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Abstract

Properties of soils are spatially variable and to describe the behaviour of soils as a response to loading,
this variability appears crucial in giving the correct range of possible solutions for structure response.
Because site investigation techniques only provide exact information at a limited part of the site,
random field simulations are used to assess this variability over the full test site domain. The random
fields use the spatial statistical characteristics that are derived from the site investigation, which in
geotechnical application mainly consists of cone penetration tests (CPT’s). To reduce the range of
possible solutions to be found for structure response analysis, the random fields can be conditioned by
the actual CPT measurements.

This report describes the conditioning of the random field in order to generate conditioned simu-
lations of sand state fields. In order to derive the state parameter from the CPT tip resistance, the
NorSand constitutive model is calibrated against the results of 55 triaxial tests of a test site in the
harbour of Rotterdam. Different methods of calibration using triaxial test data are described and the
results are discussed. 140 CPT’s of the test site are then transformed into state parameter profiles. The
statistical characteristics of the profiles are determined to be used for the simulation of the spatially
variable fields of sand state. The statistical characteristics of the profiles are used in the conditional
simulation of the fields.

A conditional simulation algorithm to generate realisations of spatially variable sand state fields
is derived and demonstrated. Using unconditioned random fields, generated with the Local Average
Subdivision (LAS) method, conditioned simulations of the field around the CPT profiles are generated
in a post-processing algorithm. The algorithm uses the geometry-dependent property of the kriging
estimation error for the exchange of noise terms between estimation fields. The specific properties of
the kriging estimator are demonstrated to be suitable to be used for the conditioning. The decrease
in uncertainty by the conditioning with respect to the unconditioned random fields is presented. This
decrease in uncertainty is used to demonstrate that the effectiveness of the conditioning is a function
of the number and location of conditioning points relative to the scales of fluctuation of the field. It is
demonstrated that conditioning reduces the range of possible solutions for the simulation of sand state
fields with respect to unconditioned fields. This reduction will lead to a smaller range of solutions
to be found when the conditional simulations are used in structure response analysis, leading to less
uncertainty in design.

The conditional simulation is shown to produce fields that honour the initial distribution function,
the correlation structure and the actual CPT profiles in the simulated fields. To demonstrate that
conditional simulation can be applied on the test site, a stochastic characterisation of the test site is
performed and conditional simulations of the state parameter fields are generated for a small part of
the test site.

KEY WORDS: NorSand calibration, CPT interpretation, statistics, stochastic characterisation,
conditional simulation, random fields, LAS, kriging.
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List of symbols

Symbol [Unit] description

stress
u [FL−2] pore pressure
η [-] ratio of stress invariants
φ [deg] friction angle
σ1,2,3 [FL−2] principal stresses
σm, p [FL−2] mean total stress
σ′

m, p
′ [FL−2] mean effective stress

σq, q [FL−2] deviatoric stress invariant
τ [FL−2] shear stress
Φ [Rad] Lode angle ( 13π Rad for triaxial conditions)

strain
e [-] void ratio
n [-] porosity
D [-] dilatancy

Ḋ [-] dilatancy rate
ǫ1,3 [-] principal strains
ǫv [-] volumetric strain
ǫq [-] shear strain

soil model, measurements
qc [FL−2] CPT tip resistance
qt [FL−2] corrected CPT tip resistance
G [FL−2] shear modulus
H [-] hardening modulus
K0 [-] geostatic/initial stress ratio
M [-] critical stress ratio
N [-] volumetric coupling parameter
Qc [-] dimensionless CPT tip resistance
ν [-] Poisson’s ratio
χ [-] dilatancy constant
Γ [-] reference void ratio on CSL
λcs [-] slope of critical state line
ψ [-] state parameter

(geo-)statistics
n number of conditioning points
C(h) covariance function
LN Lognormal distribution
N number of field points
N Normal distribution
β Beta distribution
γ(h) variogram
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Symbol [Unit] description
µ mean
ρ(h) correlation function
σ standard deviation
σ2 variance
θ scale of fluctuation
χ2
α,ν chi-square corresponding to ν degrees of freedom and α level of significance

Γ(α, β) gamma function
Γ(D) variance function
Γ Gamma distribution

subscripts
0 generic, original
10 on 10 log base
cs critical state
cv constant volume
e on ln base
i image condition
ss steady state
tc triaxial compression (Φ = π/6)
te triaxial extension (−Φ = π/6)
tr trend-removed
C conditioned
K kriged
L limit value
OK Ordinary kriging
S simulated
SK Simple kriging

superscripts
∗ kriging estimation
e elastic
p plastic
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Chapter 1

Introduction

Properties of most soils are heterogeneous. In soil modelling this heterogeneity is often avoided by
dividing the evaluated soil domain into geotechnical units with homogeneous properties. In this way
the properties of a soil are often described with a single characteristic value for each property and
the heterogeneity is eliminated. This method of parameter presentation is known as the deterministic
approach. To account for the removed heterogeneity, the representative parameter values usually are
factored down to achieve a required factor of safety. In cases like these the deterministic approach
works fine for soil properties like unit weight, but when the deterministic properties are used for more
complex processes, especially when spatial relation between the variation of property values influences
the behaviour, a deterministic approach may not be sufficient and the spatial distribution of the
variability needs to be taken into account.

Failures of geotechnical structures involving sand in an apparently stable state, like the Fort Peck
Dam and the Nerlerk Berm [Jefferies and Been, 2006], have shown that an apparently stable sand can
behave in a much more unstable way than expected from a deterministic approach. The deterministic
approach of stability calculations might not be sufficient to describe every situation accurately. Hicks
and Onisiphorou [2005] showed that a stochastic approach (which includes spatial variability of material
properties) can describe mechanisms that dominate the behaviour of the soil as a response to loading.
This behaviour can be leading in the determination of the stability in certain cases of variability. For
example, this variability can lead to the failure of structures with a predominantly stable state of sand.

1.1 Stochastic approach

When analysing the structure response of a soil that is described in a deterministic way, the analysis
will result in a single factor of safety. Opposite to the deterministic approach is the stochastic approach,
which involves randomness in an attempt to reproduce the influence of natural variability in the soil.
The statistical distributions of the geotechnical properties that can be derived from the available
measurements are used to generate random fields of data that satisfy the measured statistics. In this
way heterogeneity of the soil is modelled without the need to measure the exact soil state at every
location in the soil domain.

The use of random fields to describe soil properties comes with an extreme increase in computational
work to be done. In addition to this, analytical solutions can not be used in combination with random
fields. Therefore, structural analysis of stochastic fields asks for a finite element approach, which again
increases the amount of computational work. Because of the variability that will be present in the
random fields (all random fields will give different results) finite element programs need to analyse
multiple realisations to give a reliable expectation of the correct result. The better the stochastic
reproduction of the soil, the better the estimate of the correct result within a certain number of times
that the program is run.

To simulate the soil as accurate as possible, all available information on the soil needs to be
accounted for in the simulation. Unconditioned simulation, as it has been used in preceding research
(e.g. [Hicks and Onisiphorou, 2005], [Hicks and Spencer, 2010]), uses the (spatial) statistics that
are derived from the available information to simulate soil state fields. These unconditioned random
fields honour the statistics of the measurements, but not the measurements themselves. Because the
information that the in-situ measurements give are not incorporated in the random fields, the range

8
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of possible realisations is larger than strictly necessary. A possible improvement to reduce the range
of possible realisations, is to include the information of the actual measurements in the random field
simulations by conditioning the random field at the locations of the measurements. In this way the
range of possible random field simulations to be generated, is reduced and the uncertainty in the result
of the application of the fields in finite element calculations will decrease.

1.2 Research questions

The current status of research is that the statistical characterisation of cone penetration test (CPT)
profiles is used to generate unconditioned random fields. These random fields simulate the variability of
sand deposits that are uniform in the sense of material properties and are variable in state. The actual
measurements on which the statistics are based are not incorporated in the realisations. Main research
objective of this project is to include the actual profiles in the random fields to realise a conditioned
simulation of the sand state of the deposit. Therefore the research questions are formulated as follows;

• How can random fields be conditioned by CPT profiles?

• How does the conditioning of the random fields decrease the range of possible simulations?

• What are the requirements for site investigation for the conditioning to be useful?

• Can the conditioning be applied to a test site?

By answering these questions, it is the objective to develop an algorithm for conditional simulation
of sand state fields, with CPT profiles as conditioning data. Although the ultimate objective is to
condition 3D random fields for the use of finite element analyses, only 1D and 2D cases are discussed
in this report.

1.3 Outline of the report

This report describes the necessary work in order to generate random fields constrained by the available
CPT-profiles. To illustrate the conditioning and to demonstrate that the conditioning can be applied
an actual site, a test site is used. The data of this test site are used as characterisation and simulation
examples of the conditioning method that is discussed. To be able to use the test data, the data need
to be calibrated to enable interpretation. The calibration and interpretation of the test data are part
of this report. The work for this report can be split into three parts:

1. calibration of the soil model (to be able to interpret the CPT data with respect to state param-
eter);

2. determination of statistical properties of the test site (to be used in the simulation);

3. generation of conditioned random fields and evaluation of the conditional simulation algorithm.

The first two parts have been the subject of a preceding MSc thesis by Bakhtiari [2006] and a code
for statistical evaluation is already available. This code has been developed by Gitman [2006] as a
continuation of the work by Wong [2004]. The MSc thesis and the code have been the leading references
for the work that has been done on the first two parts. The third part of this work is the application
of the results from the first two parts in the construction of conditioned random fields. It presents
a technique to condition a random field by the post-processing of unconditioned random fields. The
conditioning performance is evaluated with respect to uncertainty and computational expense.

The report starts with the description of some fundamental definitions and mechanisms that are
used throughout the report, followed by a theoretical background of the main aspects involved in this
report in chapter 2. After this, the work on the three different parts is described and discussed. Chap-
ter 3 describes the NorSand constitutive model and its calibration. Chapter 4 describes the statistical
interpretation of the CPT profiles after which the data that are needed for the conditioning are de-
rived. The random field generation and conditioning algorithm are discussed, applied and evaluated in
chapter 5, after which the results of this report are summarised in the conclusions in chapter 6. The
recommendations in chapter 7 describe the possible points of improvement on the work for this report.
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Not all findings have been added in the main part of the report. Some alternative methods, consid-
erations and ideas that were expected to be promising, but which are not evaluated enough to become
part of the main report, are gathered in several appendices. In the light of possible improvements in
methods and algorithms, the considerations in the appendices might be worth looking at.

1.4 Test site

The test site that is used for this report is a site in the harbour of Rotterdam. Triaxial compression
tests and cone penetration tests (CPT’s) from a sand fill for a future quay wall are available for the
calibration of a constitutive model and for the interpretation of the in-situ state of the material. The
location where the tests come from is a future quay wall that is part of a container terminal. Land for
the entire project is reclaimed from the North Sea.

The building material for the land is sand. The sand that is needed for the project is dredged from
a site in the North Sea and will be referred to as North Sea sand or NZ-sand. The sand is dredged
and transported by suction hopper dredgers. The placement technique that is used depends on the
water depth; dumping in deep water, rainbowing when the water is not deep enough for dumping and
pipeline transport when the site is no longer accessible for rainbowing. The sand has been placed at
a level of 11m below chart datum to 5m above chart datum (NAP). Before the in-situ tests that are
used in this report were carried out no ground improvement has taken place. As far as known by the
author, no further ground improvement has been carried out afterwards as well.

The reclaimed land is part of a new harbour area and will be used as a quay. At the locations of the
in-situ measurements that are used in this report, a quay wall with a gantry crane will be constructed.
The sand considered in this report was placed in a strip of approximately 2 km in length with a width
of 140m. The initial level of the reclaimed land was constructed at 5.40m +NAP. CPT’s were taken
in two rows (one at the location of the quay wall and one at the axis of the crane rail). Afterwards
the level was changed.



Chapter 2

Conventions, basic equations and
mechanisms

Before the project-specific part of this report starts, some basic definitions need to be clarified. This
section gives a short overview of the definitions that form the basic elements of this report. The
definitions of the terms, as well as an explanation of the basic mechanisms and physical equations are
given in this section.

2.1 General

2.1.1 Sets and series; spatial correlation

Data sets: Data points in a set are independent realisations of a certain distribution. This means
that the different points are spatially independent and therefore the order in the set is not important.
An example of this is the subsequent result of throwing a dice; the order of the results is not important
and the value of a point has no influence on the subsequent value. Data sets are independent realisations
of a certain distribution.

Data series: A data series is a series of data points forms a sequence in time or space. The cone
penetration profiles that are evaluated in this report for example are data series. This means that the
points are depth-related and order-dependent, implying a certain trend or spatial relation between the
points in the series. For the description of data series, a the relation between the data points as a
function of their location is important and needs to be incorporated in the description.

2.1.2 Deterministic against stochastic approach

Heterogeneity is a subject that is often avoided by the assumption of limited influence of the varia-
tions in the values considered. Spatially variable (heterogeneous) materials are then described by a
characteristic value, representing the properties over a domain in which the properties described are
considered to be close enough to the characteristic value to discard the small local differences.

The method in which such a generalisation is made is referred to as deterministic method and
implies that the properties are described by a determined value. The big advantage of a deterministic
approach is that it can be used in analytical solutions of engineering problems and is easy to work
with. The deterministic value can be the expected value in the domain (the mean) or a certain lower or
upper bound value to include a certain probability. Including this probability leads to the possibility
of probabilistic approach with probabilities on different expected behaviour. The influence of spatial
variability however is not included in such an approach and influences of this variability can often not
be analyzed with a deterministic description of the domain.

In case the variability is desired to be part of the characterisation, measurements of this variability
are required. Because accurate measurements are only available for a limited part of the site (CPT
measurements are 1D profiles in a 3D domain of interest), not all variations in the domain can be mea-
sured. Therefore, variability has to be synthesised with the use of a random process. This synthesised
variability needs to satisfy the statistics of the domain to describe the variability in the correct way.

11
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Therefore, the statistical properties (statistical distribution and spatial correlation) need to be deter-
mined from data that is available in the analysed domain. This approach of generating realisations of
the domain (random fields) with equal statistical properties is a stochastic approach. The generation
of random fields is not obvious and different methods are available, usually differing in accuracy of
reproducing the statistical properties and in computational expense. Section 5.1 elaborates on the
methods to generate random fields.

2.2 Soil mechanics

This section describes some of the soil mechanics mechanisms that will be used later in the report.
Because these mechanisms are of importance in the understanding of the specific constitutive model
that will be used, a definition is given before continuing with the description of the application. Often
different definitions of a single mechanism exists, of which only the relevant definitions are discussed
here. This section gives a short description and definition of the mechanisms as used in this report.

2.2.1 Stress and strains

A compression-positive sign convention is used throughout this report. This means that compressive
stresses are positive and a decrease in volume gives positive volumetric strains. All laboratory tests
are done under triaxial loading where σ2 = σ3. This significantly simplifies the equations of the Nor-
Sand soil model (described later in 3.1). Based on principle stress and strain and the triaxial loading
conditions in both laboratory tests and in-situ conditions, the different stress and strain definitions are
as follows:

σ1, σ3 principle total stresses
σ′

1, σ
′

3 principle effective stresses
ǫ1, ǫ3 principle strains
u water pressure

p mean total stress 1
3 (σ1 + 2σ3)

p′ mean effective stress 1
3 (σ

′

1 + 2σ′

3) = p− u
q deviatoric stress σ1 − σ3=σ

′

1 − σ′

3

τ shear stress 1
2q =

1
2 (σ1 − σ3)

η stress ratio q
p′

=
3(σ′

1−σ′

3)
σ′

1+2σ′

3

φ friction angle sin−1
(

σ1−σ3

σ1+σ3

)

ǫv volumetric strain ǫ1 + 2ǫ3
ǫq deviatoric strain 2

3 (ǫ1 − ǫ3)
n porosity pore volume over bulk volume Vpore/Vbulk
e void ratio pore volume over grain volume Vpore/Vgrain = n

1−n

The stress ratio η is the slope of the failure line in the q−p′ plane and therefore represents a friction an-
gle φ in the τ−σ′

1 space. Reworking the equations for the friction angle in the τ -σ the (Mohr-Coulomb)
and the stress ratio η in the q-p′ plane gives equation 2.1:

φ = sin−1

(

3η

6 + η

)

, η =
6 sinφ

3− sinφ
(2.1)

2.2.2 Mechanisms

Throughout the report a number of mechanisms are used of which multiple definitions exist. This
section describes the general mechanisms used, together with their definition and conventions as used
in this report.
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Dilatancy D: Dilatancy is the effect of volume change that occurs when a particular material is
sheared. Dilatancy is the general term for both the increase and decrease of volume and is used for
both the absolute amount of volume change from the initial stage and the rate of this change. In
this report the dilatancy is defined as the rate of the volume change relative to the deviatoric strain
rate. Because of the compression-positive convention, positive dilatancy D corresponds to a decrease
in volume. Equation 2.2 gives the formal definition. Next to the term dilatancy, the adjectives
‘dilatant’ and ‘contractant’ are used to denote negative and positive dilatancy D. In other words,
dilatant behaviour indicates volume increase and contractant behaviour volume decrease at shearing.

D =
ǫ̇v
ǫ̇q

(2.2)

Because the dilatancy is the ratio of volumetric and deviatoric strain, and total strain can be
divided into elastic strain (ǫe) and plastic strain (ǫp), a plastic component for dilatancy can be defined
. This plastic dilatancy Dp is defined by equation 2.3.

Dp =
ǫ̇pv
ǫ̇pq

(2.3)

To be able to deal with the plastic component of the dilatancy, it has to be possible to distinguish
between the plastic and elastic components of both volumetric and deviatoric strain. For this the
stiffness moduli need to be incorporated in equation 2.2. In this report this has not been done; the
plastic dilatancy is considered to be equal to the total dilatancy. This can be justified arguing that the
plastic dilatancy is considered to be the leading part of the total dilatancy. The consideration of the
stiffness parameters would imply the introduction of two more parameters G and ν in the interpretation
itself.

Critical state: Critical state is the state in which the soil is at constant stress and volumetric strain
for continuing shear strain. This condition was generalised by Jefferies [1993] in the two following
axioms:

1. Axiom 1. A unique locus exists in q,p’,e-space such that soil can be deformed without limit at
constant stress and constant void ratio; this locus is called the critical state locus (CSL)

∃C(e, q, p′) |ṗ=0| ∋ ǫ̇p ≡ 0 ∧ ǫ̈p ≡ 0∀ǫq (2.4)

2. Axiom 2. The CSL forms the ultimate condition of all distortional processes in soil, so that all
monotonic distortional stress state paths tend to this locus;

ψ → 0 as ǫq → ∞ (2.5)

As mentioned in Axiom 1, the critical state is a unique locus in q,p’,e-space. The exact location of
the critical state locus depends on the constitutive model used to describe the soil behaviour. This
report uses the NorSand model as constitutive model (see section 3.1). This model uses equation 2.6
to define the void ratio at the critical state as a function of p′. Γ and λcs,e are material properties in
this function. Γ is the critical void ratio at reference stress p′ = 1kPa, λcs is the slope of the critical
state line in either e− ln(p′) or e− log(p′) space.

ecs = Γ− λcs,eln(p
′) (2.6)

This equation is valid only over a confined range of ln(p′), because the behaviour of the soil is
influenced by particle crushing at higher stress conditions and other mechanisms that become dominant
at low stress ranges.
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State parameter ψ The concept of the state parameter was introduced to combine stress state and
void ratio into a single parameter [Been and Jefferies, 1985]. The state parameter is by definition the
difference between the void ration e and critical state void ratio ecs:

ψ = e− ecs (2.7)

This definition results in a negative state parameter for dense material and a positive state parameter
for loose material. The advantage of the state parameter is that the state of the soil with respect to the
critical state is defined by a single parameter. An illustration of the state parameter and its relation
with the void-ratio and the critical state line is given in figure 2.1. At higher stresses, the slope of the
critical state line increases as an effect of grain crushing.

V
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id

 r
a
ti
o
 e

ln(p’)

Critical state line

Normal consolidation line
 

e
Grain crushing

Figure 2.1: Example of the critical state line and the definition of the state parameter with respect to uniform stress
p′ and void ration e.

2.3 Statistics theory

As briefly mentioned above, a data series involves a distribution of points over a certain range and a
correlation between the points based on their location. The distribution of the points over the domain
is described by the distribution function (point statistics), whereas the spatial correlation is described
by a correlation structure which generalises the dependency of a point on its neighbouring points.

Vanmarcke [1977] stated that a soil property can be stochastically described by three parameters:

• mean µ

• standard deviation σ

• scale of fluctuation θ

The mean and standard deviation are both statistical properties that are independent of the location
of the data points. The scale of fluctuation is a property that describes the spatial variability of a soil;
it represents the range over which the properties depend on their neighbouring points as a function
of their mutual distance. Throughout this section all functions will be clarified using a single cone
penetration test profile (tip resistance qc) as an example. All examples are therefore referring to the
example profile as it is given in figure 2.2.

2.3.1 Mean and trend lines

The mean of a set of data is defined as the sum of all data points divided by the number of data points.
This gives a single-value representation of the average value of the data. It can be seen as a trend line
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of the zeroth degree that actually does not represent a trend at all. It is therefore suitable for a dataset
without any spatial relation between the data points. When the data forms a data series instead of a
set of points, a trend in the data can be present. The mean value of these data neglects the presence
of this trend and therefore a polynomial can be fitted to the data series. A possible way to find the
polynomial is by a least-square fit of the data. This N-degree polynomial describes the trend of the
data in N+1 degrees. The mean value of the data series is equal to the zeroth-degree polynomial fit.
The first degree polynomial is the linear regression line. The polynomial trend line can be used to
remove the trend of the data series that is needed to determine the scale of fluctuation. An example of
the zeroth order regression line (the profile mean) and the first order regression line (the linear trend
line) is given in figure 2.2.
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Figure 2.2: Profile that will be used as an example for all the statistical processes, together with it’s mean, first-order
trend line and standard deviation with respect to both.

2.3.2 Local average

The local average (or moving average) ZD(x) over a (continuous) profile Z(x) is found when the average
over an averaging domain D is taken over the initial profile. The averaging domain D is the range
over which the average is taken and usually forms the range x−D/2 to x+D/2, see equation 2.8.

ZD(x) =
1

D

∫ u=x+D/2

u=x−D/2

X(u) du (2.8)

In figure 2.3 the moving average over the example profiles is used to determine the local average
profile for different domains. The CPT profiles are discrete profiles with a data-spacing d. The
number of readings over which the average is taken is denoted by n. This gives an averaging range D
of Dn = (n− 1)d.

Another way of looking at the local average, is by considering the moving average as the result
of a convolution of a uniform distribution U(−D/2, D/2) over the profile Z(x). This is a somewhat
inconvenient way of expression, but gives the possibility to change the uniform distribution that is
used for the average by another shape function (f(D)) to give a weighted averaging with a weighting
factor as a function of the domain D around location x as given in equation 2.9. For example, a normal
distribution function could be used instead of the uniform distribution to determine the moving average.
In this way, the data points close to x have more influence on the average than the points further away.
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ZD(x) = (Z(x) ⋆ f(D,x)) =

∫ ζ=∞

ζ=−∞

Z(ζ)f(D,x− ζ) dζ (2.9)
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Figure 2.3: Local average over the profile with averaging domain of 1m, 2m and 4m. The averaging uses equal
weights over the full averaging domain. This means that the averaging distribution (f(D) from equation 2.9) is uniform
U(−D/2, D/2) over the range [−1/2D; +1/2D].

The moving average is related to the variance function. The standard deviation of the averaged
profile as a function of the averaging domain gives the variance function. The variance function is used
to determine the scale of fluctuation later in this report.

2.3.3 Statistical distributions

A set of data consists of a number of different values. These values are usually not all the same and
are distributed over a certain range. The range over which the data are distributed and the way
the data are distributed over this range is described by the statistical distribution. The statistical
distribution is a function of usually two parameters and a variable. The function can be expressed in
two different ways; the cumulative distribution function CDF (z) gives the expectation of a data point
to be smaller than the variable z on a scale from 0 to 1; the probability density function PDF (z) gives
the probability that the data point is located at variable z. The area under the probability density
function is equal to 1. Integration of PDF (x) over the range −∞ : z] gives CDF (z);

CDF (z) =

∫ z

−∞

PDF (τ)dτ (2.10)

Both PDF (z) and CDF (z) will be used in this report to indicate the distributions. The probability
density function is a very indicative function to visualise the distributions, but is more difficult to work
with. The cumulative distribution function is easy to produce for a given set of data by plotting the
observed points against their relative ranking.

2.3.4 Theoretical distribution functions

The experimental distribution of soil properties show resemblance with a number of theoretical dis-
tribution functions. Because the number of data points that form the observed distribution is always
finite, the perfectly smooth true distribution will never be realised. However, the observed distribution
can be approximated with a theoretical distribution for which an analytical function is available. Not
all theoretical distributions come close to the possible true distributions of soils. Four of them that are
sometimes suitable for the description of soils are Normal, Lognormal, Beta and Gamma-distributions.
Their mathematical characteristics are described in appendix A.
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2.3.5 Generic distribution function

The distribution that best describes the data is of importance in order to be able to generate repre-
sentable data for the random fields. This is usually done based on the distribution equation that comes
closest to the observed distribution. An alternative is to use the distribution that is actually observed
in the field, the generic distribution.

To visualise the generic distribution from a profile consisting of N data points, the data points are
sorted in ascending way and plotted against the expected CDF, given by the series

1

2N
,

3

2N
,

5

2N
, . . . ,

2N − 3

2N
,

2N − 1

2N
. (2.11)

In this way a distribution graph CDF (Z) is constructed that describes the distribution of the dataset
without generalisation. To generate random numbers that correspond to this generic distribution
graph, random numbers with a standard-uniform distribution are generated. These numbers are trans-
formed into probabilities and from the probabilities the initial data points are read from the generic
CDF graph (see figure 2.4).
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Figure 2.4: Method for the simulation of random numbers from an experimental distribution function.

This principle can not only be used to generate random numbers from an arbitrary distribution
function, but also to transform any generic distribution function into its uniform transform [Journel,
1994]. In the same way, the data with a generic distribution can be transformed in for example
a standard-normal distribution and back. This has big advantages with respect to the conditional
simulation that requires a normal distribution of the data (see section 5).

2.4 Spatial variability

In addition to the point statistics (mean and standard deviation, type of distribution function) that
describe the not-spatially dependent properties of sets and series, the spatial statistics (relation between
the points in a series dependent on the (relative) location) are important for the correct description of
a field. The variability of a field can be described by a function. In this report the term correlation
structure is used for all functions describing the spatial variability of a field. Correlation function
ρ(h), covariance function C(h), variance function Γ(Dn) and variogram γ(h) are different correlation
structures and all contain the same information. The correlation structure contains the information
about the scale and shape of the correlation between spatially distributed points and is a function of
point distance or domain size. These different functions are derived and discussed in this section. At
the end of the section the methods to determine the correlation structure parameters are discussed.

Covariance function: The variance is the ‘second moment’ of a data set, which means that it is
the expected value of the squared difference from the mean of a data point:
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var(X) = E[(Xi − E(X))2] (2.12)

To compare two different data series (X and Y ), the variance can be applied on both series in the
following way, creating the covariance:

cov(X,Y ) = E[(Xi − E(X))(Yi − E(Y ))] (2.13)

The covariance is used to indicate the resemblance between two data sets. Instead of two different
data sets, the covariance of a data set with itself can be determined as the auto-covariance or cross-
covariance;

cross− cov(X,X) = E[(Xi − E(X))(Xj − E(X))] (2.14)

In the case of cross-covariance, no spatial properties in the data are considered and the average of
all different combinations of data points is looked at. When the data form a series with spatial
coordinates, the covariance between two points in the series can be expected to be dependent on
the spacing between the two points. Therefore, instead of determining the covariance as a single
characteristic value to characterise the relation between all data points, the covariance is determined
as a function of the distance between the points. In this way the covariance function C(h) is created
with lag distance h as the distance between two points.

C(h) = E[X(z) ·X(z + h)]− E[X(z)]2 for all z, z + h ∈ D (2.15)
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Figure 2.5: Covariance function C(h) over the example profile. The trend has been removed by subtraction of the
least-square fit of a first order polynomial to the profile.

The covariance function is defined on the assumption of a stationary data series, which means that
the expected value E[X(z)] is independent of z. In practice, this means that the depth-dependent
trend that might be present in the profiles has to be removed. To remove the trend in the profile,
the trend first has to be determined. To be able to determine the trend, the shape of the trend line
needs to be known. In theory, a trend of every shape can be fitted to the data. In this report, a
linear depth-dependent trend is fitted to the data. To determine the depth trend T (y) a first-order
polynomial (T (y) = ay+b) is fitted to the data by least-square estimate. This trend is then subtracted
from the profile to obtain the zero-mean stationary profile.
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2.4.1 (Semi-)variogram

The variogram γ(h) is a method to present the spatial variability in a similar way as the covariance
function. The definition of the variogram is

γ(h) =
1

2
E
[

(X (z + h)−X(z))
2
]

. (2.16)

This definition can be rewritten with the definition of the covariance function C(h) (equation 2.15)
into:

γ(h) = C(0)− C(h) (2.17)

Although the definition of the variogram is very simple, it can be quite difficult to find a decent
variogram based on real data. This is the effect of large fluctuations in the differences between two
points that are to be compared. To find an experimental variogram, the square of the difference between
each possible pair of points has to be plotted against the distance between these pairs. The expectation
of all these squared differences at the same distance from one to another gives the experimental
experimental variogram γ(h) = C∗(0) − C∗(z). The experimental variogram for the example profile
(figure 2.2) is given in figure 2.6. Usually, the variogram is fitted by a theoretical variogram that can
be described by a function f(z) for the ease of application.

The variogram is used as the input for the correlation structure in the kriging estimation later in
this report. It contains the exact same information as the covariance function.
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Figure 2.6: Semi-variogram γ(h) of the example profile.

2.4.2 Variance function

The variance function is based on the difference in variance between the original data and a moving
average smoothed version of this original data. The area over which the averaging takes place is the
variable in the variance function. The ratio between the original variance and the moving average
variance is a measure of the scale of variation of the data. By averaging the data over an averaging
domain Dn, the variations on the small scale (within Dn) are removed. The variance function expresses
in general the ratio of the variance that has a larger scale of fluctuation then the averaging domain.

To find the variance function, a moving average series for the CPT-profile is obtained where the
averaging domain Dn (the domain over the lag distance h) is the domain D between n data points.
When d is the spacing distance between the data points in the CPT-profile, the size of the averaging
domain Dn equals (n− 1)d. The variance σ2

n over the averaged series is divided by the initial variance
σ2 of the original profile to obtain the variance function Γ;

Γ (Dn) =
σ2
n

σ2
(2.18)



CHAPTER 2. CONVENTIONS, BASIC EQUATIONS AND MECHANISMS 20

When the variance function is determined for the full range of possible lag distances Dn, a graph of
the variance function against the averaging domainDn can be constructed (figure 2.7). For an averaging
domain Dn=0 the variance function Γ is 1 because σ2

n = σ2. The variance function decreases towards
zero with increasing averaging domain because a larger averaging domain decreases the fluctuations in
the profile.
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Figure 2.7: Variance function Γ2(Dn) over the example profile.

The variance function is related to the covariance function as described by equation 2.19. Because
the variance function intergrates the covariance function over the domain [0;h] = Dn, the variance
function Γ(Dn) is much smoother than the covariance function C(h). Despite the difference in shape,
both functions contain the exact same information about the correlation structure.

Γ(Dn) =
2

Dnσ2

∫ Dn

0

C(h)dh− 2

D2
nσ

2

∫ Dn

0

hC(h)dh (2.19)

Scale of fluctuation: The scale of fluctuation θ was described by Wickremesinghe and Campanella
[1993] as the distance over which the data show a strong correlation. This scale of fluctuation can be
used as a characteristic value in the description of soil variability. For large averaging ranges Dn the
multiplication of the variance function with the averaging range gives the scale of fluctuation θ.

θ = Γ2(Dn)Dn for larger Dn (2.20)

The size of the domain Dn at which the scale of fluctuation can be determined accurately is
somewhat vague and depends on the scale of fluctuation itself, the shape of the correlation function
and the length of the profile over which the scale of fluctuation is determined. The length of the profile
that is evaluated is of importance because the variance function will equal zero when the average
distance equals the profile length. As an effect of this, the graph of Γ(Dn)Dn does not converge to the
scale of fluctuation, but to zero for larger averaging domain Dn (see figure 2.8). Wickremesinghe and
Campanella [1993] do not quantify the size of Dn at which Γ(Dn)Dn is accurate enough to give the
scale of fluctuation.

Vanmarcke [1984] gives a more distinctive definition of the scale of fluctuation θ. This θ is the same
scale of fluctuation as discussed by Wickremesinghe and Campanella [1993], but is defined as follows;

θ = lim
Dn→∞

DnΓ(Dn) (2.21)

This, however, can be a somewhat impractical definition in case of small domains to be analysed.
The scale of fluctuation can be determined in different ways as will be discussed in the following section.
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Scale of fluctuation θ from the variance function: To be able to determine a characteristic
value from the variance function graph, it is multiplied by averaging domain Dn. The result is a graph
starting at 0 and increasing with increasing averaging domain to a maximum. For larger values of Dn

the graph gives the scale of fluctuation θ [Wickremesinghe and Campanella, 1993].
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Figure 2.8: Scale of fluctuation θ = Γ(Dn) ·Dn of the example profile. The scale of fluctuation for the example profile
is 0.47m.

An alternative is to derive the experimental correlation function or experimental covariance function
and fit a theoretical function to this experimental result. The best fit will give the scale of fluctuation
as part of the theoretical function.

Theoretical correlation structures: All definitions of the different correlation structures given
above can be used to produce the experimental (based on the available sample data), or generic corre-
lation structures. These experimental correlation structures are the most likely correlation structures
of the sample data. To be able to apply the correlation structures in random field generation or kriging
(see chapter 5), a theoretical function f(θ, h) as a function of the scale of fluctuation θ and lag distance
h is used. This function is an approximation of the experimental correlation structure and is given by
an equation that can be applied in the simulation algorithms.

Different theoretical correlation structures can be used, with a variety of shapes. In this report, two
types of correlation structures are used; the exponential correlation structure and an approximation of
this exponential correlation function. The choice between these correlation functions is mainly based
on the restrictions by the already existing codes for unconditioned simulation that are used further
down in this report (section 5.2.2). Later in this report it is shown that the (approximate) exponential
correlation structure is an adequate method to approximate the experimental correlation structure
close enough. The correlation function of the exponential correlation function C(h) is given by

C(h) = σ2exp

(

−2|h|
θ

)

. (2.22)

The exponential variance function that corresponds to this function can be determined when equation
2.19 and 2.22 are combined. The exponential variance function is given by

Γ(D) =
σ2θ2

2D2

[

2|D|
θ

+ exp

(−2|D|
θ

)

− 1

]

. (2.23)

This function can be approximated by a correlation function that is given as an approximation
of many common wide-band processes by Vanmarcke [1984]. This approximation has an advantage
over the exponential correlation function when it is used to determine the conditional variance and
conditional scale of fluctuation in the LAS method to generate 2-D random fields (see section 5.2.2).
The approximate variance function is given by
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Γ(D) =

(

1 +

(

D

θ

)m)−1/m

with m = 3/2. (2.24)

In combination with 2.19, the corresponding approximate covariance function can be derived to be

ρ(h) =

[

1− m− 1

2

(

h

θ

)m] [

1 +

(

h

θ

)m]−(1/m)−2

. (2.25)

The quality of the approximation is shown in figure 2.9, in which the exponential correlation function
and variance function are plotted together with the approximations given by equations 2.24 and 2.25.
In this example, the scale of fluctuation is 1m.
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Figure 2.9: Difference between the exponential correlation structure and the approximations of the exponential corre-
lation structure given by equations 2.24 and 2.25

2.5 Parameter estimation

In case a theoretical distribution function is desired to describe an experimental distribution, the
theoretical distribution function needs to be calibrated against the test data. This means that for
different theoretical distribution functions the parameters need to be estimated in order to fit the
experimental data. In addition to this the distribution function that can be fitted best to the data
needs to be determined. The procedure that is used to estimate the parameters is discussed in this
section.

2.5.1 Maximum Likelihood Estimator

The true distribution of the data is estimated by a best fit of an expected distribution through the
sample data. The expected distribution is given by the probability function that includes function
parameters. The function parameters need to be determined to fit the sample data as well as possible.
A best fit is made with the use of Maximum Likelihood Estimation (MLE).
The procedure of the MLE is to define the function parameters Θi that form the distribution function
with the highest probability of generating the sample data. The concept is very straight-forward,
but the implementation can be computationally complex. The mathematical background is described
below.

Given is the theoretical probability density function

f(x|Θ1,Θ2, . . . ,Θn) (2.26)
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in which Θ1,Θ2, . . . ,Θn are the n function variables of the distribution function f(x). To determine
the most likely values for the function parameters, the likelihood of generating the sample data x̂ is
maximised. The likelihood L, defined as the product of the probability density of each single sample
point x̂i, is calculated as follows;

L = L(x̂1, x̂2, . . . , x̂N |Θ1,Θ2, . . . ,Θn) =

N
∏

i=1

f(xi|Θ1,Θ2, . . . ,Θn) (2.27)

The maximum likelihood estimators of all function variables are found by maximising L. To find the
maximum value for L, it is easier to look at Λ = ln(L);

Λ = ln(L) =
N
∑

i=1

ln (f(x̂i|Θ1,Θ2, . . . ,Θn)) (2.28)

The maximum of Λ is found by the simultaneous solution to n equations such that;

∂(Λ)

∂Θj
= 0 , j = 1, 2, . . . , n (2.29)

When the theoretical distribution function is used for f(x) in equation 2.28 and equation 2.29 is
satisfied, an analytical solution can be found for some of the used distribution functions. The results
of the analytical solutons are the familiar definitions of the mean and standard deviation given in
table 2.1. Beta and Gamma-distributions have no closed-form solution for the maximum likelihood
estimation.

For the MLE of the Beta and Gamma distribution function, numerical approximations have to be
used, which are not discussed in this report. To use the maximum likelihood estimation for the Beta
and Gamma distributions the default commands in Matlab are used.

MLE µ̂ MLE σ̂

Normal µ̂ = 1
N

∑N
i=1 x̂i σ̂ =

√

1
N

∑N
i=1(x̂i − µ̂)2

Lognormal µ̂ = 1
N

∑N
i=1 ln(x̂i) σ̂ =

√

1
N

∑N
i=1 (ln(x̂i)− µ̂)

2

Table 2.1: Maximum likelihood estimators for the Normal and the Lognormal distributions. Note that the analytical
solution for the standard deviation is a biased estimator instead of the unbiased estimator that is used in the rest of this
report.

2.5.2 Chi-square goodness of fit

The distribution function with its function parameters as determined by the maximum likelihood es-
timation can be tested for its accuracy. The Chi-square (χ2) goodness-of-fit is a method that is used
to give an estimate of how well a set of data points is described by a given distribution function. The
observed probability O is compared with the expected probability E. E is the expected PDF of the
data points given by the distribution that is tested for. To be able to compare the finite number of
results of a test data set, the results are divided into n bins. The bins are equally distributed over
the full range of data points. The number of points in bin i is used as the variable Oi. Based on the
distribution function that is tested for, the expected number of points Ei is calculated. The square
difference of Ei and Oi is taken and for scaling the result is divided by Ei. The sum of all these values
is taken to end up with the χ2-score as given in 2.30. The lower the χ2-score, the better the fit.

χ2 =

n
∑

i=1

(Oi − Ei)
2

Ei
(2.30)

The chi-square goodness of fit is meant to test the likelihood that a dataset is generated according
to a certain distribution function. The hypothesis h0 that the data set does indeed come from the
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distribution is tested based on the chi-square distribution. If h0 is true, the experimental distribution
(O) will converge to the theoretical distribution (E) for an increasing number of points that is tested.
This is the effect of the Law of Large Numbers. A similar effect is that the chi-square score is
independent of the total number of points in the data set; the expected value for the difference between
the observed bin count and the expected bin count E[|Ei−Oi|] increases with

√

(N). Because Ei ∼ N ,
the expected result for the chi-square score E[χ2] is independent from N .

This independency is only valid when the experimental data come from the distribution that is
tested for. If the true distribution is different from the theoretical distribution that is tested for, the
observed distribution converges to this true distribution and gives a larger chi-square score for larger
N . The problem with experimental data compared to synthetic data arises at the moment that the
generic distribution, from which the data points come from, is not exactly similar to the theoretical
distribution that is tested for. This will almost certainly be the case. Because the experimental data
converge to its true distribution, the expected value for the chi-square score increases more and more.
In other words, the more data points that are available from the generic distribution, the clearer it is
that this set of datapoints does not exactly match the theoretical distribution.

Probability of the chi-square score: The chi-square score corresponds to a probability of the
hypothesis of the distribution function being true. The cumulative distribution function described
the probability that the theoretical distribution will give the observed distribution or a better one.
This probability depends on the number of degrees of freedom ν. This is the number of bins minus
the number of constraints. Constraints in this case are the estimated values for the distribution (2
parameters to describe the expected distribution) and the constraint of total probability (P≤ 1). This
means that the number of degrees of freedom ν is given by ν = n − 3. The chi-square probability
density function and chi-square distribution function are given by the following equations;
Probability density function

f(x, ν) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2 Γ(ν/2) =

∫

∞

0

tν/2−te−tdt (2.31)

Cumulative distribution function

F (x, ν) =
1

Γ(ν/2)
γ(ν/2, x/2) γ(ν/2, x/2) =

∫ x/2

0

tν/2−1e−x/2dt (2.32)

Although the chi square goodness of fit does not perform very well in case of testing experimental
distributions, the method is used to determine the best distribution from the distyribution functions
that were calibrated using MLE. The lowes chi square score has the highest probability of being the
generic distribution and therefore is used as the distribution.
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Figure 2.10: Chi-square distribution for different numbers of degrees of freedom. On the left the probability density
function (pdf), on the right the cumulative distribution function (cdf) for different numbers of degrees of freedom ν.

Discussion of the chi-square method: Both strength and weakness of the method comes with
the derivation of each squared difference by the expected count in the bin. An advantage of this is
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that all differences in the bins are weighted equally in the result with respect to the expected result.
This however gives problems when bins are expected to have a number of expected data points close to
zero (≪1) and the observer number is 1 or more. In this case the ratio between the difference (E−O)
and the expected value E is very large, which results in a very large χ2. Because of this effect, a single
outlier can turn an almost perfect fit (χ2) into a very bad fit with a very high (χ2). In the default
chi-square command in Matlab, this problem is partly solved by pooling each bin with less than 5
expected counts with the adjacent bin. In this way wider bins exit at the edges when a very small
expected value is present. In the code by Gitman [2006] the problem is solved by not taking the bin
in the summation for the chi-square score when the chance of a single point being located in that bin
is smaller than 10−4.



Chapter 3

Constitutive model calibration

The behaviour of a soil as a response to loading can be described by a constitutive model. This soil
model is a generalisation of the sometimes complex and unpredictable behaviour of a soil. It therefore
simplifies the material behaviour into a practical set of equations linking the state variables (e.g.
stress, void ratio) together to derive the material behaviour with the use of the material properties
(e.g. friction angle, elastic modulus).

In this report, the NorSand constitutive model is used to describe the behaviour of sand as a
response to loading. This chapter gives an introduction to the NorSand model and describes the
calibration of this model based on triaxial compression tests performed on the sand. An overview of
the NorSand model is given in the first section of this chapter, after which the theoretical procedure
of the calibration is presented. An output of the full calculation of the calibration procedure is given
in the appendices. The specific appendices will be referred to in the text.

3.1 Introduction to the NorSand model

3.1.1 Why the NorSand model?

To be able to use sand state as a single variable to model the sand behaviour, a state dependent material
model is needed that can be used to describe the behaviour of loose and dense sand. The original critical
state soil models (original Cam Clay-like models) are not suitable to describe the behaviour of loose
sands in general and liquefaction-related problems in particular. The NorSand model, a Cam Clay-like
critical state constitutive model, can deal with loose sand states and liquefaction. Because relationships
between the CPT tip resistance and the NorSand state parameter were determined and because the
NorSand model can be calibrated against triaxial tests, NorSand is used as the constitutive model.

The NorSand model was first published by Jefferies [1993]. Since then several additions were made
and the model can now be used with different definitions for critical state and hardening laws. In this
report the version as published by Jefferies and Shuttle [2005] is used, together with Nova’s rule that
was present in the earliest versions of NorSand. The NorSand soil model is a critical state constitutive
soil model similar to Cam-type soil models and contains the state parameter as a model variable. The
advantage of the state parameter as a model variable is that the full state of the soil is described
by this single variable. Because all other parameters are constant, this makes it possible to generate
univariate random fields to describe the full behaviour of a soil with spatially variable state. This is a
great advantage over models that need multiple parameters to describe the sand state.

3.1.2 Basics and equations of the NorSand model

As said above, the NorSand model is a critical state constitutive soil model. The model makes use of
several material parameters that determine the specific properties of a sand. In NorSand all material
properties are unitless. The material parameters are summarised in table 3.1, with a range in which
the parameters can be expected given by Jefferies and Shuttle [2005].

26
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λe 0.01 - 0.07 soil compressibility slope of critical state line in ln (p′) space
Γ 0.8 - 1.4 reference point for CSL, at 1 kPa
M 1.2 - 1.5 critical friction ratio, triaxial compression conditions
N 0 - 0.4 scaling parameter for the stress dilatancy relationship
H 50 - 500 Hardening modulus
χ 2.5 - 4.5 dilatancy-ψ relation
Ir 100 - 800 dimensionless shear rigidity, G/p′, f(p′)
ν 0.1 - 0.3 Poisson’s ratio

Table 3.1: Material parameters in NorSand with the range that can be expected for each parameter [Jefferies and
Shuttle, 2005].

The NorSand model is an elasto-plasticity model and therefore contains a yield surface, a flow
rule and a hardening law. The NorSand model uses an internal model variable, the image condition,
denoted by subscript i. The image condition is the condition at which one of the two requirements
(ǫ̇p = 0) for critical state is reached. For this point, which lies at the top of the yield surface, the
parameters ψi, p

′

i and Mi can be determined. The image condition changes with changing stress and
void ratio. In case the image condition is situated at the critical state line, the critical state is reached.
All equations describing the NorSand model are given in table 3.2. This is based on the summary that
is given by Jefferies and Shuttle [2005], from which all equations that are not used are left out, σ̄m is
changed for p′ and for the Lode angle 1

6π is chosen (triaxial compression). This has been done because
in this report all stress conditions are triaxial compression and stress rotation is not of interest in this
project.

Yield surface and image condition The yield surface of the NorSand model is described by
equation 3.2. Because of normality (yielding in the normal direction to the yield surface) and convexity,
only one point on the yield surface satisfies the first condition for the critical state (ǫ̇p = 0). This point
is an image of the critical state and is located at the top of the yield surface. The second condition
for the critical state (ǫ̈p = 0) is satisfied at the critical state line only. Therefore, the critical state is
reached at the moment the image condition is located at the critical state line.

NorSand contains a fully associated flow rule (flow direction normal to the yield surface). To
simulate the correct behaviour of the sand in unloading, the yield surface is extended with an internal
cap that keeps the dilatancy to a minimum level. The internal cap is the vertical line in the yield cap
in figure 3.1. The minimum dilatancy (note; negative dilatancy for contraction) is contained in the
equation

(

pi
p

)

max

= exp(−χψi/M). (3.1)

This equation contains parameters defined at the image condition (subscript i indicates the image
condition). The point of the image condition is an image of the critical state locus and is located at
the top of the yield surface (see figure 3.1).

η

Mi
= 1− ln

(

p

pi

)

with
(

pi

p

)

= exp(−χψi/Mi) (3.2)
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Figure 3.1: Yield surface for NorSand, represented in a dimensionless axis system (p and q are divided by pi).

Elasticity The NorSand model uses isotropic elasticity. To keep the elasticity dimensionless and
include elasticity in shear, the elasticity is included in the model as a dimensionless shear rigidity Ir
and a constant Poisson’s ratio ν. Shear rigidity is included for the implementation in finite element
programs. Anisotropic elasticity is not included because anisotropy remains highly academic and
theoretical and it is already difficult enough to determine parameters for an isotropic model [Jefferies
and Been, 2006].

Internal model variables
ψi = ψ + λ ln(pi/p) where ψ = e− ecs
Mi =M − |ψi|

Critical state ecs = Γ− λ ln(p)

Yield surface & Internal cap η
Mi

= 1− ln
(

p
pi

)

with
(

pi

p

)

= exp(−χψi/Mi)

Hardening rule

On outer yield surface:

ṗi

pi
= H

(

p
pi

)2
[(

pi

p

)

max
− pi

p

]

ǫ̇pq
On internal cap:
ṗi

pi
= −H

2 |ǫ̇pq |
Stress dilatancy Dp = ǫ̇pq/|ǫ̇pq |Mi − η

Elasticity Ir = G
p with K = 2(1+ν)

3(1−2ν)G

Table 3.2: Summary of NorSand at triaxial compression conditions after Jefferies and Shuttle [2005]

To be able to use CPT profiles (cone resistance qc and sleeve friction) to give a state parameter
profile, the NorSand model needs to be calibrated for the material. In other words, the material
properties need to be determined to be able to use the sand state (stress and void ratio) to determine
the state parameter ψ. The state parameters are given by the CPT-profiles and a calibration of cone
penetration tests for sand is given by Shuttle and Jefferies [1998].

3.1.3 Method of interpretation; from CPT-profile to state parameter

Next to material properties, soil models use material states to describe the behaviour of the soil. To
combine all state characteristics in one parameter, the state parameter is used. The state parameter is
a combination of different types of state (void state and stress state). Because the void ratio e is not
easily measured in-situ, a direct relationship between cone resistance qc and state parameter ψ is used.
The qc−ψ relationship that is used in this report is the method described by Shuttle and Jefferies [1998].
This method is based on the methodology by Been and Jefferies [1986] and Been et al. [1986] which
basically is a relation between the dimensionless cone resistance Qc and state parameter ψ depending
only on the material property λ. Different authors came up with additional parameters that are of
influence on the relationship. The final method by Shuttle and Jefferies [1998] gives a relation between
Qc and ψ including the NorSand material properties G, M , N , H, λ and ν. The relationship has been
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derived by numerical simulation to calibrate the model against calibration chamber test results. This
relation is given by equations 3.3, 3.4 and 3.5. A summary of the discussion on the improvements of
the initial relationship and the final relationship that is used in this report can be found in the MSc
thesis by Bakhtiari [2006].

The method of relating the state parameter to the CPT profiles that is used in this report is the
method described by Jefferies and Shuttle [2005]

Qc =
qc − p

p′
= k · exp(−mψ) (3.3)

k =
(

f1(Ir)f2(M)f3(N)f4(H)f5(λss)f6(ν)
)1.45

(3.4)

m = 1.45f7(Ir)f8(M)f9(N)f10(H)f11(λss)f12(ν) (3.5)

with:

f1(Ir) = 3.76 + 1.12ln(Ir), Ir = G/p′

f2(M) = 1 + 1.06(M − 1.25)
f3(N) = 1− 0.30(N − 0.2)
f4(H) = (H/100)0.326

f5(λ) = 1− 1.55(λ− 0.01)
f6(ν) = 1
f7(Ir) = 1.04 + 0.46ln(Ir)
f8(M) = 1− 0.40(M − 1.25)
f9(N) = 1− 0.30(N − 0.2)
f10(H) = (H/100)0.15

f11(λ) = 1− 2.21(λ− 0.01)
f12(ν) = 1

(3.6)

To be able to transform the CPT-profiles into ψ-profiles, the following NorSand material properties
are needed:

• G, shear modulus

• M , critical state stress ratio

• N , stress-dilatancy scaling parameter

• H, hardening modulus

• λ, slope critical state line

These material properties are determined from triaxial tests as described in section 3.2. The material
parameters that are used for the conversion from cone resistance Qc to state parameter ψ are calibrated
using triaxial test data. Every parameter is fitted to the data in the best possible way, and is therefore
an estimate of the true property. Deviations from the parameters used for the conversion can lead to
differences in state parameter profile. How large the influence of differences in the material parameters
is will be discussed in the next section.

3.2 Calibration procedure of the NorSand parameters

The calibration of the NorSand model is described extensively by Bakhtiari [2006]. For this project,
the same procedure is intended to follow. The calibration of the NorSand model is based on triaxial
test data. From these tests the parameters that are needed in the statistical interpretation of the CPT
data are determined. A description of the methods of calibation of the NorSand constitutive model is
given below.
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3.2.1 Critical stress ratio M and stress dilatancy parameter N

The stress ratio η is the ratio between the deviatoric stress q and the mean effective stress p′. The stress
ratio η at the critical state is denoted with the symbolM . Four methods to determineM are presented
in this chapter, for which the subscripts indicate the method of interpretation. All four methods of
interpretation are meant to determine the same physical property, but show some differences caused
by the specific method applied. All methods use triaxial tests, which gives the critical stress ratio for
triaxial conditions Mtc. In this report the subscript tc will not be used and Mtc and M in general are
considered to be the same for all conditions. The four methods to determine the critical state stress
ratio M (MET ,MMC ,MSD,MBM ) are given below. A graphical presentation of the different methods
to determine M can be found in figure 3.3.

End of test MET : Triaxial compression tests can be expected to reach the critical state eventually.
Reading the stress ratio at the end of the test therefore gives an indication of the location of the critical
state stress ratio. The best estimates forM are given by the tests that actually reach the critical state.
Figure 3.3 shows MET for a dilatant test that reaches critical state. Taking the average over the results
for MET gives the final value for MET . The quality of the result depends largely on whether or not
the critical state has been reached at the end of the test. Therefore it should be checked if the triaxial
tests are not far from critical state at the end of testing.

Maximum contraction MMC : At maximum contraction the dilation D is zero and therefore ǫ̇v =
0. When elastic strain rates are neglected, one of the two conditions of the critical state is reached.
The mobilised friction angle at maximum contraction MMC therefore gives an indication of the critical
state friction angle M . In figure 3.3 the point at which maximum contraction occurs is shown.
Negussey et al. [1987] discussed the effect of sample state in triaxial testing on the resemblance between
M (determined in ring shear test) and MMC (determined in triaxial test). They showed that for loose
samples M and MMC are equal. For medium and dense sands, MMC was showed to depend on both
relative density (void ratio) and confining pressure (p0). MMC increases with confining pressure and
initial void ratio, which means that MMC increases with initial state parameter ψ0 for dilatant sands,
towards M at ψ0=0. The modelling of a triaxial test (discussed later in this report) with the NorSand
model for different initial state parameters, as shown in figure 3.2, supports the results of the tests
performed by Negussey et al. [1987]. The figure shows the influence of the initial state parameter (both
e0 and p0 have been changed) and the independency of MMS from initial state for loose initial state
parameter. For medium and dense states (ψ0 ≤ 0) MMC depends on the initial state parameter ψ0.
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Figure 3.2: Maximum contraction stress ratio MMC as a function of initial state parameter, resulting from numerical
modelling of triaxial compression tests with the NorSand model

Stress dilatancy MSD and N: To deal with the fact that critical state is reached at large strains,
extrapolation is applied on the η −D plot to define η at zero dilatancy. This can be done in a η −D
plot by extrapolation to the D = 0 line. The dilatancy rate is determined with a central difference
method as given in equation 3.7.
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Di =
ǫv,i+1 − ǫv,i−1

ǫq,i+1 − ǫq,i−1
(3.7)

The relation between D (D is assumed to be equal to Dp) and η is controlled by the coupling
parameter N . The flow rule in the NorSand model can be rewritten into equation 3.8 from which it
can be seen that the slope of the line in η −D space is given by N − 1 when Dp is considered to be
equal to D. Therefore the elastic part of the dilation has to be zero which is not the case because η
is not constant. This can be corrected for when the elastic strain rates ǫev and ǫeq are included in the
calculation for Dp. In this report the influence of the elastic dilation is neglected and Dp is expected
to be equal to D.

Localisation can not be accounted for in a way of quantifying the effect. Results with high N and
low M need to be checked to see is localisation has affected the test results. The quantitative effect
can not be determined exactly, because it is unknown how large the localisation region is.

η = (N − 1)Dp +M (3.8)

Because of the possible formation of shear bands during dilation, the results of the stress-dilatancy
method should be evaluated carefully. Especially the value found for N is highly influenced by an
incorrect dilation rate which is the result of localisation. Because localisation will occur only in the
post-peak part of the test, the dilation in tests of dense samples are affected. Individual η −D plots
can be checked looking at the post-peak portion of the curve; a straight line will indicate a reliable
MSD, curved and shifted parts of the graph can indicate localisation. Because contractant samples do
not have any post-peak portion, the contractant samples are evaluated at the pre-peak portion.
Some graphs contain an unload-reload loop to determine the elastic stiffness parameter G. This loop
contains very large steps that influence the dilatancy leading to a distorted η-D graph. Because at
unloading and reloading the stress ratio η is changed rapidly, the η −D graph is distorted. This gives
an extreme negative peak in the η −D curve that needs to be filtered out for a proper presentation.
The ”cleaning” of the graph from the unloading-reloading loop is done by cutting the part of the
reloading loop out of the curve, which has no further effect on the interpretation of M and N .

Bishop’s method MBM : For Bishop’s method the peak friction ηpeak is plotted against the dila-

tancy D for all tests. This is done because at peak strength ǫ̈v=0, which implies that Ḋ is zero at
peak friction. Therefore one of the two conditions for critical state is satisfied and the test has reached
the image condition. The points of all tests are on a theoretical line showing the relation between
dilatancy and stress ratio at the image condition Mi. The interpolation/extrapolation of the points to
the D = 0 line that is given by the intersection of the trend line with the D = 0 line gives the critical
state location because D=0 and Ḋ=0.

By modelling different triaxial tests and determining the peak friction ratio and dilation at peak
friction ratio, it is found that the relation between minimum dilation and maximum peak strength is
not exactly linear. Figure 3.4 shows that N can best be derived from the slope of the regression line
close to D = 0 in case the regression line is not linear.

N is determined by the slope of the trend line. Like the slope in the post-peak part of the curve in
the plot for the stress-dilatancy method, the slope of the trend line through the points of maximum
dilation is equal to N -1.

3.2.2 Peak friction ratio ηpeak

The peak friction ratio is determined because it is used in the code by Gitman [2006] to be used as a
variable next to tip resistance and state parameter. In the code it is used as a first-order function of
the state parameter.

The peak friction is easily determined by taking the maximum value from the η−D plot. This is done
for both the Lab A and Lab B data. An overview together with mean effective stress p′ and state
parameter ψ is given below. The peak friction is not a model parameter in the NorSand model. The
peak stress ratio can be transformed to the Mohr-Coulomb peak friction angle φpeak using equation
2.1.
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Figure 3.3: Example of the calibration of MET , MMC , MSD and NSD, generated by modelling the triaxial behaviour
of sand.

3.2.3 Shear modulus G and dimensionless shear rigidity Ir

Different methods for the determination of the elastic shear modulus G are described by Bakhtiari
[2006]. Only one is based on triaxial tests and this is the method described here. The shear modulus
G at test conditions is equal to one-third of the slope of the unload-reload loop in q− ǫq space, as given
in equation 3.9.

G =
1

3

dq′

dǫq
(3.9)

The shear modulus G is a material property that depends on the mean effective stress. In other words;
G = f(p′). The relation between p′ and G is given by equation 3.10,

G = Gref

(

p′

p′ref

)b

(3.10)

where Gref is the shear modulus at reference stress p′ref =1kPa. To find the equation for G as a
function of p′, the constants Gref and b need to be determined. This is done by the linear trend line
in lnG-ln p′ space through all values found for G at a certain level of p′. The level for p′ is found by
taking the average over the natural logarithm of p′ of each reading in the loop.

The dimensionless shear rigidity Ir can be found as G/p′. This means that when G=G(p′),
Ir=Ir(p

′).
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Figure 3.4: Example of the Bishop’s method with slope N -1 at zero dilation. The difference in slope as a function of
minimum dilation Dmin is the influence of elastic dilation De. In the graph total dilation is plotted although, ideally,
only plastic dilatancy Dp should be plotted.

3.2.4 Critical state line λcs and Γ

The critical state void ratio ecs is a function of the stress regime; in other words ecs = f (p′). An
idealised function for the relation between ecs and p′ is;

ecs = Γ− λcs,e ln (p
′) (3.11)

where Γ is the critical state void ratio at the reference pressure p′ref=1kPa. The slope of the critical

state line (−λcs) can be determined based on either 10 log or natural logarithm ln which gives λcs,10
or λcs,e. The difference between both values is a factor ln(10) = 2.3.

Different methods are described by Bakhtiari [2006] to determine the critical state line. For this
project, not for all these methods the appropriate data is available. Three method that are used to
determine λ and Γ for which enough data are available are described here.

Triaxial test method: For all tests that reach critical state, the void ratio e can be plotted against
ln p′. The best linear fit through the points gives an estimate of the critical state line and gives λcs and
Γ. Because this method uses the void ratio at critical state, the selection of the correct void ratios at
the critical points is crucial for a proper fit. Dilatant samples are less suitable, because during dilation
shear band can form. This will result in an underestimation of the critical state void ratio for dilatant
samples.

Fines content approach: The fines content approach is an empirical method suggested by Bouck-
ovalas et al. [2002]. It gives a rough indication of the critical state line based on the fines content
f(%).

λ = 0.018 + 0.0027f(%) (3.12)

Γ = 0.863 + 0.011f(%) (3.13)

The equations are the result of a statistical interpretation of 42 types of silty sand. Grain sizes of
the sands used for the derivation of the equations were in the range of 100µm to 500µm for D50 with
percentage of fines f(%) ranging from 0 to 10% [Bouckovalas et al., 2002]. The fines content approach
is not intended to use instead of triaxial tests, but to give an expected trend of the critical state line
to be found.

Assumed-χ method (Intersection Method): Combination of several relations used in the Nor-
Sand model gives the following equation.

e0 −
Dmin

χ
= Γ− λcse ln p

′, Γ = e0 −
Dmin

χ
+ λcse ln p

′ (3.14)
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In this equation χ (chi) has to be assumed and when e0, Dmin and ln p′ are used for each test
individually, different functions for the relation Γ−λcs,e are found. The intersection of the combination
of two of these functions gives a possible solution for Γ and λcs,e. Taking the average over a carefully
made selection of all the intersections gives the correct values for Γ and λcs,e.
Because p′ is not constant during the test, an average value has to be used for ln p′. The average used
is the average of the natural logarithm of all p’-readings in the test.
Because the void ratio is included in this method, dilatant behaviour might give an inaccurate result
because of the possible development of a shear band. To avoid the effects of this, only contractant
samples are used for this method. The value for χ that has to be assumed lies in the range of 2.5-4.5
[Jefferies and Shuttle, 2005].

3.2.5 Hardening modulus H

The hardening modulus H is the last parameter to be calibrated. The calibration consists of fitting
the test data using the values found for the other parameters and modelling the test results as good
as possible for a single value of H. Because NorSand can not be expressed in a closed-form equation,
an iterative scheme is needed. A scheme that can be used is provided with the book of Jefferies
and Been [2006]. The scheme is part of an EXCEL-sheet to simulate triaxial compressions to fit the
parameters for the NorSand soil model. The part of the scheme that is used for the simulation of
triaxial compression is given below. Using the calibrated results for M ,N ,λ,ν,Ir and H, the material
behaviour under triaxial compression is modelled for an assumed value for H. In this way triaxial test
data can be simulated. The modelled response can be fitted to the triaxial test data by variation of
H. The best fit with the triaxial test data gives the best estimation for the value of H.

Disadvantage of this method is that the value for H has to correct for the deficiencies in the
calibration of the other parameters. In this way small differences in the calibration of the other
parameters can lead to large differences in the result for H. This is discussed further in section 3.4.5.
Iteration scheme
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Input: M ,N , λ, ν, Ir, H

dǫq = 0.5/7000 (small incremental value)

ṗ = 0(initial value)

ψ = ψ0(initial value)

for j = 2:total

G = G1p
bG

K =
2G(1− ν)

3 ∗ (1− 2 ∗ ν
Mi =M − χN |ψ|
Dp =Mi − η

dǫv = Dpdǫq

dǫ1 = dǫq + dǫv/3

Dmin = χψ

pi/pmax = e−Dmin/Mi

ṗi/pi = He1−η/Mi

(

pi/pmax

pi/p
− 1

)

dǫq = He1−η/Mi
(

p/pmax − 1
)

dǫq

ηratio = 1 +
Mi

3− η

η = η + η̇ (stress update)

ṗ = p
η̇

3− η

q̇ = pη̇ + ηṗ

p = p+ ṗ

pi/p = eη/Mi−1

dǫq,e =
q̇

3G

dǫv,e = ṗ/K

ǫ1 = ǫ1 + dǫ1 + dǫq,e + dǫv,e/3

ǫv = ǫv + dǫv + dǫv,e

curve = ǫv + dǫv + dǫv,e

updated stresses and strains are stored
next j
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3.3 Available data

The data that are used in this project are cone penetration tests (CPT’s) (in-situ measurements) and
triaxial compression tests (laboratory tests). The triaxial compression tests were performed by two
different laboratories, refered to as ”Lab A” and ”Lab B”.

3.3.1 Triaxial compression tests

The parameters of the NorSand soil model needed for the relation between the cone penetration data
and the state parameter are derived from triaxial compression tests. Lab B performed 12 triaxial
tests on 12 samples. From these 12 tests, 10 can be used to determine the material parameters. All
10 tests were performed on reconstituted samples under drained conditions in a dense state. Lab A
performed 45 triaxial compression tests on 15 different reconstituted samples of the sand. Lab A-tests
are performed under both dilatant and contractant conditions. All tests were performed under drained
conditions.

The numbering of the original triaxial test data is changed to have an easier test-ID to work with.
The original test-ID numbers of the Lab A-data can be found in table 3.4. The triaxial test results have
already been used for the interpretation of some soil parameters and these parameters were presented
together with the raw data. Some of these already available parameters will be used in the calibration
of NorSand. An overview of the relevant results is given below.

Project,boring test-ID in report state p′0 [kPa] poisson’s ratio ν Dilatancy Ψ [deg]
2009-447,Boring 3, monster 1 1 dense 49 0.28 11.5
2009-447,Boring 3, monster 1 2 dense 99 0.38 15.2
2009-447,Boring 3, monster 1 3 dense 199 0.36 13.8
2009-447,Boring 3, monster 1 4 dense 101 0.37 13.7
2009-447,Boring 3, monster 1 5 dense 199 0.37 14.8
2009-447,Boring 3, monster 1 6 dense 48 0.27 18.1
2009-447,Boring 3, monster 1 7 dense 99 0.27 15.9
2009-447,Boring 3, monster 1 8 dense 199 0.37 15.8
2009-447,Boring 3, monster 1 9 dense 99 0.27 12.8
2009-447,Boring 3, monster 1 10 dense 199 0.29 17.2
average 0.323 14.86

Table 3.3: Available test results for the Lab B-data. Calculation method is not known
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Canister-sample# test-ID state p′0 [kPa]

1607-1B
1.1 dense 35
1.2 loose 78
1.3 loose 108

1609-3B
2.1 dense 75
2.2 dense 156
2.3 dense 224

1611-2B
3.1 loose 70
3.2 dense 145
3.3 loose 210

4361-2B
4.1 loose 69
4.2 dense 145
4.3 loose 220

5559 2B
5.1 dense 69
5.2 dense 143
5.3 loose* 210

4351-1
6.1 dense 45
6.2 dense 91
6.3 dense 135

4352-2
7.1 dense 75
7.2 dense 150
7.3 dense 224

1607-1
8.1 dense 35
8.2 dense 72
8.3 dense 108

Canister-sample# test-ID state p′0 [kPa]

1609-3
9.1 l/d 74
9.2 dense 155
9.3 dense 224

1610-1
10.1 dense 35
10.2 dense 74
10.3 d/l* 107

1611-2
11.1 dense 71
11.2 dense 140
11.3 d/l* 208

4361-2
12.1 dense 69
12.2 dense 142
12.3 dense 219

4370-3
13.1 loose 99
13.2 loose 203
13.3 loose 299

5559-2
14.1 dense 69.15
14.2 dense 140
14.3 dense 209

5560-3
15.1 dense 89
15.2 dense 181
15.3 dense 268

Table 3.4: available test results for the Lab A-data. The states with * are not taken into account in the assumed-chi
method and the critical state line.

Both Lab A- and Lab B-data come with sieving curves from which the grain size distribution can
be derived. In this way, the results of the calibration can be compared with results for similar sands
found in literature.

Grain sizes Lab A-samples
Borehole Sample D50[µm] uniformity D10/D50 fines [%](≤ 63µm)

B5.1-001
1 240 1.76 0.7
2 241 1.78 0.1
3 244 1.73 1.4

B5.1-002
1 281 1.94 1.4
2 220 1.67 1.3

B5.1-003
1 294 1.98 2.5
2 249 1.91 2.0
3 213 1.59 1.4

B5.1-004
1 286 2.01 1.0
2 274 2.04 0.8
3 234 1.77 0.9

B5.1-005
1 331 2.17 0.1
2 267 1.93 0.9
3 215 1.80 1.7

B5.2-001
1 221 1.59 0.8
2 225 1.68 1.2
3 310 1.93 1.3

B5.2-002
1 314 1.93 1.4
2 372 2.11 1.1
3 369 1.96 0.7

Average 270 1.86 1.1

Table 3.5: Grain size distribution for the Lab A-samples
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D50 [µm] fines [%]
Lab B-data 265 1.9

Table 3.6: Grain size distribution for the Lab B-samples

3.4 Description of the calibration

This section describes the actual calibration of the NorSand model. The procedures described in sec-
tion 3.2 are used and changed where needed. It is described which tests are used for the calibration
and which choices are made with regard to the rejection of individual tests (e.g. because of failed tests
or outlying results).

3.4.1 M and N

For the determination of M and N , all four methods described in section 3.2.1 are applied. This has
resulted in a number of values that were the result of the different methods. The results of these
different methods can be compared to determine the final value for M and N .

End-of-test method MET : The available triaxial tests are all tested up to a maximum axial strain
of 15%. Because most samples do not reach the critical state within this 15% of axial strain, the
results of the end-of-test method for the critical state friction rationM are biased; contractant samples
underestimate and dilatant samples overestimate M . To deal with this, MET is plotted against the
dilatancy at the end of the test DET to be able to distiguish between the contractant or dilatant
behaviour that is still present at 15% of axial strain. In case the tests did reach critical state (or are
at the image condition) the results are located at the DET = 0 line.

The intersection of least square fit of the results in the MET −DET plot with the DET = 0 line is
expected to give a better estimate for the critical state stress ratio M . The scatter plot with the best
linear fit for both the Lab A-data and the Lab B-data is given in figure 3.5. All loose samples but one
reached critical state deformation before the end of the test. Therefore the points representing loose
samples line up at the D = 0 line. Next to the linear trend line, the average of the individual results
is given for comparison in table 3.7.
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Figure 3.5: MET against total dilatancy at the end of the test. Critical state friction angle might be interpreted as
the intersection of the trend line D=0. Strictly speaking, only the plastic dilatancy Dp has to be considered.
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Maximum contraction method MMC : All dilatant samples reached a point of maximum contrac-
tion; most of the contractant samples reached the critical state and, for those samples, the final state
is the maximum contraction. In section 3.2.1 it is shown that the stress ratio at maximum contraction
is influenced by the initial state parameter ψ0. Using the critical state line (discussed below) and the
initial state of the sand, the initial state parameter is determined for all tests and plotted against the
results of MMC (see fig 3.6). Because a function for the dependency of MMC on ψ0 is unknown, a
linear regression line is used to approximate the relation between the experimental results for MMC

and ψ0.
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Figure 3.6: MMC against ψ0. The expected trend in the dilatant part of the graph, as expected according figure 3.2
is not present in the actual test data.

Because the linear regression lines in figure 3.6 do not come close to the modelled graph of figure
3.2, the results of the regression line (the intersection with the D = 0 line, being 1.19 for Lab B data
and 1.25 for Lab A data) are not necessarily more reliable than the average over the results for MMC .
The average and standard deviation of the results for MMC are given in table 3.7.

Stress dilatancy method MSD: Stress-dilatancy plots are produced and ηpeak and Dmin are de-
termined for all tests. The post-peak portion of the stress-dilatancy plot is theoretically linear and
can be expressed as η =MSD + (N − 1)D, defining both parameters that need to be interpreted. The
best linear fit (least square) of the post-peak section of the curve is used to determine M and N ; M
is the intersection with the D = 0 line and N -1 is the slope of the line.

Because of the fine reading spacing of the Lab A-data combined with the limited number of digits in
the readings of volume change, the dilation calculated with equation 2.2 consists of zeros and extreme
high or low values. This is the result of the volume change that only changes every few readings.
To correct for this, the dilation is calculated over an average of multiple readings to average out the
volume change readings. Averaging over 6 readings proves to be sufficient to average out the effect of
the small reading interval and gives a new form of equation 2.2, given by equation 3.15. The result of
this averaging is a smoother curve. A larger range for averaging will give an even smoother curve, but
the accuracy is limited for larger range of averaging.

Di =

∑6
n=1 (ǫv,i+n − ǫv,i−n)

∑6
n=1 (ǫq,i+n − ǫq,i−n)

(3.15)

For the dilatant samples, the post-peak section of the curve is used to determine N by the slope of
the curve. From the contractant samples, which have no peak and therefore no post-peak section, the
slope is determined at the part just before the peak stress ratio Mpeak. This gives a similar result as
the dilatant samples after the peak strength.

From all individual results, the average values forM and N are determined, together with the stan-
dard deviation in the individual results for comparison with the other results. Average and standard
deviation are given in table 3.7.
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Taking the average of all results proves to be not correct to determine N because, for the Lab
A-data, the value found for N is not realistic. When the distribution of the results found for N is
looked at (figure 3.7) it becomes clear that the average of all results is not likely to be the correct final
result for N . The results show a large part of the values found for N below zero and the range over
which the values can be found is large. The reason for such a low values probably is localisation during
testing. Because at localisation in the post-peak portion of triaxial compression, the apparent dilation
does increase far less then it should do (because it is assumed to take place over the full sample),
the slope in the stress-dilatancy plot is lower than it should be and the coupling parameter D gets
smaller. The modal value for all results of N seems to be a better choice and in this way NSD is 0.25
as presented in figure 3.7. This modal equals the limit malue of the CDF in the figure.
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Figure 3.7: Cumulative distribution function of N . The distribution of the individual results for N shows that the
average of all results does not give the correct results. The modal value of the results for N seems to give a better final
result for N . The outliers at the right part of the Lab A-data results are considered as erroneous, the tail at the left
part might be the effect of elastic dilation at lower minimum dilation as discussed in section 3.2.1.

For the Lab B-data, the distribution of the results is presented in the right graph of figure 3.7 to be
able to compare with the distribution of the results from the Lab A-data. The variation in the results
is very small for the Lab B-data. This small variation suggests that the values for N as they are found
from the Lab B tests is more reliable that the values found from the Lab A data.

The effect of the localisation in the Lab A samples on the results for MSD is small compared to
the effect on NSD. The values found for MSD will be relatively small due to the localisation effects.
The unreliability will be taken into account when the final value for M and N is to be determined.

Bishop’s method MBM : All peak friction ratio’s with the corresponding dilation rates are plotted
in η−D space and a linear trend line is constructed through the points. The intersection of the trend
line with the D = 0 line gives the values for N andM . The results give a very good regression line and
Lab B and Lab A data give very similar results. Therefore this method is considered to be a reliable
calibration method.
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Figure 3.8: Bishop’s lines for both data sets.

Final data: All results of the different methods are gathered in tables 3.7 and 3.8. Based on these
results the final value for the different parameters are chosen. Because for most of the methods a
standard deviation in the results is available, the most likely value for M can be found by combining
the probability density functoins of the results for each method. Assuming a normal distribution in
the results in each method, a probability function for the most likely value for M can be given by

PDF (M) = c
∏

N(µMi, σi), (3.16)

where N(µM , σM ) represents the probability density function of the result of the individual methods
(mean and standard deviation from table 3.7) and c is a scaling factor to maintain an area of 1 under
the probability graph. The resulting probability density function gives a most likely average of all
results of M = 1.282 with a standard deviation of around 0.025. Compared to the results that were
deriver from the linear regression lines (for MET and MBM ), this is a conciderably reasonable result.
Taken into account the results of the linear regression line estimates and the good fit of the regression
line of the MBM results, the final value for M is kept at 1.28.

method data M φ [deg] σM

MET

Lab A-data, least square fit 1.20 30.1 -
Lab A-data, mean of results 1.24 30.9 0.10
Lab B-data, least square fit 1.23 30.7 -
Lab B-data, mean of results 1.32 32.7 0.044

MMC
Lab A-data, mean of results 1.32 32.8 0.075
Lab B-data, mean of results 1.26 31.3 0.086

MSD
Lab A-data, mean of results 1.21 30.2 0.056
Lab B-data, mean of results 1.30 31.3 0.074

MBM
Lab A-data 1.284 31.9 -
Lab B-data 1.255 31.1 -

Final M 1.28 31.6 -

Table 3.7: Final results for critical state stress ratio M

To determine the stress-dilatancy coupling parameter N from the two methods that were used,
again the reliability in the results is examined. For the stress-dilatancy method the reliability of the
results from the Lab A-data is very low. The results for the Lab B data however is very consistent
between the tests and is considered as the most reliable estimate. For the Bishop’s method, the results
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of the linear regression lines through both data sets are very much alike. Because the Lab B data has
only samples with high dilatancy, the regression line depends on a small range of dilatancy. Therefore,
the result for NBM from the Lab B-data is considered as less reliable and the final value for N is
determined as the average of NSD for the Lab B data and NBM for the Lab A data.

method data N σ

NSD

Lab A-data, mean of results -0.06 0.926
Lab A-data, modal value 0.25 -
Lab B-data, mean of results 0.36 0.080

NBM
Lab A-data 0.371 -
Lab B-data 0.4389 -

Final N 0.37 -

Table 3.8: Final results for coupling parameter N as the average of NSD for the Lab B-data and NBM for the Lab
A-data

3.4.2 Peak friction ratio ηpeak

The peak friction ratio that represents the point of minimum void ratio and peak strength during
testing is determined from the testing results by taking the maximum of the η-curve. Because peak
strength is determined by initial void ratio and confining stress (giving ψ0 in case the critical state line
is known), results are given together with these parameters in table 3.9.

3.4.3 Shear modulus G

One out of every three Lab A triaxial tests (15 in total) are tested with an unloading-reloading loop
around peak strength. The slope of the loop in the η− ǫq graph is determined by fitting a line between
the intersection at the top and the lowest point of the loop. The slope is equal to 3 times the shear
modulus G at the average mean effective stress in the loop p̄′. All results are plotted in lnG − ln p′-
space and a linear regression line is drawn (figure 3.9). The slope and the intersection of the trend line
lead to the following relation between the shear modulus G and the mean effective stress p̄′:

G = 1923 (p′)
0.66

(3.17)
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Figure 3.9: lnG− ln p′ plot to determine G(p′)

3.4.4 Critical state line Γ and λ

The results of the three applied methods of interpretation are given in the following section.
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Triaxial test method for λ and Γ: Because void ratio is used in this method, only contractant
samples (see table 3.4) are used to find the critical state line given by e = Γ − λ ln(p′). Because the
Lab B data does not contain loose samples, the critical state line is determined for Lab A data only.
Stress paths of all tests are included to show the dilatant behaviour. The dilatant samples do not
reach the critical state line, possibly as an effect of localisation with dilatant behaviour. The results
of the triaxial test method are given in figure 3.10.
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Figure 3.10: Critical state line (based on contractant samples only) and stress paths for all samples tested.

Fines content method for λ and Γ: The result of the fines content method was directly found by
applying equations 3.12 and 3.13 on the data given in table 3.5. The method can be used because the
grain size and fines content for all samples are in the range of samples that were used to develop the
relation of the fines content approach. The results are given in table 3.10. The results however, need
to be handles with care and the statement that the fines content is not to be used instead of triaxial
testing and only gives an indication of the range of results (3.2.4) has to be kept in mind.

The average of the results from the Lab A-data is given in table 3.11. The result for the Lab
B-data, of which only one sieving curve is available and for which D50 = 265µ m and fines content
(≤ 63µm = 1.9%), is given in table 3.11.

Assumed-χ method for λ and Γ: χ was assumed to be 3.5 and for each test the average effective
pressure was determined by equation 3.18. With the results of Dmin, e0 and equation 3.14 the Γ-λ
lines are constructed and the intersection of each pair if lines is determined (figure 3.12).

ln p′average = Σn
i=1 ln p

′

i (3.18)

Because the intersection points of the different lines are not all located within the range of possible
results for Γ and λ, taking the average over all intersection points will give and incorrect result. To find
the best point, two different methods are used; one based on the concentration of intersection points
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and one on standard deviation of the distance between the lines in vertical and horizontal direction.

Concentration of intersection points. The concentration of intersection points is in fact a
probability density function of the distribution along the x- and y-axis of the plot. The maximum
value of the plot gives the highest concentration of intersection points and indicates the possible value
for Γ or λ. It is constructed by sorting the coordinates of the intersection points and calculating the
distance between the points. The distance is then inversed and plotted against the original coordinate
to get the concentration of intersection points. The peak of the concentration plot gives the value for
either Γ or λ.

To avoid peaks as a result of coinciding intersection points the concentration curve is smoothened
by moving average over three point; ci =

ci−1−ci−ci+1

3 . This is done several times to reach a reasonable
degree of smoothness. The result is shown in figure 3.11. Results are given in table 3.11.
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Figure 3.11: results for the method of concentration.

Least standard deviation between lines. To avoid the effect of coinciding interception points
on the result, the standard deviation between the Γ-λ-lines is calculated. This is done along a vertical
and a horizontal line through the Γ-λ-lines for which all individual values for Γ and λ are calculated.
The standard deviation between these values is looked at over the ranges for Γ and λ. The lowest
standard deviation indicates the best location for the intersection points and gives the critical state
line paameters. The results of the least standard deviation are given by the dotted lines in figure 3.12
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Figure 3.12: Γ-λ-plots for all tests with their points of intersection. The highest concentration of intersection points
gives λcs,e = 0.034 and Γ = 0.938. The dashed lines indicate the result for the lowest standard deviation between the
lines in horizontal and vertical direction. In this case Γ = 0.826 and λcs,e = 0.017.

Final result for Γ and Λcs: The different calibration methods for the critical state line parameters
that are discussed above do not all give the same result. As discussed above the reliability of some of
these methods is low and this should be taken into account when averaging the result. Because the
results of the fines content and the assumed chi method with density of cross sections are expected to
be unreliable, the average of the other two methods (triaxial method and assumed chi with standard
deviation between the lines, both methods that give a similar result) is used. The result of the average
between the two methods is rounded towards the results of the two methods that are expected to be
unreliable. An overview of the results of the individual methods and the final result are given in table
3.11.
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Lab A-data Lab B-data

Γ

triaxial approach 0.82
fines content approach 0.875 0.884
assumed-χ std 0.826 -
assumed-χ concentration 0.938 -
final Γ 0.83

λcs,e

triaxial approach 0.0177 0.0165
fines content approach 0.0211 0.0231
assumed-χ std 0.016 -
assumed-χ concentration 0.034 -
final λcs,e 0.017

λcs,10

triaxial approach 0.0407 0.038
fines content approach 0.0486 0.0532
assumed-χ std 0.0368 -
assumed-χ concentration 0.0783 -
final λcs,10 0.039

Table 3.11: Overview of the results of the different methods to determine the critical state line. The final values for
the critical state line are the averages of the results of the calibration methods that are assumed to be the most reliable.

3.4.5 Hardening modulus H

By transferring the script of forward iteration of the NorSand model [Jefferies and Been, 2006] from
EXCEL into Matlab (in which all the calibration in this report is done), an easy way to change the
parameters for all the individual tests is found. Adjusting the code gives the possibility to fit the model
in different ways. Only H is taken as an unknown, although a best fit can basically be made by varying
all parameters. Because the hardening modulus needs to be presented as a unique value (instead of
H(ψ)), the best way to fit the model to the test data is looking for a single value for H that fits as
good as possible to tests. This has been tried and it proved to be difficult because a simple procedure
to find the best fit could not be found. Because of this, each test is modelled for an individual value
of H and the final value for H is taken from these results.

The other parameters in the model are taken as the final value as presented in the sections above
being:

• M = 1.28

• N = 0.36

• G = 1923*p0.66

• Γ = 0.83

• λe = 0.017

• χ = 3.5

To find the best fit of the model with the individual tests a least-square fit between the model
curve and the test curve is used. The curve that is used to fit the model is the ǫv-ǫq curve, because
this curve is the most representative for the behaviour of the soil. Because the post-peak section of
the test results is influenced by strain localisation, only the pre-peak section of the curve is used in the
least square fit. To be able to compare both curves, two new curves are constructed interpolating the
curves at the same values of ǫq. The points for sampling are taken as follows;

ǫq,sample [%] = 0.01, 0.11, .... , ǫq,peak-0.1,ǫq,peak, .... , ǫq,peak+2%-0.1, ǫq,peak+2%
Because most tests are dilatant, fitting the model is done over a range that is slightly larger than

the pre-peak section (some tests are at peak strength very soon and fitting the model over only a few
points gives large differences from the test data). From each point in the array, the square difference
between the test data and the model result is calculated. The minimum of the sum of all differences
for H gives the best estimate for H, see equation 3.19. To find the best fit at a certain value of H, a
loop is used to change the value for H until the result of equation 3.19 is at a minimum. This is done
starting from H = 10 (H is expected in the range 50-500 ([Jefferies and Shuttle, 2005]) with an interval
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of ∆H = 5. The loop is stopped at the point where the result of equation 3.19 no longer decreases.

√

Σn
i=1(ǫv,test,sample,i − ǫv,model,sample,i)2 (3.19)

Not all tests give a good result for the best fit ofH. An explanation for this might be the influence of
the other parameters used in the simulation. Because all other parameters (M , N , etc.) are the average
results of all tests, the shape of the curves depends only on H. The effect that small differences in the
other parameters have on the shape of the curve therefore has to be compensated by the hardening
modulus H. This might not work out very well in all cases and therefore can lead to large differences
from the test data.

When the two curves are fitted by changing H, the value at the best fit for H can become extremely
high or low. The average behaviour of the material can therefore not be described by the mean of all
values found for H. To see what the effect of the extreme values for H is, the cumulative density can
be looked at (figure 3.13). This shows that the largest concentration of results is in the lower range
and that the average of all results is not at this location because of the extreme outliers. The median
or modal value of all results seems to give a better representation of the value for H.
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Figure 3.13: Cumulative distribution of all results for H (left) and H against ψ0 (right).

Jefferies and Been [2006] suggested that the hardening modulus is a function of ψ0, but plotting H
against ψ0 does not give any relation between the two (see figure 3.13). Because this relationship is
not found, an average value is taken for H. An average value can only be taken from an representative
set of sample points. A set of points from a lot of dense samples for example might give a systematic
error when a relation between the state parameter and the hardening modulus was present. The same
goes for the median and modal value. However, since such a relation does not seem to be present,
the average value over the reasonable results might be used. Because the distribution of results in the
range of 0-700 is reasonably uniform, the average over the results in this range can be taken. In this
way, the average result for the value of H comes at 243. This is close to the median of all test results.
The final value for H is therefore chosen to be 243.
Because H is determined as the last parameter of the calibration and it has to cover for all deficiencies
of the averaging of the other parameters, the value found for H is very uncertain. The curves of all
individual results of the calibration of H are given in appendix C.2.

3.5 NorSand soil model parameters

3.5.1 NorSand calibration results

With all parameters of the NorSand model determined above, the soil model is calibrated and the
material behaviour is described by the NorSand model with the following parameters:
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parameter value
M 1.28
N 0.36
Γ 0.83
λe 0.017
λ10 0.039
G 1932 ∗ p′0.66 [kPa]
Ir 1932 ∗ p′−0.34

H 243

Table 3.12: Overview of the calibrated NorSand parameters

3.5.2 NorSand soil properties in literature

To compare the results of the calibration with other materials, tables with results for other sands as
found in literature are presented below (tables 3.13 and 3.14). From these results, the calibration
results for the NZ-sand look similar to comparable sands.

Soil Γ λcs,e M χ H Ir ν
Erksak sand 0.817 0.014 1.26 4.1 70-1400ψ 150-1000 0.2
Ticino sand 0.962 0.0248 1.23 3.5 115-420ψ 300-500 0.2
Hilton Mines sand 1.315 0.0738 1.39 3.5 65 300-500 0.2
Brasted sand 0.902 0.02 1.27 2.8 50-1125ψ 500 0.2
Nevada sand 0.910 0.020 1.20 3.5 100-300ψ 175 0.2
Bennett silty sand 0.450 0.018 1.40 3.5 100 to 150 300-500 0.2
Bonnie sand 1.10 0.07 1.32 3.8 20 to 45 40-80 0.2
Bothkennar clay 2.76 0.181 1.83 3.5 300 36.6 0.2
North Sea sand 0.83 0.017 1.28 3.5 243 - 0.32

Table 3.13: Some examples of Calibrated Soil Property Sets for NorSand after Jefferies and Shuttle [2005].
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(a)LaboratoryStandardSands D50/F ines[−/%] Γ1 λ10 Mtc

Leighton Buzzard 120/5 0.972 0.054 1.24
Castro sand B 150/0 0.791 0.041 1.22
Nevada 150/7.5 0.910 0.045 1.20
Toyoura 160/0 1.043 0.085
Toyoura 210/0 1.000 0.039 1.24
Reid Bedford 240/0 1.014 0.065 1.29
Castro Sand C 280/0 0.988 0.038 1.37
Monterey 370/0 0.878 0.029 1.29
Hokksund 390/0 0.934 0.054 1.29
Leighton Buzzard: 30% mica 450/0 1.610 0.385
Leighton Buzzard: 17% mica 470/0 1.110 0.160
Leighton Buzzard 500/0 0.690 0.040
Leighton Buzzard: 10% mica 500/0 0.990 0.145
Ottawa 530/0 0.754 0.028 1.13
Ticino-4 530/0 0.986 0.056 1.24
Ticino-8 530/0 0.943 0.031
Ticino-9 530/0 0.970 0.050
(b)NaturalSands
San Fernando 7 75/50 0.815 0.106
Amauligak I-65 80/48 1.634 0.358 1.29
Amauligak F-24 140/10 0.946 0.083 1.37
Alaskan Beaufort 140/10 0.920 0.053 1.20
Alaskan Beuafort 140/5 0.910 0.037 1.22
Amauligak F-24 144/21 0.966 0.124 1.33
Fraser River (Massey) 200/¡5 1.071 0.038
Duncan Dam 200/6.5 1.170 0.085
Isserk 210/10 0.933 0.123 1.24
Isserk 210/2 0.833 0.043 1.22
Isserk 210/5 0.879 0.089 1.24
Nerlerk 270/1.9 0.849 0.049 1.29
Bennett silty sand (a) 270/34 0.457 0.041 1.40
Nerlerk 280/12 0.800 0.070 1.24
Nerlerk 280/2 0.880 0.040 1.20
Kogyuk 280/5 0.902 0.062 1.20
San Fernando 3 290/11 0.869 0.093
Amauligak I-65 290/3 1.023 0.095 1.31
Amauligak I-65 310/9 1.018 0.153 1.42
Erksak 320/1 0.875 0.043 1.27
Erksak 330/0.7 0.816 0.031 1.27
Kogyuk 350/10 1.095 0.205 1.24
Kogyuk 350/2 0.844 0.064 1.31
Kogyuk 350/5 0.924 0.104 1.31
Erksak 355/3 0.848 0.054 1.18
Bennett silty sand (b) 370/26 0.435 0.050 1.43
Bennett silty sand (c) 410/20 0.430 0.034 1.43
West Kowlon Sand 730/0.5 0.710 0.080
Chek Lap Kok 1000/0.5 0.905 0.130

North Sea sand 280/1 0.83 0.039 1.28

Table 3.14: Critical state properties for some soils, sorted on grain size, after Jefferies and Been [2006]. The bold fonts
show the properties similar to the calibration results for the NZ-sand. The corresponding grain sizes are in the range of
the grain sizes of this project.



CHAPTER 3. CONSTITUTIVE MODEL CALIBRATION 50

Lab A-data ‖ Lab B-data
Test-ID ηpeak [-] φpeak[deg] e0 [-] p0 [kPa] Test-ID ηpeak [-] φpeak[deg] e0 [-] p0 [kPa]

1.1 1.40 34.6 0.755 35 1 1.564 38.3 0.688 49
1.2 1.28 31.8 0.726 78 2 1.614 39.5 0.484 99
1.3 1.27 31.5 0.754 108 3 1.51 37.1 0.632 199
2.1 1.37 33.8 0.683 75 4 1.564 38.3 0.632 49
2.2 1.37 33.8 0.684 156 5 1.46 36.0 0.399 101
2.3 1.34 33.2 0.682 224 6 1.573 38.5 0.58 199
3.1 1.16 29.1 0.78 70 7 1.643 40.2 0.53 48
3.2 1.38 34.0 0.726 145 8 1.581 38.7 0.507 99
3.3 1.23 30.6 0.755 210 9 1.602 39.2 0.507 199
4.1 1.26 31.3 0.749 69 10 1.643 40.2 0.606 48
4.2 1.38 34.2 0.719 145 11 1.507 37.0 0.507 99
4.3 1.25 31.1 0.739 220 12 1.648 40.3 0.462 199
5.1 1.29 32.1 0.647 69
5.2 1.32 32.8 0.632 143
5.3 1.23 30.8 0.632 210
6.1 1.46 36.0 0.598 45
6.2 1.56 38.3 0.589 91
6.3 1.49 36.7 0.585 135
7.1 1.61 39.4 0.615 75
7.2 1.51 37.2 0.619 150
7.3 1.54 37.8 0.606 224
8.1 1.50 36.9 0.634 35
8.2 1.50 36.8 0.631 72
8.3 1.39 34.4 0.611 108
9.1 1.34 33.3 0.755 74
9.2 1.36 33.7 0.728 155
9.3 1.39 34.3 0.744 224
10.1 1.40 34.6 0.627 35
10.2 1.33 33.0 0.597 74
10.3 1.31 32.5 0.613 107
11.1 1.44 35.5 0.649 71
11.2 1.48 36.4 0.614 140
11.3 1.39 34.4 0.621 208
12.1 1.44 35.5 0.615 69
12.2 1.41 34.7 0.623 142
12.3 1.38 34.2 0.609 219
13.1 1.21 30.3 0.731 99
13.2 1.23 30.8 0.739 203
13.3 1.24 30.9 0.727 299
14.1 1.55 38.1 0.595 69
14.2 1.51 37.0 0.582 140
14.3 1.52 37.3 0.59 209
15.1 1.45 35.7 0.589 89
15.2 1.37 33.9 0.596 181
15.3 1.37 33.8 0.591 269

Table 3.9: Peak friction ratio of all triaxial tests to compare to the void ratio and initial stress state.
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Individual results fines content approach Lab A-data
Borehole Sample D50[µm] fines [%](≤ 63µm) λcs,e Γ

B5.1-001
1 240 0.7 0.0199 0.871
2 241 0.1 0.0183 0.864
3 244 1.4 0.0218 0.878

B5.1-002
1 281 1.4 0.0218 0.878
2 220 1.3 0.0215 0.877

B5.1-003
1 294 2.5 0.0248 0.891
2 249 2.0 0.0234 0.885
3 213 1.4 0.0218 0.878

B5.1-004
1 286 1.0 0.0207 0.874
2 274 0.8 0.0202 0.872
3 234 0.9 0.0204 0.873

B5.1-005
1 331 0.1 0.0183 0.864
2 267 0.9 0.0204 0.873
3 215 1.7 0.0226 0.882

B5.2-001
1 221 0.8 0.0202 0.872
2 225 1.2 0.0212 0.876
3 310 1.3 0.0215 0.877

B5.2-002
1 314 1.4 0.0218 0.878
2 372 1.1 0.0210 0.875
3 369 0.7 0.0199 0.871

Table 3.10: Results for the fines content approach of the individual samples.



Chapter 4

Statistic characterisation

The actual statistical interpretation of the cone penetration tests (CPT’s) is described in this section.
Interpretation is done with the use of an already existing code, written in Matlab [Gitman, 2006]. This
original code is adjusted to fit the needs of this particular project.

A flowchart of the procedure of the statistical characterisation and derivation of the state parameter
profile from a single CPT is given in figure 4.1. This procedure is the part of the procedure that is of
interest for the conditional simulation later in this report. The analysis of the original profiles (with
trend) is not added in this flowchart and is only partly discussed in this report.

52
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Figure 4.1: Flowchart of the statistical characterisation of the CPT profiles, which is part of the interpretation code.

4.1 Available data: CPT’s

The available cone penetration test data consist of 140 data files from individual tests. The tests were
performed in two parallel lines at test locations. One line is on the location of the future quay wall,
the other is on the location of the future crane axis.
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Figure 4.2: Detail of the CPT locations.

The CPT’s are taken to a depth of approximately 45m, which is far beyond the depth of the dumped
material. The CPT’s have readings every 2cm and are stored in .GEF (Geographical Exchange Format)
text files.

4.2 CPT interpretation and correction

Before the CPT data can be used to determine the statistical properties, the data need to be interpreted
and corrected. This mainly consists of filtering of peak values in the profile and correcting depth and
pore water pressure. The corrections that are performed are described in this section.

4.2.1 Pore water pressure

From the 141 CPT’s, only 9 contain a pore water pressure reading (see figure 4.3). To avoid a bias
between the profiles that contain pore water pressure and the ones that do not, correction for the pore
pressure is done based on hydrostatic pressure for all profiles. Because from the pore water pressure
reading it is not clear what the (average) water table is, the average water table at the test site is used.
The expected water table at the test site is 9cm +NAP [Rijkswaterstaat, 2010]. This level is used as
the average water table at the test site to calculate the pore water pressure for the correction of the
CPT-profiles. The pore water pressure u is used in the correction for unequal area (to be discussed in
section 4.2.2) and to calculate the expected stress state (see section 3.1).

4.2.2 Correction of measurements

The tip resistance that is measured has to be corrected for the water pressure that is active on the
different sides of the cone tip. This correction is often referred to as ”the unequal area effect” [Lunne
et al., 1997]. It is basically a correction for the area within the cone tip on which no water pressure
is active. The following equation is used to obtain the corrected total resistance qt from the measured
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Figure 4.3: The available pore water pressure profiles. Note that the water table varies from place to place, probably
due to the tide. The red dashed lines present the boundaries of the homogeneous zone that is used for the interpretation
of the statistics. Justification for this zone is further discussed in section 4.3

cone resistance qc:

qt = qc + u2(1− a) (4.1)

Here u2 is the pore pressure active on the back of the cone tip and (1 − a) is the ratio of area on
which no pore pressure is active, based on the cone area ratio a, which usually is around 0.6. Because
the pore pressure u has generally not been measured, the expected pore pressure u is calculated based
on hydrostatic equilibrium. Excessive pore pressures (during testing) are not expected because of the
high hydro-conductivity of sand and the absence of clay in the profile (see figure 4.3).

Although [Lunne et al., 1997] used qc for the interpretation of the state parameter, in this report
qt is used because the original code already included a correction for the unequal area effect. The tip
resistance shown in all profiles is qt.

Normalisation of the profile is performed to determine the normalised cone tip resistance Qt ac-
cording to equation 4.2. The pore pressure profile u that is based on the hydrostatic pressure is used
for the difference between the total and effective mean stresses p and p’.

Qt =
qt − p

p′
(4.2)

4.3 Determination of state parameter

The state parameter is determined as described in sections (3.1.3). All individual state parameter
profiles are stored in a text file to be used for further interpretation. The state parameter profile is
plotted together with the original CPT-profiles (tip resistance, sleeve friction and friction ratio). In
the same profile, the trend, being the linear regression line through all points in the evaluated domain,
of the profile is indicated. See appendix D.1

4.4 Results for all the statistical properties

The determination of all statistical properties is programmed in the code by Gitman [2006]. The results
of the determination can be found in the appendices; for each CPT-profile a single-page overview is
made including the CPT and state parameter profiles (see appendix D.1). A tabular overview of all
these results together and an interpretation of all data put together is also given in D.2.
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To determine over which domain the profiles need to be interpreted, all tip resistance profiles are
depicted together in figure 4.4 with the average tip resistance (red profile). Based on the average tip
resistance profile the homegeneous zone is chosen as the domain [-10.6m ; -2.4m] with respect to chart
datum (N.A.P.).
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Figure 4.4: All 140 CPT profiles together to determine the homogeneous zone to be evaluated. The red profile is the
average over all profiles. The red dashed lines indicate the boundaries of the zone that is assumed to be homogeneous.

The results of the statistical interpretation are nothing more than the application of all the theory
discussed above and can be used in the next chapter as input for the simulation. A summary of the
results is given in table 4.1. This table represents the mean and standard deviation of the results that
are found for the individual profiles. a and b are the parameters of the regression line ay + b in the
profile P (y) = ay + b+ Z(y). µ is the mean of the profile P (y) and σ is the standard deviation in the
trend-removed profile Z(y). The mean of the standard deviations of profiles Z(y) is determined by

the square root of the average of the variances in individual profiles Z(y)

(√

1
n−1

n
∑

i=1

σ2
i

)

The scale of

fluctuation θ is determined on the trend-removed profile Z(y). Note that Z(y) is first order stationary
because the linear regression line is removed from the profile P (y).

Interesting is the small difference between the scales of fluctuation derived from the state parameter
and the tip resistance. It suggests that the transformation of the data (from tip resistance to state
parameter) has no significant effect on the scale of fluctuation.

The results given in Table 4.1 are the average of the results of all individual profiles. Conclusions
based on these averages should be handeled with care, because of the possible correlation between
the different parameters. To show that the different parameters are not completely independent from
one another, the correlation matrix is given in table 4.2. The table shows that there is a correlation
between some of the parameters.
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µ of individual profile results σ of individual profile results

ψ

µ -0.124 0.0218
σ 0.0393 0.010
θ 0.627 m 0.265 m
a -0.00212 /m 0.00938 /m
b -0.1378 0.0714

qc

µ 13.95 MPa 2.05 MPa
σ 3.46 MPa 1.18 MPa
θ 0.620 m 0.269 m
a -0.353 MPa/m 0.840 MPa/m
b 11.651 MPa 6.321 MPa

Table 4.1: Mean and standard deviation of the statistics (µ, σ, θ) and trend line parameters (a and b from P (y) =
ay + b+ Z(y)) of the 141 profiles. Results given are the combined results of all individually analised profiles.

ψ

µ σ θ a b
b 0.59 0.20 0.02 0.96 1
a 0.33 -0.19 -0.11 1
θ -0.25 0.44 1
σ -0.12 1
µ 1

qc

µ σ θ a b
b 0.55 0.17 0.05 0.95 1
a 0.26 -0.03 -0.07 1
θ 0.34 0.57 1
σ 0.59 1
µ 1

Table 4.2: Matrix with correlation coefficients between the statistic results. Correlated statistical properties should be
handled with care when they are used together.

To give a clear overview of all state parameter profiles in a single figure, the state parameter profiles
are all presented in one single graph in figure 4.5. It can be mentioned that in general, all profiles are
located on the negative side of the ψ = 0 line, which suggests medium to dense state.

Instead of removing the trend of each profile individually, the average trend of all profiles can be
evaluated. The decision to look at the overall trend is supported by the assumption that the evaluated
zone contains the same material with the same properties. The trend therefore can be expected to be
the same at all locations in the zone and the difference in linear regression trend lines is merely the
effect of variability that is large compared to the domain depth size and trend.

Type of distribution function: For each profile individually the best distribution function de-
scribing the data in the profile is determined for both original and trend-removed profiles of ψ and Q.
The best distribution is determined by means of the chi square scores. For the conditional simulation,
the distribution of the trend removed profiles is of interest, the distributions of the original profiles
are shown to compare with the results of the trend removed profiles. The best distribution functions
for the trend removed profiles of both ψ and qc are the normal and β distributions (see figure 4.6).
Concluding that both methods are equally favourable to describe the data might not be correect. The
individual chi-square scores should be examined for this. Another option is to look at the distribution
of all data together.

The distribution of all data together gives a slightly different result from the individual evaluations
as can be interpreted from table 4.3. ψ clearly fits best to a normal distribution when all data together
are analysed; for qc the best distribution seems to be the β distribution or the Γ distribution due to
the skewed experimental distribution. The reliability of the chi-square goodness of fit in this particular
application has been the point of discussion in other parts of this report and no conclusive solution for
the indicated problems have been found. The results of the chi-square evaluation are therefore treated
with suspicion. For the time being, the results are used and for ψ the most suitable distribution
function is expected to be normal, which is favourable with respect to the simulations in the next
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Figure 4.5: All 140 state parameter profiles together. Almost all profiles are below the ψ = 0 line and the average
profile (red) shows a linear trend with depth. The red dashed lines indicate the boundaries of the zone that is assumed
to be homogeneous.

chapter.

distribution ψtrend−removed qtrend−removed

Normal 375 1945
LogNormal 4555 2116
Beta 1078 1329
Gamma 2468 1259

Table 4.3: χ2 scores for all data together for the trend-removed profiles. ψ clearly has a normal distribution, qc has a
Beta or Gamma distribution. χ2 determined from 20-bin histogram (17 degrees of freedom).

To visualise the fit of all data to the theoretical distribution functions, the most likely fits of the
four distributions is compared to the histogram of the data in figure 4.7.
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Figure 4.6: Number of profiles for which each distribution is found to be the best distribution based on the chi-square
scores. For the trend-removed profiles, Normal and β distributions prove to be the best distributions, followed by the Γ
distribution.
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Figure 4.7: Fit of the theoretical distributions to all data. The state parameter fits best to the normal distribution.
The tip resistance has a more skewed distribution and therefore better fits the skewed distributions.



Chapter 5

Field simulations

In the previous chapters, the statistics of the soil have been determined to fully characterise the soil
properties. Now, based on the statistics, the actual field of the soil is simulated using random fields.
The methods to generate these random fields and to condition them to the CPT-profiles are described
in this section. First the theoretical background of the methods is given, after which it is shown that the
conditioned random fields can be generated to simulate the subsurface. Throughout the chapter, the
influences of the applied methods on the reduction of uncertainty are evaluated and quantified. Finally,
the performance of the conditioning method with respect to computational expense and reduction of
uncertainty is evaluated.

5.1 Random field generators

A number of different methods can be used to produce random fields, all with their specific advantages
and disadvantages. Properties that are important for the suitability a specific method are consistency
in the correlation structure (the correlation structure that is used as input should be met by the
generated random field) and the computational expense of the methods is of importance when applied
on larger calculations. Fenton and Griffiths [2007] compare six methods of random field generation
algorithms. Three of them (Moving average methods, the Discrete Fourier Transform method and
Covariance Matrix Decomposition) are directly rejected because of their computational extensiveness
for larger fields. From the other three evaluated methods LAS is proved to be the least computative
method. From the other methods the Fast Fourier Transform method does not reproduce te correct
correlation structure unless a double-sized domain is evaluated. The LAS method was demonstrated
to be the computational least expensive compared to the other five methods and is the only method
directly producing local average fields instead of point statistics fields (the values in the LAS method
is the average over the cell domain, local average; the values in the other methods are the values at
the exact point locations, point statistics).

One method that is not discussed by Fenton and Griffith is the Sequantial Gaussian Simulation
(SGS) technique. This method produces the random field in a sequential way by kriging the mean and
standard deviation of every subsequent point in the generation of the field. The point value is then
obtained by a random normal number. Bruining et al. [1997] found that SGS is the preferred method
for generating random fields with an exponential correlation structure. The method however involves
solving a system of equations the size of all correlated points in the neighbourhood of the point to
be evaluated. A different system of equation has to be solved for every point to be generated. For
larger fields with a high resolution compared to the scale of flucuation, this method can be expected
to become extremely computational expensive. Next to this, the SGS is not particularly suited for the
generation of local average fields. Because the future application of the conditional simulation will be
in finite element programming, a direct generation of local average fields is preferred. Therefore the
LAS method is used for the realisation of unconditioned random fields.

5.2 Local Average Subdivision

This section describes the LAS procedure and evaluates the possibilities to modify the LAS procedure
to condition the random fields that are produced to already known points in the field.

60
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Based on the concept of the variance function, Fenton and Vanmarke [1990] introduced the method of
Local Average Subdivision (LAS), a method to generate random fields by subdividing the domain of
interest in subsequent steps. Starting with a cell as large as the full domain, in subsequent levels of
division, the cell is divided into smaller cells with a cell size that is half the parent cell size. When each
new cell is taken as a weighted average of its neighbouring cells plus a white noise term, each level of
subdivision can be generated in such a way that the statistical properties (mean, standard deviation
and correlation structure) are satisfied. In this way a field is constructed that satisfies the full variance
function and the point statistics.
The approach was motivated by the need to represent engineering properties as local averages and to
be able to easily condition the realisation to incorporate known data change resolutions within sub-
regions [Fenton and Vanmarke, 1990]. Unfortunately, the conditioning was not described by Fenton.
Further elaboration on the conditioning can be found further down in this report.

5.2.1 Derivations with 1D example

The LAS method is a method to construct random fields in a top-down recursive method [Fenton and
Vanmarke, 1990]. For a 1D field over the domain size D, the process starts at level 0 for which a global
average for D is generated (Z0

1 ). In level 1, this global average is divided into 2 1/2D sized cells (Z1
1

and Z1
2 ), which need to satisfy the correlation structure and statistics for local averaging. The new

cells maintain the global average of the zeroth level. In very subsequent level, the cells in the preceding
level (the ’parent’ cell Zi

j) are divided into two cells (Zi+1
2j and Zi+1

2j−1). The average over the two new
cells equals the parent cell and again the correlation structure and the statistics are maintained for
the local average at the cell size. Figure 5.1 gives the first 3 levels of subdivision.

Z0
1

Z1
1 Z1

2

Z2
1 Z2

2 Z2
3 Z2

4

Z3
1 Z3

2 Z3
3 Z3

4 Z3
5 Z3

6 Z3
7 Z3

8

Figure 5.1: First 3 levels of subdivision from the expected mean at Z0

1

To maintain statistics and correlation structure at all levels in accordance with the local average
theory, the values Zi+1

2j are linear combinations of the parent cell and its 2n neighbours plus a white
noise term. The linear combination is unbiased (the sum of weights am equals zero) and the white
noise term is zero-mean, normally distributed. All values Zi+1

2j−1 are chosen in such a way that the

average of Zi+1
2j−1 and Zi+1

2j equals the parent cell to maintain the global average.
Every new cell is a linear combination of the parent cell and 2n cells next to this parent cell. If
m=−n, . . . , n then the weights aim and the variance of the white noise terms ci are a function of the
correlation structure and the cell domain Di = 1/2iD. In equations, this method is given by:

Zi+1
2j =

j+n
∑

k=j−n

aik−jZ
i
k + ci+1U i+1

j , with: aim = f(Di, C(h)), ci = f(Di, C(h)) (5.1)

Zi+1
2j−1 = 2Zi

j − Zi+1
2j (5.2)

The only parameters that need to be derived now are the functions for aim and ci.
The correlation structure for the subsequent level is different than the correlation structure of the

final field. This is the effect of the local average in the earlier levels. A formulation for the local average
correlation structure is given by Vanmarcke [1984] and makes use of the variance function Γ(h). It
gives the covariance between two cells at level i at a distance mDi (equation 5.3):

E[Zi
kZ

i
k+m] =

1

2

[

(m− 1)2Γ((m− 1)Di)− 2m2Γ(mDi) + (m+ 1)2Γ((m+ 1)Di)
]

(5.3)
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The variance between the subsequent levels can easily be derived into equation 5.4 when it is noticed
that the average of every new pair of cells equals the parent cell;

E[Zi+1
2j Z1

j+m] =
1

2
E[Zi+1

2j Zi+1
2j+m−1] +

1

2
E[Zi+1

2j Zi+1
2j+m. (5.4)

When equation 5.1 is multiplied by Zi
m and the expectation of the left and right sides of the equation

are considered, the white noise term falls out of the equation and equation 5.5 is used as a method to
determine the weights aim. The variances can be found with the help of equations 5.4-5.3.

E[Zi+1
2j Zi

j+m] =

j+n
∑

k=j−n

aik−jE[Zi
kZ

i
j+m] (5.5)

The white noise variance between the subsequent levels ci+1 can be found by equation 5.6. The
expression makes use of the fact that var(A+B)=var(A) + var(B).

(ci+1)2 = E[(Zi+1
2j )2]−

j+n
∑

k=j−n

aik−jE[Zi+1
2j Zi

k] (5.6)

With the last two equations, the parameters aim and ci
2
can be determined. These parameters can be

used in equation 5.1 to generate realisations of Zi+1
2j . In this way, the entire field can be generated.

In the general case, n is chosen to be 1, so that m is [-1 0 1]. This means that each cell Zi+1
2j has

3 parent cells of which it is a linear combination. At the boundaries of the domain, the parent cell
Zi
j−1 or Zi

j−1 might not exist. In this case equations 5.4-5.3 are solved using only the available parent
cells. This influences the weights a. LAS works only for Gaussian fields, because of the summation
of random processes at each level. Possibly the best method to generate non-Gaussian fields is to
converge Gaussian fields to non-Gaussian fields by means of the cumulative density functions of the
fields in a distribution transformation.

To test the LAS-method in combination with the conditioning, a LAS-code is written in Matlab to
simulate unconditioned random 1-D fields. This method uses an exponential variance function in the
form of equation 2.23. All evaluations of 1-D random fields use this LAS code.

5.2.2 Application of LAS in 2-D

To generate random fields in 2-D an existing code is used. This is initially written in Fortran and now
runs as an executable outside Matlab. In this report it will be referred to as Sim2D.
Sim2D uses the approximate exponential variance function (equation 2.24) as the correlation structure.
It works out an anisotropic random field by simulation of an isotropic random field that is deformed
into an anisotropic field by squashing and stretching. Squashing is the process in which the average of
a row or column of adjacent cells forms the value for a single cell of the new field. In this way, multiple
square cells of an isotropic field merge into a single square cell of an anisotropic field. Stretching is
the interpolation between two adjacent cells to generate a row or column of cells of a field with higher
anisotropy. This method is less accurate than squashing, because the interpolation affects the statistics
of the field in a different way than the LAS method. Squashing is a process that is in line with the
LAS method, because the LAS method guarantees consistent statistics for larger cell domains. The
averaging of cells therefore changes the statistics in the same way as the LAS method and the variance
function that was used to generate the field is still honoured. Furthermore, squashing uses a more
detailed field to start with and therefore incorporates a higher precision of statistics.
As input the code uses:
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- k: number of realisations
- nx: number of columns
- ny: number of rows
- i: number of subdivision levels used (8-13)
- Dcell: cell dimension (square cells)
- θv: vertical scale of fluctuation
- µ: field mean
- σ: field standard deviation
- ξ: anisotropy; ratio between horizontal and vertical scale of fluctuation
- seed: seed to start the random number generator (large negative number)
- .false.: for normal distribution (.true. for lognormal distribution)
The effect of the application of the approximate exponential variance on the correlation structure of

the generated fields is discussed in section 5.4.6.

5.2.3 On the conditioning of the LAS method

It is attempted by the author to condition the random field generated with LAS by changing the
internal algorithm. It is found that changing the procedure in such a way that assigned cells will have
a predefined value after generation of the field with LAS is not preferable. This is discussed in the
following section. As an example, the conditioning of a 1D LAS field of 8 cells is tried to be conditioned
to Z(x0) at cell Z

3
8 .

For the conditioning of the LAS-procedure, some properties of the weighting functions are used:

• ai0=1 and ai
−n=−ain, which implies that E[Zi+1

2j ]=E[Zi
j ]

• ∑ c2i=σ
2

• aim and ci are independent from Zi
j

When it is considered that the expected value of every cell in the LAS-generated fields is 0 and the
influence of cells Zi

j−1 and Zi
j+1 on Zi+1

2j is expected to be zero, the value Zi
j is the sum of the white

noise terms times the level standard deviation ci of all individual levels i:

Zi
j =

i
∑

k=0

Ni(0, ci). (5.7)

In this equation N(0, 1) is the standard white noise term; a realisation from a standard normal dis-
tribution. All white noise terms are independent and therefore the expectation of Zi

j is zero and the
variance at level i is given by

E[(Zi
j)

2] =
I
∑

i=0

c2i . (5.8)

When Zi
j is known to be the conditioning point Z(x0), this constrains the result of the outcome of

every white noise term. The white noise terms are now no longer independent from one other; the
outcome of N0(0, c0) influences all other noise terms to end up at Z(x0). The sum of I + 1 dependent

variables can be written as a sum of I independent variables Ni(b̂i, ĉi);

Z(x0) =

I−1
∑

i=0

Ni(b̂i, ĉi) (5.9)

with conditioned noise parameters

bi = f(c0, . . . , cI , Z(x0)) (5.10)

ĉi = f(c0, . . . , cI , Z(x0)). (5.11)
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The formulation of an equation for bi and ĉi has not been found by the author and considered
to be of importance only at the moment the further implementation of this method has been proved
to work. Considering the values for b and ĉ being possible to be found, the application in the LAS
method needs to be possible.

Assuming the conditioned noise parameters given in equations 5.10 and 5.11 can be solved before
the first level of subdivision is applied, the introduction of the first noise terms will influence the
expectation for the cells next to the direct parent cells of the conditioned cell Zx0

. Because these
cells only cancel out at the moment the expectation of Zi

j−1 and Zi
j+1 are the same (which is no

longer valid at the moment the noise is introduced) all parent cells of the conditioned cell Z(x0) at
all levels need to be conditioned to ensure conversion towards the value of the conditioned cell. The
introduction of all parent cells into the (probably) system of equations that solves the noise parameters
for all parent cells is expected to increase to problem to a level at which it is no longer possible to
solve in an easy and straightforward way. Considering that this is only for one conditioning point and
the introduction of multiple conditioning points in a field of more than one dimensions, it is expected
to be unlikely that this approach leads to a conditioning algorithm that can be implemented in an
engineering environment.

In an attempt to visualise the internal conditioning of the LAS procedure, figure 5.2 was produced.
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Figure 5.2: Schematic presentation of LAS process with conditioned cell Z3

8
.

5.3 Kriging

Kriging is an interpolation method first described by Matheron, inspired by the work by D.G. Krige on
the prediction of gold grades at the Witwaterrand reef system in South-Africa [Cressie, 1990]. Kriging
is a ”BLUE” method; a Best Linear Unbiased Estimator. Given a set of spatially distributed values,
it interpolates the field between these values so that the expected error of the generated points in the
field is minimised. To predict the error in the result, the kriging method uses the variogram or the
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expected mean and covariance structure.
Kriging on itself might not be interesting in the field of the project because estimation is not the
purpose. The principles of kriging however are used to condition the random field in a post-prosessing
algorithm that will be discussed later. The characteristics of kriging therefore are discussed thorougly
to be able to apply kriging in the conditioning of the reandom field.

5.3.1 Simple Kriging

Simple kriging (SK) is the most basic method of kriging. It requires second-order stationary data
(expectation of mean and standard deviation are constant on the domain) with a known mean µ. The
simple kriging predictor gives the best estimation Z∗(x0) of the value Z(x0) as a linear combination
of all known values Z(xα) and the known mean value µ.

Z∗(x0) =
n
∑

α=1

λαZ(xα) + µ (5.12)

Z∗ is the best estimation in the sense of var(Z −Z∗); the error of the kriged field Z∗ with respect
to the original field Z is quantified by the variance of the difference between the two. The weights
λSK
α that give this best estimation are given as the solution of the Simple Kriging System, given as

equation 5.13. The derivation of this system of equations is given in appendix E.1.







C(x1 − x1) · · · C(x1 − xn)
...

. . .
...

C(xn − x1) · · · C(xn − xn)













λSK
1
...

λSK
n






=







C(x1 − x0)
...

C(xn − x0)






(5.13)

The kriged result Z∗

SK that is found by simple kriging is an estimation of the true value Z(x0). This
error is of a normal distribution with mean zero (because of the unbiasedness) and a variation σ2

OK .
This variation is given by

σ2
SK = C(0)−







λ1
...
λn







′





C(x1 − x0)
...

C(xn − x0)






. (5.14)

At locations x0 = xi for xi ∈ xα the variance equals zero, increasing with larger distance from these
points. The maximum variance is given by the variance of the dataset itself as C(0).

5.3.2 Ordinary Kriging

Ordinary kriging is a kriging method that is slightly more general than simple kriging. It requires
second-order stationary data (expectation of mean and standard deviation are constant on the domain)
and the mean might be unknown. Like simple kriging, ordinary kriging gives the best estimation of
Z(x0) based on the minimum of the variation of the estimation error Z∗ − Z. Because the mean is
considered to be unknown and unbiasedness needs to be guaranteed, the sum of the weights λα needs
to be 1, to give Z∗ as a direct linear combination of Z(xα):

Z∗(x0) =

n
∑

α=1

λαZ(xα), with
n
∑

α=1
λα = 1 (5.15)

When the best estimator is found based on the minimum of var(Z∗−Z), the weights λ are the solution
of the Ordinary Kriging System, given as equation 5.16. The derivation of this system of equations
and the expressions for the estimator and the variation are given in the appendix E.1.











γ(x1 − x1) · · · γ(x1 − xn) 1
...

. . .
...

...
γ(xn − x1) · · · γ(xn − xn) 1

1 · · · 1 0





















λOK
1
...

λOK
n

µOK











=











γ(x1 − x0)
...

γ(xn − x0)
1











(5.16)
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γ(xα − xβ) is the variogram of the data. Because of the second-order stationarity, the variogram can
be expressed as C(0)−C(xα−xβ). µOK is the Lagrange parameter, that is needed to solve the system
of equations for minimum variance (see appendix E.1).
Ordinary kriging gives the best estimate as a linear combination of all known points xα. Unbiasedness
is guaranteed by the constraint on the sum of the weights λα. The true value Z(x0) that is estimated
by Z∗(x0) is expected to be within a certain range around Z∗(x0). In fact, the distance Z(x0)−Z∗(x0)
is normally distributed around Z∗(x0) with a variance σ2

OK . This variance is independent from all
values Z∗ and Z(xα) and given by

σ2
OK =











λOK
1
...

λOK
n

µOK











′









γ(x1 − x0)
...

γ(xn − x0)
1











. (5.17)

5.3.3 Example of Kriging

To clarify the estimation by Kriging, the example profile (given in figure 2.2) is kriged based on
8 randomly choosen points. For the correlation structure, the scale of fluctuation from figure 2.8
(θ=0.47m) is used together with the assumption of an exponential correlation structure. The variance
scaling parameter is taken from figure 2.5 as C(0)=σ2=3.209. This leads to a correlation structure

C(x0, xi) = 3.209 exp

(

−2|x0 − xi|
0.47

)

γ(x0, x1) = 3.209

(

1− exp

(

−2|x0 − xi|
0.47

))

(5.18)

that is used for the weighting in the kriging operation. Both simple kriging and ordinary kriging are
shown, together with their 95% confidence range and the variance.
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Figure 5.3: Example of kriging based on 8 random points of the profile. Statistical properties: θ=0.47m, σ2=3.209,
exponential correlation structure.

Although kriging gives the best estimation of the field that needs to be simulated, it does not
provide the best simulation when the variability of the field is of interest. Kriging can only be used
to estimate the mean and variance at field locations and to include the correlation structure of the
generic field, other random field simulation techniques need to be used.
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5.3.4 Computational expense of Kriging

This section covers the computation time of the kriging procedure. The computation time of the
conditioning is of importance for the feasibility of the application of the conditioning in an engineering
environment: when the conditioning takes a large amount of time compared to the improvement in
the results of the analysis, it might not be interesting to use the conditioning at all. Because kriging
uses the solution of a system of equations with the size of the number of the conditioning points,
one of the important parameters in the computation time is the number of conditioning points. An
other important parameter in the kriging is the number of points in the field that need to be kriged.
The larger the field or the higher the field resolution, the longer the kriging will take. Therefore the
kriging can be expected to take more time for larger number of points in the field and the number of
conditioning points.

Despite the possible large computation time of the conditioning compared to the generation of the
unconditioned random fields, a large computation time does not necessarily causes problems. When
it is considered that the simulated fields are to be used in finite element analysis, the time for the
conditioning of the random fields can be expected to be small compared to the time needed for the
analysis with the finite element method.

As mentioned above, the use of the kriging methods involves the solution of the equation Γλ = γ.
When all conditioning points Z0(xα) are considered to contribute to the value of each point in the
field to be kriged, the matrix Γ does not change during the entire operation. This means that matrix
Γ has to be constructed and inverted only once. The size of Γ is n×n for n known conditioning points
Z(xα). Because γ(xi, x0) changes for every point that needs kriging, Γλ = γ needs to be solved N
times for a field of N points. For every point, Z∗ is found by the multiplication of λ′ by Z(xα). In case
of a larger distance between the conditioning points, the size of Γ can be reduced by only considering
the conditioning points Z0(xα) that are correlated well enough to the point to be kriged. All points
at distance d ≤ 3θ for example can be used as a selection criteria for the neighbourhood. Because
all points to be kriged have an other neighbourhood, the system Γλ = γ needs to be solved for all
N points in the field. This method therefore can only be beneficial above including all conditioning
points in case of the following cases:

• The number of field points N is not very large compared to the number of condition points n

• The conditioning points are distributed over a domain that is large compared to the scale of
fluctuation to be able to ignore the bigger part of the conditioning points

Because in this report the simulated fields have a high resolution, n is small compared to N and the
fields are not large compared to the scale of fluctuation, all conditioning points are used to krige every
point in the fields. In this way, no decisions need to be taken in the selection of the appropriate
search neighbourhood. The analysis of the computation time of kriging therefore relates to the kriging
method in which all available conditioning points are taken into account over the entire field.

The time it takes to krige a full field depends on the process time of each individual step and the
number of times each step has to be performed. The time it takes to perform a single step is usually
a function of the matrix size n. For the general operations involved in the total kriging operation, the
calculation time t can be given as a function of the number of known points n:

operation time operation
create [n× n] t ∝ n2 create square matrix
create [n× 1] t ∝ n1 create vector
[n× n]\[n× 1] t ∝ n3 solve system of equations
inv([n× n]) t ∝ n3 invert square matrix
[n× n] ∗ [n× 1] t ∝ n2 matrix-vector product
[1× n] ∗ [n× 1] t ∝ n1/2 vector product

Table 5.1: Theoretical calculation time for matlab operations, derived experimentally.

The relation between the known points n and the calculation time t is tested using vectors and
matrices filled with random numbers. The results that support the calculation times for operators
can be found in appendix E.3. The only operations for which the calculation time increases with the
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number of points with the power 3 are the inversion of the square matrix Γ and the solution to the
system of equations. The solution to the system of equations can be avoided in the kriging scheme
when the inverse of the square matrix Γ is calculated once. The kriging scheme that is used in this
case is given in table 5.2.

using all n known points Z(xα) 1 times
create Γ(xi, xj) c1n

2

invert Γ(xi, xj) → Γ−1 c2n
3

for all N field points to be estimated N times
create γ(xi, x0) → γ c3n
determine λ = Γ−1γ c4n

2

determine Z∗ = Z(xα)λ c5n
1/2

Table 5.2: Operation scheme for kriging. Approximate function of calculation is given as cnk. The difference between
matrix size n and n+ 1 (for Ordinary Kriging) is neglected.

The sum of all operation times in the scheme gives an estimation of the total operation time for
the kriging of a N -point field conditioned by n known points as given by equation 5.19.

t(n,N) = c2n
3 + [c1 + c4N ]n2 + (c3n+ c5

√
n)N

= [c3 + c4n]nN + c5
√
nN + (c2n+ c1)n

2
(5.19)

For large n and N , the lower-order terms drop out and the calculation time t converges to

t(n,N) = c4Nn
2 + c2n

3. (5.20)

When N >> n (which is usually the case, because otherwise no kriging is needed), the calculation
time t can be further reduced to

t(n,N) = c4Nn
2 = cNn2. (5.21)

5.3.5 Uncertainty of the Kriged fields

Kriging is an estimation with the lowest variance in the error that can be expected in the estimation.
Considering the application of kriging in the conditioning of the random fields, it it desired to quantify
this kriging error. In section 5.4 it will be explained that the kriging error is the same as the error in
final conditioned field. In this report the error ǫ is defined as

√

σ2
K/σ

2. This error ǫ is the expected
absolute difference between the true field Z and the kriged field Z∗ divided by the standard deviation
of the original field σ. For ordinary kriging, the method that will be used for the conditioning, the
definition of the error ǫ is given by

ǫ =
E[|Z − Z∗|]

σ
=
σOK

σ
. (5.22)

The ordinary kriging variance σOK equals zero at any point x0 = xi, for xi ∈ xα and increases with
the distance |x0−xi|. The maximum variance for ordinary kriging can be derived from equation 5.17 as
C(0)+µOK . The size of the Lagrange multiplier µOK depends on the number and spatial distribution
of the known points Z(xα). The more points available and the better their distribution over the
domain, the smaller the Lagrange parameter will be. The Lagrange parameter µ is not a constant, but
changes over the field. The maximum value for the Lagrange parameter can be found at an infinite
distance from the conditioning points. In practice, the Lagrange parameter is at the maximum in the
domain that has no conditioning locations xα within the maximum correlation distance.
The estimation error in Ordinary Kriging consists of two parts. When the error is expressed as the
variance of the difference between Z∗

OK(x0) and Z(x0) it is the sum of the simple kriging variance
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(based on a known mean) and the uncertainty about the true mean. The uncertainty about the mean
is a function of the Lagrange multiplier µOK and the simple kriging weights λSK

α [Wackernagel, 1998].

σ2
OK = σ2

SK +

(

1−
n
∑

α=1

λSK
α

)2

µOK (5.23)

The error can be expected to be larger at locations further away from the known point. For distances
x0 − xα,i ≫ xα,i − xα,j the simple kriging weights will tend to 0 because the expectation is no longer
dependent on the known points and equals the mean. This means that for larger distances, the ordinary
kriging variance tends to the form

σ2
OK = σ2 + µOK (5.24)

because all terms that include simple kriging weights λSK will tend to zero. The Lagrange multiplier
does not necessarily converge to a certain constant value, because of the constraint on the sum of the
weights. The value for µOK is still dependent on the mutual distances between the known points. The
upper and lower boundary for µOK can be found by:

If |xα,i − xα,j | ≪ θ and |xα,i − x0| ≫ θ µOK ≈ σ2

If |xα,i − xα,j | ≫ θ and |xα,i − x0| ≫ θ µOK ≈ σ2/n

This means that at kriging locations far from the known points, the domain of the kriging error

is given by
√

n+1
n σ ≤ ǫ ≤

√
2σ. This means that the expected error is larger than C(0) at larger

distance due to the uncertainty in the kriging estimation of the mean.
To be able to quantify the performance of the full kriged field, an expression of the expected error in

the kriged field is desired. Imagine an unknown normal distribution field with second-order stationarity
for which the mean and the correlation structure C(h) are known. All possible realisations for the
simulation of this field by random fields are expected to be in a certain range around the mean. This
range is given by the standard deviation of the field σ =

√

(C(0)); 95% of the simulated points are
expected to be in the range µ ± 1.96σ. Within this range an infinite number of different realisations
of simulations of the actual field are possible. The expected value of every simulation is the mean and
the best estimate of the field therefore is the mean µ itself.

When a certain number of points of the actual field are known, the estimation can be conditioned by
these conditioning points using kriging estimation. Conditioning of the estimation narrows down the
number of possibilities of simulated random fields; the uncertainty is given by the kriging estimator σK
that constrains the range of uncertainty to zero at the conditioning points. The 95% certainty domain
in which the actual field can be expected is narrowed down by the conditioning of the kriging estimation;
the more conditioning points that are available, the smaller the uncertainty of the estimation of the
actual field is. The domain in which 95% of the actual field can be expected is reduced to µ±1.96σOK .
An example of the uncertainty is given in figure 5.4. Because the kriging variance σOK

2 is not constant
but location-dependent, the uncertainty over a full domain D has to be averaged over the domain. To
quantify the uncertainty, a new variable ’total uncertainty’ u is introduced. The definition of the total
uncertainty u is chosen to be

u =
1

σD

D
∫

σOKδA, (5.25)

which makes it the ratio between the average of the ordinary kriging standard deviation σOK and the
initial standard deviation σ. Unconditioned fields for this reason have a total uncertainty of 1, the
limit of total uncertainty is 0 for a field that is conditioned on each field point.
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Figure 5.4: Example of uncertainty of an unconditioned estimation against the uncertainty of a conditioned estimation;
total uncertainty can be interpreted from the surface under the graphs (conditioned/unconditioned=0.768/1), maximum
uncertainty is the maximum of the graph (conditioned/unconditioned=0.913/1). An exponential correlation structure
is assumed.

The reduction of uncertainty increases with increasing number of conditioning points (or decreasing
distance between the conditioning points). Therefore, it would be an advantage to include as many
conditioning points as possible. However, the more conditioning points are included, the more compu-
tationally expensive the process will become. When a large number of conditioning points are available
(for example in the case of a CPT profile in a 2D field) it might be unnecessary to include all points
because of the correlation between the conditioning points. In the case of clustered conditioning points
points (like a CPT profile in a 2D or 3D field) the uncertainty does not continue to decrease with the
increase of conditioning points. The efficiency of the conditioning of the field comes into play at the
moment that the reduced uncertainty is compared with the calculation time. The next sections will
discuss the different factors that influence the efficiency.

To investigate the effectiveness of the number of conditioning points in the field, the total uncertainty
u as a function of the distance between the conditioning points is looked at. The first estimation is
done in 1D. Based on the assumption of an exponential correlation structure, normal distribution and
unit field statistics µ=0, σ2=1 and θ=1, the kriging variance σ2

K is determined for a kriging estimation
between 20 points. The spacing between the points is varied between 100θ and 0.01θ. Both simple
kriging and ordinary kriging are applied and both the maximum uncertainty σK,max and the total
uncertainty u are determined. The results of this analysis are gathered in figure 5.5, clarifying that
the uncertainty decreases with the square root of the distance between the conditioning points.
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the square root of the number of points for spacing smaller than scale of fluctuation θ
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The uncertainty in figure 5.5 is the uncertainty in 1D. The same analysis can be performed in 2D,
using an isotropic correlation structure (θx = θy, C(h) = C(

√

x2 + y2)) and a field constrained by 4×4
constraining points as given in figure 5.6. again the total uncertainty u is the integral over the square
root of the kriging variance divided by the domain size. The result shown in figure 5.6 is very similar
to the 1D result.
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Figure 5.6: Kriging uncertainty in 2D as a function of the distance between conditioning points in two directions;
uncertainty is similar to the 1D case. The correlation structure is assumed to be exponential and isotropic.

Because the desired application of the kriging estimation involves CPT-profiles in 2D or 3D fields,
the influence of conditioning point spacing in a line on the uncertainty of a 2D field has to be looked
at. The same method as for the 2D 4× 4 field is used. Over a line of 8 times the scale of fluctuation,
the conditioning points are divided equally. The number of conditioning points is then changed to see
the influence on the total uncertainty, for which the boundary effects are ignored. The uncertainty is
determined over a distance up to 3 times the scale of fluctuation from the line of conditioning points.
The result is given in figure 5.7.
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Figure 5.7: Kriging uncertainty in 2D with conditioning points on a line. The width of the field is 6 times the scale of
fluctuation θ. Cross sections 1 and cross section 2 are used in the following graphs.

Because the domain of the field over which the uncertainty is determined in figure 5.7 influences the
result (points further away from the line will have a high uncertainty, independent from the number of
points on the line). The wider the chosen domain, the less the total uncertainty will be affected by the
number of conditioning points. To be able to better visualise the influence of the conditioning point
spacing, the kriging error ǫ along the cross sections indicated in figure 5.7 are plotted for different
numbers on conditioning points. These cross sections are the upper and lower case of uncertainty, the
first being located as far away as possible from the conditioning points, the second drawn across the
center conditioning point. The result is a kriging error graph that looks like the 1D kriging error of
kriging of a single point.
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Figure 5.8: Kriging error ǫ along cross section 1 for different distances between the conditioning points.
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Figure 5.9: Kriging error ǫ along cross section 2 for different between the conditioning points.

Instead of one line of conditioning points, the same analysis can be done for two or more lines of
constraining points. With the configuration as shown in figure 5.10, the same analysis that was done
for figures 5.8 and 5.9was done, but with two lines of constraining points at a distance of four times
the scale of fluctuation θ.
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Figure 5.10: Outline of cross section 1 and cross section 2 as an example for 8 conditioning points.
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Figure 5.11: Kriging uncertainty along cross section 1 for different distances between the conditioning points.
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Figure 5.12: Kriging uncertainty along cross section 2 for different distances between the conditioning points

The application of the kriging procedure will be the kriging of fields conditioned by CPT profiles.
Because CPT-profiles are semi-continuous with their spacing of 2cm, it is expected to be unnecessary
to use all individual readings in the profile as individual conditioning points. From figures 5.8-5.12,
the desired level of uncertainty can be determined when combined with the expected calculation time
given by equations 5.19-5.21. A trade-off between reduction of uncertainty and calculation time has
to be made. The reduction for total uncertainty u as a function of the conditioning point spacing will
be influenced by the ratio between scale of fluctuation θ and the distance between the CPT-profiles.
A more complete analysis, more specific to the case of 2D fields conditioned by CPT-profiles, is given
in section 5.4.8.

5.4 Conditioning of the random field

The sections above all describe kriging theory and applications, which is an estimation technique
instead of a stochastic process. The purpose of the report is to generate random fields, with correct
statistical properties and conditioned by the measurements instead of a best estimate of the field. The
conditioning within the generation of the random field is discussed in section 5.2.3 and proven to be too
difficult to derive. Instead of this internal conditioning, post-processing a generated random field with
the help of kriging can constrain the field to the known conditioning points. The method is described
by Journel and Huijbregts [1978] and makes use of the independency of the kriging error with relation
to the values of the conditioning points. The method was used by Frimpong and Achireko [1998] to
simulate ore reserves.

The field simulations in this report are all simulations of fields of the state parameter. The tip
resistance profiles are not used for the generation of simulations. The procedure to generate fields of
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tip resistance is exactly the same as the procedures described and applied to state parameter fields in
this chapter, with the only difference being the . The method of conditioned simulation of soil property
fields is described in the following section.

The transformation of the original profile into the final simulation is a process that involves re-
moving and adding trends and evaluating the zero-mean stationary (trend-removed) simulations. To
distinguish between the fields in different stages of the conditioning process, the following notations
will be used in this chapter:

P (y): original CPT profile, P (y) = b+ ay + Z0(y)
T (x, y): trend field described by a(x, y) and b(x)
F0(x, y): actual field to be simulated; P (y) is a sample from F0

Z0(x, y): trend-removed (stationary) actual field; F0 − T
Z0(xα): conditioning points; trend removed CPT profile (stationary)
Z∗

0 (x, y): expected trend removed field: Kriging estimate of Z0

ZCS(x, y): trend removed conditional simulation; zero-mean stationary field conditioned by profiles Z0(y)
ZS(x, y): unconditioned random field realisation
T (x, y): trend field as a function of a and b
F ∗

0 (x, y): expected field: F ∗

0 = T + Z∗

0

FCS(x, y): conditional simulation: FCS = T + ZCS ; conditioned by profiles P (y)
x: coordinate; (x,y), x = lateral position, y = depth

Method of conditioning: The conditioning of random fields is a process that uses an unconditioned
random field with the same characteristics as the conditioning data. This unconditioned random field
is post-processed in order to condition it on the known conditioning points. An example of the
conditioning of a random field in 1D is given in figure 5.13. For this example, the correlation structure
is assumed to be exponential, the scale of fluctuation θ is 1.0m and the variance σ2 is 1. The explanation
of the conditioning method that follows refers to this example figure.

Imagine an unknown stationary field Z0 of which a limited number of points Z0,α at x0,α is known.
Z0,α are the conditioning points for the field Z0 that is to be simulated. The correlation structure of
Z0 is known (or estimated from Z0,α) and a random field is desired to give a possible realisation of
this unknown field Z0. In the realisation the points Z0,α need to be present.

A The first step is to give the best estimate of the field by kriging the field using the conditioning
points (*). In this way the best estimate Z∗

0 (blue line) is generated.

B The next step is to simulate a zero-mean random field ZS (red) based on the correlation structure
equal to that of the field Z0. Values Z0S at points x0,α in field ZS (•) are taken to krige the
simulated field to obtain Z∗

S (blue dashed). The variances of both kriged fields, Z∗

0 and Z∗

S (σ2
0,OK

and σ2
S,OK), are equal because they are both a function of x0,α and the correlation structure.

C The expected difference between fields Z0 and Z∗

0 is given by the kriging estimation error and is
equal to ZS − Z∗

S (red).

D The last step is mapping the difference ZS − Z∗

S on the best estimate of the field Z∗

0 (blue) to
generate the conditioned random field ZCS = Z∗

0 + (ZS − Z∗

S) (green). The produced field ZCS

is the conditioned simulation of field Z0 and honours the mean and correlation structure.

The conditioning in 2D and 3D goes in the exact same way, with the only difference that a 2D
or 3D random field generator has to be used and that the kriging estimation is based on scales of
fluctuation that can be different in horizontal and vertical direction.
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Figure 5.13: Example of 1D random field conditioning to clarify the conditioning procedure described above. Condi-
tioning points is a randomly generated example, matching the correlation structure that is used.

To check the consistency of the simulated conditioned fields, the correlation structure is reproduced
from 5000 simulations (figure 5.14). The correlation structure that has been used for the kriging is
compared with the correlation structure of the conditioned simulations. The correlation structure of
unconditioned random fields is given as well to indicate the relative error of the conditioning against
the error in the simulation procedure of unconditioned fields itself. To generate the unconditioned
random fields in this example, a 1D LAS random field generator with 9 levels of subdivision is used.
This random field generator is written by the author. The difference between the correlation structures
of the conditioned and unconditioned fields is small compared to the difference between the original
and reproduced correlation structures.
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Figure 5.14: Theoretical correlation structure compared with the correlation structure derived from unconditioned and
conditioned simulations. Correlation structures for conditioned and unconditioned fields are determined individually

For the analysis of the conditioning performance given in figure 5.14, the same field as given in
example figure 5.13 is used. For each of the 5000 fields, new conditioning points are determined
from separate realisations of random fields to avoid the possible biasedness of a single realisation of
conditioning points. The simulated fields are both generated and analysed over the domain of 50m,
which will be the cause of a small error due to the boundary effects in the generation of the fields.

The exact shape of the correlation structure is of importance for the conditioning of the random
fields, because the correlation structure of the simulated fields is used in the kriging. Adding up and
subtracting the kriged and simulated fields is only valid in the case of a consistent correlation structure
in both the kriging and the unconditioned field generator.

Conditioning in 2D To apply the conditioning in 2D, Sim2D is used as random field generator.
Because in Sim2D the approximate exponential correlation structure (equations 2.24 and 2.24) is
used, the approximate correlation function is used from now on for all conditional simulations that
use Sim2D. To show the influence of the different correlation structures on the random fields, the
correlation function is back figured from 50 realisations of random fields. The result is depicted in
figure 5.15.
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Figure 5.15: Horizontal and vertical covariance function determined from 50 unconditioned random fields generated
with ’Sim2D’. 30*10m fields with cell domains of 4x4cm are used. Scale of fluctuations: θv = 1m, θh = 3m, σ = 1.

There certainly is a difference between the theoretical correlation structure and the correlation
structure that was back figured from Sim2D. Part of this will be the effect of the difference between
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the local averaging (as produced from by Sim2D) and the point statistics (as assumed to determine the
covariance function). The other, probably smaller, part of the difference will be the effect of a small
sample size from which the correlation structure is back figured. The influence of the small sample size
is not a problem of accuracy of the actual procedure but a problem in back figuring the correlation
structure. The influence of limited domain to be analysed and a limited number of subdivisions is
something that needs to be accepted and can not be changed without increase of computations. For
this reason the effect of the error in the LAS procedure is ignored in this analysis.

5.4.1 Type of kriging for the conditioning

The type of kriging that is to be used for the conditioning can be chosen based on the known information
of the field that needs kriging. In the case of second order stationarity and a known mean, simple
kriging will give the lowest kriging variance and therefore the lowest uncertainty in the conditional
simulation. The assumption of known mean however is not trivial. The profiles that are used for the
conditioning might have a zero mean, the reduction of the number of conditioning points can change
the exact mean. In addition to this, large-scale variations, that are not described by the correlation
structure when it is modelled by the exponential correlation structure, can be maintained by estimating
the mean with ordinary kriging. For this reason, ordinary kriging is used in the conditioning.

Implication of using ordinary kriging for the conditioning is that the variance of the ordinary kriging
estimation will determine the expected simulation error. Because this variance takes the estimation
of the mean (the Lagrange parameter µOK) into account in addition to the simple kriging variance,
the kriging variance can be larger that the variance in the correlation structure. This means that
estimating the mean gives a higher variance than determined by the statistical interpretation of all
profiles as a price for estimating the mean from the conditioning points.

5.4.2 Horizontal scale of fluctuation

For the simulation of 2D fields of the test site, the horizontal scale of fluctuation θh is required. The
ratio between horizontal and vertical scales of fluctuation, the anisotropy ξ = θh/θv is usually between
5/1 and 25/1 (e.g. Hicks and Samy [2002],Hicks and Onisiphorou [2005]). For the test site, this
means that the expected horizontal scale of fluctuation is between 3m and 16m. Because the minimum
distance between the CPT’s is 25m, the scale of fluctuation in horizontal direction might have to be
assumed.

It is tried to determine the horizontal scale of fluctuation based on the CPT’s (figure 5.16). At
every level (every 2 cm) the correlation between the different CPT’s was determined. The expected
correlation function is then found by the mean of all correlation functions. An exact exponential
correlation function is fitted to the experimental result to give an indication of the scale of fluctuation
of the data. A scale of fluctuation of 30m fits best to the experimental correlation function, but is
considered to be incorrect due to the effect of the large distance between the CPT’s relative to the
scale of fluctuation. To accurately determine the horizontal scale of fluctuation, closely-spaced CPT’s
are needed.

To define the horizontal scaler of fluctuation, the anisotropy ξ = θh/θv is used. In the following
sections, ξ is assumed to be 5, 10, 20 or 50.

5.4.3 Defining the conditioning points; averaging and conditional statistics

Ordinary kriging is a kriging estimation method to estimate point values at location x0 as a linear
combination of known conditioning points at location xα, without the prior knowledge of the field
mean. The LAS method produces values that represent the average over cell domain Dcell. For a
small cell domain Dcell (when the domain sizes are small compared to the scale of fluctuation) the
values produced by the LAS method are similar to the point values of the cells centre. This is because
the variation within cell domain Dcell is small for small cell domains.

In this report the conditioning points and the points in the field are expected to represent the
point values; the average over the cell domain is expected to be the same as the center of the cell and
therefore represents the point value accurately enough. In this way ordinary kriging can be used for
the conditioning. For larger cell domains the difference between the statistics of points in the field will
differ more from the statistics of the fields produced with the LAS method. The difference between
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Figure 5.16: Attempt to determine the horizontal scale of fluctuation by regenerating the horizontal correlation
function. A fit of an exponential correlation function to the experimental correlation function gives a horizontal scale of
fluctuation θh=30m which is expected to be a unreliable result.

the two is described by the (conditional) variance function. In tis report the cell domain is kept as
small as reasonably possible to avoid this difference as much as possible.

Because of the computational expense, not all points in the CPT profile can be used to directly
condition the simulated fields. The number of points therefore needs to be reduced. For the reduction
of the conditioning data different procedures can be worked out. Essential in this reduction is to give
a reduced version of the original profile with the same statistics as the original CPT profile. For this
report it is decided to avoid interference with the statistics of the conditioning profiles as much as
possible for the following reasons;

• points in CPT profiles are already moving average representations of the soil. The exact form
of the moving averaging function might not be uniform and therefore the influence of averaging
over the points once more is unknown.

• averaging the conditioning points will influence the statistics (σ and θ) of the profile. This has
to be corrected for, but since the influence is unknown this correction will be dificult.

To reduce the number of points in the conditioning profiles, samples are taken at regular intervals over
the profile. In this way the statistics of the conditioning points is not influenced by the reduction,
because the expected statistics of a sample of a data series is the same as the statistics of this series.
This holds for mean, standard deviation and scale of fluctuation, but only for point statistics. By
taking samples in this way, the statistics of the full conditioning profile is (expected to be) maintained,
although some information of the conditioning profiles will not be used.

The variation of the conditioned field close to the conditioning points is smaller than farther away
from the conditioning points. Points in the conditioned fields that are located at the exact same
location as one of the conditioning points will show zero variation. This only holds for fields that
contain point values or field cell domains with the same dimensions as the conditioning cell domains.
Because the method aplied in this report assumes that the local average values, as produced by the
LAS, can be used as point values for small cell sizes, some variation can exist. Because the cells
in the simulated fields are not always located at the exact same location as the conditioning points,
the variation in the conditioned fields at the exact conditioning points will not always be zero. The
difference between the estimated field Z∗

0 and the simulated field ZCS will therefore not be exactly
zero at all conditioning points.

The conditioning of local average cells by conditioning points will never reproduce a zero-variance
estimation of the local average of the cell. This is the effect of the expected variation in the local
average from a known point within this cell, even when it is located at the exact center of the cell
domain. As mentioned before, in this report the cel domains are taken as small as possible to avoid
the difference between local average and point satistics.
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5.4.4 Dealing with trends

To determine the vertical scale of fluctuation for each profile, the trend of each profile has been removed
to obtain first order stationarity. For the trend removal, the profile P (y) is assumed to be of the form
a+b∗y+Z(y), in which y is the depth and Z(y) the trend-removed profile (the random function) from
which the scale of fluctuation is determined. Motivation for restricting the trend to a linear shape are
the average CPT profile (figure 4.4) and the average state parameter profile (figure 4.5), that both look
linear as a function of depth. A realisation of a (conditioned) simulation ZCS(x, y) can be transformed
into a (conditioned) simulation FCS(x, y) by mapping ZCS(x, y) on top of the trend T (x, y) = a+b∗y.
When in a 2D field ZCS(x, y) more than one profile is used for the conditioning, mapping the field on
the trend is difficult. Because the trends that are removed differ from profile to profile, the field trend
on which the stationary field is plotted is not only depth-dependent, but can vary in lateral direction
as well. The lateral variation of the trend is unknown, only the trend at the locations of the profiles
are known.

In this report the depth trend in the field T (x, y) is restricted to a linear interpolation between
the depth trends in the profiles P (y). This linear interpolation is a restriction in the variability, but
for the time being is considered as the best option to incorporate a stationary zero-mean conditioned
random field ZCS . The stationary zero-mean conditioned random field ZCS(x, y) is added to the linear
interpolated trend field T (x, y). In this way the trend at the profiles is correct and the simulated field
FCS is conditioned by the profiles P (y).
More on the possibilities of the lateral variation in the depth trend can be found in appendix E.5.1.

5.4.5 Programming the conditioned simulation

To be able to realise conditional simulations of the site, the conditioning procedure needs to be
programmed. Similar to all programming in this report, this has been done in Matlab. The ex-
ception to this is the simulation of the unconditioned random fields which is done outside Mat-
lab by ’Sim2D’. The generation of the conditioned random fields is build into a Matlab function
file ’Conditional simulation function.m’. This function file requires an input of conditioning points
(xα,yα,Z0(xα, yα)), the field statistics (σ,θv,ξ) and the field geometry parameters (Dcell, xmin, xmax,
ymin, ymax and k) for which k represents the number of fields to be generated. Additional to these
parameters an option opt is put in the function to choose between the exponential correlation structure
(opt = 1) and approximate exponential function (opt = 2). Conditioning data x, y and z are equally
sized matrices, whereas geometry parameters are scalars, determining the boundaries of the fields to
be conditioned.
The function internally calls the executable ’Sim2D’ and uses different function files as subroutines for
the conditioning. No special effort has been put into the development of a script that works in the
fastest way possible, and the script is kept as short as possible. The function looks as follows;

[X,Y,s2,Z CS,Z 0K]=conditional simulation function(x,y,z,dy,x min,x max,...

...y min,y max,theta,c 0,xi,k,opt)

In this way the field ZCS at locations (X,Y ) is generated together with the estimation of the field
Z∗

0 and the estimation variance field σ2. A subroutines that is used by the conditioning function that
is not default a Matlab function is:

-’OKrige2D.m’

The k simulated fields ZCS that are generated are saved as text files with filenames ’field1.txt’. . . ’fieldk.txt’.

5.4.6 Results of conditioned simulation of the test site

The conditioning is applied to the CPT-profiles to set up a random field conditioned by the profiles.
The statistical properties of the field are taken from the average over all individual profile results:

• θv = 0.63m
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• σ = 0.038

Because no certainty about the horizontal scale of fluctuation or the exact shape of the correlation
structure exists, the following assumptions are made:

• correlation structure is exponential (equations 2.22, 2.23)

• correlation structure is approximated by the approximate exponential correlation structure (equa-
tions 2.24, 2.25)

• ξ = 5, 10, 20, 50

For consistency in the conditioning, the kriging that is applied in combination with the fields generated
by ’Sim2D’ is done with the approximate exponential correlation structure as used by ’Sim2D’.

Conditioning to two stationary CPT profiles: To demonstrate the conditional simulation of the
site, a 2-D simulation conditioned by 2 CPT-profiles is performed. For the conditioning, two CPT’s
at a distance of 25m that have no depth trend are chosen. In this way, the problem of mapping the
zero-mean conditioned field Z∗ on top of the depth trend is avoided. The mean of the two profiles is
not exactly the same, but the influence of this is ignored for now; the kriging will deal with the trend
in the horizontal direction and give the best estimation of the mean depending on the location relative
to the two profiles. It has to be noticed that this is an estimation of the mean and not a stochastic
simulation; the variations around the estimated trend are based on the assumption of stationarity in
horizontal direction. Therefore the variability will be smaller than it should be.
For the simulation, an assumed anisotropy ξ of 5, 10, 20 and 50 is used. Two fields are generated, from
which the difference is determined to check the conditioning of the field at the conditioning points.
When the difference between the two simulations at the conditioning points is zero, the fields are indeed
conditioned. To show the distribution of the uncertainty left in the simulated fields, the simulation
standard deviation (from which the integral oven a domain D represents the uncertainty uD of domain
D) is given. To visualise the expectation of the simulations, the expected field Z∗

0 is presented as well
(figure 5.18).
The geometry for the simulations is as follows:

- cell domain: 0.02*0.02m2

- conditioning spacing: 0.20m
- θv: 0.63m
- ξ: 5,10,20,50
- σ: 0.038
- field domain (-20;-10.6) (20;-2.4)
- conditioned by CPT’s: S51.18, S51.20

The results are discussed based on the case of ξ=20

(figures 5.17 to 5.20 ).
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Figure 5.17: Application of the conditional simulation of two profiles that by themselves have no depth trend

location x [m]

le
ve

l a
bo

ve
 c

ha
rt

 d
at

um
 N

A
P

 y
 [m

] expected field F*
O

 for ξ=20

 

 

−20 −15 −10 −5 0 5 10 15 20

−10

−8

−6

−4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Figure 5.18: Application of the conditional simulation of two profiles that by themselves have no depth trend
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Figure 5.19: Application of the conditional simulation of two profiles that by themselves have no depth trend
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Figure 5.20: Application of the conditional simulation of two profiles that by themselves have no depth trend

Conditioning to 4 profiles with depth trend: To demonstrate conditioning of a field by multiple
profiles with different depth trends, the trend that is removed to determine the statistics is interpolated
between the CPT’s and mapped over the zero-mean conditioned field. The interpolation method that
is used is a linear interpolation between the trends in the different profiles. This method is chosen
because it is straightforward and easy to implement in the code. The interpolation is an estimation
method and therefore restricts the variability between the profiles. In other words, the trend might
vary between the profiles and therefore the variability in the field is underestimated when the trend is
interpolated. Possible suggestions for working with the trend are discussed in appendix E.5.1.
The geometry for the simulations is as follows:

- cell domain: 0.05*0.05m2

- conditioning spacing: 0.20m
- θv: 0.63m
- ξ: 5,10,20,50
- σ: 0.038
- field domain (-40;-10.6) (40;-2.4)
- conditioned by CPT’s: S51.01, S51.03, S51.01, S51.03
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Figure 5.21: Simulation of the first part of section 5.1, conditioned by CPT profiles S51.01, S51.03, S51.05, S51.07.
Depth trend is linearly interpolated between the profiles.
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Figure 5.22: Expectation of the field simulated in figure 5.21
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Figure 5.23: Linear interpolated trend of CPT profiles S51.01, S51.03, S51.05, S51.07 This is the underlying trend of
figure 5.21. Note that color scales is not the same in both figures

5.4.7 Consistency of conditioning

To check if the statistical properties of the random fields are maintained during conditioning, the
distribution and covariance function of conditional simulations of figure 5.21 are determined. Over 100
realisations of conditioned simulations, the experimental covariance function is determined and the
distribution function is compared with its theoretical shape. The horizontal and vertical covariance
functions are given in figures 5.24 and 5.25. The figures show that the correlation structure of the
conditioning points that are used for the conditioning, influences the correlation structure of the
simulated fields: The correlation structure of the simulated fields do not fully satisfy the theoretical
correlation structure. This is the result of the simulated field satisfying the correlation structure of the
conditioning points at locations close to these points. The covariance function therefore can always
be expected between the covariance function of the conditioning points and the theoretical covariance
function. Because the experimental covariance function is located close to the theoretical function or
between the theoretical function and the conditioning points covariance function in figures 5.24 and
5.25, the consistency of the conditioning is considered to be demonstrated.

Some periodicity is present in the four conditioning profiles (the covariance is negative around
h=2.5m). The experimental vertical covariance function (the black line in figure 5.25) shows some
this periodicity as well because the conditioned field matches the conditioning points. However, the
periodicity is not present in the entire field because of the use of the theoretical correlation structure
that does not contain this periodicity.
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Figure 5.24: Experimental covariance function determined from 100 realisations of figure 5.21. The experimental
covariance function seems to be located between the theoretical field covariance function and the covariance function of
the conditioning points that were used for the conditioning.

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

1.5

2
x 10

−3

vertical lag h
vert

 [m]

co
va

ria
nc

e 
fu

nc
tio

n 
C

(h
) 

[−
]

vertical covariance function

 

 
C(h) experimental
C(h) theoretical
C(h) for every individual field
C(h) of used conditioning points

Figure 5.25: Experimental covariance function determined from 100 realisations of figure 5.21. The experimental
covariance function seems to be located between the theoretical field covariance function and the covariance function of
the conditioning points that were used for the conditioning.

To examine the consistency of the conditioning with respect to the distribution function, the shape
of the experimental distribution function is looked at. It is found that the shape of the experimental
distribution function is normal, as it can be expected from the generation of the random field by the
LAS method. The experimental distribution parameters (mean and standard deviation) are deter-
mined from the 100 simulated fields and given in table 5.3. The experimental variance is between
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the theoretical and conditioning variance as. This demonstrates the consistancy in the distribution
function for the conditioning algorithm.

theoretical conditioning
parameter (input) points experimental

σ 0.038 0.0359 0.0367
σ2 0.00144 0.00129 0.00135
µ 0 5.99 · 10−4 6.24 · 10−4

Table 5.3: Backfigured statistics from the conditional simulation.

5.4.8 Conditioning performance

For the situation of 2D fields conditioned by equally spaced CPT-profiles, the uncertainty u depends
on the following parameters:

A ∆x/θh: lateral distance between profiles

B ∆y/θv: vertical spacing of conditioning points

C Dv/θv: length of profiles,vertical domain size

All three parameters are made unitless with respect to the horizontal and vertical scale of fluctuation.
Parameters 2) and 3) together determine the total number of conditioning points n. Together with the
number of points in the desired field N , n determines the time to generate a conditioned simulation
of the field (see section 5.3.4). In general, the vertical spacing of conditioning points is the only true
variable available to decrease the uncertainty to a desired level. The lateral spacing of CPT-profiles has
to be chosen before the scales of fluctuation are determined. Therefore, the exact relative profile spacing
can only be back figured after statistical analysis of the CPT profiles. The domain is determined by
the geometry of the test site.

To show the effectiveness of the conditioning, the total uncertainty u is determined for the case of
equally spaced CPT’s in a 2D field. To simulate this, 4 theoretical CPT’s with a length of 10 times the
vertical scale of fluctuation are used to simulate a theoretical field. The uncertainty in 3 zones in this
field is analysed (see figure 5.26). The total uncertainty in field f1, u(f1), is determined as a function
of the relative vertical spacing of conditioning points ∆y/θv along the profiles. The determination of
the uncertainty uses the kriging standard deviation field (see equation 5.25), analytically derived from
the theoretical conditioning points by the kriging equations. This is done for a range of anisotropy
factors to simulate the relative distance between the profiles ∆y/θh. The cell domain is kept constant
at 0.167*0.167m2, which implies a fixed number of cells N = 2700 in the analysed fields f1,2,3. The
effect that the fixed cell domain with changing anisotropy might have on the computational accuracy
of the total uncertainty is ignored for now. The result is given in figure 5.27. The figure can be used to
estimate the uncertainty for a given lateral spacing ∆x/θh and vertical spacing of conditioning points
∆y/θv.

20m 20m20m

1
0
m

f2 f1

Vertical scale of fluctuation = 1.00m

Horizontal scale of fluctuation = variable

Cell domain is square = 1/6m

f3

Figure 5.26: Geometry that is used for the analysis of figure 5.27. Cell domain is 0.166*0.166m, which means N=2700
cells to be evaluated in total.
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Figure 5.27: Effectiveness of the conditioning of 2D random field by equally-spaced CPT-profiles. On the horizontal
axis, the distance between the interpolation points in the vertical direction ∆y/θ is plotted. The total uncertainty u is
determined for different distances between ∆x/θ. The absolute distance is kept constant at 20m and the anisotropy ξ is
changed to simulate the difference in distance between the conditioning profiles. The relative uncertainty is larger than
one as an effect of the use of ordinary kriging. Correlation function in the form of equation 2.25

To show that 4 CPT’s is enough to simulate field f1 accurately enough compared to the case
in which all CPT-profiles are included, the total uncertainty found in field f1 is compared with the
uncertainty in field f3. In case the uncertainty of these two fields is the same, the uncertainty of field
one is supposed not to be influenced by profiles that are further away than the four closest profiles.

All analyses that are used to generate figure 5.27 are used to determine the uncertainty in fields
f1 and f3. This means that for a variety of anisotropy factors ξ and conditioning point spacings
∆x/θv the ratio between u(f1) and u(f2) can be determined. Figure 5.27 shows that there is only a
very small difference between the u(f1) and u(f3). This indicate that the uncertainty of a 2D field
between two profiles is not influenced by the presence of more conditioning profiles further away. It
therefore might be considered to leave out the CPT-profiles that are located further away from the
point of interest. This will probably not lead to any differences in accuracy and will significantly
decrease the computation time for the conditioning. This is in fact the introduction of a horizontal
search neighbourhood. More on this is given in the recommendations in chapter 7

To evaluate the dependency of the calculation time, the time needed for the conditioning, as shown
in figure 5.27 (for a field of N=2700 points), is presented as a function of the number of conditioning
points n. The upper graph of this figure shows that for small numbers of conditioning points the
computation time is linear dependent on the number of conditioning points. This is not in line with
the equations determined for the theoretical calculation time. The lower graph shows that for a larger
number of conditioning points n the calculation time converges to the form of t = c ∗ n3, which means
that the solution of the system of equations becomes dominant for the calculation time. This is in line
with equation 5.20.

The effect of the number of points in the field N is not evaluated. It is assumed to be trivial that
the calculation time is linear dependent on the number of cells in the field N .

Uncertainty in simulations of the test site To quantify the reduction of uncertainty in for the
simulations of the test site, the uncertainty is determined for the realisations in section 5.4.6 (see
graphs in appendix E.5). The uncertainty is determined in the zone between the two center profiles
and is assumed to represent the uncertainty of a field conditioned by a large number of equally space
CPT profiles as shown before. The uncertainty for the different horizontal scales of fluctuation are:
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Figure 5.28: Difference between total uncertainty u of fields f1 and f3 for all points used for the analysis of figure
5.27. No significant difference between the total uncertainty can be observed.

ξ u · σ u
unconditioned 0.038 1
5 0.0364 0.9580
10 0.0344 0.9062
20 0.0305 0.8033
50 0.0210 0.5526

Table 5.4: Uncertainties in the condition simulation of the test site.

Table 5.5: Table of uncertainties for the conditioned simulations of the site 2D field. CPT-spacing is 25m, θv=63cm,
vertical spacing conditioning points = 20cm. The uncertainty is in line with the graph given in figure 5.27

5.4.9 Assumptions for the conditional simulation

To complete this chapter on the conditioning of the random fields, an overview is given of the assump-
tions that are made in order to be able to condition the local average random fields. The conditional
simulation of the variability in the state of sand has been shown to be possible unter the following
assumptions and generalisations;

• Decreasing the number of conditioning can be done by selecting a measurement point at a regular
interval without averaging taking into account the conditional variance

• Data is normally distributed (correct assumption for state parameter)

• The correlation structure is exponential or approximately exponential

• Influence of difference between local average statistics (LAS) and point statistics (Ordinary Krig-
ing) is negigible for the cell domains that are used

• Gain in accuracy can be measured by the average of the reduction in standard deviation

• The analysed field has a linear trend with depth and trend-removed profiles have second-order
stationarity
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Figure 5.29: Calculation time for the conditioning of the fields used for the analysis of figure 5.27. Upper graph shows
that for small numbers of



Chapter 6

Conclusions

This report describes a method for conditional simulation of the variability of sand state fields. The
described method has been tested on consistency, accuracy and efficiency. To illustrate the method,
part of a test site has been characterised using the conditional simulation method. The report is
written to answer the following research questions:

• How can random fields be conditioned by CPT profiles?

• How does the conditioning of the random fields decrease the range of possible simulations?

• What are the requirements for site investigation for the conditioning to be useful?

• Can the conditioning be applied to a test site?

To answer these questions: It has been shown that random field simulations can be conditioned by
cone penetration test profiles by using a post-processing conditioning algorithm that uses kriging es-
timation. The reduction of the range of possible realisations of the simulation is evaluated and it
is demonstrated that the range of possible solutions does indeed decrease. The algorithm produces
simulations that are consistent with the statistics and the conditional data. The decrease of possible
solutions in case of conditioning by cone penetration test profiles is shown to depend mainly on three
parameters: the horizontal scale of fluctuation, the lateral distance between conditioning profiles and
the number of conditioning points in the profile used for conditioning. The dependency of the reduc-
tion in uncertainty on the distance between the cone penetration test profiles indicates that the site
investigation plan partly determines the effectiveness of conditioning. It is derived that for an aimed
reduction of uncertainty, the spacing between cone penetration test profiles for the site investigation
can be determined based on the horizontal scale of fluctuation. The horizontal scale of fluctuation
needs to be known or assumed for this. Application of this algorithm on the test site data has demon-
strated that conditional simulation can be applied in practice. The reduction in the range of possible
realisations is found to be between 5% and 45% for the site investigation performed at the test site,
depending on the anisotropy of the variability.

In general, it can be stated that the research questions have been answered. The algorithm for the
conditioning is programmed in Matlab and with this the objective of development of an algorithm for
conditioning is reached in general as well, but it is far from complete. There are many possibilities for
improvement in both efficiency and accuracy of the algorithm.

Other conclusions that can be drawn from this report are:

• For the calibration of the critical state stress ratio M and the parameter for the stress dilation
ratio N , the Bishop Method was found to be the most suitable calibration method when triaxial
tests of mainly dense drained samples are available.

• For the calibration of the critical state line parameters Γ and λcs, the triaxial approach and
assumed chi method were demonstrated to be suitable calibration methods when only drained
triaxial tests are available. The triaxial approach requires loose drained samples for a reliable
result. The assumed chi method is found not to depend significantly on the assumed value of chi.
The most likely point for cross-sections for this method can best be determined by the minimum
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in standard deviation between the lines in the graph in horizontal and vertical direction, described
as the ’assumed chi least standard deviation’ method in the report.

• The result that is found for the hardening modulus H proved to be the most unreliable NorSand
parameter that was calibrated. This is expected to be caused mainly by the assumption of correct
deterministic descriptions of all other parameters. These parameters were used to simulate the
triaxial compression response in order to calibrate H.

• From material properties found in literature, the calibrated material properties of the North Sea
sand show the most resemblance with Erksak sand.

• For the statistical interpretation of the profiles it was found that the scale of fluctuation is not
affected by the transformation from tip resistance to state parameter. A difference in scale of
fluctuation in the range of 1% was found, which suggests that the scale of fluctuation is hardly
affected by a transformation of distribution function. This validates the option of distribution
transformation prior to the determination of correlation structure and conditional simulation.

• The best distribution to describe state parameter and tip resistance determined by the chi square
goodness of fit for individual profiles shows no clear differences between Normal, Beta and Gamma
distributions. Normal and Beta seem to be equally favourable. The best distribution of all data
together is clearly Normal for the state parameter and Beta or Gamma for the tip resistance.
Therefore the normal distribution is used as the distribution function of the data.

• It is found that internal conditioning of the Local Average Subdivision method was too complex
to implement. Therefore, and because of other methods were available, the conditioning is
performed as a post-processing algorithm.

• The application of the algorithm on local average random fields is valid in case the cell domain is
small relative to the scale of fluctuation. In case the cell domain of the local average random fields
becomes larger, the application of the conditioning algorithm is no longer valid and alternative
versions of the algorithm have to be used.

• The conditional simulation produces fields that have a correlation structure that is similar to
the theoretical correlation structure that is used and the experimental correlation structure of
the conditioning points. It is experimentally shown that the statistics (distribution function and
correlation structure) that are used as input are honoured.

• The reduction in uncertainty that can be achieved by conditional simulation is demonstrated to
be in the order of 50%, depending on the scales of fluctuation and the density of available cone
penetration test profiles. For the test site, the reduction of uncertainty is between 5% (for ξ = 5)
and 45% (for ξ = 50), when conditioning points along the cone penetration test profiles at 20cm
intervals are used.

• The calculation time involved in the conditioning algorithm is theoretically derived as a function
of the number of conditioning points n and the number of field points N . When N is much larger
than n the time it takes to condition a field is linear proportional to the number of points in the
field N . When n is large compared to N , the conditioning time increases with n3.



Chapter 7

Recommendations

As mentioned in the conclusion, the algorithm that was developed for the conditioning is far from
complete. A number of improvements have to be made to work out all the details. Some of these
improvements are discussed in this section as recommendations for further work. Recommendations
regarding the other parts of this report are mentioned as well.

• To be useful in the numerical analysis of slope stability, the conditioning needs to be applied in
3D; the conditioning in 3D is nothing more than changing the coordinates from (x,y) to (x,y,z).
An increase in calculation time can be expected to be similar to the 2D case; depending mainly
on the number of field cells and the number of conditioning points. The only difference is the
location of the cells to be conditioned. The change from 2D to 3D will have it’s influence on the
possibilities of restriction of number of conditioning points by a search neighbourhood.

• The decrease in uncertainty is shown as the function of number and location of the conditioning
points with respect to the scales of fluctuation. The quality of this reduction with respect to the
reduction of uncertainty in design is not shown. To quantify the true reduction in uncertainty, the
conditional simulated fields need to be evaluated in a structure response. Next step therefore is to
incorporate the conditional simulations in structure response analysis to compare the uncertainty
in the results with the uncertainty in the analysis of unconditioned simulations.

• The effect of the assumption that the fields produced with the LAS method present point statistics
needs to be validated when larger field cells are generated. The effect of the assumption that
the difference between local average statistics and point statistics can be ignored needs to be
quantified as a function of relative field cell size. A possible consequence is that the kriging
procedure that is used has to be changed from ordinary kriging (kriging point values) to block
kriging (kriging the average over a cell domain). It should be checked if the algorithm for
conditional simulation still hold when block kriging is used for the estimation.

• Problems with the chi-square goodness of fit to determine the most likely probability function to
describe distribution of the data are mentioned in this report. No further effort has been made to
propose alternative methods of testing the distribution function. An evaluation of possible test
methods might be needed to check the accuracy of the chi square method. The transformation of
the generic distribution to a normal distribution before the analysis and conditional simulation,
to back transform the normally distributed conditional simulation into the generic distribution,
might be an alternative to deal with non-Gaussian distributions.

• In a full probabilistic approach the calibrated constitutive model parameters can not be used in
the way they are used in this report. Although it has been proven that the scale of fluctuation
is hardly affected by the transformation from tip resistance to state parameter, the mean and
standard deviation in the state parameter are influenced by the result of the calibration. A more
probabilistic approach in the calibration of the model parameters and the effect of uncertainty
in these parameters with respect to the state parameter should be looked at.

• The reduction of the number of conditioning points in this report is achieved by simply selecting
points in the profiles at a regular interval. This method avoids biased estimates, but because
data is left out from the conditioning, uncertainty increases and selecting different points leads
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to different conditioned random fields. Improvements in the procedure of reduction the number
of conditioning points might be looked after in order to use more conditioning data without
excessive increase of computation time.

• The evaluation that was done for the uncertainty in different locations of a field conditioned by
four cone penetration test profiles has indicated that the region between two profiles is probably
not much affected by regions that are located further away. This raises the question if these
profiles need to be included in the conditioning of this region. The introduction of a search
neighbourhood that determines the neighbourhood in which the relevant conditioning points
are located should be considered. The introduction of a search neighbourhood however can be
complicated and might have undesired effects on the estimation of the mean. Although the
introduction of a search neighbourhood might look promissing in 2D due to the division of
different parts of the field by the profiles, a search neighbourhood in 3D might be difficult to
define due to the conditioning by profiles. Some comments on the search neighbourhood for
kriging are given by Wackernagel [1998].
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Appendix A

Statistical distribution functions

This appendix describes the four statistical distribution functions that are used in this report.

Normal distribution; The normal distribution is determined by the parameters mean µ and stan-
dard deviation σ. These parameters lead to the probability density function with the following equa-
tion;

Normal : PDF (z|µ, σ) = 1

σ
√
2π
e−

1
2 (

z−µ
σ )

2

(A.1)

Examples of the nromal distribution finction are presented in figure A.1. The normal distribution
can be reduced to standard normal distribution when the mean and the standard deviation are chosen
to be 0 and 1. The probability density function in this case is given by:

PDFstandard−normal(z) =
1√
2π
e−

1
2 z

2

(A.2)

The normal distribution is a non-skewed (symmetric) distribution which means that when the
standard deviation is of the same order of magnitude as the mean, negative values can be obtained.
This gives problems when, for example, pressures are described using the normal distribution. A skewed
distribution guaranteeing only values larger than zero might be more suitable to use as distribution.
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µ=0,σ=1 (standard normal)
µ=0,σ=0.5
µ=0,σ=2
µ=−2,σ=1
µ=2,σ=1

Figure A.1: Example of the Normal distribution

Lognormal distribution; A dataset can be described with the log-normal distribution when the
logarithm of the dataset is normal distributed. In other words, the exponent of a normal distributed
dataset is log-normal distributed. This means that the log-normal distribution is dependent on the
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mean µ and standard deviation σ just like the normal distribution. The probability density function
is given by equation A.3. The difference with the normal probability density function is the natural
logarithm of x instead of x as the variable in the exponent. To correct for the change in probabil-

ity density, the probability density function has to be scaled by δln(x)
δx , which is the extra x in the

denominator in front of the equation for the probability density function.

Lognormal : PDF (z|µ, σ) = 1

zσ
√
2π
e−

1
2 (

ln(z)−µ

σ )
2

(A.3)

Because of the exponential behaviour with respect to the normal distribution, the lognormal dis-
tribution is always greater than 0. Also the log-normal distribution has a positive skewness (the mean
is greater than the median). Examples of the lognormal distribution finction are presented in figure
A.2.
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Figure A.2: Example of the Lognormal distribution

Beta distribution: The beta-distribution is a distribution that describes the likelihood of a value
being present between the values 0 and 1. The Beta-distribution depends on parameters α and β and
is defined over the domain [0;1]. The probabilitu density function is given by

Beta : PDF (x|α, β) = xα−1(1− x)β−1

B(α, β)
(A.4)

with

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt. (A.5)

The Beta-function B(α, β) in the denominator normalises the Beta-distribution to reach an area under
the graph equal to 1. It is in fact the area under the full graph of xα−1(1−x)β−1. The Beta-distribution
can be both skewed (α 6= β) and non-skewed (α = β). Examples of possible probability density graphs
are given in figure A.3. The Beta-distribution is a special case of the Gamma distribution.
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Figure A.3: Example of the Beta distribution

Gamma distribution: The Gamma-distribution depends on two parameters; shape parameter α
and β. In some cases other symbols are used as parameters for the Gamma-distribution. Other symbols
that can be found in literature are shape parameter k = α and scale parameter θ = 1

β . Examples of
possible probability density graphs are given in figure A.3.

Gamma : PDF (x|α, β) = βα

Γ(α)
xα−1e−βx (A.6)
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Figure A.4: Example of the Gamma distribution



Appendix B

Changes in the code for the
statistical interpretation

To make the code that is used for the statistical characterisation [Gitman, 2006] compliant to the
demands of usability and accessibility, some of the structures are rearranged and methods of input
and output are changed to the author’s liking. Most of the changes were made because of the analysis
for multiple options in one go (state parameter, tip resistance, trend removed and not-removed at
the same time). Input, analysis and output were split into separate parts of the code to ease future
additions to the code. The method of presentation of the result is changed to satisfy the wishes of an
overview that can be directly included into the report.
The actual codes are not fully discussed. This section discusses the changes in general.
While working with the code, it has been worked through to delete all unnecessary commands and
change the sometimes extensive loops for Matlab build-in commands. This has reduced the length of
the code (maybe not the overall running time) and increased the readability and clarity of the code.
However, an increase in length of the code can be attributed to the commands that are needed to
present all results in one page. The largest part of the code now consists of the definition of the layout
for the result presentation.

B.1 Input

Original code The original code used text files with columns of the CPT-measurements as data
input. All geometry data of the CPT-profiles (numbers, file names, output file names, depth, etc.) was
put into a separate text file. Changing the profiles to be evaluated therefore was a tedious business,
because all text files had to correspond to the evaluated profiles.

Changes made: CPT-data of this project are available in GEF-files (GEF = Geotechnical Exchange
Format), a standard text file-format to store geotechnical measurements. Because most of the geometry
information is stored in the headers of the GEF-files, the code is changed in such a way that it can use
the GEF-files as input data files. To deal with the header files, the Matlab function file ’ReadData.m’
is added to the code. This function file reads the available data in the header of the GEF file and
stores it as variables in Matlab (X,Y,Z-coordinates, file-ID, profile length, profile values).

At this moment, this code only works for 5-column GEF-files; the code still needs some extension to
be able to read all types of GEF-files. Reduction of the number of text files with parametric information
is achieved by including the input of all constitutive model data in the main code file (direct input).
The names and number of the GEF-files are determined by the code (info=get(*.GEF)).

B.2 Parallel analysis

To avoid running the code for different parameters, analysis is done for tip resistance and state pa-
rameter, for the trend-removed and the original case, in one go. To be able to change the code into
running the analysis for multiple datasets at the same time, some loops had to be inserted and the
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order of different steps was changed at some parts of the code. Instead of vectors, the profile to be
analysed was changed to a 6-column matrix (state parameter, friction ratio and tip resistance)(both
original and trend removed) and the analysis was done for the full vector. In this way, the code does
not have to be run several times for different parameters and options and the combination of results
is easy to implement in the code. The results for the friction ration is not used in this report.

B.2.1 Plotting and gathering results

To ease the work of inserting all results in the report and give a clear overview of the results, all results
from the individual CPT’s are plotted on a one-page overview picture. Results are no longer stored in
JPEG format but in postscript (.PS) format, to guarantee accessibility and readability. Instead of an
individual file for each graph that is produced, all results of a single profile is stored in one single-page
file that can be inserted in the report directly.

B.3 Chi square goodness of fit

Because of an error in the goodness-of-fit in the original code, the entire part of the code that evaluated
the chi-square score was rewritten with the help of the build-in Matlab operator chi2gof .

Original code The sequence of observed bin counts O is divided by N ∗ binwidth in the original
code by Gitman [2006]. In this way, a histogram of the probability density function is constructed
(the area of the histogram is equal to 1). This is good when comparing the histogram with theoretical
distributions, but incorrect when it is used for the chi-square goodness of fit. Because the chi-square
probability is calculated for χ2/(N ∗binwidth) instead of χ2, the probabilities of finding a similar result
or beter are extremely low (in the range of 10−8).

- The original code (variable names have been changed) for i=1:N

for j = 1:numberofbins

if data(i)>=binedge(j) & data(i) < binedge(j+1)))

O(j)=O(j) + 1

end

end

end

O = O/(N*binwidth)

chi-square=0

for j=1:numberofbins

if E(j)>0.0001
chi-square = chi-square+(O(j)-E(j))2/E(j)

end

end

Changes in the code To reduce the number of loops in the code, the built-in commands in Matlab
are used where possible. The section of the original code above has been changed for the follow-
ing line; [H,P,STAT] = chi2gof(data,’edges’,binedges,’expected’,E,’emin’,0,’nparams’,2)

The result of this command gives the probability P of generating the observed distribution or one that

has a higher χ2 score. STAT is a summary of the statistical properties of the fit and contains the
χ2-score, the number of degrees of freedom, O, E and the edges of the bins. With ’emin’ the minimal
number of expected counts in each bin is defined. Bins with a smaller expected count are pooled with
their neighbouring bin. If so, the number of degrees of freedom is reduced and changes in the bin edges
are stored in ’STAT.edges’. With ’nparams’ the number of estimated parameters is defined to be able
to determine the number of degrees of freedom.
The effect of the changes is that the correct χ2-scores are generated.



Appendix C

Calibration results

C.1 Calibration of M and N: Stress-strain curves

The Triaxial data is interpreted in accordance with the theory described in the report. The application
of this theory on the data is done in Matlab. The full calibration process is stored in a command file
that can be found ....[rreference to be added]

Lab B-data interpretation results
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Lab A-data interpretation results
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D.2 Calibration of H:
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Appendix D

Statistical interpretation

D.1 Results of statistical interpretation for individual profiles

To decrease the size of the report, not all testresults are shown in this appendix. All 140 test results
can be found on the data-CD. The 6 results that are shown here are the profiles that are used for the
conditioning.
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Results for S51−01.gef Location [X,Y]   ###372.63  ,  ###806.28
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Best Beta Beta Normal Beta
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Results for S51−03.gef Location [X,Y]   ###358.52  ,  ###785.58
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−0.74
9.59

χ2 scores
dist ψ

trend
q

c,trend ψ
no−trend

Q
c,no−trend

Normal 76 51 86 93
Lognormal 139 216 171 169
Beta 52 41 60 46
Gamma 77 102 98 103
Best Beta Beta Beta Beta
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Results for S51−05.gef Location [X,Y]   ###344.33  ,  ###764.99
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χ2 scores
dist ψ

trend
q

c,trend ψ
no−trend

Q
c,no−trend

Normal 66 70 70 98
Lognormal 256 257 252 149
Beta 65 97 80 68
Gamma 121 123 122 68
Best Beta Normal Normal Gamma
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Results for S51−07.gef Location [X,Y]   ###330.15  ,  ###744.39
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χ2 scores
dist ψ

trend
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Q
c,no−trend

Normal 191 130 84 107
Lognormal 363 313 239 240
Beta 250 141 99 121
Gamma 240 173 114 124
Best Normal Normal Normal Normal
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Results for S51−18.gef Location [X,Y]   ###221.28  ,  ###652.42
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χ2 scores
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Normal 234 174 248 290
Lognormal 617 192 625 146
Beta 192 107 198 191
Gamma 344 117 357 155
Best Beta Beta Beta LogNorma
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Results for S51−20.gef Location [X,Y]   ###207.09  ,  ###631.81
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χ2 scores
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Normal 108 85 102 110
Lognormal 566 189 544 101
Beta 141 96 132 98
Gamma 263 105 250 57
Best Normal Normal Normal Gamma
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D.2 Tabular results of individual statistical interpretation

Statistical interpretation is done based on the profiles of tip resistance qc and state parameter psi. The
following statistics can be found in the tables for both parameters:

CPT-ID Name-tag of measurement
X [m] Horizontal location coordinate
Y [m] Horizontal location coordinate
Z [m] Vertical location coordinate; surfacelevel (relative to NAP)
µ [-] Average of the profile (trend not removed)
σ [-] Standard deviation of the profile (trend not removed)
dist Distribution fitting best to the points in the profile (trend not removed)
atr [m−1] Slope of the trend in the profile (trend=a*z+b, z=depth)
btr [-] Trend at z=0(trend=a*z+b, z=depth)
σtr [-] Standard deviation of the trend-removed profile
θ [m] Scale of fluctuation
disttr Distribution fitting best to the points in the trend-removed profile

Statistics for state parameter ψ

CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr
S51-01.gef ##5372.63 ##5806.28 4.63 -0.1309 0.0472 β 0.0117 -0.0551 0.0382 1.0196 N

S51-02.gef ##5334.72 ##5817.13 5.29 -0.0942 0.047 Γ -0.0067 -0.1374 0.0442 0.3534 N

S51-03.gef ##5358.52 ##5785.58 5.27 -0.137 0.0247 β 0.001 -0.1306 0.0246 0.6423 β

S51-04.gef ##5320.54 ##5796.54 5.16 -0.1248 0.0511 N -0.0083 -0.1791 0.0471 1.1623 Γ
S51-05.gef ##5344.33 ##5764.99 5.27 -0.1318 0.0377 N -0.0016 -0.1421 0.0375 0.5196 N

S51-06.gef ##5306.36 ##5775.95 5.3 -0.1361 0.036 N -0.0065 -0.1785 0.0325 0.313 Γ
S51-07.gef ##5330.15 ##5744.39 5.21 -0.1174 0.0436 N 0.0045 -0.0883 0.0423 0.9776 N

S51-08.gef ##5292.18 ##5755.36 5.42 -0.1531 0.0416 β -0.0055 -0.1891 0.0395 0.7875 N

S51-09.gef ##5315.97 ##5723.79 5.24 -0.1304 0.0401 β 0.0011 -0.1232 0.04 0.5629 β

S51-10.gef ##5278.00 ##5734.78 5.3 -0.1375 0.0555 β 0.0023 -0.1228 0.0552 0.8567 β

S51-11.gef ##5301.78 ##5703.22 5.4 -0.1157 0.0283 β 0.0033 -0.0943 0.0272 0.1956 β

S51-12.gef ##5263.83 ##5714.18 5.4 -0.1648 0.0439 N -0.0069 -0.2098 0.0407 0.6465 β

S51-13.gef ##5287.62 ##5682.63 5.6 -0.1332 0.0413 N -0.0004 -0.1357 0.0413 0.3668 N

S51-14.gef ##5249.63 ##5693.58 5.48 -0.1114 0.036 Γ 0.0057 -0.0745 0.0334 0.7845 Γ
S51-15.gef ##5273.44 ##5662.03 5.57 -0.1086 0.0512 N -0.0024 -0.124 0.0509 0.3306 N

S51-16.gef ##5235.46 ##5673.01 5.57 -0.1284 0.0343 N -0.0041 -0.1552 0.0329 0.2826 Γ
S51-17.gef ##5259.25 ##5641.45 5.53 -0.1431 0.0354 N -0.0052 -0.1768 0.0332 0.4367 N

S51-18.gef ##5221.28 ##5652.42 5.53 -0.1286 0.0451 β 0.0006 -0.1244 0.0451 0.7631 β

S51-19.gef ##5245.09 ##5620.84 5.51 -0.1563 0.0405 N -0.0065 -0.1985 0.0375 0.4643 N

S51-20.gef ##5207.09 ##5631.81 5.37 -0.105 0.0342 N 0 -0.1049 0.0342 0.3104 N

S51-21.gef ##5230.91 ##5600.25 5.44 -0.1486 0.0463 β -0.0155 -0.2496 0.0279 0.3647 N

S51-22.gef ##5192.93 ##5611.23 5.51 -0.0959 0.0411 β 0.0087 -0.0393 0.0355 0.7548 N

S51-23.gef ##5216.79 ##5579.74 5.43 -0.1332 0.0236 β -0.0049 -0.1648 0.0206 0.2842 β

S51-24.gef ##5178.75 ##5590.64 5.46 -0.1204 0.0266 N 0.0023 -0.1057 0.0261 0.3688 β

S51-25.gef ##5202.53 ##5559.09 5.46 -0.1479 0.0338 N -0.0023 -0.1626 0.0334 0.3522 N

S51-26.gef ##5164.56 ##5570.05 5.44 -0.1601 0.0427 Γ 0.001 -0.1538 0.0426 0.5099 Γ
S51-27.gef ##5188.36 ##5538.48 5.42 -0.1427 0.035 N -0.0075 -0.1914 0.0302 0.3495 β

S51-28.gef ##5150.40 ##5549.46 5.44 -0.1623 0.0403 Γ 0.004 -0.1361 0.0392 0.9223 β

S51-29.gef ##5174.17 ##5517.90 5.47 -0.1235 0.0232 Γ -0.0028 -0.1414 0.0223 0.3731 Γ
S51-30.gef ##5136.21 ##5528.87 5.41 -0.147 0.0494 Γ 0.003 -0.1275 0.0489 0.5162 Γ
S51-31.gef ##5160.00 ##5497.31 5.44 -0.1485 0.0547 N -0.0198 -0.2771 0.0281 0.3247 N

S51-32.gef ##5122.04 ##5508.28 5.43 -0.1495 0.0331 N 0.002 -0.1368 0.0328 0.7317 N

S51-33.gef ##5145.83 ##5476.72 5.43 -0.1326 0.0397 β -0.0097 -0.196 0.0322 0.909 β

S51-34.gef ##5107.85 ##5487.69 5.48 -0.142 0.0361 Γ -0.0084 -0.1969 0.03 0.4867 β

S51-35.gef ##5131.65 ##5456.12 5.49 -0.1123 0.0324 β 0.0002 -0.1111 0.0324 0.7193 β

S51-36.gef ##5093.68 ##5467.11 5.42 -0.1644 0.0447 β 0.006 -0.1255 0.0424 0.9896 β

S51-37.gef ##5117.47 ##5435.53 5.47 -0.1168 0.0465 β -0.0022 -0.1313 0.0462 0.6106 β

S51-38.gef ##5079.48 ##5446.52 5.41 -0.1605 0.0666 β 0.0095 -0.0987 0.0626 1.2869 β

S51-39.gef ##5103.30 ##5414.95 5.42 -0.0976 0.0537 N 0.0068 -0.0537 0.0512 1.1404 N

S51-40.gef ##5065.31 ##5425.93 5.37 -0.1531 0.0552 β 0.0103 -0.086 0.0494 1.2635 β

CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr
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CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr
S51-41.gef ##5089.11 ##5394.37 5.35 -0.1153 0.0412 Γ 0.0048 -0.0838 0.0395 0.7557 Γ
S51-42.gef ##5051.13 ##5405.32 5.32 -0.1161 0.0547 β 0.0114 -0.0419 0.0475 0.9331 β

S51-43.gef ##5074.93 ##5373.77 5.29 -0.1169 0.0735 β 0.0219 0.0257 0.0518 1.1353 β

S51-44.gef ##5036.94 ##5384.74 5.34 -0.1069 0.0583 β 0.0165 0.0006 0.0431 0.6721 β

S51-45.gef ##5060.74 ##5353.16 5.34 -0.1026 0.0554 N 0.0115 -0.0277 0.0482 0.465 N

S51-46.gef ##5022.77 ##5364.14 5.4 -0.0984 0.0479 N 0.0106 -0.0294 0.0407 0.542 N

S51-47.gef ##5046.58 ##5332.59 5.45 -0.1024 0.0382 Γ 0.0083 -0.0482 0.0327 0.6483 N

S51-48.gef ##5008.60 ##5343.55 5.46 -0.0851 0.0467 Γ 0.0165 0.0222 0.0256 0.2287 N

S51-49.gef ##5032.39 ##5312.01 5.39 -0.0907 0.0415 Γ 0.0065 -0.0482 0.0384 0.4715 N

S51-50.gef ##4994.41 ##5322.97 5.38 -0.1156 0.031 Γ 0.0026 -0.0985 0.0304 0.3712 Γ
S51-51.gef ##5018.22 ##5291.42 5.47 -0.092 0.0285 Γ -0.0024 -0.1078 0.0279 0.4393 N

S51-52.gef ##4980.23 ##5302.39 5.51 -0.1116 0.0326 Γ 0.005 -0.0792 0.0304 0.3402 Γ
S51-53.gef ##5004.04 ##5270.82 5.48 -0.1284 0.0356 N -0.0065 -0.1706 0.0321 0.5109 N

S51-54.gef ##4966.06 ##5281.79 5.57 -0.1118 0.0383 Γ 0.0056 -0.0756 0.0359 0.7768 N

S51-55.gef ##4989.86 ##5250.23 5.5 -0.1073 0.0471 N -0.0014 -0.1167 0.047 0.5245 N

S51-56.gef ##4951.88 ##5261.19 5.36 -0.1169 0.0218 N 0.0021 -0.1029 0.0212 0.3471 N

S51-57.gef ##4975.68 ##5229.65 5.41 -0.1145 0.0448 β 0.0065 -0.0721 0.042 0.79 β

S51-58.gef ##4937.69 ##5240.61 5.28 -0.1096 0.0246 β 0.0023 -0.0947 0.024 0.4367 β

S51-59.gef ##4961.49 ##5209.05 5.36 -0.1065 0.0411 Γ 0.0048 -0.0754 0.0395 1.2471 β

S51-60.gef ##4923.51 ##5220.01 5.77 -0.1089 0.0369 N 0.0094 -0.0475 0.0293 0.3004 N

S51-61.gef ##4947.33 ##5188.46 5.87 -0.1299 0.0568 β 0.0003 -0.1277 0.0568 1.1895 β

S51-62.gef ##4909.34 ##5199.43 5.91 -0.1025 0.0341 Γ 0.009 -0.0441 0.0266 0.3994 Γ
S51-63.gef ##4933.15 ##5167.87 5.82 -0.1574 0.0544 N -0.0002 -0.1587 0.0544 1.0638 N

S51-64.gef ##4895.16 ##5178.84 5.94 -0.1154 0.0309 Γ 0.0033 -0.0939 0.0299 0.3879 Γ
S51-65.gef ##4918.95 ##5147.28 5.9 -0.1245 0.0922 Γ -0.0148 -0.2206 0.0852 0.7399 Γ
S51-66.gef ##4880.99 ##5158.24 5.96 -0.0865 0.0359 N 0.0095 -0.0249 0.028 0.4196 Γ
S51-67.gef ##4904.77 ##5126.73 5.89 -0.1279 0.0562 β -0.0013 -0.1363 0.0561 0.7729 β

S51-68.gef ##4866.81 ##5137.65 5.95 -0.0781 0.0435 β 0.0009 -0.072 0.0434 0.5814 β

S51-69.gef ##4890.61 ##5106.10 5.95 -0.1057 0.0308 β -0.0014 -0.1151 0.0306 0.3139 β

S51-70.gef ##4852.63 ##5117.06 5.9 -0.1216 0.0376 Γ -0.0032 -0.1426 0.0368 0.4023 N

S51-71.gef ##4876.43 ##5085.50 5.89 -0.1105 0.0428 β -0.004 -0.1367 0.0417 0.8158 β

S51-72.gef ##4838.45 ##5096.48 5.93 -0.1206 0.0393 N -0.0071 -0.1668 0.0355 0.2669 N

S51-73.gef ##4862.24 ##5064.90 5.91 -0.1266 0.0317 β 0.0008 -0.1213 0.0317 0.6579 β

S51-74.gef ##4824.27 ##5075.89 5.9 -0.1227 0.0366 N -0.0082 -0.1757 0.031 0.4355 Γ
S51-75.gef ##4848.06 ##5044.32 6.02 -0.1229 0.0296 N -0.0052 -0.157 0.0269 0.234 N

S51-76.gef ##4810.08 ##5055.29 5.88 -0.1132 0.0356 N 0.0023 -0.098 0.0351 0.6578 N

S51-77.gef ##4833.89 ##5023.72 5.9 -0.1355 0.0386 β -0.0096 -0.1979 0.0312 0.7618 β

S51-78.gef ##4795.92 ##5034.71 5.99 -0.1012 0.0446 Γ 0.0053 -0.0664 0.0428 0.3177 N

S51-79.gef ##4819.71 ##5003.14 6.02 -0.1408 0.0378 β -0.0083 -0.195 0.0322 0.3605 β

S51-80.gef ##4781.72 ##5014.11 5.88 -0.1058 0.0425 Γ -0.0044 -0.1346 0.0412 0.7252 Γ
S51-81.gef ##4805.54 ##4982.55 5.95 -0.1367 0.0353 N -0.0019 -0.1492 0.0351 0.3128 N

S51-82.gef ##4767.56 ##4993.52 5.81 -0.1331 0.0439 N -0.0104 -0.2004 0.0364 0.524 Γ
S51-83.gef ##4791.35 ##4961.96 5.94 -0.1648 0.0611 N -0.0127 -0.2477 0.0531 0.931 N

S51-84.gef ##4753.38 ##4972.93 5.98 -0.1214 0.0465 N -0.0085 -0.1765 0.0419 0.7007 β

S51-85.gef ##4777.18 ##4941.37 5.95 -0.1375 0.0487 N -0.0079 -0.189 0.0449 0.761 N

S51-86.gef ##4739.18 ##4952.35 6.04 -0.1111 0.0413 β -0.0097 -0.1745 0.0342 0.6676 N

S51-87.gef ##4762.99 ##4920.79 5.96 -0.1444 0.0601 β -0.0115 -0.2195 0.0534 1.1007 β

S51-88.gef ##4725.02 ##4931.76 6.07 -0.1158 0.0635 β -0.0224 -0.2612 0.0345 0.5931 β

S51-89.gef ##4748.81 ##4900.19 6.12 -0.1193 0.0742 N -0.0269 -0.2939 0.0379 0.4257 Γ
S52-01.gef ##5370.52 ##5831.09 5.27 -0.1335 0.0725 β 0.0106 -0.0648 0.068 1.3522 β

S52-02.gef ##5342.03 ##5841.12 5.43 -0.0632 0.0483 β -0.001 -0.0695 0.0482 0.4141 β

S52-03.gef ##5368.34 ##5857.23 5.25 -0.1133 0.0482 β -0.0008 -0.1186 0.0481 0.6762 β

S52-04.gef ##5339.85 ##5866.03 5.39 -0.0833 0.034 β 0.0045 -0.0543 0.0323 0.4518 N

S52-05.gef ##5366.17 ##5880.87 5.29 -0.0657 0.0582 Γ 0.0075 -0.0167 0.0553 0.3795 N

S52-06.gef ##5337.67 ##5890.95 5.32 -0.0903 0.0433 N -0.0033 -0.1116 0.0426 0.8427 N

S52-07.gef ##5364.00 ##5905.78 5.38 -0.1232 0.0409 N -0.0061 -0.1627 0.0383 0.5983 N

S52-08.gef ##5335.51 ##5915.84 5.33 -0.1335 0.0353 N 0.0028 -0.1153 0.0346 0.435 N

S52-09.gef ##5361.82 ##5930.69 5.24 -0.1225 0.0597 Γ -0.0036 -0.1457 0.0591 0.874 β

S52-10.gef ##5333.33 ##5940.75 5.17 -0.1844 0.0407 N -0.0052 -0.2182 0.0388 0.9071 N

S52-11.gef ##5359.63 ##5955.59 5.13 -0.1263 0.0566 N -0.0027 -0.1441 0.0562 0.8742 N

S52-12.gef ##5331.16 ##5965.65 5.19 -0.117 0.0564 β 0.003 -0.0977 0.056 1.1858 β

CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr
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CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr
S52-13.gef ##5357.47 ##5980.50 5.16 -0.1046 0.0672 β -0.018 -0.2217 0.0519 0.8032 β

S52-14.gef ##5328.98 ##5990.55 5.18 -0.1765 0.0332 Γ -0.0076 -0.2258 0.0279 0.8033 β

S52-15.gef ##5355.29 ##6005.41 5.22 -0.1618 0.0754 β -0.0262 -0.3327 0.0424 0.7928 β

S52-16.gef ##5326.80 ##6015.45 5.19 -0.1428 0.0337 Γ -0.0087 -0.1991 0.0267 0.8679 N

S52-17.gef ##5353.12 ##6030.33 5.15 -0.1624 0.0575 β -0.0189 -0.2855 0.0358 0.4489 β

S52-18.gef ##5324.63 ##6040.39 5.12 -0.1528 0.0553 N -0.0182 -0.2712 0.0345 0.8472 β

S52-19.gef ##5350.93 ##6055.22 5.01 -0.1411 0.0698 N -0.0252 -0.3051 0.0357 0.4904 β

S52-20.gef ##5322.46 ##6065.28 5.21 -0.1288 0.0386 N -0.0101 -0.1943 0.0303 0.8268 β

S52-21.gef ##5348.77 ##6080.13 5.1 -0.1291 0.0552 N -0.0182 -0.2476 0.0343 0.5099 β

S52-22.gef ##5320.30 ##6090.18 5.09 -0.1258 0.0463 N -0.0157 -0.2282 0.0273 0.8297 N

S52-23.gef ##5346.59 ##6105.02 5.08 -0.1307 0.0384 β -0.0121 -0.2094 0.0255 0.8529 N

S52-24.gef ##5318.12 ##6115.09 4.96 -0.0905 0.0296 N -0.0007 -0.0948 0.0295 0.503 N

S52-25.gef ##5344.37 ##6129.98 5.03 -0.112 0.0324 Γ -0.0084 -0.1665 0.0257 0.4159 N

S52-26.gef ##5315.94 ##6140.00 5.11 -0.0978 0.0374 N 0.0055 -0.062 0.035 0.5582 N

S52-27.gef ##5342.24 ##6154.83 5.17 -0.1098 0.0333 Γ -0.0101 -0.1752 0.0231 0.4433 N

S52-28.gef ##5313.74 ##6164.90 5.35 -0.1351 0.063 β 0.021 0.0016 0.0384 0.5653 β

S52-29.gef ##5340.06 ##6179.75 5.28 -0.126 0.0527 N 0.0096 -0.0636 0.0475 0.6119 β

S52-30.gef ##5311.60 ##6189.81 5.25 -0.1142 0.0435 N 0.0124 -0.0339 0.032 0.4889 β

S52-31.gef ##5337.90 ##6204.65 5.23 -0.1449 0.0407 β -0.0069 -0.19 0.0372 0.7876 β

S52-32.gef ##5309.42 ##6214.70 5.25 -0.1422 0.0389 β 0.0012 -0.1343 0.0388 0.7033 β

S52-33.gef ##5335.72 ##6229.55 5.34 -0.1442 0.0457 Γ -0.0147 -0.24 0.0293 0.3057 N

S52-34.gef ##5307.24 ##6239.59 5.32 -0.12 0.0269 Γ -0.0014 -0.1292 0.0267 0.3739 Γ
S52-35.gef ##5333.55 ##6254.45 5.3 -0.1375 0.0567 N -0.0197 -0.2655 0.0321 0.3532 β

S52-36.gef ##5305.06 ##6264.51 5.33 -0.1106 0.0348 Γ -0.002 -0.1239 0.0344 0.6801 Γ
S52-37.gef ##5331.37 ##6279.36 5.32 -0.1362 0.0464 β -0.0126 -0.2181 0.0355 0.7668 β

S52-38.gef ##5302.89 ##6289.42 5.14 -0.1318 0.0404 N -0.0035 -0.1543 0.0395 0.3539 N

S52-39.gef ##5329.21 ##6304.25 5.47 -0.1336 0.0486 β -0.013 -0.2182 0.0375 0.6634 β

S52-40.gef ##5300.70 ##6314.34 5.44 -0.1181 0.0413 β -0.0034 -0.1403 0.0405 0.4651 β

S52-41.gef ##5327.03 ##6329.15 5.2 -0.0812 0.0544 β -0.0179 -0.1979 0.0339 0.5901 Γ
S52-42.gef ##5298.55 ##6339.22 5.24 -0.1294 0.04 β 0.0036 -0.1061 0.0391 0.8068 β

S52-43.gef ##5324.86 ##6354.05 5.28 -0.1336 0.0425 N -0.0128 -0.2172 0.0295 0.1781 N

S52-44.gef ##5296.37 ##6364.13 5.5 -0.1057 0.041 N -0.001 -0.112 0.0409 0.7839 N

S52-45.gef ##5322.67 ##6378.96 5.42 -0.1279 0.0439 Γ -0.009 -0.1863 0.0383 0.6071 Γ
S52-46.gef ##5294.19 ##6389.07 5.34 -0.1048 0.0383 Γ 0.0121 -0.0258 0.0252 0.2115 N

S52-47.gef ##5320.51 ##6403.89 5.09 -0.1455 0.0372 Γ 0.0016 -0.1351 0.037 0.5287 N

S52-48.gef ##5292.00 ##6413.93 5.29 -0.1062 0.0356 N 0.01 -0.0414 0.0266 0.3703 β

S52-49.gef ##5319.20 ##6428.92 5.54 -0.1237 0.0421 Γ 0.0009 -0.1181 0.042 0.9283 Γ
S52-50.gef ##5291.09 ##6438.23 5.74 -0.084 0.0404 N -0.0024 -0.0996 0.04 0.5319 β

S52-51.gef ##5316.14 ##6453.71 3.45 -0.1295 0.029 β -0.0008 -0.1347 0.029 0.5123 β

CPT-ID X [m] Y [m] Z [m] µ [-] σ [-] dist atr [m−1] btr [-] σtr [-] θ [m] disttr

Statistics for tip resistance qc

CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
S51-01.gef 13.62 5.18 β -1.645 2.928 3.3971 1.0848 β

S51-02.gef 11.11 3.29 Γ -0.193 9.862 3.2626 0.3259 N

S51-03.gef 14.42 2.9 β -0.743 9.592 2.3045 0.6953 β

S51-04.gef 13.45 3.87 β 0.12 14.232 3.8579 1.1327 β

S51-05.gef 14.13 3.73 N -0.423 11.383 3.5876 0.5167 Γ
S51-06.gef 14.41 2.79 N -0.019 14.286 2.7908 0.3138 N

S51-07.gef 12.89 4.14 N -0.874 7.2 3.5861 0.9871 N

S51-08.gef 16.57 4.49 Γ -0.075 16.079 4.4905 0.7964 Γ
S51-09.gef 13.91 3.84 β -0.671 9.55 3.4915 0.531 β

S51-10.gef 15.3 5.36 β -0.558 11.671 5.1906 0.7897 β

S51-11.gef 12.68 3.15 β -0.907 6.783 2.2949 0.1851 β

S51-12.gef 17.9 4.8 β 0.007 17.95 4.7951 0.6932 β

S51-13.gef 14.7 3.92 N -0.609 10.734 3.6383 0.326 Γ
S51-14.gef 12.73 3.59 β -1.08 5.684 2.5146 0.8018 N

S51-15.gef 12.6 3.66 N -0.316 10.545 3.587 0.3324 N

S51-16.gef 14.09 2.78 N -0.283 12.246 2.6943 0.2304 N

S51-17.gef 15.5 3.39 N -0.101 14.843 3.3804 0.4491 N

CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
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CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
S51-18.gef 14.48 4.85 β -0.617 10.474 4.6196 0.8644 LN

S51-19.gef 16.85 4.18 β -0.03 16.652 4.1775 0.4867 N

S51-20.gef 11.9 2.98 N -0.496 8.686 2.7406 0.3196 Γ
S51-21.gef 15.8 3.45 β 0.846 21.294 2.7998 0.3748 β

S51-22.gef 11.74 4.22 Γ -1.227 3.755 3.0563 0.776 Γ
S51-23.gef 14.03 1.98 β -0.235 12.498 1.898 0.2851 β

S51-24.gef 13.1 2.9 β -0.779 8.033 2.239 0.3602 Γ
S51-25.gef 15.81 4.06 Γ -0.493 12.601 3.8878 0.3844 Γ
S51-26.gef 17.36 4.6 N -0.698 12.824 4.2938 0.5038 N

S51-27.gef 15.05 2.92 β -0.003 15.033 2.9161 0.3427 β

S51-28.gef 17.64 4.79 β -1.046 10.838 4.0885 0.9379 β

S51-29.gef 13.23 2.14 β -0.43 10.431 1.8852 0.3581 N

S51-30.gef 16.14 5.25 β -0.916 10.175 4.7784 0.5051 N

S51-31.gef 16.04 5.18 Γ 1.472 25.626 3.8277 0.3571 N

S51-32.gef 16.03 4.44 Γ -1.038 9.27 3.6926 0.704 N

S51-33.gef 14.18 3.08 β 0.179 15.337 3.0458 0.95 β

S51-34.gef 15.09 2.93 N 0.073 15.564 2.9239 0.5142 N

S51-35.gef 12.64 3.06 β -0.597 8.76 2.7067 0.7828 β

S51-36.gef 18.07 5.72 β -1.301 9.615 4.8131 1.0559 β

S51-37.gef 13.26 4.06 β -0.344 11.017 3.9803 0.6764 β

S51-38.gef 18.68 7.72 β -1.349 9.916 7.0233 1.2969 β

S51-39.gef 11.98 4.82 Γ -0.832 6.573 4.3989 1.0714 LN

S51-40.gef 17.26 6.21 β -1.473 7.682 5.1251 1.2829 β

S51-41.gef 12.77 3.4 N -0.817 7.456 2.7899 0.733 N

S51-42.gef 13.32 4.98 β -1.273 5.027 3.9598 0.8646 Γ
S51-43.gef 14.46 7.46 β -2.309 -0.548 5.0484 1.0896 N

S51-44.gef 12.76 5.19 β -1.7 1.708 3.252 0.5758 Γ
S51-45.gef 12.37 4.86 β -1.342 3.642 3.6699 0.4204 Γ
S51-46.gef 11.78 4.21 N -1.206 3.918 3.0824 0.5822 Γ
S51-47.gef 11.89 3.48 β -1.13 4.533 2.2277 0.5835 Γ
S51-48.gef 11.03 4.09 β -1.611 0.539 1.4786 0.2398 Γ
S51-49.gef 10.96 3.24 β -0.901 5.094 2.4303 0.4079 N

S51-50.gef 12.79 2.88 β -0.754 7.856 2.2528 0.3551 β

S51-51.gef 10.91 2.28 N -0.42 8.182 2.0539 0.4035 N

S51-52.gef 12.68 3.19 β -0.99 6.25 2.1619 0.3036 N

S51-53.gef 13.97 3.17 Γ -0.027 13.799 3.1661 0.5279 Γ
S51-54.gef 12.86 3.36 N -0.898 7.04 2.5928 0.7844 N

S51-55.gef 12.51 3.66 N -0.354 10.203 3.5614 0.5225 β

S51-56.gef 12.74 2.51 N -0.765 7.75 1.7243 0.2981 N

S51-57.gef 12.94 4.04 β -0.939 6.838 3.3679 0.7201 Γ
S51-58.gef 12.07 2.74 β -0.779 6.998 2.023 0.4299 Γ
S51-59.gef 12.13 3.5 β -0.799 6.925 2.936 1.1841 β

S51-60.gef 12.97 3.87 N -1.308 4.46 2.3103 0.2906 Γ
S51-61.gef 15.45 5.49 β -0.55 11.869 5.3338 1.129 β

S51-62.gef 12.44 3.5 β -1.262 4.222 1.814 0.4047 β

S51-63.gef 18.37 6.66 N -0.478 15.255 6.5669 1.1553 Γ
S51-64.gef 13.43 3.37 β -0.924 7.417 2.5529 0.4244 N

S51-65.gef 15.85 6.9 β 0.524 19.259 6.7904 1.0122 β

S51-66.gef 11.3 3.57 β -1.192 3.555 2.1715 0.3967 N

S51-67.gef 15.23 5.59 β -0.245 13.634 5.5564 0.7855 Γ
S51-68.gef 10.67 3.03 β -0.458 7.688 2.8321 0.5965 β

S51-69.gef 12.65 2.86 Γ -0.508 9.344 2.5887 0.29 β

S51-70.gef 13.92 3.49 β -0.446 11.022 3.329 0.3951 N

S51-71.gef 13.14 3.53 β -0.285 11.284 3.4656 0.7297 β

S51-72.gef 13.81 2.94 N -0.052 13.466 2.9391 0.2677 N

S51-73.gef 14.53 3.71 Γ -0.737 9.738 3.2729 0.7318 Γ
S51-74.gef 13.88 2.74 N 0.157 14.902 2.7118 0.4158 N

S51-75.gef 14.14 2.54 Γ -0.148 13.171 2.5188 0.2295 β

S51-76.gef 13.2 3.5 N -0.829 7.811 2.8933 0.7264 Γ
S51-77.gef 15.28 3.11 β 0.311 17.304 3.023 0.773 β

S51-78.gef 12.62 3.59 N -0.902 6.75 2.8778 0.333 N

CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
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CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
S51-79.gef 15.87 3.29 N 0.13 16.717 3.2725 0.3745 N

S51-80.gef 12.7 3.32 β -0.248 11.083 3.2651 0.7255 N

S51-81.gef 15.59 3.9 N -0.357 13.27 3.8038 0.2983 N

S51-82.gef 15.02 3.73 N 0.443 17.902 3.578 0.5232 N

S51-83.gef 19.55 7.48 Γ 1.214 27.456 6.8988 0.9832 N

S51-84.gef 14.3 4.25 Γ 0.143 15.228 4.2382 0.7562 Γ
S51-85.gef 15.8 5.03 Γ 0.29 17.692 4.9852 0.6685 Γ
S51-86.gef 13.25 3.11 Γ 0.25 14.883 3.0517 0.7231 Γ
S51-87.gef 16.98 6.91 Γ 0.921 22.982 6.5523 1.0596 β

S51-88.gef 14.1 4.8 Γ 1.456 23.554 3.3146 0.6255 Γ
S51-89.gef 14.74 5.76 Γ 1.963 27.503 3.3954 0.5823 N

S52-01.gef 15.66 7.95 β -1.318 7.088 7.3052 1.375 Γ
S52-02.gef 9.32 3.1 β -0.381 6.841 2.9651 0.3854 β

S52-03.gef 12.62 4.18 β -0.448 9.709 4.0421 0.7417 β

S52-04.gef 10.4 2.8 β -0.758 5.474 2.142 0.4187 N

S52-05.gef 9.39 3.11 β -0.802 4.18 2.45 0.375 N

S52-06.gef 10.76 3.11 Γ -0.253 9.109 3.0488 0.9132 Γ
S52-07.gef 13.35 3.29 N -0.117 12.587 3.2831 0.5715 N

S52-08.gef 14.35 4.73 Γ -1.205 6.509 3.7671 0.5296 N

S52-09.gef 13.6 4.89 β -0.551 10.007 4.7105 0.9012 β

S52-10.gef 19.65 5.15 β -0.264 17.932 5.1123 0.8095 N

S52-11.gef 13.77 5.07 β -0.241 12.2 5.0357 0.8159 β

S52-12.gef 13.1 4.96 β -0.949 6.922 4.4209 1.2457 β

S52-13.gef 11.97 4.54 Γ 0.906 17.875 4.004 0.7716 β

S52-14.gef 18.36 3.47 β -0.068 17.914 3.4662 0.7914 β

S52-15.gef 18.27 8.55 LN 2.554 34.902 6.0257 0.7946 β

S52-16.gef 14.66 2.69 N 0.049 14.979 2.6874 0.8638 N

S52-17.gef 17.4 5.92 Γ 1.534 27.375 4.6624 0.471 β

S52-18.gef 16 5.18 Γ 1.265 24.224 4.22 0.8125 Γ
S52-19.gef 15.15 6.24 Γ 1.885 27.406 4.3414 0.5764 Γ
S52-20.gef 13.58 2.89 Γ 0.215 14.978 2.8395 0.7179 Γ
S52-21.gef 13.72 3.96 β 1.001 20.239 3.162 0.6144 β

S52-22.gef 13.23 3.57 LN 0.861 18.838 2.9217 0.772 Γ
S52-23.gef 13.54 2.53 β 0.422 16.282 2.3195 0.7933 Γ
S52-24.gef 10.26 2.21 N -0.447 7.356 1.944 0.4705 N

S52-25.gef 11.7 1.95 N 0.015 11.793 1.9525 0.4038 N

S52-26.gef 11.17 3.22 β -0.85 5.666 2.5131 0.4841 Γ
S52-27.gef 11.83 1.9 Γ 0.158 12.857 1.859 0.4357 Γ
S52-28.gef 16.13 9.14 LN -3.104 -4.017 5.4043 0.6926 β

S52-29.gef 14.02 4.92 β -1.276 5.71 3.8732 0.7976 Γ
S52-30.gef 12.98 4.96 Γ -1.671 2.125 2.9816 0.4695 Γ
S52-31.gef 15.32 4.01 β -0.074 14.841 4.0091 0.7822 β

S52-32.gef 15.21 4.5 β -0.862 9.613 4.0117 0.6991 Γ
S52-33.gef 15.35 3.17 N 0.605 19.292 2.8215 0.3265 Γ
S52-34.gef 12.8 2.47 N -0.54 9.289 2.1136 0.3248 N

S52-35.gef 14.68 4.23 N 1.189 22.411 3.1467 0.3778 β

S52-36.gef 12.25 2.63 N -0.454 9.299 2.3987 0.621 N

S52-37.gef 14.43 3.54 Γ 0.529 17.873 3.3142 0.7508 β

S52-38.gef 13.95 3.89 Γ -0.33 11.8 3.8066 0.3431 Γ
S52-39.gef 14.45 3.63 β 0.517 17.807 3.414 0.5881 β

S52-40.gef 13.03 3.64 Γ -0.449 10.107 3.4752 0.5088 β

S52-41.gef 9.96 2.61 β 0.687 14.436 2.03 0.6253 β

S52-42.gef 13.86 4.14 β -1.045 7.064 3.319 0.7389 β

S52-43.gef 13.99 2.86 N 0.482 17.133 2.6184 0.2021 N

S52-44.gef 12.14 3.66 Γ -0.515 8.782 3.4473 0.6849 Γ
S52-45.gef 13.98 3.28 N 0.068 14.424 3.2793 0.5432 N

S52-46.gef 12.05 4.01 β -1.49 2.347 1.8733 0.2071 N

S52-47.gef 15.25 3.82 β -0.747 10.393 3.3792 0.4286 N

S52-48.gef 12.02 4.04 Γ -1.415 2.823 2.2457 0.4746 Γ
S52-49.gef 13.92 3.87 β -0.637 9.775 3.564 0.9223 β

S52-50.gef 10.76 3.27 Γ -0.22 9.33 3.2294 0.5402 Γ

CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
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CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr
S52-51.gef 10.87 2.55 β -0.65 6.642 2.03 0.4574 β

CPT-ID µ [MPa] σ [MPa] dist atr [MPa m−1] btr [MPa] σtr [MPa] θ [m] disttr



Appendix E

Elaboration on conditioning

E.1 Derivation of Ordinary Kriging equations

Kriging is a unbiased interpolation method, that interpolates a field at location x0 as a linear combi-
nation of all known field locations Z(xα). The krigedestimated value of the field Z(x) at location x0
is denoted as Z∗(x0), the Kriged field in general as Z∗. The kriging estimation is a weighted average
of the conditioning points Z(xα) by weights wα. The unbiased estimation of the kriging requires the
weights wα to sum up to 1;

Z∗(x0) =
n
∑

α=1

wαZ(xα), with
n
∑

α=1
wα = 1 (E.1)

Next to the requirement of an unbiased estimator, kriging is the best linear estimator of the field
between the conditioning points Z(xα). It is the best estimator in the sense that it finds solution for a
kriged field that has the lowest expected error with respect to the true field. The variance of the error
var(Z∗ −Z) is used to quantify the error. With the help of the unbiasedness of the kriged results and
equation E.1, the variance of the kriging error

σ2
E = var(Z∗ − Z) = E

[

(Z∗ − Z)2
]

+ (E[Z∗ − Z])
2

= E
[

(Z∗ − Z)2
]

+ 0

= E
[

Z∗2
]

− 2E [Z∗Z] + E
[

Z2
]

(E.2)

can be rewritten into

σ2
E = var(Z∗ − Z) =

n
∑

α=1

n
∑

β=1

ωαωβC(|xα − xβ |)− 2
n
∑

α=1

wαC(|xα − x0|) + C(0). (E.3)

Because the sum of the weights equal 1, this equation can be rewritten into:

σ2
E =

n
∑

α=1

n
∑

β=1

ωαωβ(C(|xα − xβ |)− σ2)− 2

n
∑

α=1

wα(C(|xα − x0|)− σ2) + (C(0)− σ2)

= −
n
∑

α=1

n
∑

β=1

ωαωβγ(|xα − xβ |) + 2

n
∑

α=1

wαγ(|xα − x0|) + γ(|x0 − x0|). (E.4)

To minimise this error variance, the first order partial derivatives need to be set to zero. The
condition on the weights can be satisfied using the method of Lagrange. In this method an objective
function φ(wα, µ) is defined introducing the Lagrange parameter µ and containing the condition on
the weights:

φ(wα, µ) = σ2
E = σ2

E − 2µ

(

n
∑

α=1

wα − 1

)

. (E.5)

161
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The partial derivatives of this function φ(wα, µ) with respect to all weights wα and µ are put to 0
to find the weights . This leads to a system of equations of size n + 1 that can be solved to find the
correct weights wα(xα, x0) = λOK

α and µ = µOK . The result is the ordinary kriging system of equation
5.16:











γ(x1 − x1) · · · γ(x1 − xn) 1
...

. . .
...

...
γ(xn − x1) · · · γ(xn − xn) 1

1 · · · 1 0





















λOK
1
...

λOK
n

µOK











=











γ(x1 − x0)
...

γ(xn − x0)
1











(eq. 5.16) (E.6)

The weights wα that satisfy the condition of unbiasedness and best estimation are denoted with
λα. The correlation structure is given in the form of a variogram γ(h) = σ2 − C(h).

E.2 Estimation variance

From the OK-system (equation 5.16,E.6) it can be derived that:

µOK = −
n
∑

β=1

λβγ(|xα − xβ |) + γ(|xα − x0|) (E.7)

Substitution of this expression of the Lagrange parameter into equation E.3 can be reworked into
the equation for the estimation variance σ2

E . This estimation variance is the variance of the difference
between fields Z anx Z∗, which is the OK-variance as given in equation 5.17:

σ2
OK = γ(0) + µOK +

n
∑

α=1

λαγ(|xα − x0|) (E.8)

When the OK-system is written in the form

Γλ = γ (E.9)

and a possible nugget effect of γ(0) 6= 0 is ignored, the kriging variance is given by

σ2
OK = (Γ−1γ)T γ, (E.10)

in which Γ−1 denotes the inverse matrix to Γ and xT is the matrix transponent to x.
The derivation of the equations for ordinary kriging or any other kriging method goes in a similar way
as demonstrated for ordinary kriging. It is possible to keep the covariance function C(h) in the kriging
system. Problem with this is that C(0) does not drop out the equations where γ(0) does.

E.3 Matlab calculation time

To check the computational expence of matlab operators, the following graph was produced to support
table 5.1. To be able to focus on the domain of the graph with large numbers of cell, it is choosen
not to produce a log-log plot, but plot a power function of the computation time t to linearise the
function. Because computation time for small numbers n are less accurate than for larger numbers, no
loglog-plots are used to give a line. Instead of a loglog-plot the time t is given as t1/k when a relation
t = nk was expected. In this way the focus is on the part of the graph with larger n.
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Figure E.1: Experimental calculation time for different operations in Matlab determined with matrices produced with
random numbers.

E.4 Realisations of simulated fields

The realisations of simulated fields conditioned by CPT S51.18 and S51.20 taht are discussed in section
5.4.6 are given in this section. The assumed correlation structure is approximate exponential. The
geometry input is:
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- cell domain: 0.05*0.05m2

- conditioning spacing: 0.40m
- θv: 0.63m
- ξ: 5,10,20,50
- σ: 0.038
- field domain: (-40;-10.6) (40;-2.4)
- conditioned by CPT’s: S51.18, S51.20
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Figure E.2: Realisation of conditional simulation of a field conditioned by two stationary conditioning profiles for ξ = 5.
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Figure E.3: Realisation of conditional simulation of a field conditioned by two stationary conditioning profiles for
ξ = 10.
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Figure E.4: Realisation of conditional simulation of a field conditioned by two stationary conditioning profiles for
ξ = 20.
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Figure E.5: Realisation of conditional simulation of a field conditioned by two stationary conditioning profiles for
ξ = 50.
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E.5 Realisations of simulated fields with depth trend

The realisations of simulated fields conditioned by CPT’s S51.01, S51.03, S51.05 and S51.07 are given
in this section. The assumed correlation structure is approximate exponential. The geometry input
used is:

- cell domain: 0.05*0.05m2

- conditioning spacing: 0.40m
- θv: 0.63m
- ξ: 5,10,20,50
- σ: 0.038
- field domain: (-40;-10.6) (40;-2.4)
- conditioned by CPT’s: S51.01, S51.03, S51.05, S51.07
Results are given on the nexp pages:
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Figure E.6: A: Conditioned simulation of field FCS , B: Variability in simulated field with respect to kriged estimation
FCS-F0K C)
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E.5.1 Dealing with variable depth trends

With the problem of adding the trend to the zero-mean conditioned simulations Z∗, the horizontal
variation in the trend is subject to discussion. Because the trend in the different conditioning profiles
is not necessarily the same, the trend on which the zero-mean stationary field Z∗ needs to be mapped
is not only depth dependent, but depends on the lateral position as well. At the exact locations of
the profiles, the trend that needs to be added is the exact trend that previously was removed from the
profile. What trend has to be added to the field in between the conditioning profiles is unknown and
different options are possible. The different options are discussed in this section.

Reconsider the profiles in the form of P (y) = ay + b + Z(y) from which the first order stationary
trend removed profiles Z(x) were used for the simulation of trend-removed, zero mean stationary fields
Z∗(y). For all profiles the values a and b that describe the trend are gathered and from the functions
a(x) and b(x) the lateral variation in the trend can be examined. In figure E.7 the trend parameters
a(x) and b(x) are given as a function of their lateral relative position. With this figure in mind, there
are several options to deal with the trends:

• Krige the trend parameters between the profiles and map the stationary field on top of the trend
field that can be constructed with the kriged parameters.

• Interpolate the trend parameters between the profiles and map the stationary field on top of the
trend field that can be constructed with the interpolated parameters.

• Determine the mean trend parameters ā and b̄ over all profiles P . Use the mean trend parameters
to reduce P (y) = āy+ b̄+Z(y) to Z(y) and add the depth trend (that in this case only depends
on the depth y) to the mean zero stationary field simulation Z ∗ (x, y) that was generated with
the statistics of Z∗(y).
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Figure E.7 shows the trend parameters a and b determined from one line of CPT’s. The moving
average line gives a larger-scale trend in the parameters. The moving average is done for an averaging
domain of 200m (9 CPT’s) with equal weights.
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Figure E.7: Lateral variation in trend parameters a(x) and b(x). The lines are the 200m local average lines between
the results.

The experimental correlation structure of the trend parameers can be determined. In this way the
scale of fluctuation of the trend parameters a and b can be derived. The existence of a correlation
structure in the trend parameters indicates that a large-scale variability exists that is not described
by the correlation structure of the profiles themselves. Figure E.8 shows that the experimental corre-
lation functions determined for parameters a and b have a scale of fluctuation in the range of 100m.
Interpolation of the depoth trend parameters between the profiles therefore does reduce the variability
of the sand.
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Figure E.8: Correlation function of lateral variation in trend parameters a(x) and b(x)
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A method to avoid the reduction of variability as an effect of the linear interpolation of the depth
trend parameters might be avoided by choosing a constant depth trend over the full domain. In this
way the variability that was left in the depth trends, now is contained by the overal trend removed
profiles. The following section discusses the possibilities of removing the obverall depth trend.

E.6 Overall depth trend

Throughout this report it is assumed that the total domain that is investigated is one particular
material. This means that the material properties of the sand are expected to be equal over the entire
domain. The state of the material therefore is expected to be independent from position and therefore
the depth trend can be expected to be equal over the full domain. In this way the variability can be
seen as a cause of different depth trend in the individual profiles.
In figures E.9 the experimental covariance function has been determined from the profiles for which the
individual trend has been removed and for which the overall (average) trend has been removed. The
lower graph of the figure shows the theoretical covariance function that is used in the simulations in
chapter 5. The theoretical correlation function has not the exact shape as the experimental correlation
function. The experimental correlation function shows negative correlation for large lag h (after 1
meter).

The slightly larger result for θv found by the correlation function compared to the result found by
the variance function is discussed in the next section.
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Figure E.9: experimental covariance function determined for average trend removed profiles (upper) and individual
trend removed profiles (lower). The upper graph shows that the experimental covariance function matches the theoretical
exponential covariance function very closely. The range of the covariance functions of the individual profiles however is
larger.

The scale of fluctuation has been estimated based on the profiles of which the overall trend has
been removed (figure E.9). The scale of fluctuation determined from the

E.7 Different methods to determine θ

Throughout this report several methods to determine the scale of fluctuation θ have been used. Some
of them give different results and some comments can be made about them.

• When the variance function is used to determine the scale of fluctuation θ in this report, the
average of all results for each profile has been taken. In this way, the θ that is derived is given bu
E[Γ(D)D]. Another way to determine the most likely value for θ is first deriving the expected
variance function E[Γ(D)] in order to derive θ from this variance funcion as E[Γ(D)]D. This is
more correct in the sense of variance estimation.

• Deriving the scale of fluctuation from the covariance function for individual profiles is difficult due
to the large fluctuations in the covariance function compared to the variance function. The only
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option therefor is to first derive the expected covariance function as the mean of all individual
profile covariance functions. The best fit of a theoretical covariance function to this experimentalo
covariance function gives the scale of fluctuation. The same method can be followed by using
the correlation function instead of the covariance function. A slight difference between the two
results can be expected, because in the case of using the correlation function, all profiles are
weighted equally. In case the covariance function is used, profiles with a larger variance are
weighted more and profiles with a smaller variance are weighted less in the averaging.

• The results of E[Γ(D)]D and the covariance function are approximately equal. The result found
by using the correlation function and the average over the variance function results E[Γ(D)D]
are slightly lower; in the ranges of 5% and 10% lower.

E.8 Proposed method to investigate

Combining all the comments on the conditioning that are discussed above, a possible method for the
conditioning taking into account most of these

• Determine average depth trend over all profiles that are available in the domain

• Remove this depth trend from all profiles

• Transform the profiles into standard normal shape (keep the transformation procedure)

• determine the scale of fluctuation of the transformed profiles

• perform the conditional simulation of the standard normal transform of the trend-removed profiles

• transform the (standard normal) simulated fields into their original distribution (inverse trans-
formation procedure)

• add the removed trend

This method has the advantage above the method used for the evaluation in this report that the
trend is only depth-dependent and no interpolation or simulation of the trend between the different
profiles is needed. The variability in the trend that is present in the methods discussed in chapter 5 is
now covered by the variability from the trend itself. The difference between the trend of the individual
profiles and the overall trend is covered by the conditioning points of the simulation and the larger scale
of fluctuation. The original distribution of the profiles is honoured exactly due to the transformation
to standard normal form before the simulation and back transformation afterwards.

E.9 Reduction of the number of conditioning points

Different methods can be figured out; attention should be paid at the averaged result that the CPT
profile already is. More on this can probably be found in Lunne et al. [1997]. Another problem in
the reduction of the number of points is the conditional variance that comes in play at the moment
the average is taken from the CPT profile to be used as the expected value at a field location that
represents the expected value in a square cell in a 2D field. I this case the conditional variance
Z(Dy|Dx = 0) 6= Z(Dy|Dx = Dy). These are some of the reasons that no effort has been done to
introduce some sort of advanced reduction procedure.




