Roof Structure Extraction from Remote Sensing Images

Hsin-Yu Cheng

First Supervisor: Dr. Liangliang Nan

Second Supervisor: Dr. Weixiao Gao

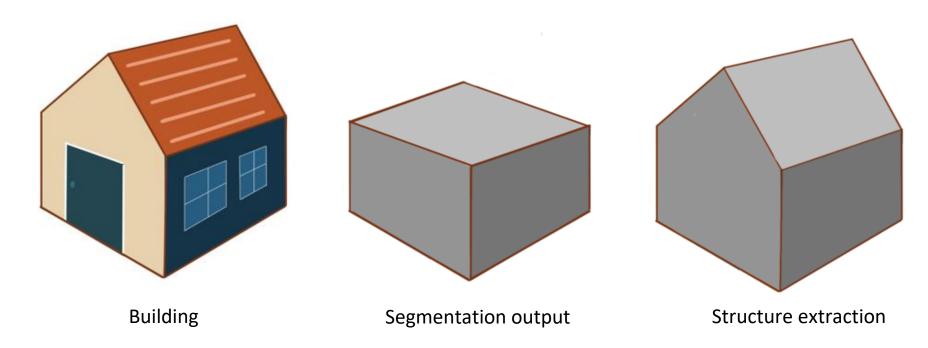
Co-reader: Dr. Seyran Khademi

Search your house on Google Map

01

Introduction

Why Structure Matters Beyond Segmentation



Applications that Depend on Roof Structure

Importance of roof part structural information

Solar Potential Estimation

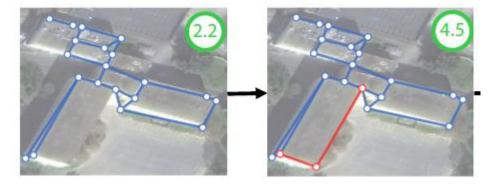
Drainage Simulation

Green Roof Design

Building Safety Monitoring

But Roof Structure is not that simple...

- Predict pixel-based mask → Extract polygon outlines
- Predict corners and edges → Connect or refine geometry



Pixel-based mask lacks geometric structure information, leading to:

- Blurry boundaries
- Polygon distortion

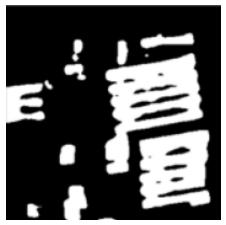
Zhang et al., CVPR 2021

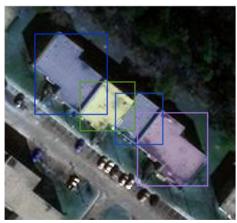
Unclosed shapes

02

Related Work

Related Work: Segmentation Methods

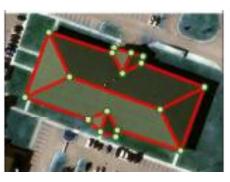


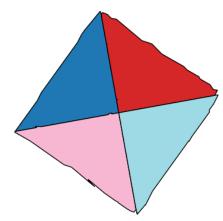


Building Segmentation Chicchon et al., 2024

Building Instance Segmentation

Related Work: Structure-based Approaches





Roof Line Extraction

Zorzi et al., CVPR 2022

Nauata et al., CVPR 2020

Roof Planar Structure Extraction

Related Work: Roof Planar Extraction Methods

Reference	Contribution	Limitation
Lussange et al., 2023	2-stage: predict corners & height, bypass mask-to- polygon step	No recovery if mask is wrong
Xu et al., 2024	DSM + MLP + CCA to assemble polygon planes from corner lines	Sensitive to DSM quality; fails on blurry edges, computationally heavy

Research Question

Main Research Question:

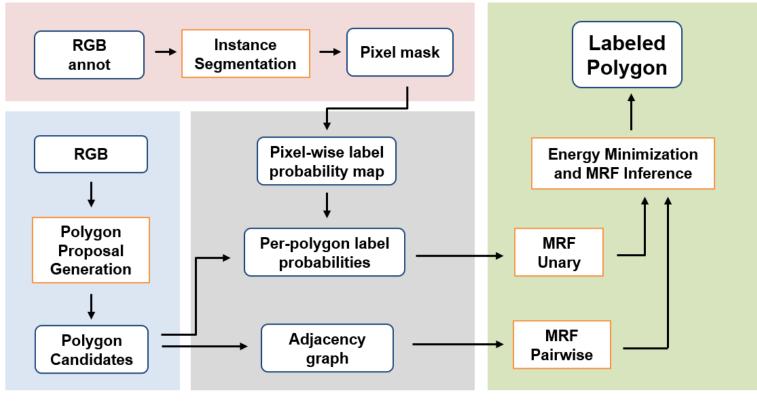
How can we extract roof planes from remote sensing images?

- Sub-Questions:
 - Polygonal Conversion: From pixel-based masks to structured polygons
 - Plane Assignment: Grouping roof fragments into coherent planes
 - Efficiency and Compactness: Doing all of this reliably and fast

03

Methodolgy

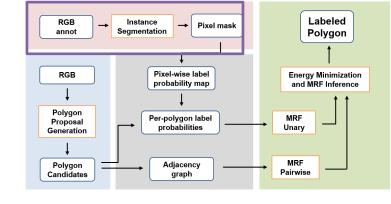
Overview of the Framework



Related Work

Introdution

Instance Segmentation



Original RGB GT Pred 0 (FP) Pred 1 (FP) Pred 2 (TP)

Pred 3 (FP)

Pred 4 (FP)

Pred 5 (FP)

Pred 6 (FP)

Pred 7 (FP)

- Input: RGB, annot
- Output: pixel-wise semantic segmentation mask, confidence score

Problem:

- Fuzzy boundaries
- Fragmented shapes
- Redundant overlapping predictions

Introdution

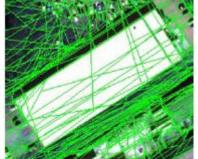
Polygon Proposal Generation

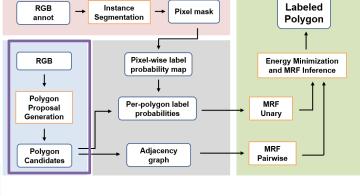
KInetic Polygonal Partitioning of Images

Original image

Roofline detected using KIPPI

Aggregate rooflines into polygons





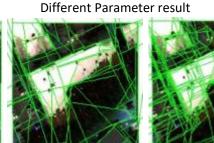
• Input: RGB

Output: polygons

Lsd_scale

Number intersection





Introdution

Related Work

Methodology

Results & Evaluation

Discussion & Limitation

Conclusion & Future Work

Pixel-wise Probabilities Per-polygon Label Probability

Confidence-weighted mask probability:

$$P_i(x,y) = s_i \cdot M_i(x,y) \qquad P_{bg}(x,y) = 1 - \max_i P_i(x,y)$$

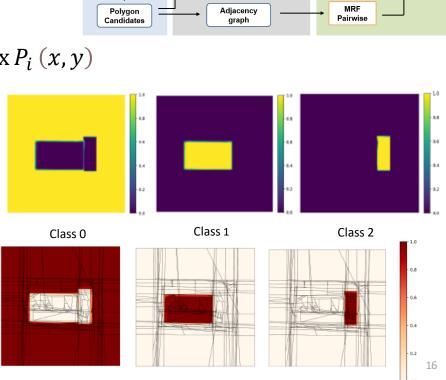
probability $M_i(x,y)$ classification confidence score s_i

Per-polygon label probability:

$$p_{k,j} = \frac{1}{|\Omega_k|} \sum\nolimits_{(x,y) \in \Omega_k} P_j(x,y)$$

binary mask Ω_k

Original RGB



RGB

annot

RGB

Polygon

Proposal

Generation

Labeled

Polygon

Energy Minimization

and MRF Inference

Unary

Pixel mask

Pixel-wise label

probability map

Per-polygon label

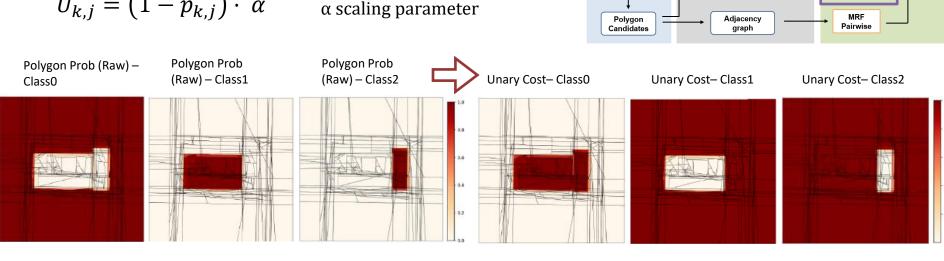
probabilities

Segmentation

MRF Unary

Unary Cost Transformation:

$$U_{k,j} = (1 - p_{k,j}) \cdot \alpha$$



Unary Cost: Classification confidence of each polygon (internal evidence, polygon itself)

```
# Shape: (num_polygons, num_classes)
[[0.9313, 0.0, 0.0687],
 [0.6558, 0.0, 0.3441],
 [1.0000, 0.0, 0.0000]]
```

```
# After cost transform (alpha=10):
[[0.6867, 10.0, 9.3133],
 [3.4415, 10.0, 6.5585],
 [0.0000, 10.0, 10.0000]]
```

RGB

annot

RGB

Polygon

Proposal

Generation

Labeled

Polygon

Energy Minimization

and MRF Inference

MRF

Unary

Pixel mask

Pixel-wise label

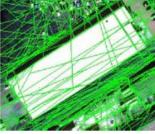
probability map

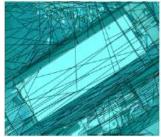
Per-polygon label

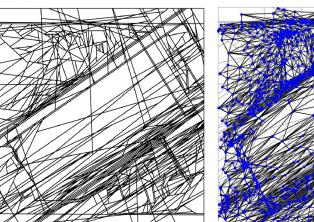
probabilities

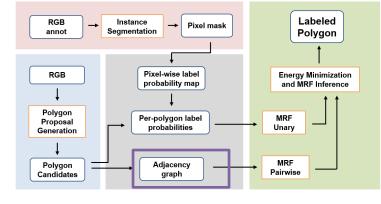
Segmentation

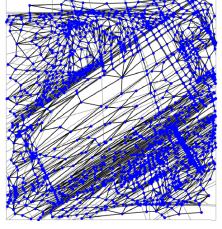
Adjacency Graph











Original Polygons

Point Adjacency

Line Adjacency

MRF Pairwise

Edge weight normalization:

$$w_{ij} = f(l_{ij}) = \sqrt{l_{ij}/l_{max}} \cdot scale + offset$$
 $l_{max} = 80 \text{ pixels}, scale = 5, and offset = 1$
shared boundary length l_{ij}

Label penalty matrix:

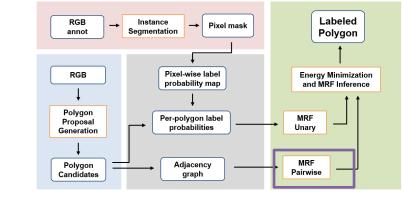
$$V(a,b)$$
 { 0 if $a = b$ otherwise

Final pairwise cost:

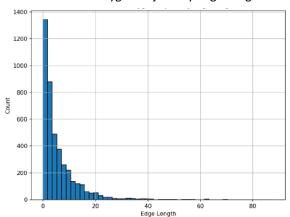
$$\mathsf{PairwiseCost}_{ii}(a,b) = \lambda \cdot w_{ii} \cdot V(a,b)$$

Introdution

hyperparameter λ $\lambda \in \{0.001, 0.01, 0.1, 1, 10, 100\}$



Distribution of Polygon Adjacency Edge Lengths

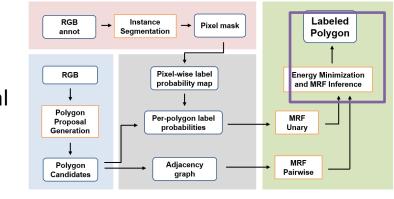


MRF Inference

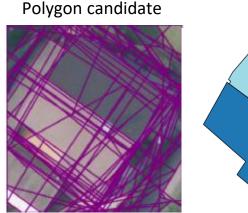
Given the **Unary term** and the **Pairwise term**, the final label configuration L = $\{L_1, L_2, ..., L_N\}$ is obtained by minimizing the total energy:

$$L^* = \arg\min_{L} \left(\sum_{k} U_k(L_k) + \sum_{(i,j)} \lambda \cdot w_{ij} \cdot V(L_i, L_j) \right)$$

GT



TUDelft



Discussion & Limitation

Conclusion & Future Work

MRF

Results and Evaluation

Results

$$IoU = \frac{|Prediction \cap GroundTruth|}{|Prediction \cup GroundTruth|}$$

Smoothness Cost	TP	FP	FN	Mean IoU
0.001	749	319	200	0.8331
0.01	749	316	200	0.8331
0.05	749	313	200	0.8333
0.1	748	306	201	0.8336
0.5	738	277	211	0.8260
1	723	262	226	0.8179
10	373	84	576	0.5064
100	0	1	949	0.0000

Smoothness Cost	TP	FP	FN	Mean IoU
0.001	3265	111	90	0.9125
0.01	3264	109	91	0.9127
0.05	3263	99	92	0.9130
0.1	3262	94	93	0.9130
0.5	3261	73	94	0.9117
1	3248	70	107	0.9049
10	1863	96	1492	0.5568
100	14	69	3341	0.0063

MRF sweep results on the Cities dataset (unary scale = 10)

MRF sweep results on the RoofVec dataset (unary scale = 10)

Datasets	TP	FP	FN	Precision
Cities	870	600	197	0.5918
RoofVec	3338	356	48	0.9036

Datasets: Train/Validation/Test

Cities: 1192/397/397

RoofVec: 4584/1528/1528

Comparison of pixel-base segmentation on the **Cities** and **RoofVec** datasets

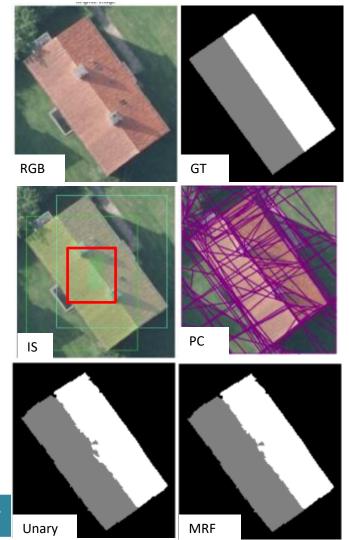
Cities	ТР	FP	FN	Precision	Mean IoU
Unary term only	749	319	200	0.7012	0.8331
Whole MRF (λ = 0.1)	748	306	201	0.7097	0.8336

RoofVec	ТР	FP	FN	Precision	Mean IoU
Unary term only	3265	111	90	0.9362	0.9125
Whole MRF (λ = 0.1)	3262	94	93	0.9720	0.9130

Comparison of MRF with or without pairwise term segmentation on the Cities and RoofVec datasets

$$Precision = \frac{TP}{TP + F}$$

IS: Instance Segmentation PC: Polygon Candidate



Results & Evaluation

Discussion & Limitation

Conclusion & Future Work

Introdution

Related Work

Methodology

Compare to Zhang et al. (2021)

Use the same Cities Datasets

Table 1. Comparison against two state-of-the-art RL-based systems, Ellis *et al.* and Lin *et al.* based on the corner/edge/region f1 scores. All systems use Conv-MPN reconstructions as the initial models. orange and cyan indicate best and second best scores.

Algorithm	Corner	Edge	Region
Conv-MPN [22]	78.8	58.1	54.9
REPL [7]	72.6	43.8	15.9
Lin et al. [15]	74.7	51.6	35.8
+ Ours	83.2	67.1	63.5

Adapted from Zhang et al., CVPR 2021

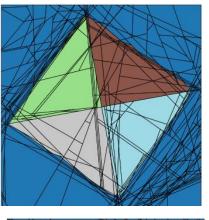
$$Precision = \frac{TP}{TP + FP}$$

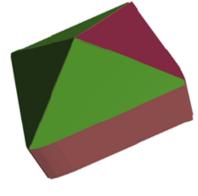
$$Recall = \frac{TP}{TP + FN}$$

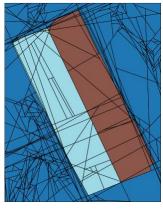
$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

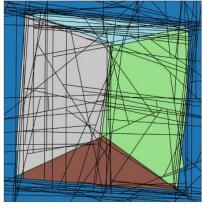
Our Region F1-score = $0.661 \times 100 = 66.1$

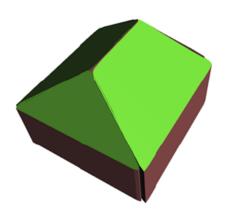
Application Demonstration

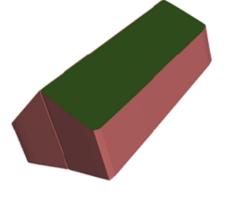












05

Discussion and Limitation

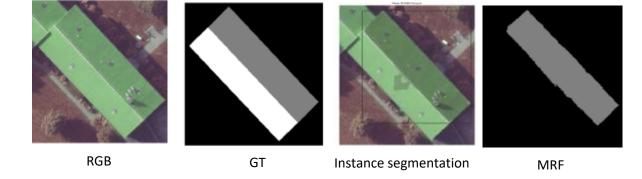
Discussion

- Improves segmentation quality
- Stable performance across datasets
- Robust and efficient geometric module
- Model-agnostic and generalizable

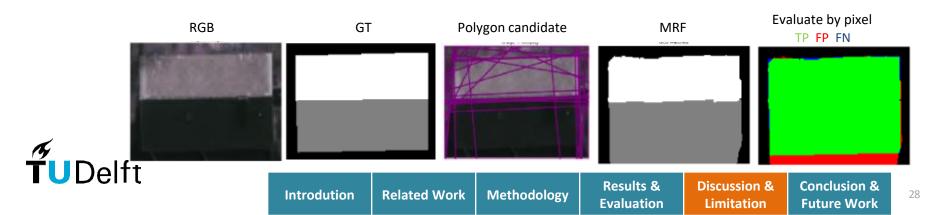
Table 6.1.: Average runtime per step

	I
Step	Time (s)
Load image	0.1169
Model inference	0.2164
Generate pixel probability map	0.0005
Compute polygon probabilities	1.9052
Prepare unary	0.0000
Build graph	0.6838
GCO labeling	0.1035
Rasterize prediction	0.1056
Evaluate metrics	0.0027
Smoothness stats	0.0034

Limitation



- Limited by poor initial pixel-mask predictions
- MRF tuning requires trial and error
- Depends on polygon Candidate
- Depends on annotation quality



Conclusion and Future Work

Conclusion

Research Question	Contribution / Answer
Structured polygon from pixel masks?	Polygon proposal module (line detection + spatial partitioning) that transforms raster masks into clean, geometry-aware polygons.
Group roof parts into coherent planes?	MRF-based label refinement groups nearby polygons using classification confidence(Unary term) and geometric connectivity(Pairwise Term).
Efficient extraction with quality?	Fast and model-agnostic; processes each image in under 4 seconds while improving performance.

Future Work

- Better Instance Segmentation
 Explore stronger backbones to reduce FP and improve mask coverage.
- Polygon Proposal Analysis
 Connect proposal parameters to MRF outcomes; explore filtering/merging strategies.
- MRF Term Refinement
 Improve unary weighting and pairwise design for better structure in noisy areas.

Reference

Lussange, J., Yu, M., Tarabalka, Y., and Lafarge, F. (2023). 3d detection of roof sections from a single satellite image and application to lod2-building reconstruction. arXiv preprint, arXiv:2307.05409.

Muneeb, M., and Lin, Y. (2020). Building semantic segmentation using UNet convolutional network on SpaceNet public data sets. In Proceedings of the 2020 International Conference on Image, Video Processing and Artificial Intelligence, pages 89–96. SPIE.

Nauata, N., and Furukawa, Y. (2020). Vectorizing world buildings: Planar graph reconstruction by primitive detection and relationship inference. arXiv preprint, arXiv:1912.05135.

Xu, Y., Jubanski, J., Bittner, K., and Siegert, F. (2024). Roof plane parsing towards lod-2.2 building reconstruction based on joint learning using remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 133:104096.

Zhang, F., Xu, X., Nauata, N., and Furukawa, Y. (2021). Structured outdoor architecture reconstruction by exploration and classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 12427–12435.

Zorzi, S., Bazrafkan, S., Habenschuss, S., and Fraundorfer, F. (2022). PolyWorld: Polygonal building extraction with graph neural networks in satellite images. arXiv preprint, arXiv:2111.15491.

