

Delft University of Technology

CHOP
Haplotype-aware path indexing in population graphs
Mokveld, Tom; Linthorst, Jasper; Al-Ars, Zaid; Holstege, Henne; Reinders, Marcel

DOI
10.1186/s13059-020-01963-y
Publication date
2020
Document Version
Final published version
Published in
Genome biology

Citation (APA)
Mokveld, T., Linthorst, J., Al-Ars, Z., Holstege, H., & Reinders, M. (2020). CHOP: Haplotype-aware path
indexing in population graphs. Genome biology, 21(1), 1-16. https://doi.org/10.1186/s13059-020-01963-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1186/s13059-020-01963-y
https://doi.org/10.1186/s13059-020-01963-y

Mokveld et al. Genome Biology (2020) 21:65
https://doi.org/10.1186/s13059-020-01963-y

METHOD Open Access

CHOP: haplotype-aware path indexing
in population graphs
Tom Mokveld1†, Jasper Linthorst1,3†, Zaid Al-Ars2, Henne Holstege1,3 and Marcel Reinders1*

Abstract

The practical use of graph-based reference genomes depends on the ability to align reads to them. Performing
substring queries to paths through these graphs lies at the core of this task. The combination of increasing pattern
length and encoded variations inevitably leads to a combinatorial explosion of the search space. Instead of heuristic
filtering or pruning steps to reduce the complexity, we propose CHOP, a method that constrains the search space by
exploiting haplotype information, bounding the search space to the number of haplotypes so that a combinatorial
explosion is prevented. We show that CHOP can be applied to large and complex datasets, by applying it on a
graph-based representation of the human genome encoding all 80 million variants reported by the 1000 Genomes
Project.

Keywords: Graph-based reference genomes, Read alignment, Haplotype-aware graph indexes

Introduction
Pangenomes and their graphical representations have
become widespread in the domain of sequencing analy-
sis [1]. Part of this adoption is driven by the increased
characterization of within-species genomic diversity. For
instance, recent versions of the human reference genome
(GRCh37 and up) include sequences that represent highly
polymorphic regions in the human population [2].
A pangenome can be constructed by integrating known

variants in the linear reference genome. This way, a
pangenome can incorporate sequence diversity in ways
that a typical linear reference genome cannot. For exam-
ple aligning reads to a linear reference genome can lead to
an over-representation of the reference allele. This effect,
known as reference allele bias, influences highly poly-
morphic regions and/or regions that are absent from the
reference [3, 4]. By integrating variants into the alignment
process, this bias can be reduced [5–7]. As a consequence,
variant calling can be improved, with fewer erroneous

*Correspondence: M.J.T.Reinders@tudelft.nl
†Tom Mokveld and Jasper Linthorst contributed equally to this work.
1Delft Bioinformatics Lab, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands
Full list of author information is available at the end of the article

variants induced by misalignments around indels and
fewer missed variants [8]. An intuitive representation for
pangenomes is graph data structures, which are often
referred to as population graphs [1, 9]. Population graphs
can be understood as compressed representations of mul-
tiple genomes, with sequence (in some cases of both
complements) generally represented on the nodes. These
nodes are in turn connected by (bi)-directed edges, such
that the full sequence of any genome used to construct
the graph can be determined by a specific path traver-
sal through the graph. Alternatively, an arbitrary path
traversal will yield a mixture of genomes.
A key application of reference genomes is read align-

ment. Most of the linear reference read aligners follow a
seed-and-extent paradigm, wherein exact matching sub-
strings (seeds) between the read and a reference are
used to constrain a local alignment. To efficiently search
for exactly matching substrings (seeding), indexing data
structures are used. The construction of these indexes
generally relies on one of two methods: hashing-based
indexing, which can either be k-mer-based where all sub-
strings of length k of the reference are stored in a hashmap
along with their positions [10, 11]; fingerprinting-based
hashing which allows for finding candidate alignment

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-01963-y&domain=pdf
mailto: M.J.T.Reinders@tudelft.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Mokveld et al. Genome Biology (2020) 21:65 Page 2 of 16

positions as a nearest neighbor search approximating the
Jaccard set similarity usingMinHash [12, 13]; and sorting-
based methods such as the Burrows-Wheeler transform
(BWT) [14, 15], where the reference sequence is trans-
formed into a self-index that supports the lookup of
exact-matching substrings of arbitrary length.
Existing indexing methods can be extended to popula-

tion graphs, though this is challenging. Graphs can encode
a variable number of genomes, which comes with an expo-
nential growth of the number of paths in the graph as
more variation is integrated. Arbitrary length sequence
indexing is therefore highly challenging, and indexing
must generally be limited to shorter substrings to min-
imize combinatorial growth of the index. Additionally,
sorting-based indexing methods that rely on suffix deter-
mination and ordering are often infeasible in graphs since
there will be multiple valid node orderings.
Several approaches have been developed that perform

read alignment onto population graphs using indexes
that report all k-length paths in the graph. Early exam-
ples of this include the following: GenomeMapper [16],
which builds a joint k-mer hash map combining a col-
lection of genomes to lookup seeds and subsequently
align reads, using banded dynamic programming; BWB-
BLE [17], which linearizes the population graph using
IUPAC encoding for SNPs and describes indels with flank-
ing sequences as alternate contigs, after which it applies
the BWT for indexing. In Satya et al. [18], they generate
an enhanced reference genome from HapMap SNP-chip
calls, wherein variants are encoded in read length seg-
ments used as alternative alignment targets alongside the
reference genome. These methods are, however, orders of
magnitude slower than linear reference genome aligners
or restricted to only small genomes. For instance, BWB-
BLE computes four times more suffix array intervals due
to the expanded IUPAC alphabet. Moreover, these meth-
ods suffer from exponential growth in index space when
variation density increases.
Increased scalability of population graph alignment

has recently been demonstrated with Graphtyper [19],
GraphAligner (designed for long reads) [20], the variation
graph toolkit vg [21], and HiSat2 [22]. Graphtyper does so
by first aligning reads to a linear reference sequence using
BWA (as such, there remains implicit reference bias), after
which a graph-based alignment is performed on a much
smaller set of unaligned or partially aligned reads. For this
graph alignment, it uses a k-mer hash map of the popula-
tion graph, wherein exponential growth in variation-dense
regions is reduced through the removal of k-mers that
overlap too many alternative sequences. GraphAligner
utilizes minimizers, maximal unique matches, or maximal
exact matches to seed read to graph alignments. Seeds are
extended and aligned using a bitvector-banded dynamic
programming algorithm for both acyclic and arbitrary

cyclic graphs. The vg toolkit provides general solutions
for working with population graphs. To efficiently query
substrings, it utilizes GCSA2 indexing [23], an extension
of the BWT for population graphs, which supports exact
query lengths of up to 256 bp. Reads are aligned to graphs
using a seed-and-extend strategy, returning subgraphs of
the population graph to which reads are subsequently
aligned using partial order alignment, a generalization of
pairwise sequence alignment for directed acyclic graphs
[24]. HiSat2 generates a global graph FM index along with
multiple smaller region-specific graph FM indexes. This
index builds upon the GCSA [25], the precursor of the
GCSA2 index utilized by vg.
Graphtyper and vg index all possible paths in a pop-

ulation graph, in which they also cover complex regions
where the variation is dense. To deal with this, heuristics
are utilized to prevent exponential growth. Such heuristics
either remove k-mers that cross over more than a pre-
defined number of edges or mask out subgraphs shorter
than a set number of bases. Techniques as these do
prevent exponential growth, but can completely remove
complex regions in the graph, resulting in a loss of sen-
sitivity in alignment. Furthermore, they contradict one of
the main aims of population graphs, namely to address
sequence variation in regions that are inaccessible through
the application of a single reference sequence. Similarly,
HiSat2 filters rare variants from the graph, effectively
reducing the complexity of the graph, but also at the cost
of addressing less sequence variation. An alternative solu-
tion that does not exclude complex regions, would be to
constrain indexing by haplotype, so only k-mers observed
in the linear genomes are encoded in the index. While
the above heuristics are also used in vg, the authors of
vg have recently also proposed the use of haplotyping.
In vg, such haplotyping is facilitated using the GBWT
[26–28]. The GBWT is a graph extension of the posi-
tional Burrows-Wheeler transform [29] that can store the
haplotypes of samples as paths in the graph, allowing
for haplotype-constrained read alignment. However, note
that the GBWT index is build alongside the GCSA2 index
which will still require an evaluation of all k-paths in the
graph (that will ultimately be pruned using the GBWT
index). So, although vg+GBWT indeed incorporates hap-
lotype constraints when aligning reads, during indexing,
the complexity is still dictated by the GCSA2 indexing
which explores all k-paths and thus grows exponentially
with the amount of variations.
We present CHOP, an alternative path indexer for

population graphs, that utilizes haplotype-level informa-
tion to constrain the process of path indexing without
the need for heuristic filtering or pruning steps. This
constraint eliminates the need to evaluate all k-paths
and avoids the exponential growth in k-paths that other
methods run into. CHOP decomposes the graph into a

Mokveld et al. Genome Biology (2020) 21:65 Page 3 of 16

set of linear sequences, similarly as in [18, 30], such that
reads can be aligned by long established aligners, such as
BWA or Bowtie2 [31, 32], which can then be followed up
by typical downstream analysis. We show that the align-
ment performance of BWA when using CHOP performs
comparably to vg, but that with CHOP, alignment is
faster and can scale more effectively to graphs build from
human genomes with variation data of the 1000 Genomes
Project [33].
In summary, the contributions of our work are as fol-

lows: (1) CHOP decomposes a population graph into
mappable sequences representing all observed haplotypes
with which the population graph was built; (2) the hap-
lotype constraint is implemented in such a way that any
exponential exploration of the graph is avoided, eliminat-
ing the need to filter or prune the graph in any way so that
the complexity is bounded by the number of encoded hap-
lotypes (instead of the number of variants or k-paths in the
graph); (3) the decomposition of the graph can be done in
a time- and memory-efficient way, keeping indexing time
and memory low; and (4) by decomposing the graph into
mappable sequences, it is possible to use standard aligners
to map reads, with which one can benefit from fast align-
ment times as well as buildup experience with parameter
settings of these aligners.

Results
Throughout, we consider population graphs constructed
from variations called per sample (haplotype) with respect
to a linear reference genome. These variations are
encoded in the graph such that nodes represent sequences
and edges represent observed consecutive sequences
(the “Methods” section). CHOP facilitates read-to-
graph alignment, which is presented in detail in the
“Methods” section. Briefly, CHOP transforms a popula-
tion graph into a null graph (a graph devoid of edges)
by a series of operations consisting of three steps: col-
lapse, extend, and duplicate, such that nodes in the null
graph contain every substring of length k originating from
the encoded original haplotypes in the population graph.
Established aligners (here we have used BWA) can then
be used to align reads to these null graph node sequences.
Subsequently, these alignments can be projected back
onto the population graph, given that the mapping of
the node sequences in the null graph is known in the
population graph (Fig. 1).

Evaluation graph alignment
To evaluate CHOP, and its applicability in population
graph alignment, we first performed tests on Mycobac-
terium tuberculosis (MTB) using the read aligner BWA-
0.7.15-MEM [31]. MTB represents a good model for
population graphs, given the high accuracy of available
assemblies, the tractable genome size (4.4 Mb), and the

limited degree of variation. Four hundred one variant call
sets (VCF files) from differentMTB strains (samples) were
obtained from the KRITH1 and KRITH2 datasets [34,
35]. Variants were called with respect to the reference
genome H37Rv, using Pilon-1.22 [36], and were filtered
to exclude low-quality variants. For graph construction,
we employed a leave-one-out strategy, wherein 1 sam-
ple was removed from the VCF file containing all 401
samples. The read set of the removed sample was subse-
quently used for graph alignment. This was repeated with
10 randomly selected samples. Corresponding single-end
read sets were obtained from EBI-ENA (Additional file 1:
Section 2). To investigate how the introduction of more
variation influences the graph alignment, we progressively
incorporated more samples (from the complete set) into
the constructed graphs, with up to 17,500 variants in the
400 sample graph (rate of variation growth is shown in
Additional file 1: Figure S2).
As the ground truth of genomic positions in the read

set data is unknown, we evaluated alignments based on
the following criteria: number of mismatches, insertions,
deletions, clipped bases, unaligned reads, and perfectly
aligned reads (definitions in Additional file 1: Section 4).
These criteria allowed us to inspect the behavior of dif-
ferent read aligners. In order to avoid bias induced by
multiple possible alignments for a single read, we only
considered primary alignments.
To evaluate our haplotype-based approach, we com-

pared CHOP to vg-1.12.1 with haplotyping (denoted as
vg+GBWT) and without. The vg toolkit provides gen-
eral solutions for population graphs which include graph
construction, indexing, and read alignments. CHOP was
set to report 101-length haplotype paths (equivalent to
the read length) and used default parameters with BWA-
MEM. vg was set to index all 104-length paths (k = 13,
3 doubling steps), to most closely reflect the settings of
CHOP.
Because CHOP uses BWA as an aligner while vg has

its own internal aligner, differences based on the aligner
and not the indexing algorithm may occur. To under-
stand the aligner- and parameter-induced differences, we
first summarized the results of the ten hold-out samples
on the linear reference genome, shown in Table 1 for
BWA and vg. Both aligners resulted in nearly the same
number of perfectly aligned reads. However, alignments
with vg resulted in fewer unaligned reads (− 22.30%)
and more mismatches (+ 4.01%) than BWA. We attribute
this difference to an increase in sensitivity by which vg
aligns reads. This is reflected by the increase in clipped
bases (+ 22.79%), inserted bases (+ 29.36%), and deleted
bases (+ 34.53%), which allows vg to align shorter read
fragments.
Using these measurements as a baseline, read to graph

alignments were compared between CHOP/BWA and

Mokveld et al. Genome Biology (2020) 21:65 Page 4 of 16

Fig. 1 Schematic overview of how CHOP aligns reads to a population graph. a As input, CHOP accepts a graphical representation of three distinct
haplotypes (I, II, III). Colored paths through the graph identify underlying haplotypes. b CHOP decomposes the graph into a null graph (a graph
devoid of edges) for substrings of length 4 (Additional file 1: Figure S1 gives the full details about the decomposition). The obtained null graph
contains three nodes, and the sequence that is defined on these nodes covers all substrings of length 4 which occur in the haplotypes encoded in
the graph. Annotations above each node refer to intervals within nodes of the input graph. c The reads (with length 4) from a new haplotype (IV)
can be aligned to the null graph; consequently, a mismatch can be called from the read pileup. d Through the attached interval definitions that are
assigned to the null graph, the novel variant can be positioned on node 8 of the original graph. Incorporating this variant results in a new graph

vg. The different graph constructions of CHOP and vg
were found to have minimal effect on alignments as
shown in Additional file 1: Figures S5 and S6. Figure 2
shows the increase in perfectly aligned reads using both
CHOP/BWA and vg as more samples are incorporated
into the graph (similar plots for the number of unaligned
reads and mismatches can be found in Additional file 1:
Figures S7 and S8). Table 1 shows the alignment results for
the MTB graph with 400 samples.

Figure 2 shows that incorporating more variation from
samples into the population graphs increases the number
of aligned bases, which is further demonstrated in Addi-
tional file 1: Figures S7 and S8. Spread is a consequence
of sampling when building the population graphs, where
samples that are closely related to the hold-out sam-
ple will yield greater improvement than distantly related
samples, further demonstrated by the reduction of spread
as sampling size increases.

Mokveld et al. Genome Biology (2020) 21:65 Page 5 of 16

Table 1 Mean of alignment results across all 10 hold-out sample alignments to (1) the reference genome H37Rv (H37Rv columns) and
(2) the 400 MTB genomes graph (graph columns) for both CHOP/BWA and vg with and without haplotyping to align the reads (note
that when aligning only to H37Rv, CHOP is not used)

All TB hold-out samples, read length = 101

Alignment criteria
BWA CHOP/BWA vg vg vg + GBWT HiSat2 HiSat2

H37RV Graph (n = 400) H37RV Graph (n = 400) Graph (n = 400) H37RV Graph (n = 400)

Reads aligned 6,160,920 6,162,033 (+ 0.018%) 6,241,270 6,245,907 (+ 0.074%) 6,244,004 (+ 0.044%) 5,536,194 5,489,149 (− 0.850%)

Reads unaligned 360,236 359,123 (− 0.309%) 279,886 275,249 (− 1.657%) 277,152 (− 0.977%) 984,962 1,032,007 (+ 4.776%)

Reads perfectly
aligned

4,048,774 4,142,052 (+ 2.304%) 4,048,774 4,153,217 (+ 2.580%) 4,153,124 (+ 2.577%) 4,056,850 4,113,818 (+ 1.404%)

Bases aligned 596,380,132 596,611,260 (+ 0.039%) 599,244,753 599,601,399 (+ 0.060%) 599,528,267 (+ 0.047%) 553,338,901 548,757,802 (− 0.828%)

Bases unaligned 62,191,423 61,960,355 (− 0.372%) 59,307,655 58,949,429 (− 0.604%) 59,023,102 (− 0.480%) 105,271,191 109,852,201 (+ 4.352%)

Bases unaligned
from clipped reads

22,349,569 22,380,472 (+ 0.138%) 27,442,533 27,690,552 (+ 0.904%) 27,575,464 (+ 0.484%) 3,625,336 3,589,573 (− 0.986%)

Bases mismatched 3,458,029 3,308,480 (− 4.325%) 3,596,667 3,458,707 (− 3.836%) 3,455,296 (− 3.931%) 2,164,703 2,029,911 (− 6.227%)

Bases inserted 65,210 65,151 (− 0.090%) 84,358 85,938 (+ 1.874%) 85,397 (+ 1.232%) 26,674 26,763 (+ 0.334%)

Bases deleted 52,272 51,165 (− 2.118%) 70,324 72,082 (+ 2.500%) 70,347 (+ 0.033%) 11,793 11,756 (− 0.317%)

Non-primary
alignments

246,092 246,540 (+ 0.182%) 539,309 724,904 (+ 34.414%) 724,613 (+ 34.360%) 969,452 755,436 (− 22.076%)

Time (s) 533 721 10,711 4457 4540 312 517

Fig. 2 Perfectly aligned read count for SRR833154 alignments to different sized population graphs, containing between 0 (only H37Rv, the linear
reference) and 400 samples for both, when using CHOP/BWA and vg with and without haplotyping to align reads to the graph

Mokveld et al. Genome Biology (2020) 21:65 Page 6 of 16

By comparing vg and vg+GBWT, the effects of haplo-
typing can be observed, noting a drop in the number of
aligned reads. This is to be expected as the index space has
been constrained to only the haplotypes.
The baseline alignments to H37Rv already highlighted

that the aligners perform differently. However, through-
out the course of the experiments, nearly all alignment
criteria show the same trend for both CHOP/BWA and
vg. The exception being the number of unaligned reads,
which steadily decreases with vg, whereas this is not as
pronounced when using CHOP/BWA. To better disentan-
gle the aligner-specific differences of CHOP/BWA and vg,
we directly compared CHOP and vg+GBWT by aligning
to the CHOP null graphs using vg (denoted as CHOP/vg),
as described in Additional file 1: Section 7. We found that
althoughwe do observe differences in alignments between
CHOP/BWA and vg+GBWT, these are merely caused by
differences in the aligners. This was confirmed when com-
paring vg+GBWTwith CHOP/vg which has shown nearly
identical alignments (Additional file 1: Table S2). Alter-
natively, the alignment differences between CHOP/BWA
and vg+GBWT could be minimized by optimizing the
parameters of the aligners, as we used only default settings
for both.
In a similar setting, we compared to HiSat2 (Addi-

tional file 1: Section 8), results shown in Table 1.
While HiSat2 aligns much faster than CHOP/BWA
and vg(+GBWT), this can be attributed to its lower
sensitivity, having far more unaligned reads in both
the baseline and the graph alignments. Surprisingly,
the number of unaligned reads increases in the graph
alignments with respect to the linear genome, while
the number of non-primary alignments decreases. This
may indicate that not all sequence in the graph is
indexed.
Together, these experiments clearly show that when

increasingly more genomes are populating a variation
graph, (1) more reads can be aligned (with fewer mis-
matches), (2) constraining the alignment by haplotype
does not adversely affect alignment, and (3) that both
haplotype constrained aligners (CHOP and vg+GBWT)
perform similarly (as expected).

CHOP scales to Homo sapiens
To further evaluate scalability and sensitivity of CHOP,
we used chromosome 6 (170 Mb) of the GRC37 assembly
in combination with the 1000 Genomes phase 3 vari-
ation data [33]. The constructed graph has 14,744,119
nodes and 19,770,411 edges and encodes a total of
5,023,970 variants (4,800,102 SNPs, 97,923 insertions, and
125,945 deletions). Note that the variation set included
diploid phasing of 2504 individuals, which was incorpo-
rated into the graph as 5008 paths (2 paths per sam-
ple), and additionally 1 path that represents the reference

genome. Within the population, most variation (58.42%)
is shared between at least 2 or more samples (Addi-
tional file 1: Figure S9). We used 15 single-end read sets
from the 1000 Genomes phase 3 for the graph alignments
(Additional file 1: Table S4) that were filtered to include
only reads aligned to chromosome 6 or that could not be
aligned anywhere on the genome (average read set size of
3,026,069).
CHOP was set to report 100-length paths through the

graph to match the read length, which yielded 11,359,686
nodes inGE . The memory usage and time taken for index-
ing were dominated by CHOP, BWA indexing account-
ing for only 6.95% of indexing time and a fraction of
memory required. We attempted indexing with vg and
vg+GBWT for paths of up to 104 bp (k = 13, 3 doubling
steps), but this did not finish due to memory constraints
(500 GB). Instead, doubling was lowered to 2, and paths
up to 52 bp were indexed. By incorporating haplotyping
in vg, the indexing requires substantially more time (6×
longer) than indexing without haplotyping, whereasmem-
ory usage remains constant. The read sets were aligned
to both the linear reference of chromosome 6 and the
graph representation, using either CHOP/BWA, vg, or
vg+GBWT, which is summarized in Table 2.
We observed the same improvement of moving to a

graph representation as inMTB, althoughmore extensive,
given that more variants, including indels, are incorpo-
rated into the graph.
Given the different path lengths used, time cannot

directly be compared between CHOP/BWA and vg. Nev-
ertheless, it is unclear why vg took substantially more
time to align than CHOP/BWA, especially when align-
ing to the linear reference. Differences (relative to MTB)
between vg and vg+GBWT have become more promi-
nent, given that more samples are incorporated within
the graph. Note that vg+GBWT is slower than vg in
both indexing and alignment. This is because the GBWT
index, used in vg+GBWT, is build and used alongside
the GCSA2 and xg indexes that are already present in
vg. The gain of the GBWT index is therefore primarily
to correct the alignment process by adding the haplotype
constraints.
We observed substantial differences between

CHOP/BWA, vg, and vg+GBWT with respect to the
decrease of unaligned reads − 0.23% versus − 12.06% and
− 9.69%, and the increase in read clipping + 2.46% versus
23.46% and 19.89%, respectively. To evaluate this aligner-
induced difference, we extracted all reads that aligned
exclusively onto the graph, which amounted to 21,661
reads in CHOP/BWA and 616,900 in vg. Additional file 1:
Figure S10 displays the distribution of the number of
aligned bases for each of those reads. Nearly all (97.61%)
of the newly aligned reads by vg had a length of between
15 and 30 bases, either induced by clipping or extensive

Mokveld et al. Genome Biology (2020) 21:65 Page 7 of 16

Table 2 Mean of alignment results from 15 samples from the 1000 Genomes data when aligning to (1) the reference genome
sequence of chromosome 6 (column GRC37) and (2) the population graph created from the 5008 haplotypes, for both CHOP/BWA and
vg with and without haplotyping

1000 Genomes samples, read length = 100

Alignment criteria
BWA CHOP/BWA vg vg vg + BGWT GraphAligner GraphAligner

GRC37 Graph (n = 2504) GRC37 Graph (n = 2504) Graph (n = 2504) GRC37 Graph (n = 2504)

Reads aligned 2,542,399 2,543,522 (+ 0.044%) 2,684,925 2,726,051 (+ 1.532%) 2,717,972 (+ 1.231%) 2,664,609 2,630,670 (− 1.274%)

Reads
unaligned

483,670 482,548 (− 0.232%) 341,144 300,018 (− 12.056%) 308,098 (− 9.687%) 361,460 395,399 (+ 9.389%)

Reads perfectly
aligned

1,794,564 1,977,952 (+ 10.219%) 1,807,158 1,993,967 (+ 10.337%) 1,993,469 (+ 10.310%) 1,789,327 1,950,435 (+ 9.004%)

Bases aligned 251,122,992 251,516,725 (+ 0.157%) 254,518,323 255,911,471 (+ 0.547%) 255,578,370 (+ 0.416%) 258,684,466 256,773,126 (− 0.739%)

Bases
unaligned

51,439,949 51,070,534 (− 0.718%) 48,029,518 46,654,663 (− 2.863%) 46,995,159 (− 2.154%) 41,030,266 43,649,514 (+ 6.383%)

Bases
unaligned
from clipped
reads

1,801,947 1,846,687 (+ 2.483%) 12,716,162 15,699,089 (+ 23.458%) 15,245,035 (+ 19.887%) 203,221 177,659 (− 12.578%)

Bases
mismatched

1,270,981 969,087 (− 23.753%) 1,198,917 953,800 (− 20.445%) 940,371 (− 21.565%) 4,681,045 3,931,955 (− 16.003%)

Bases inserted 43,979 19,661 (− 55.296%) 59,078 40,786 (−30.962%) 33,391 (− 43.480%) 2,541,719 1,925,093 (− 24.260%)

Bases deleted 61,659 32,355 (− 47.526%) 73,131 44,555 (− 39.075%) 41,040 (− 43.882%) 464,085 415,508 (− 10.467%)

Time
alignment (s)

544 1807 19,996 10,436 10,871 916 2102

Memory
alignment (MB)

412 5534 837 3296 4389 3047 14,446

Time indexing
(s)

186 CHOP, 43,625; BWA, 3256 37 5751 33,619 NA NA

Memory
indexing (MB)

245 CHOP, 56,969; BWA, 3813 269 45,670 45,868 NA NA

base insertion/deletion. However, from 30 bases and up,
the aligners display very similar profiles, with a compara-
ble number of newly aligned reads. At 69 bp, both aligners
display a peak, the newly aligned reads corresponding to
this peak all align to the same region in the graph. This
region closely resembles human mitochondrial DNA,
which was excluded from the initial reference align-
ments. This has led to an increased number of unaligned
mitochondrial sequencing reads in the dataset that were
aligned to the graph (Additional file 1: Section 11).
By simulating read data of chromosome 6, we mea-

sured the accuracy of alignments to graphs and lin-
ear references. We observed that by building graphs
from subsets of available variants (selected based on
allele frequency in the population), alignment perfor-
mance could be improved (Additional file 1: Section 12).
We observed similar improvements when aligning reads
to a graph build from the alternate alleles of the
MHC region of chromosome 6 (Additional file 1:
Section 13).
Additionally, we compared CHOP/BWA to Graphtyper

(Additional file 1: Section 14). As the main purpose of

Graphtyper is genotyping and variant calling (and thus
does not output alignments), we also called variants from
the CHOP/BWA alignments. Although Graphtyper did
not detect any new variants when aligning reads from
sample HG00308 to the 1000G chromosome 6 graph, it
did genotype variants (144,800 out of 5M, after filtering).
Contrarily, CHOP/BWA did detect 1212 variants from
which 57 remained after quality filtering. Note that variant
calling the CHOP/BWA output was more than 2 orders of
magnitude faster than Graphtyper, while using an order of
magnitude less memory.
We failed to index the graph with HiSat2 due to extreme

memory usage (200 GB within 709 s) and concluded that
it does not scale to population graphs of this complex-
ity (Additional file 1: Section 8). We also compared to
the long read aligner GraphAligner (Additional file 1:
Section 15), and the results are shown in Table 2. Note
that GraphAligner is optimized for long reads and could
generate suboptimal results when short reads are uti-
lized. GraphAligner was able to index and align to the
1000G chromosome 6 graph, with alignment times close
to CHOP/BWA. The alignment statistics do, however,

Mokveld et al. Genome Biology (2020) 21:65 Page 8 of 16

similar as in the case of HiSat2 for MTB, show a counter-
intuitive decrease in the number of aligned reads when
aligning to the 1000G graph instead of the linear genome.
To better grasp the practical limitations of CHOP,

we indexed the previously introduced graphs for vary-
ing k values (Additional file 1: Section 16), where we
note an approximately linear growth in indexing time
and memory usage. Additionally, we further compared
CHOP and vg+GBWT using simulated variation graphs
with varying degrees of variation, the number of encoded
genomes, and shared variation between genomes under
set memory and time constraints (Additional file 1:
Section 17). Figure 3 highlights the differences in indexing
time of CHOP and vg+GBWT for simulated graphs with
samples that encode 1000 variants each. We show that
CHOP indexes faster andmore efficiently than vg+GBWT
and could handle more complex graphs (CHOP could
index 92.75% of all simulated graphs, whereas vg+GBWT
managed to index 79.28%).
Finally, we performed alignments to the full human

genome. We constructed graphs of each chromosome
encoded with the variants as reported by the 1000
Genomes Project phase 3. Cumulatively, these graphs
have 248,677,280 nodes and 33,3561,973 edges and
encode a total of 84,745,123 variants (81,382,582 SNPs
and 3,362,541 indels). We indexed the graphs with
both CHOP for 100-length paths and with vg+GBWT
for 52-length paths; the peak memory usage and time
required for indexing are reported in Fig. 4. Note that

chromosomes 1, 2, 11, and X could not be indexed with
vg+GBWT, due to the graph complexity (at times more
than 50 variants in a 50-bp window) leading to exces-
sive memory usage (> 500 GB) or disk usage (> 6 TB),
more details in Additional file 1: Section 18. To be able
to handle these chromosomes, the graphs would have
to be simplified prior to indexing. Indexing with CHOP
yielded 103,509,254 nodes in GE , which increased the
total sequence space by 14×. We again used BWA and
aligned the sample ERR052836 to both the linear reference
genome and the graph, where we noted a 2–3× (13,704
to 37,826 s) increase in read alignment time to the graph
with respect to the linear genome.

Variation integration
As graphs span a larger search space, we investigated how
this affects read alignment and variant calling. Theoreti-
cally, encoding more distinct sequences in a graph should
enable alignment of more reads and potentially allow new
variants to be called. To evaluate this, variants were inte-
grated using a feedback loop. First SRR833154 reads were
aligned to H37Rv using BWA, then variants were called
using Pilon. Variants were quality filtered down to 838
SNPs and then used to construct a graph with H37Rv
(now thus including two genomes). The same set of reads
was then aligned onto the graph, and variants were called.
We expected that the additional context offered by the
graph would point to previously undiscovered variants.
An example of this is schematically shown in Fig. 5a; in

Fig. 3 CHOP and vg+GBWT indexing time (s) of graphs with increasingly more encoded samples, where each sample contributes 1000 variants to
the graphs. The coloring indicates different probabilities of sharing variants within the simulated population. For instance with a probability of 5%,
95% of all sample variation will be unique to that particular sample, while the remainder is shared with 1 or more other samples. Missing points in
the plots indicate that the indexing failed by either exceeding 4 h of compute time or peak memory of 80 GB. More details can be found in
Additional file 1: Section 17

Mokveld et al. Genome Biology (2020) 21:65 Page 9 of 16

Fig. 4 Peak memory footprint and time required for indexing the human chromosomes using CHOP and vg+GBWT. Chromosomes are ordered
according to the relative differences between CHOP and vg+GBWT. Chromosomes 1, 2, 11, and X are crossed out for vg given that these ran out of
memory constraints (> 500 GB) or disk space constraints (> 6 TB)

Additional file 1: Figure S19, we show an example of such
newly aligned reads.
Integrating variants in a graph (Fig. 5b) and realigning

reads to the graph allowed reads to follow a path within
the graph that best matches. This in turn allowed for reads
that previously were not able to align now to be aligned
(Fig. 5c). As a result, 19 (+ 2, 26%) new high-quality vari-
ants could be called from these new aligned reads.

Discussion
Population reference graphs have the potential to improve
sequencing analyses by taking into account within-species
genetic diversity during the process of aligning sequencing
reads. This can potentially improve various downstream
analyses, like variant calling.
A challenge for aligning reads to a graph efficiently is to

find exact matching seeds of a fixed length k that can span
the edges of the graph. Searching through an enumeration
of all possible k-length paths in the graph is computa-
tionally challenging as the exponential growth of paths
adversely affects thememory footprint as well as the align-
ment time. This puts practical limits on the variation that
can be encoded in the population graph. We suggest the
use of haplotype information to constrain this exponential
growth. Doing so, the genetic linkage between neighbor-
ing variants can be exploited to counter, not only the com-
putational problems, but also the number of false-positive
matches that arise due to unobserved combinations of
variants (variants encoded on different alleles). Recently,
[37] has proposed an alternative approach to circumvent

the computational challenge of exponential path growth
in graphs by combining a graph index with read chunk
indexes, exploiting the limited k-mer space of reads rel-
ative to that of the graph. It will certainly be interesting
to see how a haplotyping approach can be combined with
this method.
Here, we introduced CHOP, a method which converts

a haplotype-annotated population graph into a set of
sequences that covers all observed k-paths. It does this
by transforming the population graph into a null graph (a
graph devoid of edges) such that every observed k-path is
represented in 1 of the resulting unconnected nodes. As
the resulting set of sequences (the null graph) is a com-
pressed representation of all k-paths through the graph,
it becomes feasible to use values for k that are equal to
the length of typical NGS reads (e.g., 100 to 150). For this
reason, an additional advantage of CHOP is that any NGS
read aligner (e.g., BWA or Bowtie) can be used to align
reads onto the created null graph. As every position in the
null graph can be translated back to a position in the initial
population graph, we can effectively perform scalable read
to graph alignment. The advantage of CHOP over existing
graph-based alignment approaches is that we propose a
solution to incorporate the haplotype constraint through-
out the whole procedure and thus truly do not suffer from
a combinatorial explosion of possible paths as our com-
plexity is bounded by the number of haplotypes encoded
in the graph. Through this solution, CHOP does not have
to rely on filtering or pruning the graph in any way to scale
to complex population graphs.

Mokveld et al. Genome Biology (2020) 21:65 Page 10 of 16

With CHOP, we followed an approach more closely
related to string/overlap graphs, instead of a de Bruijn
graph (DBG) approach, as they can better handle cycles
induced by repetitive sequence. There is a key difference
with a (compacted) DBG approach as a DBG is always
constructed for a fixed value of k. To keep the index man-
ageable, this k value needs to be relatively small. However,
for a small value of k (commonly ∼ 15 is being used),
the resulting DBG will contain cycles that are introduced
by repeated k-mers. These cycles prevent parts of the
genome/graph to be addressed uniquely. This, while the
input data structure (the variation graph), has no ambi-
guity whatsoever. Representing the variation graph as a
DBG, therefore, inevitably causes a loss of information.
To further clarify this difference, we can state that with
CHOP, every position in the variation graph maps to at
least one unique position in the index (null graph), while
with a DBG approach, multiple positions in the variation
graph can map to the same position in the DBG, also
exemplified in Additional file 1: Figure S20. The size argu-
ment for DBGs follows from the fact that these repeated
k-mers are stored only once, which is exactly what intro-
duces the ambiguity in the first place. Therefore, the
higher the compression rate, e.g., using bloom filters,
the more ambiguity is introduced in the representation.
Bloom filters are probabilistic data structures that balance
the need to store these very large hash tables against the
integrity of the resulting representation (as they allow for
colliding hash functions, e.g., edges in the DBG). Although
these representations are a computational answer to the
need to store and query very large hash tables (e.g., DBGs
with “large” k values), they actually further impair the rep-
resentation of the underlying variation graph by allowing
for non-existent edges.

We have shown that read alignment using CHOP in
combination with BWA (CHOP/BWA) easily scales to
the whole human genome, encompassing all 84,745,123
variations reported by the 1000 Genomes Project (2504
individuals). The memory footprint of CHOP per human
chromosome is less than 80 GB and takes under 50,000 s.
Furthermore, we have shown that graph indexing and

alignment with CHOP/BWA resulted in more aligned
bases compared to aligning to the linear reference
genome. Also, we found that the number of aligned bases
grows proportionally with the number of incorporated
variants (samples). Interestingly, the amount of sequence
required to store the resulting compressed k-paths grew
faster than the time needed to perform the alignments.
We attribute this to an increase in the number of exact
matching reads, which decreases the need for extending
initial seeds during the alignment, which is a computa-
tionally demanding task.
We extensively compared CHOP/BWA to vg, which is

the current state-of-the-art toolkit for working with pop-
ulation graphs and includes a read alignment module.
Vg uses GCSA2 indexing, an extension of the BWT for
population graphs, supporting exact query lengths of up
to 256 bp. Recently, vg has been expanded to facilitate
haplotype-constrained alignment using the GBWT index,
a graph extension of the positional Burrows-Wheeler
transform. Note however that vg still requires the con-
struction of the GCSA2 index together with the GBWT
to perform haplotype-constrained alignment, which still
risks the exponential growth of paths while indexing, an
issue that does not occur with CHOP.
When comparing read alignments of CHOP/BWA with

vg and vg with haplotyping (vg+GBWT) on population
graphs of both Mycobacterium tuberculosis (MTB) and

Fig. 5 a Schematic alignment of SRR833154 reads to the reference R, H37Rv, with subsequent variant calling detecting five high-quality SNPs in this
particular region. b These and all other SNPs across the genome are integrated with the reference into graph G, followed by the alignment of the
same reads. c Reads that previously did not align to R, now align onto a haplotype of the graph G. Formation of a pileup allows for the detection of
four new variants in this region

Mokveld et al. Genome Biology (2020) 21:65 Page 11 of 16

humans, we found very similar alignment results, as
expected. However, compared to CHOP/BWA, alignment
took five to six times longer with vg(+GBWT). Further-
more, CHOP scaled better with complex graphs, which we
have shown by indexing and aligning to a graph of the full
human genome. Although vg and vg+GBWT were able to
index most of the chromosomes, this was only when we
adapted path lengths of k = 52, which is approximately
half the length of CHOP k-paths. Then, still for a few com-
plex chromosomes, indexing failed using vg. Moreover,
we have shown CHOP’s scalability up to k = 300 for this
particular graph (Additional file 1: Figure S14).
Our comparisons with HiSat2 and GraphAligner has

shown that HiSat2 does not scale to the human variation
graph encoding all 1000G variants, whereas GraphAligner
does. We should report here that HiSat2 has been shown
[38] to scale to human by first making a preselection of
the variants that are included in the graph, which also
reduces the number of false-positive alignments. CHOP
eliminates the need for prefiltering variants leaving more
freedom for users to make this decision or, otherwise,
drastically increasing the number of genomes with high-
fidelity variants in the variation graph. Moreover, for both
HiSat2 and GraphAligner (possibly attributable to its opti-
mization for long reads), the alignment results are not in
agreement with those of vg(+GBWT) and CHOP/BWA.
Interestingly, the read alignment results did not dif-

fer much between a haplotype-constrained aligner and
a non-haplotype-constrained aligner. This can be best
observed when comparing vg with vg+GBWT, because
they utilize the same aligner and parameters. Although,
the number of aligned reads increases by 1.5% when con-
sidering all k-paths (vg) in the human population graph
with respect to the linear reference genome, as opposed
to an increase of 1.2% when considering haplotype-
constrained k-paths (vg+GBWT). Inspection of the addi-
tionally aligned reads seems to indicate that most of these
alignments are the result of spurious matches induced
by unsupported sequence combinations. Altogether, this
seems to suggest that indexing all possible k-paths does
not add much value while at the same time increas-
ing the chance of false-positive alignments. Note that
non-haplotype-constrained alignment might still be use-
ful when one expects that the genome to be aligned is
more distant to the encoded genomes in the variation
graphs, and consequently, recombined haplotypes could
guide the alignment.
The advantage of limiting k-paths to observed hap-

lotypes is further supported by our observation that
population graph alignment improves with respect to
a linear reference genome when not all observed vari-
ation is incorporated into the graph (Additional file 1:
Section 12). Our simulations on a 1000G sample has
shown that improved read alignments (as identified by

a reduced number of false-positive/negative alignments)
can be achieved when the allele frequency of a variant is
considered when building the population graph. Simply
put, if the frequency of a variant increases, it is more
beneficial for read alignment to incorporate such variants
in the population graph, at a minimal cost of introducing
false positives. Note that rare variants within a sample can
still be called after the reads are mapped to the graph; they
are just not used when building the population graph.
Graphs that serve as input to CHOP should encode

phased variant calls. While this information is not typi-
cally encoded in variant call formats, it is required at only
short ranges (related to the value for k) and should be
readily be available from typical sequencing experiments.
In our experiments, the complexity of incorporated vari-
ation was limited to SNPs and small indels. Therefore,
the benefit of a population graph on increasing the num-
ber of aligned reads was limited, since the identification
of SNPs and small indels are well identifiable using a lin-
ear reference genome. However, CHOP is not restricted
to graphs constructed from variant calls but can han-
dle any acyclic sequence graph, e.g., as generated from
multi-whole-genome alignments or haplotype-aware de
novo assembly algorithms [39, 40] (Additional file 1:
Section 13). Consequently, both short (SNPs/indels) and
long range (structural variants) haplotypes can be incor-
porated in the graph and in the resulting index. Incorpo-
rating larger structural variations will lead to more sub-
stantial improvements. One should realize, however, that
incorporating structural variation increases the amount of
repeated sequence in the graph, e.g., the incorporation of
mobile element insertions and repeat expansions, which
will lead to an increase in ambiguously aligned reads.
CHOP does not directly support long reads or paired

reads. Long reads, with k typically exceeding > 10 kbp,
will still lead to an intractable number of haplotype-
constrained k-paths. However, the alignment of long reads
generally depends on the detection of short seeds in the
first place, which can easily be extracted from the com-
pressed representation of k-paths generated by CHOP.
Hence, long read alignments may be seeded, where a sub-
graph can be extracted (based on the seeds) and aligned
to with partial order alignment. Alternatively, the heav-
iest weighted sub-path can be extracted from the graph
[41], followed by a typical sparse alignment on that linear
sequence. For paired reads, reads are aligned to discrete k-
paths, where an aligner such as BWA cannot directly mea-
sure the distance between any distinct k-path. Note that
read pairing should be possible based on the haplotyped
paths in the graph, namely, that the distance between any
two nodes in the graph will follow a distribution of dis-
tances (of each reachable haplotype) and that this enables
the evaluation of read pairs during read alignment (in a
stand-alone aligner) or as a post-processing step.

Mokveld et al. Genome Biology (2020) 21:65 Page 12 of 16

In a comparison with Graphtyper, we have shown that
by using CHOP/BWA, we were able to detect new vari-
ants when aligning reads to the 1000G variation graph,
whereas Graphtyper is able to genotype variants in a
large population. Finally, we have shown that by itera-
tively integrating aligned sequencing reads derived from
one genome to the linear reference genome using the
graph representation improves variant calling. Aligning
additional reads led to the additional calling of variants,
which subsequently could be merged with the built pop-
ulation graph, reiterating the whole process (multiple
times). This application of population graphs is similar to
iterative realignment methods, such as ReviSeq [42], but
is solved in a more general way when using population
graphs as the starting point.

Methods
Population graph definition
Population graphs were constructed given existing refer-
ence genomes and sets of variations, called from linear
reference alignments (Additional file 1: Section 5). Nodes
within graphs are labeled, encoding genomic sequences
that may be shared within multiple haplotypes, which
are in turn connected by directed edges. Traversing a
sequence of edges, i.e., a path, will describe either a mix-
ture of haplotypes or an observed haplotype within the
graph.

Population graph specification
A population graphG = (V ,E) is defined as a set of nodes
V = {v0, . . . , vN }, where N = |V |, and a set of edges E.
Each of these edges is an ordered pair of nodes (u, v) ∈ E,
where node u ∈ V is connected to node v ∈ V . As G
is a directed graph, it holds that for any edge (u, v) ∈ E,
(u, v) �= (v,u).
For each node v ∈ V , the in-degree, in(v), is defined as

the number of incoming edges to that node, i.e., the num-
ber of distinct edges (u, v) ∈ E for any u ∈ V . Conversely,
the out-degree of node, v, out(v), is defined as the number
of outgoing edges from that node.
Every node, v, is assigned a sequence of characters, S,

consisting of the alphabet � = {A,T ,C,G}, such that
vS = S [0, n − 1], wherein S[i]∈ � for all i, and the length
of the sequence, n, is defined as n = |vS|. The range of
any such sequence for any node, v ∈ V , lies between
1 ≤ |vS| ≤ L, where L is the length of the largest recorded
sequence. Any substring of a sequence, S, is denoted as
S

[
i, j

]
. Two types of substrings in particular are prefixes

S[0, j] and suffixes S[i, n−1], which describe the left and
right flanks of any sequence S, respectively.
A path, P, where P = u0 · · ·uq−1, is any consecutive

series of nodes (ui, ui+1) ∈ E for all i < q, where q = |P|
is the total number of nodes on the path. If a path exists
between any pair of nodes in a graph, it is a connected

graph, i.e., there are no unreachable nodes. The sequence,
S, of a path, PS, is the concatenation of sequences con-
tained in the nodes, such that PS = u0S · · ·u(q−1)S.
Given haplotyping information, the graph G is aug-

mented with a set of haplotypes, H, where H =
{H0, . . . ,Hh−1}, where h = |H| is the number of observed
haplotypes. Every edge (u, v) is assigned a subset of H
denoted as (u, v)H , which describes the haplotypes that
pass through the edge. Each encoded haplotype is rep-
resented by a path traversal through G and may overlap
other haplotypes.
Let GE denote the null graph of G such that GE =(
V ′,∅)

, where V ′ originates from merging nodes in V
(details of which are to follow in the subsequent section).

Constructing the null graph
The purpose of indexing a population graph is to allow for
efficient substring queries on the paths that span across
nodes and edges of the graph (Fig. 6). Given any non-
trivial sized graph, enumerating all possible paths is often
unfeasible, given the exponential nature of traversing all
combinations of nodes and edges.
CHOP constrains queries through a graph to be part of

a haplotype with which the population graph was built.
Hereto, CHOP transforms graph G into a null graph GE

such that every node inGE represents a sequence of length
k or longer and that every substring of length k originat-
ing from the encoded haplotypes in G is also a substring
in a node of GE . Meaning that if sequencing reads are true
error-free samplings of an underlying haplotype and are
of the same length (or shorter) than the chosen value of
k, they should correspond to a substring of a node in GE .
This, in turn, enables the application of any existing read
aligner to place reads onto GE . Through this transforma-
tion of G to GE , all haplotyped paths of at least length k in
the graph are accounted for. The transformation is driven
by three operators: collapse, extend, and duplicate (pseu-
docode is given in Additional file 1: Listing S1), explained
throughout the rest of this section. While the output of
CHOP can depend on the order of these three opera-
tions, we observed no significant difference in runtime or
indexing outcome for different orderings.

Collapse
The first operation to transformG toGE is collapse, which
merges redundant traversals of nodes in the graph. If an
edge (u, v) ∈ E conforms to out(u) = 1 and in(v) = 1,
then any path that traverses u will immediately be fol-
lowed by v. Therefore, it can be considered a redundant
traversal such that the sequence on u and v can be merged
without affecting the number of sequences that can be
spelled by the graph. To do so, sequence and the corre-
sponding intervals of u and v are merged after which the
outgoing edges of v are transferred to u, followed by the

Mokveld et al. Genome Biology (2020) 21:65 Page 13 of 16

Fig. 6 Reporting the haplotyped k-paths in the population graph G transforms it into the null graph GE , here k = 4. a A population graph with
sequence encodings on the nodes. b Indexing of k-paths based on three operations; Collapsing, merging adjacent nodes. Extension, assigning
k-length substrings as prefixes or suffixes between adjacent nodes. Duplication, copying of nodes and redistribution of edges among copies. c The
null graph encodes all 4-length paths in the original graph, coloring of lines and text denote the origin of assigned prefixes (green) and suffixes (red)
(note that colored lines are not edges in the graph)

removal of v and the edge (u, v). We denote this opera-
tion as collapsing, defined as u||v for any edge (u, v) (as
shown in Fig. 6b, pseudocode is given in Additional file 1:
Listing S2). The direction of collapsing is guided by mini-
mizing the number of edge reassignments, such that when
in(u) > out(v), v is collapsed into u, joining the sequence
uS = uS · · · vS. Alternatively, u is collapsed into v, joining
the sequence vS = uS · · · vS.

Extend
After collapsing redundant edges in the graph, a num-
ber of the remaining edges can be addressed with the
extend operation. Extend is based on the observation
that all k-length substrings that span a single edge (u, v),
i.e., substrings that are defined by substrings of both the
sequences of nodes u and v, can be accounted for by join-
ing a k − 1-length substring from one node and assigning
it to the other. This extension of substrings may happen
bi-directionally, namely the k − 1-length right-hand flank
of u is extended as a prefix of v, denoted as u � v, pro-
vided that in(v) = 1 and |uS| ≥ k − 1, or vice versa,
extending the k − 1 length left-hand flank of v as a suf-
fix of u, denoted as u � v, provided that out(u) = 1 and
|vS| ≥ k−1 (pseudocode is given in Additional file 1: List-
ing S3). To illustrate this operation, consider the subgraph
in Fig. 7. Within this graph, both nodes u and v encode
sufficient sequence to allow for extension between the two
and report a k-length overlap, resolving the edge (u, v).
In Fig. 8, a subgraph is shown in which extension is only

possible for a subset of edges: (u,w) and (w, v). This does
not apply for (u, v), as out(u) > 1 and in(v) > 1. This
shows a particular situation where only after resolving
nearby edges, the subgraph can be sufficiently simplified
to resolve all edges. Namely, (u,w) and (w, v) must first be
resolved before (u, v) can be solved by a collapse opera-
tion. Although the order in which substrings are extended
may result in different null graphs, any of these will cover
the same k-length substrings.
Since extension always concerns a k − 1-length prefix

or suffix, any substring of length k that is sampled from
the underlying haplotypes will exclusively correspond to
either the sequence in u or the prefixed sequence in v (or
vice versa). In other words, by extending and subsequently
removing edges in G, we introduce overlapping sequence
as if we were converting G to the repeat-resolved string
graph representation of a joint assembly of all genomes in
G from all possible reads of length k [43].

Fig. 7 A pair of nodes u and v where |uS| ≥ k − 1 and |vS| ≥ k − 1.
Note that extension is only possible by prefixing v with the right-hand
flanking substring of u, given that out(u) > 1. The extension operation
denoted as u � v is defined as vS = uS [|uS| − k − 1, |uS|] · · · vS

Mokveld et al. Genome Biology (2020) 21:65 Page 14 of 16

Fig. 8 Subgraph in which substring extension for k = 4 between (u, v) is not allowed unless either (u,w) or (w, v) is resolved first. Three different
solutions can resolve this subgraph, and each solution is equivalent in k-path space

Duplicate
At times, neither collapse nor extend can be applied to
any of the remaining edges in the graph without introduc-
ing path ambiguity, a situation in which there are multiple
possible candidates to collapse or extend to/from, and
choosing any candidate will block off paths to the remain-
ing candidates. In these situations, graph topology must
be simplified through the third operation, duplicate. The
duplicate operation duplicates a node such that the set of
incoming and outgoing edges are split between the dupli-
cated nodes (pseudocode is given in Additional file 1: List-
ing S4). Duplication allows consequent collapsing, which
in turn enables substring extension, such that after a suffi-
cient number of iterations, all edges in G can be resolved,
either by means of extension or collapsing.
As opposed to methods that aim to track all possible

paths through the graph, we suggest the use of haplotype
information that is modeled on the edges to constrain
the number of necessary node duplications from in(u) ×

out(u) to δ. Where δ is the number of paired incoming
and outgoing edges for u that have at least one inter-
secting haplotype. Note that δ is bounded by the number
of haplotypes encoded in G and that there will never be
more duplications than haplotypes in any one region of
the graph.
To illustrate the idea, Fig. 9 shows a subgraph with hap-

lotypes encoded on the edges. From the haplotyping, we
can derive that not all paths through this graph are sup-
ported by the underlying haplotypes. For example, the
path u → d → f combines sequence segments that
are unsupported (the haplotypes between (u, d) and

(
d, f

)

do not overlap). By excluding these unsupported paths
through the graph, the number of duplications for node d
can be constrained from 6 to 3. This way, the search space
for subsequent k-length substrings is greatly reduced with
respect to reporting all possible paths. Additional file 1:
Figure S1 gives the full details about the transformation
from Fig. 1a to Fig. 1b.

Fig. 9 Subgraph with haplotypes: {1, 2, 3}. Node dmust be duplicated, as no more edges can be removed through extension or collapsing without
introducing ambiguity. By grouping incoming and outgoing haplotypes on d, the number of duplications can be reduced. In the resulting graph,
edges (u, d),

(
v, d′), and

(
w, d′′) can be collapsed. Finally, an extension can be applied to edges (ud, e) and

(
vd′ , e

)
which would lead to the null

graph. Note that the introduction of grayed out edges is prevented using haplotyping; hence, the edge count is reduced from 6 to 3

Mokveld et al. Genome Biology (2020) 21:65 Page 15 of 16

Mapping reads to CHOP’s null graph
Established alignment tools can now be used to directly
align reads to the null graph representation as long as
reads are shorter or equal to k + 1. Because the sequence
modeled on the nodes in GE is now a composition of
sequence originating from adjacent nodes in G, the inter-
vals that gave rise to these compositions need to be
traced in order to convert the alignment of a read to a
node in GE to a path in G. For this reason, during the
transformation from G to GE , the originating node in
G and corresponding offset for each prefixed, suffixed,
or concatenated sequence is stored alongside the actual
sequence. Note that in theory, the defined operations can
also be expressed purely in terms of interval operations,
excluding any sequence. Given the intervals, a mapping
between GE and G is maintained, such that any node in
GE can be traced back to the corresponding path of nodes
in G. As a result, any alignment to a node in GE can also
be traced to a sub-path of this path, effectively enabling
the alignment of reads to graph G by using GE as a proxy
(Fig. 1c).

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13059-020-01963-y.

Additional file 1: Additional information. Contains Notes S1-S21, Figures
S1–S20, Tables S1–S6, and Listings S1–S4.

Additional file 2: Review history.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its
editorial process and peer review in collaboration with the rest of the editorial
team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
JL and MR conceived and supervised the study. TM and JL developed and TM
implemented the method. TM performed the experiments. TM, JL ,and MR
interpreted the results and adapted the methodologies. ZA overlooked the
computational aspects. HH overlooked the biological implications. TM wrote
the manuscript with input from all other authors. All authors read and
approved the final manuscript.

Funding
This work is being funded by the Delft Data Science Center of the Delft
University of Technology, which has no role in the design and execution of the
study as well as the interpretation of the data and writing of the manuscript.

Availability of data andmaterials
The simulated datasets generated during this study and the MHC graph can
be downloaded from Zenodo at https://doi.org/10.5281/zenodo.3632480. The
read data used in the alignments to human graphs are available from http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/ [33]; sample identifiers of
these data are given in Additional file 1: Section 10. The human variant call
data used to construct the graphs are available from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/supporting/vcf_with_sample_level_
annotation/ [33]. The whole-genome assembly of H37Rv used in the MTB
experiments is available from https://www.ncbi.nlm.nih.gov/nuccore/NC_
018143.2. Datasets used for the MTB experiments are from the TB-ARC project

[34, 35]; sample identifiers of the read data are given in Additional file 1:
Section 2. A list of sample identifiers of the variant-called samples used to
construct the graphs can be downloaded from Zenodo at https://doi.org/10.
5281/zenodo.3632480. The source code of the CHOP software is publicly
available in the GitHub repository, at https://github.com/tomokveld/CHOP
[44], and in the Zenodo repository, at https://doi.org/10.5281/zenodo.3631481
[45]. The source code is released under the open source MIT license. It is
written in Python 2.7 and was tested under Linux and Mac operating systems.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Delft Bioinformatics Lab, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands. 2Computer Engineering,
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
3Department of Clinical Genetics, VU University Medical Center, Van der
Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.

Received: 6 March 2019 Accepted: 18 February 2020

References
1. Paten B, et al. Genome graphs and the evolution of genome inference.

Genome Res. 2017;27(5):665–76.
2. Schneider VA, et al. Evaluation of GRCh38 and de novo haploid genome

assemblies demonstrates the enduring quality of the reference assembly.
Genome Res. 2017;27(5):849–64.

3. Degner JF, et al. Effect of read-mapping biases on detecting allele-specific
expression from RNA-sequencing data. Bioinformatics. 2009;25(24):3207–12.

4. Brandt DY, et al. Mapping bias overestimates reference allele frequencies
at the HLA genes in the 1000 Genomes Project phase I data. G3 Genes
Genomes Genet. 2015;5(5):931–41.

5. Li H, Durbin R. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

6. Dilthey A, et al. Improved genome inference in the MHC using a
population reference graph. Nat Genet. 2015;47(6):682–8.

7. Liu Y, et al. Discovery of common sequences absent in the human
reference genome using pooled samples from next generation
sequencing. BMC Genomics. 2014;15(1):685.

8. DePristo MA, et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491.

9. Church D, et al. Extending reference assembly models. Genome Biol.
2015;16(1):13.

10. Alkan C, et al. Personalized copy number and segmental duplication
maps using next-generation sequencing. Nat Genet. 2009;41(10):1061.

11. Rumble SM, et al. SHRiMP: accurate mapping of short color-space reads.
PLoS Comput Biol. 2009;5(5):1000386.

12. Broder AZ. On the resemblance and containment of documents. In:
Proceedings Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171). IEEE; 1997. p. 21–29.

13. Popic V, Batzoglou S. A hybrid cloud read aligner based on MinHash and
kmer voting that preserves privacy. Nat Commun. 2017;8:15311.

14. Ferragina P, Manzini G. Opportunistic data structures with applications.
In: Proceedings 41st Annual Symposium on Foundations of Computer
Science. IEEE; 2000. p. 390–398.

15. Lippert RA. Space-efficient whole genome comparisons with
Burrows–Wheeler transforms. J Comput Biol. 2005;12(4):407–15.

16. Schneeberger K, et al. Simultaneous alignment of short reads against
multiple genomes. Genome Biol. 2009;10(9):98.

17. Huang L, et al. Short read alignment with populations of genomes.
Bioinformatics. 2013;29(13):361–70.

18. Vijaya Satya R, et al. A new strategy to reduce allelic bias in RNA-Seq
readmapping. Nucleic Acids Res. 2012;40(16):127.

https://doi.org/10.1186/s13059-020-01963-y
https://doi.org/10.5281/zenodo.3632480
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
https://www.ncbi.nlm.nih.gov/nuccore/NC_018143.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_018143.2
https://doi.org/10.5281/zenodo.3632480
https://doi.org/10.5281/zenodo.3632480
https://github.com/tomokveld/CHOP
https://doi.org/10.5281/zenodo.3631481

Mokveld et al. Genome Biology (2020) 21:65 Page 16 of 16

19. Eggertsson HP, et al. Graphtyper enables population-scale genotyping
using pangenome graphs. Nat Genet. 2017;49:1654–1660.

20. Rautiainen M, et al. Bit-parallel sequence-to-graph alignment.
Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz162.

21. Garrison E, et al. Variation graph toolkit improves read mapping by
representing genetic variation in the reference. Nat Biotechnol. 2018;36:
875–879.

22. Kim D, et al. Graph-based genome alignment and genotyping with
HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.

23. Sirén J. Indexing variation graphs. In: 2017 Proceedings of the Ninteenth
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM;
2017. p. 13–27.

24. Lee C, et al. Multiple sequence alignment using partial order graphs.
Bioinformatics. 2002;18(3):452–64.

25. Sirén J, et al. Indexing graphs for path queries with applications in genome
research. IEEE/ACM Trans Comput Biol Bioinforma. 2014;11(2):375–88.

26. Novak AM, et al. A graph extension of the positional Burrows–Wheeler
transform and its applications. Algorithms Mol Biol. 2017;12(1):18.

27. Sirén J, et al. Haplotype-aware graph indexes. In: Parida L, Ukkonen E,
editors. 18th International Workshop on Algorithms in Bioinformatics
(WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2018. p.
4–1413. https://doi.org/10.4230/LIPIcs.WABI.2018.4. http://drops.
dagstuhl.de/opus/volltexte/2018/9306.

28. Sirén J, Garrison E, Novak AM, Paten B, Durbin R. Haplotype-aware
graph indexes. bioRxiv. 2019. https://doi.org/10.1101/559583. https://
www.biorxiv.org/content/early/2019/02/24/559583.full.pdf.

29. Durbin R. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72.

30. Gunady MK, et al. Yanagi: transcript segment library construction for
RNA-Seq quantification. In: LIPIcs-Leibniz International Proceedings in
Informatics, vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik;
2017.

31. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. 2013. arXiv preprint arXiv:1303.3997.

32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357–9.

33. Genomes Project Consortium, et al. A global reference for human genetic
variation. Nature. 2015;526(7571):68–74.

34. Cohen KA, et al. Evolution of extensively drug-resistant tuberculosis over
four decades: whole genome sequencing and dating analysis of
Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med.
2015;12(9):1001880.

35. Manson AL, et al. Genomic analysis of globally diverse Mycobacterium
tuberculosis strains provides insights into emergence and spread of
multidrug resistance. Nat Genet. 2017;49(3):395.

36. Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial
variant detection and genome assembly improvement. PloS ONE.
2014;9(11):112963.

37. Ghaffaari A, Marschall T. Fully-sensitive seed finding in sequence graphs
using a hybrid index. bioRxiv. 2019587717. Cold Spring Harbor Laboratory.

38. Pritt J, et al. FORGe: prioritizing variants for graph genomes. Genome Biol.
2018;19(1):220.

39. Linthorst J, et al. Scalable multi whole-genome alignment using recursive
exact matching. BioRxiv. 2015022715. Cold Spring Harbor Laboratory.

40. Chin C-S, et al. Phased diploid genome assembly with single-molecule
real-time sequencing. Nat Methods. 2016;13(12):1050.

41. Mokveld T. Improving sequence alignment through population graph
inference. 2017. https://theses.liacs.nl/313. Accessed 06 Mar 2019.

42. Tae H, et al. Improved variation calling via an iterative backbone
remapping and local assembly method for bacterial genomes. Genomics.
2012;100(5):271–6.

43. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(suppl_2):79–85.

44. Mokveld T, Linthorst J, Al-Ars Z, Holstege H, Reinders M. CHOP Source
Code. GitHub Repository. 2020. https://github.com/tomokveld/CHOP.
Accessed Jan 2020.

45. Mokveld T, Linthorst J, Al-Ars Z, Holstege H, Reinders M. Chop source
code: Zenodo; 2020. https://doi.org/10.5281/zenodo.3631481.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.4230/LIPIcs.WABI.2018.4
http://drops.dagstuhl.de/opus/volltexte/2018/9306
http://drops.dagstuhl.de/opus/volltexte/2018/9306
https://doi.org/10.1101/559583
https://www.biorxiv.org/content/early/2019/02/24/559583.full.pdf
https://www.biorxiv.org/content/early/2019/02/24/559583.full.pdf
https://theses.liacs.nl/313
https://github.com/tomokveld/CHOP
https://doi.org/10.5281/zenodo.3631481

	Abstract
	Keywords

	Introduction
	Results
	Evaluation graph alignment
	CHOP scales to Homo sapiens

	Variation integration
	Discussion
	Methods
	Population graph definition
	Population graph specification
	Constructing the null graph
	Collapse
	Extend
	Duplicate
	Mapping reads to CHOP's null graph

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-01963-y.
	Additional file 1
	Additional file 2

	Peer review information
	Review history
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

