denote as 𝜏𝑙 , 𝜏𝑟 , and 𝛼𝑙 , 𝛼𝑟
the thrusts and azimuths of the left and right azimuth thruster respectively, and as 𝜏𝑏 the
thrust produced by a bow thruster of the ASV. Assuming that there are not any ocean
currents, and wind or wave disturbances, the evolution of the system’s state is expressed
by the following continuous, nonlinear system:

𝒙̇ = [
𝟎3×3 𝑹(𝒙)
𝟎3×3 −𝑴−1(𝑪(𝒙)+𝑫(𝒙))]𝒙 +[

𝟎3×3
𝑴−1]𝝉(𝒖), (3.4a)

with:
𝑴 =𝑴𝑹𝑩+𝑴𝑨, (3.4b)

𝑪(𝒙) = 𝑪𝑹𝑩(𝒙)+𝑪𝑨(𝒙), (3.4c)
𝑫(𝒙) = 𝑫𝑳 +𝑫𝑵𝑳(𝒙), (3.4d)

𝝉 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜏𝑙 cos𝛼𝑙 +𝜏𝑟 cos𝛼𝑟
𝜏𝑙 sin𝛼𝑙 +𝜏𝑟 sin𝛼𝑟 +𝜏𝑏
𝑤𝑙𝑟 (𝜏𝑟 cos𝛼𝑟 −𝜏𝑙 cos𝛼𝑙)−

𝑙𝑙𝑟 (𝜏𝑙 sin𝛼𝑙 −𝜏𝑟 cos𝛼𝑟 )+ 𝑙𝑏𝜏𝑏

⎞
⎟
⎟
⎟
⎟
⎠

(3.4e)

where 𝑹(𝒙) is the rotation matrix,𝑴𝑹𝑩 the rigid-body mass matrix, 𝑪𝑹𝑩(𝒙) the rigid-
body Coriolis and centripetal matrix,𝑴𝑨 the added-mass matrix, 𝑪𝑨(𝒙) the added Coriolis
and centripetal matrix, 𝑫𝑳, 𝑫𝑵𝑳(𝒙), the linear and nonlinear damping matrices, 𝝉 the
generalized force vector acting on the vessel, and 𝑤𝑙𝑟 , 𝑙𝑙𝑟 , 𝑙𝑏 are length parameters that
describe the configuration of the thrusters. The added-mass and Coriolis matrices are
introduced due to hydrodynamic forces when we consider the additional forces resulting
from the fluid acting on the vessel. The continuous system dynamics (3.4) are discretized
with a Runge-Kutta method in the form (3.2b) to solve the receding horizon problem (3.2).

We also consider actuator limitations 𝜏𝑙 ∈ [𝜏𝑙min , 𝜏𝑙max], 𝜏𝑟 ∈ [𝜏𝑟min , 𝜏𝑟max], 𝜏𝑏 ∈ [𝜏𝑏min , 𝜏𝑏max],
𝛼𝑙 ∈ [𝛼𝑙min ,𝛼𝑙max], 𝛼𝑟 ∈ [𝛼𝑟min ,𝛼𝑟max], where 𝜏𝑙min , 𝜏𝑙max , 𝜏𝑟min , 𝜏𝑟max , 𝜏𝑏min , 𝜏𝑏max , 𝛼𝑙min , 𝛼𝑙max ,
𝛼𝑟min , 𝛼𝑟max are the minimum and maximum control inputs respectively.

We can further include two terms in the objective function to tune the response of the
dynamical system. First of all, to reduce undesirable drift of the vessel, we include the term:

𝐽𝑣(𝒙𝑘∣𝑡) = 𝑞𝑣𝑣2𝑘∣𝑡 , 𝑘 = 0,…,𝑁 −1, (3.5)

to penalize lateral velocity 𝑣 with tuning parameter 𝑞𝑣 . Moreover, we penalize excessive
control input by including the term:

𝐽𝒖(𝒖𝑘∣𝑡) = 𝒖⊤𝑘∣𝑡𝑸𝒖𝒖𝑘∣𝑡 , 𝑘 = 0,…,𝑁 −1, (3.6)

where

𝑸𝒖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑞𝜏𝑙 0 0 0 0
0 𝑞𝜏𝑟 0 0 0
0 0 𝑞𝜏𝑏 0 0
0 0 0 𝑞𝛼𝑙 0
0 0 0 0 𝑞𝛼𝑟

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.7)

is a tuning parameter matrix. The rest of the states are subject to limitations imposed by
the traffic rules as discussed in Section 3.6.
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3.4 Path Following
The key idea in the MPCC problem formulation as expressed in (3.2), is that the vehicle
does not need to track a reference trajectory but rather a time-invariant reference path via
the objective function under certain input and state constraints. For the path following
objective, we follow the approach in [66, 67] in which the vessel at time 𝑡 is at position
𝒑(𝑡) = (𝑥(𝑡),𝑦(𝑡))⊤ and tracks a continuously differentiable two-dimensional reference path
(𝑥𝑃 (𝑠),𝑦𝑃 (𝑠)) with path tangential angle 𝜓𝑃 (𝑠) = arctan(𝜕𝑦𝑃 (𝑠)/𝜕𝑥𝑃 (𝑠)), parameterized
by the arc length 𝑠. The arc length 𝑠 of the closest point to the ASV can be approximated
with an evolution of the path parameter (3.2c) described as:

𝑠𝑘+1∣𝑡 = 𝑠𝑘∣𝑡 +𝑢𝑘∣𝑡Δ𝑘, (3.8)

with Δ𝑘 denoting the prediction timestep, 𝑢𝑘∣𝑡 the discretized longitudinal velocity, and
𝑠0 initialized at each planning cycle as the point of the path that is closest to the ASV’s
position. The path error vector 𝒆𝑘∣𝑡 is then defined as:

𝒆𝑘∣𝑡(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡) = [
𝑒𝑙(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡)
𝑒𝑐(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡)]

, (3.9)

where the longitudinal error is defined as:

𝑒𝑙(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡)=−(cos𝜓𝑃(𝑠𝑘∣𝑡) sin𝜓𝑃(𝑠𝑘∣𝑡))(
𝑥𝑘∣𝑡−𝑥𝑃 (𝑠𝑘∣𝑡)
𝑦𝑘∣𝑡−𝑦𝑃 (𝑠𝑘∣𝑡))

, (3.10)

and the contouring error as:

𝑒𝑐(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡)=(sin𝜓𝑃(𝑠𝑘∣𝑡) −cos𝜓𝑃(𝑠𝑘∣𝑡))(
𝑥𝑘∣𝑡−𝑥𝑃 (𝑠𝑘∣𝑡)
𝑦𝑘∣𝑡−𝑦𝑃 (𝑠𝑘∣𝑡))

, (3.11)

To achieve path tracking using the definition of the error defined in (3.9), one of the
cost terms in the objective function (3.2a) will take the form:

𝐽𝑒(𝒙𝑘∣𝑡 , 𝑠𝑘∣𝑡) = 𝒆⊤𝑘∣𝑡𝑸𝒆𝒆𝑘∣𝑡 , 𝑘 = 0,…,𝑁 −1, (3.12)

where
𝑸𝒆 = [

𝑞𝑒𝑙 0
0 𝑞𝑒𝑐]

, (3.13)

is a tuning parameter matrix that penalizes deviation from the reference path. A visual
representation is illustrated in Figure 3.2.

To progress along the path, the ASV needs to have a non-zero longitudinal velocity
𝑢𝑘∣𝑡 . This can be achieved by another term in the objective function:

𝐽𝑢(𝒙𝑘∣𝑡) = 𝑞𝑢(𝑢𝑘∣𝑡 −𝑢ref)2, 𝑘 = 0,…,𝑁 −1, (3.14)

where 𝑢ref denotes a desired reference speed and 𝑞𝑢 is a weighting factor to penalize
deviation from the reference speed. Thus, the vessel can track a time-invariant path, the
progress upon which is determined by the predicted longitudinal speed 𝑢𝑘∣𝑡 . In this manner,
the path-following task is quite flexible and allows the vessel to deviate from it if necessary
(e.g., for collision avoidance) without creating conflicting objectives. The choice of these
parameters 𝑞𝑢, 𝑢ref is further discussed in Section 3.6 as it plays a role in rule compliance
as well. For a more detailed description of the path following task the reader is referred to
[66, 67].
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Figure 3.2: Path following with MPCC. A given reference path is considered and 𝑁 reference points are chosen
along its length depending on the longitudinal velocity of the ASV. The lag (longitudinal) and contouring (lateral)
errors are minimized throughout the prediction horizon to achieve path following.

3.5 Traffic Rule Decision Making
Situation analysis and classification refers to a decision-making scheme that attributes a
pairwise traffic role to the ASV and each OV, based on a subset of the traffic rules. This topic
has been studied in great detail in [89, 110] among other works and is of great importance
as it dictates the actions each vessel needs to follow in order to avoid collision in a safe
manner. This section presents the simple Finite-State Machine (FSM) presented in Figure
3.3 that provides a pairwise role symmetry with transitions that consider properly defined
entry and exit criteria for each state. The FSM has three states that represent the traffic
role of the vessel - Stand On (SO), Give Way (GW), or Emergency (EM) as discussed in this
Section. The corresponding transition expressions to enter or exit each state of the FSM
namely, 𝑇 ent

GW, 𝑇 ext
GW, 𝑇 ent

EM , and 𝑇 ext
EM , depend on the current states 𝒙(𝑡) and 𝒙𝑖(𝑡) of the ASV

and each OV and their derivation is presented step-by-step in this Section.
The first step is to identify if there exists risk of collision with an OV within the vicinity

of the ASV. Rule 7 considers "Risk of Collision" with part 7.d.i describing that "such risk shall
be deemed to exist if the compass bearing of an approaching vessel does not appreciably change"
and part 7.d.ii "such risk may sometimes exist even when an appreciable bearing change is
evident, particularly when approaching a very large vessel or a tow or when approaching a
vessel at close range". According to Rule 17.a.i, "Where one of two vessels is to keep out of
the way the other shall keep her course and speed". Thus, we can assume that any vessel
encountered within an encounter radius denoted as 𝜌enc around the ASV would keep a
constant velocity if there is no risk of collision. We can then integrate the position vector
equations from the current time 𝑡 until some time in the future denoted as 𝜏:

𝒑(𝜏) = 𝒑(𝑡)+ (𝜏 − 𝑡)𝑹̃(𝒙(𝑡))𝒗(𝑡), (3.15a)
𝒑𝑖(𝜏) = 𝒑𝑖(𝑡)+ (𝜏 − 𝑡)𝑹̃(𝒙𝑖(𝑡))𝒗𝑖(𝑡), (3.15b)

where we denote as 𝒗 = (𝑢,𝑣)⊤, 𝒗𝑖 = (𝑢𝑖, 𝑣𝑖)⊤the translational velocities of the two vessels
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Starboard
Crossing Head On

Overtaking

Overtaken Port
Crossing

Give Way
Emergency

Overtaken Port
Crossing

Stand On

Figure 3.3: Schematic representation of the FSM for
traffic role decision making. Traffic situations that lead
to the same traffic role are grouped for simplicity.

Figure 3.4: Traffic situation classification as a function
of the relative course 𝜓𝑖𝑐 , and the relative bearing 𝜓𝑖𝛽
described in [82]. Note that the same figure from the
perspective of the OV would be role-symmetric since
pairwise-role symmetry is necessary.

and as 𝑹̃(𝒙(𝑡)) the 2×2 sub-matrix of 𝑹(𝒙(𝑡)), that maps the translational velocities from
each body reference frame to the global reference frame. The current distance between the
two vessels is:

𝑑(𝑡) = ‖‖𝒑(𝑡)−𝒑𝑖(𝑡)‖‖2 (3.16)
The distance between two vessels at a future time 𝜏 computed at time 𝑡, can be expressed
as:

𝑑(𝜏|𝑡) = ‖‖‖𝒑(𝑡)−𝒑𝑖(𝑡)+ (𝜏 − 𝑡)(𝑹̃(𝒙(𝑡))𝒗(𝑡)− 𝑹̃(𝒙𝑖(𝑡))𝒗𝑖(𝑡))‖‖‖2
(3.17)

Both 𝑑(𝑡) and 𝑑(𝜏|𝑡) are shown in Figure 3.5. Finding the minimum of 𝑑(𝜏|𝑡) is equivalent
to finding the minimum of its square, which is a quadratic function with respect to time 𝜏.
The minimum of this function is then the solution of 𝜕𝑑(𝜏|𝑡)2/𝜕𝜏 = 0 which results to:

𝑡CPA(𝑡) = −
(𝑹̃(𝒙(𝑡))𝒗(𝑡)− 𝑹̃(𝒙𝑖(𝑡))𝒗𝑖(𝑡))⊤(𝒑(𝑡)−𝒑𝑖(𝑡))

‖‖‖𝑹̃(𝒙(𝑡))𝒗(𝑡)− 𝑹̃(𝒙𝑖(𝑡))𝒗𝑖(𝑡)‖‖‖
2

2

(3.18)

This future time is known as the time to the "Closest Point of Approach". The corresponding
distance is then:

𝑑CPA(𝑡) =

{ ‖‖‖𝒑−𝒑𝑖+(𝑹̃(𝒙)𝒗 − 𝑹̃(𝒙𝑖)𝒗𝑖)𝑡CPA
‖‖‖2

𝑡CPA ≥ 0
𝑑 𝑡CPA < 0

(3.19)

since 𝑡CPA < 0means that the two vessels are diverging and thus 𝑑CPA is the current distance.
Dependence on current time 𝑡 is omitted for readability. We continue by assuming that a
rough estimate of the length 𝑙𝑖 and width 𝑤𝑖 of the other vessel can be inferred by a visual
perception or communication system (e.g., Automatic Identification System (AIS) and the
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Figure 3.5: Encounter situation analysis between the ASV and OV 𝑖. Their current states 𝒙(𝑡) and 𝒙𝑖(𝑡) are used
to determine the distance at the Closest Point of Approach (𝑑CPA) and thus if risk of collision exists assuming
constant velocities.

footprint of vessels to be circles of radii 𝜌 =
√
(𝑙/2)2+(𝑤/2)2 and 𝜌𝑖 =

√
(𝑙𝑖/2)2+(𝑤𝑖/2)2,

respectively, for the purposes of this module. Then, we can deem that risk of collision
exists when 𝑑CPA < 𝜌+𝜌𝑖+𝜌𝑠 which means that the two vessels will be closer than a safety
margin 𝜌𝑠 that for now is chosen arbitrarily. Note that using 𝑑CPA as a metric for risk of
collision is similar to the requirement of Rule 7 to monitor the relative bearing over time
but easier to evaluate risk of collision considering the dimensions of the two vessels. For
the purposes of traffic role decision making we use circular footprints as this serves only
as a rough estimate of whether or not risk of collision exists. For collision avoidance we
use a more accurate approximation of marine vessels’ footprints discussed in Section 3.6.

If a risk of collision exists, the next step is to decide on the actions to be taken by the
vessels involved. According to Rules 13-17, there can be three different, pair-wise traffic
situations between the two vessels:

• Head-On / Head-On

• Starboard-Crossing / Port-Crossing

• Overtaking / Overtaken

These traffic situations depend on the relative position of the two vessels encoded in the
relative bearing:

𝜓𝑖𝛽(𝑡) = arctan(
𝒚̂⊤𝑹̃(𝒙(𝑡))(𝒑𝑖(𝑡)−𝒑(𝑡))
𝒙̂⊤𝑹̃(𝒙(𝑡))(𝒑𝑖(𝑡)−𝒑(𝑡)))

, (3.20)

and the relative course:
𝜓𝑖𝑐(𝑡) = 𝜓

𝑖(𝑡)−𝜓(𝑡), (3.21)
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with 𝒙̂, 𝒚̂ denoting the unit vectors of the ASV’s body reference frame shown in Figure
3.5. The combination of 𝜓𝑖𝛽(𝑡) and 𝜓𝑖𝑐(𝑡) defines the role classification shown in Figure 3.4
similar to that found in [89]. To determine the head-on situation, we need to define one
additional parameter𝜓ℎ that defines a threshold for the relative course𝜓𝑖𝑐(𝑡). Unfortunately,
it is not clearly stated in the rules what the value should be but according to [110], court
decisions indicate 𝜓ℎ = ±6◦. Note that for some combinations of 𝜓𝑖𝛽(𝑡) and 𝜓𝑖𝑐(𝑡) the traffic
situations may not be considered if 𝑑CPA ≥ 𝜌+𝜌𝑖+𝜌𝑠 and risk of collision is not deemed to
exist.

According to the rules, in each traffic situation, a vessel can be either a Give-Way (GW)
vessel, which must take collision-avoiding action, or a Stand-On (SO) vessel, which is
required to maintain its course and speed. According to this classification, each vessel has a
GW or SO role as described in Rules 16 and 17 respectively. While Rule 16 is straightforward
for the GW vessel, Rule 17.a.ii describes that "The latter vessel" (i.e., the SO) "may however
take action to avoid collision by her maneuver alone, as soon as it becomes apparent to her
that the vessel required to keep out of the way is not taking appropriate action in compliance
with these Rules" and Rule 17.b states that "When, from any cause, the vessel required to keep
her course and speed finds herself so close that collision cannot be avoided by the action of
the give-way vessel alone, she shall take such action as will best aid to avoid collision". Thus,
another role emerges for the SO vessel which in some cases must take collision-avoiding
action. We will denote this state here as Emergency (EM) state. This situation is studied in
depth in [160] where they design a collision alert system for SO vessels. In summary, the
following roles are expected from each vessel:

• GW: Head-On, Overtaking, and Starboard-Crossing

• SO: Port-Crossing and Overtaken with no needed action

• EM: Port-Crossing and Overtaken with emergency action

The last thing to consider for a complete encounter situation analysis is the entry and
exit criteria. In [110] thresholds on 𝑑CPA and 𝑡CPA are defined in order to determine entry
and exit criteria. However, these values may change rapidly especially in multi-vessel
scenarios while the vessels are still in close proximity and likely to perform more complex
maneuvers. Unfortunately, the rules do not describe explicitly for how long these pairwise
roles should hold. Nevertheless, Rule 13.d clearly states that "Any subsequent alteration
of the bearing between the two vessels shall not make the overtaking vessel a crossing vessel
within the meaning of these Rules or relieve her of the duty of keeping clear of the overtaken
vessel until she is finally past and clear". Based on that we can infer that the pairwise roles,
as long as they are attributed to the vessels, should remain consistent until the encounter
situation is over. Thus, we keep the pairwise roles for as long as the other vessel remains
within the encounter radius 𝜌enc of the ASV for a normal traffic situation. An emergency
situation is considered when 𝑑 < 𝜌emg where 𝜌emg defines the radius of a circular area
around the ASV within which, if a GW vessel enters, it is inferred it does not comply with
the rules. This is then deemed to be an emergency situation for which even as an SO vessel
the ASV needs to take action to avoid collision according to Rule 17.

Lastly, in compliance with Rule 18.a, we assume that the perception system used by
the ASV (e.g., similar to the one in [158]) can determine if the other vessel is "(i) a vessel
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not under command; (ii) a vessel restricted in her ability to maneuver ; (iii) a vessel engaged
in fishing; (iv) a sailing vessel." which will set the role of the ASV to GW.

The aforementioned, lead to the design of the FSM illustrated in Figure 3.3 that is
governed by the following Boolean expressions according to [82] that depend on the
current states 𝒙(𝑡) and 𝒙𝑖(𝑡):

𝑇enc = 𝑑(𝑡) < 𝜌enc (3.22a)
𝑇rsk = 𝑑CPA(𝑡) < 𝜌+𝜌𝑖+𝜌𝑠 (3.22b)
𝑇hdn =(𝜓𝑖𝑐(𝑡) ≥ 𝜋 −𝜓ℎ) ∧ (𝜓

𝑖
𝑐(𝑡) < 𝜋 +𝜓ℎ) (3.22c)

𝑇str = (𝜓𝑖𝑐(𝑡) ≥ 𝜋 +𝜓ℎ) ∧ (𝜓
𝑖
𝑐(𝑡) < 13𝜋/8) (3.22d)

𝑇brn = (𝜓𝑖𝑐(𝑡) ≥ 13𝜋/8)∧ (𝜓𝑖𝑐(𝑡) < 3𝜋/8) (3.22e)
𝑇ovr = (𝜋 +𝜓𝑖𝛽(𝑡)−𝜓

𝑖
𝑐(𝑡) ≥ 5𝜋/8)∧

(𝜋 +𝜓𝑖𝛽(𝑡)−𝜓
𝑖
𝑐(𝑡) < 11𝜋/8) (3.22f)

𝑇stb = (𝜓𝑖𝛽(𝑡) ≥ 0)∧ (𝜓𝑖𝛽(𝑡) < 5𝜋/8) (3.22g)
𝑇emg =𝑑(𝑡) < 𝜌emg (3.22h)

which combined formulate the final transition expressions for the FSM of Figure 3.3:

𝑇 ent
GW = 𝑇enc ∧ {𝑇rsk ∧ [𝑇hdn ∨𝑇str ∨ (𝑇brn ∧ (𝑇ovr ∨𝑇stb))]} (3.23a)
𝑇 ext
GW = ¬𝑇enc (3.23b)
𝑇 ent
EM = 𝑇emg (3.23c)
𝑇 ext
EM = ¬𝑇emg, (3.23d)

In the equations above, logic symbols ∧, ∨, ¬, stand for "and", "or" and "not" respectively.
Note that it is intentional that the EM state can only be reached from the SO state as we
would like to allow vessels to come closer than 𝜌emg if they adhere to the rules and they
are assigned a pair of SO-GW roles. The FSM of Figure 3.3 can then assign the appropriate
traffic role to each of the vessels. Note that for simplicity, the Overtaking, Head-On, and
Starboard-Crossing situations have been grouped under the GW state and the Overtaken
and Port-Crossing situations under the EM state, since the required actions are the same.
Based on the traffic role assigned in this module, the corresponding collision avoidance
constraints described in the next sections are generated and inserted in the optimization
problem (3.2) before each planning cycle.

3.6 Constraint Generation
3.6.1 Situation Invariant Rules
The first rule that is implementable in a local motion planning algorithm is Rule 6, which
describes that "Every vessel shall at all times proceed at a safe speed so that she can take
proper and effective action to avoid collision and be stopped within a distance appropriate
to the prevailing circumstances and conditions". This rule is already implemented as a soft
constraint in the cost function (3.2a) given in (3.14) as part of the path following task.
The vessel’s reference speed that needs to be followed can be set according to the local
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Figure 3.6: Footprints of the two vessels for collision avoidance. A rectangle shape is a simple representation of
the real footprint of a vessel without being too conservative. The rectangle’s sides can be augmented to allow for
some safety margin as well. The rectangle is inflated by the radius of the circumscribed circle of the ASV leading
to a rounded rectangle. Note that the ability to approximate the ASV with multiple circles of smaller radius can
allow for less conservative approximations if needed (e.g. in inland waterways).

regulations that are applicable in its environment (e.g., open sea, canal, port, etc.) and the
type of the vessel.

Rule 8 describes the proper action to avoid collision: Rule 8.a specifically describes
that"Any action to avoid collision [...], made in ample time [...]". This requirement is imple-
mented with the already defined encountered distance 𝜌enc between the two vessels which
determines when the ASV has encountered another vessel and needs to assess the situation
(see Figure 3.5).

Rule 8.d describes that action should be taken such that vessels are passing at a safe
distance. While this is not explained adequately in the rules, we can think of what would
be the best way to approximate the footprint of the OV. Because of the oblong shape
that the vessels usually have, the circumscribed rectangle is a good approximation of the
vessel’s footprint since it is a simple shape but at the same time not very conservative
(e.g., as the circumscribed circle would be). We can then implement this safety distance
by enlarging the circumscribed rectangle by some margins (𝜌𝑖bm,𝜌𝑖sn,𝜌𝑖pt,𝜌𝑖sb) depending
on the side of the vessel illustrated as the orange dashed rectangle in Figure 3.6. Since
the decision variables include the center of the ASV where the body reference frame is
attached, a common practice for the task of collision avoidance is to inflate the footprint
of the obstacle by the dimensions of the ASV by using the Minkowski sum [161]. In
general, the Minkowski sum depends on the relative orientation as well, which makes the
computation of the inflated obstacle’s footprint more involved, and the resulting shapes to
vary. A simpler way is to approximate the footprint of the ASV with the circumscribed
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circle which will make the Minkowski sum rotation-invariant. The Minkowski sum of
the rectangular bound of vessel 𝑖 and the circumscribed circle of the ASV with radius 𝜌
is then the rounded orange rectangle illustrated in Figure 3.6, the most outer "boundary"
around the OV. Notice that as done in previous works on MPCC [66, 154, 67], the footprint
of the ego-vehicle (here the ASV) can be approximated with a multiplicity of offseted
circles along the symmetry axis that will make the approximation much less conservative
but still favorable in terms of computational complexity. This approximation of the OV’s
footprint with the safety margins is utilized in the following section where we generate
the rule-compliant constraints.

3.6.2 Situation Dependent Rules
This section discusses rules that hold according to the encounter situation of the ASV. Rule
8.b states that "Any alteration of course and/or speed to avoid collision shall, [...], be large
enough to be readily apparent to another vessel [...]". This rule is often ignored leading to
vessel maneuvers that are jittery and do not resemble rule-compliant maneuvers. One
way to implement this rule is to impose constraints on the angular acceleration 𝑟̇ and the
longitudinal acceleration 𝑢̇ to be larger than a certain value. However, as explained in
[110], this can result in a highly non-convex (and even non-connected) search space and,
consequently, in a hard-to-solve nonlinear optimization problem. Moreover, these variables
are not included in (3.2). To circumvent these problems, we consider this rule in the design
of constraints for Rules 13-17 later in this section. These constraints will cause the ASV to
alter its course in a sufficient, rule compliant manner.

Rule 8.c states that "If there is sufficient sea-room, alteration of course alone may be the
most effective action to avoid a close-quarters situation [...]". This is already considered in
(3.14) where we can tune weight 𝑞𝑢 accordingly to track the reference speed. According to
Rule 8.e, though, the vessel "[...] shall slacken her speed or take all way off by stopping or
reversing her means of propulsion". This means that the objective described in term (3.14)
might interfere with collision avoidance as it then describes two conflicting goals for the
trajectory optimizer. The problem can be overcome by switching the value of the tuning
parameter 𝑞𝑢 of cost term (3.14) according to the vessel role as 𝑞𝑢 ∈ {𝑞𝑢SO , 𝑞𝑢GW , 𝑞𝑢EM } with
𝑞𝑢EM ≪ 𝑞𝑢GW = 𝑞𝑢SO . Thus, in an emergency situation, the reference velocity following task
is relaxed to allow the ASV to slow down or even reverse if necessary.

Next, we consider Rules 13-15, which describe the maneuver a GW vessel should follow
in the Overtaking, Head-On, Starboard Crossing situations, respectively, as well as Rule 17
which describes emergency actions that arise in the Overtaken and Port Crossing situations
for an EM vessel. Figure 3.7 presents examples of compliant (green) and non-compliant
(red) maneuvers for each situation. In the following, we design suitable constraints to
enforce compliant maneuvers while avoiding non-compliant ones.

In most MPC-based works these constraints are implemented as soft constraints via a
heuristic cost function that relies on some hazard metric or aims at creating a repulsive field
[103, 104, 105, 106, 107, 108, 109, 110, 111]. In this work, instead, the goal is to implement
these rules as geometric, hard constraints to guarantee a rule-compliant behavior and
decouple this task from the tasks of path-following and velocity-following described in
the objective function. The design of these constraints should not cause problems with
feasibility and allow the solution of (3.2) in real time. Thus, we design a set of affine
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a) Head On b) Overtaking c) Starboard Crossing d) Overtaken e) Port Crossing

Figure 3.7: Rule-compliant (green) and prohibited (red) trajectories for the ASV (blue) in each traffic situation
with an OV (orange) according to rules 13-17: The three situations on the left - a) Overtaking, b) Head On, c)
Starboard Crossing - are situations where the ASV has a GW role while the two on the right - d) Overtaken, e)
Port Crossing - describe suitable emergency maneuvers with the ASV in an EM role.

constraints for each pairwise situation. Then, in multi-vessel encounters, this will result to
a convex polytope around the ASV, a rule-compliant search space in the receding horizon
problem (3.2). We can then have strict rule-compliance guarantees in multi-vessel situations
without complicating the solution of the optimization problem. These constraints might be
more conservative than other types (e.g., quadratic constraints used in [66, 67]), but they
are more suitable to represent the traffic rules as discussed in this Section. To design these
constraints, we rely on the notion of the separating and supporting planes from convex
optimization [162].

For each timestep 𝑘 ∈ 0,…,𝑁 −1 along the prediction horizon, a supporting hyperplane
of each circle 𝑗 ∈ [1,4] with radius 𝜌 centered at the vertices of the inflated rectangle (see
Figure 3.8) of OV 𝑖 ∈ 1,…,𝑛 can be defined as:

𝑖,𝑗
𝑑 ∶ 𝒅𝑖,𝑗𝑘∣𝑡𝒑𝑘∣𝑡 ≤ 𝒅𝑖,𝑗𝑘∣𝑡

⊤
(𝒑

𝑖,𝑗
𝑘∣𝑡 +𝒅𝑖,𝑗𝑘∣𝑡𝜌), (3.24)

where:

𝒅𝑖,𝑗𝑘∣𝑡 =
(𝒑̂𝑘∣𝑡 −𝒑𝑖,𝑗𝑘∣𝑡)

⊤

‖𝒑̂𝑘∣𝑡 −𝒑𝑖,𝑗𝑘∣𝑡 ‖
, (3.25)

is the normalized relative position vector defined with 𝒑̂𝑘∣𝑡 and 𝒑𝑖,𝑗𝑘∣𝑡 the predictions of
the ASV and the OV’s vertices respectively. For the OV we rely on a constant velocity
assumption to derive the predicted positions as:

𝒑𝑖𝑘∣𝑡 = 𝒑𝑖(𝑡)+𝑘 ⋅Δ𝑘 ⋅ 𝑹̃(𝒙(𝑡))𝒗𝑖(𝑡), (3.26)

by inferring its current position 𝒑𝑖(𝑡) and velocity 𝒗𝑖(𝑡). The predicted positions of the



3.6 Constraint Generation

3

39

vertices are then:

𝒑𝑖,1𝑘∣𝑡 = 𝒑𝑖𝑘∣𝑡 +𝑹̃(𝒙(𝑡))(
(𝑙𝑖/2+𝜌bm)
(𝑤𝑖/2+𝜌pt))

(3.27a)

𝒑𝑖,2𝑘∣𝑡 = 𝒑𝑖𝑘∣𝑡 +𝑹̃(𝒙(𝑡))(
(𝑙𝑖/2+𝜌bm)

−(𝑤𝑖/2+𝜌sb))
(3.27b)

𝒑𝑖,3𝑘∣𝑡 = 𝒑𝑖𝑘∣𝑡 +𝑹̃(𝒙(𝑡))(
−(𝑙𝑖/2+𝜌st)
−(𝑤𝑖/2+𝜌sb))

(3.27c)

𝒑𝑖,4𝑘∣𝑡 = 𝒑𝑖𝑘∣𝑡 +𝑹̃(𝒙(𝑡))(
−(𝑙𝑖/2+𝜌sn)
(𝑤𝑖/2+𝜌pt))

(3.27d)

More general predictions from prediction modules can be accommodated as well. For the
predictions of the ASV, we employ the trajectory of the previous planning cycle by shifting
the previous plan one step forward: 𝒑̂𝑘 ≜ 𝒑̂𝑡|𝑘 = 𝒑𝑡−1|𝑘+1 for 𝑘 = 0,…,𝑁 −1 while for the
last step 𝑘 = 𝑁 the predicted position is approximated as the linear extrapolation of the
last two steps of the previous planning cycle: 𝒑̂𝑁 ≜ 𝒑̂𝑡|𝑁 = 2𝒑𝑡−1|𝑁 −𝒑𝑡−1|𝑁−1. Note that
the hyperplane of (3.24) can always be defined as long as 𝒑̂𝑘∣𝑡 ≠ 𝒑𝑖,𝑗𝑘∣𝑡 and is at the same
time a separating hyperplane with respect to the ASV which is now reduced to a sequence
of single points 𝒑̂1∶𝑁 along the prediction horizon. Hyperplane 𝑖,𝑗

𝑑 , illustrated in Figure
3.8, can be used as a constraint to ensure that the footprints of the ASV and the OV will
not overlap thus achieving collision avoidance. However, it cannot enforce rule-compliant
trajectories similar to the green ones illustrated in Figure 3.7. For this reason, we want to
rotate this hyperplane in a proper manner and force the generated trajectories as close to
the desired ones as possible. That is, to the starboard side of the ASV and behind the OV as
implicitly required by Rules 13-17. The range of rotation that keeps the supporting plane
of each circle 𝑗 to be a separating plane with respect to the ASV (each point 𝒑̂𝑘∣𝑡 ) is that
between the two orange hyperplanes illustrated in Figure 3.8 denoted as 𝑖,𝑗

𝑑 and 𝑖,𝑗
max.

We are interested in the maximum counter-clockwise rotation of the orange hyperplane
𝑖,𝑗
𝑑 with normal vector 𝒅𝑖,𝑗𝑘∣𝑡 that would lead to 𝑖,𝑗

max. The maximum angle of rotation 𝜃𝑖,𝑗𝑘∣𝑡
is:

𝜃𝑖,𝑗𝑘∣𝑡 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

arccos(
𝜌

‖𝒑̂𝑘∣𝑡−𝒑
𝑖,𝑗
𝑘∣𝑡 ‖)

‖𝒑̂𝑘∣𝑡 −𝒑𝑖,𝑗𝑘∣𝑡 ‖ > 𝜌

0 ‖𝒑̂𝑘∣𝑡 −𝒑𝑖,𝑗𝑘∣𝑡 ‖ ≤ 𝜌
(3.28)

Note that when 𝜃𝑖,𝑗𝑘∣𝑡 = 0 we have 𝒓𝑖,𝑗𝑘∣𝑡 = 𝒅𝑖,𝑗𝑘∣𝑡 so that the rotated vector 𝒓𝑖,𝑗𝑘∣𝑡 can be defined
even if ‖𝒑̂𝑘∣𝑡−𝒑

𝑖,𝑗
𝑘∣𝑡 ‖ ≤ 𝜌. Lastly, we introduce a rotation factor 𝛼 ∈ [0,1] as a tuning parameter

with which we can tune the deflection of the predicted trajectory. The rotated vector is
then:

𝒓𝑖,𝑗𝑘∣𝑡 = 𝑹̃(𝛼𝜃𝑖,𝑗𝑘∣𝑡)𝒅
𝑖,𝑗
𝑘∣𝑡 (3.29)

The affine constraints will then take the form:

𝑖,𝑗
𝑟 ∶ 𝒓𝑖,𝑗𝑘∣𝑡

⊤
𝒑𝑘∣𝑡 ≤ 𝒓𝑖,𝑗𝑘∣𝑡

⊤
(𝒑

𝑖,𝑗
𝑘∣𝑡 +𝒓𝑖,𝑗𝑘∣𝑡𝜌) (3.30)

Thus, the red hyperplane of Figure 3.8 denoted as 𝑖,𝑗
𝑟 reduces smoothly to the orange

hyperplane 𝑖,𝑗
𝑑 as ‖𝒑̂𝑘∣𝑡 −𝒑𝑖,𝑗𝑘∣𝑡 ‖ → 𝜌 and the constraint can always be defined as long as
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Figure 3.8: The affine constraint in the example of a starboard-crossing situation. The constraint restricts the
allowable space for the ASV and forces the trajectory away from the reference path and behind the OV for the
task of rule-compliant collision avoidance according to the rules.

𝒑̂𝑘∣𝑡 ≠ 𝒑𝑖,𝑗𝑘∣𝑡 . Depending on the traffic role of the ASV we can tune the rotation factor 𝛼
differently to achieve a deflection of the trajectory as desired. In case the ASV has a GW
role, in order to yield trajectories like the first three in Figure 3.7 this requires 𝛼 → 1. On
the other hand, if the ASV has an EM role, the last two trajectories of Figure 3.7 will be
achieved for 𝛼 → 0. If the ASV has an SO role, no constraints are imposed and the vessel is
required to maintain its course and speed according to Rule 17. Lastly, in order to comply
with Rule 8.b that requires readily apparent maneuvers, we can use the current states for
the first few meters of the encounter that is, 𝒑̂𝑘∣𝑡 = 𝒑1 and 𝒑𝑖,𝑗𝑘∣𝑡 = 𝒑𝑖,𝑗1 . This will force a
strong alteration of course or speed at the beginning of the encounter so that the actions
of the ASV are readily apparent to the OVs.

Since these constraints are computed a priori based on the shifted plan, we can deter-
mine which one of them will be active and thus have only one constraint per obstacle to
further simplify problem (3.2). Therefore, there will be a single constraint per OV that is
"rolling" along the periphery of the rounded rectangle depending on the relative position
and orientation of the ASV and the OV. In summary, each constraint 𝑖 with 𝑖 = 1,…,𝑛,
splits the workspace of the vessels in two half-spaces, one containing the 𝑖𝑡ℎ OV and its
counterpart containing the ASV making sure that their footprints are always separated
and thus collision avoidance is ensured. Moreover, the deflection tuning of this half-space
is used to enforce rule-compliant trajectories. The affine constraints to be inserted in (3.2)
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will then take the final form:

 ∶ 𝑳𝑜,𝑖𝑘∣𝑡
⊤𝒑𝑘∣𝑡 ≤ 𝒍𝑜,𝑖𝑘∣𝑡 , 𝑖 = 1,…,𝑛𝑜 , (3.31)

with:
𝑳𝑜,𝑖𝑘∣𝑡 = 𝒓𝑖,𝑗𝑘∣𝑡 , 𝒍𝑜,𝑖𝑘∣𝑡 = 𝑳𝑜,𝑖𝑘∣𝑡

⊤
(𝒑

𝑖,𝑗
𝑘∣𝑡 +𝑳𝑜,𝑖𝑘∣𝑡𝜌), 𝑗 ∈ [1,4] (3.32)

where the index for 𝑗 ∈ [1,4] is chosen so that the corresponding affine constraint does not
intersect the inflated rounded rectangle of Figure 3.8.

Note that the aforementioned considerations regarding i) a well-defined expression of
constraints that ensures feasibility and ii) a pre-processing procedure to activate just one
constraint per OV were not contemplated in [153]. In addition, in this work, a discussion on
the effect of these constraints in traffic situations with multiple OVs follows. The constraint
space  for the position 𝒑 of the vessel is illustrated qualitatively in Figure 3.9. The ASV
has either a GW or an EM role with respect to each OV and the corresponding affine
constraint is generated. When these overlap, they lead to the convex polytope  which is
the search space for the trajectory optimization problem (3.2). One of the benefits of such
a design is that as the ASV and OV move with respect to each other to resolve the traffic
situation, the constraints are "rolling" out of the way of the ASV thus not impeding its path
anymore. Therefore, they can remain active for as long as the traffic role is active according
to Section 3.5 without blocking the motion of the ASV. Thus, neither complicated exit
criteria nor hysteresis in the decision-making module are needed for the FSM designed
in Section 3.5 in contrast to other works (e.g., [87, 110]). Note that in Figure 3.9, the set
 is presented only at the current time. In the optimization problem, there would be 𝑁
polygons, one for each timestep 𝑘 along the prediction horizon.

In the context of vessels navigating in dynamic environments with uncertain neighbor-
ing agents’ intentions, ensuring formal closed-loop stability is challenging. One possible
approach to address this issue is by modeling uncertainties in predicting neighboring
vehicles’ intentions within the motion planning problem and designing a suitable terminal
cost in (3.2a) to ensure stability.

Figure 3.9: Multiple half-space constraints active simul-
taneously that result in a convex search space for the
trajectory optimization problem.

Figure 3.10: A screenshot from RVIZ to illustrate the
convex polytope constraints generated along the pre-
diction horizon for timestep 𝑘 = 10,20,30,40.
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Algorithm 1 Traffic role decision making and constraint generation
Input: 𝒙(𝑡), 𝒙𝑖(𝑡), 𝑙𝑖,𝑤𝑖, ∀𝑖 ∈ [1,⋯,𝑛]
Output: 𝑳𝑜𝑘∣𝑡 , 𝒍

𝑜
𝑘∣𝑡 , 𝑞𝑢 see (3.31), (3.32)

1: for 𝑡 = 1,2,… do
2: for 𝑖 ∈ [1,⋯,𝑛] do ⊳ Traffic role decision making
3: Compute 𝑑(𝑡) from Eq. (3.16)
4: Compute 𝑑CPA(𝑡) from Eq. (3.19)
5: Compute 𝜓𝑖𝑏 (𝑡) from Eq. (3.20)
6: Compute 𝜓𝑖𝑐(𝑡) from Eq. (3.21)
7: Compute 𝑟𝑜𝑙𝑒𝑖(𝑡) from Eq. (3.23) and the FSM
8: end for
9: for 𝑘 ∈ [1,⋯,𝑁 ] do ⊳ Constraint generation
10: 𝒑̂𝑘 ←𝒑𝑡−1|𝑘+1, 𝒑̂𝑁 ← 2𝒑𝑡−1|𝑁 −𝒑𝑡−1|𝑁−1
11: 𝒑𝑖𝑘∣𝑡 ←𝒑𝑖(𝑡)+𝑘 ⋅Δ𝑘 ⋅ 𝑹̃(𝒙(𝑡))𝒗𝑖(𝑡)
12: for 𝑖 ∈ [1,⋯,𝑛] do
13: if 𝑟𝑜𝑙𝑒𝑖 == 𝑆𝑂 then
14: 𝑞𝑖𝑢 ← 𝑞𝑢SO
15: else
16: if 𝑟𝑜𝑙𝑒𝑖 == 𝐺𝑊 then
17: 𝑞𝑖𝑢 ← 𝑞𝑢GW
18: 𝛼 ← [0,1] ⊳ Set 𝛼 value close to 1
19: else if 𝑟𝑜𝑙𝑒𝑖 == 𝐸𝑀 then
20: 𝑞𝑖𝑢 ← 𝑞𝑢EM
21: 𝛼 ← [0,1] ⊳ Set 𝛼 value close to 0
22: end if
23: for 𝑗 ∈ [1,⋯,4] do
24: Compute 𝒑𝑖,𝑗𝑘∣𝑡 from Eq. (3.27) given 𝒑𝑖𝑘∣𝑡
25: Compute 𝒅𝑖,𝑗𝑘∣𝑡 from Eq. (3.25) given 𝒑̂𝑘
26: Compute 𝜃𝑖,𝑗𝑘∣𝑡 from Eq. (3.28)
27: Compute 𝒓𝑖,𝑗𝑘∣𝑡 from Eq. (3.29)
28: end for
29: Choose 𝒓𝑖𝑘∣𝑡 as the active 𝒓

𝑖,𝑗
𝑘∣𝑡

30: Compute 𝑳𝑜,𝑖𝑘∣𝑡 , 𝒍
𝑜,𝑖
𝑘∣𝑡 from Eq. (3.31)

31: end if
32: end for
33: end for
34: 𝑞𝑢 ←𝑚𝑖𝑛(𝑞𝑖𝑢), ∀𝑖 ∈ [1,⋯,𝑛]
35: Create 𝑳𝑜𝑘∣𝑡 , 𝒍

𝑜
𝑘∣𝑡 by concatenating 𝑳𝑜,𝑖𝑘∣𝑡 , 𝒍

𝑜,𝑖
𝑘∣𝑡

36: end for
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3.7 Results
This section presents simulation results to validate the efficacy of our algorithm in different
traffic scenarios. The first vessel-to-vessel scenarios are chosen to highlight the rule-
compliant collision avoidance maneuvers in each possible traffic situation. We then test the
algorithm in multi-vessel encounters to show that it does not lead to deadlocks in complex
traffic situations and that it is scalable with respect to the number of OVs. Our framework
is implemented in ROS: the controller in C++ and the simulator of the ASV and OVs in
Python. The solver used relies on the Primal-Dual Interior-Point method and is generated
with Forces Pro [163, 164]. The algorithm runs in an Ubuntu machine with an Intel i7
CPU@1.8GHz and 16GB of RAM.

In the following simulation scenarios, the ASV is expected to follow a horizontal
reference path along the X-axis of the global reference frame at a reference surge velocity
𝑢ref = 1m/s while avoiding collisions according to the regulations. The values of the used
parameters are summarized in Tables 3.1 and 3.2 while the numerical values of the ASV
model described in (3.4a) can be found in [165]. For all the OVs the dimensions are the same
as the ones used for the ASV: 𝑙𝑖 = 𝑙 = 1.25m and 𝑤𝑖 = 𝑤 = 0.29m while their longitudinal
velocities vary in the range 0.9−1.2m/s. The horizon length is set to 𝑁 = 41 steps and the
prediction timestep at Δ𝑘 = 0.25s.

Figure 3.11 demonstrates the ASV’s maneuver in an Overtaking situation where the
ASV has a GW role. As described in Rule 13, the ASV turns to starboard while it keeps out
of the way of the OV. Figure 3.12 shows the ASV in a Head-On situation and a GW role. In
compliance with Rule 14, the ASV changes course to starboard so that each vessel passes
on the port side of the other while it keeps out of the way of the OV.

Figure 3.11: Overtaking situation with the ASV in GW
role, turning to starboard while it keeps out of the way
of the OV (Rule 13).

Figure 3.12: Head-On situation with the ASV in GW
role, turning to starboard so that each vessel passes on
the other’s port (Rule 14).

Figure 3.13 illustrates another scenario in which the ASV has a GW role in a Starboard-
Crossing situation. In this scenario, the ASV takes a collision avoidance maneuver to its
starboard and avoids crossing ahead of the other vessel according to Rule 15. Lastly, Figure
3.14 presents a Port-Crossing situation where the ASV normally would have an SO role,
but the OV does not comply with the rules and does not take action to avoid collision.

𝑞𝑒𝑙 𝑞𝑒𝑐 𝑞𝑢EM 𝑞𝑢GW 𝑞𝑣 𝑞𝜏𝑢 𝑞𝜏𝑟
1 10 10 1000 250 0.1 3

Table 3.1: Objective function weight values
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𝜌𝑠 𝜌𝑒𝑛𝑐 𝜌𝑒𝑚𝑔 𝜓ℎ 𝜌𝑖𝑏𝑚 𝜌𝑖𝑠𝑛 𝜌𝑖𝑝𝑡 𝜌𝑖𝑠𝑏 𝛼
2 21 10 0.25 𝑙𝑖 𝑙𝑖/2 𝑤𝑖 𝑤𝑖 0.97

Table 3.2: Geometry parameter values

In this case, the ASV has an EM role and needs to take action to avoid collision while it
does not alter its course to port for a vessel on its own port side. Notice that in every
scenario, the ASV autonomously performs maneuvers that are clear and readily apparent
thus complying with Rule 8.

Figure 3.13: Starboard Crossing situation with the ASV
in GW role, turning to starboard while avoiding crossing
ahead of the other vessel (Rule 15).

Figure 3.14: Port Crossing situation with the ASV in
EM role, decelerating without turning to port passing
behind the non-compliant vessel (Rule 17).

A multi-vessel encounter is illustrated in Figure 3.15 where the ASV is able to success-
fully avoid collision with each vessel obstacle in a rule-compliant manner. The ASV first
encounters OV 1 and attempts to overtake it. A bit later it encounters two vessels (OV 2
and 3) crossing from its starboard side so it alters course to starboard to pass behind them.
As soon as it returns to its reference path, OV 6 is coming from its port side not complying
with the rules, and thus the ASV reduces speed to avoid collision. Right after, the ASV
encounters OV 4 in a head-on situation and OV 5 in a port-crossing situation. At first, it
changes course to starboard and later slows down to successfully avoid collision with both,
according to the rules.

The simulation environment in which we run our experiments (RVIZ) is illustrated in
Figure 3.10 where the constraint polytopes can be seen along the prediction horizon. The
corresponding state and input of the system for the multi-vessel scenario is provided in
Figures 3.18, 3.19, and 3.20. In Figure 3.16 the successive traffic roles are shown as the ASV
navigates through traffic. The ASV has a GW role with respect to OV 1, 2, 3 and 4 and an
SO role with respect to OV 5 and 6. The latter do not comply with the rules and thus an
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Figure 3.15: Trajectories in a multi-vessel encounter situation with the ASV passing through multiple OVs while
following a horizontal path.

Figure 3.16: Traffic role for the ASV with respect to each
OV corresponding to the traffic situations that emerge
in Figure 3.15.

Figure 3.17: The distance between the ASV and each OV
in the scenario presented in Figure 3.15 as a function
of time. The lower dashed line represents the sum of
𝜌+𝜌𝑖 for each OV showing that there is no collision.

EM role emerges for the ASV as they approach in dangerous proximity. In Figure 3.17 we
compare the relative distance between the ASV and each OV 𝑖 to the minimum accepted
distance for collision avoidance (𝜌+𝜌𝑖). Note that this is more conservative than what we
enforce with the collision avoidance constraints, but it is used just as an indication that
collision avoidance is achieved. Lastly, we show in Figure 3.21 the computation time with
respect to the increasing number of obstacles to illustrate the scalability of the algorithm.
The average time for the control loop is on average about 33 ms for every run showing
that the number of obstacles does not complicate the solution of the optimization problem.
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Figure 3.18: Pose (position and orientation) of the ASV
for the multi-vessel encounter presented in Figure 3.15.

Figure 3.19: Twist of the ASV for the multi-vessel en-
counter presented in Figure3.15.

Figure 3.20: Control input of the ASV for the multi-vessel encounter presented in Figure 3.15.

Figure 3.21: Computation times for an increasing num-
ber of obstacles: The average computation time remains
similar meaning that the additional constraints do not
complicate the solution of the optimization problem
showcasing the scalability of the method.

Figure 3.22: The computation times with respect to
the control cycle for an increasing number of obsta-
cles. While the average time stays within acceptable
limits, there are edge cases that complicate the applica-
tion in real-time.
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3.8 Conclusions
In this chapter, we proposed a trajectory optimization and control algorithm for safe
navigation of ASVs in mixed-traffic environments, that is, environments with human-
operated vessels by incorporating COLREGs as constraints as a response to Research
Question Q1: "How can ASVs navigate safely and efficiently in dense traffic environments
while ensuring compliance with maritime traffic rules?" The efficacy of the proposed
algorithmwas validated via different simulation scenarios involving relevant rule-compliant
collision avoidance maneuvers that comply with COLREGs. Scenarios with multiple vessels
were also tested to show the algorithm’s ability to handle complex traffic situations without
deadlocks and its scalability with respect to the number of obstacles. In the following
chapters, we shift our focus to addressing uncertainties and faults by designing suitable
FD and FTC modules to complement the motion planner, ensuring reliable operation even
in the presence of disturbances and system anomalies.
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Active Thruster Fault

Diagnosis

As ASVs become increasingly prevalent in marine applications, ensuring their safe operation,
in the presence of faults, is crucial to human safety. This chapter addresses Research Question
Q2: "How to detect and isolate actuator faults in ASVs to enhance overall operational safety and
reliability?" by presenting a scheme that encompasses the detection and isolation of actuator
faults for ASVs to ensure uninterrupted and safe operation. The method primarily addresses
the loss of thruster effectiveness as a specific actuator fault. For fault detection, the proposed
method leverages residuals generated by nonlinear observers, coupled with adaptive thresholds,
enhancing fault detection accuracy. The active fault isolation strategy employs actuator
redundancy to insulate specific system states from faults by dynamically reconfiguring the
actuation configuration in response to detected faults. Comprehensive simulation results
demonstrate the effectiveness of this methodology across diverse marine traffic scenarios where
the ASV needs to perform a collision avoidance maneuver. This chapter is organized as follows:
Section 4.1 briefly introduces the overall idea. Section 4.2 describes the formulated FDI problem
for a 3-DoF ASV under environmental disturbances, measurement noise, and specific actuator
faults. Section 4.3 details the fault diagnosis method, which involves a cascaded detection and
isolation procedure. Finally, Section 4.4 presents simulation results and Section 4.5 concludes
this chapter with some additional remarks.

This chapter is based on� A. Tsolakis, L. Ferranti, and V. Reppa, "Active Thruster Fault Diagnosis for an Overactu-
ated Autonomous Surface Vessel", Proc. of the 12th IFAC Symposium on Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS 2024), June 2024.
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4.1 Introduction
In recent years, there has been a strong interest in developing autonomous solutions for
marine systems, spanning various applications. These include for example autonomous
surface vessels in the transportation of passengers and goods, unmanned surface vessels for
environmental monitoring and bathymetric mapping, and autonomous underwater vehicles
employed in tasks such as exploration and inspection of underwater structures. While
these constitute promising, cost-effective solutions that could enhance efficiency, there are
still concerns regarding the safe operation and reliability of these systems especially in
environments shared with other human-operated vehicles.

In the previous chapter, we introduced a trajectory optimization method that allows
ASVs to navigate among other human-operated vessels by complying with the traffic
rules. While the method proved to be effective in nominal, healthy conditions, the critical
question remains on how safety can be guaranteed even in the presence of faults.

As autonomous vehicles heavily rely on components such as sensors, actuators, com-
putation units, and various other systems, a major concern revolves around the potential
consequences of component faults or complete failures during operation. Recent research
has predominantly focused on FTC for these systems, aiming to maintain system function-
ality or ensure safety despite the occurrence of faults or failures. This chapter focuses on
FD, a critical component of FTC that aims to enhance the system’s health understanding.
Our work highlights the importance of accurately identifying and localizing faults, thereby
improving the safety and reliability of autonomous marine vessels.

This chapter presents an active FDI scheme designed to complement the rule-compliant
trajectory optimization algorithm for ASVs proposed in Chapter 3 and [166]. While previ-
ous works primarily focus on passive fault diagnosis or rely on fixed detection thresholds,
we introduce a planning-integrated, adaptive FD method capable of detecting and isolating
actuator faults in real time. This enhances overall system safety by proactively address-
ing actuator failures within the motion planning framework. In contrast to conventional
methods that use static or heuristic-based thresholds for fault detection, we derive adap-
tive thresholds that dynamically adjust based on system nonlinearities. This improves
detection accuracy while simultaneously accounting for bounded noise and disturbances.
Additionally, fault isolation is achieved through the inherent control redundancy of the
vessel and the explicit representation of model dynamics and input constraints within the
MPC formulation of [166]. This eliminates the need for auxiliary control allocation modules
and avoids unnecessary input saturation handling, simplifying the overall architecture.
The contributions of this work are:

• A novel adaptive fault detection scheme that dynamically adjusts detection thresholds
based on system nonlinearities, improving accuracy while accounting for bounded
noise and disturbances.

• A fault isolation approach that leverages control redundancy and integrates seam-
lessly with the MPC framework, removing the need for auxiliary control allocation
and saturation handling.

• A planning-integrated fault diagnosis strategy that proactively accounts for actuator
faults, ensuring safer and more reliable motion planning in mixed-traffic maritime
environments.
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Figure 4.1: Schematic method overview (light orange block). Fault detection and isolation are realized given the
input 𝒖(𝑡) and measurement 𝒚(𝑡).

4.2 Problem Formulation

We consider the ASV dynamics as a 3-DoF system in planar motion. We assume that
the ASV is already equipped with a set of sensors and actuators as well as the trajectory
optimizer developed in [166] for rule-compliant collision avoidance (highlighted in blue in
Figure 4.1). In this work, we focus on developing the “FDI" block, highlighted in orange in
Figure 4.1, that utilizes the system’s input and output data.

The vessel dynamics are described by the maneuvering model in [159]. The ASV’s
configuration is described by its position 𝒑 = (𝑥,𝑦)⊤, orientation 𝜓, longitudinal and lateral
velocities 𝑢, 𝑣, and yaw rate 𝑟 . Note that the velocities are expressed in the body reference
frame of the vessel. We then denote as 𝒙 = (𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟)⊤ ∈  ⊂ ℝ6 the system’s state
and as 𝒖 = (𝜏𝑙 , 𝜏𝑟 , 𝜏𝑏 ,𝛼𝑙 ,𝛼𝑟 )⊤ ∈ ⊂ ℝ5 the control input of an overactuated ASV with two
azimuth thrusters at its beam and one bow thruster. Specifically, we denote as 𝜏𝑙 , 𝜏𝑟 , and
𝛼𝑙 , 𝛼𝑟 the thrusts and azimuths of the left and right azimuth thruster respectively, and as
𝜏𝑏 the thrust produced by the bow thruster of the ASV. Environmental disturbance forces
from the wind and waves are denoted as 𝝉𝒅 ∈ ⊂ ℝ3. The evolution of the system’s state
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is expressed by the following continuous, nonlinear system:

𝒙̇ = [
𝟎3×3 𝑹(𝒙)
𝟎3×3 −𝑴−1(𝑪(𝒙)+𝑫(𝒙))]𝒙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒇(𝒙)

+

𝑴̃⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
𝟎3×3
𝑴−1]𝝉(𝒖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒈(𝒖)

+

𝑴̃⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
𝟎3×3
𝑴−1]𝝉𝒅
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒅

(4.1a)

with:
𝑴 =𝑴𝑹𝑩+𝑴𝑨, (4.1b)

𝑪(𝒙) = 𝑪𝑹𝑩(𝒙)+𝑪𝑨(𝒙), (4.1c)
𝑫(𝒙) = 𝑫𝑳 +𝑫𝑵𝑳(𝒙), (4.1d)

𝝉(𝒖) =

⎛
⎜
⎜
⎜
⎜
⎝

𝜃𝑙𝜏𝑙 cos𝛼𝑙 +𝜃𝑟𝜏𝑟 cos𝛼𝑟
𝜃𝑙𝜏𝑙 sin𝛼𝑙 +𝜃𝑟𝜏𝑟 sin𝛼𝑟 +𝜃𝑏𝜏𝑏
𝑤𝑙𝑟 (𝜃𝑟𝜏𝑟 cos𝛼𝑟 −𝜃𝑙𝜏𝑙 cos𝛼𝑙)−

𝑙𝑙𝑟 (𝜃𝑙𝜏𝑙 sin𝛼𝑙 −𝜃𝑟𝜏𝑟 cos𝛼𝑟 )+ 𝑙𝑏𝜃𝑏𝜏𝑏

⎞
⎟
⎟
⎟
⎟
⎠

(4.1e)

where 𝑹(𝒙) is the rotation matrix, 𝑴𝑹𝑩 the rigid-body mass matrix, 𝑪𝑹𝑩(𝒙) the rigid-body
Coriolis and centripetal matrix, 𝑴𝑨 the added-mass matrix, 𝑪𝑨(𝒙) the added Coriolis
and centripetal matrix, 𝑫𝑳, 𝑫𝑵𝑳(𝒙), the linear and nonlinear damping matrices, 𝝉 the
generalized force vector acting on the vessel, and 𝑤𝑙𝑟 , 𝑙𝑙𝑟 , 𝑙𝑏 are length parameters that
describe the configuration of the thrusters. The added-mass and Coriolis matrices are
introduced due to hydrodynamic forces when we consider the additional forces resulting
from the fluid acting on the vessel. The thrust force from the actuators in healthy conditions
is denoted as 𝝉(𝒖) with {𝜃𝑙 ,𝜃𝑟 ,𝜃𝑏 } fault parameters described at the end of this section.
Actuator limitations are considered as well. The actuators’ configuration is illustrated in
Figure 4.2.

We model disturbances based on [167] where the prevailing disturbance force is due to
the wind, and then wave and current disturbance forces are due to the wind forces. We
assume that this disturbance is unknown but with a known upper bound denoted as 𝝉̄𝒅 .
We, therefore, model disturbance as a truncated Gaussian random variable with mean 𝝁𝒅
and variance 𝚺𝒅 :

𝒅 ∼ (𝝁𝒅 ,𝚺𝒅) for 𝝁𝒅 −2𝚺𝒅 ≤ 𝝉𝒅 ≤ 𝝁𝒅 +2𝚺𝒅 = 𝒅̄ (4.2)

We assume that we have access to a full-state measurement that is corrupted by a noise
signal 𝒏 that is unknown but bounded with the bound denoted as 𝒏̄:

𝒚 = 𝒙 +𝒏 (4.3)

We model noise measurement as a zero-mean truncated Gaussian random variable
with variance 𝚺𝒏:

𝒏 ∼ (𝟎,𝚺𝒏) for −2𝚺𝒏 ≤ 𝒏 ≤ 2𝚺𝒏 = 𝒏̄ (4.4)
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Figure 4.2: Schematic representation of the actuators’ configuration with two azimuth thrusters at the stern and
one bow thruster.

Lastly, for fault modeling, we consider actuator faults and more specifically thruster
loss of effectiveness (LoE), which is widely considered as a relevant actuator fault [120, 168,
149, 148]. The fault parameters in (4.1e) are then given as:

𝜃𝑗 =

{
1, 𝑡 < 𝑡𝑓𝑖
0 < 𝜃𝑗 < 1, 𝑡 ≥ 𝑡𝑓𝑖

(4.5)

For healthy conditions, we have 𝜃𝑗 = 1 while 𝜃𝑗 = 0 means complete failure. Time instant
𝑡𝑓𝑖 denotes the time a fault occurs. We further assume that the fault happens abruptly after
fault time 𝑡𝑓𝑖 and that only single faults occur since in practice it is infrequent that two or
more actuator faults occur simultaneously ([148, 169]). We also assume that there are no
sensor faults affecting the system.

The goal of this work is to develop a scheme that can detect and isolate parameters 𝜃𝑗 , 𝑖 ∈
{𝑙, 𝑟 ,𝑏} when these deviate from healthy conditions (i.e., when 𝜃𝑗 ≠ 1) under disturbances
(4.2) and measurement noise (4.4).

4.3 Active Fault Diagnosis based on Residuals and
Adaptive Thresholds

4.3.1 Residuals & Thresholds
The system equations (4.1) and (4.3) can be re-written in compact form as:

𝒙̇ = 𝒇(𝒙)+𝒈(𝒖)+𝒅 (4.6a)

𝒚 = 𝒙 +𝒏 (4.6b)
We design a nonlinear observer to generate residuals and the respective adaptive thresholds.
The nonlinear observer can be expressed as:

̇̂𝒙 = 𝒇(𝒙̂)+𝒈𝐻 (𝒖)+𝚲(𝒚− 𝒚̂) (4.7a)
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𝒚̂ = 𝒙̂ (4.7b)
where 𝒙̂ is the state estimate vector and 𝚲 is the observer gain which is a positive definite
diagonal matrix and 𝒈𝐻 (𝒖) denotes the input map in healthy conditions i.e., when there
are no actuator faults and 𝜂𝑗 = 1, ∀𝑗 ∈ {𝑙, 𝑟 ,𝑏}. The residual is expressed as:

𝝐 = 𝒚− 𝒚̂ (4.8)
Substituting (4.6b) to (4.8) and using the triangle inequality we get:

| 𝒚 − 𝒚̂
⏟⏞⏞⏞⏟⏞⏞⏞⏟
residual

| ≤ |𝒙̃| + 𝒏̄ (4.9)

with 𝒙̃ = 𝒙−𝒙̂ the state error. Note that inequalities between matrices are to be interpreted
element-wise where | ⋅ | denotes the matrix modulus function, i.e., the element-wise absolute
value as in [170]. In the following, we derive the expressions on the two sides of (4.9) for
detection and isolation.

For the adaptive threshold given in the right-hand side of (4.9), we have the known
noise bound 𝒏̄. A bound on the state error 𝒙̃, however, is more involved to derive. Following
the same approach of [134], we first derive the state error dynamics by subtracting (4.7a)
from (4.6a):

̇̃𝒙 = 𝒇(𝒙)−𝒇(𝒙̂)+𝒈(𝒖)−𝒈𝐻 (𝒖)−𝚲𝒙̃ −𝚲𝒏+𝒅 (4.10)
If we further assume healthy conditions, (4.10) takes the form:

̇̃𝒙 = 𝒇(𝒙)−𝒇(𝒙̂)+𝚲𝒙̃ −𝚲𝒏+𝒅 (4.11)
After rearranging terms and integrating both sides of the equation we get:

𝒙̃ =𝑒−𝚲𝑡 𝒙̃(0)+∫
𝑡

0
𝑒𝚲(𝜏−𝑡) [𝒇(𝒙)−𝒇(𝒙̂)−Λ𝒏+𝒅]𝑑𝜏 (4.12)

Here we rely on the fact that our system’s nonlinear function 𝑓 is Lipschitz, meaning that
any two nearby states produce only a proportionally small difference in 𝑓 . If we then
pick our diagonal observer gains large enough (i.e. larger than that Lipschitz constant),
the “correction” term in the observer will always dominate any mismatch caused by the
nonlinearity. In other words, the observer error is driven to shrink at an exponential rate,
and a finite residual threshold can always be computed. The observer stability can be
proven based on Theorem 4.3 in [134]. Nevertheless, this equation cannot be evaluated as
𝒏 and 𝒅 are unknown. Nevertheless, we can look for a proper bound of 𝒙̃ based on the
boundness assumptions for 𝒏 and 𝒅. We then have:

|𝒙̃|=
||||
𝑒−𝚲𝑡 𝒙̃(0)+∫

𝑡

0
𝑒𝚲(𝜏−𝑡) [𝒇(𝒙)−𝒇(𝒙̂)−Λ𝒏+𝒅]𝑑𝜏

||||
(4.13)

which by leveraging the triangle inequality becomes:

|𝒙̃| ≤ ||𝑒
−𝚲𝑡 || |𝒙̃(0)|⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜶

+∫
𝑡

0

|||𝑒
𝚲(𝜏−𝑡)||| (|𝒇(𝒙)−𝒇(𝒙̂)|+Λ𝒏̄+ 𝒅̄)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝃

𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜷

(4.14)
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The homogeneous term 𝜶 depends on the initial state error for which we have |𝒙̃(0)| ≤
|𝒚(0)| + 𝒏̄+ ̄̂𝒙 where ̄̂𝒙 is a known bound in the initial state estimate. This term will die
out because of the exponential term in a negative power. Term 𝜷 can be computed by
numerical integration of 𝜷̇ = −𝚲𝜷 +𝝃 with zero initial conditions. While we can have
the state estimate 𝒙̂ to evaluate 𝒇(𝒙̂) in (4.14), the state 𝒙 is unknown and thus the term
𝒇(𝒙) is unknown as well. Nevertheless, we can substitute 𝒙 = 𝒚−𝒏 and then expand the
expression 𝒇(𝒚 −𝒏) by leveraging again the triangular inequality to get an upper bound
for the right-hand side of (4.14). Thus, a bound for the right-hand side of (4.8) can be
computed and will be denoted as 𝝐̄ with:

|𝒙̃| + 𝒏̄ ≤ 𝝐̄⏟⏟⏟
threshold

(4.15)

Thus, we have the following inequality that holds in healthy conditions where both
terms can be evaluated:

|𝝐(𝒚, 𝒚̂)| ≤ 𝝐̄(𝒚, 𝒚̂, 𝒏̄, 𝒅̄) (4.16)

The adaptive threshold varies with respect to the estimate of the system while it takes into
account the corruption of this signal from worst-case disturbance and noise signals.

4.3.2 Active Fault Diagnosis based on MPC Reconfiguration
The presence of actuator faults is detected by the following set of analytical redundancy
relations (ARRs):

𝑖 ∶ |𝜖𝑖(𝑡)| − 𝜖̄𝑖(𝑡) ≤ 0, 𝑖 ∈ {𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟} (4.17)

where |𝜖𝑖(𝑡)| and 𝜖̄𝑖(𝑡) are the elements of |𝝐(𝑡)| and 𝝐̄(𝑡) in (4.16) respectively. Violation of
one of these ARRs at any time instance means that the real system is behaving significantly
differently with respect to the healthy system model used in the nonlinear observer. Since
this discrepancy is not due to measurement noise or disturbances as they have already been
accounted for, we can then conclude that a fault has occurred. The first time instant that
(4.17) is invalid for at least one 𝑖 ∈ {𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟} signifies the time instant of fault detection
defined as:

𝑡𝐷𝑖 = min{𝑡 ∶ |𝜖𝑖(𝑡)| − 𝜖̄𝑖(𝑡) > 0} (4.18)

Until this instant, we assume that either no faults have occurred or there are faults that
have not been detected yet. The binary decision for a detected fault is defined as:

𝐷(𝑡) =

{
0, 𝑡 < 𝑡𝐷
1, 𝑡 ≥ 𝑡𝐷

(4.19)

with 𝑡𝐷 = min{𝑡𝐷𝑖 ∶ 𝑖 ∈ {𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟}}. Thus a fault is detected at any time when 𝐷(𝑡) = 1.
For isolation, we investigate how each one of the LoE faults 𝜂𝑗 , 𝑗 ∈ {𝑙, 𝑟 ,𝑏} affects the

system. First, we need to create a binary Fault Signature Matrix (FSMX) as a reference
and then a binary decision vector that through comparison with the FSMX will pinpoint
the exact location of the fault. For the FSMX, we need to find the effect of each actuator
fault on the residuals, that is, how the discrepancy due to the occurring faults denoted as
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𝜂𝑙 𝜂𝑟 𝜂𝑏
𝑢 1 1 0
𝑣 1 1 1
𝑟 1 1 1

Table 4.1: Actuator FSMX 𝑭

𝜂𝑙 𝜂𝑟 𝜂𝑏
𝑢 1 1 0
𝑣 0 1 1
𝑟 1 1 1

(a) FSMX 𝑭𝑹
𝒍

𝜂𝑙 𝜂𝑟 𝜂𝑏
𝑢 1 1 0
𝑣 1 0 1
𝑟 1 1 1

(b) FSMX 𝑭𝑹
𝒓

Table 4.2: FSMXs after reconfiguration

𝒈̃(𝒖) = 𝒈(𝒖)−𝒈𝐻 (𝒖) affects the error dynamics (4.10). We compute the Jacobian of 𝒈̃(𝒖)
with respect to the vector of faults 𝜼 = (𝜂𝑙 , 𝜂𝑟 , 𝜂𝑏 )⊤ as:

𝛁𝜼𝒈̃(𝒖) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

𝒈̃𝒖𝒍(𝜏𝑙 ,𝛼𝑙) 𝒈̃𝒖𝒓(𝜏𝑟 ,𝛼𝑟 ) 0
𝒈̃𝒗𝒍(𝜏𝑙 ,𝛼𝑙) 𝒈̃𝒗𝒓(𝜏𝑟 ,𝛼𝑟 ) 𝒈̃𝒗𝒃(𝜏𝑏 ,𝛼𝑏 )
𝒈̃𝒓𝒍(𝜏𝑙 ,𝛼𝑙) 𝒈̃𝒓𝒓(𝜏𝑟 ,𝛼𝑟 ) 𝒈̃𝒓𝒃(𝜏𝑏 ,𝛼𝑏 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.20)

The Jacobian matrix, commonly used in sensitivity analysis, captures the rate of change of
the system’s output (ARRs in our case) concerning small changes in the actuator faults.
Each row of this matrix corresponds to a specific ARR 𝑖, 𝑖 ∈ {𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟}, and each
column corresponds to a particular actuator fault 𝜂𝑗 , 𝑗 ∈ {𝑙, 𝑟 ,𝑏}, offering insights into the
impact of each fault on the ARRs. After computing the Jacobian matrix (4.20), it is observed
that the first three ARRs (𝑖, 𝑖 ∈ {𝑥,𝑦,𝜓}) do not exhibit sensitivity to the actuator faults
(𝜂𝑗 , 𝑗 ∈ {𝑙, 𝑟 ,𝑏}). Consequently, these states are omitted from the FSMX, as their inclusion
would not contribute valuable information regarding fault isolation. The FSMX matrix,
denoted as 𝑭 , is constructed based on the relevant ARRs (𝑖 where 𝑖 ∈ {𝑢, 𝑣, 𝑟}), resulting
in a focused representation that captures the impact of actuator faults on the observable
system dynamics. The matrix is shown in Table 4.1.

From Table 4.1, we can deduce that due to the geometrical symmetry of the actuators,
they affect the dynamics in the same way. Geometrical symmetry in this context refers to
the similar spatial arrangement or characteristics of the actuators. Specifically, the actuator
faults 𝜂𝑙 and 𝜂𝑟 exhibit identical impacts on the ARRs of the system and thus, distinguishing
between these faults becomes challenging. By utilizing overactuation, the key idea in this
work is to actively change the input vector 𝒖 so that the effect of some actuators is nullified
in specific ARRs and thus, the faults can be isolable. Furthermore, this needs to be realized
while keeping the ASV controllable and able to perform the collision avoidance maneuver
needed. Indeed, if we examine matrix 𝑭 in Table 4.1 we see that the two columns that
correspond to faults 𝜂𝑙 and 𝜂𝑟 are identical. However, by placing a zero in either column at
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the row that corresponds to ARR, 𝑣 , all three columns become linearly independent, as
shown in Table 4.2. This can be realized by setting the corresponding term of (4.20) to zero,
meaning that we want to make that component invariant of the corresponding control
action. Solving either 𝒈̃𝒗𝒍(𝜏𝑙 ,𝛼𝑙) = 0 for 𝛼𝑙 or 𝒈̃𝒗𝒓(𝜏𝑟 ,𝛼𝑟 ) = 0 for 𝛼𝑟 , we get expressions for
the azimuths of the form:

𝛼𝑙 = 𝛼0𝑙 (𝑴̃, 𝑙𝑙𝑟 ,𝑤𝑙𝑟 ), 𝛼𝑟 = 𝛼0𝑟 (𝑴̃, 𝑙𝑙𝑟 ,𝑤𝑙𝑟 ), (4.21)

and since these parameters are constant, 𝛼𝑙 and 𝛼𝑟 can be set to the constant values 𝛼0𝑙 and
𝛼0𝑟 respectively so that they do not affect the sway dynamics and the corresponding ARR,
that is, either 𝒈̃𝒗𝒍(𝜏𝑙 ,𝛼0𝑙 ) = 0 or 𝒈̃𝒗𝒓(𝜏𝑟 ,𝛼0𝑟 ) = 0. Choosing for example to nullify the effect of
the right azimuth thruster will result in a different FSMX matrix denoted as 𝑭𝑹

𝒓 and shown
in Table 4.2b. Note that fulfillment of either equation in (4.21) does not nullify the rest of
the terms in (4.20). To reconfigure the actuators for isolation purposes, we leverage the
MPC controller in [166] (see Fig. 3.1). The MPC recursively optimizes a multi-objective
cost that includes a penalty on the control inputs accounting at the same time for collision
avoidance and system constraints. The part of the cost function of our MPC controller
(relevant for the reconfiguration here) regarding the right azimuth input takes the form:

𝐽𝛼𝑟 (𝒖𝑘) = 𝑞𝛼𝑟𝛼
2
𝑟 +𝑞𝛼0𝑟 (𝛼𝑟 −𝛼

0
𝑟 )

2 (4.22)

where 𝑞𝛼𝑟 and 𝑞𝛼0𝑟 are tuning penalty weights and their value depends on whether we are
in normal conditions or the reconfiguration mode is activated. More specifically, a higher
value of 𝑞𝛼0𝑟 forces the optimizer to stir 𝛼𝑟 → 𝛼0𝑟 . If the actuator is faulty, then, the real
system will not be able to follow the commanded action. If it is healthy, we are able to
isolate the fault on the other actuator. To complete the isolation, we need to derive the
binary decision vector to be compared with the updated FSMX 𝑭 𝒓 . The binary decision
vector is obtained as:

𝑫 = (𝐷𝑢,𝐷𝑣 ,𝐷𝑟 )⊤ (4.23)

with:

𝐷𝑖(𝑡) =

{
0, 𝑡 < 𝑡𝐷𝑖
1, 𝑡 ≥ 𝑡𝐷𝑖

(4.24)

with 𝑡𝐷𝑖 ∶ 𝑖 ∈ {𝑢, 𝑣, 𝑟} the time that the 𝑖𝑡ℎ ARR is violated for the first time. The active FDI
logic is summarized in Algorithm 2.
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Algorithm 2 Proposed Fault Diagnosis Logic
Input: 𝒚(𝑡), 𝒖(𝑡)
Output: Fault ID: {𝑟, 𝑙,𝑏}
1: for 𝑡 = 1,2,… do
2: Compute |𝝐(𝒚(𝑡), 𝒚̂(𝑡))|
3: Compute 𝝐̄(𝒚, 𝒚̂, 𝒏̄, 𝒅̄)
4: Compute 𝐷(𝑡)
5: if 𝐷(𝑡) = 1 then
6: Compute 𝑫(𝑡)
7: if 𝑫(𝑡) = 𝑭(∶ ,3) then
8: Fault ID: 𝑏 (𝜂𝑏 ≠ 1)
9: else
10: 𝑞𝛼𝑟 ← 0
11: 𝑞𝛼0

𝑟
← 106

12: Compute 𝑫(𝑡) from Eq. (4.23)
13: if 𝑫(𝑡) = 𝑭(∶ ,2) then
14: Fault ID: 𝑟 (𝜂𝑟 ≠ 1)
15: else𝑫(𝑡) = 𝑭(∶ ,1)
16: Fault ID: 𝑙 (𝜂𝑙 ≠ 1)
17: end if
18: end if
19: end if
20: end for

4.4 Results
This section presents simulation results to validate the efficacy of our algorithm in a simple
traffic scenario. Our framework is implemented in ROS: the controller and FDI module in
C++ and the simulator of the ASV and OV in Python. The algorithm runs in an Ubuntu
machine with an Intel i7 CPU@1.8GHz and 16GB of RAM.

In this simple traffic scenario, the ASV is obliged by the traffic rules to avoid collision by
turning to its starboard (right side) and passing behind the OV.While the ASV is performing
the collision avoidance maneuver, at time 𝑡𝐹 = 7𝑠 we inject a permanent fault to the right
thruster, 𝜂𝑟 = 0.2. In Figure 4.3 we can see the instances of the ASV at the time the fault
occurs 𝑡𝐹 = 7 sec, the fault is detected 𝑡𝐷 = 7.86𝑠, and lastly the fault is isolated 𝑡𝐼 = 14.15𝑠.
Notice that the time between fault occurrence 𝑡𝐹 and isolation 𝑡𝐼 is relatively small, i.e., the
ASV has not traversed a large distance, highlighting the aptness of the diagnosis procedure.
Figures 4.4, 4.5, and 4.6 show the norm of the residual coupled with its adaptive threshold
and the violation decision for each one of the three ARRs related to the velocity states
that contribute to the diagnosis procedure. The first violation is noticed in Figure 4.4 at
𝑡𝐷 = 7.86𝑠. Reconfiguration starts subsequently to nullify the effect of the faulty thruster on
𝑣 as seen in Figure 4.5. After a few seconds, at time 𝑡𝐼 = 14.15𝑠 seconds, a violation of 𝑟
indicates that the fault has occurred in the right thruster, and thus, isolation is completed.
Lastly, Figure 4.7 shows the control input in blue solid lines along with the faulty input
signal 𝜏𝐹𝑟 = 𝜂𝑟𝜏𝑟 that is applied on the ASV plotted in a light blue dashed line right after
the fault has occurred. In the same figure, the reconfigured control input 𝛼𝑟 is plotted in
red to show the constant value it has been imposed for isolation purposes.
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Figure 4.3: Plotted trajectories with instances of the vessels at a) initial time, b) time of fault occurrence, c) time
of detection, d) time of isolation, and e) final time.

Figure 4.4: The residual norm, threshold, and decision
for the ARR corresponding to the surge velocity state 𝑢.

Figure 4.5: The residual norm, threshold, and decision
for the ARR corresponding to the sway velocity state 𝑣.

Figure 4.6: The residual norm, threshold, and decision
for the ARR corresponding to the yaw velocity state 𝑟 .

Figure 4.7: Input signals with the actual input signal 𝜏𝑟
(light blue dashed line) after the fault has occurred and
the input signal 𝛼𝑟 (red line) after reconfiguration.
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4.5 Conclusions
This chapter proposed a thruster fault diagnosis algorithm for an ASV, comprised of a
cascaded interconnection of a detection and an isolation module as a response to Research
Question Q2: "How to detect and isolate actuator faults in ASVs to enhance overall opera-
tional safety and reliability?". For detection, residuals generated by nonlinear observers
are coupled with adaptive thresholds that accommodate noise and disturbance bounds to
enhance robustness against false alarms. For isolation, we rely on the system’s redundancy
in actuation and the capability to set actuation constraints in our MPC controller so that
we can isolate thruster faults that otherwise would be indistinctive due to the system’s
symmetry. Simulation results demonstrate the effectiveness of this methodology. In the
following chapter, we explore a method to estimate the fault parameters along with a
feasible parameter set in order to get a robust estimation. This will be the cornerstone to
extend our method with reconfiguration and influence the planning process, contributing
to safer and more adaptive collision avoidance maneuvers.
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5
Set-Membership Estimation

for Fault Diagnosis

This chapter introduces a Fault Diagnosis (Detection, Isolation, and Estimation) method using
Set-Membership Estimation (SME) designed for a class of nonlinear systems that are linear
to the fault parameters as a response to Research Question Q3: "How can fault parameters
be accurately and robustly estimated under varying operational conditions, including the
presence of disturbances and noise?" Themethodology advances fault diagnosis by continuously
evaluating an estimate of the fault parameter and a feasible parameter set where the true
fault parameter belongs. Unlike previous SME approaches, in this work, we address nonlinear
systems subjected to both input and output uncertainties by utilizing inclusion functions and
interval arithmetic. Additionally, we present an approach to outer-approximate the polytopic
description of the feasible parameter set by effectively balancing approximation accuracy
with computational efficiency resulting in improved fault detectability. Lastly, we introduce
adaptive regularization of the parameter estimates to enhance the estimation process when
the input-output data are sparse or non-informative, enhancing fault identifiability. We
demonstrate the effectiveness of this method in simulations involving an Autonomous Surface
Vehicle in both a path-following and a realistic collision avoidance scenario, underscoring its
potential to enhance safety and reliability in critical applications. This chapter is structured as
follows: Section 5.1 introduces the topic of this chapter. Section 5.2 sets the problem formulation.
Sections 5.4 to 5.7 detail our FD method within the SME framework. Section 5.8 demonstrates
the efficacy of the method through both a simple path-following and a collision avoidance
scenario. We conclude with final remarks in Section 5.9.

This chapter is based on � A. Tsolakis, L. Ferranti, and V. Reppa, "Set-Membership Estimation for Fault Diagnosis
of Nonlinear Systems," submitted to European Control Conference, Oct. 2024, to be presented in June 2025.
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5.1 Introduction
As autonomous systems evolve, they increasingly rely on sophisticated technology and
complex hardware, raising significant challenges in ensuring safe and reliable operation.
Critical components such as sensors, actuators, and computational units present safety
and reliability risks, as faults in these components can lead to potentially catastrophic
failures. To address this, robust mechanisms for detecting andmitigating faults are essential,
particularly those applicable across a range of mobile robotic platforms, including ground,
marine, and aerial systems.

In the previous chapter, we introduced an FDIE method based on residuals coupled with
adaptive thresholds, along with an isolation procedure to detect and localize actuator faults.
While this approach guarantees no false alarms and has proven effective, it operates in the
state space, offering no direct information about the fault parameter’s value. That is, while
we know if something is wrong and where, we lack insight into how much. Fault isolation
in this work, however, required system redundancy to distinguish between different faults
to ensure that the diagnosis process remains accurate despite uncertainties.

An alternative approach that addresses these limitations and operates directly in the
parameter space is SME. SME is widely used in (FDIE), providing a direct method by
employing inverse tests to detect faults while estimating the set of feasible fault parameters
based on past input-output data. The process begins by computing the Unfalsified Parameter
Set (UPS), which represents the set of fault parameter values consistent with the system’s
evolution given the bounded uncertainties. Over time, the intersection of successive
UPS results in the Feasible Parameter Set (FPS), which contains fault parameters still
consistent with past measurements of the system’s evolution. Fault detection occurs when
the FPS becomes empty, indicating that no parameter values remain consistent with the
system’s measurements. Fault isolation is realized similarly, after properly projecting the
FPS in the different directions in the parameter space but without the need for system
redundancy. Concurrently, a nominal parameter estimate is computed online, offering a
direct quantification of the fault parameter.

Recent work has renewed interest in SME, particularly in adaptive control. Contribu-
tions such as [171] have combined SME with Model Predictive Control (MPC) in a Robust
Adaptive MPC (RAMPC) framework, enabling planning based on nominal parameters
while maintaining robustness against all feasible parameter realizations. Extensions of
SME in RAMPC frameworks for linear systems have been explored in [172, 173, 174], and
for nonlinear systems in [175], though the challenge of handling both state and output
uncertainties simultaneously remains largely unaddressed.

Inspired by SME’s suitability for FD and its compatibility with MPC in a RAMPC
framework, this work proposes an FD method based on SME, aimed at enhancing the
trajectory optimization method introduced in [166] to improve safety in environments
shared with human-operated vehicles. Specifically, this work extends SME to nonlinear
systems affected by both state disturbances and measurement noise—a gap in the current
state of the art. The method employs an inverse test for fault detection and isolation, with
fault estimation achieved through continuous updates to the feasible parameter set and a
fault parameter estimate. The key contributions of this work are:

• Set-membership estimation to nonlinear systems, accounting for both disturbances
and measurement noise. This capability ensures false alarm immunity by design,
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thereby increasing the robustness of the fault detection process.

• A tighter outer approximation of the feasible parameter set that balances accuracy and
computational efficiency, based on user-defined preferences. This leads to improved
fault detectability, reducing the risk of missed detections and enhancing the system’s
responsiveness to faults.

• Adaptive regularization in fault parameter estimation to handle cases of sparse,
non-informative measurement data, resulting in improved fault identifiability.

5.2 Problem Formulation
Consider the following discrete, nonlinear system, which is linear in the vector of fault
parameters denoted as 𝜽 ∈ ℝ𝑝:

𝒙𝑡+1 = 𝒇(𝒙𝑡)+𝑮(𝒖𝑡)𝜽+𝒅𝑡 (5.1)

where 𝒙𝑡 ∈ ℝ𝑛 is the state, 𝒖𝑡 ∈ ℝ𝑚 is the input, and 𝒅𝑡 ∈ ℝ𝑛 is the unknown disturbance
acting on the system. We assume that the autonomous map 𝒇(⋅) ∈ ℝ𝑛 and the input map
𝑮(⋅) ∈ ℝ𝑛×𝑝 are both known. Additionally, we assume that the full state of the system can
be measured, albeit corrupted by measurement noise, as:

𝒚𝑡 = 𝒙𝑡 +𝒏𝑡 (5.2)

where 𝒚𝑡 ∈ ℝ𝑛 is the state measurement, and 𝒏𝑡 ∈ ℝ𝑛 is the unknown additive measurement
noise.
Assumption 1 The disturbance 𝒅𝑡 and noise 𝒏𝑡 are unknown but bounded signals with
known bounds denoted as 𝒅̄ and 𝒏̄, respectively:

|𝒅𝑡 | ≤ 𝒅̄, ∀𝑡 = 1,2,… (5.3)

|𝒏𝑡 | ≤ 𝒏̄, ∀𝑡 = 1,2,… (5.4)

The inequalities between vectors are to be interpreted element-wise, where | ⋅ | denotes the
matrix modulus function, i.e., the element-wise absolute value.
Assumption 2 The fault parameter vector 𝜽 ∈ ℝ𝑝 is time-invariant, with elements 𝜃𝑖 ∈ [0,1],
𝑖 = 1,2,…,𝑝, describing the health of the system. The values of 𝜃𝑖 represent the following
conditions:

𝜃𝑖 =

{
𝜃𝑖 = 1, ∀𝑖 ∈ {1,2,…,𝑝}, healthy system
𝜃𝑖 < 1, ∃𝑖 ∈ {1,2,…,𝑝}, faulty system

(5.5)

The objective of this work is to detect, isolate, and estimate faults with guarantees,
using SME to compute an outer approximation of the feasible parameter set and an estimate
of the fault parameter. Inverse tests are then applied to detect faults, isolate them, and
refine fault parameter estimates upon detection.
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5.3 Method Overview
The steps involved in SME are illustrated in Figure 5.1. First, Section 5.4 describes the
computation of the Unfalsified Parameter Set (UPS), denoted as 𝚫𝑡 ⊆ ℝ𝑝 , at each time step
𝑡, based on the latest input-output measurements (top-left). Subsequently, in Section 5.5,
the Feasible Parameter Set (FPS), denoted as 𝚯𝑡 ⊆ ℝ𝑝 , is recursively computed based on
the intersection of the previous FPS, 𝚯𝑡−1, and the current update from 𝚫𝑡 (top-right).
The FPS is then outer-approximated by a simpler polytope, denoted as 𝚯𝑡 ⊆ ℝ𝑝 , which is
described by a predefined number of maximum directions computed offline according to
the required trade-off between accuracy and efficiency (bottom-right). In Section 5.6, an
estimate 𝜽̂𝑡 ∈ 𝚯𝑡 is derived, accounting for the quality of the available measurements by
incorporating adaptive regularization (bottom-left). Finally, Section 5.7 describes the FDE
method, which relies on the components computed in the preceding sections.

Figure 5.1: Overview of the different steps in SME in a 2-D example: First, the UPS, 𝚫𝑡 , is computed at each time
step 𝑡, based on the latest input-output measurements. The FPS, denoted as 𝚯𝑡 , is recursively computed based on
the intersection of the existing FPS, 𝚯𝑡−1, and the current update from 𝚫𝑡 . The FPS is then outer-approximated
by a simpler polytope, denoted as 𝚯𝑡 . Lastly, an estimate, denoted as 𝜽̂𝑡 ∈ 𝚯𝑡 , is computed.

5.4 Unfalsified Parameter Set
In this section, we introduce a method to compute the Unfalsified Parameter Set (UPS)
based on input-output measurements. First, we express the disturbance and noise bounds
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in polytopic form:
|𝒅𝑡 | ≤ 𝒅̄ ⇔ 𝒅𝑡 ∈ = {𝒅𝑡 ∈ ℝ𝑛|𝑯𝒅𝑡 ≤ 𝒉𝒅} (5.6)

|𝒏𝑡 | ≤ 𝒏̄ ⇔ 𝒏𝑡 ∈ = {𝒏𝑡 ∈ ℝ𝑛|𝑯𝒏𝑡 ≤ 𝒉𝒏} (5.7)

where 𝑯 = [𝑰𝑛 −𝑰𝑛]
⊤ ∈ ℝ2𝑛×𝑛 with 𝑰𝑛 ∈ ℝ𝑛×𝑛 the identity matrix of dimension 𝑛, 𝒉𝒅 =

[𝒅̄ 𝒅̄]
⊤ ∈ ℝ2𝑛 and 𝒉𝒏 = [𝒏̄ 𝒏̄]

⊤ ∈ ℝ2𝑛. Combining equations (5.1) and (5.2) yields:

𝒚𝑡+1−𝑮(𝒖𝑡)𝜽 = 𝒅𝑡 +𝒏𝑡+1+𝒇(𝒙𝑡) (5.8)

where 𝒖𝑡 and 𝒚𝑡 are known signals (kept on the left-hand side) while 𝒅𝑡 and𝒏𝑡 are unknown
but bounded based on Assumption 1. The complication arises with the remaining term
𝒇(𝒙𝑡) which depends on both the known state measurement 𝒚𝑡 and the unknown noise
signal 𝒏𝑡 since 𝒙𝑡 = 𝒚𝑡 −𝒏𝑡 . To handle this term, we will rely on interval analysis [176] to
compute lower and upper bounds for 𝒇 (⋅). To do this, we first need to find an interval for
the state 𝒙𝑡 from (5.2) and (5.4) as follows:

𝒙𝑡 = 𝒚𝑡 −𝒏̄ ≤ 𝒙𝑡 ≤ 𝒚𝑡 +𝒏̄ = 𝒙𝑡 ⇔ 𝒙𝑡 ∈ [𝒙𝑡 ,𝒙𝑡] = [𝒙𝑡] (5.9)

which is time-varying and can be updated online with each new state measurement 𝒚𝑡 .
Usually, an inclusion function 𝕗(⋅) is found for 𝒇 (⋅) based on the state interval (5.9) satisfy-
ing:

𝒇 ([𝒙]) ⊂ 𝕗(⋅) (5.10)

where 𝒇 ([𝒙]) denotes the minimal inclusion function. Computing 𝒇 ([𝒙]) would give the
tightest possible bounds, but this requires solving two global, non-convex optimization
problems which are prohibitive to solve online. A schematic example of an inclusion
function and the minimal inclusion function is illustrated in Figure 5.2. Instead, we can use

Figure 5.2: Schematic representation of an inclusion function and the minimal inclusion function that tightly
bounds the function for a given state interval.

interval arithmetic which extends math operations and elementary functions to intervals
and is much more computationally efficient. Since the expression of 𝒇 (⋅) is known, we can
compute an interval for the term as:

[𝒇
𝑡
,𝒇 𝑡] = 𝑰([𝒙𝑡 ,𝒙𝑡]) ⊇ 𝒇 ([𝒙𝒕]) (5.11)
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where 𝑰 (⋅) denotes an appropriate function to compute intervals via interval arithmetic.
In practice, we use C++ BOOST Interval Arithmetic library [177] which can efficiently
compute such intervals online. Note that the interval [𝒇

𝑡
,𝒇 𝑡] is also time-varying as it

implicitly depends on the state measurement 𝒚𝑡 . With these known bounds for the system
dynamics 𝒇 (⋅) we can formulate similar polytopic bounds for the autonomous term in (5.8)
similar to those derived before:

𝒇
𝑡
≤ 𝒇(𝒙𝑡) ≤ 𝒇 𝑡 ⇔

𝒇(𝒙𝑡) ∈ 𝑡 = {𝒇(𝒙𝑡) ∈ ℝ𝑛 |𝑯𝒇(𝒙𝑡) ≤ 𝒉𝒇 (𝒚𝑡)} (5.12)

with 𝒉𝒇 (𝒚𝑡) = [𝒇 𝑡 −𝒇
𝑡]
⊤
∈ ℝ2𝑛. The key observation is that the polytopic inequalities in

(5.6), (5.7) and (5.12) are constructed such that all the unknown signals are multiplied from
the left with the same matrix 𝑯 . Additionally, from (5.4) we know that |𝒏𝑡 | ≤ 𝒏̄, ∀𝑡 and
thus from (5.7) we can also deduce that 𝑯𝒏𝑡+1 ≤ 𝒉𝒏. We can then sum these inequalities
and factor out 𝑯 to get:

𝑯(𝒅𝑡 +𝒏𝑡+1+𝒇(𝒙𝑡)) ≤ 𝒉𝒅 +𝒉𝒏+𝒉𝒇 (𝒚𝑡) (5.13)

Notice that the right-hand side term in (5.8) appears in the left-hand side of (5.13). After
substituting (5.8) to (5.13) and rearranging the terms we get:

−𝑯𝑮(𝒖𝑡)𝜽 ≤ 𝒉𝒅 +𝒉𝒏+𝒉𝒇 (𝒚𝑡)−𝑯𝒚𝑡+1 (5.14)

If we now shift the timestep one step backward, we can derive the UPS as:

𝚫𝑡 = {𝜽 ∈ ℝ𝑝 ∣ −𝑯𝑮(𝒖𝑡−1)𝜽 ≤ 𝒉𝒅 +𝒉𝒏+𝒉𝒇 (𝒚𝑡−1)−𝑯𝒚𝑡} (5.15)

which can be computed at each time step 𝑡 based on the input-output measurement set
{𝒖𝑡−1,𝒚𝑡−1,𝒚𝑡}. Notice that (5.15) is a similar expression to the ones found in [173] and
[174] with the difference that here we have additional bounding terms on the right-hand
side of the inequality in (5.15) to account for measurement noise: Term 𝒉𝒏(𝒏̄) directly
sums the measurement bounds while 𝒉𝒇 (𝒚𝑡−1, 𝒏̄) is a time-varying term that sums the
noise bounds implicitly after they are mapped through the nonlinear autonomous term
𝒇(𝒙𝑡) = 𝒇(𝒚𝑡 ,𝒏𝑡) via interval arithmetic. This is illustrated schematically in Figure 5.3 in
comparison with not accounting for the measurement noise. The UPS is therefore dilated
due to the measurement noise as in [174] but its dilation is generalized here to nonlinear
systems that are linear to the parameters by employing interval analysis. Notice that in
this formulation, even if the system is nonlinear, the assumption that the system is linear
to the parameters maintains the same polytopic description for the UPS as a 𝑝-dimensional
slab in the parameter space which is advantageous for the computation of the FPS, 𝚯𝑡 , as
explained in the next section.
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Parameter realizations 
outside of the UPS due 
to measurement noise 

Figure 5.3: On the right is our formulation of the UPS that additionally accounts for measurement noise and thus
all possible parameter realizations are guaranteed to lie inside the UPS. In contrast, if the noise is not accounted
for, several realizations will be outside the UPS.

5.5 Feasible Parameter Set
In order to compute the Feasible Parameter Set (FPS), 𝚯𝑡 , we begin with expressing some
initial parameter bounds in polytopic form:

𝜽 ∈ 𝚯0 = {𝜽 ∈ ℝ𝑝 |𝑯𝜽0𝜽 ≤ 𝒉𝜽0 } (5.16)

where 𝑯𝜽0 = [𝑰𝑝 −𝑰𝑝]
⊤ ∈ ℝ2𝑝×𝑝 with 𝑰𝑝 ∈ ℝ𝑝×𝑝 the identity matrix of dimension 𝑝, and

𝒉𝜽𝟎 = [𝜽 𝜽]
⊤ has known, lower and upper parameter bounds. The parameter set 𝚯0 is

defined as the initial 𝑝-dimensional hypercube which describes the range of values of the
parameters of interest. The FPS is recursively updated using the UPS, 𝚫𝑡 , from (5.15) at
each time step starting from the initial FPS, 𝚯0, as:

𝚯𝑡 = 𝚯𝑡−1 ∩𝚫𝑡 , ∀𝑡 = 1,2, ...,𝑁 (5.17)

If we describe the FPS in polytopic form:

𝚯𝑡 = {𝜽 ∈ ℝ𝑝 |𝑯𝜽𝑡𝜽 ≤ 𝒉𝜽𝑡 } (5.18)

and rewrite (5.15) with a simplified notation as:

𝚫𝑡 = {𝜽 ∈ ℝ𝑝 ∣ 𝑯𝚫𝑡𝜽 ≤ 𝒉𝚫𝑡 } (5.19)

with 𝑯𝚫𝑡 = −𝑯𝑮(𝒖𝑡−1) and 𝒉𝚫𝑡 = 𝒉𝒅 +𝒉𝒏+𝒉𝒇 (𝒚𝑡−1)−𝑯𝒚𝑡 then the intersection of sets
described in (5.17) is the concatenation of the inequalities that characterize the FPS in (5.18)
and the UPS in (5.19):

𝑯𝜽𝑡 = [
𝑯𝜽𝑡−1
𝑯𝚫𝑡 ]

, 𝒉𝜽𝑡 = [
𝒉𝜽𝑡−1
𝒉𝚫𝑡 ]

(5.20)

This process works on the condition that the latest set of measurements is informative
enough to ensure that the newly introduced inequalities are not redundant. However, con-
tinuously concatenating the inequalities, expressed as𝑯𝜽𝑡 = [𝑯𝜽𝑡−𝑁 ... 𝑯𝜽𝑡−1 𝑯𝜽𝑡 ]

⊤ ∈
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ℝ2𝑁𝑝×𝑝 and 𝒉𝜽𝑡 = [𝒉𝜽𝑡−𝑁 ... 𝒉𝜽𝑡−1 𝒉𝜽𝑡 ]
⊤ ∈ ℝ2𝑁𝑝 quickly becomes impractical since

the size of 𝑯𝜽𝑡 and 𝒉𝜽𝑡 grows unbounded as 𝑁 → ∞. In [173] this is handled by outer-
approximating the FPS with hypercubes encompassing the derived polytope at each
timestep 𝑡. In [172] this is generalized by using predefined normal directions of the facets
of a polytope that bounds the estimated parameter set and then solving an optimization
problem to “tighten" the polytope around the FPS. We propose a method that can efficiently
provide an outer bound of the FPS with the accuracy of the bound adjustable depending
on the balance between required precision and available computational resources. The
computation of the FPS is illustrated in Figure 5.4 and consists of the following steps:

1. Recursively compute a set of predefined, normalized directions,  = {𝒆1, 𝒆2, ...}, nor-
mal to the faces of the outer-approximating polytope. These directions are based on
the number of parameters 𝑝 and a user-defined accuracy iterator 𝜙 from Algorithm
3. This is computed offline.

2. Compute the new FPS 𝚯𝑡 = 𝚯𝑡−1 ∩ 𝚫𝑡 based on the outer-approximation of the
previous time step and the new UPS computed at time 𝑡 starting with 𝚯0 = 𝚯0.

3. Compute the set of vertices 𝑡 = {𝒗1𝑡 , 𝒗2𝑡 , ...} of the convex polytope 𝚯𝑡 .

4. Compute the outer approximation 𝚯𝑡 of the convex polytope 𝚯𝑡 based on the set of
vertices 𝑡 and the set of predefined directions  from Algorithm 4.

5. Go back to Step 2.

Step 1 Step 2 Step 3 Step 4

O
ffl

in
e

O
nl
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e

Figure 5.4: The steps to compute the FPS. This starts with computing the predefined directions offline (Step 1).
Then the process continues with computing the new FPS from the current UPS (Step 2), computing the vertices of
the new FPS (Step 3), and lastly outer-approximating the new FPS based on the predefined directions (Step 4).
The process starts again from Step 2, starting from the new outer approximation. Different choices of predefined
directions will result in a different outer approximation of the FPS (top and bottom rows).

We propose an algorithm that systematically generates predefined directions for the faces of
the approximation polytope offline, with arbitrarily high complexity, and for any number of
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parameters 𝑝. The generation of predefined directions  beginswith a simple 𝑝-dimensional
hypercube. The key idea is to “bisect" each edge formed by the intersection of adjacent
faces and create a new face with a normal vector that points symmetrically between the
normal directions of the intersecting faces. This process can be repeated recursively with a
user-defined number of recursions, 𝜙 ∈ ℕ. As 𝜙 → ∞, the predefined normal directions
begin to approximate a 𝑝-dimensional sphere, allowing the polytope to closely approximate
any convex shape, at the expense of increased computational complexity. The algorithm
for generating these predefined directions is outlined in Algorithm 3 and is intended to run
offline. Figure 5.5 illustrates how the number of parameters 𝑝 and the recursion depth 𝜙
influence the generation of predefined directions. As both 𝑝 and 𝜙 increase, the density of
generated directions grows, leading to a more precise approximation of the desired convex
shape.

Figure 5.5: Schematic representation of the generated predefined directions  depending on the parameter space
dimension 𝑝 (problem-specific) and the user-defined iteration for accuracy in representation 𝜙.

The set of vertices𝑡 of the convex polytope𝚯𝑡 is computed by first removing redundant
inequalities with a set of Linear Programs (LPs) solved with [178] and then by computing
the solution of all possible combinations of the linear algebraic equations that describe the
non-redundant inequalities. The solutions that also satisfy the inequalities are stored as the
vertices of the convex polytope. Having the set predefined directions  from Algorithm 3
and the set of vertices 𝑡 of the convex polytope 𝚯𝑡 , we need to outer-approximate the
FPS given in (5.17) at each timestep 𝑡 such that 𝚯𝑡 ⊆ 𝚯𝑡 . In contrast to [172] where an
optimization problem is solved, we use linear algebra to compute the extremum vertices of
the polytopic set 𝚯𝑡 along the directions  . This process is described in Algorithm 4.

Having the set predefined directions  from Algorithm 3 and the set of vertices  of
the convex polytope 𝚯𝑡 , we need to outer-approximate the FPS given in (5.17) at each
timestep 𝑡 with an outer approximation such that 𝚯𝑡 ⊆ 𝚯𝑡 . In contrast to [172] where
an optimization problem is solved, we use simple linear algebra calculations to find the
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Algorithm 3 Generate Predefined Directions (Offline)
Input: 𝑝 , 𝜙
Output: 
1:  ← {±𝒆𝑖 ∶ 𝑖 = 1,…,𝑝}
2: for 𝑖 ← 1 to 𝜙 do
3: new ←∅
4: for 𝑗 ← 1 to 𝑝 do
5: for each combination of 𝑗 elements in  do
6: 𝒆new ← sum of the combination
7: if ‖𝒆new‖ ≠ 0 then
8: 𝒆new ← 𝒆new

‖𝒆new‖
9: new ← new ∪ {𝒆new}
10: end if
11: end for
12: end for
13:  ← new

14: end for

extremum vertices of the polytopic set 𝚯𝑡 along the directions  . This process is described
in Algorithm 4.

Algorithm 4 Outer-approximate Convex Polytope
Input:  , 
Output: 𝚯𝑡 as the pair ⟨𝑯𝜽𝑡 ,𝒉𝜽𝑡 ⟩
1: for 𝒆𝑖 ∈  do
2: Π← −∞
3: for 𝒗𝑗 ∈  do
4: if 𝒆⊤𝑖 𝒗𝑗 > Π then
5: Π← 𝒆⊤𝑖 𝒗𝑗
6: 𝒗𝑖 ← 𝒗𝑗
7: end if
8: end for
9: 𝑯𝜽𝑡 (𝑖,∶) ← 𝒗⊤𝑖
10: 𝒉𝜽𝑡 (𝑖) ← 𝒆⊤𝑖 𝒗𝑖
11: end for
12: ⟨𝑯𝜽𝑡 ,𝒉𝜽𝑡 ⟩ ← remove_redundant_constraints(𝑯𝜽𝑡 ,𝒉𝜽𝑡 )

5.6 Parameter Estimate
The final step is to derive an estimate 𝜽̂𝑡 for the unknown parameter 𝜽𝑡 that belongs to the
derived parameter set 𝚯𝑡 . We can exploit again here the fact that the system is linear to
the parameters of interest and use the following equation:

𝑮(𝒖𝑡−1)𝜽 = 𝒚𝑡 −𝒇(𝒚𝑡−1) (5.21)
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which is a linear algebraic equation to the unknown parameter 𝜽𝑡 andwhere the disturbance
and the noise are included in the measurement. If we concatenate (5.21) for the last 𝑁
measurements, to leverage more data, we can get a regression equation:

⎡
⎢
⎢
⎣

𝑮(𝒖𝑡−1−𝑁 )
...

𝑮(𝒖𝑡−1)

⎤
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝚽

𝜽 =
⎡
⎢
⎢
⎣

𝒚𝑡−𝑁 −𝒇(𝒚𝑡−1−𝑁 )
...

𝒚𝑡 −𝒇(𝒚𝑡−1)

⎤
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝝃

(5.22)

where 𝜽 here is the regressand, 𝚽 is the regressor and 𝝃 the observation. The solution to
the unconstrained classical Least Squares Problem (LSP) has a well-known form using the
expression of the Moore-Penrose pseudo-inverse. However, here we want 𝜽̂𝑡 ∈ 𝚯𝑡 so a
closed-form solution cannot be used and instead a Quadratic Program (QP) needs to be
solved online considering the linear inequality constraints introduced from 𝚯𝑡 . Further-
more, the rank of the regressor matrix 𝚽—which depends on input measurements—directly
impacts the solvability and quality of the solution to the parameter estimation problem
as the regressor is not always guaranteed to be full rank. A rank-deficient matrix implies
that not all parameters in 𝜽 are independently estimable from the given inputs, leading to
either non-unique solutions or inaccurate estimates. To address these issues, we formulate
the following QP with generalized Tikhonov regularization:

min
𝜽

𝜽⊤𝑷𝜽+𝒒⊤𝜽

s.t.: 𝑯𝜽𝑡𝜽 ≤ 𝒉𝜽𝑡 ,

𝜽0 = 𝜽𝑐𝑡 .

(5.23)

with 𝑷 = 𝚽⊤𝚽+𝚲, 𝒒 = −2(𝝃⊤𝚽+𝜽̃⊤𝚲), 𝚲 the regularization matrix, 𝜽̃ the regularization
value of 𝜽, 𝜽𝑐𝑡 the vertex centroid of polytope𝚯𝑡 , given as 1

𝑁𝑣 ∑
𝑁𝑣
𝑖=1 𝒗𝑖, and 𝜽0 the initial guess

for the solution of the QP problem. Since the regressor matrix 𝚽 depends on a window of
input measurements and has a time-varying rank condition, regularization should only be
significant when the matrix approaches rank deficiency and should be negligible otherwise.
Therefore, we introduce an adaptive regularization parameter 𝚲 as an exponential decay
function of the rank condition of the regressor matrix:

𝚲 = 𝚲̄𝑒−𝛼𝚺𝑝 (5.24)

where 𝚲̄ is the maximum value of the regularization parameter matrix, 𝛼 is a parameter to
tune the decay rate of the function, and 𝚺𝑝 is the diagonal singular value matrix that results
from the compact Singular Value Decomposition (SVD) of 𝚽. Because of the efficiency of
QP solvers along with the limited problem dimension, (bounded dimensions of𝑯𝜽𝑡𝜽 ≤ 𝒉𝜽𝑡
and fixed size of parameter vector 𝑝) the QP (5.23) can be solved swiftly online with [179].

5.7 Fault Decision Logic
The different components of SME outlined in previous sections are utilized to perform
FD, as summarized in Algorithm 5. As new input-output measurements are obtained, the
UPS and FPS are updated, alongside the outer approximation of the FPS and the parameter
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estimate. If the input is bound exploring, we can obtain minimal uncertainty. Thus, under
healthy conditions, the FPS typically converges to a “healthy set" of fault parameter values
around the nominal value of a healthy parameter while taking into account the disturbance
and noise bounds described in Assumption 1. If, at any timestep 𝑡𝐹 , a fault occurs, the
newly computed UPS will likely no longer intersect with the current FPS, depending on
the fault’s severity (see Figure 5.6). This implies that the most recent data provides a set of
parameters that do not belong to the “healthy FPS", leading to the conclusion that a fault
has been detected.

Fault Detection Logic: If 𝚯𝑡−1 ∩𝚫𝑡 = ∅, then a fault is guaranteed to be detected.
A fault is detected at the first timestep 𝑡𝐷 when the following condition occurs:

𝑡𝐷 = min{𝑡 ∣ 𝚯𝑡−1 ∩𝚫𝑡 = ∅, 𝑡 > 𝑡𝐹 } (5.25)

where 𝑡𝐹 indicates that timestep a fault has occurred. To isolate the fault, we follow a
similar approach as for the detection, but now we need to check the projection of the FPS
on the different principle axes of the parameter space first. The projection of the FPS on
the principle axes of the parameter space is given by:

Proj𝜃𝑖(𝚯𝑡) = [min
𝒗∈

(𝑒⊤𝜃𝑖𝒗),max
𝒗∈

(𝑒⊤𝜃𝑖𝒗)] (5.26)

where 𝑒𝜃𝑖 , 𝑖 = 1,2,…,𝑝 denotes the unit vectors of the orthonormal basis of the parameter
space, and 𝒗 ∈  represents the vertices of the FPS. Since the FPS is a convex set by
construction, this one-dimensional projection results in an interval. We can then compare
these intervals before and after fault detection.

Fault Isolation Logic: If Proj𝜃𝑖(𝚯𝑡)∩Proj𝜃𝑖(𝚯𝑡𝐷−1) = ∅, then 𝜃𝑖 is guaranteed to be faulty.
A fault is isolated at the first timestep 𝑡 𝑖𝐼 , 𝑖 = 1,2,…,𝑝 when the following condition

occurs:
𝑡 𝑖𝐼 = min{𝑡 ∣ Proj𝜃𝑖(𝚯𝑡) ∩Proj𝜃𝑖(𝚯𝑡𝐷−1) = ∅, 𝑡 > 𝑡𝐷} (5.27)

Following fault detection and isolation, the containers are reinitialized, and the parameter
set begins to converge toward a “faulty" FPS, accompanied by a new estimate for the fault
parameters.
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Figure 5.6: Schematic representation of fault detection using the inverse test on the FPS. In this example, the UPS
arises from a measurement corrupted by a fault. In the left figure, the outer approximation of the FPS is more
conservative, preventing fault detection, as 𝚯𝑡−1 ∩𝚫𝑡 ≠ ∅. In the right figure, due to a tighter outer approximation
of the FPS, the same measurement results in 𝚯𝑡−1 ∩𝚫𝑡 = ∅, successfully revealing the fault.

Algorithm 5 SME-based Fault Diagnosis
Input: 𝒅̄, 𝒏̄, 𝚯0, 𝒇(⋅), 𝑮(⋅), 𝜙
Output: 𝚯𝑡 , 𝜽̂𝑡 ∈ 𝚯𝑡
1: Compute predefined directions,  , from Algorithm 3
2: for 𝑡 = 1,2,… do
3: Get input-output data {𝒚𝑡 ,𝒚𝑡−1,𝒖𝑡 }
4: Compute UPS, 𝚫𝑡 , from (5.19)
5: Compute FPS, 𝚯𝑡 , from (5.20)
6: Compute projection of 𝚯𝑡 , from (5.26)
7: Check feasibility of FPS, 𝚯𝑡 , (with LPs)
8: if 𝚯𝑡 = ∅ then
9: Fault detected
10: 𝑡𝐷 = 𝑡
11: for 𝑖 = 1,2,…,𝑝 do
12: if Proj𝜃𝑖 (𝚯𝑡𝐷 ) ∩Proj𝜃𝑖 (𝚯𝑡𝐷−1) = ∅ then
13: Fault isolated at 𝜃𝑖
14: 𝑡 𝑖𝐼 = 𝑡
15: end if
16: end for
17: 𝚯𝑡 = 𝚯0
18: 𝚽 = [], 𝝃 = []
19: end if
20: Compute outer-approximation,𝚯𝑡 , from Algorithm 4
21: Compute vertex centroid as 𝜽𝑐𝑡 = 1

𝑁𝑣 ∑
𝑁𝑣
𝑖=1 𝒗𝑖

22: Compute estimate , 𝜽̂𝑡 ∈ 𝚯𝑡 , from (5.23)
23: end for
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5.8 Results
In this case study we consider the 3-DoF model of an ASV in planar motion, equipped with
sensors, actuators, and the trajectory optimizer from [166] for path-following and collision
avoidance. The ASV dynamics follow the maneuvering model in [159]. Its state includes
position 𝒑 = (𝑥,𝑦)⊤, orientation 𝜓, longitudinal velocity 𝑢, lateral velocity 𝑣, and yaw rate
𝑟 , expressed in the body-fixed frame and denoted as 𝒙 = (𝑥,𝑦,𝜓,𝑢, 𝑣, 𝑟)⊤ ∈ ⊂ ℝ6, while
the control input 𝒖 = (𝜏𝑙 , 𝜏𝑟 , 𝜏𝑏 ,𝛼𝑙 ,𝛼𝑟 )⊤ ∈ ⊂ ℝ5 represents the actions of two azimuth
thrusters and a bow thruster. Specifically, 𝜏𝑙 and 𝜏𝑟 are the thrusts, and 𝛼𝑙 and 𝛼𝑟 are
the azimuth angles of the left and right thrusters, while 𝜏𝑏 represents the thrust of the
bow thruster. Environmental disturbances from wind and waves are denoted as 𝝉𝒅 . The
system’s evolution is governed by the following continuous, nonlinear system:

𝒙̇ = [
𝟎3×3 𝑹(𝒙)
𝟎3×3 −𝑴−1(𝑪(𝒙)+𝑫(𝒙))]𝒙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒇(𝒙)

+[
𝟎3×3
𝑴−1]𝝉(𝒖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒈(𝒖)

+[
𝟎3×3
𝑴−1]𝝉𝒅
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒅

(5.28)

Here, 𝑹(𝒙) is the rotation matrix,𝑴 is the mass matrix, 𝑪(𝒙) is the Coriolis and centripetal
matrix and 𝑫(𝒙) the damping matrix. The generalized force vector acting on the ASV is de-
noted by 𝝉, and 𝑤𝑙𝑟 , 𝑙𝑙𝑟 , and 𝑙𝑏 are length parameters that define the thruster configuration.
The thrust generated by the actuators under healthy conditions is represented by 𝝉(𝒖), and
actuator limitations are also taken into account. For fault modeling, we introduce actuator
faults represented by 𝜽 = (𝜃𝑙 ,𝜃𝑟 ,𝜃𝑏 )⊤, where 𝜃𝑙 , 𝜃𝑟 , and 𝜃𝑏 denote the loss of effectiveness
(LoE) in the left, right, and bow thruster, respectively expressed in polytopic form:

[𝑰𝑝 −𝑰𝑝]𝜽 ≤ [𝟏 𝟎] (5.29)

The input map can be written linearly to the parameters as:

𝒈(𝒖) = [
𝟎3×3
𝑴−1]

⎡
⎢
⎢
⎢
⎢
⎣

𝜏𝑙 cos𝛼𝑙 𝜏𝑟 cos𝛼𝑟 0
𝜏𝑙 sin𝛼𝑙 𝜏𝑟 sin𝛼𝑟 0

−𝑤𝑙𝑟𝜏𝑙 cos𝛼𝑙
−𝑙𝑙𝑟𝜏𝑙 sin𝛼𝑙

𝑤𝑙𝑟𝜏𝑟 cos𝛼𝑟
−𝑙𝑙𝑟𝜏𝑟 sin𝛼𝑟

𝑙𝑏𝜏𝑏

⎤
⎥
⎥
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑮(𝒖)

⎛
⎜
⎜
⎝

𝜃𝑙
𝜃𝑟
𝜃𝑏

⎞
⎟
⎟
⎠⏟⏞⏞⏟⏞⏞⏟

𝜽

(5.30)

We assume full-state measurements with additive measurement noise. The disturbances
and measurement noise follow a uniform distribution with known bounds chosen as
𝒅̄ = (0.02,0.03,0.003,0.02,0.03,0.01)⊤ and 𝒏̄ = (0.01,0.01,0.001,0.007,0.005,0.012)⊤ respec-
tively. The dynamics in (5.28) are discretized using Runge-Kutta for numerical imple-
mentation. Our framework is implemented in ROS: the controller and FD module in C++
and the simulator in Python. The algorithm runs in an Ubuntu machine with an Intel i7
CPU@1.8GHz and 16GB of RAM.

We begin by simulating the ASV following a sinusoidal reference path seen in Figure 5.7
under healthy conditions to compare the formulation developed in this work with existing
approaches that ignore noise bounds, leading to false alarms. Figure 5.8 illustrates the
evolution of two different FPSs at six equidistant time instances. In blue, we represent the
FPS using the proposed UPS formulation introduced here, which accounts for measurement
noise. In orange, we show the FPS from the existing UPS formulation that does not consider
noise. Our formulation ensures the FPS remains feasible in healthy conditions, converging
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towards a "healthy area" around the healthy value 𝜽 = (1 1 1)⊤. In contrast, the previous
formulation leads to several instances where the FPS becomes infeasible, preventing consis-
tent convergence to the "healthy area". This effect is even more pronounced in Figure 5.9,
where the time evolution of each fault parameter 𝜃𝑖 is shown, along with the corresponding
set bounds as shaded areas of the same color. It is clear that the orange FPS in Figure 5.9
becomes infeasible multiple times, triggering false alarms. In contrast, our formulation is
designed to prevent false alarms entirely and the set in blue converges monotonically to
the healthy region. We also simulate a traffic scenario where the ASV needs to follow a

Figure 5.7: The ASV trajectory in healthy conditions while following a sinusoidal path.

straight, horizontal reference path while avoiding collisions with Obstacle Vessels (OVs)
seen in Figure 5.10. The system is subjected to both disturbance and noise and at time
𝑡𝐹 = Δ𝑡 ⋅ 𝑡𝑓 = 20𝑠, a permanent fault 𝜃𝑟 = 0.2 is injected in the right thruster. We compare
different outer approximations of the FPS and evaluate their sensitivity, as well as compare
the regularized parameter estimate proposed here with the conventional one. Both FPSs
are constructed from UPSs that account for measurement noise. Figure 5.11 shows the
evolution of the FPS using two different outer approximations. The cyan line represents a
"tighter" outer approximation from Algorithm 4 with 𝜙 = 1, while the pink line illustrates
a "looser" approximation with 𝜙 = 0 (a simple bounding box). At time 𝑡 = 20.41𝑠, after
the fault occurs, it is evident that the tighter approximation in cyan, being more sensitive,
leads to an infeasible set, indicating a fault as it starts converging towards a "faulty area".
The looser approximation in pink also converges towards the faulty region but with some
delay due to its larger volume. Figure 5.12 shows the parameter estimates for this scenario.
In cyan, the regularized parameter estimate is displayed, while the un-regularized estimate
(𝚲 = 𝟎) is shown in pink. The corresponding FPS bounds are shown in matching colors.
The moment of the fault is marked by a red dashed vertical line. The fault is detected at
𝑡 = 20.56𝑠 using the tighter approximation (blue dashed vertical line) and at 𝑡 = 21𝑠 using
the looser approximation (purple dashed vertical line). The regularized parameter estimate
(cyan continuous line) is generally more stable than the unregularized one (pink continuous
line), making it a more reliable nominal estimate to evaluate the true fault value.
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Figure 5.8: Evolution of the FPS in healthy conditions. In blue, the FPS considers measurement noise, converging
towards the "healthy" region. In contrast, the orange FPS, which neglects noise, becomes infeasible multiple times
and fails to converge uniformly.

The evolution of the FPS along with the ASV trajectories for both simulation experi-
ments can be viewed in animated form in the video available at [180].
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Figure 5.9: Evolution of the parameter estimate along with the corresponding bounds of the FPS projected in
one dimension. The orange set, which does not account for measurement noise, becomes infeasible in several
instances, triggering false alarms.
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Figure 5.10: The ASV trajectory in faulty conditions while following a straight line path and avoiding collisions
with the OVs.
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Figure 5.11: Comparison of the FPS evolution using two different outer approximations. The top-right sub-figure
highlights the moment just after the fault occurs. The tighter outer approximation (cyan) detects the fault faster
and begins to converge toward the faulty region, while the looser approximation (pink) converges more slowly.
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Figure 5.12: Parameter estimate with corresponding bounds (shaded areas). In the second sub-plot for 𝜃𝑟 , the
discontinuity in FPS bounds indicates the fault in the right thruster. The fault occurs at the red dashed vertical
line, with the detection time shown in purple. The regularized estimate (cyan) is more stable and closer to the
true value compared to the unregularized estimate (pink).
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5.9 Conclusions
In this chapter, we introduced a Fault Diagnosis method using Set Membership Estimation
for uncertain nonlinear systems that are linear in the fault parameters and subject to both
state and output uncertainties as a response to Research Question Q3: "How can fault
parameters be accurately and robustly estimated under varying operational conditions,
including the presence of disturbances and noise?" Our approach enhances fault diagnosis
by addressing both uncertainty types, improving robustness and accuracy. It employs
an inverse test for reliable fault detection and isolation, continuously refining a feasible
set for fault parameter estimation. Adaptive regularization in the estimation process
provides greater precision, especially when input-output data are sparse, supporting fault
identifiability. Our method effectively handles both state and output uncertainties, enabling
the natural detection of faults while providing accurate estimates of both a nominal value
and a set of possible fault parameter values. This functionality is critical for the next chapter,
where we will build upon this approach to improve the robustness of our trajectory planner,
discussed in Chapter 3, significantly enhancing the system’s reliability and safety in the
presence of faults.
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6
Fault-Tolerant Trajectory

Optimization & Control

This chapter presents a fault-tolerant trajectory optimization and control framework tailored
for uncertain nonlinear systems that are linear in fault parameters and subjected to additive
state uncertainties as a response to Research QuestionQ4: "How can we jointly guarantee fault-
tolerant and rule-compliant trajectories for ASVs operating in mixed-traffic environments?"
Building on the fault diagnosis methodologies introduced earlier, this framework combines
rule-compliant collision avoidance constraints with a dual-plan strategy comprising a primary
and contingency trajectory. The approach ensures real-time adaptability and safety by solving
both plans simultaneously in a receding horizon manner while sharing the initial input. This
ensures that a fail-safe trajectory is always available in case of fault detection, enabling robust
and rule-compliant navigation even in the presence of faults and uncertainties. The method
leverages incremental stabilizability concepts, precomputed scalar bounds, and adaptive
terminal constraints to achieve computational efficiency without sacrificing robustness. This
chapter is structured as follows: Section 6.1 introduces the topic of this chapter. Section 6.2
defines the problem formulation. Sections 6.3 to 6.8 detail the proposed fault-tolerant trajectory
optimization method. We conclude with final remarks in Section 6.10.

Parts of this chapter are under preparation for a journal manuscript co-authored by A.Tsolakis, D. Benders, J.
Kohler, L. Ferranti, V. Reppa, and R.R. Negenborn
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6.1 Introduction
As autonomous systems become integral to safety-critical applications, ensuring that they
are fault-tolerant is paramount, particularly for systems operating in environments shared
with humans. ASVs are increasingly being deployed for a wide range of complex tasks,
including autonomous transportation, search-and-rescue missions, and environmental
monitoring. The critical nature of these applications places stringent demands on safety
and reliability, as any failure can have severe consequences. Failures in components such as
actuators, sensors, or computational units can undermine operational integrity, potentially
leading to system downtime, mission failure, or catastrophic accidents. Therefore, robust
and fault-tolerant planning frameworks are essential to ensure safe and reliable operation
in such scenarios.

In Chapter 3, we introduced an MPC-based approach to ensure rule-compliant naviga-
tion in maritime environments. The method relied on the paradigm of MPCC for the task
of following a time-invariant reference path while avoiding collision with OVs according
to the maritime traffic rules known as COLREGs. While the method effectively integrates
traffic rules and avoids collisions under nominal conditions with multiple OVs, its ability
to guarantee collision avoidance under the influence of disturbances or faults is limited
and relies only on the inherent robustness of nominal MPC but without any guarantees.
Real-world deployment of such systems demands a framework capable of addressing such
contingencies to ensure uninterrupted and safe operation.

In Chapter 5, we developed an FD method based on SME, enabling accurate detection,
isolation, and quantification of faults. By estimating the feasible parameter set and a
nominal fault parameter in real time, the method provides robust insights into the nature
and extent of faults via a fault decision logic that relies on inverse tests of the feasible
parameter set. While the method proved effective for FD it was limited only to diagnosis
without exploiting these results in an active manner for fault-tolerant control.

The results of Chapters 3 and 5 pave the way for combining fault diagnosis with
trajectory optimization to develop a comprehensive fault-tolerant planning framework.
Fault-tolerant algorithms in robotics aim to integrate fault diagnosis and control seam-
lessly. For our particular problem, RAMPC stands out among these algorithms due to its
unique combination of guarantees: robustness against uncertainties, dynamic feasibility,
and adaptability to faults while maintaining compliance with operational rules. With
RAMPC we can leverage fault information from our FD module to adjust plans dynamically,
offering an efficient, unified framework for robust and adaptive operation, particularly in
environments with stringent safety requirements.

Robust MPC and Robust-Adaptive MPC methods have been widely explored for han-
dling uncertainties in nonlinear systems. However, these approaches often struggle with
computational complexity or conservatism. For instance, frameworks like [181] introduce
additional state and input variables to define ellipsoidal tubes and feedback gains, offering
reduced conservatism but significantly increasing the computational burden, particularly in
high-dimensional systems. Conversely, simpler frameworks, though more computationally
efficient, can be slightly more conservative. Similarly, the Lipschitz-bounded approach
in [182], extended in [183] for state-dependent uncertainties, constructs tubes based on
Lipschitz bounds, but this can lead to excessive conservatism compared to methods uti-
lizing incremental stabilizability bounds, as demonstrated in [184]. Additionally, many
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robust MPC schemes rely on constant bounds for disturbances [185, 186, 187], which
limits their ability to address dynamic uncertainties directly, an area where solutions like
error bounding systems [188] offer partial remedies. Despite these advances, effectively
handling dynamic model mismatches remains an open challenge. In [189, 190, 191], a
simple approach uses scaled geometric shapes to represent uncertainty, making the method
computationally efficient and easy to implement. However, this simplicity often leads to
overly conservative predictions, limiting its effectiveness over longer planning horizons.
Some robust adaptive MPC methods use box-shaped representations of uncertainty, with
adjustments made dynamically to account for system behavior [192, 193]. Others employ
more flexible approaches, such as interval arithmetic [194], which improve upon traditional
methods but can still face challenges like unbounded growth over longer planning horizons.
To address this, some techniques rely on pre-computed robust sets [187, 186], ensuring
stability but often requiring significant offline computation.

The main problem with the nature of faults is that the monotonicity and non-increasing
properties of the FPS are no longer valid. This is because, with SME, fault detection and
isolation rely on the infeasibility of the FPS when a fault occurs and its re-initialization
so that it converges in another "faulty" region. Thus, a RAMPC approach similar to
[175] is no longer suitable since they rely on the aforementioned properties for the FPS.
Effects of this nature, that happen abruptly, are usually tackled with contingency planning.
Contingency planning most commonly refers to a contingency, backup, or fail-safe plan
that is ready to be executed in case an unexpected event occurs. In the context of motion
planning, contingency planning has been utilized to address different problems so far,
mainly with Contingency Model Predictive Control (CMPC). In [195, 196, 197] the main
focus is uncertainties that are caused by other traffic participants while the controlled
system is assumed to operate in nominal conditions. Instead, in [198, 199] the authors tackle
the problem of changing operating conditions for the system. Specifically in [198] they use
MPC for contingent planning in order to address a change in the friction coefficient due to
icy road conditions. In [199] the authors address the problem of faults with contingency
planningwhere they use a finite number of faultymodels in an RMPC formulation. However,
the key challenge is that the time that a fault occurs cannot be predicted so they must deal
with a family of models all at once.

The goal of this chapter is to integrate the SME-based FD approach developed in
Chapter 5 into the rule-compliant MPC framework introduced in Chapter 3, resulting in
a fault-tolerant and rule-compliant trajectory optimization algorithm. To achieve this,
we design a novel Contingency-, Robust-Adaptive- Model Predictive Control (CRAMPC)
trajectory optimizer that can robustly plan against all disturbance and fault realizations for
both a primary plan and a contingency plan. The primary plan follows directly from the
formulation in [175] while leveraging the FD results from Chapter 5 to adapt dynamically
to the online-estimated fault parameters. Conversely, the contingency plan is designed to
account for the worst-case fault realization, ensuring that a fail-safe alternative is always
available. To guarantee a smooth transition from the "healthy" to the "faulty" model without
infeasibilities, the first input of the input sequences in both plans is constrained accordingly.
By enforcing this constraint, as in [198], we ensure that the system can safely transition to
a fault-tolerant trajectory even when an unexpected fault occurs. This integrated approach
effectively addresses the challenges posed by faults, providing a robust and practical
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Figure 6.1: A block diagram scheme to describe the combination of the different modules developed in this Thesis.
We consider the traffic rule decision-making and rule-compliant constraints module from Chapter 3 (purple) to
guarantee rule-compliant trajectories for the ASV. We also consider the FD method from Chapter 5 (green) in
order to estimate online the condition of the ASV (healthy or faulty, location and magnitude of faults). We then
utilize these results by proposing a novel trajectory optimizer in Chapter 6 (orange) that is able to generate both
rule-compliant and fault-tolerant trajectories by combining the paradigms of CMPC and RAMPC.

solution for ASVs operating in dynamic, uncertain, and fault-prone environments. By
combining rule-compliant navigation from Chapter 3 with fault diagnosis from Chapter
5 within the proposed CRAMPC framework, the proposed method aims to ensure robust
and safe navigation among other traffic participants. The framework is illustrated in a
schematic overview in Figure 6.1 aiming for rule-compliant and fault-tolerant trajectory
optimization and control.

6.2 Problem Formulation
We consider the discrete, nonlinear, perturbed system:

𝒙𝑡+1 = 𝒇𝒘(𝒙𝑡 ,𝒖𝑡 ,𝒅𝑡 ,𝜽) (6.1)

where 𝒙𝑡 ∈ ℝ𝑛𝒙 is the state, 𝒖𝑡 ∈ ℝ𝑛𝒖 is the input, 𝒅𝑡 ∈ 𝔻 ⊂ ℝ𝑛𝒙 is the unknown but bounded
state disturbance, and𝚯𝑡 ⊂ℝ𝑛𝜽 is the time-invariant, unknown but bounded fault parameter.
The elements [𝜽]𝑖 ∈ [0,1], 𝑖 = 1,2,…,𝑛𝜃, describe the health of the system according to the
following conditions:

[𝜽]𝑖 =

{
[𝜽]𝑖 = 1, ∀𝑖 ∈ {1,2,…,𝑛𝜃}, healthy system
[𝜽]𝑖 < 1, ∃𝑖 ∈ {1,2,…,𝑛𝜃}, faulty system

(6.2)

The bounds of the fault parameter 𝜽 are computed online along with a fault parameter
estimate 𝜽̄𝑡 ∈ 𝚯𝑡 , updated at each timestep 𝑡 based on input-state data according to the
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method of Chapter 5. We further assume that the fault happens abruptly and only single
faults occur. Therefore, we also consider the worst-case faulty system as follows:

̃
𝒙𝑡+1 = 𝒇𝒘(

̃
𝒙𝑡 , ̃

𝒖𝑡 ,𝒅𝑡 , ̃
𝜽) (6.3)

where
̃
𝜽 ∈ 𝚯0 and with the set𝚯0 computed a priori as the worst-case uncertainty set based

on the assumptions on the fault parameters given by:

𝚯0 =

{

[𝜽]𝑖 ∈ [0,1]
|||||

𝑛𝜃
∑
𝑖=1

[𝜽]𝑖 ≥ 𝑛𝜃 −1

}

(6.4)

The system has constraints on the input and state that model physical and actuator limita-
tions, expressed by a compact polytopic set :

 ∶=  × =
{
(𝒙,𝒖) ∈ ℝ𝑛𝒙+𝑛𝒖 ∣ 𝒉𝒔(𝒙,𝒖) ≤ 𝟎

}
(6.5)

where 𝒉𝒔(𝒙,𝒖) = 𝑳𝒔
(
𝒙
𝒖)−𝒍𝒔 ,𝑳𝒔 ∈ ℝ𝑛𝒔×(𝑛𝒙+𝑛𝒖), 𝒍𝒔 ∈ ℝ𝑛𝑠 .

The system has additional constraints in order to avoid collision with other traffic
participants. These are expressed with respect to the position of the ASV, denoted as
𝒑 ∈ ℝ𝑛𝑷 with 𝒑 = 𝑪𝒙 and 𝑪 ∈ ℝ𝑛𝑃×𝑛𝑥 a selection matrix for the corresponding states of
𝒙. The rule-compliant collision avoidance constraints are given also in polytopic form,
according to Chapter 3:

 ∶=
{
𝒑𝑘|𝑡 ∈ ℝ

𝑛𝑷 ∣ 𝒉𝒐
𝑘|𝑡(𝒑𝑘|𝑡) ≤ 0

}
(6.6)

where 𝒉𝒐
𝑘|𝑡(𝒑𝑘|𝑡) = 𝑳𝒐

𝑘|𝑡𝒑𝑘|𝑡 −𝒍𝒐𝑘|𝑡 ,𝑳
𝒐
𝑘|𝑡 ∈ ℝ

𝑛𝒐×𝑛𝑷 , 𝒍𝒐𝑘|𝑡 ∈ ℝ
𝑛𝒐 with subscript 𝑘 denoting the time

index in the MPC problem described shortly.

We formulate the following contingency optimization problem similar to [198] that
consists of two plans: a primary plan that uses the primary model in (6.1) and a contingency
plan that uses the worst-case-fault, contingency model of (6.3). Each plan is formulated
according to the RAMPC approach in [175] to be robust to all possible fault and disturbance
realizations. We assume that at each time step 𝑡, given the measured state 𝒙𝑡 , and an online
estimated fault parameter and feasible parameter set 𝚯𝑡 , the optimization problem is given
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by:

min
𝒖̄⋅∣𝑡 ,𝑤⋅|𝑡|
̄
̃
𝒖⋅∣𝑡 , ̃

𝑤⋅|𝑡|

𝑁−1
∑
𝑘=0

𝓁(𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡 , 𝒓𝑘∣𝑡)+𝑉𝑓 (𝒙̄𝑁 ∣𝑡)+ 𝓁̃( ̄̃
𝒙𝑘∣𝑡 , ̄̃

𝒖𝑘∣𝑡 , ̃
𝒓𝑘∣𝑡)+ 𝑉̃𝑓 ( ̄̃

𝒙𝑁 ∣𝑡) (6.7a)

s.t.: 𝒙̄0∣𝑡 = 𝒙𝑡 , 𝛿0∣𝑡 = 0 ̄
̃
𝒙0∣𝑡 = 𝒙𝑡 ,

̃
𝛿0∣𝑡 = 0 (6.7b)

𝒙̄𝑘+1∣𝑡 = 𝒇𝜽̄𝒕 (𝒙𝑡 ,𝒖𝑡 , 𝜽̄𝑡) ̄
̃
𝒙𝑘+1∣𝑡 =𝒇

̃
𝜽( ̄̃
𝒙𝑡 , ̄̃

𝒖𝑡 , ̃
𝜽) (6.7c)

𝛿𝑘+1∣𝑡 = 𝜌𝜽̄𝑡𝛿𝑘∣𝑡 +𝑤𝑘∣𝑡 ̃
𝛿𝑘+1∣𝑡 = 𝜌

̃
𝜽 ̃
𝛿𝑘∣𝑡 + ̃

𝑤𝑘∣𝑡 (6.7d)
𝑤𝑘∣𝑡 ≥ 𝑤𝛿,𝚯𝑡 ,𝔻 (𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡 , 𝛿𝑘∣𝑡) ̃

𝑤𝑘∣𝑡 ≥ 𝑤
̃
𝛿,

̃
𝚯,𝔻 ( ̄̃

𝒙𝑘∣𝑡 , ̄̃
𝒖𝑘∣𝑡 , ̃

𝛿𝑘∣𝑡) (6.7e)
[𝒉𝒔]𝑖 (𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡)+𝜖𝒔𝑖 𝛿𝑘∣𝑡 ≤ 0 [𝒉𝒔]𝑖 ( ̄̃

𝒙𝑘∣𝑡 , ̄̃
𝒖𝑘∣𝑡)+𝜖

𝒔
𝑖 ̃
𝛿𝑘∣𝑡 ≤ 0 (6.7f)

[𝒉𝒐]𝑗 (𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡)+𝜖𝒐𝛿𝑘∣𝑡 ≤ 0 [𝒉𝒐]𝑗 ( ̄̃
𝒙𝑘∣𝑡 , ̄̃

𝒖𝑘∣𝑡)+𝜖
𝒐

̃
𝛿𝑘∣𝑡 ≤ 0 (6.7g)

𝛿𝑘∣𝑡 ≤ 𝛿̄, 𝑤𝑘∣𝑡 ≤ 𝑤̄𝚯𝑡 ̃
𝛿𝑘∣𝑡 ≤ ̄

̃
𝛿,

̃
𝑤𝑘∣𝑡 ≤ ̄

̃
𝑤

̃
𝚯 (6.7h)

(𝑥̄𝑁 ∣𝑡 , 𝛿𝑁 ∣𝑡) ∈ 𝑓 ,𝜃̄𝑡 ,𝚯𝑡 ( ̄̃
𝑥𝑁 ∣𝑡 , ̃

𝛿𝑁 ∣𝑡) ∈ 𝑓 ,
̃
𝜃,
̃
𝚯 (6.7i)

𝒖̄0∣𝑡 = ̄
̃
𝒖0∣𝑡 (6.7j)

𝑘 = 0,…,𝑁 −1, 𝑖 = 1,…,𝑛𝒔 , 𝑗 = 1,…,𝑛𝒐 (6.7k)

The objective function (6.7a) depends on the primary nominal state 𝒙̄𝑘∣𝑡 , input 𝒖̄𝑘∣𝑡 , and
reference 𝒓𝑘∣𝑡 and the contingency nominal state ̄

̃
𝒙𝑘∣𝑡 , input ̄̃

𝒖𝑘∣𝑡 , and reference
̃
𝒓𝑘∣𝑡 and

consists of the reference-point following stage-costs 𝓁(𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡) and 𝓁̃ ( ̄̃
𝒙𝑘∣𝑡 , ̄̃

𝒖𝑘∣𝑡) and the
terminal costs 𝑉𝑓 (𝒙̄𝑁 ∣𝑡) and 𝑉̃𝑓 ( ̄̃

𝒙𝑁 ∣𝑡). Note that, while safety can be ensured indepen-
dently of the cost, the objective function is typically designed to prioritize the primary plan,
as faults are exceptions rather than the norm. In most cases, the cost associated with the
contingency trajectory, 𝓁̃(⋅, ⋅), is set to zero or kept very small, ensuring that performance
is primarily evaluated based on the primary plan. The problem is initialized with (6.7b)
at the currently measured state 𝒙𝑡 for both the primary and the contingency plan, with
the nominal state evolution under nominal dynamics (6.7c), and the tube evolution (6.7d).
Equation (6.7e) constitutes the worst-case, mixed-uncertainty bounds for the mixed uncer-
tainties 𝑤⋅|𝑡 and ̃

𝑤⋅|𝑡 respectively, which are introduced as additional decision variables for
numerical reasons. The nominal dynamics, tube evolution, and mixed-uncertainty bound
for the primary plan are adaptive and depend on the estimate of the fault parameter 𝜽̄𝑡 ∈ 𝚯𝑡
which is updated online, while for the contingency plan they are static and depend on the
worst-case fault parameter

̃
𝜽 ∈ 𝚯0. The tightened constraints for system limitations and

collision avoidance are described in (6.7f) and (6.7g) respectively where the subscripts 𝑖 and
𝑗 denote the corresponding rows of the matrix equations described in (6.6), (6.5). To limit
conservativeness, upper bounds for the tube evaluation and the mixed uncertainty are also
introduced in (6.7h). Terminal constraints that depend on the incremental Lyapunov func-
tion (as sub-level sets) are introduced in (6.7i). Lastly, in (6.7j) the two plans are constrained
in their first input of the input sequence and allowed to diverge. The optimization problem
(6.7) is solved online at each time step 𝑡 and the input 𝒖𝑡 = 𝒖̄∗

0∣𝑡 is applied to the system in a
closed-loop fashion as in classical MPC. Each plan has an additional decision variable 𝑤⋅|𝑡 ,
an additional state 𝛿⋅∣𝑡 and additional constraints (6.7e), (6.7h) with respect to a nominal
MPC problem. A schematic representation of the plans resulting from the above MPC
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Contingency Constraints

primary
perturbed

primary
nominal

contingency
nominal

contingency
perturbed

contingency
tube

primary
tube

Figure 6.2: Top-right: The primary (green) and contingency (red) plans for the ASV. Both plans follow the RAMPC
formulation of [175] to be robust against all possible realizations of disturbances and parametric uncertainties
due to faults. Bottom-left: The primary plan (green) focuses on performance. The contingency plan (red) must
obey the contingency constraints (red-shaded box). The first input, 𝒖̄0∣𝑡 , is shared between the plans, optimized
to meet both nominal and contingency objectives (Figure adapted from [198]).

formulation is illustrated in Figure 6.2. The primary and contingency plans are depicted,
to show that they share the first input of the input sequence while they can diverge later,
due to the possibly different objectives and constraints, resulting in two distinct plans. The
inclusion of a contingency plan is motivated by the need to ensure recursive feasibility,
providing a provably safe backup plan upon fault detection. This guarantees safety even
under the worst-case realization of a fault. Ultimately, the result is a robust and provably
safe plan, capable of handling the worst-case scenarios for both disturbances and faults.
Note that while the contingency plan exists to make sure that there is always a fail-safe
trajectory to avoid a collision even in the case of a fault, the approach is still an active FTC
approach since the primary plan is adaptive and depends on the updated fault parameters.

The tube-based approach offers several advantages that make it particularly suitable for
applications requiring robust performance in dynamic and uncertain environments. Unlike
more conservative methods, it avoids excessive restrictions on the system’s operation,
while its reliance on scalar bounds ensures efficient implementation. On the other hand,
the contingency approach offers the advantage of foreseeing unexpected events that may
deteriorate the system’s performance and lead to poor predictions of the primary plan.
Therefore, the combination of these features make the proposed framework an ideal choice
for scenarios where both disturbances and faults must be handled effectively, ensuring safe
and reliable system performance. As such, the approach adopted in this chapter aligns well
with the requirements of fault-tolerant and robust trajectory optimization and control.

6.3 Incremental Stabilizability and Offline Compu-
tations

The classical approach in tube RMPC for linear systems typically relies on the decomposition
of the nominal state and the error dynamics which allows the design of an auxiliary, "tube"
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feedback control law that keeps the perturbed state 𝒙 close to the nominal 𝒙̄. The size of
this tube is usually characterized by a Robust Positive Invariant (RPI) set which then leads
to a predicted tube centered around the nominal trajectory where the perturbed state is
guaranteed to stay inside. In general, this error decomposition is not possible for nonlinear
systems since the error dynamics usually depend on the nominal trajectory and thus a
different approach can be followed based on the property of incremental stabilizability.

A system is said to be incrementally stabilizable if it is possible to design a control
law that ensures the distance between any two trajectories of the system decreases over
time, irrespective of their initial conditions, within a certain region of interest. Incremental
stabilizability then assumes that there exists an incremental Lyapunov function 𝑉𝛿(𝒙, 𝒙̄)
as defined in [200]. This can be computed offline based on the solution of a semi-definite
program (SDP) following the formulation in [201, 202]:

min
𝑿,𝒀 ,𝜖𝒔𝑗 ,𝜖𝒐

𝑛𝒔

∑
𝑗=1
𝑐𝒔𝑗

2𝜖𝒔𝑗 +𝑐
𝒐2𝜖𝒐 (6.8a)

s.t. 𝑨(𝒛̄)𝑿 +𝑩(𝒛̄)𝒀 + [𝑨(𝒛̄)𝑿 +𝑩(𝒛̄)𝒀 ]⊤+2𝜌𝜽̄0𝑿 ⪯ 𝟎, (6.8b)

[
𝑨(𝒛̄)𝑿 +𝑩(𝒛̄)𝒀 + [𝑨(𝒛̄)𝑿 +𝑩(𝒛̄)𝒀 ]⊤+𝜆𝑿 𝒅

𝒅⊤ 𝜆] ⪯ 𝟎, (6.8c)

⎡
⎢
⎢
⎢
⎢
⎣

𝜖𝒔𝑗 𝑳𝒔
[𝑗] [

𝒀
𝑿]

(𝑳𝒔
[𝑗] [

𝒀
𝑿])

⊤

⎤
⎥
⎥
⎥
⎥
⎦

⪯ 𝟎, 𝑗 = 1,…,𝑛𝒔 , (6.8d)

[
𝜖𝒐 𝑪𝑿

(𝑪𝑿)⊤ 𝑿 ] ⪯ 𝟎, 𝑗 = 1,…,𝑛𝒐, (6.8e)

𝑿 ⪰ 𝟎 (6.8f)

𝒛̄ = [
𝒙̄
𝒖̄] ∈, ̃

𝜽 ∈
̃
𝚯. (6.8g)

using the linearized system dynamics:

𝑨(𝒛̄) =
𝜕𝒇

̃
𝜽(𝒙̄, 𝒖̄)
𝜕𝒙̄

|||||(𝒛̄,
̃
𝜽)
, 𝑩(𝒛̄) =

𝜕𝒇
̃
𝜽(𝒙̄, 𝒖̄)
𝜕𝒖̄

|||||(𝒛̄,
̃
𝜽)
. (6.9)

where the contraction rate 𝜌𝜽̄0 ∈ (0,1) and parameter 𝜆 ≥ 0 can be found using bi-section
and the tuning parameters 𝑐𝒔𝑗 , 𝑐𝒐 are normalized with respect to the system constraint
intervals to ensure equal tightening of each constraint by using tightening constants
𝜖𝒔𝑗 , 𝜖𝒐 for the system and obstacle constraints described in Section 6.7. The SDP (6.8) is
a convex optimization problem with scalar and matrix-valued decision variables, which
tries to maximize the "size" of the RPI set expressed in the objective function (6.8a), while
satisfying conditions on: i) the exponential contraction of the incremental Lyapunov
function (6.8b), ii) invariance (6.8c), iii) robust system constraint satisfaction (6.8d), iv)
robust collision avoidance constraint satisfaction (6.8e), and v) positive definiteness of the
decision variable (6.8f), expressed as Linear Matrix Inequalities (LMIs), over the gridding
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(6.8g). The required elements to solve (6.8) are the linearized system dynamics (6.9), and
the system constraints (6.5). Because the SDP is infinite-dimensional, it is practically solved
by gridding the feasible state- and input-space and parameter-space 𝚯. For variables that
appear affinely, in the elements of the matrices in (6.9), it is enough to take the extremum
vertices and gridding is not necessary. The solution of the SDP yields the terminal cost
matrix 𝑷, and the feedback law gain 𝑲 computed as:

𝑷 = 𝑿−1, 𝑲 = 𝒀 𝑷 (6.10)

The incremental Lyapunov function is then defined as a quadratic function:

𝑉𝛿 = ||𝒙 − 𝒙̄||2𝑷 (6.11)

and it will be used in the subsequent sections to derive a bound for the mixed uncertainty
and the description of tube propagation in Section 6.6, and to define the terminal ingredients
in Section 6.8. It also yields the tightening constants 𝜖𝒔𝑗 , 𝜖𝒐 which will be used later in
Section 6.7 for constraint tightening.

6.4 Primary and Contingency Stage Cost
The primary stage cost 𝓁(𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡 , 𝒓𝑘∣𝑡) in (6.7a) encodes different objectives for the trajec-
tory optimization problem expressed as a desired reference 𝒓𝑘∣𝑡 = (𝒙𝒓⊤ 𝒖𝒓⊤)

⊤. The stage
cost is then expressed in a quadratic form as:

𝓁(𝒙̄𝑘∣𝑡 , 𝒖̄𝑘∣𝑡 , 𝒓𝑘∣𝑡) = ||𝒙̄ −𝒙𝑟 ||2𝑸 + ||𝒖̄ −𝒖𝑟 ||2𝑹 (6.12)

where 𝒙𝑟 encodes different state-dependent objectives including following a reference
point and a desired velocity, while 𝒖𝑟 usually encodes a minimization of excessive control
inputs. The matrices 𝑸 ⪰ 𝟎, 𝑹 ≻ 𝟎, are usually diagonal and are tuned up to the desired
overall performance of the trajectory optimizer (6.7).

The contingency stage cost 𝓁̃ ( ̄̃
𝒙𝑘∣𝑡 , ̄̃

𝒖𝑘∣𝑡 , ̃
𝒓𝑘∣𝑡) in (6.7a) can be used to encode similar

objectives to the ones in the primary plan expressed as a desired reference
̃
𝒓𝑘∣𝑡 = ( ̃

𝒙𝒓⊤

̃
𝒖𝒓⊤)

⊤.
The stage cost is then expressed in a quadratic form as:

𝓁̃ ( ̄̃
𝒙𝑘∣𝑡 , ̄̃

𝒖𝑘∣𝑡 , ̃
𝒓𝑘∣𝑡) = || ̄

̃
𝒙 −

̃
𝒙𝑟 ||2𝑸̃ + || ̄

̃
𝒖−

̃
𝒖𝑟 ||2𝑹̃ (6.13)

where
̃
𝒙𝑟 also encodes state-dependent objectives including following a reference point

and a desired velocity, while
̃
𝒖𝑟 usually encodes a minimization of excessive control inputs.

The matrices 𝑸̃ ⪰ 𝟎, 𝑹̃ ≻ 𝟎, are usually diagonal and are tuned up to the desired overall
performance of the trajectory optimizer (6.7). Note that since faults are considered as ex-
ceptions, it is undesirable for the worst-case behavior in 𝒙̃ to dominate overall performance
when safety is not a concern. Typically, the focus is on optimizing the cost of the primary
plan while assigning minimal weight to the cost of the contingent trajectory.

6.5 Primary and Contingency Model
In this section, we are revisiting the results from Chapter 5 and reformulating them suitably
for RAMPC. We begin by considering a special class of nonlinear systems (6.1) where the
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fault parameters 𝜽 enter affinely and the disturbances are additive. The primary-perturbed
system is given by:

𝒙𝑡+1 = 𝒇𝒘(𝒙𝑡 ,𝒖𝑡 ,𝒅𝑡 ,𝜽) = 𝒇(𝒙𝑡)+𝑮(𝒖𝑡)𝜽+𝒅𝑡 (6.14)

In the following we denote by 𝒇𝜽̄𝒕 the primary-nominal system given by:

𝒙𝑡+1 = 𝒇𝜽̄𝒕 (𝒙𝑡 ,𝒖𝑡 , 𝜽̄𝑡) = 𝒇(𝒙𝑡)+𝑮(𝒖𝑡)𝜽̄𝑡 (6.15)

with online determined parameters 𝜽̄𝑡 ∈ 𝚯𝑡 ⊂ ℝ𝑝 where 𝚯𝑡 denotes the Feasible Parameter
Set (FPS) that is computed online according to input-state data in a SME fashion as described
in Chapter 5. We first assume that the disturbances 𝒅𝑡 ∈ 𝔻 can be written in polytopic
form as:

|𝒅𝑡 | ≤ 𝒅̄ ⇔ 𝒅𝑡 ∈ 𝔻 = {𝒅𝑡 ∈ ℝ𝑛𝒙 |𝑯𝒅𝑡 ≤ 𝒉𝒅} (6.16)

where 𝑯 = [𝑰𝑛𝒙 −𝑰𝑛𝒙]
⊤ ∈ ℝ2𝑛𝒙×𝑛𝒙 with 𝑰𝑛𝒙 ∈ ℝ𝑛𝒙×𝑛𝒙 the identity matrix of dimension 𝑛𝒙 ,

and 𝒉𝒅 = [𝒅̄ 𝒅̄]
⊤ ∈ ℝ2𝑛𝒙 . Combining the linearly parameterized system (6.14) with the

polytopic description for the disturbance bounds in (6.16) we can compute the Unfalsified
Parameter Set (UPS) at each time step:

𝚫𝑡 = {𝜽 ∈ ℝ𝑝 ∣ −𝑯𝑮(𝒖𝑡−1)𝜽 ≤ 𝒉𝒅 +𝑯𝒇(𝒙𝑡−1)−𝑯𝒙𝑡} (6.17)

The FPS is then given recursively by a constant update:

𝚯𝑡 = 𝚯𝑡−1 ∩𝚫𝑡 (6.18)

starting from an initially known FPS denoted as 𝚯0. In order to bound computational
complexity we follow [175] where the FPS is outer-approximated by a hypercube:

𝚯𝑡 = 𝜽̄𝑡 ⊕𝜂𝑡𝔹∞ (6.19)

with [𝜽̄𝑡]𝑖 = (𝜃̄𝑚𝑖𝑛𝑖,𝑡 + 𝜃̄𝑚𝑎𝑥𝑖,𝑡 )/2, the center of the hypercube and 𝜂𝑡 = 0.5max𝑖 (𝜽𝑚𝑎𝑥𝑖,𝑡 −𝜽𝑚𝑖𝑛𝑖,𝑡 )
its side and with 𝔹∞ ∶= {𝜽 | ‖𝜽‖∞ ≤ 1} denoting the unit hypercube.

For the contingency plan, we consider the contingency-perturbed system, which is
subjected to disturbances and the worst-case parametric uncertainty

̃
𝜽 ∈

̃
𝚯 with the set

̃
𝚯

computed a priori as the worst-case uncertainty set given from (6.4):

̃
𝒙𝑡+1 = 𝒇

̃
𝒘(

̃
𝒙𝑡 , ̃

𝒖𝑡 ,𝒅𝑡 , ̃
𝜽) = 𝒇(

̃
𝒙𝑡)+𝑮(

̃
𝒖𝑡) ̃

𝜽+𝒅𝑡 (6.20)

We also consider the contingency-nominal system that is used for the contingency plan in
6.7 given by:

̄
̃
𝒙𝑡+1 = 𝒇

̃
𝜽( ̄̃
𝒙𝑡 , ̄̃

𝒖𝑡 , ̃
𝜽) = 𝒇(

̃
𝒙𝑡)+𝑮(

̃
𝒖𝑡) ̃

𝜽 (6.21)

The main difference between the primary and the contingency models is that the primary
model is adaptive and updated at each time step 𝑡 to give a less conservative estimation
of the model. It is used in the primary plan to opt for performance. In contrast, the
contingency model is static and considers only the worst-case possible fault. It is used in
the contingent plan where the focus is on safety and the need for a fail-safe trajectory at
all times.
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6.6 Uncertainty Description and Tube Propagation
There are twomain sources of uncertainty in the perturbed systems (6.14) and (6.20), namely
the additive state disturbance 𝒅𝑡 ∈ 𝔻 and the parametric uncertainty that is bounded by
the polytopic sets 𝚯𝑡 for the primary and

̃
𝚯 for the contingency model respectively.

For the primary system, we denote the total effect of the two uncertainties with 𝑤𝑘∣𝑡 ,
a scalar decision variable in the optimization problem (6.7). We compute the worst-case
realization of this mixed uncertainty to use as a lower bound in (6.7e):

𝑤𝛿,𝚯𝑡 ,𝔻(𝒙̄𝑘|𝑡 , 𝒖̄𝑘|𝑡 , 𝛿𝑘|𝑡) = 𝑤𝚯𝑡 ,𝔻(𝒙̄𝑘|𝑡 , 𝒖̄𝑘|𝑡)+𝐿𝚯𝑡𝛿𝑘|𝑡 (6.22)

with 𝑤𝚯𝑡 ,𝔻(𝒙̄𝑘|𝑡 , 𝒖̄𝑘|𝑡) a scalar disturbance bound that depends on the state and the input
and takes into account both disturbance and parametric uncertainty and 𝐿𝚯𝑡𝛿𝑘|𝑡 a dynamic
adjustment of the uncertainty bound based on the current tube size to capture the sensitivity
of how much 𝑮(𝒙̄, 𝒖̄) changes as the perturbed state deviates from the nominal one. The
scalar disturbance bound is further expressed in more detail as:

𝑤𝚯𝑡 ,𝔻(𝒙̄𝑘|𝑡 , 𝒖̄𝑘|𝑡) = 𝜂𝑡𝑐𝔹||𝑮(𝒙̄, 𝒖̄)||𝑷 + 𝑑̄ (6.23)

with:
𝑑̄ = 𝑚𝑎𝑥𝒅∈𝔻||𝒅||𝑷 = 𝑚𝑎𝑥𝒅∈𝔻

√
𝒅⊤𝑷𝒅 (6.24)

the worst case disturbance effect, 𝜂𝑡 the side of the hypercube described in (6.19), and
𝑐𝔹 = √𝑛𝜃 where 𝑛𝜃 is the number of parameters in the unknown parameter vector 𝜽. The
second term of the sum in (6.22) which encodes a dynamic adjustment of the uncertainty
bound based on the current tube size, depends on a dynamically adjustable, Lipschitz-like
constant according to the size of the uncertainty set 𝚯𝑡 :

𝐿𝚯𝑡 = 𝜂𝑡𝐿𝔹 (6.25)

which describes the worst-case effect of the parametric uncertainty on the tube dynamics
and it is dynamically adjusted based on the size of the hypercube 𝜂𝑡 and scaled by another
Liphchitz-like-constant:

𝐿𝔹 = 𝑐𝔹 max
(𝒙,𝒙̄,𝒖̄)∈𝚿

||𝑮(𝒙̄,𝜿(𝒙, 𝒙̄, 𝒖̄))−𝑮(𝒙̄, 𝒖̄)||𝑷
||𝒙 − 𝒙̄||𝑷

(6.26)

which captures the sensitivity of𝑮(𝒙̄, 𝒖̄)with respect to the deviation of the perturbed state
from the nominal one. The terms 𝑑̄, 𝑐𝔹, and 𝐿𝔹 are computed offline while the Lipschitz-like
constant in (6.25) is computed online based on the updated FPS. The worst-case effect of
the mixed uncertainty (6.22) depends on the decision variables of the optimization problem
(6.7) and thus it is evaluated in the optimization loop.

Having expressed the worst-case effect of the mixed uncertainty, we move on to the
description of the tube dynamics. The size of this tube represents the worst deviation of
the perturbed state from the nominal one due to the effect of the mixed uncertainty. It
depends on the inherent stability properties of the system as well as the two sources of
uncertainty, the disturbance and parametric uncertainty. The tube evolution is expressed
by the following scalar, discrete dynamics:

𝛿𝑘+1|𝑡 = 𝜌𝜽̄𝑡𝛿𝑘|𝑡 +𝑤𝑘|𝑡 (6.27)
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with 𝜌𝜃̄𝑡 the contraction rate that depends on the incremental stabilizability property of
the system, and 𝑤𝑘|𝑡 the disturbance bound that acts as an excitation term on the tube
size. While the disturbance bound is a decision variable in (6.7), the contraction rate 𝜌𝜃̄𝑡 is
updated online and stays fixed in the optimization loop:

𝜌𝜽̄𝑡 = 𝜌𝜽̄0 +(𝜂0−𝜂𝑡)𝐿𝔹,𝜌 (6.28)

with 𝜌𝜃̄0 derived from the contraction property of the incremental Lyapunov function,
essentially a tuning parameter in the offline computations of the incremental Lyapunov
function described in Section 6.3, and the Lipschitz-like term that bounds how much the
system dynamics 𝑮(𝒙̄, 𝒖̄) can change per deviation between the perturbed and nominal
state accounting for the worst realization of the parametric uncertainty given as:

𝐿𝔹,𝜌 = 𝑚𝑎𝑥𝑗 max
(𝒙,𝒙̄,𝒖̄)∈𝚿

||𝑮(𝒙̄,𝜿(𝒙, 𝒙̄, 𝒖̄))−𝑮(𝒙̄, 𝒖̄)𝜽𝑗 ||𝑷
||𝒙 − 𝒙̄||𝑷

(6.29)

with 𝜽𝑗 ∈ vert(𝚯0), 𝑗 = 1,…,𝑛𝜽 . The cascaded maximizations ensure that 𝐿𝔹,𝜌 accounts for
worst-case sensitivity within the feasible sets of states, inputs, and parameters. The terms
𝜌𝜽̄0 , 𝜂0, and 𝐿𝔹,𝜌 are computed offline while 𝜌𝜽̄𝑡 is updated online at each time step 𝑡. Then,
(6.27) can be evaluated in the optimization loop to predict the evolution of the tube that
will be used for constraint tightening as explained in Section 6.7.

For the contingency system, we follow the same approach as for the primary system,
albeit simplified due to the consideration of the worst-case faulty parametric set

̃
𝚯 which is

static and is not updated online. The total effect of the two types of uncertainties is denoted
with

̃
𝑤⋅|𝑡 , again a scalar decision variable in (6.7). We compute the worst-case realization

of this mixed uncertainty to use as a lower bound in (6.7e) for the contingency plan:

𝑤
̃
𝛿,

̃
𝚯,𝔻( ̄̃

𝒙𝑘|𝑡 , ̄̃
𝒖𝑘|𝑡 , ̃

𝛿𝑘|𝑡) = 𝑤
̃
𝚯,𝔻( ̄

̃
𝒙𝑘|𝑡 , ̄̃

𝒖𝑘|𝑡)+𝐿
̃
𝚯
̃
𝛿𝑘|𝑡 (6.30)

with:
𝑤𝚯𝑡 ,𝔻( ̄̃

𝒙𝑘|𝑡 , ̄̃
𝒖𝑘|𝑡) =

̃
𝜂𝑐𝔹||𝑮( ̄

̃
𝒙, ̄

̃
𝒖)||𝑷 + 𝑑̄ (6.31)

and:
𝐿
̃
𝚯 =

̃
𝜂𝐿𝔹 (6.32)

and where
̃
𝜂 denotes the maximum size of the worst-case uncertainty set

̃
𝚯.

The tube evolution of the contingency plan is then expressed in the same manner by
the following scalar, discrete dynamics:

̃
𝛿𝑘+1|𝑡 = 𝜌

̃
𝜽 ̃
𝛿𝑘|𝑡 + ̃

𝑤𝑘|𝑡 (6.33)

with the contraction rate 𝜌
̃
𝜽 computed as:

𝜌
̃
𝜽 = 𝜌𝜽̄0 +(𝜂0−

̃
𝜂)𝐿𝔹,𝜌 (6.34)

6.7 Constraint Tightening
With the tube evolution established, we can utilize these results to tighten the nominal
system and collision avoidance constraints presented in (6.5) and (6.6) respectively to
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achieve robust constraint satisfaction. Following [202], the tightened constraints for the
primary plan are expressed as:

 ∶=  × =
{
(𝒙̄, 𝒖̄) ∈ ℝ𝑛𝒙×𝑛𝒖 ||𝒉

𝒔
[𝑗](𝒙̄, 𝒖̄)+𝜖

𝒔
𝑖 𝛿𝑘|𝑡 ≤ 0, 𝑗 = 1, ...,𝑛𝒔

}
, (6.35)

and:
𝜏∣𝑡 ∶=

{
𝒑𝑘∣𝑡 ∈ ℝ

𝑛𝒑 ||𝒉
𝒐
[𝑗],𝑘|𝑡(𝒑𝑘|𝑡)+𝜖

𝒐𝛿𝑘|𝑡 ≤ 0, 𝑗 = 1, ...,𝑛𝒐
}
, (6.36)

with  ⊆ and 𝜏∣𝑡 ⊆ 𝜏∣𝑡 and the tightening constants computed based on incremental
stabilizability ingredients of Section 6.3.

For the contingency plan, they are given in the same manner, although depending on
the contingent tube evolution described in (6.33):

̃ ∶= ̃ × ̃ =
{
( ̄
̃
𝒙, ̄

̃
𝒖) ∈ ℝ𝑛𝒙×𝑛𝒖 ||𝒉

𝒔
[𝑗]( ̄̃

𝒙, ̄
̃
𝒖)+𝜖𝒔𝑖 ̃

𝛿𝑘|𝑡 ≤ 0, 𝑗 = 1, ...,𝑛𝒔
}
, (6.37)

and:
̃𝜏∣𝑡 ∶=

{
𝒑𝑘∣𝑡 ∈ ℝ

𝑛𝒑 ||𝒉
𝒐
[𝑗],𝑘|𝑡(𝒑𝑘|𝑡)+𝜖

𝒐

̃
𝛿𝑘|𝑡 ≤ 0, 𝑗 = 1, ...,𝑛𝒐

}
, (6.38)

with ̃ ⊆ ⊆ and ̃𝜏∣𝑡 ⊆ 𝜏∣𝑡 ⊆ 𝜏∣𝑡 .
A schematic illustration of this constraint tightening for the primary and contingency

tightened collision avoidance constraints (6.36) and, designed as rule-compliant, half-spaces
according to Chapter 3 is shown in Figure 6.3.
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primary
robust

constraint

halfspace
belongs to OV

contingency
robust

constraint

nominal
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primary plan
tightening

contingency plan
tightening

Figure 6.3: A schematic representation of how constraint tightening works for the rule-compliant collision
avoidance constraints of Chapter 3. The colored areas represent the complements of the sets used in the
optimization problem, i.e., the areas that the ASV is not allowed to enter.
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6.8 Terminal Ingredients
For the primary plan, the terminal cost is then given as the following quadratic Lyapunov
function:

𝑉𝑓 (𝒙, 𝒙̄) ∶= 𝑉 2
𝛿 (𝒙, 𝒙̄)

𝛼

1−(𝜌𝜽̄0 +𝐿𝚯0)
2 (6.39)

while the terminal constraint set is defined as a sub-level set of the incremental Lyapunov
function as:

𝑓 =
{
(𝒙,𝛿) ∈ ℝ𝑛+1 ∣ (𝑉𝛿 (𝒙, 𝒙̄)+𝛿) ≤ 𝑐𝑥𝛿

}
, (6.40)

where:

𝜌𝜽̄0 +𝐿𝚯0
+𝑐𝑥𝛿𝑤𝚯𝑡 ,𝔻(𝒙̄𝑘|𝑡 , 𝒖̄𝑘|𝑡) ≤ 1, 𝑐𝑥𝛿 = min

{
−𝒉𝒔(𝒙,𝒖)/𝜖𝒔𝑖 ,−𝒉

𝒐
𝑘|𝑡(𝒑𝑘|𝑡)/𝜖

𝒐
}

(6.41)

For the contingency plan, similar computations hold.

6.9 Overall Algorithm
The following two algorithms summarize the proposed offline design and the online
operation. The main complexity in the offline design is the choice of a suitable function

Algorithm 6 Offline Algorithm
Input: 𝒇𝒘(⋅), , 𝚯0,

̃
𝚯, 𝜌𝜽̄0 , 𝜆, 𝑐

𝒔
𝑗 , 𝑐𝒐

Output: 𝑷, 𝑲 , 𝜖𝑗 𝒔 , 𝜖𝒐, 𝜂0, 𝑑̄, 𝐿𝔹, 𝐿𝔹,𝜌 , 𝑐𝔹
1: Compute 𝑷,𝑲,𝜖𝑗 𝒔 , 𝜖𝒐 from (6.8), (6.9), (6.10)
2: 𝑐𝔹 = √𝑛𝜽
3: 𝜂0 = 0.5max𝑖 (𝜽𝑚𝑎𝑥𝑖,0 −𝜽𝑚𝑖𝑛𝑖,0 )
4: Compute 𝑑̄ from (6.8)
5: Compute 𝐿𝔹 from (6.26)
6: Compute 𝐿𝔹,𝜌 from (6.29)

𝑉𝛿 , solving the SDP (6.8) described in Section 6.3. The different constants that are used for
the description of uncertainty can be computed similarly to a Lipschitz constant.
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Algorithm 7 Online Algorithm
Input: 𝑷, 𝑲 , 𝜖𝑗 𝒔 , 𝜖𝒐, 𝜂0, 𝑑̄, 𝐿𝔹, 𝐿𝔹,𝜌 , 𝑐𝔹
Output: 𝒖𝑡 = 𝒖̄∗

0∣𝑡 = ̄
̃
𝒖∗
0∣𝑡

1: Compute predefined directions,  , from Algorithm 3
2: for 𝑡 = 1,2,… do
3: Get input-state data {𝒙𝑡 ,𝒙𝑡−1,𝒖𝑡 }
4: Update collision avoidance constraints from Rule-Constraints Algorithm 1 Chapter 3
5: Update FPS from FD Algorithm 5 from Chapter 5
6: Update 𝜂𝑡 = 0.5max𝑖 (𝜽𝑚𝑎𝑥𝑖,𝑡 −𝜽𝑚𝑖𝑛𝑖,𝑡 ) and [𝜽̄𝑡]𝑖 = (𝜽𝑚𝑖𝑛𝑖,𝑡 +𝜽𝑚𝑎𝑥𝑖,𝑡 )/2
7: Update 𝜌𝜽̄𝑡 from (6.28)
8: Update 𝐿𝚯𝑡 from (6.25)
9: Solve optimization problem (6.7)
10: Apply control input 𝒖𝑡 = 𝒖̄∗

0∣𝑡 = ̄
̃
𝒖∗
0∣𝑡

11: end for

6.10 Conclusions
In this chapter, we presented a fault-tolerant trajectory optimization and control framework
for uncertain nonlinear systems that are linear in the fault parameters and subject to
additive state uncertainties as a response to Research Question Q4: "How can we jointly
guarantee fault-tolerant and rule-compliant trajectories for ASVs operating in mixed-
traffic environments?" This approach integrates the rule-compliant collision avoidance
constraints developed in Chapter 3 with the fault diagnosis methodology from Chapter
5, which has the potential to enable fault-tolerant and rule-compliant trajectories among
other traffic participants. The framework has the promise to achieve this by formulating
both a primary and a contingency plan in a receding horizon manner. These plans are
solved simultaneously, sharing the first control input of the input sequence. As a result, in
the event of fault detection, a fail-safe trajectory is always available, ensuring safety under
all circumstances. As such, the method could significantly improve the system’s robustness
and reliability, providing enhanced safety in dynamic and complex environments with
multiple human-operated vehicles.
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7
Conclusions & Future Work

This thesis investigates fault-tolerant motion planning and control in mixed-traffic environ-
ments, specifically applied to ASVs. Initially, traffic rules were integrated into an MPC-based
trajectory optimization algorithm. This integration ensured rule compliance, dynamic feasibil-
ity, and scalability with respect to multiple OVs. The thesis further explores safety concerning
faults through two distinct methods developed for FD of actuator faults. Finally, the MPC-based
trajectory optimization algorithm was enhanced to handle these faults by leveraging diagnosis
results and implementing reconfiguration in a RAMPC setting, thereby achieving FT.

This concluding chapter summarizes the thesis. Section 7.1 addresses the research questions
posed in Section 1.2. Subsequently, Section 7.2 discusses existing limitations and proposes
potential directions for future research.
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7.1 Conclusions
In this section, we address the main research question and its associated sub-questions,
summarizing the findings and contributions of this thesis.

7.1.1 Main ResearchQuestion
The main research question this thesis addressed is:

How can ASVs safely navigate in mixed traffic environments even in the presence of faults?

To comprehensively address this question, we delved into various critical aspects of
fault-tolerant navigation within dense traffic environments. Our research findings present
a comprehensive and integrated approach to ensuring the safety and reliability of ASVs.
This is achieved through robust mechanisms for fault detection, isolation, and fault-tolerant
motion planning, all while meticulously considering maritime traffic rules. The algorithms
developed in this thesis predominantly rely on Model Predictive Control (MPC) due to
its inherent flexibility and its capability to combine multiple control objectives. These
objectives include collision avoidance, represented through state constraints, and fault
tolerance, achieved by reconfiguring the control objectives, constraints, and even the system
model itself. By leveraging MPC, we have successfully developed a versatile and resilient
control strategy that addresses the complex requirements of autonomous navigation in
mixed-traffic scenarios. The main research question has been thoroughly examined and
answered through the detailed exploration of the following specific research questions.

7.1.2 Key ResearchQuestions
Q1: How can ASVs navigate safely and efficiently in dense traffic environments while

ensuring compliance with maritime traffic rules?

In Chapter 3, we developed an advanced MPC-based trajectory optimization algo-
rithm that meticulously integrates maritime traffic rules as constraints. Utilizing the
concepts of separating and supporting hyperplanes from optimization theory, we
designed state constraints that permit only rule-compliant trajectories, while main-
taining the convexity of the search space. This crucially ensures that ASVs adhere to
these maritime traffic rules, facilitating not only compliance but also maintaining effi-
cient navigation. Furthermore, the algorithm operates on simple state measurements,
such as the position, heading, and velocities of other traffic participants, to assess
the traffic situation through an FSM. This eliminates the necessity for an extensive
communication framework to exchange plans and desired trajectories, making the
algorithm highly suitable for scenarios involving conventional, non-autonomous
traffic participants. Comprehensive simulations demonstrated that this approach
effectively integrates rule compliance, dynamic feasibility, and scalability concerning
multiple obstacle vessels (OVs). Consequently, it enables safe, efficient, and reliable
navigation for ASVs operating in complex mixed-traffic environments.

Q2: How to detect and isolate actuator faults in ASVs to enhance overall operational safety
and reliability?
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Chapter 4 introduced a method for FD of actuator faults. This method utilized a
combination of input-output data and a nonlinear observer to generate residuals,
which were then coupled with adaptive thresholds designed to accurately detect
the presence of faults. For the isolation of these faults, we capitalized on the in-
herent redundancy present in the actuation system, as well as the direct access to
the control configuration provided by the MPC controller. This allowed us to effec-
tively insulate specific states from particular control inputs, thereby isolating the
faults more efficiently. The robustness and efficacy of this method were thoroughly
validated through extensive simulation studies, which demonstrated its significant
potential in enhancing the safety and reliability of ASV operations. The simulations
confirmed that this approach not only detects faults with high accuracy but also
ensures the continued safe operation of ASVs, thereby substantially contributing to
their operational reliability in real-world scenarios.

Q3: How can fault parameters be accurately and robustly estimated under varying opera-
tional conditions, including the presence of disturbances and noise?

In Chapter 5, we concentrated on the robust estimation of fault parameters, an
essential aspect of ensuring the reliability and safety of autonomous systems. By
leveraging SME, we developed a sophisticated algorithm designed to accurately
estimate fault parameters for nonlinear systems operating under a wide range of
conditions, including varying operational scenarios, environmental disturbances,
and measurement noise. This algorithm specifically estimates a feasible parameter
set for the fault parameters, alongside a nominal estimate that resides within this
feasible set. Fault detection was achieved through the implementation of inverse
tests on the feasible parameter set, providing a rigorous method for identifying faults.
The robustness and accuracy of this method were further validated by applying it to
the same ASV model. This application demonstrated the method’s effectiveness in
fault detection and parameter estimation, even in the presence of significant state
and output uncertainties in the operational environment. The results confirmed
that our approach not only maintains high accuracy in fault estimation but also
ensures reliable performance of ASVs under various challenging conditions, thereby
enhancing their operational robustness and dependability.

Q4: How can we jointly guarantee fault-tolerant and rule-compliant trajectories for ASVs
operating in mixed-traffic environments?

Chapter 6 seamlessly integrated the results of fault diagnosis into the MPC-based
trajectory optimization algorithm, thereby establishing a comprehensive RAMPC
framework. This advanced framework is designed to ensure that ASVs can dynami-
cally reconfigure their trajectories in real-time response to detected faults, all while
adhering to stringent maritime traffic rules. The integration allows for the automatic
adjustment of the control strategy based on the real-time health status of the system,
enhancing both safety and operational reliability. To fully validate the effectiveness
of the RAMPC framework, further verification through extensive simulation studies
is required. These evaluations will assess the framework’s ability to maintain safe,
efficient, and rule-compliant trajectories for ASVs operating in mixed-traffic envi-
ronments, even in the presence of faults. Demonstrating its robustness in handling
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faults while ensuring compliance with traffic regulations will be a crucial step toward
confirming its practical applicability in real-world maritime operations.

7.2 Future Work
The challenge of ensuring safe, autonomous navigation in mixed-traffic environments
remains a significant one. Although this thesis, along with other related works, has
made strides in addressing this issue, there are still considerable challenges and areas for
improvement before these algorithms can be deemed fully reliable and trustworthy for
real-world applications and the safe deployment of autonomous systems. In the following
sections, we highlight some of these limitations and propose research directions aimed at
further enhancing the existing body of work.

1. Global guidance planner for mixed-traffic environments: To address the challenge of
the local nature of the MPCC planner being potentially trapped in local minima,
future work should focus on developing a higher-level guidance algorithm as in [203].
This algorithm could rely on a simpler system model and only accommodate collision
checking to provide an initial trajectory guess that effectively navigates through the
search space and avoids local minima. The guidance algorithm could incorporate
search-based or sampling-based techniques to predict a globally near-optimal path
that the MPCC planner can then refine. By leveraging such a higher-level strategy,
the initial trajectory provided to the MPCC will significantly enhance the efficiency
and success rate of the trajectory optimization process, particularly in complex
and dynamic maritime environments. This approach will ensure that the MPCC
planner starts from a more favorable point, thereby reducing computational effort
and improving the overall robustness of the navigation solution.

2. Convexification of the trajectory optimizer : Future work should focus on the convexi-
fication of the entire trajectory optimization process within the MPCC framework.
This can be achieved by linearizing the system dynamics and the contouring and lag
error terms in the objective function across the prediction horizon. By accounting
for the linearization error (higher order terms in Taylor expansion) and robustifying
against it, we can follow the initial trajectory provided by the guidance algorithm
and then optimize it to obtain smooth, dynamically feasible trajectories concerning
multiple obstacles. This approach simplifies the optimization problem, allowing it to
be solved in real-time using dedicated solvers for example OSQP [179] and Tiny-MPC
[204]. The convexification process not only improves computational efficiency but
also enhances the feasibility and robustness of the optimized trajectories, ensuring
reliable navigation in complex, dynamic environments.

3. Softening collision avoidance constraints with slack variables and lexicographic opti-
mization: This way we can still have a formal description of the collision avoidance
constraints without relying on the heuristic tuning of the objective function but at the
same time resolve feasibility issues. Slack variables will convert the hard constraints
to soft thus minimizing the risk for infeasibility. Lexicographic optimization can
omit the collision avoidance constraints if the solver is unable to find a collision.
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4. Robustness testing with rules-related parameter variation and comparison with com-
munication schemes: To further validate and enhance the robustness of the proposed
algorithm, future research should involve applying the same MPCC algorithm with
the introduction of some variation in the parameters related to the maritime traf-
fic rules. This study should include multiple ASVs navigating among each other
without communication, thereby simulating more realistic operational conditions.
The performance of the ASVs can be compared with distributed coordination algo-
rithms [205, 154], which necessitates communication between vessels. Key metrics
for comparison should include the optimality of the chosen trajectories, the time
elapsed to reach the destination and the overall success rate of navigation. This
comparative analysis will provide deeper insights into the advantages and limita-
tions of communication-free navigation strategies and highlight potential areas for
improvement in autonomous vessel coordination.

5. Nonlinear adaptive observer for fault parameter estimation: Future work should extend
the current observer to a nonlinear adaptive observer capable of estimating fault
parameters as well. This approach should be compared with SME to evaluate their
respective strengths and weaknesses. It is critical to highlight the differences between
fault detection FD in the state space, which uses residuals and thresholds, and fault
detection in the parameter space, where we have explicit access to the parameters. By
implementing and comparing these methods, we can gain a deeper understanding of
their effectiveness. The goal is to identify potential complementarities and synergies
between these methods, enabling the development of more robust and efficient fault
diagnosis techniques. Such an in-depth comparison will provide valuable insights
into the strengths and limitations of each method, guiding future enhancements in
the field of autonomous system fault diagnosis.

6. Generalization to broader systemmodels for SME: Future research should aim to extend
the methodology developed for fault detection and estimation with SME to more
general nonlinear system models. In this thesis, we considered nonlinear systems
represented as 𝒙̇ = 𝒇(𝒙)+ 𝒈(𝒖,𝒑) that can be written as 𝒙̇ = 𝒇(𝒙)+ 𝒈̃(𝒖)𝒑 (linear
to the parameters). The method needs to be extended to more general systems in
the non-separable form 𝒙̇ = 𝒇(𝒙,𝒖,𝒑) that can be written as 𝒙̇ = 𝒇(𝒙,𝒖)𝒑, while
still utilizing interval arithmetic tools. The primary condition is that the system
must remain linear with respect to the parameters of interest. By expanding the
applicability of these methods to a wider range of system models, we can enhance
the versatility of the FD method, making it applicable to a broader array of practical
autonomous systems.

7. Comparative analysis of FPS approximations and regularization methods: Future work
should include an extensive comparison of different approximations of the FPS and
various regularization processes. By systematically exploring and tuning polytope
approximations and regularization techniques, we can significantly improve the
accuracy and robustness of fault parameter estimation. This comparative analysis
should focus on identifying the strengths and weaknesses of each approach, under-
standing how they perform under different operational conditions, and determining
their applicability to various autonomous system models. Such detailed comparisons
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will provide valuable insights into the most effective strategies for enhancing the re-
liability and performance of SME, ultimately contributing to safer and more efficient
ASV operations.

8. Extension of FD methods to include sensor faults: While this thesis primarily addresses
actuator faults, which are closely related to the equations of motion of the ASV,
sensor faults have not been considered. Sensor faults are critically important to
the safety of ASVs as they directly impact the perception of the surrounding traffic
environment. Future work should include an extensive analysis of sensor faults,
incorporating robustness to disturbances, noise, and faults in sensor readings. By
applying fault detection and diagnosis methods to sensors, we can significantly
enhance the overall safety and reliability of ASVs, ensuring robust and fault-tolerant
navigation even in the presence of sensor anomalies.

9. Validation of the method proposed in Chapter 6: The method presented in Chapter 6
demonstrates significant potential for addressing the challenge of rule-compliant and
fault-tolerant navigation in environments with human-operated vehicles. However,
its effectiveness remains unverified due to the absence of simulation results. To
ensure comprehensive evaluation, the framework should be implemented within
the existing codebase and validated through simulation experiments, following the
approach employed in previous chapters.

10. On Assumptions and Robustness. The methods developed in this thesis are based on
several modelling and operational assumptions—such as bounded and uncorrelated
noise, instantaneous actuator faults, always-feasible collision avoidance, and accurate
hydrodynamic models—which were adopted to enable focused algorithmic develop-
ment. However, a systematic investigation into how violations of these assumptions
affect performance is warranted. For example, environmental disturbances such
as wind, waves, and currents may display complex dynamics or interactions that
are not adequately captured by fixed, bounded models. Additionally, sensor faults
were not considered in this work, but their presence in practice could significantly
complicate fault detection and hinder the ability to distinguish between different
types of faults. Furthermore, operation in confined waters or the risk of grounding
would necessitate fail-safe re-planning strategies capable of handling infeasibility
within the MPC framework. Addressing these challenges will require both theoretical
robustness analysis and extensive validation in high-fidelity simulators or sea trials
under diverse conditions. Bridging these gaps constitutes a crucial direction for
future work and is essential for transitioning the proposed methods toward reliable
and certifiable autonomous vessel operation.
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Glossary

AFT Active Fault Tolerance.

AIS Automatic Identification System.

APF Artificial Potential Field.

ARR Analytical Redundancy Relation.

ASV Autonomous Surface Vessel.

AV Autonomous Vehicle.

AVO Acceleration-Velocity Obstacles.

CMPC Contingency Model Predictive Control.

CNN Convolutional Neural Network.

COLREGs Collision Regulations.

CRAMPC Contingency Robust Adaptive Model Predictive Control.

DBN Dynamic Bayesian Networks.

DoF Degrees of Freedom.

DRVO Dynamic Reciprocal Velocity Obstacles.

DWA Dynamic Window Approach.

EM Emergency.

FD Fault Diagnosis.

FDE Fault Detection and Estimation.

FDI Fault Detection and Isolation.

FDIE Fault Detection, Isolation and Estimation.

FDIR Fault Detection Isolation Reconfiguration.

FPS Feasible Parameter Set.

FSM Finite State Machine.
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FSMX Fault Signature Matrix.

FT Fault Tolerance.

FTC Fault Tolerant Control.

GNC Guidance Navigation and Control.

GVO Generalized Velocity Obstacles.

GW Give Way.

IDA-PBC Interconnection Damping Assignment Passivity Based Control.

LMI Linear Matrix Inequalities.

LP Linear Program.

LPV Linear Parameter Varying.

LQR Linear Quadratic Regulator.

LSP Least Squares Problem.

LTL Linear Temporal Logic.

MDP Markov Decision Process.

MPC Model Predictive Control.

MPCC Model Predictive Contouring Control.

MPPI Model Predictive Path Integral Control.

NF Navigation Function.

NMPC Nonlinear Model Predictive Control.

OCP Optimal Control Problem.

ORCA Optimal Reciprocal Collision Avoidance.

ORM Obstacle Restriction Method.

OV Obstacle Vessel.

PID Proportional Integral Derivative.

POMDP Partially Observable Markov Decision Process.

PRM Probabilistic Road Maps.
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PVO Probabilistic Velocity Obstacles.

QP Quadratic Program.

RAMPC Robust Adaptive Model Predictive Control.

RAS Researchlab Autonomous Shipping.

RHC Receding Horizon Control.

RMPC Robust Model Predictive Control.

ROS Robot Operating System.

ROV Remotely Operated Vehicle.

RPI Robust Positive Invariant.

RRG Randomly Exploring Random Graphs.

RRT Randomly Exploring Random Tree.

RRT* Optimal Randomly Exploring Random Tree.

RVO Reciprocal Velocity Obstacles.

SDP Semi Definite Program.

SMC Sliding Mode Control.

SME Set Membership Estimation.

SO Stand On.

SVD Singular Value Decomposition.

UPS Unfalsified Parameter Set.

VFH Vector Field Histogram.

VO Velocity Obstacles.
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