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Abstract

Recent measurements of the out-of-plane magnetoresistance of delafossites (PdCoO2
and PtCoO2) observed oscillations closely resembling the Aharonov-Bohm effect. Here,
we show that the magnetoresistance oscillations are explained by the Bloch-like oscilla-
tions of the out-of-plane electron trajectories. We develop a semiclassical theory of these
Bloch-Lorentz oscillations and show that they are a consequence of the ballistic motion
and quasi-2D dispersion of delafossites. Our model identifies the sample wall scattering
to be the most likely factor limiting the visibility of these Bloch-Lorentz oscillations in
existing experiments.
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1 Introduction

Known since the discovery of mineral CuFeO2 by Friedel in 1873, delafossites are materials
with the general formula ABO2 [1,2]. Delafossites are naturally occurring layered structures of
alternating conductive A layer and insulating BO2 layer with the overall R3̄m space group [3].
These materials are considered to be 2D owing to their weak interlayer coupling which results
in a nearly cylindrical Fermi surface [4,5]. Of particular interest are PdCoO2 and PtCoO2 which
were first synthesized and characterized at room temperature in 1971 by Shannon et al. [2,3,
6]. Even though nearly 50 years have passed since then, the area of research is still very active
due to the delafossites’ impressive electronic transport properties [7]. At room temperature, it
was shown that the conductivity of PdCoO2 is 2.6 µΩ cm, very close to that of elemental copper
[8]. Part of the reason for such large conductivity is the high Fermi velocity 7.5×105 m s−1 [8].
Another reason is their exceptional mean-free path at 4 K which exceed 20 µm [8]. Such value
of mean-free path is accredited mostly to anomalously clean nature of delafossites and orbital-
momentum locking [9, 10]. Overall, all of these properties of delafossites make them a good
platform to study mesoscopic ballistic transport [11].

Figure 1: PdCoO2 magnetoresistance experimental set up (top) and results (solid
blue lines) obtained by Putzke et al. [12]. The semiclassical prediction (dashed red
lines) was obtained by modeling the finite size PdCoO2 sample.

Recent experiments studied the out-of-plane transport of PdCoO2 [12], with the setup and
the measured magnetoconductance shown in Fig. 1. Magnetoconductance was measured with
the magnetic field applied in the plane of the delafossite layers and the current passing out-of-
plane. Surprisingly, the magnetoconductance showed oscillations with a magnetic field similar
to the Aharonov-Bohm effect, and therefore appearing to be of quantum origin. The period of
the oscillations corresponded to adding a flux quantum through the area W c with W ∼ 5µm
the width of the sample and c the spacing between the adjacent conducting layers. Given that
the oscillations persist up to elevated temperature of 50 K, this result is remarkable compared
with e. g. quantum Hall interferometers, where coherence at micron length scale vanishes
below 100 mK [13].
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Simulations performed by Putzke et al. confirmed that the oscillations of Kubo conduc-
tivity with Aharonov-Bohm periodicity indeed appear in a minimal tight-binding model that
combines high anisotropy with magnetic field [12]. Based on this observation, Ref. [12] at-
tributed the oscillations to long-range coherence of the delafossite layers (lφ ≥10 µm) and
separately ruled out multiple semiclassical or macroscopic origins of these oscillations. The
manuscript therefore opens a question about the possible origins of this unusual long length
and high temperature phase coherence. The coherent origins of the phenomenon also require
closed trajectories, and are therefore hard to reconcile with boundary scattering at the strongly
disordered sample boundaries.1

Here, we argue that contrary to the claim of long range coherence, the oscillations are
a consequence of the shape of the semiclassical trajectories rather than an interference pat-
tern of electron waves traversing the sample. Our construction extends the idea put forward
by Pippard [14] used to explain magnetoresistance oscillations in gallium [15]. Our formal-
ism does not rely on sample-scale phase coherence and therefore is compatible with the low
temperature phase coherence length lφ =400 nm estimated from Shubnikov-de Haas [12] ex-
periments. The semiclassical approach also allows us to incorporate the appropriate bulk and
boundary scattering rates, and simulate the full 2D cross-section of the sample. The semi-
classical approach also allows us to isolate the role of different scattering mechanisms and to
conclude that in the clean samples, the sample aspect ratio is the most likely factor limiting
the visibility of the oscillations.

2 Ballistic in-plane model in the weak out-of-plane coupling limit

Delafossites’ conduction band is well approximated by the energy dispersion

ϵ(k) = ϵ∥
�

k∥
�

− tz cos(kzc′) , (1)

where ϵ∥(k∥) is the in-plane dispersion relation with an approximately hexagonal Fermi sur-
face [8,16,17], c′ is the interlayer distance and tz is the interlayer hopping. While interlayer
dispersion is weak [4, 8]—tz ∼ 10meV is much smaller than the in-plane bandwidth—it ex-
ceeds the thermal broadening of the Fermi surface at temperatures T ≲ 50 K. This motivates
a perturbative approach in terms of tz that we use throughout the paper.

We compute electron density f (r , k, t)d3k at position r, time t and momentum k by using
the Boltzmann equation. We separate electron density into the equilibrium part and non-
equilibrium parts:

f (r , k) = f 0 − g(r , k)
∂ f 0

∂ ϵ
, (2)

where the equilibrium density f 0 (Fermi-Dirac distribution) becomes at zero temperature a

Heaviside function so that its derivative ∂ f 0

∂ ϵ becomes a Dirac delta function centered around
the Fermi energy. The resulting steady-state linearised Boltzmann equation [18] reads:

v ·∇r g −
e
ħh
(v × B) ·∇k g − evzEz = Lg , (3)

where v is the velocity, e is the elementary charge, ħh is the reduced Planck constant, B is the
magnetic field, Ez is the electric field along the out-of-plane direction, and Lg is the linearised
collision integral. The boundary conditions at the boundary coordinate rB are

|v
�

k∥
�

· n̂B|g(rB, k) =

∫

v(k′∥)·n̂B>0

K
�

k′, k
�

×
�

�v(k∥) · n̂B

�

� g(rB, k′)d3k′ , v(k∥) · n̂B < 0 , (4)

1The samples in Ref. [12] were produced using focused ion beam lithography, and therefore have a few nm
amorphous layer at the boundary.
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where n̂B is the unit normal vector of the boundary (pointing inwards) and K is the boundary
scattering kernel.

Utilizing the smallness of tz , we expand g in Eq. (3) as a series to first order in tz:

g(r , k)≈ g0(r , k) + g1(r , k) , (5)

where g0 does not depend on tz and g1 ∝ tz . With the magnetic field inside the yz-plane
B = (0, By , Bz), the zeroth-order expansion is

v∥ ·
∂ g0

∂ r∥
−

e
ħh
(v∥ × B) ·∇k g0 = Lg0 , (6)

where v∥ is in-plane velocity. Equation (6) describes an electron in a magnetic field with
no external forces capable of generating a steady non-equilibrium distribution. Under these
conditions, non-zero scattering ensures that the steady state solution is g0 = 0. Therefore, to
first order in tz linearised Boltzmann equation is

v∥ ·
∂ g
∂ r∥
−

e
ħh
�

v∥ × B
�

·∇k g − evzEz = Lg . (7)

Additionally, since g∝ tz , it is sufficient to approximate L to zeroth order in tz .
Integrating Eq. (7) over kz within the 1st Brillouin zone, we obtain an equation identical

to Eq. (6), but with g0 replaced by g∥(r , k∥)≡
∫

BZ g(r , k)dk′z . Therefore, the in-plane current
of electrons vanishes in the steady state:

∫

BZ

g(r , k)dkz = 0 . (8)

We assume that the disorder in the bulk and at the boundaries is weakly correlated across the
layers. Therefore, the disorder rapidly randomizes out-of-plane momentum kz and leads to
kz-independent K and L. The weakly correlated disorder together with Eq. (8) simplifies the
linearised collision integral:

Lg = −
g(k∥, kz)

τ(k∥)
, (9)

where τ is the relaxation time which depends only on the in-plane wavevector k∥. Similarly,
substitution of Eq. (8) in Eq. (4) and using the independence of K from kz yields the simplified
boundary conditions:

g(rB, k∥, kz) = 0 , for v(k∥) · n̂B < 0 . (10)

Neither the scattering Eq. (9) nor boundary conditions Eq. (10) mix non-equilibrium elec-
tron densities along different trajectories defined by the semiclassical equations of motion

ħh
dr (t)

d t
=∇kϵ(k) , ħh

dk(t)
d t

= −ev(t)× B , (11)

where t is the time along the trajectory. Therefore, using Eq. (11), we obtain the evolution of
g along a single trajectory:

∂ g(t, r0, k0)
∂ t

= v ·∇r g −
e
ħh
(v × B) ·∇k g . (12)

Here we parameterize each trajectory originating at a sample boundary through its initial
coordinate and wave vector r0 = (x0, y0, z0) and k0 = (k0 cosθ0, k0 sinθ0, kz,0). Substituting
Eq. (12) and Eq. (9) into Eq. (7), we obtain the Boltzmann equation along a single trajectory

∂ g(t, r0, k0)
∂ t

− eEz vz(kz(t)) = −
g(t, r0, k0)

τ
�

k∥(t)
� , (13)
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with solution

g(t, r0, k0) = −eEz

∫ t

0

vz

�

kz(t
′)
�

× exp

�

−
(t − t ′)
τ(k∥(t))

�

d t ′

= −
eEz tz

ħh
Re

�

exp
�

ikz,0

�

∫ t

0

exp (i∆kz(t))× exp

�

−
(t − t ′)
τ(k∥(t))

�

d t ′
�

, (14)

where∆kz(t) is the kz(t) solution to Eq. (11) with kz(0) = 0 initial condition. Because∆kz(t)
is fully determined by the in-plane trajectories, Eq. (14) shows that the excess electron distri-
bution g is also fully determined by the in-plane trajectories.

To analyze experimental observations, we compute the current along z

Izz = e

∫

S∥

d2r∥

∫∫∫

BZ

f (r , k)vz(k)dk , (15)

where the triple integral is over the 1st Brillouin zone, and S∥ is the in-plane surface area of
the sample. We express the out-of-plane conductivity σzz = Izz/(S∥Ez) at zero temperature by
substituting Eq. (2) into Eq. (15):

σzz =
e

S∥Ez

∫

S∥

d2r∥

∫∫∫

BZ

δ(ϵ − ϵF )g(x , k)vz(k)dk , (16)

where ϵF is the Fermi energy. In order to compute the lowest nonvanishing contribution in tz
to conductivity, we use g0 = 0, and approximate the energy ϵ(kx , ky , kz) ≈ ϵ∥ only to zeroth
order in tz . We switch to cylindrical coordinates in k-space (x , k,θ , kz) where k is the in-plane
wavevector length and θ is the azimuth. The conductivity to the lowest order in tz is

σzz =
e

S∥Ezħh

∫

S∥

2π
∫

0

π
c′
∫

− πc′

kF (θ )
vR(θ )

g(x , kF (θ ),θ , kz)× vz(kz)d
2r∥dθdkz , (17)

where

vR(θ ) =
1
ħh
∂ ϵ∥

∂ k
, (18)

and kF (θ ) is the Fermi wavevector ϵ(kF (θ ),θ ) = ϵF . We further simplify Eq. (17) by using
that kz enters Eq. (14) as a single complex exponent and carry out integration over kz in a
closed form.

3 Results

3.1 Large aspect ratio limit

Because the mean free path of delafossites is larger than the sample size [12], to illustrate
the origin of the oscillations we first neglect scattering Lg = 0. Furthermore, we assume the
sample has a large aspect ratio L/W →∞ and therefore we utilize translational invariance of
the sample along the y-direction. With in-plane magnetic field B = (0, By , 0), the Boltzmann
Eq. (7) reduces to

vx
∂ g(x , vx , kz)

∂ x
− vx

eBy

ħh
∂ g(x , vx , kz)

∂ kz
− eEz vz = 0 . (19)
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Figure 2: (A) Trajectories with oscillations commensurate to the sample width due
to an in-plane magnetic field. Different curves indicate the different initial phases
of the trajectory. (B) Same as in (A), but the in-plane magnetic field is chosen to
give incommensurate oscillations. (C) Same as in (A), but with scattering present.
(D) Trajectories due to an out-of-plane magnetic field. Blue lines are boundary-to-
boundary trajectories whereas the red lines are edge-localized trajectories. Only the
boundary-to-boundary trajectories produce current oscillations due to a net kz drift
throughout the trajectory.

In this simple limit, g(x , vx , kz) only depends on kx and ky through vx(kx , ky). Solution to
Eq. (19) fulfilling the boundary conditions of Eq. (10) is

g (x , vx , kz) =
−tzEz

By vx

�

cos(kzc′)− cos
�

kzc′ +
ωBy

W
xB

��

, (20)

with:

ω=
e
ħh

c′W , xB =

�

x , for vx > 0 ,
x −W , for vx < 0 .

(21)

We substitute Eq. (20) into Eq. (17), and obtain the conductivity along z

σzz =
eπt2

z

ωħhB2
y

�

1− cos
�

ωBy

��

2π
∫

0

kF (θ )
vx(θ )vR(θ )

dθ . (22)

In other words, the conductivity has oscillations with an experimentally observed periodicity,
but it vanishes in the minima so that the oscillations have a much larger amplitude.

To explain the large amplitude of the oscillations, we consider electron trajectories. When
the magnetic field is of the form B= (0, By , Bz), the kz dependence on x is

kz(x) = kz0 +
e
ħh

By x . (23)

This ensures that all trajectories have a similar oscillatory vertical displacement as a function
of x:

z(x) =
tz

ħhvx

h

cos
�

kz0 +
e
ħh

By x
�

− cos (kz0)
i

. (24)
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We plot the trajectories in Fig. 2(A, B). The universal trajectory shape is a result of the kz
advancing over the complete out-of-plane Brillouin zone, similar to Bloch oscillations [19],
however, the origin of the momentum drift is Lorentz force instead of the electric field. This
gives kz a universal dependence on x regardless of the in-plane trajectory. When the oscilla-
tion period is commensurate with the sample width, all trajectories have a zero net vertical
displacement over the time of flight, and therefore carry no current as shown in Fig. 2(A). At
the same time, the vertical displacement of different trajectories—and therefore the current—
is maximal when a half-integer number of oscillation periods fits into the sample width as
shown in Fig. 2(B). Because the contribution of every trajectory to the conductance has the
same magnetic field dependence, as seen in Eq. (22), this minimal model yields an oscillatory
conductance with a correct frequency, but full visibility of the oscillations in contrast to the
experimental data. We define the overall phenomenon as Bloch-Lorentz oscillations.

3.2 Realistic sample geometry

Bulk scattering cannot explain the disagreement between the experiment and the minimal
model because the mean-free-path of 20 µm [8] is much larger than the dimensions of samples
used by Putzke et al. [12] (4 µm to 6 µm). Therefore, the dominant source of scattering must
originate from the boundaries. In the experimental setup by Putzke et al. [12], the sample has
a low aspect ratio with a sample length shorter than the width W > L. As a result, we expect
the boundaries along the length of the sample to alter the semiclassical trajectories.

To analyse the effects of small aspect ratio, we consider a rectangular geometry with bound-
aries at: x = 0, x =W , y = 0, y = L. We parameterize the trajectories by their point of origin
at the boundary and the initial angle θ0. At a sufficiently high out-of-plane magnetic field,
bulk cyclotron orbits appear that do not intersect with sample boundaries. We disregard these
trajectories because they do not contribute to the h/e magnetoresistance oscillations, however
extending our approach to those trajectories is straightforward. By changing the variables in
Eq. (17) to the trajectory coordinate system (t,θ0, kz0), we bring σzz to the form

σzz =
−e

WEzħh

∮

dr0

θmax
∫

θmin

dθ0

tB(θ0,r0)
∫

0

d t ′
kF (θ (θ0, t ′))
vR(θ (θ0, t ′))

J(t ′,θ0)

×

π/c
∫

−π/c

dkz0 g(r0, t ′,θ0, kz0)vz(r0, t ′,θ0, kz0) , (25)

with the Jacobian determinant:

J(t ′,θ0) =

�

∂ θ

∂ t ′

�

�

�

�

t ′=0

�−1
∂ θ

∂ t ′
vx(0,θ0) . (26)

In Eq. (25), the r0 integral is over the sample boundary and tB(θ ) is the time that the trajectory
hits a boundary. The integral over θ0 includes the contributions of all trajectories within the
sample.

We solve Eq. (25) numerically with an in-plane magnetic field By and without bulk scat-
tering τ→∞. The results in Fig. 3 left panel shows the oscillations decaying with decreasing
aspect ratio L/W of the sample. The visibility of the oscillations drops with a lower aspect
ratio due to more trajectories scattering off the sample side-boundaries. Using the geometry
of the sample of Ref. [12], we confirm that the computed relative magnitude of the oscilla-
tions agrees with the measured values, however, the overall resistance profile is somewhat
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Figure 3: (Left panel) Semiclassical predictions of PdCoO2 magnetoresistance with
variable sample aspect ratio and no bulk scattering. (Right Panel) Semiclassical pre-
dictions of PdCoO2 magnetoresistance sample with translational invariance along y
and variable bulk scattering (mean-free-path l).

different, as shown in Fig. 1. The possible reasons for this disagreement are residual bulk
scattering, minor misalignment of the magnetic field, or inhomogeneity of the sample along
the z-direction.

The scattering from the side-boundaries plays a similar role to bulk disorder. To demon-
strate this, we apply the theory in the high aspect ratio limit in Eq. (19) to include bulk scat-
tering through Eq. (9). The solution to the resulting linearised Boltzmann equation with re-
laxation is

g (x ,θ , kz) =
Ezτec′ tz

ħh
�

B2
yφ

2 + 1
�

�

Byφ cos
�

kzc′
�

+ sin
�

kzc′
�

− exp
�

−
xB

l

�

�

Byφ cos
�

kzc′ +
ωBy

W
xB

�

+ sin
�

kzc′ +
ωBy

W
xθ

���

, (27)

with
l(θ ) = τvx(θ ) , φ(θ ) =

e
ħh

c′l(θ ) . (28)

Here we assume thatτ is constant along the Fermi surface. We substitute Eq. (27) into Eq. (17),
and obtain conductivity per unit azimuth

σzz(By) =
τe2 t2

z c′π

ħh2

2π
∫

0

kF (θ )

vR(θ )
�

B2
yφ

2 + 1
�2 ×
�

1− r + (Byφ)
2r + (Byφ)

2 + r exp
�

−
1

r(θ )

�

×
�

(1− B2
yφ

2) cos(ωBy)− 2Byφ sin(ωBy)
��

dθ , r ≡ l(θ )/W . (29)

We recover a simple Drude model B2 resistivity scaling [20] in Eq. (29) by removing the bound-
aries, W →∞, which removes the second term in Eq. (29). The results of Eq. (29) for various
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Figure 4: Numerical results from the semiclassical theory (dashed lines) with
l(0) = 4.4µm compared to the experimental (solid lines) magnetoresistance results
by Putzke et al. [12] for magnetic field tilted out-of-plane by 5◦ steps. Black lines
indicate the critical field when the cyclotron orbit fits inside the sample. The critical
field value is determined by the shorter side of the sample. In the experiment, this is
the length of the sample L, whereas in the semiclassical prediction it is the width of
the sample W .
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values of mean-free-path l are shown in the right panel of Fig. 3. We observe that the scattering
of the side boundaries in a sample with a finite aspect ratio results in a similar magnetoresis-
tance as bulk scattering. Moreover, our simulations show that the magnitude of the oscillations
due to side boundary scattering in the geometry used in the experiment is comparable to the
observed one (see Fig. 1). Based on this we conclude that the sample aspect ratio is the factor
likely limiting the oscillation visibility in the experiment.

3.3 Out-of-plane magnetic field

In the presence of an out-of-plane magnetic field Bz , the in-plane projection of each trajectory is
a rotated and rescaled hexagonal Fermi surface, while the out-of-plane motion follows the os-
cillatory pattern of Eq. (24) (see Fig. 2(D)). We use the integral form of the Boltzmann Eq. (25)
to find the magnetoresistance response. To reduce the numerical cost required to evaluate a 4D
integral of Eq. (25), we approximate the side boundary scattering by using a finite relaxation
time τ instead. We expect that this approximation, while somewhat crude, should capture
the essential physics, as supported by the comparison between the two mechanisms shown in
Fig. 3. To evaluate the remaining 3D integral, we choose the starting point of each trajectory
as t = 0, so that its initial conditions are r0 = (x0, y0, z0) and k0 = (k0 cosθ0, k0 sinθ0, kz,0).
Here x0 = 0 and −π/2 < θ0 < π/2 at the left boundary, while x0 =W and π/2 > θ0 > 3π/2
at the right boundary.

In presence of the out-of-plane magnetic field, some trajectories cross from one boundary
to the opposite, while others return to the boundary from which they originated, as shown in
Fig. 2(D). Only the trajectories that cross the sample contribute to the conductance oscillations
because they have a net kz drift given by Eq. (23). On the other hand, the trajectories returning
to the boundary where they originated do not contribute to the oscillations. As Putzke et
al. [12] pointed out, once the cyclotron orbits become smaller than W , which happens at

Bz >

�

2ħhkF

eW

�

, (30)

with kF the Fermi wavevector, ballistic trajectories crossing the sample disappear, and so do
the conductance oscillations.

We perform numerical integration of Eq.(25), with the result shown in Fig. 4. The model
qualitatively agrees with the experimental data at the small tilt angles from the x y-plane.
However, the disagreement increases with Bz , likely due to our calculation approximating side
boundary scattering with a constant relaxation time. This is likely a crude approximation be-
cause the sample length L is shorter than W in the experiment. The extension of the theory to a
realistic sample geometry is straightforward—especially since one may still compute g for ev-
ery trajectory independently—but it strongly increases the computational costs, and therefore
we consider it unjustified for our study.

4 Summary

In summary, we demonstrated that the observed magnetoresistance of delafossite materials is
explained by the Bloch-like oscillations of the out-of-plane electron trajectories. These Bloch-
Lorentz oscillations arise from the quasi-2D dispersion of these materials combined with the
nearly ballistic motion of the electrons. We identify the sample aspect ratio as the most likely
factor limiting the oscillation visibility. modeling achieves a qualitative agreement with the
experiment without introducing any free parameters.
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