
Implementation of a collaborative envi-
ronment to support the integration of 3r d

generation MDO frameworks

B. Beijer

De
lft

Un
ive

rs
ity

of
Te

ch
no

lo
gy

Implementation of a collaborative
environment to support the integration
of 3r d generation MDO frameworks

by

B. Beijer
to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday July 5, 2017 at 13:30 PM

Student number: 1518836
Thesis registration number: 136#17#MT#FPP
Project duration: August 1, 2016 – June 15, 2017

Thesis committee: Prof. ir. G. La Rocca, TU Delft, Supervisor
Ir. J. Berends, KE-works, Supervisor
Prof. dr. ir. P. Colonna TU Delft, Chair Propulsion & Power
Dr. ir. J. Guo TU Delft, Space Systems Engineering

This thesis is confidential and cannot be made public until July 05, 2017.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

Hereby I would like to thank my main supervisors Gianfranco La Rocca and Jochem Berends for their inspi-
ration during my research and taking the time to check my work. Next I would like to thank my other thesis
committee members, Jian Guo and Piero Colonna, for making time available for being part of my defense.
Thanks to Joost Schut and Stefan van der Elst for providing feedback and improve the value of my work.
Thank you Kevin van Hoogdalem for providing me with a thesis research topic and being my first supervisor.
Thanks to my colleagues at KE-works for the fun times and all the help. I really enjoyed the occasional table
football games!

Thanks to Imco Van Gent and Zaoxu Zhu for being available for my green light review and providing
feedback for my research. Next I would like to thank fellow (and recently graduated!) MSc students Menco
Schuurman and Andreas Makus for our discussions and information exchange regarding the research topic.
Thanks Pier Davide Ciampa, Thierry Levebvre, Benedict Aigner, Ton van der Laan and the AGILE consortium
for providing feedback on the collaborative environment developed as the result of this research.

Finally I would like to thank my friends for supporting me throughout my thesis and providing me with
very helpful feedback. And of course my girlfriend Jeannine, for her patience and support, especially during
the stressful times.

The research presented in this paper has been conducted as part of European research project AGILE. This
project has received funding from the European Union’s Horizon 2020 research and innovation framework
program under grant agreement No 636202.

B. Beijer
Delft, May 2017

iii

Summary

Increasing complexity of engineering problems and corresponding modeling and analysis activities required
to explore novel aircraft designs lead to interesting challenges in the domain of Multidisciplinary Design Op-
timization (MDO). As MDO frameworks, capable of performing overall aircraft design studies become too
complex to be comprehended by a single team of experts, there is an increasing need to develop distributed
analysis frameworks in which both tools and experts are integrated in a single network. This collaborative
design in distributed teams of engineers and tools is characterized as the 3r d generation of MDO.

This research is conducted as part of European research project AGILE. AGILE addresses the challenges
implied with the three main phases involved in design and optimization processes: the setup, operation and
solution phases. This research focuses mainly on the challenges and solutions existing in the setup phase.
The aim of AGILE is to support MDO of realistic overall aircraft design tasks involving novel aircraft configu-
rations using distributed frameworks in a multi-organization framework. During this research it was found
that the distribution of the different actors such as architects, integrators, discipline specialists, collaboration
engineers and the customer poses great challenges on the ability to control and collaborate on the setup and
operation of these 3r d generation MDO frameworks.

In order to enable better collaboration of all actors involved in the setup and operation phases of 3r d

generation MDO frameworks, the main objective of this thesis research is defined as follows: Support the
setup of 3r d generation MDO frameworks by developing a collaborative environment in which the activities
leading to an automated design workflow are integrated in the business process layer.

A first step in the implementation of this collaborative environment is formalization of the main steps
involved in the development of an MDO framework. During this research five steps were identified, which
characterize the so-called MDO framework development process. These five steps can be seen in figure 1.
This MDO framework development process is an integral part of any type of complex product development
process in which Multidisciplinary Design Analysis and Optimization (MDAO) strategies are implied, such as
the conceptual design of aircraft or automobiles.

Define

design case &

requirements

Specify

repository of DCs

& data model

Formulate

MDAO

architecture

Implement

& execute

AD workflow

1 2 3 4 Inspect

design study

results

5

Setup phase Operation phase

MDO framework development process

Complex product development process

(eg. Aircraft, Engines, Automobile)

Conceptual

Design

Detailed

Engineering

Figure 1: MDO framework development process

In general, an MDO framework is composed of three layers, depicted in figure 2. These layers, from top to
bottom are the Product Development (PD) layer, the Automated Design (AD) layer and Design Competence
(DC) layer. The DC layer can be defined for simplicity as a collection of disciplinary tools. The AD layer
contains executable simulation workflows, and the tools required to integrate or formulate those. Finally, the
PD layer contains manual and automated tasks, which together define an executable business process. All
layers have interfaces, which are required to exert control, or transfer information between layers. This thesis
research focuses mainly on the PD layer and its interfaces with the lower layers in the knowledge architecture.

v

vi Summary

The main functions of the PD layer can be summarized as follows:

• Support the user in setup of a design problem and related simulation workflows

• Support the user during the execution of the required automated design process with manual interfaces
to that process and by retrieving information on the simulation process performance and the design
results.

Product development

PD/AD interface

AD/DC interface

Automated design

Design competences

1. Define

design case &

requirements

3. Formulate

MDAO

architecture

4. Implement &

execute

AD workflow

5. Inspect

design study

results

4.2. Specify
repository of DCs

& data model

re

&

RCE & OPTIMUS

Discipline

A

Discipline

B

Discipline

C
CPACSor or and CMDOWSand

ID8KADMOS

KE-node KE-node KE-node

results

KE-node

Discipline Discipline

KADMOS ID8

KE nodeKE noderface

 design

ts architecture AD workf& data model

& OPTIMUS

KE de KE de

data m

KE-node

chitectu

KE-node

KADMOS

KE node KE deKE node KE-node

KADMOS

KE nodeKE node

Automated interface

Manual controlled interface

External applications

manual/

automated task

Legend

Figure 2: Overview of the interfaces and components in the integrated MDO framework

During this thesis research, the author has developed a collaborative environment which extends KE-
chain. KE-chain is a web-based information and Workflow Management (WFM) system developed by KE-
works. KE-chain has been extended to support the required PD layer functionality and to enable the inte-
gration of interfaces between the PD layer and AD layer. These extensions can be summarized as: the de-
velopment of methods to tailor the customized layout of the different tasks in the business process, a model
verification module, a central knowledge library and the development of external scripts to support the inte-
gration of external tools which are in sync with a the implemented collaborative environment. These devel-
oped components are explained in more detail in the following sections.

The developed methods to extend task customization enable communication of information in a more
understandable way to the end-users and aims to improve the flow of the business process. The developed
model verification module is used in step two of the MDO framework development process. In this step the
architect, together with the discipline specialist assemble a repository of DCs and data model which will be
used in the formalization of an executable MDO workflow. In this repository, the input properties and output
properties need to be mapped on a common data model. This common data model is defined according
to CPACS (Common Parametric Aircraft Configuration Schema). CPACS describes the characteristics and
attributes of aircraft, engines, climate impact, fleets and mission in a structured, hierarchical manner. Using
a single CPACS-derived product model to couple all DCs ensures all DCs are able to communicate in an
executable workflow as ambiguity in the exchange of information is removed through the use of a single
modeling standard. The model verification module checks whether data flow is possible, if all properties
defined as input have an origin and that input data has only a single origin.

The author has developed methods and services to enable a reuse of modeling knowledge through a cen-
tral knowledge library which is accessible through KE-chain and through the importing of standardized docu-
ments using XML knowledge technologies. Both methods are used to instantiate product models and process
models. This product model is a collection of parts and properties organized in an intuitive and maintainable
hierarchical structure. This product model forms the blue-print of the final product which is to be developed.
The process model is a collection of tasks or activities, which contain the functions or methods which need

Summary vii

to be executed to design the final product. Within the AGILE project, process modeling language is stored
according to CMDOWS (Common Multidisciplinary Design and Optimization Workflow Schema). The devel-
oped methods described and implemented during this research enable the storing, manipulation and reuse
of product and process modeling knowledge using CPACS and CMDOWS directly from the implemented col-
laborative environment.

The implemented collaborative environment is equipped with the methods described earlier and with
developed interfaces to enable the formalization of MDAO architectures using KADMOS (Knowledge- and
graph-based Agile Design for Multidisciplinary Optimization System). This collaborative environment is
tested and verified through the formalization of various small MDO workflows. A full-scale test has been
performed during a workshop organized at the AGILE M21 meeting held on the 4th-5th-6th of April in Delft.
During this workshop a total of 43 users, among which various actors such as integrators, architects, collabo-
ration engineers, customers and discipline specialists, worked in distributed groups on the setup of an MDO
framework to perform an aerodynamic optimization of an aircraft main wing.

From the workshop session and interviews with several experts it was concluded that the implemented
collaborative environment was able to support the setup of complex MDO problems. The traditionally very
complex and highly manual tasks of defining the problem, finding the right tools to solve the problem and
connecting them with each other in the right way was made a lot easier for the various actors. The accessi-
bility of information and integration of key components used during the formalization of MDO frameworks
currently applied to the AGILE project such as CPACS, CMDOWS and KADMOS provide a powerful envi-
ronment which can be used in any type design and optimization process. This becomes evident from the
current number of useages in upcoming design cases within AGILE in which the collaborative environment
is used, involving the conceptual design of novel aircraft configurations: open-rotor aircraft, strut-braced
aircraft box-wing aircraft, Blended-Wing-Body (BWB) aircraft and Unmanned Aerial Vehicles (UAVs).

Although the developed collaborative environment has proven to enhance the operability, maintainabil-
ity and support during the setup of 3r d generation MDO frameworks, some limitations were acknowledged
by the author. The developed methods and interfaces between the PD and AD layer are relatively slow during
the setup of medium to large MDO problems (700+ properties). The main reason for this lies in the archi-
tectural backbone of the underlying KE-chain application used during the implementation. Hence a lot of
performance related issues, which are currently out-of-scope for this thesis research, have been placed on
the KE-chain development road-map. The author also recommends an extension of automated interfaces
between the collaborative environment and software solutions which are able to run simulation workflows.
Finally improvements are advised on the communication of under-the-hood automated design activities,
which can be considered as a big open challenge. Improving the performance of the overall development
process through integration of automated design activities must not impede with the user-friendless and
sense of control exposed to the end-users.

Contents

Summary v

List of Figures xi

List of Abbreviations xiii

1 Introduction 1
1.1 Future of Aerospace engineering . 1

1.2 Multidisciplinary Design Optimization frameworks. 2

1.2.1 The design and optimization process . 2

1.2.2 Example of an MDO framework architecture. 3

1.3 AGILE research project . 4

1.4 Scoping and actors identified in a design and optimization process 5

1.5 Challenges in setting up of 3r d MDO frameworks . 6

1.6 Research Objectives. 7

1.7 How to read . 8

2 Design and optimization system 9
2.1 MDO framework requirements . 9

2.2 System integration . 11

2.3 MDO-based development process . 12

2.4 MDO framework knowledge architecture . 13

2.4.1 Product Development (PD) layer. 14

2.4.2 Automated Design (AD) layer . 17

2.4.3 Design Competence (DC) layer . 18

3 EnablingMethodologies and Technologies 21
3.1 Information Management . 21

3.2 Knowledge technologies . 23

3.2.1 What is knowledge . 23

3.2.2 Semantic Web technology stack . 24

3.2.3 Storing and writing knowledge . 24

3.3 Product and process modeling . 27

3.3.1 Product modeling . 27

3.3.2 Process modeling . 28

3.3.3 Relations between product and process models . 31

4 Implementation 33
4.1 Integration . 34

4.1.1 Step 1: Define design case & requirements . 35

4.1.2 Step 2: Specify repository of DCs & data model . 38

4.1.3 Step 3: Formulate MDAO architecture . 41

4.1.4 Step 4: Implement & execute AD workflow . 45

4.1.5 Step 5: Inspect design study results . 45

4.1.6 Integration round-up . 46

ix

x Contents

4.2 Support . 48

4.2.1 Task customization . 48

4.2.2 Model verification . 50

4.3 Reuse . 52

5 Results 55
5.1 Use-case implementation: Aerodynamic wing optimization during the AGILE workshop ses-

sions . 55

5.2 Verification & validation of the developed collaborative environment 57

5.2.1 Unit testing . 57

5.2.2 Test cases . 57

5.3 Current and future use-cases . 58

5.4 Reflection and user-experiences . 58

6 Conclusions and Recommendations 59
6.1 Introduction . 59

6.2 Sub-objective 1 . 59

6.3 Sub-objective 2 . 60

6.4 Sub-objective 3 . 60

6.5 Conclusions. 60

6.6 Limitations and recommendations . 61

Appendices 63

A InformationQuality categories 65

B AGILE collaborative environment 71
B.1 User authentication . 71

B.2 Implemented agile project overview . 72

B.2.1 Agile MDO framework development process application home screen 72

B.2.2 Business process activities breakdown . 74

B.3 Step 1: Define design case and requirements . 74

B.3.1 Step 2: Specify complete and consistent data model and competences 75

B.3.2 Step 3: Formulate MDAO architecture . 81

B.3.3 Step 4: Implement & execute AD workflow . 88

B.3.4 Step 5: Inspect design study results . 89

C Task customization example 91

D Detailed overview of integrated tools in theMDO framework used during the workshop ses-
sions 95

Bibliography 101

List of Figures

1.1 Illustrations of novel aircraft configurations (source: NASA) . 1

1.2 Evolving generations in MDO [23] . 2

1.3 Different phases in the design and optimization process [8] . 3

1.4 The concept of the Design Engineering Engine (DEE) to support MDO [4] 3

1.5 AGILE use-cases [8] . 4

1.6 AGILE project structure [8] . 5

1.7 Different levels in the information domains, actors and key requirements 6

2.1 Typical MDO problem formulation and execution process overview and terminology (based on
[43]) . 12

2.2 MDO framework development process and its relation w.r.t. the product development process
of an aircraft, engine, automobile, etc. 13

2.3 Knowledge architecture of the various components and information layers which can be iden-
tified in an integrated MDO framework (adapted from [42]) . 14

2.4 Application architecture of KE-chain . 15

2.5 Required extensions to the application architecture of KE-chain to support in the required PD
layer functionality . 16

2.6 Schematic overview of KE-chain service task . 17

2.7 Schematic overview of the MDO development process in KADMOS [43] 19

2.8 CMDOWS data structure for MDO workflows . 20

2.9 Central model approach [5] . 20

2.10 Centralized CPACS data structure for Multi-Disciplinary Frameworks [34] 20

3.1 The value-flow model as applied to information management [14] 22

3.2 What is knowledge, some examples [22] . 23

3.3 Semantic Web Technology Stack [26] . 24

3.4 Example of a UML class (top) and object (bottom) diagram . 28

3.5 KE-chain ontology used to define parts and properties . 28

3.6 KE-chain ontology of defining a product model and its instances 29

3.7 Basic IDEF0 representation of a task and its related information [11] 30

3.8 Coupling of the inputs and outputs of tasks in WIM with subsets of PIM 32

3.9 Coupling of PIM and WIM UML class definition . 32

4.1 Overview of the interfaces and components in the integrated MDO framework 34

4.2 Detailed overview of the business process activities in the PD layer 35

4.3 Defined data model used to store information generated during the MDO framework develop-
ment process . 36

4.4 Disciplinary levels of fidelity [8] . 37

4.5 Functional Flow Diagram of the KE-node service underlying task 2.1 38

4.6 Functional Flow Diagram of the KE-node service underlying task 2.2 40

4.7 Functional Flow Diagram of the KE-node service underlying task 2.3 40

4.8 Functional Flow Diagram of the KE-node service underlying task 3.1 42

4.9 Functional Flow Diagram of the KE-node service underlying task 3.2 43

xi

xii List of Figures

4.10 Functional Flow Diagram of the KE-node service underlying task 3.3 44

4.11 Functional Flow Diagram of the KE-node service underlying task 3.4 45

4.12 Functional Flow Diagram of the KE-node service underlying task 5.1 46

4.13 Available widget classes implemented by the author to support task-customization 48

4.14 Example of newly implemented type of task-customization objects in KE-chain 49

4.15 Interactive model inspector embedded in the GUI of KE-chain . 51

4.16 Schematic overview of the model verification system implemented in the MDO framework de-
velopment process . 52

4.17 Writing and reading coupled part assemblies and activities with the publish and promote ac-
tions through a knowledge library . 53

5.1 Illustrated overview of the wing design study during the workshop demonstrations 56

B.1 KE-chain user-authenticated login screen . 71

B.2 Project overview . 72

B.3 Agile MDO framework development process landing page . 73

B.4 Impression of the developed KE-chain work breakdown structure 74

B.5 Impression of the developed business process top level overview integrated in KE-chain 75

B.6 Impression of the developed KE-chain task-form of task 1.1: Define requirements 75

B.7 Impression of the developed KE-chain task-form of task 1.2: Define competences and parameters 76

B.8 Impression of the developed KE-chain task-form of task 2.1: Import CPACSized competences
into repository . 78

B.9 Manual mapping of inputs and outputs through the task configuration widget in KE-chain . . . 79

B.10 Task 2.3: Generate CMDOWS . 80

B.11 Impression of the developed KE-chain task-form of task 3.1: Import CMDOWS and inspect RCG 82

B.12 Impression of the developed KE-chain task-form of task 3.2: Manipulate design competences . 83

B.13 Select design competence widget . 84

B.14 Impression of the developed KE-chain task-form of task 3.3: Assign parameter roles 85

B.15 Edit design variable . 86

B.16 Select FPG parameter widget . 86

B.17 Impression of the developed KE-chain task-form of task 3.4: Apply MDAO architecture 87

B.18 Impression of the developed KE-chain task-form of task 4.1: Export simulation workflow 88

B.19 Impression of the developed KE-chain task-form of task 5.1: Select CPACS file for inspection . . 89

B.20 Impression of the developed KE-chain task-form of task 5.2: Upload file and inspect results in
ID8 . 90

C.1 Example of newly implemented type of task-customization objects in KE-chain 92

C.2 Example of a URL used for navigation in KE-chain and its composition 92

C.3 Example of a URL used for service task execution in KE-chain and its composition 92

C.4 Example of a URL used for previewing attachments in KE-chain and its composition 93

C.5 Example of a task-customization JSON . 94

List of Abbreviations

AD Automated Design

AGILE Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Ex-
perts

API Application Programming Interface

BWB Blended-Wing-Body

C3PRO Complete Consistent & Compliant PROcess

CAD Computer Aided Design

CLI Command-Line Interface

CM Capability Module

CMDOWS Common Multidisciplinary Design and Optimization Workflow Schema

CPACS Common Parametric Aircraft Configuration Schema

DC Design Competence

DEE Design Engineering Engine

DLR German Aerospace Center

DSM Design Structure Matrix

FFD Functional Flow Diagram

GUI Graphical User Interface

IDF Individual Design Feasible

IQ Information Quality

JSON JavaScript Object Notation

KBE Knowledge Based Engineering

KDP Key Design parameter

KE Knowledge Engineering

KPI Key Performance Indicators

MDA Multidisciplinary Design Analysis

MDAO Multidisciplinary Design Analysis and Optimization

MDF Multidisciplinary Design Feasible

MDO Multidisciplinary Design Optimization

MMG Multi-Model Generator

OAD Overall Aircraft Design

xiii

xiv List of Figures

PD Product Development

PDP Product Development Process

PIDO Process Integration and Design Optimization

PIM Product Information Model

RCG Repository Connectivity Graph

REST REpresentational State Transfer

SE Systems Engineering

SIM Service Integration Module

SWF Simulation Workflow

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

WFM Workflow Management

WIM Workflow Information Model

WP Work package

XDSM Extended Design Structure Matrix

XML Extensible Markup Language

1
Introduction

1.1. Future of Aerospace engineering
Over the past few decades there is a growing demand for environmentally friendly and more efficient aircraft
capable of transporting a large number of passengers over long ranges at reduced direct operating costs [35].
However, as the conventional tube and wing design has almost reached the limit of its potential there is a re-
newed interest in unconventional aircraft configurations such as the Blended Wing Body (BWB) concept and
the box-wing aircraft displayed in figure 1.1 [20]. New aircraft configuration deviates from the conventional
distinction of aircraft components such as wings, fuselages, engines and tail as there is a lot more integration
and interaction of components. This leads to interesting challenges and opportunities for Multidisciplinary
Design and Optimization (MDO) to support Overall Aircraft Design (OAD) [44].

(a) Blended wing body concept (b) Box-wing concept

Figure 1.1: Illustrations of novel aircraft configurations (source: NASA)

Aircraft design is a multidisciplinary process due to the numerous domains, such as aerodynamics, struc-
tural analysis and flight mechanics, that need to be considered in an overall design process [47]. Integrating
all domains in a single design process is a challenging task due to the complexity imposed by the informa-
tion intensity, computing intensity and the amount of interwoven elements involved [4]. In order to cope
with these challenging design processes MDO techniques are increasingly adopted in the conceptual design
phase. However their use in novel aircraft development is still limited [23].

Due to this complexity, an MDO process can no longer be comprehended with a single team of specialists.
This leads to challenges in processing the large amount of information gathered during the setup, operation
and execution phases of an MDO process. The research presented in this report aims at improving the col-
laboration and control of the various actors such as architects and discipline specialists involved in the setup
phase of the MDO framework to reduce project lead-time. The topic of MDO frameworks is explained in more
detail in the next section.

1

2 1. Introduction

1.2. Multidisciplinary Design Optimization frameworks
Increased computational capabilities due to modern computing power result in increasingly complex anal-
ysis tools. In order to operate these analysis tools, cross-organizational disciplinary specialists are required
during the integration in any MDO framework. The purpose of a framework is to provide support during the
development and execution of the MDO process [31]. This distribution of experts and tools requires a col-
laborative approach to support MDO in the conceptual design phase of novel aircraft design. The shift from
locally implemented simulation workflows to support MDO to collaborative and distributed MDO is referred
to as the shift from the 2nd to the 3r d generation of MDO [1, 8, 23]. The three generations of MDO which can
be distinguished are displayed in figure 1.2. These generations are explained in more datail in the coming
sections.

Figure 1.2: Evolving generations in MDO [23]

First generation
As can be seen in figure 1.2, the 1st generation of MDO is characterized by an application in which disci-
plinary tools are tightly coupled in a monolithic system. A monolithic system in software engineering is a
system in which all components and functions are interwoven, instead of being contained in architecturally
separate components [36]. In a 1st generation MDO framework a design process is deployed via direct in-
terfaces between multiple design tools in an environment where are analysis modules are locally available
[8].

Second generation
A system to support 2nd generation MDO is characterized by distributed analysis modules each on a ded-
icated computer and a centralized design and optimization process [8]. In such a system different experts
are responsible for their tool. With respect to the previous generation, an increased number of disciplinary
interfaces are required over a distributed network. Flexibility of the design process is improved due to the
fact that the system is not tightly coupled. This allows for easier exchange or addition of design modules. Due
to the increasing number of interfaces data management and workflow management becomes increasingly
important.

Third generation
In the quest to support MDO on the overall design of novel aircraft configurations an increasing number
of systems and disciplinary analysis modules need to be integrated. These systems are too complex for a
single user and require collaboration among hundreds of engineers, distributed among multiple specialized
organizations. This collaborative design in distributed teams of engineers and tools is characterized as the
3r d generation of MDO.

1.2.1. The design and optimization process
A typical design and optimization process consists of three phases: setup, operational and (convergent) so-
lution phase (displayed in figure 1.3). The clear objective of the 3r d generation of MDO is to reduce the lead-
time of the design and optimization process. It is aimed to achieve this reduction in lead-time by enabling an
increase of knowledge available in the early design stages. Moreover a reduction of abstraction is required, in
order to minimize uncertainties during the design process.

1.2. Multidisciplinary Design Optimization frameworks 3

Figure 1.3: Different phases in the design and optimization process [8]

1.2.2. Example of an MDO framework architecture
To illustrate the traditional architectural components of an MDO framework the reader is referred to figure
1.4. This figure shows the Design and Engineering Engine (DEE) concept. The DEE is a modular, loosely
integrated software system able to support MDO on the conceptual design of both conventional and novel
aircraft configurations [18].

In the DEE the architectural elements can be distinguished as the initiator, the Multi-Model Generator
(MMG), the Capability Modules (CMs) and a converger & evaluator. The initiator is used to define the ini-
tial set of parameter values for the required aircraft product model. The product model contains all main
elements of the aircraft and the parameters describing these elements in a sufficiently detailed manner to
support the design study defined in the requirements. In order to prepare for multiple disciplinary analyses,
the MMG is used to generate multiple disciplinary models from a single product model required for each
required disciplinary analyses. Finally all disciplinary analyses results need to be gathered and evaluated to
obtain a (converged) design solution.

Figure 1.4: The concept of the Design Engineering Engine (DEE) to support MDO [4]

4 1. Introduction

The DEE concept can be used in the development of either 1st , 2nd or 3r d generation MDO frameworks,
depending on the distribution of disciplinary tools and/or experts. The general architecture and informa-
tion access characteristics of an MDO framework should support a steering function during the design cycle,
and provide the ability to monitor the progress and results during and after execution. Therefore the imple-
mentation of an intuitive Graphical User Interface (GUI) is a key requirement in the development of an MDO
framework [4, 31]. Besides a GUI, modularity is another key requirement of an MDO framework which is re-
quired to be operable in a collaborative environment [27]. In this collaborative environment, intricate details
quickly become too complex to understand for engineers with different disciplinary expertise.

1.3. AGILE research project
The aim of the AGILE research project is to improve on the current way of performing MDO on complex
systems such as aircraft. AGILE stands for Aircraft 3r d Generation MDO for Innovative Collaboration of
Heterogeneous Teams of Experts 1. AGILE targets multidisciplinary optimization using distributed analysis
frameworks. The project is set up to proof a speed up of 40% for solving realistic MDO problems compared
to today’s state-of-the-art. The use-cases, displayed in figure 1.5, are realistic overall aircraft design tasks
for conventional (top-left), open-rotor (top-center), strut-braced (top-right), box-wing (bottom-left), BWB
(bottom-center) and UAV (bottom-right) configurations.

This project has received funding from the European Union’s Horizon 2020
research and innovation framework programme under grand agreement No 636202

www.agile-project.eu

Partners

Grant Agreement number: 636202
Project acronym: AGILE
Project title: Aircraft 3rd Generation MDO for Innovative Collaboration
 of Heterogeneous Teams of Experts
Start date of the project: 01/06/2015
Duration: 36 months
Total Budget: ~9 M€
Total Manpower: ~900 Man-Months

Project coordinator name and organization:
Björn Nagel, DLR | Air Transportation Systems | Integrated Aircraft Design
Tel: +49 40 42878-2304
Fax: +49 40 42878-2979
E-mail: bjoern.nagel@dlr.de
Pier Davide Ciampa, DLR | Air Transportation Systems | Integrated Aircraft Design
Tel: +49 40 42878-2727
Fax: +49 40 42878-2979
E-mail: pier-davide.ciampa@dlr.de

AGILE is developing the next generation of aircraft

Multidisciplinary Design and Optimization

processes, which target significant reductions in

aircraft development costs and time to market,

leading to cheaper and greener aircraft solutions.

This project has received funding from the European Union’s Horizon 2020 research and innovation framework programme under grand agreement No 636202

Figure 1.5: AGILE use-cases [8]

The project structure can be seen in figure 1.6. Each year represents a new design campaign. In the first
design campaign a reference aircraft configuration is optimized using state-of-the-art techniques. The ref-
erence MDO problem is the end-result of the Initialization phase, referred to as Work Package (WP) 2. The
reference MDO problem is used in design campaign to test novel optimization techniques in the MDO Test
bench (WP3). Finally the most successful optimization approaches are used to explore novel aircraft con-
figurations (WP4) in design campaign three. Three additional layers can be identified, which encompass all
design campaigns. The first layer, Collaboration techniques (WP5), targets techniques to support distributed
collaboration of specialists and tools. The second layer, Knowledge enabled information technologies (WP6),
support the formalization and management of knowledge within an MDO process. Finally, the outer layer
involves the coordination and dissemination of all design campaigns.

The work presented in this paper focuses mainly on WP6. At the time the author was involved in the AGILE
project, the AGILE project was close to the half-way point of design campaign 2. Evaluation of design cam-
paign 1 has shown that a lot of challenges regarding the setup of an executable design framework were tack-
led, such as standardized data handling, modular integration and accessibility through a distributed commu-
nication network. However, there is still room for improvement in terms of process formalization, knowledge

1http://www.agile-project.eu (accessed 11/03/2017)

1.4. Scoping and actors identified in a design and optimization process 5

Figure 1.6: AGILE project structure [8]

management and integration of systems in a collaborative design and optimization process. These are some
of the challenges that will be addressed in this report. A more detailed decomposition of these challenges
follows in section 1.5

1.4. Scoping and actors identified in a design and optimization process
The different actors that are involved in the development of an MDO framework in the context of AGILE are
architects, integrators, discipline specialists, collaboration engineers and the customer. The roles of these
actors can be described as follows:

• Customer: the primary user of the framework. Responsible for defining the design task, top-level re-
quirements, and available development lead-time.

• Architect: responsible for specification of the design case in the framework, such as collecting the re-
quired tools, defining the design phases and the dimensionality of the design space to be explored.

• Integrator: responsible for the deployment of the design and optimization processes, and for the man-
agement of such processes within the MDO framework.

• Discipline specialist: Responsible for providing analysis tools within the framework, such as a simula-
tion for a specific domain, or an optimization service.

• Collaboration engineer: Responsible for providing the integration and maintaining the interfaces within
the framework, necessary to connect the various competences and making them accessible to the
framework. It includes the secure integration of software apps in different networks.

The relation of the various actors with three domain layers in the MDO framework can be seen in fig-
ure 1.7. The level of abstraction on which the actors operate are indicated by the distinguished between the
product and process model related activities. The integration of tools focus on the product scope. This prod-
uct scope is characterized by the parametric and geometric properties defined in the product model. The
upper layers focus more on the process model definition: the coupling of tools and activities in executable
processes.

The amount of actors involved in the setup of 3r d generation MDO frameworks lead to challenges in
ensuring consistency of models and knowledge during the design and optimization process. This comes from

6 1. Introduction

Figure 1.7: Different levels in the information domains, actors (customer, architect, integrator, discipline specialists, collaboration engi-
neer) involved in the context of AGILE and key requirements of each level in MDO framework development (adapted from [4])

the fact that a large amount of people involved in a single development process increase the risk of having
different interpretations on the same model or representation of knowledge. Moreover, an increasing number
of actors involved in a single project requires a good subdivision of work and assigned roles in the design and
optimization problem. This challenge and other challenges involving the setup of 3r d MDO frameworks are
further explained in the next section.

1.5. Challenges in setting up of 3r d MDO frameworks
As can be read in the section 1.1, increasingly complex and collaborative MDO frameworks are required to
create a breakthrough in novel aircraft development. This however surfaces a lot of challenges, presented in
this section.

The success of MDO framework implementations not only lies in improving on the setup of executable
MDO workflows, but also the ability to reuse the underlying models developed along the way. As supported
by a critical analysis on various MDO frameworks by Padula and Gillian [27] it is found that a lot of the effort
put in the process of producing a good design is often lost or discarded before a next level or design cycle was
initiated.

As concluded from the setup of the first AGILE design framework much effort was required to identify
all input/output relations during the integration of the various tools in the setup phase of the framework
development process [8]. Moreover, the current methods to couple each tool to a common data model is
not easily maintainable due to manual editing of input and output files using XML definitions. During this
process of manually defining input/output relations of each tool it is currently difficult to answer questions
such as: do I have enough tools to solve the MDO problem? Is data flow possible? Is my tool using the correct
product definition as used by other tools? What is the impact of introducing a new tool in the process model?
These challenges contribute to the fact that 80% of project lead-time is typically spent on the setup of the
framework [8].

Given that there is only a small portion of time left after obtaining a first design iteration, puts a lot of
stress on the design team. Moreover, the limited time left to run the simulation workflows for different design
scenarios poses a large risk on the project [42].

A big challenge that remains after setting up an executable framework in the design and optimization pro-
cess is a lack of understanding and flexibility. This lack of flexibility and understanding is most often the result
of a missing system level overview, leading to difficulties in finding inconsistencies in the setup simulation
workflow, introduction of new design competences, managing requirements and the making of design deci-
sions [42]. Besides a lack of system level overview, collaboration is often hampered by working on distributed
workflows from different locations. Hence, the making of design decisions is affected by geographical barri-
ers.

Suboptimal collaboration between partners involved and integration of available capabilities within the
consortium yields waste in the design and optimization process. Waste can be characterized as effort neces-
sary to overcome difficulties in accessing, retrieving information or confirm and correct inaccurate informa-

1.6. Research Objectives 7

tion [14]. This additional effort is associated with an increase in man-hours. Hence, waste leads to additional
costs and an extension of project lead-time.

This thesis report does not consider the challenges involved in achieving a convergent solution in the
shortest time possible by addressing the architecture, technologies or computation techniques involved in
solving MDO problems. However, an approach is followed to address the challenges of improving the integra-
tion of the various actors, tools and automated design processes in the setup and operation on 3r d generation
MDO frameworks. The challenges addressed during the research presented in this paper can be summarized
as follows:

• A lack of formalization of the business process in the setup of MDO frameworks leads to inefficient
integration of knowledge and tools.

• The complexity of collaborative design requires different abstractions of knowledge to coordinate the
development process of the framework. This knowledge is currently not easily accessible and traceable
during the development process.

• The current use of raw XML editing to support database management features are not easily main-
tainable. This leads to a lot of effort required to make disciplinary tools compliant to a common data
model.

• Due to lack of formalization of the overall development process of the MDO framework maintainability
and reuse in knowledge during and between projects is at risk.

• Feedback on the completeness and consistency of the framework for a particular design case is discov-
ered in the later stages of implementation resulting in waste and undesired increase in lead-time of the
development process.

1.6. Research Objectives
The research presented in this thesis aims to support the setup of collaborative MDO frameworks in the con-
text of the AGILE research project. As presented in section 1.5 various various open challenges remain in the
integration of a business process to assist the various actors in setting up such a framework in a distributed
setting. For this purpose the work presented in this thesis aims to develop a collaborative environment to
integrate the business process activities required to formulate and operate the design and optimization pro-
cess. In order to investigate means to improve the integration of the various actors involved in the setup phase
of the MDO framework, allow for more collaboration and control to reduce project lead-time the following
research objective is defined:

Support the setup of 3r d generation MDO frameworks by developing a collaborative environment in which the
activities leading to an automated design workflow are integrated in the business process layer

In order to integrate the business process layer, tools and data model an interface is required to facilitate
knowledge exchange. In this thesis research a collection of tools coupled to a common data model is defined
as a process model and the data model as a product model. Together these models are used to define the
foundation of the MDO framework. The status of integration is determined by completeness and consistency
of the set of tools and data model to arrive at an executable MDO workflow. In order to measure and value
the completeness and consistency of the MDO framework the following sub-objectives are defined:

• Sub-objective 1: Enable the automatic integration of tools and the data model by reuse of standardized
product and process models.

• Sub-objective 2: Provide feedback to the architect during integration of the MDO framework compo-
nents by enabling in-the-loop model verification.

• Sub-objective 3: Enable inspection on the MDO framework status of integration by developing a GUI
to support MDO framework development in the AGILE project.

In order to test whether the goals are achieved, the developed collaborative environment is deployed and
tested during workshop sessions. Moreover, the collaborative environment will be used to support in the for-
mulation of WP4 use-cases introduced in section 1.3 to support the analysis of novel aircraft configurations.

8 1. Introduction

1.7. How to read
The remainder of this report is composed of five chapters. In this five chapters the author would like to guide
the reader through the undertaken steps taken during this thesis research. In chapter 2 the terminology used
and all components present that describe the knowledge architecture of an MDO framework used within
this report. Moreover, a formalized approach is presented which characterize the steps required to setup
and operate an MDO framework. In chapter 3 all enabling methodologies and technologies researched and
used in the context of this research are presented. Chapter 4 discusses the implementation of a collaborative
implementation to support the setup and operation of 3r d generation MDO frameworks. Next, in chapter 5
the results of this research are presented, followed by the conclusions and recommendations in chapter 6.

2
Design and optimization system

In this chapter the design and optimization process is analyzed to identify the main steps involved in the
setup and operation phases. In order to develop a collaborative environment which acts as a single system to
support in this design and optimization process this chapter tries to answer questions such as:

• What are the main MDO framework requirements which need to be supported by the system?

• What are the main steps involved in the setup and operation phase of the design and optimization pro-
cess?

• What are the distinguishable information layers and components in the MDO framework which require
integration in the collaborative environment?

First an overview of key requirements in the development of any MDO framework is presented in sec-
tion 2.1. Integration of all components is key to provide an operable system to support in the design and
optimization process. The challenges implied with system integration are presented in section 2.2. Next, in
section 2.3 the main steps implied with an MDO-based development process are described. The MDO frame-
work development process, derived from the MDO-based development process, drives the functionality that
the collaborative environment developed by the author needs to support. Finally, in section 2.4 the knowl-
edge architecture describing all layers and components which define an MDO framework is presented. This
knowledge architecture plays an important role during the development and integration of the collaborative
environment’s main components and interfaces developed during this research.

2.1. MDO framework requirements
In order to support the various actors involved in the setup, operation and execution phases of a design and
optimization process various requirements need to be satisfied. These requirements are imposed on the
architectural design, problem formulation, problem execution and accessibility of information. The set of
requirements imposed on a design and optimization system are presented in the following sections. These
requirements extend the MDO framework requirements defined by Salas and Townsend [31].

Architectural design
Salas and Townsend [31] propose the following requirements on the architectural design of an MDO frame-
work:

• Requirement AD1 Intuitive GUI : The GUI should allow for end-users to quickly understand and learn
to use the features of the framework.

• Requirement AD2 Design using Object-Oriented (OO) principles: The strength of OO modeling is that it
allows for flexible and re-usable programming [9]. OO modeling has various advantages in the context
of MDO applications, such as switching between analysis or optimization methods at run-time and
extends naturally into distributed computing.

9

10 2. Design and optimization system

• Requirement AD3 Extensible and support for developing the interfaces required to integrate new pro-
cesses into the system: Integration of new tools or discipline codes, optimization methods in the frame-
work should be enabled for the end-users.

• Requirement AD4 Minimized overhead imposed on the optimization process: Performance measure-
ments should be provided to enable the user to identify time-consuming activities.

• Requirement AD5 Ability to handle large problem sizes: In order to support design and optimization
problems with a high level of fidelity the framework should support several thousands of design vari-
ables.

• Requirement AD6 Support collaborative design: As stated in section 1 next generation MDO frame-
works involve different disciplines and associated specialists. Therefore it is desired that the frame-
work architecture allows for collaborative design in which multiple users have simultaneous access to
problem data.

• Requirement AD7 Utilization of standards: Use of standards ensures that data and messages used
within the framework are unambiguous to disciplinary boundaries. A common language, for storing
problem information and exchanged data is required to preserve invested knowledge. This lowers the
maintenance cost of the framework.

Problem formulation
Salas and Townsend [31] propose the following requirements on the problem formulation capabilities of an
MDO framework:

• Requirement PF1 A framework should allow the user to configure complex branching and iterative MDO
problem formulations easily without low-level programming: Using a higher level of abstraction en-
ables the user to formulate an MDO problem faster with less risk of errors. This ideally is extended
through a visual programming interface.

• Requirement PF2 Easy reconfiguration of MDO problem formulations: This involves editing existing
processes or adding new processes. This enables the user to explore alternative solution strategies of a
problem without the need to build a problem from nothing.

• Requirement PF3 Support the user in incorporating legacy codes and proprietary codes into the MDO
problem formulation: Supporting the use of legacy and proprietary codes enables the users to con-
tinue working using familiar coding languages and improves productivity. To support this, the MDO
framework should support wrapping functions that allow for tools and codes to communicate with
each other. These wrapping functions should transform outputs of interest and inputs in appropriate
files for each tool.

• Requirement PF4 Support several optimization methods: As not a single optimization method is suffi-
cient to support each optimization problem, various optimization methods should be provided.

• Requirement PF5 Ability to debug multiple processes executing on computers across a network: The
framework should provide feedback to the user to warn for improperly configured processes and allow
the user to monitor progress during execution to step through intermediate results of several remote
computations.

Problem execution
Salas and Townsend [31] propose the following requirements on the problem execution of an MDO frame-
work:

• Requirement PE1 Automated execution of processes and the movement of data: Traditionally discipline
specialist rely on their own scripts to transform outputs of interest provided by other tools to their own
desired format, this process should be automated. Preparing interfaces between tools in such a way
that human transformation activities are required allow for faster transfer of data between processes.

2.2. System integration 11

• Requirement PE2 Parallel execution of processes: Parallel execution, if possible, would be advantageous
for computationally intensive MDO problems. The framework should provide the ability to identify and
execute codes or subsystem optimization in parallel without compromising the result.

• Requirement PE3 Support execution distributed across a network of heterogeneous computers: The
framework should utilize the advantages of running tools and codes on computers optimized for a
certain analysis available in the network. This is also important to remove license constraints, where
tools can be remotely executed without the need to have the tool running locally.

• Requirement PE4 Support user interaction (steering) during the design cycle: During the design cycle
the user needs to be in the loop continuously to monitor progress and adjust the process if desired. In
MDO problems this involves changing constraint or design variables, adjusting termination or conver-
gence criteria or replacing analysis tools.

• Requirement PE5 Allow for batch operation: Ideally, the users needs to be able to define a set of prob-
lems which can be executed after each other without user interaction. This would allow the user to
experiment with multiple starting points for an optimization problem.

Accessibility of information
Salas and Townsend [31] propose the following requirements on the accessibility of information of an MDO
framework:

• Requirement AI1 Provide database management features: A central database to maintain data used by
multiple disciplines is convenient for large design problems. The user should have the option to define
which data are written to and read from the central database.

• Requirement AI2 Visualize intermediate and final optimization and analysis results: Using the data
stored in the central database, results should be made available. These results should provide the ability
for the user to tack the behaviour of design variables, constraint or objective variables and the overall
design.

• Requirement AI3 Provide the ability to monitor the status of the system and an ongoing execution: The
framework should provide visual feedback on which processes are currently executing. The ability to
monitor progress allow for the user to be alerted of potential problems such that timely actions can be
taken.

• Requirement AI4 Provide some mechanism for fault tolerance: The framework should provide the abil-
ity to recover from a failed execution without the risk of losing previously generated data. The frame-
work should allow the user to restart from a previous state.

The author proposes to extend requirement AI1 to provide for database management features on the
problem definition level as well. This allows for storing a complete set of data leading to a certain result. This
leads to improved transparency of the overall design and optimization process, but also enables part of the
design chain to be reused in future processes.

During this research the focus lies on complying to the requirements regarding the architectural design,
problem formulation and accessibility. These requirements drive the integration of the various components
in the collaborative environment which will be explained in more detail in section 4.1.

2.2. System integration
A system that allows for the setup, operation and execution of the design and optimization process should
comply to the requirements defined in section 2.1. In order to support the modular integration of new
processes in the system (requirement AD3), utilize modeling standards (requirement AD7), support easy
(re)configuration of MDO problem formulations (requirements PF1 and PF2), provide a steering function
during the design cycle (requirement PE4) and provide an accessibility of information (requirements AI1-
AI4) systems integration is required. Systems integration is the composition of a capability by assembling
elements in a way that allows them to work together to achieve an intended purpose.

12 2. Design and optimization system

Within the AGILE consortium various capabilities are available to support in problem formulation, prob-
lem execution, visualization of results, standardization and distributed collaboration. As stated in section 1.5
an encompassing system to integrate all elements does not yet fulfill all framework requirements. In an ap-
proach to integrate all elements in a single system, vertical integration is required. Vertical integration is the
process of integrating elements developed within a similar context to support one common purpose. Vertical
integration of all elements reduces waste in the design and optimization process, as a lot of interfaces are
automated.

2.3. MDO-based development process
In order to develop an MDO workflow, various steps should be taken into consideration. A typical MDO-
based development process is displayed in figure 2.1. This typical MDO-based development process is split
in two main phases: the formulation phase and the execution phase [43]. The formulation phase depicted
on the left side of the figure is used to define the MDO problem and setup an inexecutable MDO process.
This formulated MDO process is used as a blueprint for an executable simulation workflow. Before an exe-
cutable simulation workflow is obtained, the neutral MDO process formulation needs to be translated into
a formulation required by a selected PIDO (Process Integration and Design Optimization) application. After
workflow execution an (optimized) design solution is obtained and the MDO-based development process
can be repeated to obtain different design solutions.

Figure 2.1: Typical MDO problem formulation and execution process overview and terminology (based on [43])

The MDO-based development process presented in figure 2.1 focuses mainly on problem formulation
and problem terminology. What’s missing in this figure is a layer of overhead. Behind an MDO problem, there
is a customer who has a product he or she wants to (re)develop. Moreover, there is an architect who defines
the premises of the MDO problem that needs to be specified. A layer of overhead to structure the MDO
based development process is important if one wants to work collaboratively on the setup and operation of
a distributed MDO framework. In collaboration of the author with members of the AGILE consortium, five
steps were identified to formalize the activities required to develop such an MDO framework. The goal of this
so-called MDO framework development process is to assist in the development of an integrated application
used to solve a specific MDO or other complex design problem. The MDO framework development process
can be seen in figure 2.2 along with its relative position w.r.t. complex PDPs.

Figure 2.2 displays five steps which describe the MDO framework development process. Although these
steps are presented as sequential, previous experiences dictate that this process is highly concurrent in prac-
tise. The earlier defined MDO-based development process can be projected on the more complete MDO
framework development process. Each of the five steps can be explained in more detail as follows:

1. Define design case and requirements: In the first step requirements on the design concept, required
fidelity, available lead-time, required analyses, available competence providers, etc. are formalized.
Next, a set of available design competences and key design parameters which need to be included in
the design case are agreed upon with the discipline specialists, architect and customer(s).

2. Specify repository of design competences and data model: In the second step the underlying models
of the design case must be defined. These underlying models are the product and the initial process
model. This product model contains all parameters which are used to describe the product which is

1Based on: AGILE, “D65 AGILE framework architecture,” AGILE project (H2020-636202), 2016

2.4. MDO framework knowledge architecture 13

Define

design case &

requirements

Specify

repository of DCs

& data model

Formulate

MDAO

architecture

Implement

& execute

AD workflow

1 2 3 4 Inspect

design study

results

5

Formulation phase Execution phase

MDO framework development process

Complex product development process

(eg. Aircraft, Engines, Automobile)

Conceptual

Design

Detailed

Engineering

MDO problem formulation and execution process

Figure 2.2: MDO framework development process and its relation w.r.t. the product development process of an aircraft, engine, auto-
mobile, etc. 1

to be designed. The initial process model contains all design competences, of which the inputs and
outputs are defined. The design competences, coupled to a common data model form a case-specific
repository, used to formulate the MDO process.

3. Formulate Multidisciplinary Design Analysis and Optimization (MDAO) architecture: In the third
step of the development process the formalization stage of the design and optimization process is en-
tered. In this step a suitable MDAO strategy and architecture is formulated to solve the design case.

4. Implement and execute the Automated Design (AD) workflow: In the forth step an Automated De-
sign (AD) workflow is implemented in a selected PIDO application. The executable workflow uses the
formulated MDAO architecture of the previous step.

5. Inspect design study results: Finally in the fifth step the design study results from the previous step can
be inspected. This requires transformation of the raw data produced by the executed MDO workflows
to graphs and figures which can be interpreted by the integrator and customer.

The main difference between the MDO-based development process defined in [43] and the MDO frame-
work development process is the actor perspective. The MDO-based development process is formalized from
the architect’s perspective, whilst the five steps describe a process in which the integrators, architect, collab-
oration engineers, discipline specialists and the customer have a clear distinguishable goal. For example,
assembling a repository of tools required to solve an MDO problem requires actions from various discipline
specialists. The MDO architect is dependent on the discipline specialists to make sure their tools are avail-
able and compliant to a common data model, but ideally does not need to be involved in the first two steps
of the development process. Having a clear distinction between roles and deliverables at each stage of the
development process, helps the collaboration process and speeds up the overall design process by ensuring
each actors operates in an environment which suits their abilities best.

2.4. MDO framework knowledge architecture
The methodological approach followed in this research works on the foundation of the MDO framework
knowledge architecture defined in [42] which can be seen in figure 2.3.

The knowledge architecture contains three layers which represent an MDO framework from top to bot-
tom: Product Development (PD) layer, Automated Design (AD) layer and Design Competences(DCs) layer.
The figure also shows the required interfaces between the different layers. An extra data layer is added to con-
trol the integration of DCs in the PD layer. These layers and their components are explained in more detail
in the next sections to illustrate the integration required in the collaborative environment that needs to be
developed. This collaborative environment involves mainly the PD layer and the PD/AD interfaces.

14 2. Design and optimization system

Figure 2.3: Knowledge architecture of the various components and information layers which can be identified in an integrated MDO
framework (adapted from [42])

2.4.1. Product Development (PD) layer
The Product Development (PD) process is the top layer in the knowledge architecture. This layer contains
both manual and automated tasks which contribute to the development of the product desired by the cus-
tomer. The main purpose of the PD layer is to assist in the design of an optimal product which meets all
requirements acquired from the customer. The manual and automated tasks in the PD define a business pro-
cess, which is used to control the setup and execution of the design and optimization process. According to
van Gent et al. [42] two primary functions of the business process are:

1. Support the user in setup of a design problem and related simulation workflows

2. Support the user during the execution of the required automated design process with manual interfaces
to that process and by retrieving information on the simulation process performance and the design
results.

In this thesis research a web-based information and Workflow Management (WFM) system KE-chain is
used to integrate the PD layer of the MDO framework. KE-chain is developed by KE-works 2. KE-chain pro-
vides access for multiple end-users to a single project through a user-based authentication system. KE-chain
facilitates management of project data, integration of external applications in the business process and mon-
itoring of progress. Based on these strengths KE-chain provides an excellent interface for the different actors
operating in the PD layer.

The current state and required extensions of the application architecture of KE-chain is displayed in fig-
ure 2.4. Two main domains can be identified: the client and server domains. The client domain is com-
posed of an Ext JS 6 3 frontend. This frontend is accessible to any PC or tablet through the web-browser. A
KE-chain client communicates to the backend application server through a user-authentication protected
Django REST framework Application Programming Interface (API) 4. The backend core’s main component is
called a scope. A scope is a container to store project related information. A scope has two information do-
mains called the Product Information Model (PIM) and the Workflow Information Model (WIM). The domain
of PIM contains all models and actions used to read and write product related information. The domain of
WIM contains all models and actions to read and write process related information. The domains of PIM and
WIM will be explained in more detail in sections 3.3.1 and 3.3.2 respectively.

2http://www.ke-works.com(accessed11/03/2017)
3http://docs.sencha.com/extjs/6.2.0/ (accessed: 10/05/2017)
4http://www.django-rest-framework.org/ (accessed 14-05-2017)

http://www.ke-works.com (accessed 11/03/2017)
http://docs.sencha.com/extjs/6.2.0/
http://www.django-rest-framework.org/

2.4. MDO framework knowledge architecture 15

KE-node

Core

Scope

KE-chain Client(s)

KE-chain

backend server

Ext JS 6 frontend

KE-node server

Django REST

Framework API

Service

External application

(e.g. Catia, Excel,

Python function,

CLI executables)
WebSocket

API

User- authentication

API

Service

Integration

Module (SIM)

Product

Information

Model (PIM)

Workflow

Information

Model (WIM)

Database

PostgresQL database

Figure 2.4: Application architecture of KE-chain

In order to achieve the desired PD layer functionality to support in the setup of 3r d generation MDO
frameworks improvements to the KE-chain architecture need to be made. The following improvements are
required:

• Extend the core of the KE-chain backend server to enable reuse of modeling knowledge to support in
the accelerated setup of new PDPs. The component developed by the author to improve the reuse of
modeling knowledge is called the knowledge library and is further discussed in section 4.3.

• Extend the core of the KE-chain backend server by a module which extends the domains of PIM and
WIM such that the coupling of both domains can be verified and monitored to feedback on the con-
sistency of defined product and process models. The components developed by the author to monitor
and verify the coupling and configuration of product and process models are called the model veri-
fication and model inspector module. Both developed components are further discussed in section
4.2.

• Extend the functionality of SIM with methods to support in the retrieval and writing of information
which support the end-user in the inspection or sharing of product or process knowledge. The imple-
mentation of the extended functionality is further discussed in section 4.2.

• Extend the functionality of SIM such that it is able to throughput communicate the status of service
execution. These improvements are further discussed in section 4.1

16 2. Design and optimization system

• Extend WIM to allow for customized task layout to improve user experience by changing the visualiza-
tion of information contained in task-forms and improving navigation patterns. These improvements
are further discussed in section 4.2.

All components enlisted above require an extension of both the KE-chain backend server and the fron-
tend as displayed in figure 2.5. In this figure the introduction of new components are indicated in green and
components and the extension of existing architectural components is indicated in orange. The backend
needs to be extended to define all models and operations which are required to add the desired functions.
Moreover, the API needs to be extended to enable exposure of the new functionality in the KE-chain front-
end. Finally, the frontend needs to be extended to create the new views, dialogues and to make the required
PD functionality available for the KE-chain client(s).

Figure 2.5: Required extensions to the application architecture of KE-chain to support in the required PD layer functionality. New com-
ponents which need to be developed are indicated in green and components which require extension are indicated in orange.

To support in the integration of external applications KE-node is used. KE-node provides a remotely ac-
cessible server environment from which local services can be executed. These local services can range from
Python scripts to external Computer Aided Design (CAD) applications such as Catia, PIDO applications and
Microsoft Excel scripts which can be executed through the Command-Line Interface (CLI). KE-node com-
municates directly to KE-chain through a WebSocket (WS) API. This WS API communicates to the KE-chain

2.4. MDO framework knowledge architecture 17

server through a user-authentication system. The information which is exposed from KE-chain to the KE-
node server is dependent on the configuration of special service tasks. A service task is schematically dis-
played in figure 2.6. A service task extends the human based tasks in WIM with additional functionality. A
service task can be configured such that it reads and writes data to a KE-chain project through input and out-
put mappers. These input and output mappers should comply with the input and output schemes defined
on the KE-node service. Input and output schema validation ensures a service obtains a correct set of input
data and writes a correct set of output data to KE-chain.

Figure 2.6: Schematic overview of KE-chain service task

Using KE-node services, various applications used throughout the MDO framework development process
can be integrated. Applications used in the AD layer of the AGILE framework architecture are described in
the next section.

2.4.2. Automated Design (AD) layer
The AD layer contains simulation workflows which can be executed in distributed networks. The simulation
workflows are composed of several DCs which represent disciplinary analysis tools. The interaction between
the PD and AD layer aims to control the execution but also the setup process of the MDO framework.

In AGILE, a graph-based system is in development called KADMOS (Knowledge- and graph-based Ag-
ile Design for Multidisciplinary Optimization System) [43]. In order to integrate the PD and AD layer the
Common Multidisciplinary Design and Optimization Workflow Schema (CMDOWS) is used. KADMOS and
CMDOWS are explained in more detail in the following sections.

KADMOS

KADMOS aims at speeding up the setup phase of the MDO framework by assisting the architect in defining
the strategy to solve the MDO problem, architecture and solution strategy. KADMOS is used to automate
the formalization side of the MDO-based development process depicted earlier in figure 2.1. For this, KAD-
MOS uses graph based analysis. The KADMOS process is schematically depicted in figure 2.7. This schematic
overview shows a a representation of the KADMOS graphs associated with the various steps in the MDO-
based development process and an example of the associated MDO workflows in a neutral format, the Ex-
tended Design Structure Matrix (XDSM)[19]. The example KADMOS graphs and XDSMs show the formaliza-
tion of a simple MDO workflow defined as the Sellar problem[33]. This Sellar problem is composed for simple

18 2. Design and optimization system

analytic functions representing disciplinary tools, constraint functions and an objective function. The Sellar
problem is commonly accepted within the MDAO community to test various MDO architectures5. All steps
of the KADMOS process are automated, and controllable through a Python CLI.

The starting point for KADMOS is a knowledge base. This knowledge base contains an abstract repository
of all tools. This abstract repository contains knowledge on a tool’s execution time or fidelity level and a
set of all input and output parameters which originate from a common data model. Importing all tools and
their connections to the common data model is transformed in a Repository Connectivity Graph (RCG). Next,
redundant tools or functions are eliminated from the graph, leading to a Fundamental Problem Graph (FPG).
The next step is to wrap an MDO architecture (e.g. MDF, IDF, DOE) around the problem. After completion of
all steps a neutral formulation of the MDO process can be exported, such that it can be translated to specific
Simulation Workflow (SWF) software. This neutral formulation is stored according to the CMDOWS standard,
defined in the next section.

CMDOWS

CMDOWS contains meta-data on all DCs such as their required inputs and outputs as can be seen in figure
2.8. These inputs and outputs refer to parameters defined in a common data model. This is further explained
in section 2.4.3. The parameters and DCs form the nodes in a graph that is used to define the MDO workflow.
Parameters that have a specific role (design variable, objective or constraint) in the MDO architecture are
stored as architecture elements. Finally the CMDOWS stores information on the problem definition and the
MDO architecture. CMDOWS is currently under development within the AGILE consortium 6.

2.4.3. Design Competence (DC) layer
The DC layer contains the various disciplinary tools and functions necessary to solve a particular MDO prob-
lem. In a multi-site and collaborative approach to setup an MDO framework each DC has a discipline special-
ist responsible for maintenance of his/her tool. Moreover this discipline specialist is responsible for ensuring
a tool is able to communicate with other tools. In order to enable integration of all DCs in the simulation
workflows, they need to read and produce data which is in accordance with a central data model definition.

A central model approach is used to define a common namespace. The number of interfaces between
analysis modules has a large effect on the efficiency in data exchange and flexibility of a design environment
[5]. For this purpose a central model approach, depicted in figure 2.9, is a great enabler for reducing the num-
ber of interfaces. As disciplinary modules (indicated by blue circles) do not exchange data directly between
one another, but trough a single data model, the number of interfaces is reduced by a factor of (n−1)

2 . Here n
is the number of disciplinary modules.

The central data model used in AGILE is CPACS. CPACS is acronym for Common Parametric Aircraft Con-
figuration Schema is an XML-based data model developed at the German Aerospace Center (DLR) [23] [8].
CPACS, depicted in figure 2.10 describes the characteristics and attributes of aircraft, engines, climate impact,
fleets and mission in a structured, hierarchical manner for various levels of fidelity. Integration of all DCs in
an executable workflow is controlled by ensuring each DC reads input data stored in a CPACS file and writes
output data back in that CPACS file. This way of standardizing the data flow ensures that a common language
is used to work on a single product definition by removing ambiguity in what data is to be exchanged.

In this chapter the knowledge architecture describing an integrated MDO framework is presented. In this
knowledge architecture various layers and components were identified which need to be integrated through
appropriated interfaces. In this thesis research mainly the PD layer and PD/AD interfaces are considered. In
this PD layer a high amount of information needs to be exchanged, acquired and visualized to support the
actors in the setup and operation of an MDO framework.

In the next chapter lean information management principles are presented. Lean information manage-
ment principles are investigated in the context of this thesis research in an approach to improve the per-
formance of the overall PDP. The approach here is to reduce the design and optimization process lead-time
through mitigation of waste. Moreover the next chapter discussed knowledge technologies to support in the
information and knowledge interfaces which needs to be developed for the PD & AD layers. Finally the next
chapter addresses the topic of product and process modeling. This plays an important role in the definition
of the MDO framework’s underlying models.

5Example of the Sellar problem formulated by the MDAO community, http://openmdao.org/releases/0.2.5/docs/mdao/intro.
html (accessed: 06/06/2017)

6The CMDOWS data schema is in development by the AGILE project, www.agile-project.eu, to be published in 2017

http://openmdao.org/releases/0.2.5/docs/mdao/intro.html
http://openmdao.org/releases/0.2.5/docs/mdao/intro.html
www.agile-project.eu

2.4. MDO framework knowledge architecture 19

MDO development
process

Associated KADMOS graphs Example (Sellar problem)

Import tools
and connections

Determine
required elements
for MDO problem

Wrap MDO
architecture

around problem

Translate to
speci�c SWF

software

Export as
executable
work�ow

data
schema

G1

G2

D2

F1

F2

D3

D1

data
schema

G1

G2

D2

F1

D1

data
schema

G1

G2

D2

F1

D1

MDA

OPT

INI
D1

D2

F1

G1

G2

MDA
OPT

INI

D1

D2

F1

G1

G2

MDA
OPT

INI

Repository Connectivity Graph

Fundamental Problem Graph

MDO Data Graph

+

MDO Process Graph

SWF Graph

External
input

Knowledge
base

MDO
architectures

database

SWF
software

translators

MDO
problem

 to solve?

D1

dataschema
G1G2

D2
F1

F2
D3

SAND

IDFMDF
CO

ModelCenter

Optimus

RCE

- design variables
- objective
-constraints

Figure 2.7: Schematic overview of the MDO development process in KADMOS [43]

20 2. Design and optimization system

Figure 2.8: CMDOWS data structure for MDO workflows

Figure 2.9: Central model approach [5]

Figure 2.10: Centralized CPACS data structure for Multi-Disciplinary Frameworks [34]

3
Enabling Methodologies and Technologies

In this chapter enabling methodologies and technologies are presented and analyzed. The purpose of this
chapter is to lay the foundations of the work that is done in this thesis. In this chapter the author will answer
the following questions:

• How can a reduction in the design and optimization process lead-time be achieved by incorporating lean
information management strategies?

• What are the key principles the collaborative environment developed during this research must comply
to such that waste in the business process activities is minimized?

• What knowledge technologies exist which enables the storing and writing of knowledge in an inter-
changeable format such that knowledge and information is able to ‘flow’ between different integrated
systems?

• What is the best way to visualize, represent and share product and process modeling knowledge in the
context of this research?

• What is the ontology used in the context of this research to model product and process models? And how
is this ontology extendable to allow for model verification?

This chapter first discusses the topic of information management in section 3.1. Next, in section 3.2 var-
ious methods to share, exchange and store knowledge are presented and analyzed. Finally in section 3.3
product & process modeling languages and ontology are discussed.

3.1. Information Management
During the design and optimization process a lot of knowledge is gathered and data is generated. But more
importantly, all activities performed in the design and optimization process involve structure and coordina-
tion of many different actors in a cross-organizational environment. Given the high dependence of knowl-
edge within the organization, the management of information is critical in order to operate efficiently and
effectively [14]. This requires the development of an information system, capable of managing information.

Information management considers the activities involved with the creation, organization, maintenance,
visualization, reuse, sharing, communication and disposal of information [14]. The generation of informa-
tion can be considered valuable. Of course adding value within an organization is always bound by time and
cost. Moreover product quality is a driving factor within an organization. Together time, cost and quality
are considered as typical Key Performance Indicators (KPI) on a PDP level [24]. In order to minimize time
and cost whilst designing a product with high quality lean principles can be used. Lean principles imply
eliminating all waste and unnecessary actions in the steps which are used to add value. Waste can be catego-
rized as activities which are required to overcome missing or wrong information. Moreover, waste can imply
waiting on information, information excess and excessive activities needed to overcome for transport or bad
exchange of information.

21

22 3. Enabling Methodologies and Technologies

To demonstrate the concept of lean information management the value-flow model is shown in figure 3.1.
This model can be applied to any information system or information processing activity. An example of an
information processing activity is the visualization of an inspectable MDO workflow based on a certain set
of data or the sharing, documenting and managing requirements. Both types of information are valuable to
various end-users of the collaborative environment which is the goal of this research. The value-flow model
describes the process of value flow which is induced by an end-user requesting information. This value flow
describes the process of capturing raw data or information and transforming it in a way that it has maxi-
mal value to the end-user. Information management considers the value of information, the value stream,
information pull and the flow of information. These can be described as follows:

• Value: Information and functionality must supply value to the information consumer or end-user. In
a lean process, value needs to be defined from the customer’s perspective. For example in a PDP a
specific product needs to be developed within a specific time.

• Value stream: The value stream is the process of transforming information into value for the customer.
In a lean process this value stream is formalized for a particular product or family of products. In the
PD layer a lot of actors are involved. In a lean information process actors should be enabled to operate
the framework by minimized waste. Waste can be reduced by integrating different design activities in a
single system and automation of information intensive processes [14].

• Value flow: As information is seldom available in one simple step, a series of activities are required to
transform information. In a lean process it is important that information flows efficiently between dif-
ferent systems and end-users. The value flow can be improved by ensuring that information is available
real-time and up-to-date. An example of applying lean flow principles to PDPs is the shift from tradi-
tional sequential to concurrent processes. Concurrent engineering reduces waste through integration
of multiple design disciplines and upstream and downstream functions involved in the product and
process design activities [37].

• Pull: In a lean information system it is important that information only flows when it is required by
an end-user. In the MDO framework development process, information flow is therefore triggered by
a customer’s specific need. All steps in the development process require information and trigger the
generation of new information. When different actors in the development process perform their work
they must pull only the information they need to perform their work. Other type of information implies
waste.

Figure 3.1: The value-flow model as applied to information management [14]

3.2. Knowledge technologies 23

Studies in the field of information quality enable the evaluation of information quality and their underly-
ing models. Examples of information quality categories are relevance, completeness, ease of understanding,
interpretability, traceability and ease of operation [45]. For more examples and improved explanation of all
information quality categories the reader is referred to appendix A.

Adopting lean principles in the PD layer of the collaborative environment to support the setup of collabo-
rative and distributed MDO frameworks is essential. Mitigating waste and managing the flow of information
adds value to the information generated in the design and optimization process. This thesis work aims to
speed up the setup phase of the design and optimization process through mitigating waste in the informa-
tion intensive processes. Mitigating waste through integration, formalization and automation of information
management activities leaves more time for exploring different design solutions. To summarize, lean princi-
ples applied to the PD layer of the MDO framework knowledge architecture implies:

• Automate repetitive information processes, such as input/output coupling of design competences to a
common data model in favor of manual XML editing.

• Integration of architectural components in which the information interfaces are automated.

• Formalization of knowledge through forms and information models, such that information is stored in
a single format throughout development processes. This favors ease of understanding, interpretability,
traceability and ease of operation.

• Improve the accessibility of information in the cross-organizational environment. Only relevant infor-
mation should be provided when needed based on up-to-date information.

• Assist in the setup of correct information and data models. This helps to ensure information is complete
and consistent.

3.2. Knowledge technologies
In this section knowledge technologies are discussed because of the need to formalize knowledge, share
knowledge, transform and exchange knowledge in the development process of 3r d generation MDO frame-
works. The first question which obviously arises is: what is knowledge and how does it play a role in PDPs and
the MDO framework development process?

3.2.1. What is knowledge
Knowledge is considered to be a fundamental resource of every organization. Hence, it is generally agreed
upon that knowledge is an enabler for businesses and organizations in the 21st century to retain their com-
petitive advantage in the engineering market [16, 17]. Various definitions of knowledge exist as displayed
in figure 3.2. From these definitions it becomes evident that knowledge plays an important role in decision
making, solving of problems and to perform skillfully. In the collaborative environment which is developed
during this research, these knowledge roles are just as apparent for the various actors involved in for example
the development process of 3r d generation MDO frameworks as for other type of PDPs.

Figure 3.2: What is knowledge, some examples [22]

There is a big analogy and overlap with information management, discussed in section 3.1, and knowl-
edge management. There is often not a clear understanding of the actual differences, mostly due to miss-
ing distinguishable definitions [6, 12]. Engineers working with design and optimization processes tend to
be more prone on using terms coming from knowledge management. In the context of this research, in-
formation management involves the process of providing the interfaces for making information accessible to
various end-users. Knowledge management in general focuses more on the know-how, know-why, and know-
who compared to information management being more fact based. Therefore it can be said that knowledge

24 3. Enabling Methodologies and Technologies

management aims more and identifying rationale which can have a more lasting impact over the course of
several projects. For this reason knowledge management is an important part of accelerating PDPs through
front-loading, due to project to project knowledge transfer [38].

3.2.2. Semantic Web technology stack
Knowledge technologies is a summary of specifications and solutions used to store knowledge, transform
knowledge and exchange knowledge. A good overview of the available knowledge technologies can be seen in
the Semantic Web Technology Stack in figure 3.3. This overview shows various solutions for different concepts
and abstractions. Usually an application only uses a subset of the visualized stack. The same goes for the
application developed in this research.

Figure 3.3: Semantic Web Technology Stack [26]

During this research an integrated web-based application is developed extending KE-chain. This appli-
cation operates on the PD layer of the MDO framework knowledge architecture. Integration of components
from the AD layer of the knowledge architecture, require the use of knowledge technologies to enable knowl-
edge transfer. Hence, solutions for various concepts in the Semantic Web Technology stack were explored
on the concept of web platforms, knowledge formats, information exchange and models. The next section
describes the various knowledge technologies in more detail.

3.2.3. Storing and writing knowledge
The research presented in this paper involves a lot about managing information and knowledge which is re-
quired for integrating various components in the PD layer of the framework knowledge architecture. There-
fore this section introduces various solutions used to store and write knowledge. Below a summation of
solutions coming from the Semantic Web Technology stack and others are presented. These technologies
describe in more detail solutions to format information using XML, information exchange using Resource
Descriptive Framework (RDF), storing information using Relational Databases (RDBs) or triple stores.

• Extensible Markup Language (XML): According to Milton [22] ’XML is a web standard for storing mean-
ing full information about a group of concepts or about the contents of a document’. XML documents
enable capturing of hierarchical structures such as product models. The use of XML schemes enables

3.2. Knowledge technologies 25

the validation and generation of information structures for many different purposes. For example
product and process related knowledge, ranging from abstract model information to meta-information
about a DC’s level of fidelity or execution time. An example using two DCs for which information is
stored in XML format is given below:

<designCompetences>
<designCompetence uID="Discipline1">

<name> Aerodynamic Analysis </name>
<metaData>

<fidelity> 1 </fidelity>
<executionTime> 16 </executionTime>

</metaData>
</designCompetence>
<designCompetence uID="Discipline2">

<name> Structural Analysis </name>
<metaData>

<fidelity> 2 </fidelity>
<executionTime> 24 </executionTime>

</metaData>
</designCompetence>

</designCompetences>

Using this structure two DCs are defined which can be seen from two opening tags < designCompe-
tence > and two closing tags < / designCompetence >. In each opening tag, attributes can be assigned.
Attributes help in making sure information structures with similar categories can be distinguished from
one another. In this example, an attributed name uID is added for each designCompetence. Using the
logic of tags, attributes and nesting tags allow us to navigate and retrieve information using various
XML parsing modules for example a Python module called ElementTree 1.

XML formatted documents also allow for direct querying of individual attribute values through XPaths.
An XPath is a a path which follows the hierarchical structure of the XML document. In order to find for
example the execution time of the Structural Analysis tool defined in the XML document above can be
done using the XPath shown below. Note that the uID attribute is used to distinguish between the two
DCs.

/designCompetences/designCompetences[Discipline2]/metaData/executionTime

• Relational Databases (RDBs): A RDB is based on a relational model of data. It is organized in one
or more tables, where each table represent an entity type. Every row of a table has a unique ID and
corresponds to an instance of that entity type. A row of an entity is called a record, or tuple. The
columns in the table can be used to assign values to attributes of an instance. A table can also be seen
as a set of tuples which have the same attributes, hence a table is also called a relation. A RDB uses
Structured Query Language (SQL) for querying.

• Resource Descriptive Framework (RDF): RDF is a standard format of XML for describing resources. In
RDF, triples are used to describe a statement. This triple consists of three parts: the subject, predicate
and object. The triples of which RDF is build up can be illustrated using an RDF graph. All relations in
this graph can be captured in the triple structure such as Batman (subject) lives in (predicate) Gotham
City (object).

RDF is part of a collection of non-relational database systems. This collection is referred to as NoSQL
("Not only SQL"). NoSQL solution can be categorized in four categories [3]: Key-value databases, doc-
ument databases, wide-column databases and graph databases. RDF is the largest subset of the graph
database NoSQL solution. According to Bendiken [3], RDF data maps well to object-oriented program-
ming paradigms and to RESTful (REpresentational State Transfer) architectures.

• Triple Stores: In a semantic system, a triple store database is a form of knowledge base which has
been optimized for storing triples. According to Milton [22], ’the triple store in a semantic system is

1https://docs.python.org/2/library/xml.etree.elementtree.html (accessed: 14-05-2017)

https://docs.python.org/2/library/xml.etree.elementtree.html

26 3. Enabling Methodologies and Technologies

usually created and updated by compiling RDF to create the triples. Queries can be made on the triple
store, or on the RDF, using a special language called SPARQL’. SPARQL provides a standardized and
interoperable query language, which is understandable even for non-programmers, whilst have at least
equal capabilities compared to SQL [3].

The developed collaborative environment to support in the setup of 3r d generation MDO frameworks is
build through extending KE-chain. KE-chain makes use of a PostgreSQL2 RDB. This RDB enables the defini-
tion of relational models. This RDB is used to store all data in the KE-chain database using unique identifies
for each record. Records of a model can refer to other models using foreign key objects. An example of such
a foreign key relation, emphasizing the strength of the RDB, is storing information regarding a KE-chain task
configuration. Here a task is related to various input and output properties. Each property has its own record
of type Property, which is related through foreign keys to a task configuration. These relations are explained
in more detail in section 3.3.3. Exploring these relations play an important role in the methods used to eval-
uate the coupling of the product model and process model. The product model is a collection of part models
and property models which are all related to parent child relations. The process model is a collection of tasks.

When shifting our attention to processing information outside KE-chain, information formats are re-
quired which can be read by multiple information systems and applications. For this purpose XML formatted
documents are used. The strength of XML is a lightweight format to store a large amount of information. In
an approach to adopt principles of lean information management in the transfer of knowledge, standardiza-
tion is a key aspect in minimizing waste. Using XML schema validation, a common language can be defined
and used within the organization. In this research two schema validations are used: CPACS 3 and CMDOWS
4. Schema validation and XML technologies are used during this research in the integration of external ser-
vices using KE-node. KE-node enables writing services in Python scripts. Hence the use of Python’s module
ElementTree is used for reading, writing and validating XML CPACS and CMDOWS documents.

In the KE-chain application the Application Programming Interface (API) which formats all data stored in
KE-chain makes use of a RESTful architecture called Django REST framework. Advantages of the Django REST
framework is a web-based interface which enables a seamless and customize integration of KE-chain’s Ext JS
6 front-end and Python backend. All developed extensions developed by the author require an extension of
this REST API, to ensure all defined backend models can be used by the various users through the frontend of
the KE-chain application.

In order to define information models its relations and concepts used need to be formalized. For this an
ontology-based representation is well suited. An ontology can be used to express the terms, entities, classes,
objects and the relationships between them for a particular domain and axioms to constrain the meaning of
defined terms [40]. Hence, an ontology can be seen as a common language for representing knowledge in
a domain. It is an enabling technology, which in the context of for instance Knowledge Based Engineering
(KBE) can be used to define what knowledge to capture, and how to represent it [22]. According to Wang et
al. [46] there are several reasons for developing context models, which define how context data is structured
and maintained, based on ontology:

• Knowledge Sharing: The use of ontologies enables computational entities such as agents and services
in pervasive computing environments to have a common set of concepts about context while interact-
ing with one another.

• Logic Inference: Based on ontology, context-aware computing can exploit various existing logic rea-
soning mechanisms to deduce high-level, conceptual context from low-level, raw context, and to check
and solve inconsistent context knowledge due to imperfect sensing.

• Knowledge Reuse: By reusing other well-defined Web ontologies, new context ontologies can be gen-
erated without the need to start from scratch.

A well established ontology-based modeling language is the Web Ontology Language (OWL). OWL is used
for the creation and sharing of ontologies on the World Wide Web. OWL is part of the W3C’s Semantic Web
technology stack [13]. OWL is modeled using an object-oriented approach, using classes and properties to
describe the structure of a domain. OWL can use the existing body of Description Logic (DL) reasoning in-
cluding class consistency and consumption and other ontological reasoning [46].

2https://www.postgresql.org/ (accessed: 14-05-2017)
3https://github.com/DLR-LY/CPACS/blob/master/schema/cpacs_schema.xsd
4https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.4/cmdows.xsd (accessed: 14-05-2017)

https://www.postgresql.org/
https://github.com/DLR-LY/CPACS/blob/master/schema/cpacs_schema.xsd
https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.4/cmdows.xsd

3.3. Product and process modeling 27

3.3. Product and process modeling
In a product driven design and optimization process various underlying abstraction models can be identified.
These abstractions relate to the product that is to be designed or optimized and the workflow used to perform
the analysis. Traditionally a set of attributes defined in a design and optimization problem is referred to
as a data model. In a design and optimization process to support product development this data model
consists of all properties describing a certain product. For example, an optimization problem in which a
wing structure is analyzed based on aerodynamic and structural performance, the data model is composed
of wing geometric parameters (such as: wing span, sweep, taper), analyses parameters (such as: lift & drag
coefficients, bending moments, design masses), environmental variables (such as: cruise velocity, air density,
temperature) and optional settings required to run the simulation. These optional settings might include load
factors or for example boundary layer separation settings. As all these parameters together act as a blue print
for the resulting optimized product. This blue print is referred to as the product model.

In the following sections first the topics of product modeling and process modeling are explained in more
detail. This is necessary to introduce the concepts on enabling verification on the coupling of the product
and process models.

3.3.1. Product modeling
The product model is a special type of data model which is a definition quite commonly used in the field of
KBE. A product model is a central part in a KBE system. It contains geometry, configuration and engineering
knowledge on how a certain product should be developed in the form of rules [32]. KBE systems are charac-
terized by using Object-Oriented Modeling (OOM) techniques [9, 32]. OOM makes use of concepts defined
as classes and objects. An example of a UML class-object diagram of a simple aircraft is shown in figure 3.4.
This class-object diagram shows composition and specialization dependencies. For example, the aircraft is
composed of a main wing, fuselage and a t-tail. This generic composition of the defined aircraft is captured
in the class diagram. This class diagram shows the aircraft main components, and all attributes of these com-
ponents. For example, a wing has an attribute span. Moreover it shows the amount of classes of which a class
is composed. For example, it can be seen that a t-tail is composed of two wings, one for the vertical tail and
one for the horizontal wing. Based on this class diagram, an object can be defined. The object follows the
compositions defined in the class diagram and inherits all its attributes. The object however, now has values.
Using these class-object relations allow us to define multiple versions of aircraft, based on a single “model”.

In the context of this research, product models are setup using a KE-chain definition. The definition of KE-
chain product models is very much similar to the class-object diagram as can be seen in figure 3.4, however
it uses different terminology adopted during this research. The KE-chain product model uses parent-child
relations similar to the earlier defined composition relation. As the reader could have read in section 2.4.1
the product model is part of the PIM domain in the KE-chain application architecture. A simplified class
definition of parts and properties used in the domain of PIM is illustrated in figure 3.5. In this figure a class
definition of a part assembly. A part assembly is a composition of several parts. A parent part is composed
of none or several children parts. A part is composed of zero or infinite properties. The different attributes
of the part and property classes contain a Unique Identifier (ID) and the name of the part or property. The
property class has additional attributes to allow for the specification of a property type such as float, integer
or text property and an attribute to store a value. A part class has two other important attributes: category
and multiplicity. This category is used to distinguish between a part model and a part instance.

A part model is used to define the product model, the blueprint of a product instance. A product instance
in analogy with an object versus a class is derived from a product model definition. The multiplicity is used
to indicate how many instances an instantiated part can potentially be composed of. This is similar to saying
that a tail is composed of a multiplicity of two wing models. The relation between the product model and the
product instance is shown in more detail in the next section. Finally a part object has a publisher attribute,
which is an extension of the part class by the author used to perform the storing of modeling knowledge in a
centralized library. This publisher concept however, will be explained in more detail in section 4.3

Using the parent child relations, a product model is constructed such that it follows a hierarchical or tree-
like composition as can be seen in figure 3.6. This figure shows on the left side a product model definition
of the simple aircraft defined earlier in the class-object diagram, and on the right side two instances of that
aircraft model. Every instance of this aircraft model has a tail containing a horizontal tail and a vertical tail,
this is captured in the product model definition. However, as the main wing and both the vertical and hor-

28 3. Enabling Methodologies and Technologies

Figure 3.4: Example of a UML class (top) and object (bottom) diagram

Figure 3.5: KE-chain ontology used to define parts and properties

izontal tail are derived from a single wing model, a proxy relation can be made. This proxy relation enables
the generation of dependent models, which inherit all properties of a proxy model. The use of a proxy models
shows great similarities with the concept called aggregation in UML.

The next step is to define a definition for the process model. This process model is used to define activities
which are used to read and write information from the product instance. The process model is explained in
further detail in the following section.

3.3.2. Process modeling
In order to capture the flow of data or information process models are used. A process model can be used to
visualize a process, or assist in the execution of one. In the knowledge architecture presented in section 2.4

3.3. Product and process modeling 29

Figure 3.6: KE-chain ontology of defining a product model and its instances

different types of integrated processes can be identified. This follows from the hybrid implementation of the
MDO framework with the subdivision between the PD layer and the AD layer. The PD layer, which is the main
context of this thesis research, makes use of business processes. A business process is used to organize the
organizational activities to control and analyze operational processes involving various actors (end-users),
documents, applications and other sources of information [30]. However, also means are investigated to
enable testing of compliance and consistency of a formulated process used to perform MDO. This requires
investigation of different means to represent process related information for both the purpose of control-
ling and organizing organizational activities, but also more complex processes involving solely analysis tool
integration. Below an overview of available representations of various type of process models is presented:

• Business Processes: Ability to show sequence flow of business processes. Here Business Process Mod-
eling and Notation (BPMN) is currently regarded as the graphical standard when it comes to modeling
business processes and focuses on process design [30].

• Design Structure Matrix (DSM): One of the most commonly used way of representing a process model
is the Design Structure Matrix (DSM), also referred to as N2-charts. According to Browning [7], ‘a DSM
displays the relationships between components of a system in a compact, visual, and analytically ad-
vantageous format’. A DSM succeeds in defining a framework which is able to handle dependencies
and relations between elements, such as tasks within a PDP but also parts of which a product is de-
composed.

• Data Flow Diagram (DFD): A DFD is a graphical representation of the "flow" of data through an infor-
mation system, modelling its process aspects. DFDs can be used to provide the end user with an idea
of what the impact of changing information is with respect to the whole system. However, a DFD does
not say anything about the order in which the activities, processes or sub-processes are executed. A
DFD is a representation of the dependence of information as it currently is.

• Graphs: A process representation which consists of nodes and edges, which together form a graph.
According to Pate et al. [28] ’one of the advantages of a graph theoretic approach is the standard algo-
rithms which can be used to inform the user’s decisions, such as cycle detection, minimum spanning

30 3. Enabling Methodologies and Technologies

trees, and shortest path algorithms’. Although a lot of ingredients such as properties and their depen-
dence are stored in the coupled product and process model, a graphical interface using graphs quickly
becomes complex.

• Extended Design Structure Matrices (XDSM): The reasoning behind the XDSM comes from the need to
develop a standard visual representation of an MDO solution process [19]. This has to be done in such
a way that both the data connections as the MDO algorithm could be represented in a single diagram.
The key guiding principles that the design appeals to are simplicity, clarity, information density and
integration of mathematics. Strength of the XDSM is its ability to contain both the sequential order as
well as data dependence. In process of integrated tools, this sequential order represents the sequence
in which tools are executed. The XDSM is able to show both feed-forward as feed-backward loops.

In this thesis work, the functionality of the PD layer is developed using BPMN business processes. The
collaborative environment which contains the PD layer functionality should support both the orchestration
and choreography of the business process [29]. Orchestration represents control over the executable business
process in which the different services are linked with one another. Choreography refers to the information
which is exchanged between different services. The PD/AD layer interface handles the choreography, whilst
the business process containing both human and automated tasks, facilitate in orchestration of the process.

Extending the BPMN business process, this research makes use of IDEF0 principles to extend the infor-
mation which is being processed by each individual task. The IDEF0 (Integration DEFinition for Function)
task description can be seen in figure 3.7. The IDEF0 is commonly used to provide extra information on the
process model [25]. IDEF0 is a method to capture information on the input, output, control and mechanism
of a task in the business process:

• Input refers to the information or data required to execute that task and produce a certain output. For
example: cooked spaghetti requires as input: water and raw spaghetti

• Controls constrain and direct activities. For example: the activity of cooking spaghetti is regulated by a
prescribed portion per person and cooking time

• Mechanisms define the actor, required tools and other supporting aspects of an activity. For example:
the cooking process requires a pan, heat, scale and a chef

Figure 3.7: Basic IDEF0 representation of a task and its related information [11]

Besides a controllable business process to support the PD layer functionality in the MDO framework,
another requirement is the visualization of intermediate design results. Part of the PD layer involves the
formulation of the MDAO workflow. Hence this MDAO workflow needs to be visualized in the PD layer for
continuous inspection of the selected MDO workflow used for execution. The use of DSMs and XDSMs is
widely accepted in the field of MDO [19]. Hence, to support the architect to formalize an MDO workflow
the PD layer of the MDO framework development process is supported with with DSM and XDSM previews.
This requires extension of the control feature of tasks in the third step of the MDO framework development
process to support the following:

• Provide a controllable interface in which formulated MDAO workflows can be formulated through the
use of external KADMOS services.

3.3. Product and process modeling 31

• Extend the configuration of tasks to display the resulting DSMs and XDSMs in an inspectable and em-
bedded preview container

• Develop a mechanism which allows for the updating and replacing of MDAO workflows visualizations
when new input is provided.

• Enable the configuration of tasks to be maintainable by a collaboration engineer.

The requirements listed above are included in this research to improve PD functionality. The solutions
and implemented methods to support these features are presented in section 4.2.1.

Finally the completeness and consistency of a repository of tools need to assessed prior to the definition
of a knowledge base to support the formulation of MDAO workflows. This requires the definition of the inputs
and outputs of tools related to a common data model and assessing whether tools are able to be connected in
a single framework. This requires inspection of a process model on data level. The definition of a framework
in which only the connectivity of tools is tested, sequential order should not be taken into account. For this
purpose both directed graphs and DFDs are suitable. The implementation of a process model inspector is
further explained in section 4.2.2.

Due to the close coupling of product and process models sought after in this research methods to achieve
this are discussed in the following section.

3.3.3. Relations between product and process models
In this section the relations between product and process models in the context of this research is pre-
sented. Each task which requires transformation of input properties into output properties can be related
to a uniquely defined product model. An example of such input and output mapping can be seen in figure
3.8. In this figure one can see on the left side a simple aircraft product model defined in the domain of PIM. In
this product model various parts are defined of which the aircraft product model is composed of. For exam-
ple, the aircraft model is composed of a wing, design masses and aerodynamics. Each part has an arbitrary
amount of properties describing that part. The aircraft wing for example might have properties to describe
its plan-form shape, or airfoil positions etc. On the other hand the aerodynamic characteristics of the aircraft
can be defined using properties which describe the aerodynamic coefficients, load distribution etc. On the
right side of the figure one can see the domain of WIM. In this domain two tasks are drawn: aerodynamic
analysis and structural analysis. According to the IDEF0 definition, this tasks requires a set of properties as
input and produces a set of properties as output. In a system in which the product and process models are
coupled, this set of input properties and output properties is a subset of PIM. Mapping the inputs and outputs
of a tasks to a subset of PIM enables the use of a a common product model in which uniqueness of all defined
properties can be guaranteed. This makes it possible to evaluate the coupling of PIM and WIM, which is a
great enabler of the model verification module, described in section 4.2.2, which is developed by the author
in context of this research.

The coupling of PIM and WIM is a concept which is defined in KE-chain using the following class defi-
nition displayed in figure 3.9. In this class definition one can see the earlier defined class definition of PIM,
extended by an association class. This association class object is used to bridge between PIM and WIM. An
association is an object which defines an input property or output property for each activity object defined in
the domain of WIM. Therefore an association object is a unique object which relates both to a property and
an activity. Furthermore each project has a single process object.

Outside of the scope of KE-chain, the coupling of product and process models needs to be communi-
cated with the other components operating on different levels in the knowledge architecture of the MDO
framework. For example, the formation of MDAO workflows using KADMOS also requires the coupling of all
properties of the product model to a formulated MDO process model. In the context of this research and AG-
ILE the common data model used to connect all DCs and tools in the executable simulation workflow follows
the CPACS schema. This CPACS schema can be used to generate a product model definition composed of
various part compositions each with various properties. As for simulation workflows the hierarchy of prod-
uct models is irrelevant, the hierarchy of the different exchangeable properties is stored using XPaths. As the
author described in section 3.2 XPaths are used in XML technologies to refer to a unique attribute which is
nested in an XML document. For example, the inputs and outputs of the simple aerodynamic tool described
in figure 3.8 can be described by the following set in equation 3.1:

32 3. Enabling Methodologies and Technologies

WIM

Aerodynamic
analysis

PIM

Aircraft

Wing

i

Analyses

vi

iv

Design Masses

Aerodynamics

ii

iii

v

vii

Structural
analysis

i

oi

o

Input mapper Output mapper

Aircraft

Wing

i

Analyses

iv

Design Masses

ii

⊆ PIM

Aircraft

Wing

ii

Analyses

vi

Aerodynamics

iii

⊆ PIM

Aircraft

Analyses

vi

Aerodynamics

⊆ PIM

vii

Aircraft

Analyses

iv

Design masses

⊆ PIM

v

Figure 3.8: Coupling of the inputs and outputs of tasks in WIM with subsets of PIM

Figure 3.9: Coupling of PIM and WIM UML class definition

aer od ynami csTooli nput =
 /Aircraft/Wing/i/

/Aircraft/Wing/ii/
/Aircraft/Analysis/DesignMasses/iv/

aer od ynami csToolout put =
[

/Aircraft/Analysis/Aerodynamics/vi/
/Aircraft/Analysis/Aerodynamics/vii/

] (3.1)

Using XPaths as unique identifiers for properties or attributes exchanged by different tools, transforma-
tions between product and process models can be easily made depending on the system’s requirements for
the various integrated software solutions in the collaborative environment. The XPath definition to deter-
mine input/output properties is also used in the definition of the CMDOWS schema used to store the MDAO
workflow definition in a neutral and interchangeable format.

All methods, technologies and definitions defined in this chapter form the foundation of the implemen-
tation of the collaborative framework to support the setup of 3r d generation MDO frameworks described in
the next chapter.

4
Implementation

In this chapter the implementation of the solutions required to support the integration of all business process
activities leading to the development of a 3r d generation MDO framework in a collaborative environment is
presented. The implementation focuses on extracting information from the lower layers in the knowledge
architecture and providing an interface to the customer, system architect, specialists and integrators in the
PD layer. This interface must be developed such that it follows the five main steps identified in the MDO
framework development process. The implementation of this collaborative environment requires the devel-
opment of the PD/AD interfaces and the development of KE-chain capabilities by the author following the
required extensions presented in section 2.4.1 to support the PD layer functionality.

This MDO framework development process is part of the setup and operation phases of the design and
optimization process. These five steps are considered as the blue print for the business process which needs
to be implemented. Integration of the business process activities requires the development of PD/AD in-
terfaces to ensure the business process is able to perform as a closed system. In this integrated system the
functionality of the lower layers of the knowledge architecture can be controlled through the GUI. Finally
the implementation of the collaborative environment requires the development of a GUI in which the com-
pleteness and consistency of the framework setup can be inspected. Determining the completeness and
consistency of the framework setup aims to answer questions such as: Are the different DCs introduced by the
discipline specialists able to provide, or make an impact with a set of key design parameters specified by the
customer? Are DCs able to be coupled to a common data model and able exchange data with other DCs?

These main topics can be categorized as integration, support and reuse. In the coming sections the im-
plemented solutions on the topics of integration, support and reuse are further discussed:

• Integration of all elements in the framework and information layers

• Support human inspection of the MDO framework setup through the development of user interfaces
which provide the means to manage the MDO framework’s underlying product and process models.

• Reuse to maintain knowledge and enable reuse to accelerate future MDO projects

33

34 4. Implementation

4.1. Integration
In this section the integration of the information layers in the MDO framework is discussed. An overview of
the components integrated in the MDO framework can be seen in figure 4.1. The PD layer is used to provide
a GUI for the different actors during the setup and operation of the MDO framework. The PD layer contains
manual tasks, to acquire knowledge or control exposed functions of the AD layer, and automated tasks. These
automated tasks are connected to the components in the AD layer through KE-node interfaces. KE-node
provides a remotely controlled interface to external applications through easy maintainable Python scripts
as introduced in section 2.4.1. In the remainder of this section the PD layer components and developed
PD/AD interfaces are explained in more detail.

Product development

PD/AD interface

AD/DC interface

Automated design

Design competences

1. Define

design case &

requirements

3. Formulate

MDAO

architecture

4. Implement &

execute

AD workflow

5. Inspect

design study

results

4.2. Specify
repository of DCs

& data model

re

&

RCE & OPTIMUS

Discipline

A

Discipline

B

Discipline

C
CPACSor or and CMDOWSand

ID8KADMOS

KE-node KE-node KE-node

results

KE-node

Discipline Discipline

KADMOS ID8

KE nodeKE noderface

 design

ts architecture AD workf& data model

& OPTIMUS

KE de KE de

data m

KE-node

chitectu

KE-node

KADMOS

KE node KE deKE node KE-node

KADMOS

KE nodeKE node

Automated interface

Manual controlled interface

External applications

manual/

automated task

Legend

Figure 4.1: Overview of the interfaces and components in the integrated MDO framework

To support the PD layer functionality a business process needs to be integrated in the PD layer which
supports the actors in performing the five steps defined in the MDO framework development process. These
five steps are each composed of various sub-tasks. An overview of the business process which is implemented
by the author is displayed in figure 4.2. In this figure five sub-processes can be identified, each of which has
various sub-tasks. Among these sub-tasks manual and automated tasks are included. Automated tasks can
be identified by the gear icon in the bottom right corner of that task. The sub-process of step four is not
displayed in further detail, as the automatic integration of executable simulation workflows was considered
out-of-scope in this thesis research. A different representation of all business process activities integrated in
KE-chain is visualized in appendix B in figures B.4 and B.5. Although the business process is displayed as a
sequential process, in practise all activities are highly concurrent.

The formalization of this business process is the result of various design iterations between November
2016 and March 2017. The formalization of the business process steps occurred during a collaborative session
held with a small selection of AGILE consortium members during a three day worksession hosted at the DLR
in Hamburg on 7-8-9 November 2016. These committee members included the author, E.J. Schut 1, P. D.
Ciampa 2 and T. Lefebvre 3. The result of this meeting was the formalization of the five main steps identified
as the AGILE framework development process 4. In this report, these five steps are referred to as the MDO
framework development process, as presented in section 2.3. In the following months the formalized steps
were integrated by the author in KE-chain, a data model was setup to store all project information and the
required PD/AD interfaces were developed.

1Chief Commercial Officer, KE-works
2Air Transportation Systems- Integrated Aircraft Design, German Aerospace Center (DLR)
3Department of System Design and Performance Evaluation, the French Aerospace Lab (ONERA)
4AGILE, “D65 AGILE framework architecture,” AGILE project (H2020-636202), 2016

4.1. Integration 35

Define
design case &
requirements

Specify
repository of DCs

& data model

Formulate
MDAO

architecture

Implement
& execute

AD workflow

1 2 3 4 Inspect
design study

results

5

Define
requirements

1.1
Define

competences &
parameters

1.2
Manage

requirements
compliance

1.3

Import CPACSized
competences into

repository

2.1
Edit the

competence
repository

2.2
Generate
CMDOWS

2.3
Specify competence

execution &
availability

2.4

KADMOS
documentation

3.0
Import

CMDOWS &
inspect RCG

3.1
Manipulate

design
competences

3.2
Assign

parameter
roles

3.3
Apply MDAO
architecture

3.4

Select CPACS
file for

inspection

5.1
Upload file and
inspect results

in ID8

5.2

1. Define design case & requirements

2. Specify repository of DCs & data model

3. Formulate MDAO architecture

5. Inspect design study results

Figure 4.2: Detailed overview of the business process activities in the PD layer

The data model developed to store information generated during the business process activities can be
seen in figure 4.3. This data model is composed of various classes, indicated as ellipsoids, and their attributes.
Collections of classes are grouped according to the respective step in the MDO framework development pro-
cess the information belongs to. For example, in step 1 the design case and system requirements are defined.

In the coming sections the business process is explained step by step. For each step the exposed PD layer
functionality and required PD/AD interfaces are explained.

4.1.1. Step 1: Define design case & requirements
In step one of the MDO framework development process the design case needs to be defined. This is an oper-
ation which is performed by the architect together with the customer. An example of a design case definition
formulated as a system requirement can be defined as can be seen in table 4.1. In this table one can see a set
of requirements formalized together with a customer who wishes to setup an optimization workflow in which
the maximum take-off weight of a benchmark aircraft is minimized by manipulation of the geometrical wing
shape. In this case the benchmark aircraft is the optimized aircraft in the first AGILE design campaign intro-
duced in section 1.3. Based on the involved discipline specialists a set of DCs to include in the optimization
workflow are agreed upon with the customer.

The following three sub-tasks are integrated in the PD layer to support in defining the design case and
requirements:

• Task 1.1: Define requirements
Requirements are defined through knowledge acquisition forms. These forms follow the requirement
model shown in figure 4.3. This requirement model is composed of the following attributes: descrip-
tion, type, responsible (actor), means of compliance and compliant. Each requirement which is added

36 4. Implementation

Figure 4.3: Defined data model used to store information generated during the MDO framework development process

in step 1.1. requires the customer to specify a requirement description, a requirement type (options are:
objective, competence, concept, performance, deliverable), the actor responsible for validating the re-
quirement and a means of compliance. This means of compliance is a procedure to assess whether the
requirement is met.

The implemented task-form for task 1.1 can be seen in appendix B in figure B.6.

• Task 1.2: Define competences & parameters
In the second sub-task of step 1 in the MDO framework development process the discipline specialists
get access to the filled in requirements in task 1.1. Based on these requirements the available set of DCs
can be made available to the different actors involved in the setup of the MDO framework. For each
DC, the responsible discipline specialists provides information according to knowledge forms which
follow the DC model shown in figure 4.3. The discipline specialist provides information on the function
description, required tool inputs, produced tool outputs, the average execution time and the level of
fidelity. Moreover, each specialist must indicate if their tools are available within their organization and

4.1. Integration 37

Table 4.1: Example of design case requirements specified for an aerodynamic and structural wing optimization

Requirement Description

Initial data set The initial data set contains all geometrical parameters and analytical re-
sults coming from design campaign 1. For this the CPACS base-file can be
used

Design concepts to include This design case requires an optimization study performed solely on the
wing of the DC1 aircraft. Only the concept of the wing has to be included in
the modelling.

Competences to include The wing design study will require the use of structural and aerodynamic
analysis tools, such as EMWET and Q3D. This entails a viscous and an in-
viscid aerodynamic analysis to be performed.

Objective functions The objective is to minimize the maximum take-off weight of the full air-
craft.

Modelling the wingless air-
craft

Since the design problem is focused on the main wing geometry only, the
rest of the aircraft is modeled by estimating a realistic weight, lift coefficient
and drag coefficient of the wingless aircraft.

Design variables The wing shape should be optimized by varying: root chord, taper ratios
(per wing segment), dihedral angle, sweep (per wing segment), and wing
span

Constraints Two constraints have to be met: all fuel for the required range has to be
stored in the main wing fuel tanks and the wing loading of the aircraft can-
not be higher than the wing loading of the initial design point.

ready to use in a future simulation workflow.

The average execution time and level of fidelity is required to perform trade-offs on the available dis-
ciplinary analysis tools in the MDAO workflow architecture. Four levels of fidelity can be distinguished
for each DC as can be seen in figure 4.4. The discipline specialist is able to rank the level of fidelity of
their analysis tools from level 0 to level 3. Level 0 is used to indicate if a disciplinary tool only makes
use of empirical methods, such as Torenbeek’s famous conceptual design sizing rules [39]. On the other
end level 3 disciplinary tools make use of the least amount of simplification of the physics phenomena.
The knowledge on the tool’s level of fidelity and average execution time enables the architect to make
decisions on which disciplinary tools to include in a formalized MDAO architecture in the later stages
of the MDO framework development process.

P.D. CIAMPA, B. NAGEL

8

interdisciplinary couplings according to the
models available.

3.2 Competences Levels
In the same surveys on the MDO potentials and
future requirements, it is advocated the need to
apply MDO for applications with increasing
“difficulty” [40], which is also typically
associated to “higher fidelity”, or “complexity”,
and eventually make use of variable fidelity
techniques in a single design process addressing
all the design stages via a “multi-level”
structure. However, these properties, or
attributes, are not uniquely defined, and cannot
be chosen to set quantitative requirements. Most
of the time the term fidelity is purely associated
with the computational time which is necessary
to retrieve a solution by a certain analysis
model. Other times it refers to the source of the
representation behind a models (i.e. empirical
based, or physics based) [41]. In other domains
the fidelity of a model refers to the degree of
discrepancy of the product’s properties between
the simulation and the reality (e.g. the mass
estimation for a certain component).

It is clear that definitions chosen depend
on the specific domains of interests, or are
influenced by pre-knowledge and experiences
with the simulation models available within the
different design phases. Hence, the
formalization domain will need to be extended
to provide a quantitative answer to the following
question:

“For a given design task, set of disciplinary
capabilities, cost and time constraints: Which
products’ characteristics the MDO environment
will be able to account in the optimization
process? And at which (quantifiable) depth
these will be addressed?”

A key enabler is the definition of a

formalized set of attributes referring to the
analysis layer which extend beyond the
time\costs metrics, and provide a link with the
formalization of the MDO architecture. A
previous classification is discussed in [42] to
identify disciplinary levels, and a representation
is illustrated in Figure 7. The classification

provides a qualitative measure of time, level of
simplification of the physics phenomena, but it
could not serve to quantify properties on quality
and depth of the analysis provided.

Figure 7 Disciplinary Levels

Hence, a further step is proposed by

formulating the following clustering of
Competence Levels in the following classes, in
Table 1:

Table 1 Competence Levels

Level Modeling
Details

Physics
Representation

Phenomena
Type

0 No geometry Empirical Design rule

1 Reference
quantities Linear Static,

Steady

2 Analytical Non linear Dynamic,
Unsteady

3 Numerical Non isentropic Transient

Additional attributes can be linked to each class.
It is not intended to provide here the description
and the details on the ontology which is under
development, but to rather highlight the needs
for such formalization. Such a description is
intended to be used in combination with the
available formalization of the MDO
architectures, to provide a metrics which could
account for the “depth and quality” of the
analysis called, during the trade-off and
selection of a specific architecture. A few
representative examples of common analysis
which are utilized in different phases of OAD
development are listed in Table 2.

Figure 4.4: Disciplinary levels of fidelity [8]

• Task 1.3: Manage requirements compliance
In the third sub-task of the first step in the MDO framework development process an overview of the
requirements is provided. In task 1.3 the status of compliance of all requirements can be managed. This
status can switch between compliant and non-compliant. This overview can be used throughout the
development process to inspect to assess whether the MDO framework which is being setup full-fills to

38 4. Implementation

the requirements defined at the beginning of the process. Compliance of requirements is tested manu-
ally. Some improvements in the future might imply the formulation of rules, to automatically evaluate
requirements compliance. In the current implementation however, this ability is not supported.

4.1.2. Step 2: Specify repository of DCs & data model
In the second step the available DCs need to be made compliant to a common data model. This means that
inputs and outputs of each DC needs to be mapped on a common data model according to the CPACS format.
A large part of the second task is automated if a DC is already mapped to CPACS in previous design studies.
Step two is composed of four sub-tasks. These sub-tasks and the developed PD/AD interfaces developed by
the author are explained in more detail below:

• Task 2.1: Import CPACSized DCs into repository
Through the user-interface, displayed in appendix B in figure B.8, discipline specialists are able to im-
port their CPACSized competences into a repository. This so-called repository contains both product
and process modelling knowledge. A DC is called CPACSized if all required inputs and outputs have
been made compliant to the CPACS schema. For each already CPACSized DC this discipline specialist
is able to upload two separate CPACS XML files which describe all input and output parameters of their
DC(s).

Based on the input and output XML files two automated transformations are performed: a product
model is generated containing the complete set of input and output parameters of all DCs and a process
model in which all DCs are automatically coupled. A Functional Flow Diagram (FFD) describing the
chain of events in the KE-node service underlying task 2.1 is displayed in figure 4.5. As can be seen from
the FFD the underlying KE-node function, the function starts with retrieving two KE-chain projects,
one belonging to the main MDO framework development process project and an embedded KE-chain
project called the C3PRO project. C3PRO is acronym for Complete, Consistent and Compliant process.
The C3PRO project contains the product model and process model which is being assembled in KE-
chain to solve the design case specified in step one.

Retrieve KE-chain

projects

Input CPACS XML
Output CPACS

XML

Start task 2.1 KE-

node service

Retrieve initiated

CPACS product

model from KE-

chain

Generate

property mapping

matrix

Read CPACS XML

files

Construct XPath

mapping

Update initiated

CPACS product

model in KE-chain

Add DC activity to

KE-chain process

model

Couple inputs/

outputs to DC

activity in KE-

chain

Retrieve uploaded

CPACS mappings

Include in

update?

End

Re

Project ID,

Project ID (C3PRO)

pr ng
Re

CP

d

For each

available

mapping

Input CPACS XML
Output CPACS

XML

Read CPACS XML

files

Construct XPath

mapping

Update initiated

CPACS product

model in KE chain

Add DC activity to

KE-chain process

model

Couple inputs/

outputs to DC

activity in KE-
End

Project ID (C3PRO) e available

mapping

Yes

End
No

mo

KE

KE-chain

C3PRO product

model

Available

competence

mapping data

Updated

KE-chain C3PRO

product model

Updated

KE-chain C3PRO

process model

Updated

KE-chain C3PRO

process model Condition

 Pykechain

 function

Start/end

Function

Legend

Update C3PRO

process model

KE-chain

scopes

Available DCs +

KE-chain

C3PRO process

model

Updated KE-

chain C3PRO

process model

Imported

document

Figure 4.5: Functional Flow Diagram of the KE-node service underlying task 2.1

The author makes use of pykechain to retrieve and write information contained in the KE-chain projects.
Pykechain 5 is a Python library which is able to connect and interact fully to all features of KE-chain.
Pykechain is developed by KE-works and extended by the author and others by request during this

5Pykechain, a Python library used for advanced operations using KE-chain https://pypi.python.org/pypi/pykechain/1.6.0 (ac-
cessed: 06/06/2017)

https://pypi.python.org/pypi/pykechain/1.6.0

4.1. Integration 39

research. Initially pykechain was only supporting interaction with the features of PIM. During this re-
search, to support the advanced operations required in step 2 in the development process, pykechain
was extended to support interaction with features of WIM.

After retrieval of the MDO framework development process project and C3PRO project, the product
model information is retrieved through pykechain functions. First the DCs made available by the disci-
pline specialists in step 1.2 are synchronized with the process model in the C3PRO project. This func-
tion uses the extended pykechain functions to access the features of WIM such as reading and writing
activities. Next, the C3PRO product model is retrieved. Based on this product model, a mapping matrix
is defined. This matrix maps the XPaths of all properties, generated through the hierarchical structure
of the product model, to the property objects themselves. This is used in a later stage to update and
import the input and output XML files, add additional properties and couple the inputs and outputs of
each DC on a single product model.

After retrieval of the property mapping matrix, the list of available input/output mappings is retrieved.
If the discipline specialists uploaded the input and output CPACS XML files the specialist wants to syn-
chronize, the C3PRO product and process models are updated. This starts with reading the XML files,
using the Python module ElementTree, which is introduced in section 3.2. For the inputs and outputs
the XPaths are retrieved which need to be configured as inputs and outputs respectively. Based on these
XPaths, and the previously generated property mapping matrix first the C3PRO product model is up-
dated, followed by the process model. This process is repeated for all uploaded and selected available
CPACS mappings.

After the DCs are coupled to a CPACS-based product model in KE-chain, the functions which will be
presented in section 4.2 can be used to validate on the completeness, consistency and compliance of
all design competences to the product model based on CPACS. Moreover, a similar chain of functions
can be used by the architect to import CPACS XML files for each key design parameter in task 1.2. In
case not all DCs can be mapped directly on CPACS through XML technologies, the discipline specialists
are able to manually reconfigure the product model and activities in sub-task 2.2.

• Task 2.2: Edit the competence repository
In case a DC is not yet compliant to CPACS, the collaborative environment enables manual editing of
the repository of design competences and data model. To support the discipline specialists to manually
edit the input and output coupling of their DC the task-form of task 2.2 the GUI of KE-chain is used.
This manual editing of the repository is performed in the C3PRO project. To maintain an easy work-
ing environment, the C3PRO project embedded in the task-form of task 2.2, similar to the embedded
C3PRO project displayed in appendix B in figure B.8. This C3PRO project contains the product model
and process model currently generated in task 2.1. In the embedded C3PRO project, the discipline spe-
cialist is able to manually map property inputs and outputs on the product model through KE-chain.
An example of manual coupling of the competence repository is displayed in appendix B in figure B.9.

In case the product model in the C3PRO project is not yet complete to couple all DCs, a KE-node service
is developed by the author to automatically update the product model using a single CPACS XML file.
The FFD of the KE-node service underlying task 2.2 is displayed in figure 4.6. The function starts similar
to the underlying service of task 2.1: retrieving the KE-chain projects and gathering a property mapping
matrix. Based on the uploaded and selected CPACS XML file, the C3PRO product model is updated with
all missing properties. After a DC is coupled to the CPACS product model it is successfully CPACSized
and compliant to CPACS.

• Task 2.3: Generate CMDOWS
After successfully coupling all DCs to the data model a KE-node service is developed to automatically
create a CMDOWS file. In task 2.3 the architect is able to automatically generate a CMDOWS file based
on the repository of DCs and data model configured in tasks 2.1 and 2.2. The associated task-form
designed in the collaborative environment to support the architect in performing task 2.3 is displayed
in appendix B in figure B.10. A CMDOWS file is generated by an underlying KE-node service which
follows the FFD displayed in figure 4.7.

The displayed FFD starts with the retrieval of the KE-chain projects belonging to the MDO framework
development process and the C3PRO project. First the information provided by all discipline special-
ists on the function description, average execution time and level of fidelity is retrieved from KE-chain.

40 4. Implementation

Retrieve KE-chain

projects

CPACS XML

Start task 2.2 KE-

node service

Retrieve initiated

CPACS product

model from KE-

chain

Generate

property mapping

matrix

Read CPACS XML

file

Construct XPath

mapping

Update initiated

CPACS product

model in KE-chain

End

Re

Project ID,

Project ID (C3PRO)

trieve KE chain

projects

CPACS product

model from KE-

chain

property mapping

matrix

Read CPACS XML

file

Construct XPath

mapping

Update initiated

CPACS product

model in KE chain

End

pr

mo

KE-chain

C3PRO product

model

Updated

KE-chain C3PRO

product model

KE-chain

scopes

Re
ng

Re

Condition

 Pykechain

 function

Start/end

Function

Legend

Imported

document

Figure 4.6: Functional Flow Diagram of the KE-node service underlying task 2.2

Next, all activities are retrieved from the C3PRO project. Next a CMDOWS file is generated using the
Python ElementTree module, which is introduced in section 3.2. The CMDOWS file is generated us-
ing all input and output properties of each DC activity, meta data and performance information. For
each input and output property, the product model hierarchical structure is used to generate an XPath,
the unique identifier for each property. These XPaths are used in the CMDOWS schema. Finally the
generated CMDOWS is validated according to its schema and uploaded back to KE-chain. The same
procedure is done for all individual DCs and key design parameters.

From KE-chain all CMDOWS files can be downloaded or used directly in step three of the development
process. With respect to step three, the CMDOWS generated by KE-chain is referred to as the RCG. This
RCG contains all nodes and edges of the initial repository of DCs and data model. This RCG stored in
a CMDOWS file can be used by KADMOS to formulate an MDAO architecture as described in the next
section.

Retrieve KE-chain

projects

Start task 2.3 KE-

node service

Re

Project ID,

Project ID (C3PRO)

 Pykechain

 function

Start/end

Function

Legend

Retrieve C3PRO

DC activities

KE-chain

scopes

KE-chain

C3PRO process

model

Exported

document

Generate

CMDOWS file

C3PRO

CMDOWS file

Validate

CMDOWS

Upload CMDOWS

file to KE-chain

Retrieve KE chain

projects

Start task 2.3 KE

node service

Re

Project ID,

Project ID (C3PRO)

Retrieve C3PRO

DC activities

Generate

CMDOWS file

C3PRO

CMDOWS file

Validate

CMDOWS

Upload CMDOWS

file to KE-chain

Generate

CMDOWS file for

all DCs

Generate

CMDOWS file for

all parameters

CM CM End

DC specific

CMDOWS file

parameter

specific CMDOWS

file

Upload CMDOWS

files to KE-chain

Validate

CMDOWS

Up

Retrieve DC

performance

information and

metadata

Design

competences

Figure 4.7: Functional Flow Diagram of the KE-node service underlying task 2.3

• Task 2.4: Specify competence execution & availability
Finally in the fourth and final task of step two in the MDO framework development process additional
information needs to be provided by the discipline specialists. In the associated task-form the disci-
pline specialist are able to specify if their DC is executable in a local environment using CPACS input

4.1. Integration 41

& output files and if their DC is accessible in a distributed network. It is assumed that all activities
required to ensure a DC is accessible and executable are performed according to already existing pro-
tocols specified within the AGILE consortium. It is considered out of scope for this research to facilitate
in this task in more detail.

4.1.3. Step 3: Formulate MDAO architecture
In the third step of the MDO framework development process a suitable architecture needs to be formulated
to solve the design optimization problem. During this research a controllable interface is developed in col-
laboration with the lead developer of KADMOS6 to wrap various MDAO architectures around the current set
of DCs. This collaboration was required to maximize to identify all required interfaces, required information
and interaction with the actors which must be supported in the PD layer. To support the architect in the PD
layer, PD/AD interfaces are required to use the KADMOS main functions. This requires the use of KADMOS
exposed functions using KE-node services. First a RCG CMDOWS file generated by KE-chain is automatically
imported by KADMOS. Next a series of sub-tasks enables graph manipulations described in the paper by van
Gent et al. [43]. These graph manipulations can be summarized as follows:

• Manipulation of DCs. This involves editing the function order in which the tasks need to be executed,
excluding of DCs and merging DCs.

• Assigning of parameter roles such as: design variables, constraint variables, objective variables and
state variables.

• Apply MDAO architecture such as Multidisciplinary Design Feasible (MDF), Individual Design Feasible
(IDF) or Design Of Experiments (DOE)7. The goal of this function is to provide a neutral formulation of
the optimization workflow by storing it in an XDSM and CMDOWS file.

An impression of the developed task-forms integrated in the PD layer is displayed in appendix B in fig-
ures B.11 to B.17. These task-forms are developed to provide a user-interface to the sub-tasks displayed in
figure 4.2. The sub-tasks and developed KE-node and KADMOS interfaces developed during this research are
developed as follows:

• Task 3.0 KADMOS documentation:
The first task in step three of the MDO framework development acts as an introduction to the exposed
KADMOS functionality. This task-form makes use of the developed extension to the KE-chain task
customization which is elaborated upon in section 4.2.1.

• Task 3.1 Import CMDOWS & inspect RCG:
In task 3.1 the first PD/AD interface is integrated to support the import of the RCG CMDOWS file gen-
erated in task 2.3 by KE-chain in KADMOS. An overview of FFD of the developed PD/AD interface is
displayed in figure 4.8. The FFD starts with the retrieval of the KE-chain project associated with the
MDO framework development process. This is followed by a download of the selected RCG on the KE-
node server. Next KADMOS is used to import and validate the CMDOWS file and generate a RCG. After
the RCG is generated, KADMOS is used to generate a DSM in PDF format and an interactive KADMOS
visualization package8 which is explained in more detail in the paper by Aigner et al.[41]. Both the PDF
preview and visualization package are uploaded to KE-chain. This allows the architect to inspect the
imported RCG in KADMOS through the developed user-interface in the PD layer. Moreover, the im-
ported DCs and parameters in KE-chain are updated in KE-chain according to the data model defined
in figure 4.3. The list of imported DCs and parameters enable the architect to inspect if the import
was performed successfully. Finally, the KADMOS RCG is saved on the KE-node server. Here it can be
retrieved during the execution of the underlying service of task 3.2.

• Task 3.2 Manipulate design competences:
Next, in task 3.2 the architect is able to manipulate the DCs trough the developed user-interface in the

6I. van Gent, PhD researcher faculty of Aerospace Engineering, Flight Performance & Propulsion department
7More information regarding MDAO architectures can be found on http://openmdao.org/releases/0.5.0/docs/mdao/ (accessed:

07/06/2017)
8KADMOS visualization package, developed by I. van Gent (TU Delft) and B. Aigner (Aachen University) as part of the European AGILE

project

http://openmdao.org/releases/0.5.0/docs/mdao/

42 4. Implementation

Retrieve KE-chain

project

Start task 3.1 KE-

node service

Re

Project ID

 Pykechain

 function

Start/end

Kadmos

function

Legend

KE-chain

scopes

Exported

document

Generate RCG
Retrieve KE chain

project

Start task 3.1 KE

node service

Re

Project ID

Generate RCG

Generate RCG

DSM PDF

Generate

interactive

KADMOS

visualization

packge

Update lists of

imported DCs and

parameters in

KADMOS

End
nd

RCG visualization

package

packge

Function

Imported

document

Import CMDOWS

in KADMOS

Import CMDOWS

from KE-chain

Im

Uploaded and

selected

CMDOWS file

RCG PDF preview

KADMOS DCs

& parameters

Updated

KADMOS DCs

& parameters

in KE-chain

Retrieve DC nodes

and parameter

nodes

im Save RCG as

KADMOS file

KADMOS RCG file

(stored on server)

Figure 4.8: Functional Flow Diagram of the KE-node service underlying task 3.1

PD layer. An impression of the associated task-form is displayed in appendix B in figure B.12. Through
the developed task-form, the architect has control on the function order of all design competences,
and the architect is able to exclude or merge DCs. In the KE-node service pykechain and KADMOS
functions are integrated according to the FFD displayed in figure 4.9. This KE-node service has been
developed to read information from KE-chain through pykechain and write back visualizations gener-
ated by KADMOS to KE-chain.

The KE-node service of task 3.2 starts with importing the stored KADMOS RCG file on the server, gen-
erated at the end of the of the executed KE-node service underlying task 2.1. Next, the data stored in
KE-chain is retrieved. This information is stored in the KE-chain database according to the data model
defined in figure 4.3. The imported KE-chain data is validated first in the developed KE-node interface.
The data is checked for the following consistency:

– All design competences have a function order defined

– The function order of the design competence follows a sequential order such that the function
order is in the range of [1 : n] for n DCs.

– An excluded DC added by the the architect through the interface, needs to be linked to a DC im-
ported by KADMOS in the RCG.

– A block of merged DCs needs to be linked to at least two DCs imported by KADMOS in the RCG

– A block of merged DCs needs to have an adjacent function order defined by the architect through
the user-interface.

In case validation of the KE-chain data fails the service execution is stopped and assertions are send
to KE-chain to provide feedback to the architect executing the underlying KE-node service. In case
all validations pass, the underlying service calls KADMOS to exclude or merge the indicated DCs. This
results in a FPG generated by KADMOS. The generate FPG is used to generate a DSM PDF and KADMOS’
visualization package. The FPG PDF file and visualization package are uploaded to KE-chain, where
they can be downloaded and inspected directly through an embedded previewer. Finally KADMOS is
used to save the FPG as a KADMOS file. This KADMOS file is stored on the KE-node server, where they
can be used in task 3.3 to assign parameter roles.

• Task 3.3 Assign parameter roles:
In task task 3.3 of the implemented MDO framework development process the architect is provided

4.1. Integration 43

Retrieve KE-chain

project

Start task 3.2 KE-

node service

Re

Project ID

 Pykechain

 function

Start/end

Kadmos

function

Legend

KE-chain

scopes

Exported

document

Read KE-chain

project data from

task 3.2

Validate imported

KE-chain data

Generate

interactive

KADMOS

visualization

packge

Retrieve KE chain

project

sk 3.2 KE

 service

Re

Project ID

project data from

task 3.2

Validate imported

KE-chain data

End

FPG visualization

package

packge

Function

Imported

document

Import RCG in

KADMOS

Import KADMOS

RCG file

KADMOS RCG file

(stored on server)

pr

KADMOS DCs,

merged DCs,

excluded DCs

Condition

Assert

passed

End

Send failed

assertion

feedback to KE-

chain

failed

Perform DC

manipulations

Generate FPG

DSM PDF

FPG PDF preview

Generate FPG
Save FPG as

KADMOS file

KADMOS FPG file

(stored on server)

Figure 4.9: Functional Flow Diagram of the KE-node service underlying task 3.2

with a user-interface to assign parameter roles. An impression of the associated task-form is displayed
in appendix B in figure B.14. An underlying KE-node service is developed by the author in collaboration
with the lead developer of KADMOS to provide an PD/AD interface between KE-chain and KADMOS. In
the KE-node service pykechain and KADMOS functions are integrated according to the FFD displayed
in figure 4.10.

From the FFD it can be seen that the underlying KE-node service of task 3.3 starts with the retrieval
of the KE-chain project associated with the MDO framework development process. Next the stored
KADMOS FPG file on the server, generated at the end of the of the executed KE-node service underlying
task 2.2, is imported using KADMOS. Next, the data stored in KE-chain is retrieved. This information is
stored in the KE-chain database according to the data model defined in figure 4.3. The retrieved data is
composed of the design variables, objective variables, constraint variables and state variables added to
the problem definition by the architect. The imported KE-chain data is validated first, to check for the
following consistency:

– Each indicated parameter role needs to be linked to an FPG parameter which is also available in
the imported FPG. This FPG parameter is a unique parameter in the graph. The available FPG
parameters might differ from the imported RCG in task 3.1 after DCs are excluded or merges have
been performed.

– A design variable and constraint variable must have an upper and lower bound specified. The
following rule must be validated: l ower bound <= upper bound .

In case validation of the KE-chain data fails the service execution is stopped and assertions are send to
KE-chain to provide feedback to the architect executing the underlying KE-node service. After valida-
tion of the input data provided by the architect, the list of FPG parameters is updated in KE-chain using
pykechain functions. This enables the architect to adapt the assignation of parameter roles to match
the updated FPG. After this synchronization KADMOS is used to assign all parameter roles, validate
the resulting graph and generate an updated FPG. Next KADMOS is used to generate an inspectable
PDF preview of the resulting DSM and an interactive visualization package. Both generated files are
uploaded to the KE-chain project where they can be accessed through the PD layer. Finally KADMOS
saves the FPG on the server, where it can be used in the final task of step three.

• Task 3.4 Apply MDAO architecture:
To conclude step three in the MDO framework development process, the architect is able to apply an
MDAO architecture around the defined set of DCs and parameters. An impression of the associated

44 4. Implementation

Retrieve KE-chain

project

Start task 3.3 KE-

node service

Re

Project ID

 Pykechain

 function

Start/end

Kadmos

function

Legend

KE-chain

scopes

Exported

document

Read KE-chain

project data from

task 3.3

Validate imported

KE-chain data

Generate

interactive

KADMOS

visualization

packge

Retrieve KE chain

project

task 3.3 KE

de service

Re

Project ID

project data from

task 3.3

Validate imported

KE-chain data

End

FPG2 visualization

package

packge

Function

Imported

document

Import FPG in

KADMOS

Import KADMOS

FPG file

KADMOS FPG file

(stored on server)

prpr

DesignVariables,

ObjectiveVariables,

ConstraintVariables,

StateVariables

Condition

Assert

passed

End

Send failed

assertion

feedback to KE-

chain

failed

Assign parameter

roles

Generate FPG

DSM PDF

FPG2 PDF preview

Generate updated

FPG

ed Save FPG as

KADMOS file

KADMOS FPG2 file

(stored on server)

Update list of

available FPG

parameters

FPG

parameters

Updated

FPG

parameters in

KE-chain

project

Update

As

Figure 4.10: Functional Flow Diagram of the KE-node service underlying task 3.3

task-form is displayed in appendix B in figure B.17. In the KE-node service pykechain and KADMOS
functions are integrated according to the FFD displayed in figure 4.11.

This FFD again starts with the retrieval of the KE-chain project which contains the information of the
MDO framework development process. This is followed by a KADMOS function which imports the
KADMOS FPG file stored on the server. Next, the data stored in KE-chain is retrieved. This information
is stored in the KE-chain database according to the data model defined in figure 4.3. The retrieved data
is composed of the MDAO architecture selected by the architect, a type of coupling decomposition and
a DOE method if applicable. The architect is able to select the following MDAO architectures: IDF, MDF,
(un)converged MDA and (un)converged DOE. The user is able to select two type of coupling decompo-
sition: Gauss-Seidel and Jacobi. In case the author selects Gauss-Seidel as decomposition method feed-
back coupling is removed, while Jacobi will remove both feed-forward and feedback coupling between
multidisciplinary analyses. The imported KE-chain data is validated first in the developed KE-node
interface. The data is checked for the following consistency:

– A DOE method must only be specified if the architects an (un)converged DOE architecture. For
all other MDAO architectures, a DOE method should be set to empty.

– In case a user selects a DOE method, the defined design variables in the imported FPG should
contain DOE sample files in a CSV format.

In case all validations pass, KADMOS is used to apply the selected MDAO architecture. Next KADMOS
will validate the resulting graph. This implies checking if all parameter roles have been correctly applied
to match the selected MDAO architecture. During this process a log is generated, which is formatted
and sent to KE-chain using pykechain. This log can be inspected by the architect, such that fixes can
be made on the formalized MDAO architecture. If the graph validation passes, KADMOS generates an
XDSM. From this XDSM a PDF preview and inspectable visualization package is generated. Both are
uploaded to KE-chain, where they can be inspected by the architect. Finally a CMDOWS file is gener-
ated in which the entire graph is stored, along with all information specified in KE-chain during step
two of the development process. This CMDOWS file is ready to use for implementation in a suitable
PIDO application in step four of the development process.

4.1. Integration 45

Retrieve KE-chain

project

Start task 3.4 KE-

node service

Re

Project ID

 Pykechain

 function

Start/end

Kadmos

function

Legend

KE-chain

scopes

Exported

document

Read KE-chain

project data from

task 3.3

Validate imported

KE-chain data

Generate

interactive

KADMOS

visualization

packge

Retrieve KE chain

project

task 3.4 KE

de service

Re

Project ID

project data from

task 3.3

Validate imported

KE-chain data

End

XDSM

visualization

package

packge

Function

Imported

document

Import FPG in

KADMOS

Import KADMOS

FPG2 file

KADMOS FPG2 file

(stored on server)

pr

MDAO architecture,

Coupling

decomposition,

DOE method

Condition

Assert

passed

End

Send failed

assertion

feedback to KE-

chain

failed

Apply MDAO

architecture

Generate XDSM

PDF

XDSM PDF

preview

Perform graph

validation

Generate

CMDOWS

CMDOWS file

Generate XDSM

Write validation

log

Updated MDAO

architecture log

statements in

KE-chain project

Wr
Assert End

Send failed

assertion

feedback to KE-

chain

failed

Generate

interactive

KADMOS

visualization

Generate XDSM

PDF

Genera

CMDOWS
Generate XDSM

Updated MDAO

architecture log

statements in

KE-chain project

passed

Figure 4.11: Functional Flow Diagram of the KE-node service underlying task 3.4

4.1.4. Step 4: Implement & execute AD workflow
In the fourth step of the implemented development process in the PD layer a simulation workflow formu-
lated in step three using KADMOS needs to be implemented in either RCE or Optimus. RCE is an open source
distributed, workflow-driven integration environment developed at the DLR 9. Optimus is a Process Integra-
tion and Design Optimization (PIDO) developed by Noesis 10. Both RCE and Optimus are PIDO applications
available in the AGILE consortium. The fourth step is currently not integrated automatically in the PD layer,
hence a manual interface is required to initiate an executable workflow using the CMDOWS file produced at
the end of step three and execute the simulation workflow.

4.1.5. Step 5: Inspect design study results
Finally the design results obtained in step four need to be made available for inspection. The design results
can be inspected through Noesis Solutions ID8 software package 11. A KE-node interface enables automatic
interpretation of the design study results produced in step four. ID8 is embedded in the collaborative GUI
environment of KE-chain in step five. An illustration of the implemented task-forms associated with step five
in the collaborative environment can be seen in appendix B in figures B.19 and B.20.

As displayed in the business process overview displayed at the beginning of this section in figure 4.2, step
five consists of two sub-tasks. For sub-task 5.1 an underlying KE-node service is required to import a CPACS
results file generated after a successful simulation workflow execution in step four. The exposed PD layer
functionality and developed PD/AD interface is explained in this section:

• Task 5.1: Select CPACS file for inspection

9http://rcenvironment.de/ (accessed 11/04/2017)
10http://www.noesissolutions.com/our-products/optimus (accessed 11/04/2017)
11http://www.noesissolutions.com/our-products/id8 (accessed 11/04/2017)

46 4. Implementation

In task 5.1 the integrator is able to upload a CPACS result file of an executed simulation workflow. This
result file is stored in KE-chain. Based on the list of result files the integrator is able to select a result file
for inspection. After selection of a result file the integrator can execute the underlying KE-node service
to read and convert the file. The underlying KE-node service is coupled to a KE-node function in which
an AD/PD interface is made between an ID8 conversion package. The FFD of the underlying service is
displayed in figure 4.12.

In this FFD one can see that the underlying KE-node service starts with the retrieval of the KE-chain
project which contains the information of the MDO framework development process. Next, the up-
loaded and selected CPACS file is imported using pykechain. Next the specified design case for inspec-
tion selected by the integrator is retrieved. Based on the selected design case, the CPACS result file is
imported and read using a python module developed by Noesis, to support the ID8 visualization pack-
age. This Python package is integrated in the underlying KE-node service. After importing the CPACS
result file, the available design cases stored in that file are checked. In case an extended set of design
cases are available, this set is updated in the KE-chain project. If the design case specified by the in-
tegrator is matched with the uploaded result file, a final Python function developed by Noesis is called
which writes the ID8 results file. This ID8 results file is then uploaded back to KE-chain, where it can
be downloaded and used for inspection in task 5.2.

Retrieve KE-chain

project

Start task 5.1 KE-

node service

Re

Project ID

 Pykechain

 function

Start/end

Python function

developed by

Noesis

Legend

KE-chain

scopes

Exported

document

Read CPACS result

file

Retrieve KE chain

project

Re

Project ID

Read CPACS result

file

End

Function

Imported

document

Import CPACS

result file

Import CPACS

result file

Uploaded and

selected CPACS

results file

ReRe

ID8 result file

Generate ID8

results text file

Retrieve selected

design case

Selected

design case in

KE-chain

Selected

design case

available?

End

Send failed

assertion

feedback to KE-

chain

Yes

No

Update list of available

design cases based on

imported CPACS result

file

Selectable

design cases

Updated list of

selectable

design cases

Figure 4.12: Functional Flow Diagram of the KE-node service underlying task 5.1

• Task 5.2: Upload file and inspect results in ID8
Task 5.2 concludes the implemented MDO framework development integrated in the collaborative en-
vironment. This task contains an embedded ID8 environment. In this environment the integrator,
together with the customer is able to inspect the design case study results through inspectable graphs
developed by Noesis. An impression of the embedded ID8 environment can be found in appendix B in
figure B.20.

4.1.6. Integration round-up
In this section the integration of the various components required to successfully operate in the PD layer of
the defined knowledge architecture in section 2.4. A reflection can be made on the developed functionality
and provided control over the MDO framework development process through an integrated business process.
In a great extend the PD layer integrated in the collaborative environment addresses five main domains which
can be identified in any PDP. According to Danilovic and Browning [10] these five domains involve:

• The product system: the desired outcome of the development process

• The process system: the work that needs to be done to achieve the desired development process out-
come

4.1. Integration 47

• The system organization: the subdivision of actors in different groups, teams or departments

• The system of tools: implying information technology solutions and the tools the actors or process
system use to perform the work

• The system of goals: the requirements, objectives and constraints which apply to all systems.

The business process activities required to operate in the PD layer form the process domain. The product
domain is handled by the underlying data model, which provides a template for the information generated
during the course of the process execution. A system organization is provided through the ability to form a
specific development team involved in a particular design case. Among this development team the following
actors can be identified: discipline specialists, architects, integrators, collaboration engineers and the cus-
tomer. Design activities are grouped to provide a work domain for the different actors. A system of goals is
provided in the collaborative environment through the specification of system level requirements. Using a
system of goals, the different actors are able to reflect upon the work they’ve been doing. Finally a system of
tool domain is provided by integration of the different components in the AD and PD layer of the knowledge
architecture through knowledge technologies.

Moreover the implemented PD layer functionality aims to adhere to some of the MDO framework require-
ments specified in section 2.1. Especially the requirements originating from the domains of architectural de-
sign, problem formulation and accessibility of information have been adhered to in great extend during the
integration of the various components and implementation of the collaborative environment. However, on
the integration of the various components in the collaborative environment do not aim at incorporating the
requirements on problem execution. Integration of applications to support workflow execution were consid-
ered out-of-scope during this research.

48 4. Implementation

4.2. Support
In this section the developed methods to support human inspection of the MDO framework setup through
the development of user interfaces which provide the means to manage the MDO framework’s underlying
product and process models. Moreover developed components which were able to support integration of the
actors and components in the collaborative environment is presented. All developed components have been
developed according to the already existing KE-chain platform. In this section the required extension to the
existing KE-chain architecture, introduced in section 2.4.1, are explained in further detail. In this section the
following topics are addressed:

• Task customization: The ability to customize a task-form such that is tailored specifically for the work
which is supported by the task. For example: Information forms in grids, the integration of figures,
embedded websites, interactive visualizations, buttons and text-panels.

• Model verification: The ability to verify and inspect the coupling of the product and process model.

4.2.1. Task customization
Task customization is an enabler to support in the configuration of KE-chain projects. Task customization
is developed to support a very important, and currently not mentioned actor in the MDO framework devel-
opment process. This actor is the configurator. The configurator ensures that prior to the actual execution
of the development process, the data model and work breakdown structure are defined correctly. Moreover,
the configurator is able to edit the layout of each task-form. The layout of a task-form plays an important
role in the information intensive business processes. The large amount of information generated during the
MDO framework development process needs to be inspectable and manageable by the respective actors. This
is supported by the requirements adopted on the PD layer of the MDO framework described in section 2.1
defined by Salas and Townsend [31] and endorsed in [4, 27].

The author has extended the task customization of KE-chain task-forms to maximize the user-experience
in the collaborative environment by the addition of buttons, embedded visualizations linked to project data
and explanatory text panels. These added widgets and the method the configurator is able to use these wid-
gets is explained in more detail in the remainder of this section.

Task customization requires manual editing of a JSON. This JSON can be edited directly through the KE-
chain GUI by the configurator. Hence, the actors of the MDO framework development process are not ex-
posed with the underlying task customization JSON. An example of this JSON is shown in appendix C in
figure C.5. In this example, one can see the basic structure of task-customization: a list of JSON components.
Each component has an "xtype" dictionary item. This xtype is used in the ExtJS 6 front-end to render the
correct front-end component. These xtypes refer to a custom ExtJS component class defined by the author.
An overview of the class hierarchy of the developed custom widgets can be seen in figure 4.13. As can be seen
from this figure each widget has mandatory attributes (indicated by the + symbol) and optional attributes
(indicated by the o symbol). These attributes are explained in more detail in the remainder of this section.

Figure 4.13: Available widget classes implemented by the author to support task-customization

4.2. Support 49

1 2

4

5

1

2

3

4

5

Button toolbar

Navigation button

Ajax button

Text panel

Embedded attachment preview

3

Figure 4.14: Example of newly implemented type of task-customization objects in KE-chain

• Configurable buttons:
To support quick navigation between task-forms in a project and the execution of underlying services,
the author has developed configurable buttons which can be added by the configurator. A distinction
can be made with two type of buttons: AJAX12 request buttons and KE-chain navigation buttons. Both
buttons are indicated in figure 4.14 by numbers 2 and 3 respectively. A navigation button requires the
specification of a scope ID, corresponding to the KE-chain project one which to be redirected to. Addi-
tionally an activity ID needs to be provided, in case button selection should redirect to an activity. An
AJAX request button requires the specification of a GET, PUT or POST method. Usually a GET method
is used to retrieve information from the back-end, a PUT method is used to edit information in the
back-end and a POST is used to impose an action exposed by the KE-chain API. In some cases, addi-
tional parameters need to be provided to perform an AJAX request, as indicated in the displayed UML
diagram.

The KE-chain navigation buttons are made available by the author to create a nice flow in the busi-
ness process directly from the task-forms exposed to the user. Navigation buttons are integrated in the
collaborative environment to allow the different actors to navigate backwards and forwards between
preceding and succeeding task-forms. This creates a shortcut compared to the traditional navigation
pattern provided by KE-chain. In this traditional navigation pattern KE-chain users are only able to
navigate to the different task-forms through the work breakdown overview of which an impression is
provided in appendix B in figure B.4. The AJAX request buttons have been implemented by the author
to support the execution of underlying KE-node services, to make the PD/AD interfaces an integrated
part of the provided user-interface in the PD layer.

• Configurable text panels:
The author has enabled the configurator to embed text-panels in the task-forms. An example of a ren-
dered text panel can be seen in figure 4.14 indicated by the number 4. The author experienced that the
different type of actors in the collaborative environment (defined in section 1.4) often need assistance
in performing the different steps defined in the business process. For this purpose text panels have
been added to KE-chain, which can be configured freely by the configurator to document on the im-
portant steps. More explanation on the configurable text panels and the required HTML content which
needs to be provided by the configurator is shown in appendix B.

12AJAX requests are explained in more detail on: https://www.w3schools.com/xml/ajax_xmlhttprequest_send.asp

https://www.w3schools.com/xml/ajax_xmlhttprequest_send.asp

50 4. Implementation

• Live rendered (and interactive) previews:
To conclude the task customization, the author has implemented a widget class to support in the visual-
ization of important information inside a task-form. As can be seen in figure 4.14 indicated by number
5, an inspectable frame can be embedded in a KE-chain task-form by the configurator. Embedded pre-
views are an essential part of the implemented collaborative environment to provide the desired PD
functionality. Using embedded previews, the architect, discipline specialists and customers are able
to directly investigate intermediate or final results of the work performed in the different steps of the
development process. Some examples of the information provided to the actors through the developed
preview components can be seen in appendix B in figure B.8 showing an embedded KE-chain C3PRO
project (explained in more detail in section 4.1.2), and figures B.11 to B.17 showing embedded DSMs
and an XDSM.

4.2.2. Model verification
To support the system architect in setting up a complete and consistent repository of DCs and data model
a model verification module and model inspector is researched and developed by the author. The model
verification module is based on the concept of reducing and eliminating waste in the process introduced in
section 3.1.

The model verification module extends the existing domains of PIM and WIM in the KE-chain application
as is graphically displayed earlier in section 2.4.1 in figure 2.5. PIM contains all models and function which
apply to the product model. WIM contains all models and functions which apply to the process model defini-
tion. The model verification module quantifies and qualifies the product and process model on Information
Quality (IQ) categories completeness, relevance and consistency. Completeness defines the breath, depth
and scope of information [45]. Relevance is the extend to which information is applicable for and helpful for
the task at hand [45]. Consistency implies an absence of contradictions, such that information can be ex-
changed within the framework in the correct representation. In a complete and consistent framework, only
relevant information can be exchanged between tools. The model verification module provides an in-the-
loop feedback report based on a set of rules to assist the system architect to mitigate waste in later stages of
the PD process. This set of rules and associated wastes can be seen in table 4.2.

Table 4.2: Metric used to quantify and qualify the product and process model on Information Quality (IQ), associated wastes and the
adopted color code in the model inspector

IQ category Rule Waste Color in
model
inspector

Completeness Property configured as input,
but not provided as output in
any task

No information flow possible, hence
additional activities yielding an in-
crease in man-hours and costs are
necessary to overcome a lack of infor-
mation

Red

Consistency Property configured as input at
least once, but configured as
output multiple times

Risk of colliding information. Ad-
ditional man-hours are necessary to
overcome excessive information

Orange

Relevance Property configured as output
but not used as input in the pro-
cess model.

Additional activities yielding an in-
crease in man-hours and costs are re-
quired to produce redundant infor-
mation and filter out irrelevant infor-
mation produced by the system

Yellow

Relevance Property is defined in the prod-
uct model, but is not configured
as either input or output in any
activity

Additional activities yielding an in-
crease in man-hours and costs are re-
quired to overcome a lack of informa-
tion flow.

N/A

Consistency Property configured as output
once and configured as input at
least once

No waste Green

4.2. Support 51

The model verification module is coupled to a model inspector. An example of the model inspector can
be seen in figure 4.15. In this figure one can see various arbitrary activities (D1, D2, D3, G1, G2 and F) all of
which have input properties and output properties, displayed in the left and right column of each activity
block in the inspector respectively. The model inspector is embedded in the KE-chain application and uses
the input/ output configuration of each activity to automatically generate a data flow diagram as defined in
section 3.3.3. The model inspector is an interactive component extending the front-end of KE-chain. This
component is developed using a JavaScript based GoJS library 13. Different filters can be applied to visualize
consistent flow, indicated by green parameters, and inconsistencies in the process model indicated by red,
yellow and orange parameters. Selecting a parameter or activity highlights its data dependence w.r.t. other
parameters and activities, indicated by green arrows in the model inspector.

Figure 4.15: Interactive model inspector embedded in the GUI of KE-chain

A consistent data flow implies that all data which is exchanged between different activities has a source
and target. As KE-chain is considered to be a closed system, uncoupled input and output properties lead to
an inconsistent data flow. A closed and open system can be defined as follows:

• Open system: A system that has ongoing interactions with external environments or systems.

• Closed system: A system with no external inputs or outputs. Hence there is no interaction with an
external environment or external systems.

KE-chain is a closed system due to the fact that all information is contained within the boundaries of KE-
chain. Hence, if a certain function is integrated in KE-chain which requires a set of input parameters, they
need to be defined within that environment. This is in contrast with the MDO framework architecture that is
formalized during steps one to three in the MDO framework development process. In this MDO framework
interactions between tools and functional blocks are contained within the system. On the other hand, an
MDO framework depends on external parameters to start a design problem: the design variables. Without
design variables, no optimization can take place. These design variables configured as input in at least a
single tool or functional block. Otherwise, variation of the design variables has no impact on the final design.
In the formalization of the MDO framework, it is however not specifically defined which function provides
these input parameters.

To use the developed methods to support verification of the imported DCs and key design parameters
in the C3PRO project in KE-chain the following schematic overview is used as depicted in figure 4.16. The
methods to synchronize and import the DCs and key design parameters in the C3PRO project was intro-
duced in section 4.1.2. In this schematic overview one can see three sub-processes: system inputs, design
competences and system outputs. In this example, the system inputs is a single set of key design parameters

13http://gojs.net/latest/index.html (accessed: 15/3/2017)

52 4. Implementation

referred to as geometry. These system inputs are declared as design variables in task 1.2 in the MDO frame-
work development process. The system outputs contain a collection of output key design parameters such as
objective variables and constraint variables. Using the imported key design parameters as separate activities,
the input and output relations defined for each KE-chain activity, as described in section 3.3.3, the system of
DCs of which the MDO framework will be composed of, can be wrapped in a closed system. Using this closed
system representation, the model verification rules, introduced in this section apply.

System inputs System outputsDesign competences

Activity D1

i o

KDP
Geometry o

KDP
Analysisi

Activity D3

i o

Activity G2

i o

Activity G1

i o

Activity D2

i o

Activity F

i o

Data flow

legend

Key Design
Parameter (KDP)
Collection

Design
competence

Subprocess

Figure 4.16: Schematic overview of the model verification system implemented in the MDO framework development process
(KDP = Key Design Parameter)

4.3. Reuse
A reduction in project lead-time can be achieved through front-loading [38] [2]. Front-loading is a strategy
which seeks to improve the performance of PDPs by shifting the identifications and solving of design prob-
lems to the early stages and even in front of the official start of the actual project. A key enabler for front-
loading is reuse of standard solutions. To support reuse of product and process modeling knowledge from
previous MDO frameworks, two methods are implemented by the author:

• Exporting and importing product and process knowledge using CPACS or CMDOWS XML documents

• A central knowledge library extending KE-chain.

Exchangeable CPACS and CMDOWSdocuments
In section 4.1 services to automatically generate a product and process model using CPACS XML files were
presented. Additional services are implemented to import both product and process models in KE-chain us-
ing a CMDOWS file. This functionality can be used to quickly import and manipulate already existing work-
flow configurations. CMDOWS files can be generated at any stage during the PD process. Having the option to
automatically generate a product model and couple tools defined in the CMDOWS file automatically enables
the use of CMDOWS files to quickly switch to different workflow configuration during operation.

Central knowledge library
A central knowledge library enables easy access to standard solutions without the need for file exchange.
The knowledge library is a new concept in KE-chain introduced by the author. Its position with respect to
PIM and WIM in the application architecture of KE-chain can be seen in figure 2.4. Part assemblies and
coupled activities can be retrieved from or saved to the knowledge library through a publish and promote
action respectively. The promote and publish actions are shown in figure 4.17. A promotion enables a system
architect to create a copy of the selected part and its children, which is stored in the library. The architect can
reuse stored models in any project using a publish action. A published model can be used multiple time in a
new project by creating a so-called proxy model. During the creation of a proxy model, the associated library
activities can be published as well. This approach favours a building block approach to quickly setup new
product and process models.

4.3. Reuse 53

Figure 4.17: Writing and reading coupled part assemblies and activities with the publish and promote actions through a knowledge
library

Both the central knowledge library and exchangeable documents enable a quick setup of the underlying
MDO framework’s product and process models. In the integrated MDO framework development process as
introduced in section 4.1 the setup of the product and process model is done using the C3PRO project. The
methods discussed in this section, apply in a great extend to this C3PRO project. In this project, the architect
and discipline specialists would benefit from using methods to reuse predefined model configurations.

To conclude this chapter, various supporting methods have been developed by the author which extend
KE-chain such that the implemented collaborative environment is able to fit in the PD layer of the MDO
framework’s knowledge architecture defined in section 2.4.

The implemented improvements aim to support the system architect and discipline specialists to inte-
grate the DCs and data model through model inspection, verification and reuse of standardized models. All
operations and functionalities are accessible through KE-chain, such that all actors can work collaboratively
on setting up a complete and consistent MDO framework. The effort to undo mistakes in the setup of the
underlying product and process model traditionally increase over time [15, 21]. Hence, the ability to detect
flaws in the underlying product and process models of the framework at an early stage in the development
process, aims to shorten project lead-time by minimizing these time-consuming feedback loops.

In the next chapter an application of the developed collaborative environment is presented. In this chap-
ter the methodologies to support in the setup of 3r d generation MDO frameworks is tested for an aerody-
namic optimization of an aircraft wing structure.

5
Results

In this chapter the results of this thesis research are presented. These results involve currently implemented
use-cases, ongoing use-cases and intended future use-cases of the collaborative environment to support the
integration of 3r d generation MDO frameworks. Moreover, user-experience, performed verification and vali-
dation and a reflection on the impact of the developed solutions are presented. The contents of this chapter
can be summarized as follows:

• First in section 5.1 the formalization of an MDO workflow to support geometrical, aerodynamic wing
optimization during a workshop session as part of the AGILE project is presented. This workshop has
been performed during the AGILE M21 meetings hosted in Delft. During this workshop, the devel-
oped collaborative environment and its PD/AD interfaces have been tested in a collaborative session
involving multiple design teams involving 43 users.

• Next in section 5.2 verification and validation performed by the author to test various codes, methods
and integrated components are explained in more detail.

• As the implemented collaborative environment is an integral part of the AGILE research project for the
final work-package design activities. Current and future involvement of the developed solutions during
this thesis research are highlighted in section 5.3.

• During the workshop session and current usages of the collaborative environment many users are in-
volved. The results of this research can best be reflected by the actual actors using the implemented
solutions. Hence, in section 5.4 some user-experiences are elaborated upon.

5.1. Use-case implementation: Aerodynamic wing optimization during the
AGILE workshop sessions

When this research was started, as concluded in the challenges presented in chapter 1, there is a need for
improved functionality and integration of business process activities leading to the setup and operation of an
executable MDO framework in the AGILE research project. This gap has been bridged by the development of
a collaborative environment capable of managing and processing information by extending KE-chain. The
developed application has been tested during the M21 AGILE meeting in Delft held on the 4th-5th-6th of
April. For this meeting a workshop was prepared, in collaboration with the lead developer of KADMOS, I. van
Gent1. A total of 43 users, among which various actors such as integrators, architects, collaboration engineers,
customers and discipline specialists, worked in distributed groups on the setup of an MDO framework to
perform an aerodynamic optimization of an aircraft main wing. Prior and during this workshop training was
provided to make the different users familiar with the application.

The main focus of the workshop was to guide the various actors through steps 1 to 3 of the integrated MDO
framework development process. This is illustrated in the workshop overview in figure 5.1. In this figure one

1I. van Gent, PhD researcher TU Delft, department of Flight Performance & Propulsion

55

56 5. Results

Define
design case &
requirements

Specify
repository of DCs

& data model

Formulate
MDAO

architecture

Implement
& execute

AD workflow

1 2 3 4 Inspect
design study

results

5

Formulation phase Execution phase

MDO framework development process

Aircraft wing development process

Conceptual
Design

EMWET

Q3D

OBJ

HANGAR

MTOW SCAM

SMFA

GACA

CNSTR

ix

i

ii

iii

iv

v

viii

vii

vi

i

ii

iii

iv

v

vi

vii

viii

ix

EMWET: Elham Modified Weight
Estimation Technique

CNSTR: CNSTRaint function

GACA: Geometrical Analysis of a
CPACS Aircraft

SMFA: Simulation Mission Fuel Analysis

SCAM: Simplified CPACS Aircraft Morphing

MTOW: Calculation of Aircraft Maximum
Take-off Weight

HANGAR: Design initialization from CPACS
file

OBJ: Calculation of normalized OBJective
value

Q3D: Quasi-3D aerodynamic solver

(a) Impression of the main results per step in the MDO framework development process

DCDC

input output
=

(b) Explanation CPACSized (CPACS compliant) Design Competence (DC)

Figure 5.1: Illustrated overview of the wing design study during the workshop demonstrations

can see the five steps of the MDO framework development process as part of the conceptual design phase of
an aircraft wing development process. In step 1, the administrative procedure of the development process
is illustrated, this implies the definition of requirements, available & required DCs and key design parame-
ters. A more detailed overview of all DCs and key design parameters incorporated in the MDO framework is
presented in appendix D in tables D.1 to D.3. Next, in step 2 the architect and discipline specialist ensure a
complete, consistent and compliant repository of DCs and a data model is defined. In this complete, compli-
ant and consistent repository, all introduced tools and functions are coupled to a standardized CPACS model.

5.2. Verification & validation of the developed collaborative environment 57

This implies that the input and output of each tool needs to be specified in CPACS parameters, as is indicated
in figure 5.1b. During the workshop the actors were guided through the design activities summarized below:

1. The definition of MDO use-case and its requirements.

2. The introduction of DCs to the problem definition.

3. The integration of a DC in the repository of DCs and data model using the provided KE-node interfaces.

4. The manual coupling of a new DC to a CPACS based product model using the embedded C3PRO project
in the developed collaborative environment.

5. The generation of a CMDOWS file of the generated repository of DCs and data model, which can be
used to formulate the MDO framework architecture.

6. The importing of a CMDOWS file in KADMOS using the developed user-interface and PD/AD interface
belonging to task 3.1 of the MDO framework development process.

7. Manipulation of the design competences and assigning of parameter roles using KADMOS through the
developed user-interface and PD/AD interface associated to tasks 3.2 and 3.3 in the MDO framework
development process.

8. Applying of various MDO architectures, such as MDF and IDF.

9. The automated generation of a CMDOWS file using KADMOS through KE-chain of the formulated MDO
architectures.

Based on the experiences of various users it was found that the developed application and added func-
tionality provided good control in the setup of the MDO framework. The developed interfaces to the various
components in the lower layers of the framework’s knowledge architecture allowed for easy manipulations
of the product and process models. Although the KE-chain server experienced excessive loads during the
workshop due to the amount of people working simultaneously, most users were able to experience and per-
form all operations exposed in the PD layer. Improvements on the performance are however required to cope
with larger design and optimization projects. As the performance issues are caused by the chosen collabo-
ration and integration platform KE-chain, it is currently considered out of scope to solve the performance
issues during this research. However, all findings and limitations are included in the KE-chain road-map and
worked on by the developers of KE-chain.

The result of this research is the implementation of an application extending KE-chain to provide control
during the setup and operation phase of an MDO framework in the context of the AGILE research project.
From the research it can be concluded that a collaborative approach in the setup of complex and distributed
MDO frameworks shortens the design process lead-time. Traditionally a lack of control during the design
process leads to time-consuming iterations in later stages of the development process. A gain in project lead-
time is achieved by increased transparency and control during the setup of the underlying process and data
model by providing automated interfaces to quickly make conceptual design decisions.

5.2. Verification & validation of the developed collaborative environment
In this section the results of verification and validation of the implemented solutions are presented. For this
two methods were chosen: unit testing of the implemented codes and testing functionality to small test cases.

5.2.1. Unit testing
As the implementation of all solutions builds on the foundation of a functioning software application KE-
chain, it is important to test whether the implemented extensions in KE-chain do not break existing func-
tionality or codes. For this purpose unit tests have been executed before every new deployment of the KE-
chain application with the developed extensions. A unit test is written to test small blocks of codes for which
the outcome can be tested with an expected result. Although some pieces of developed code have not been
tested, the current coverage of back-end functionality show a 100% pass of all 603 tests.

5.2.2. Test cases
In order to test the main functionality regarding import/export of standardized product and process models
and integration of the business process, framework configuration and KADMOS several test cases have been

58 5. Results

implemented. For this purpose a Sellar problem has been implemented. The Sellar problem, described in
[33] shows a small set of functions used to test MDO optimization techniques. The MDO framework has been
passed through the entire chain of human and automated activities in the PD layer of the AGILE framework.
As executing and setting up of the MDO architecture is out of scope in this research, testing of the resulting
CMDOWS of the RCG is done using KADMOS. As it is now possible to setup the entire MDO framework for
this small use-case, without any programming or XML-editing involved, in an accessible application through
the Internet. Based on these test cases it can be concluded that the developed interfaces and services work as
required.

5.3. Current and future use-cases
The implemented collaborative environment acts as a template which can be used for the setup and opera-
tion of a wide range of MDAO problems due to its generalized implementation. Currently a total of 22 projects
are available, which follow the same template. Among these 22 projects are projects used by different mem-
bers of the AGILE community, used to formalize their own MDAO workflows. Moreover, the project template
will be used in WP4 of the AGILE research project. These projects involve the conceptual design of novel air-
craft configurations: open-rotor aircraft, strut-braced aircraft box-wing aircraft, BWB aircraft and UAV. These
novel aircraft configurations are illustrated in chapter 1 in figure 1.5.

5.4. Reflection and user-experiences
During the workshop session and ongoing projects in which the implemented collaborative environment is
used, a lot of important feedback was gathered by the author. The overall user-experiences were good. Dur-
ing the workshop session not all members were familiar with KE-chain and the integrated MDO framework
development process. However, due to the extensive task-descriptions and training provided most members
were able to successfully complete the workshop in the allocated time. As concluded by T. Lefebvre 2 the cur-
rently deployed collaborative environment is ready to be called the first release of the intended collaborative
environment to support in performing the steps identified as the MDO framework development process.

According to an AGILE member and extensive user of the framework during various projects B. Aigner
3 “the implemented process is really helpful setting up complex MDO problems. The traditionally very com-
plex and highly manual tasks of defining the problem, finding the right tools to solve the problem with and
connecting them with each other in the right way got a lot easier. Doing this in a knowledge based software
environment helps the MDO integrator to really focus on the important things and let the computer do the
cumbersome tasks. It is very easy to do from the beginning because the integrator is guided nicely throughout
the whole process with a step-by-step approach and very well explained tutorials for each step.”.

On the downside, there are still improvements which can be made in the future as concluded from the
user-experiences. It was found that KE-chain, or the server on which KE-chain was running, has trouble in
processing the large amount of information. This results in long waits, which can be considered as a “deal-
breaker” in using the environment in the context of the large MDO use-cases which need to be implemented
in WP4. This is acknowledged by AGILE member and lead developer of KADMOS, I. van Gent: “adding new
elements to the C3PRO model takes a long time. This is really a deal-breaker for performing collaborative MDO
of large systems. It should take seconds to add hundreds of variables, not minutes (or hours)”. The author
acknowledges these issues in section 5.1. Feedback regarding such performance issues is important for the
development team of KE-chain. Therefore all issues have been placed of the KE-chain road-map. This way
solutions can proposed and implemented to fix these issues for future projects.

Another improvement based on user experience is the feedback users get when utilizing the developed
PD/AD layer interfaces. As stated by B. Aigner: “if something does not work out the way it should (e.g. creation
of FPG from an RCG), it is sometimes hard to debug the problem”. Based on this feedback the author has
already implemented improved message logs, which are fed back to the users during service task execution.
These new features however have not yet been deployed in the current collaborative environment, but show
great promise of improving the user-experience in future use-cases.

2Department of System Design and Performance Evaluation, the French Aerospace Lab (ONERA)
3PhD Researher, Institute of Aerospace Systems, RWTH Aachen University

6
Conclusions and Recommendations

6.1. Introduction
Increasing complexity of engineering problems and corresponding modeling and analysis activities required
to explore novel aircraft designs and configurations lead to interesting challenges in the domain of Multi-
disciplinary Design Optimization (MDO). As MDO frameworks, capable of performing overall aircraft design
studies become too complex to be comprehended by a single team of experts, there is an increasing need to
develop distributed analysis frameworks in which both tools and experts are integrated in a single distributed
network. This collaborative design in distributed teams of engineers and tools is characterized as the 3r d gen-
eration of MDO. During this research it was found the distribution of the different actors such as architects,
integrators, discipline specialists, collaboration engineers and the customer poses great challenges on the
ability to control and collaborate on the setup and operation of these 3r d generation MDO frameworks.

This thesis research has been performed as part of European research project AGILE. AGILE targets 3r d

generation MDO frameworks. The project is set up to proof a speed up of 40% for solving realistic MDO
problems compared to today’s state-of-the-art. In this approach AGILE tries to target the three main stages
involved in any design and optimization process: the setup, operation and solution phases. This research
aims to achieve a reduction in project lead-time, by mitigating challenges implied mainly with the setup and
formalization of the MDO framework.

In this research an approach to tackle these challenges is made with the integration of a business pro-
cess to assist the various actors in setting up of an MDO framework in a distributed setting. This resulted in
the implementation of a collaborative environment to support in the setup of 3r d generation of MDO frame-
works. The implementation and the subsequent research has been driven by the following research objective:
Support the setup of 3r d generation MDO frameworks by developing a collaborative environment in which the
activities leading to an automated design workflow are integrated in the business process layer. This yielded
the following sub-objectives:

• Sub-objective 1: Enable the automatic integration of tools and the data model by reuse of standardized
product and process models.

• Sub-objective 2: Provide feedback to the architect during integration of the MDO framework compo-
nents by enabling in-the-loop model verification.

• Sub-objective 3: Enable inspection on the MDO framework status of integration by developing a GUI
to support MDO framework development in the AGILE project.

These sub-objectives are explained in more detail in the sections 6.2 to 6.4. Finally a general conclusion
of this research is presented in section 6.5.

6.2. Sub-objective 1
The developed application complies with CPACS and CMDOWS standards adopted within the AGILE research
project. This enables actors to reuse and enrich already acquired knowledge regarding the integration of

59

60 6. Conclusions and Recommendations

their tools in the MDO framework. Reuse of standardized models enables acceleration of current and future
product development processes. This is a fundamental aspect to which any MDO framework should comply
with, in order to be maintainable within an organization.

The application developed during this research facilitates the reuse of and manipulation of product mod-
els using CPACS XML formatted documents and process models using CMDOWS XML formatted documents.
Moreover validated models can be stored and retrieved from an implemented knowledge library. Therefore it
can be concluded that the first sub-objective has been accomplished.

6.3. Sub-objective 2
The developed model verification and model inspector modules generate real time verification on the com-
pleteness, relevance and consistency of the properties defined in the product model and the exchange of
these properties in the process model. This supports the architect during the coupling of tools. The system
modules assert when data is not able to flow through the system of tools. Unfortunately the currently imple-
mented model inspector becomes less readable for frameworks with a large amount of properties. Hence,
improvements on the current implementation is advised. However, as concluded from workshop sessions
the current implementation of the model inspector enables an architect with limited knowledge on the ac-
tual system of tools to identify any inconsistencies in the initial framework setup. Hence, it can be concluded
that the second sub-objective has been full-filled.

6.4. Sub-objective 3
This research shows the importance of a GUI in the setup and operation phases of any MDO framework. The
application developed during this research presents a reusable and maintainable environment to support the
setup of the MDO framework. This application complies to a formalized approach adopted within the AGILE
research project. As concluded from the workshop sessions, integration of the MDO framework can be mon-
itored and controlled during the different steps of the development process. Therefore it can be concluded
that the third sub-objective has been met.

6.5. Conclusions
The results presented in chapter 5 show a reusable and maintainable environment to support the setup of
MDO frameworks. This environment is tested for several small use-cases, but is currently used to setup a
large MDO framework with 43 different project members. It can be seen that a trend has been followed in
which a lot of information, usually only accessible by each individual engineer or specialist in their individual
domain of operation, is integrated in the business process layer. From here, monitoring of progress on the
framework setup and collaboration between distributed teams of experts is supported.

Although a lot of functionality has been developed in the context of the AGILE research project the devel-
oped functionality is likely to open up new possibilities not addressed in this paper. These possibilities might
lie outside the domain of supporting the setup of 3r d generation MDO frameworks, but on the management
of other information intensive business processes. This can be concluded from the modular implementation
and strong focus on maintainability and user-friendliness.

To conclude, an approach has been made to identify and improve on the missing functionality imple-
mented in the business process layer in context of the AGILE research project. Hereby enabling support in
the development of 3r d generation MDO frameworks. The implementation of an MDO framework to support
a wing design case study demonstrates the flexibility of the developed application. This is endorsed by vari-
ous experts using the environment. The implemented collaborative environment is currently being used to
setup various use-cases in the context of the AGILE research project. The continued use of the work that has
been done during this thesis research makes the author very enthusiastic.

6.6. Limitations and recommendations 61

6.6. Limitations and recommendations
The current implementation is tested with various end-users within the context of the AGILE project. Some
improvements are advised to cope with large design and optimization problems:

• Improved performance in response times of the application.

• Improved feedback on the status of execution of the underlying services.

During the workshop demonstrations, it was found that the performance of the developed application
decreased as multiple end-users work simultaneously on different use-cases. In the current interface between
the AD and PD layer, the execution status of underlying services is not communicated sufficiently well to the
end-user.

Server time-outs, long loading times and incomplete feedback on the status of execution of underlying
services diminish the control end-users are experiencing. Hence, it is recommended that effort is made to
improve the overall performance of the developed application and feedback to the end-user on the execution
status of automated tasks in the PD process. These recommendations however are all included in the KE-
chain road-map and worked on by the developers of KE-chain.

Finally it is recommended to extend the implemented collaborative environment to allow for more auto-
mated interfaces in step four of the MDO framework development process. This has currently not been made
possible due to the limited time and limited compliance of the CMDOWS schema in PIDO applications RCE
& Optimus used within context of the AGILE research project. As ongoing improvements on CMDOWS, RCE
and Optimus are currently made within the AGILE consortium to enable improved integration in the MDO
framework development process, it is expected that an extension in automated PD/AD interfaces is possible
in the near future. In this integration, a lot of the developed methods and interfaces during this research can
be reused.

Appendices

63

A
Information Quality categories

As introduced in section 3.1, lean information management principles have the potential to accelerate any
PDP or other type of information intensive processes. A lean process is characterized by a maximized value of
information which is generated or retrieved with minimized waste. Waste is considered deadly in the field of
information management. This so-called waste refers to activities which are required to overcome missing in-
formation, wrong information, a bad exchange of information or an excessive amount of information. Waste
impacts the PDP through extended project duration and cost as additional resources such as man-hours need
to be allocated.

Studies performed by Wang et al. [45] and Hicks [14] describe the value of information and the different
categories which can be used to qualify information. In this research Information Quality (IQ) categories
are used to identify potential areas which can be improved upon in the implementation of a collaborative
environment with respect to the current state of collaboration and exchange of information within AGILE.

In table A.1 a list of Information Quality (IQ) categories defined by Wang et al. [45] are presented. This ta-
ble shows twenty IQ categories. For each IQ category a description and example based on AGILE is provided.
The author has analyzed the different IQ categories on their applicability within the scope of this thesis re-
search and their applicability within the AGILE project. The implemented collaborative environment which
is the result of this thesis research strives to maximize the value of information by addressing IQ categories
relevancy, interpretability, ease of understanding, accessibility, completeness, traceability, representational
consistency, variety of data and data sources, concise, appropriate amount of data and flexibility. All other IQ
categories are either not in scope of this thesis research or applicable within the context of the AGILE project.
A IQ category is not in scope of this research if there is no means to assess or manage the quality of informa-
tion w.r.t this category. A IQ category which is not applicable with the context of the AGILE project is deemed
to have a low impact on the overall performance of the design and optimization processes.

65

66 A. Information Quality categories

Table A.1: Different Information Quality (IQ) categories according to Wang et al. [45] and derived examples based on the AGILE project

• (*) - IQ category not within the scope of this thesis research and does not require additional attention in the AGILE project

• (**) - IQ category not within the scope of this thesis research but is interesting within the context of the AGILE project.

• (***) - IQ category important in context of AGILE and incorporated in this thesis research.

IQ Category Description Example based on AGILE

1 Believability (**) The extent to which data
are accepted or regarded as
true, real and credible.

Believability is an important IQ category with re-
spect to the context of AGILE. For example all
(intermediate) results need to be believable. Be-
lievebabiliy is largely the result of:

• Complete transparency and dependency
of all intermediate steps that have let to
(intermediate) results of a project cycle
within AGILE.

• Reduced black-box approach possible us-
ing a formalized development process in
which all intermediate steps are docu-
mented and clear for all actors involved.

• Extensive reporting functions and special-
ist reports + verification

2 Value-added (**) The extent to which data
are beneficial and provide
advantages from their use.

Beneficial data is an important aspect of any de-
velopment process. The same goes for the AG-
ILE project. Beneficial project data needs to
be directly deducible from the use-case defini-
tion and defined key design parameters by the
customer. Unfortunately the IQ category value-
added is difficult to assess in the implemented
collaborative environment as it is highly subjec-
tive for the different actors involved in the devel-
opment process.

3 Relevancy (***) The extent to which data
are applicable and helpful
for the task at hand.

The extend to which data is helpful or applicable
to the task at hand can be deduced directly from:

• Top Level (Aircraft) Requirements

• Key design parameters

• Specific input for design competences

• Design concept(s) that is/are to be sub-
jected against an MDO problem

4 Accuracy (**) The extent to which data
are correct, reliable, and
certified free of error.

In the final phases of the MDO framework de-
velopment process design results are inspected.
The accuracy of the MDAO results need to ad-
here to an accuracy and implied level of fidelity
which is in satisfaction with the demands of the
customer or use-case owner.

67

5 Interpretability
(***)

The extent to which data
are in appropriate language
and units and the data def-
initions are clear.

In the MDO framework development process
potential issues arise in step four, the implemen-
tation and deployment of an executable simula-
tion workflow, if wrong interpretation of infor-
mation and data sources are done in previous
steps. For this purpose the collaborative envi-
ronment should support in visualization of de-
pendence between information and data. Clear
documentation of information sources, accessi-
ble to the architect and all discipline specialists
aim to improve interpretability.

6 Ease of under-
standing (***)

The extent to which data
are clear without ambiguity
and easily comprehended.

Whether data can be comprehended determines
on the role of the person requesting the infor-
mation. Within AGILE multiple types of ac-
tors are involved in a single design and opti-
mization process. This increases the risk of in-
formation which is not easily understandable
for all actors involved. Adhering to standards
(CMDOWS, CPACS) aims to enhance the un-
derstanding of underlying methods and models.
Moreover clear documentation and explanation
of information intensive design activities should
aim to improve the ease of understanding.

7 Accessibility (***) The extent to which data
are available or easily and
quickly retrievable.

Accessibility is one of the core values of KE-
chain. Availability and easy access to only the
information one needs to perform its work is es-
sential, also within the AGILE project. For all
actors involved within the AGILE project it is
expected that information is accessible for the
actor to perform its job. Moreover, accessibil-
ity of data is of importance to disciplinary spe-
cialists who are required to integrate their dis-
ciplinary tools in a complete and consistent de-
sign process. Step two of the formalized MDO
framework development process aims to con-
tain functions to assess whether data required
as input data is accessible for each disciplinary
tool.

8 Objectivity (*) The extent to which data
are unbiased (unpreju-
diced) and impartial.

Information in KE-chain and within the scope of
AGILE is to be highly subjective for different use-
cases. Some objectivity however is required to
ensure that the (intermediate) design results are
generated using a similar approach. This way all
design studies can be interpreted with a similar
level of objectivity even though case-specific de-
sign results might not be comparable. For exam-
ple, the output data of a low-fidelity box-wing
aircraft design is not comparable to a high fi-
delity BWB design. The process leading to the
case-specific design results however need to be
be subjected to objectivity.

68 A. Information Quality categories

9 Timeliness (**) The extent to which the age
of the data is appropriate
for the task at hand.

In order to do multi-site, multi-collaborative
work up-to-date information is key. Whether in-
formation is useful depends on its dependence
to earlier information. If this chain remained
constant over time it can be assumed that this
information is appropriate for the task at hand.

10 Completeness
(***)

The extent to which data
are of sufficient breadth,
depth, and scope for the
task at hand.

Completeness of the models used in the AG-
ILE framework are highly use-case specific. The
scope of work is determined in the formal-
ized MDO development framework develop-
ment process. The repository of design compe-
tence that is assembled by the architect and dis-
cipline specialists needs to be complete with re-
spect to the use-case defined by the customer
and architect. Iterations are required in order
to define a complete set of design competences
and data model that is able to solve the design
problem defined by the customer.

11 Traceability (***) The extent to which data
are well documented, veri-
fiable, and easily attributed
to a source.

Traceability of data and information is very im-
portant given the fact that information is (re-
)used throughout the different steps in the de-
velopment process.

12 Reputation (*) The extent to which data
are trusted or highly re-
garded in terms of their
source or content.

With the AGILE project, the reputation of disci-
plinary specialist, architects or integrator might
impact the acceptance of information. Trust-
worthiness of information needs to be improved
by using a standardized approach of acquiring
information. Re-use of information and under-
lying models using predictable and standardized
solutions during the MDO framework develop-
ment process can be used to increase the repu-
tation of data and information.

13 Representational
consistency (***)

The extent to which data
are always presented in the
same format and are com-
patible with previous data.

Representational consistency is striven after by
using modeling standards such as CMDOWS
and CPACS. The use of modeling standards pro-
motes the consistency of the information gen-
erated during a development process. Changes
can be throughput more rapidly if the represen-
tation of data is consistent throughout different
design and optimization processes.

14 Cost-
effectiveness
(**)

The extent to which the
cost of collecting appropri-
ate data is reasonable.

In AGILE one of the challenges that is to be over-
come is to reduce the project lead-time required
to setup a repository of design competences &
data model which is consistent and complete
with respect to a specific use-case and the for-
malization of an executable simulation work-
flow. All steps leading to the formalization of an
executable simulation workflow, and the execu-
tion itself, need to be efficient in cost to enhance
the available time and resources to explore the
design space.

69

15 Ease of opera-
tion (***)

The extent to which data
are easily managed and
manipulated (i.e., up-
dated, moved, aggregated,
reproduced, customized).

The ease of operation important aspect of any
MDO framework and the implemented collab-
orative environment by the author. Increased
ease of operation enhances the flexibility of
the setup and operation of the integrated MDO
framework.

16 Variety of data
and data sources
(***)

The extent to which data
are available from several
differing data sources.

Within the different AGILE use-cases a large va-
riety of data and data sources are encountered.
For example:

• Information used for top level manage-
ment, defined by the customer and archi-
tect

• Information regarding the various param-
eters and their role in the MDAO architec-
ture

• Information describing the design compe-
tences on a functional level.

• Information regarding (intermediate) de-
sign study results

• Information regarding standardized prod-
uct and process models.

Each type of information has a different source,
for example: a disciplinary specialist, architect
or external application generating that informa-
tion.

17 Concise (***) The extent to which data
are compactly represented
without being overwhelm-
ing (i.e., brief in presenta-
tion, yet complete and to
the point).

One of the challenges in trying to visualize very
large sets of information. It would be a real chal-
lenge to remain concise in showing only the ac-
tual information needed.

18 Access Security
(**)

The extent to which access
to data can be restricted
and hence kept secure.

Handled by handing out permissions to the dif-
ferent partners involved within the project. This
permission system and the used of sub-scopes
within the entire project ensures one can man-
age the accessibility and editabilty of informa-
tion. A large part of access security is handled
by KE-chain through user-authentication.

19 Appropriate
amount of data
(***)

The extent to which the
quantity or volume of avail-
able data is appropriate.

This highly depends on the level of fidelity and
the concepts to be investigated. The appro-
priate amount of data is closely coupled to the
completeness of the repository of design com-
petences and data model.

20 Flexibility (***) The extent to which data
are expandable, adaptable,
and easily applied to other
needs

Flexibility is one of the goals within AGILE.
Moreover the collaborative environment which
is implemented during this research needs to
provide flexibility to improve design space ex-
ploration and the ability to support different de-
sign use-cases.

B
AGILE collaborative environment

In this appendix an impression of the Agile collaborative environment developed by the author during this
thesis research is presented. This chapter is composed of screenshots coming from a completed Agile MDO
framework development process used during the workshop demonstrations held on the 4th-5th-6th of April.
A detailed explanation is provided explaining the expected behavior of the various actors and end-users of
the application.

B.1. User authentication
A user enters the Agile collaborative environment through the KE-chain login screen which is displayed in
figure B.1. Each user can log in using personal log in credentials. Based on user-authentication the projects
a user can see and the type of operations a user can perform are regulated. For example, a regular KE-chain
user is able to only see projects to which he or she is assigned and a KE-chain superuser is able to see all
projects.

Figure B.1: KE-chain user-authenticated login screen

71

72 B. AGILE collaborative environment

B.2. Implemented agile project overview
After a user is authenticated, an overview of available projects can be inspected. An overview of all type of KE-
chain projects for various design cases are displayed in figure B.2. This overview shows the progress of each
project and optionally a start and due date. The progress of each project is automatically calculated, based
on the amount of information filled in. Selection of a project enables inspection of its contents, configuration
of the project and participation in the project activities.

Figure B.2: Project overview

B.2.1. Agile MDO framework development process application home screen
The selection of a project navigates the user to the project’s landing page displayed in figure B.3. This land-
ing page shows a detailed overview of the project’s description and its assigned project members. Multiple
users can be assigned to a single project as member. All assigned project members are able to view and edit
information contained in a project. A special type of user, the so-called project manager, is able to change the
users assigned to the project and the configuration of all activities and underlying data model.

On the left side of the project view, a navigation bar can be seen. This navigation bar enables quick navi-
gation between a project’s main views and tools. The main views a user is able to navigate to are described as
follows:

• Details overview: This view contains the project’s landing page. This view shows an overview of the
assigned project members and a detailed project’s description.

• Tasks overview: This view contains a list of all tasks which are part in scope of this project. In this view,
a project manager is able to assign project members to a specific task. Each member is able to filter all
project’s activities based on tasks which are specifically assigned to them. Assigning specific members
to specific tasks enables distribution of responsibilities. In the context of the Agile MDO framework
development process this feature is not yet used, as there is a shared responsibility for multiple tasks.

• Work breakdown: This view displays the project’s tasks in a hierarchical fashion. The work breakdown
is used to get a quick overview of each task’s progress and navigation to a particular task

• Explorer: This view enables inspection of all data contained in the project. This project explorer shows
the instances of a pre-configured data model.

B.2. Implemented agile project overview 73

Figure B.3: Agile MDO framework development process landing page

• Data model: This view enables inspection to the underlying data model defined for a project. This data
model is used as a template for all information and data stored in this project.

• Workflow: This view enables inspection of the business process which can be defined for this project. A
business process is composed of all tasks and sub-processes displayed in the work breakdown, however
ontological order can be specified. This enables inspection in the business process activities.

A project member also has access to various tools which allow for further inspection of the underlying
process model and data model defined for a project. Moreover views are provided to control various projec-
tor scripts and view the execution status of service tasks. These service tasks are integrated in the business
process and are coupled to external tools or python scripts using KE-node interfaces. The latter is explained
in more detail in section 2.4.1. The provided tools can be summarized as follows:

• Model inspector: This view enables the inspection of the coupling between tasks in the business pro-
cess and detailed exchange of information and data between tasks. This view is used to assist in the
configuration management of a project. It assists the project manager in visualizing the flow of infor-
mation, such that measures can be taken to mitigate waste in the development process: reducing the
risk of information not being able to flow between tasks.

• Model debugger: This view gives an overview of potential bugs in the project’s configuration. These
bugs are categorized and collected in a list. For example, if information is required as input for task
A, but it is not provided by any other task, there is a risk of flawed flow: information is not able to flow
between the project’s activities. This view assists the project manager in the configuration management
of the project.

• Projectors: This view contains an overview of all projectors defined in the project and enables the cre-
ation of new projector scripts. Projectors are required to map input and output properties in a service
task to the underlying service, or as stand-alone scripts which are used to visualize, share or write in-
formation in various formats such as: JSON, CSV, XML, HTML or latex.

• Projections: This view contains an overview of all executed projector scripts and provides the interface
to make new projections. Moreover, projectors can be executed to unique URLs. These URLs can be
retrieved from this view. These URLs can be used to create embedded visualizations in tasks forms, as
discussed in section 4.2.1, or download the output content of projection.

74 B. AGILE collaborative environment

• Service task runs: This view enables inspection in executed service tasks. An overview is provided to
see the history log of service task executions or the status of currently running services.

B.2.2. Business process activities breakdown
In this section the project’s work breakdown is described. An overview of the hierarchical overview of all
business process activities can be accessed through this view as depicted in figure B.4. This view shows the
progress of each individual task or sub-process. Progress is calculated based on the amount of information
filled in for each task. Moreover this view shows the readiness of a task. The readiness describes the amount
of input information which is provided, as a percentage of the required input information. The percentage of
readiness acts as an incentive to perform work in that task.

Figure B.4: Impression of the developed KE-chain work breakdown structure

In the work breakdown displayed in figure B.4 shows five sub-processes. These five sub-processes follow
the five steps of the MDO framework development process. A different representation of these five steps can
be seen in figure B.5. This figure shows a business process representation of the MDO framework develop-
ment process. Through the workflow view, the user is able to navigate to the various sub-processes. Using
exclusive-or gateways and parallel gateways the execution order can be visualized. This view has been in-
tegrated by the author in KE-chain during this thesis research. This integration has been accelerated using
already implemented workflow components in previous editions of KE-chain.

Selecting a task from the business process enables navigation to that task. The individual task forms
belonging to each sub-task are presented in the following sections starting with the subtask of step 1 of the
MDO framework development process.

B.3. Step 1: Define design case and requirements
In this section the different views associated with step 1 in the MDO framework development process are
visualized. In figure B.6 the taskform associated with task 1.1 is displayed. This task is the starting point of the
MDO framework development process. As can be seen from this view, the task’s layout is customized such
that it displays a grid of requirements. Requirements can be added by the customer, and completed by the
architect.

In figure B.7 task 1.2 is displayed. In this taskform the requirements specified by the customer and archi-
tect can be inspected and design competences required in the design case can be added using the respective
grid. Moreover, the key design parameters can be added through the provided interface. This task form is
design such that information can be added through forms, and information is displayed in grids. After com-

B.3. Step 1: Define design case and requirements 75

Figure B.5: Impression of the developed business process top level overview integrated in KE-chain

Figure B.6: Impression of the developed KE-chain task-form of task 1.1: Define requirements

pleting the associated forms of task 1.2. a complete description of the design case is defined.

B.3.1. Step 2: Specify complete and consistent data model and competences
In this section the KE-chain forms associated with the second step in the MDO framework development
process is presented. First in figure B.8 the task form associated associated with task 2.1 is shown. This task
is about coupling the DCs to a common CPACS data model using automated input/output mapping. The
collection of DCs coupled to a common CPACS data model is a repository used as a knowledge-base for step
3.1.

76 B. AGILE collaborative environment

Figure B.7: Impression of the developed KE-chain task-form of task 1.2: Define competences and parameters

The discipline specialists are able to upload their CPACS input XML file and CPACS output XML file for
each DC in the second grid displayed in the task-form. Pressing the orange button below it triggers the execu-
tion of the underlying service which reads the XML files and constructs the product model in an embedded
KE-chain project. Moreover, it couples KE-chain activities in the C3PRO project. These coupled activities
in KE-chain enable inspection of the coupled product and process models directly through KE-chain. This
embedded KE-chain project is referred to as the C3PRO project in the collaborative environment. C3PRO is
acronym for a Complete, Consistent and Compliant PROcess. The C3PRO project is visualized in the bottom
of the taskform.

Besides the coupling of DCs inputs and outputs to a common data model, the architect is able to upload
CPACS XML files for the key design parameters defined earlier in task 1.2. Coupled key design parameters
appear in the C3PRO project as either input or output activities. Driving design parameters, such as design

B.3. Step 1: Define design case and requirements 77

variables become input activities. Design parameters which are part of the expected outcome of a design
study, such as objective and constraint variables, are coupled as output activities.

Together, the set of coupled DCs and key design parameters enable the architect to judge whether a com-
plete, consistent and compliant process is defined which can be used in the remain steps of the MDO frame-
work development process. In case not all DCs are compliant to the common data model, the discipline
specialists are able to proceed to task 2.2 to manually map remaining input and output parameters. Manual
input and output mapping is facilitated through the embedded KE-chain C3PRO project. An example of this
manual input/output mapping can be seen in figure B.9. Through the widget displayed in this figure, one
sees the complete product model with all its part and property models. The user is able to select input and
output properties by selecting the box in the “view” and “edit” column respectively. Selecting a property also
selects its ancestor part models. Figure B.9 for example shows a selection of the configuration of EMWET, a
structural analysis tool developed by Ali Elham at the TU Delft. In this example the x, y & z coordinates of the
root airfoil section are selected as input of EMWET.

The complete repository of DCs and data model needs to be prepared such that it can be used in step three
of the MDO framework development process. Figure B.10 shows task 2.3 in the collaborative environment.
In this task-form the architect is able to directly press the orange run button directly. Pressing this button
generates a new CMDOWS file based on the repository of DCs and data model defined during tasks 2.1 and
2.2. The task-form of task 2.3 contains two additional grids: the first stores CMDOWS files for each individual
DC and the second stores CMDOWS files for each key design parameter.

78 B. AGILE collaborative environment

Figure B.8: Impression of the developed KE-chain task-form of task 2.1: Import CPACSized competences into repository

B.3. Step 1: Define design case and requirements 79

Figure B.9: Manual mapping of inputs and outputs through the task configuration widget in KE-chain

80 B. AGILE collaborative environment

Figure B.10: Task 2.3: Generate CMDOWS

B.3. Step 1: Define design case and requirements 81

B.3.2. Step 3: Formulate MDAO architecture
In the third step of the MDO framework development process an MDAO architecture needs to be formulated
using KADMOS. Formulation of the MDAO architecture starts with importing the CMDOWS file generated in
task 2.3 of the development process. This is done through the import functions exposed in task 3.1. The as-
sociated task-form is shown in figure B.11. This task-form first displays a grid containing available CMDOWS
files. These available CMDOWS files can be generated in task 2.3 but can also be added manually through the
green add button. Below the available CMDOWS grid, the architect is able to select a CMDOWS file from the
list. The selected CMDOWS file is imported after pressing the large orange button. The imported CMDOWS
file is exported as a DSM, shown in an embedded PDF previewer. Moreover a KADMOS visualization package
is generated. All files for visualization can be downloaded from the grid below the PDF previewer. Moreover a
list of all imported DCs is displayed such that the architect is able to inspect if the import has been performed
correctly.

Navigation to task 3.2 directs the architect to the task-form displayed in figure B.12. This task is used to
manipulate the DCs to make initial preparations for formulating an MDAO architecture. Manipulation of DCs
is done through a series of grids. For example, the exclusion of a DC is done by creating a new record in the
associated grid by pressing the green add button. After creating a new excluded DC record, the associated DC
needs to be selected through a widget displayed in figure B.13. This selection widget enables the architect to
filter through the list of available DCs. The exclusion of the DCs from the FPG can is performed after pressing
the large orange button. Underlying functions of KADMOS manipulate the problem graph such that the
excluded DC and all its input/output parameters are excluded from the graph. The resulting FPG is exported
to a PDF file and KADMOS visualization package. The PDF file is displayed in an embedded PDF previewer
in the task-form.

At the bottom of the task-form the architect is able to move to task 3.3 of the development process. Task
3.3 enables the architect to assign parameter roles. In the task-form the architect sees four grids. These four
grids contain design variables, objective variables, constraint variables, and state variables. The architect is
able to add for example a new design variable by adding a new record to the respective grid. Selecting the add
button enables the architect to fill in the form displayed in figure B.15. This form is used to acquire a complete
definition of the design variable, such that KADMOS is able to enrich the FPG. The architect is able to link the
design variable to one of the parameter available in the FPG through the selection widget displayed in figure
B.16. Through this widget the architect is able to filter the usually hundreds of parameters by querying on
XPaths or parameter label names.

After the architect has successfully assigned all parameter roles required to solve the design case the FPG
can be enriched by KADMOS after pressing the large orange button. The enriched graph is exported as a DSM
displayed in an embedded PDF previewer in the task-form. The exported PDF and an exported KADMOS
visualization package can be downloaded below the previewer.

In the final task of step 3 in the MDO framework development process the architect is able to apply an
MDAO architecture. The associated task-form is shown in figure B.17. The architect is provided with an inter-
face in the top of the task form to select the MDAO architecture, coupling decomposition and a DOE method
if applicable. The available MDAO architectures are IDF, MDF, (un)converged MDA and (un)converged DOE.
The user is able to select two type of coupling decomposition: Gauss-Seidel and Jacobi. Gauss-Seidel will
only remove feedback coupling, while Jacobi will remove both feedforward and feedback coupling between
multidisciplinary analyses.

After applying the MDAO architecture settings, the architect is able to execute the underlying KADMOS
functions by pressing the large orange button. Executing the underlying KADMOS function manipulates the
graph according to the selected architecture. During execution, first a log is generated in which a series of
tests are reflected upon. If all tests pass, the XDSM is generated. The exported XDSM is displayed in the
embedded PDF previewer at the bottom of the the task-form. Moreover KADMOS generates its visualization
package and an CMDOWS file which contains the complete MDAO architecture which can be used in step
four of the development process. These CMDOWS files are appended to a list displayed at the bottom of the
task-form. The architect is able to download any CMDOWS XML file.

82 B. AGILE collaborative environment

Figure B.11: Impression of the developed KE-chain task-form of task 3.1: Import CMDOWS and inspect RCG

B.3. Step 1: Define design case and requirements 83

Figure B.12: Impression of the developed KE-chain task-form of task 3.2: Manipulate design competences

84 B. AGILE collaborative environment

Figure B.13: Select design competence widget

B.3. Step 1: Define design case and requirements 85

Figure B.14: Impression of the developed KE-chain task-form of task 3.3: Assign parameter roles

86 B. AGILE collaborative environment

Figure B.15: Edit design variable

Figure B.16: Select FPG parameter widget

B.3. Step 1: Define design case and requirements 87

Figure B.17: Impression of the developed KE-chain task-form of task 3.4: Apply MDAO architecture

88 B. AGILE collaborative environment

B.3.3. Step 4: Implement & execute AD workflow
In the current state of the collaborative environment PIDO applications such as RCE or Optimus available
with the Agile consortium are not integrated in step four of the development process. Hence, figure B.18 only
shows an impression of an implemented AD workflow in RCE. In the current setup of the collaborative en-
vironment, the integrator or architect downloads a CMDOWS file containing a formulated MDAO workflow
in step 3.4 and manually imports this CMDOWS file in their PIDO application. From the respective PIDO
application, the architect or integrator is able to start the execution of the MDAO workflow locally. During
workflow execution, a distributed network of DCs is used.

Figure B.18: Impression of the developed KE-chain task-form of task 4.1: Export simulation workflow

B.3. Step 1: Define design case and requirements 89

B.3.4. Step 5: Inspect design study results
Finally in step five of the MDO framework development process the integrator must prepare the results for
visualization in task 5.1 and is able to share the design results with the customer in task 5.2 in the development
process.

The task-form associated to task 5.1 is displayed in figure B.19. The first grid displayed in the task form
contains a repository of available design study results files produced in step four. In this form the integrator is
able to manually upload a CPACS XML results file trough the interface. Below the grid of available results file,
the integrator is able to select a specific file he wants to prepare for visualization. After selection of a specific
result files, an underlying service can be ran by pressing the large orange button. Execution of the underlying
service reads the results XML file, and produces a formatted text file. This text file can be imported in the ID8
visualization environment embedded in the task-form of task 5.2 displayed in figure B.20.

The task-form of task 5.2 is configured such that it can be used directly by the customer. A selection of
available formatted design results files, generated in the previous task, are displayed in a grid. The customer
is able to download a result file, which can be easily inspected through the embedded ID8 environment pro-
vided by Noesis.

Figure B.19: Impression of the developed KE-chain task-form of task 5.1: Select CPACS file for inspection

90 B. AGILE collaborative environment

Figure B.20: Impression of the developed KE-chain task-form of task 5.2: Upload file and inspect results in ID8

C
Task customization example

In this appendix the rationale behind the task-customization components which can be configured by the
configurator. This appendix serves as an extension to section 4.2.1 in the main report. In this section the
different object classes which can be configured as widget by the configurator are defined. In listing C.5 one
can see an example of underlying JSON code, which solves the purpose of generating a customized taskform
with the following components, displayed in figure C.1:

1. Button toolbar: Widget containing a list of buttons, which can be embedded in horizontal order.

2. KE-chain navigation button: Button which allows for navigation to a single task-form or panel inside
KE-chain. For example: navigation to a previous or next task-form.

3. Ajax button: Button which enables the performing actions exposed by the KE-chain API, using POST,
GET and PUT methods. For example: the execution of an underlying service.

4. Text panel: A panel widget can be embedded inside a task-form to display additional information or
instructions on the information displayed in that task-form, or the actions a user must perform to com-
plete a task.

5. Embedded attachment previews: A custom widget which enables the previewing of attachments up-
loaded into the KE-chain database. For example the DSMs generated by KADMOS are embedded in
the task-forms in step three of the development process to show the intermediate formulation of the
MDAO problem setup by the architect. Additional illustrations of embedded previews used in the col-
laborative environment are shown in appendix B in figures B.11 to B.17.

In the next sections the technical background, and methods the configurator can use to customize a task-
form is explained in more detail.

Interactive button widgets
The example task-customization JSON shown in listing C.5 shows two KE-chain navigation buttons, and an
AJAX button. Both can be recognized by the navigatebutton and ajaxbutton xtypes respectively. In this exam-
ple the navigate buttons link enable the end-users to navigate directly to a task in KE-chain. The navigation
button requires mandatory input parameters: scopeId and reference. The scopeId refers to a unique project
scope id. The reference refers to a category one wishes to navigate to, for example activities or productmodel
etc. In case navigation to a KE-chain activity is required, the activityId needs to be provided as well. All IDs
can be copied from the URL displayed in the browser. An example of a URL of a certain task is shown in figure
C.2.

The AJAX request button, requires the configurator to specify the URL exposing the action. In the exam-
ple JSON code displayed in C.5 an orange button is integrated in the toolbar, which imposes a service task
execution action. An example of the URL of the exposed API of KE-chain used for service task execution is

91

92 C. Task customization example

1 2

4

5

1

2

3

4

5

Button toolbar

Navigation button

Ajax button

Text panel

Embedded attachment preview

3

Figure C.1: Example of newly implemented type of task-customization objects in KE-chain

https://agile.ke-chain.com/#scopes/7cd5b6be-f2f2-4a98-b04a-013a4b716f33/activities/11cd28c8-f3e5-4f24-bd9a-163ec06250fd

scopeId reference activityId

Figure C.2: Example of a URL used for navigation in KE-chain and its composition

displayed in figure C.3. From this URL, the final part of the URL (/api/service_tasks/11cd28c8-f3e5-4f24-bd9a-
163ec06250fd/execute) needs to be added to the button configuration. In this URL, an activity ID is included
to specify which service task is executed. Moreover a method needs to be specified. Service task execution
requires a POST method. Finally a process ID needs to be specified, which can be provided by the KE-chain
integrator. The author has developed methods in the KE-chain front-end which are able to read the but-
ton configuration, and generate a JavaScript AJAX request function, which is triggered every time the button
widget is pressed.

Figure C.3: Example of a URL used for service task execution in KE-chain and its composition

The architect is able to edit the style of the button and add a unique text. The text can be styled through
HTML formatting1. This enables the changing the text font, font-size, color etc. Moreover a style class can be
applied on the button according to the ExtJS 6 style configuration methods2. Hence, the configurator is able
to apply various type of styles to change for example the background color of a button as demonstrated in
the displayed example in this chapter. Finally an icon can be attached to a button using the available icons
provided by the Font Awesome3 package. The KE-chain front-end is developed such that it is able to work
with all icon classes provided by Font Awesome. In the example of displayed in figure C.1 a rocket icon is
added to the AJAX button using the x-fa fa-rocket icon.

1Example of HTML text styling provided by w3schools.com, https://www.w3schools.com/html/html_styles.asp (accessed:
31/05/2017)

2Sencha’s ExtJS 6 documentation on button styles, http://docs.sencha.com/extjs/6.2.0/classic/Ext.button.Button.html#
cfg-style (accessed: 31/05/2017)

3Font Awesome website, http://fontawesome.io/icons/ (accessed: 31/05/2017)

https://www.w3schools.com/html/html_styles.asp
http://docs.sencha.com/extjs/6.2.0/classic/Ext.button.Button.html#cfg-style
http://docs.sencha.com/extjs/6.2.0/classic/Ext.button.Button.html#cfg-style
http://fontawesome.io/icons/

93

All buttons can be inserted in a toolbar, as is demonstrated in this example, or as isolated components. If
a configured chooses to insert the buttons in a toolbar, a width or flex might be in the widget configuration. A
flex button, automatically adjust the width such that it fills up the remaining toolbar space. A specified width
fixes the button width. In case a button is not added in a toolbar, its width will flex over the entire width of
the task-form.

Inspectable text panels
The inspectable text panels, indicated by the number 4 in the JSON code displayed in figure C.5 can be given
a custom title. Additionally the configurator might want to change the title font or panel style using ExtJS
custom classes similarly to the button styles discussed in the previous section. Next, the main text embed-
ded in the panel needs to be specified. This panel widget enables the configurator to write custom text, links
and embedded images using HTML formatting. The author used an open-source text-generator 4 to trans-
form custom text to HTML. Using such a text editor, and copying the source code makes writing custom task
descriptions a piece of cake.

Live rendered previews
To conclude this appendix on task-customization, live rendered attachment or image previews are discussed.
As can be seen form the task-customization JSON in figure C.5 by the number 5 tag, the configurator is able
to generate a custom attachment preview component in the task-form. The author uses embedded iframes5

for this purpose. the configurator is able to change the height of the preview, and the source location of the
preview. In case of an attachment preview, this source (indicated in the JSON by src) follows the unique URL
displayed in figure C.4. This URL is exposed by the API and generates a locally hosted image, of an uploaded
attachment to KE-chain. To embed an attachment, for example a PDF preview as displayed in figure C.1,
the configurator needs to manually insert the correct property instance ID inside the URL. This property ID
can be retrieved directly through KE-chain through the explorer environment as explained in more detail in
section B.2.1.

Figure C.4: Example of a URL used for previewing attachments in KE-chain and its composition

Besides a KE-chain attachment preview the source of an iframe component can be direct to many other
accessible file locations provided that they are hosted on the internet. For example, the configurator is able
to embed external websites or embed interactive D3JS6 diagrams.

4Open source HTML text editor: http://www.html.am/html-editors/html-text-editor.cfm (accessed: 31/05/2017)
5Detailed explanation of iframes by w3schools.net, https://www.w3schools.com/tags/tag_iframe.asp (accessed: 31/05/2017)
6D3JS: Data-Driven Documents, https://d3js.org/ (accessed: 31/05/2017)

http://www.html.am/html-editors/html-text-editor.cfm
https://www.w3schools.com/tags/tag_iframe.asp
https://d3js.org/

94 C. Task customization example

1

2

3

4

5

Figure C.5: Example of a task-customization JSON

D
Detailed overview of integrated tools in the

MDO framework used during the
workshop sessions

During the workshop session an MDO framework was setup in which an aerodynamic and structural opti-
mization of a wing. The starting point of the wing design case was taken from the optimized aircraft during
design campaign 1, as introduced in section 1.3 This reference aircraft is a conventional aircraft with a wing
aspect ratio of 9.5. The aircraft is designed to transport 90 passengers with a total payload mass of 9180kg over
3500km. The MDO framework requirements used during the demonstrated MDO framework development
process are shown in table D.1. The key design parameters defined for the design case are shown in table D.2.
Finally a detailed description of the 18 available DCs is shown in table D.3.

The results of step of the MDO framework development process demonstrated during the workshop ses-
sions is a CPACSized set of DCs, which together form a RCG[43] is shown in a neutral DSM in figure D.1a. An
impression of a formulated MDO workflow according to the an MDF architecture and Gauss-sidel coupling
decomposition is demonstrated in the neutral XDSM format in figure D.1b. Note that the results of step 3 are
generated through the development collaborative environment by the various actors operating the system,
using KADMOS’s exposed functions.

95

96 D. Detailed overview of integrated tools in the MDO framework used during the workshop sessions

Table D.1: MDO Use-case requirements defined for the demonstrated workshop session

Requirement Description Type Responsible Means of compliance
Initial data
set

The initial data set contains all ge-
ometrical parameters and analytic
results coming from design cam-
paign 1. For this the CPACS base-
file can be used

Concept Architect DC1 Base-file imported

Design con-
cepts to
include

This design case requires an op-
timization study performed solely
on the wing of the DC1 aircraft.
Only the concept of the wing has
to be included in the modelling.

Concept Architect Wing is imported with
all its geometrical prop-
erties and analytic
properties required to
CPACSsize DCs in scope
as is.

Competences
to include

The wing design study will require
the use of structural and aero-
dynamic analysis tools, such as
EMWET and Q3D. This entails a
viscous and an inviscid aerody-
namic analysis to be performed.

Competence Architect All competences are in-
cluded and described

Objective
functions

The objective is to minimize the
maximum take-off weight of the
full aircraft.

Objective Architect Objective functions
are CPACSzised in the
abstract application
framework.

Modelling
the wingless
aircraft

Since the design problem is fo-
cused on the main wing geome-
try only, the rest of the aircraft is
modeled by estimating a realistic
weight, lift coefficient and drag co-
efficient of the wingless aircraft.

Concept Architect Estimate realistic
weight, lift coefficient
and drag coefficient
using empirical data.

Design vari-
ables

The wing shape should be opti-
mized by varying: root chord, ta-
per ratios (per wing segment), di-
hedral angle, sweep (per wing seg-
ment), and wing span

Objective Architect Creation of a tool that
can morph the CPACS
wing geometry based
on the design variables.

Constraints Two constraints have to be met:
all fuel for the required range has
to be stored in the main wing fuel
tanks and the wing loading of the
aircraft cannot be higher than the
wing loading of the initial design
point.

Objective Architect Addition of CPACS-
compliant constraint
functions to the reposi-
tory.

97

Table D.2: MDO Use-case key design parameters defined for the demonstrated workshop session

Parameter Type Description Type of parameter Role in opti-
mization

MTOW Design objective Aircraft maximum take-off
weight

Output parameter Objective

Wing span Design variable Wing span Input parameter Variable
Wing dihedral Design variable Dihedral of the main wing Input parameter Variable
Wing taper ratios Design variable Wing taper section 1 and 2 Input parameter Variable
Wing sweep Design variable Wing sweep per section Input parameter Variable
Wing loading Design constraint Wing loading: Lift per

square area.
Output parameter Inequality

constraint
Fuel tank volume Design constraint Volume of the main wing

fuel tank
Output parameter Inequality

constraint
Wing root chord Design variable The root chord of the main

wing
Input parameter Variable

98 D. Detailed overview of integrated tools in the MDO framework used during the workshop sessions

Table D.3: MDO Use-case available Design Competences (DCs) used during the demonstrated workshop session

Competence Function description Input description Output description
Q3D[FLC] FlightLoadCase: In this case Q3D

only performs the inviscid VLM
analysis in order to provide the
loads per wing strip in an aero-
DataSetForLoads associated with
the flightLoadCase. These loads
can then be used for further anal-
ysis.

wing geometry, 2D sec-
tions

loads per wing strip
in an aeroDataSet-
ForLoads associated
with the flightLoad-
Case

Q3D[VDE] ViscousDragEstimation: In this
mode Q3D analyses the lifting sur-
face for the aerodynamic coeffi-
cients at a given flightLoadCase. A
visouc analysis is performed to get
the right drag value.

lifting surface for
the range of Mach
numbers, Reynold’s
numbers, and angle of
attacks specified in the
aeroPerformanceMap

The tool then pro-
vides the lift, drag
and (quarter-chord)
moment coeffi-
cients of the com-
plete wing.

EMWET EMWET stands for Elham Modi-
fied Weight Estimation Technique.
The tool uses quasi-analytical
techniques to estimate the weight
of an aircraft wing. EMWET is a
new Class 2 1/2 weight estimation
technique. It takes basic inputs
like the planform shape, spar
positions and airfoils used. Since
EMWET will most often be used
in the start of the design process,
these values can easily be first esti-
mations. A detailed description of
EMWET can be found in chapter 3
of the thesis of Dr. Elham: Weight
Indexing for Multidisciplinary
Design Optimization of Lifting
Surfaces (2013).

Wing geometry external
+ fuel tank positions

Masses of wing
weight and total
wing weight

HANGAR [AGILE_
DC1_WP6_wing_
startpoint]

HANGAR: Tool that loads an ex-
isting CPACS file which has been
initiated by a design initialization
software.

Initial CPACS base file Full aircraft geome-
try

OBJ OBJ is a function that collects dif-
ferent objective functions. Can be
used to determination a normal-
ized MTOW.

reference MTOW (tool-
specific), MTOW

normalized MTOW

SMFA SMFA: Simplified Mission Fuel
Analysis is a tool that provides an
estimation of the required mission
fuel based on the Breguet equa-
tion.

Aerodynamic perfor-
mance main wing (total
lift/ drag coefficient)
performance targets
(range, cruise mach,
cruise altitude), max-
imum take-off mass,
cruise density and
velocity, tool-specific
mission fuel character-
istics

Fuel mass

99

CNSTRNT [fu-
elTankVolume]

Determination of the constraint
value w.r.t. the volume of the fuel
tanks in the wing and the required
fuel volume.

wing fuel tank volume,
required fuel volume

normalized con-
straint value

GACA [mainWing-
FuelTankVol]

Calculate main wing tank fuel vol-
ume.

wing geometry includ-
ing fuel tank descrip-
tion

fuel tank volume

MTOW Calculation of the Maximum Take-
off Weight (MTOW)

zero-fuel mass, opera-
tive empty mass, fuel
mass

MTOW

GACA [main-
WingRefArea]

Determination of the reference
(projected) area of the main wing

wing geometry wing reference area

CNSTRNT
[wingLoading]

Determination of the wing loading
constraint value w.r.t. a maximum
allowed wing loading.

wing geometry, max-
imum allowed wing
loading

normalized con-
straint value

PROTEUS Flight dynamics analysis control derivatives, air-
craft geometry, engine
characteristics

flight dynamics
characteristics

Q3D[APM] AeroPerformanceMap: In this
case Q3D analyses the lifting
surface for the range of Mach
numbers, Reynolds numbers,
and angle of attacks specified in
the aeroPerformanceMap. The
tool then provides the lift, drag
and (quarter-chord) moment
coefficients of the complete wing

Wing parametrization lift, drag and
(quarter-chord) mo-
ment coefficients of
the complete wing

SCAM
[wing_sweep_morph]

Adjustment of the sweep angle of
each wing segment

Sweep angle Morphed wing ge-
ometry

SCAM
[wing_dihedral_
morph]

Adjustment of the wing dihedral to
a single new value.

Dihedral angle Morphed wing ge-
ometry

SCAM
[wing_taper_morph]

Adjustment of the tip chord length
of each wing segment w.r.t. the
wing root chord using a taper ratio
value

Wing segments, chord
lengths

Morphed wing ge-
ometry

SCAM
[wing_root_chord_
morph]

Adjustment wing root chord
length.

Root chord, wing
parametrization

Morphed wing ge-
ometry

SCAM
[wing_length_morph]

Adjustment of total lenght of all
the wing segments

Wing segments, airfoils Morphed wing ge-
ometry

100 D. Detailed overview of integrated tools in the MDO framework used during the workshop sessions

5
in
p
u
ts

4
in
p
u
ts

12
in
p
u
ts

8
in
p
u
ts

2
in
p
u
ts

2
in
p
u
ts

3
in
p
u
ts

3
in
p
u
ts

20
3
in
p
u
ts

1
1
in
p
u
ts

8
in
p
u
ts

8
in
p
u
ts

3
in
p
u
ts

3
in
p
u
ts

3
in
p
u
ts

4
in
p
u
ts

4
in
p
u
ts

6
in
p
u
ts

2
ou

tp
u
ts

C
N
S
T
R
N
T
[f
u
el
T
an

k
V
ol
u
m
e]

2
ou

tp
u
ts

C
N
S
T
R
N
T
[w
in
gL

oa
d
in
g]

1
ou

tp
u
t

E
M
W

E
T

1
co
n
n
ec
ti
on

1
ou

tp
u
t

1
co
n
n
ec
ti
on

G
A
C
A
[m

ai
n
W

in
gF

u
el
T
an

k
V
ol
]

1
co
n
n
ec
ti
on

G
A
C
A
[m

ai
n
W

in
gR

ef
A
re
a]

1
co
n
n
ec
ti
on

38
ou

tp
u
ts

1
co
n
n
ec
ti
on

1
co
n
n
ec
ti
on

17
4
co
n
n
ec
ti
on

s
13
4
co
n
n
ec
ti
on

s
11
8
co
n
n
ec
ti
on

s
H
A
N
G
A
R
[A
G
IL
E

D
C
1
W

P
6
w
in
g
st
ar
tp
oi
n
t]

4
co
n
n
ec
ti
on

s
1
co
n
n
ec
ti
o
n

13
8
co
n
n
ec
ti
on

s
11
5
co
n
n
ec
ti
on

s
12
1
co
n
n
ec
ti
on

s
12
0
co
n
n
ec
ti
o
n
s

1
18

co
n
n
ec
ti
o
n
s

11
8
co
n
n
ec
ti
o
n
s

11
8
co
n
n
ec
ti
on

s
11
8
co
n
n
ec
ti
on

s
11
8
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s

4
ou

tp
u
ts

1
co
n
n
ec
ti
on

2
co
n
n
ec
ti
on

s
M
T
O
W

1
co
n
n
ec
ti
o
n

1
co
n
n
ec
ti
on

1
co
n
n
ec
ti
o
n

1
co
n
n
ec
ti
on

2
ou

tp
u
ts

O
B
J

3
ou

tp
u
ts

P
R
O
T
E
U
S

6
ou

tp
u
ts

Q
3D

[A
P
M
]

4
ou

tp
u
ts

12
6
co
n
n
ec
ti
on

s
Q
3
D
[F
L
C
]

2
ou

tp
u
ts

Q
3D

[V
D
E
]

2
co
n
n
ec
ti
on

s

2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
o
n
s

S
C
A
M
[w
in
g
d
ih
ed
ra
l
m
o
rp
h
]

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

S
C
A
M
[w
in
g
le
n
g
th

m
or
p
h
]

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
on

s
3
co
n
n
ec
ti
o
n
s

3
co
n
n
ec
ti
o
n
s

3
co
n
n
ec
ti
o
n
s

S
C
A
M
[w
in
g
ro
o
t
ch
o
rd

m
or
p
h
]

3
co
n
n
ec
ti
o
n
s

3
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
on

s
2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

2
co
n
n
ec
ti
o
n
s

S
C
A
M
[w
in
g
sw

ee
p
m
or
p
h
]

2
co
n
n
ec
ti
o
n
s

6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
on

s
6
co
n
n
ec
ti
o
n
s

6
co
n
n
ec
ti
o
n
s

6
co
n
n
ec
ti
o
n
s

6
co
n
n
ec
ti
o
n
s

6
co
n
n
ec
ti
o
n
s

S
C
A
M
[w
in
g
ta
p
er

m
or
p
h
]

1
ou

tp
u
t

1
co
n
n
ec
ti
on

1
co
n
n
ec
ti
on

S
M
F
A

(a) Wing design study Repository Connectivity Graph (RCG)

0,
12

:
C
O
O
R

1:
2
in
p
u
ts

2:
7
in
p
u
ts

3:
21

in
p
u
ts

4
:
9
in
p
u
ts

5:
2
in
p
u
ts

6
:
2
0
in
p
u
ts

7:
14

in
p
u
ts

8:
3
in
p
u
ts

10
:
3
in
p
u
ts

10
:
8
in
p
u
ts

1:
H
A
N
G
A
R
[A
G
IL
E

D
C
1
W

P
6
w
in
g
st
ar
tp
oi
n
t]

3:
10

3
co
n
n
ec
ti
o
n
s

4:
1
19

co
n
n
ec
ti
o
n
s

6:
16

1
co
n
n
ec
ti
o
n
s

7
:
1
0
7
co
n
n
ec
ti
on

s
8:

2
co
n
n
ec
ti
o
n
s

12
:
7
ou

tp
u
ts

2,
1
1
→

3:
O
P
T

3:
7
co
n
n
ec
ti
on

s

3:
S
C
A
M
-m

er
ge
d
[5
m
o
d
es
]

4:
1
5
co
n
n
ec
ti
on

s
6
:
1
5
co
n
n
ec
ti
o
n
s

7
:
15

co
n
n
ec
ti
o
n
s

4
:

G
A
C
A
-m

er
g
ed

[2
m
o
d
es
]

7
:
1
co
n
n
ec
ti
o
n

10
:
2
co
n
n
ec
ti
on

s

5,
9
→

6
:

C
O
N
V

6
:
2
co
n
n
ec
ti
on

s
7:

1
co
n
n
ec
ti
on

6:
Q
3D

[F
L
C
]-
E
M
W

E
T
–s
eq

8:
1
co
n
n
ec
ti
on

7:
Q
3D

[V
D
E
]-
S
M
F
A
–s
eq

8:
1
co
n
n
ec
ti
on

10
:
1
co
n
n
ec
ti
on

12
:
2
ou

tp
u
ts

9
:
2
co
n
n
ec
ti
on

s
8:

M
T
O
W

10
:
1
co
n
n
ec
ti
on

10
:
1
co
n
n
ec
ti
on

12
:
1
ou

tp
u
t

11
:
1
co
n
n
ec
ti
o
n

10
:

O
B
J

12
:
2
ou

tp
u
ts

11
:
2
co
n
n
ec
ti
on

s
10

:
C
N
S
T
R
N
T
-m

er
ge
d
[2
m
o
d
es
]

(b) Wing design study Extended Design Structure Matrix
(XDSM) corresponding to a MDF-GS architecture

Bibliography

[1] J. Agte, O. De Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, and M. Spieck. MDO: assess-
ment and direction for advancement—an opinion of one international group. Structural and Multidis-
ciplinary Optimization, 40(1-6):17–33, 2010.

[2] A.M. Belay, T. Welo, and P. Helo. Approaching lean product development using system dynamics: inves-
tigating front-load effects. Advances in Manufacturing, 2(2), 2014.

[3] A. Bendiken. How RDF databases differ from other NoSQL solutions. http://blog.datagraph.org/
2010/04/rdf-nosql-diff, 2010/04/22. Accessed: 2016-05-17.

[4] J.P.T.J. Berends and M.J.L. van Tooren. Multi-agent task environment framework to support multidisci-
plinary design and optimization. Journal of Aerospace Information Systems, 10(6):258–267, 2013.

[5] D. Böhnke, F. Dorbath, B. Nagel, and V. Gollnick. Multi-fidelity wing mass estimations based on a central
model approach. 2012.

[6] F. Bouthillier and K. Shearer. Understanding knowledge management and information management:
the need for an empirical perspective. Information research, 8(1):8–1, 2002.

[7] T.R. Browning. Applying the design structure matrix to system decomposition and integration problems:
A review and new directions. IEEE Transactions on Engineering Management, VOL. 48, NO. 3, AUGUST,
2001.

[8] P.D. Ciampa and B. Nagel. Towards the 3r d generation MDO collaborative environment. 30th Interna-
tional Congress of the Aeronautical Sciences, 2016.

[9] D. Cooper and G. La Rocca. Knowledge-based techniques for developing engineering applications in
the 21st century. 7th AIAA ATIO Conference, AIAA, Belfast, Northern Ireland, 2007.

[10] M. Danilovic and T.R. Browning. Managing complex product development projects with design struc-
ture matrices and domain mapping matrices. International Journal of Project Management 25 (2007)
300–314, 2006.

[11] J.M. Dorador and R.I.M. Young. Application of IDEF0, IDEF3 and UML methodologies in the creation of
information models. International Journal of Computer Integrated Manufacturing, 2000.

[12] A. Frost. Information management vs knowledge management. http://www.
knowledge-management-tools.net/IM_vs_KM.html, 2014. Accessed: 2017-05-14.

[13] OWL Working Group. Web ontology language (OWL). https://www.w3.org/2001/sw/wiki/OWL,
2012/12/11. Accessed: 2016-05-17.

[14] B.J. Hicks. Lean information management: Understanding and eliminating waste. International journal
of information management, 27(4):233–249, 2007.

[15] T. Knothe, R. Jochem, and N. Wintrich. Enforcing front-loading in engineering processes through
product-process integration. R. Poler et al. (eds.), Enterprise Interoperability V: Shaping Enterprise In-
teroperability in the Future Internet, Proceedings of the I-ESA Conferences 5, DOI 10.1007/978-1-4471-
2819-9_7, Springer-Verlag London, 2012.

[16] G. La Rocca. The challenge of managing knowledge - yet another contribution to the longstanding
data-information-knowledge discussion. TU Delft, Delft University of Technology, Working paper, DOI:
10.13140RG.2.1.4241.8963, 2016.

101

http://blog.datagraph.org/2010/04/rdf-nosql-diff
http://blog.datagraph.org/2010/04/rdf-nosql-diff
http://www.knowledge-management-tools.net/IM_vs_KM.html
http://www.knowledge-management-tools.net/IM_vs_KM.html
https://www.w3.org/2001/sw/wiki/OWL

102 Bibliography

[17] G. La Rocca and M.J.L. van Tooren. Development of design and engineering engines to support multidis-
ciplinary design and analysis of aircraft. Delft Science in Design - A congress on Interdisciplinary Design,
Faculty of Architecture, ISBN 90-5269-327-7, Delft, NL, 2005.

[18] G. La Rocca, T.H.M. Langen, and Y.H.A. Brouwers. The design and engineering engine. towards a mod-
ular system for collaborative aircraft design. 28th International Congress of the Aeronautical Sciences,
2012.

[19] A.B. Lambe and J.R.R.A. Martins. Extensions to the design structure matrix for the description of mul-
tidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimiza-
tion, 46(2):273–284, 2012.

[20] R. H. Liebeck. Design of the blended wing body subsonic transport. Journal of aircraft, 41(1):10–25,
2004.

[21] H.C. Martinez Leon, J.A. Farris, and G. Letens. Improving product development performance through
iteration front-loading. IEEE Transactions on Engineering Management, Vol 50, No. 3, August, 2013.

[22] N.R. Milton. Knowledge technologies, volume 3. Polimetrica sas, 2008.

[23] E. Moerland, R. Becker, and B. Nagel. Collaborative understanding of disciplinary correlations using a
low-fidelity physics-based aerospace toolkit. CEAS Aeronaut J, 6:441-454, DOI 10.1007s13272-015-0153-
4, 2015.

[24] A Mulder. A methodological approach for optimisation of product development processes by applica-
tion of design automation. 2015.

[25] O. Noran. UML vs IDEF: An ontology-oriented comparative study in view of business modelling. Confer-
ence: 6th International Conference on Enterprise Information Systems (ICEIS), At Porto, Portugal, Volume:
3, 2004.

[26] B. Nowack. Semantic web technology stack. http://bnode.org/blog/2009/07/08/
the-semantic-web-not-a-piece-of-cake. Accessed: 2016-06-17.

[27] S. Padula and R. Gillian. Multidisciplinary environments: a history of engineering framework develop-
ment. In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page 7083, 2006.

[28] D.J. Pate, J. Gray, and B.J. German. A graph theoretic approach to problem formulation for multidisci-
plinary design analysis and optimization. Structural Multidisciplinary Optimization 49: 743-760, DOI:
10.1007s00158-013-1006-6, 2014.

[29] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.

[30] K.L. Ryan, S.S.G. Ko, and E.W.L. Lee. Business process management (BPM) standards: a survey. Business
Process Management Journal Vol. 15 No. 5, 2009.

[31] A. Salas and J. Townsend. Framework requirements for MDO application development. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, page 4740, 1998.

[32] M. Sandberg. Knowledge based engineering: in product development. Luleå tekniska universitet, 2003.

[33] R. Sellar, S. Batill, and J. Renaud. Response surface based, concurrent subspace optimization for multi-
disciplinary system design. In 34th Aerospace Sciences Meeting and Exhibit, page 714, 1996.

[34] P. Shiva Prakasha, P. D. Ciampa, and B. Nagel. Collaborative systems driven aircraft configuration design
optimization. 30th International Congress of the Aeronautical Sciences, 2016.

[35] H Smith. College of aeronautics blended wing body development programme. In Icas 2000 congress,
2000.

[36] R. Stephens. Beginning software engineering. John Wiley & Sons, 2015.

[37] J. Stjepandic, N. Wognum, and W.J.C. Verhagen. Concurrent Engineering in the 21st Century. Springer
International Publishing Switzerland ISBN 978-3-319-13775-9 DOI 10.1007/978-3-319-13776-6, 2015.

http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake

Bibliography 103

[38] S.S.S. Thomke. Effect of ‘front-loading’ problem-solving on product development performance. Journal
of Product Innovation Management 17(2):128-142, 2000.

[39] E. Torenbeek. Fundamentals of conceptual design optimization of subsonic transport aircraft. Delft
University of Technology, Department of Aerospace Engineering, Report LR-292, 1980.

[40] V. Trehan, C. Chapman, and P. Raju. Informal and formal modelling of engineering processes for design
automation using knowledge based engineering. Journal of Zhejiang University-SCIENCE A (Applied
Physics & Engineering) ISSN 1673-565X (Print); ISSN 1862-1775 (Online), 2015.

[41] I. van Gent, B. Aigner, G. La Rocca, E. Stumpf, and L.L.M. Veldhuis. Using graph-based algorithms and
datadriven documents for formulation and visualization of large MDO systems. Abstract submitted to
the 6th CEAS Air and Space Conference, 2016.

[42] I. van Gent, P.D. Ciampa, J. Schut, G. La Rocca, B. Aigner, and J. Jepsen. Knowledge architecture support-
ing collaborative MDO in the AGILE paradigm. Abstract of paper to be submitted to the 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 5-9 June 2017, Denver, Colorado, USA, 2016.

[43] I van Gent, G La Rocca, and L.L.M. Veldhuis. Composing MDO symphonies: graph-based problem
formulation to enable automated execution for large MDO systems, 2016. Abstract of paper to be sub-
mitted to the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 5-9 June 2017,
Denver, Colorado, USA.

[44] S. Wakayama and I. Kroo. The challenge and promise of blended-wing-body optimization. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, page 4736, 1998.

[45] R.Y. Wang and D.M. Strong. Beyond accuracy: What data quality means to data consumers. Journal of
management information systems, 12(4):5–33, 1996.

[46] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology based context modeling and reasoning using
owl. In Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second IEEE
Annual Conference on, pages 18–22. IEEE, 2004.

[47] T. Zill, P.D. Ciampa, and B. Nagel. Multidisciplinary design optimization in a collaborative distributed
aircraft design system. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, page 553, 2012.

	Summary
	List of Figures
	List of Abbreviations
	Introduction
	Future of Aerospace engineering
	Multidisciplinary Design Optimization frameworks
	The design and optimization process
	Example of an MDO framework architecture

	AGILE research project
	Scoping and actors identified in a design and optimization process
	Challenges in setting up of 3rd MDO frameworks
	Research Objectives
	How to read

	Design and optimization system
	MDO framework requirements
	System integration
	MDO-based development process
	MDO framework knowledge architecture
	Product Development (PD) layer
	Automated Design (AD) layer
	Design Competence (DC) layer

	Enabling Methodologies and Technologies
	Information Management
	Knowledge technologies
	What is knowledge
	Semantic Web technology stack
	Storing and writing knowledge

	Product and process modeling
	Product modeling
	Process modeling
	Relations between product and process models

	Implementation
	Integration
	Step 1: Define design case & requirements
	Step 2: Specify repository of DCs & data model
	Step 3: Formulate MDAO architecture
	Step 4: Implement & execute AD workflow
	Step 5: Inspect design study results
	Integration round-up

	Support
	Task customization
	Model verification

	Reuse

	Results
	Use-case implementation: Aerodynamic wing optimization during the AGILE workshop sessions
	Verification & validation of the developed collaborative environment
	Unit testing
	Test cases

	Current and future use-cases
	Reflection and user-experiences

	Conclusions and Recommendations
	Introduction
	Sub-objective 1
	Sub-objective 2
	Sub-objective 3
	Conclusions
	Limitations and recommendations

	Appendices
	Information Quality categories
	AGILE collaborative environment
	User authentication
	Implemented agile project overview
	Agile MDO framework development process application home screen
	Business process activities breakdown

	Step 1: Define design case and requirements
	Step 2: Specify complete and consistent data model and competences
	Step 3: Formulate MDAO architecture
	Step 4: Implement & execute AD workflow
	Step 5: Inspect design study results

	Task customization example
	Detailed overview of integrated tools in the MDO framework used during the workshop sessions
	Bibliography

