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Stark effect in shallow impurities in Si
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We have theoretically studied the effect of an electric field on the energy levels of shallow donors and
acceptors in silicon. An analysis of the electric field dependence of the lowest energy states in donors and
acceptors is presented, taking the band structure into account. A description as hydrogenlike impurities was
used for accurate computation of energy levels and lifetimes up to {(aeyeral MV/m electric fields. All
results are discussed in connection with atomic scale electronics and solid state quantum computation.
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|. INTRODUCTION uniform electric field. However, we found that almost no

The field of atomic scale electroni¢ASE) aims at con- actual results of such calculati_ons in t{feeld) range of in-
trolling charge and spin in semiconductors at the level of€rest for ASE have been published.
individual dopant atoms. Such an ability is very attractive, The SHM also offers a manageable way to describe a
both for physics and for the development (glantum de- dopant atom in an inhomogeneous electric field. Recently,
vices. From a fundamental point of view, dopant atoms areeveral calculations using this framework have been
interesting, because they can be considered as the solid stfteblished=?in the context of quantum computing. However,
analog of atoms in free space. Several well-known effect¢he SHM fails in the explanation of effects where it is essen-
from atomic physicge.g., the Stark effect and the Zeemantial that the band structure of the semiconductor is taken into
effect have been studied in great detail in large ensembles agiccount(as an example, see Ref.)10
dopant atom3. The prospect of experimentally realizing  Many measurements of the energy levels of dopant atoms
atomic scale electronics has renewed the interest in dopaiit semiconductorglarge ensemblgsare known, but only a
atoms. Measurement and control of individual dopant atom&w concerning the effect of a uniform electric field have
allows for the observation of quantum coherent time evolubeen reported, presumably because such measurements are
tion and interactions of the dopant’s wave functions, which isnuch more difficult than, e.g., measurements in a magnetic
essential for the operation of a quantum computer. field or under stress. Among them are spectroscopic mea-
Manipulation of a single particle’s wave functions can besurements of the boron energy levels in silicon subject to
realized by using a local magnetic or electric field. Such aelectric fields up to 0.15 MV/m! Electron-spin-resonance
field can be used either to perform the desired manipulatioexperiment¥’ demonstrated that the electric field couples
itself, or to provide a local perturbation allowing for address-linearly to the acceptor ground state. The magnitude of the
ing a single impurity by a global radiation field. A local effective electric dipole moment for linear Stark coupling has
electric field could be realized by putting a small gate closéeen estimated as 0.26 D for boron acceptors in silicon
to a dopant atom, which is in principle accomplishable with(1D=3.3x 107%° Cm). Photo-ionization measurements have
current technology. An ultimate application of gate manipu-shown a very large electric field effect on the phosphorus
lation is found in the solid state quantum computer as proground state in S but this was measured in highly doped
posed by Kané:? samples where the interaction between dopants dominates
To get more insight into the physics of atomic scale electhe Stark effect of individual energy levels. Finally, quadratic
tronic devices, it is essential to try to predict their potentiallevel shifts have been observed in deep selenium double do-
behavior. A first step is the description of isolated dopantors in Si, located in the space charge region of a dtéde.
atoms in ahomogeneoyselectric field. Much more difficult In this paper, we will theoretically investigate the effect of
is accurate modeling of the time evolution of a dopant atona uniform electric field on isolated shallow impurities in sili-
wave function in an inhomogeneous field and the descriptiolcon. The primary interest for ASE will be in the ground state
of the interaction of two or more dopants in a field. and possibly the first few excited states. These states are the
Dopant atoms binding one electron or hole can be deenly ones that are well separated from neighboring levels,
scribed as a hydrogen atom, where the vacuum values of thend at low temperatures only the ground state is occupied.
dielectric constant and the electron mass are replaced by tHenerefore, we focus on the lowest energy states of impurities
appropriate values for the semiconductor. This “scaled hyin silicon. First, we derive the shift, splitting, and wave func-
drogen model'(SHM) provides a reasonable description of tions of the lowest donor levels in silicon in a small uniform
the dopant atom’s energy levels. Therefore, it is useful teelectric field, taking full account of the multiple valley con-
look at existing studies of the Stark effect in the hydrogenduction band structuréSec. I). We briefly outline a similar
atom. Calculation of the shift and splitting of the hydrogencalculation for acceptors in silicogec. Ill). The results are
energy levels up to very large electric fields have been camseful for applications where a local gate is used to bring a
ried out by several different metho#<® Within the SHM,  single dopant atom into resonance with a global radiation
these results can be directly translated to dopant atoms infeeld (nuclear magnetic resonance, electron spin resonance
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length scale ofa. Fy(r)=F,(r) satisfy the hydrogenlike
Schrédinger equation

_[ﬁ_za_z+ﬁ_2(i+i>+i]F _EF)
2max?  2m \ay? 97) Amer (1) =EF(1),
2

and similar equations hold for the remainifg. The ¢,,(r)
are Bloch wave functions at the minimum of the vallgy
and can be written ag*«"u,(r), whereu,(r) has the peri-
FIG. 1. (Color onling (a) Schematic representation of the con- odicity of the silicon crystal lattice. Because for all the
duction band valleys of silicon as constant energy surfacels in eigenvalues resulting from Eq2) are the same, Eql)
space. The six valleys are labeled by numbers, e.g., 4 represents t§Rows that the degeneracy of each of these eigenvalues is
[010] valley. (b) Definition of the coordinate system with respect to multiplied by six for the total wave functior®(r). In par-
the Si-crystal unit cell. We haveli[100], yll[010], zII[001], ticular, the ground state solution of E(R) gives rise to a
vlI[110], andwII[111]. The orientation of the figure in parta) and  sjxfold degenerate donor ground state.
(b) is the same. The symmetry group of the conduction band minifaad
thus of the Bloch functionspe(r)] is C., in EMT, which
Moreover, they can be used to outline the limitations of thereduces toC,, in the silicon crystal. The envelope wave
SHM. Second, in Sec. IV we present accurate numerical cafunctionsF(r) belong toD.,,. Their products belong to the
culation of the Stark effect in silicon within the SHM, from cross section of both groups, which @,. For the E-like
zero field up to fields that are relevant for atomic scale electm=0) ground state function of E¢2) F,(r), such a product
tronics and quantum computirigeveral MV/m; see, for in-  transforms according to thE; representation of the valley
stance, Ref. B Finally, we conclude by discussing possible symmetry groupC,,. Because the donor is located at a sub-
extensions and alternatives of our methods which are usefititutional site of the tetrahedral silicon lattice, the total wave

to address issues in ASESec. \). function hasT, symmetry. Using Frobenius’ theoref,it
can be shown that thE; representation o€,, induces the
[l. DONORS I'1+T3+T5 representatioff of Ty This means that linear

combinations of thé ,(r) can be found that have the correct

) ) _ transformations properties und@g. Using the notationa
_ Group theory is a pow.erfulltool to d_erlve various proper-=(q, ... ae) [as in Eq(1)] the reduction to th&, represen-
ties of dopant wave functions in a semiconductor. In order tQtions is carried out by

provide the necessary background and to fix the notation, we
will briefly review some relevant properties of donor levels _ %(1'1,1,1,1,1' I,
\!

A. The donor ground state

s L ay=
in silicon (see, e.g., Ref. )5Degeneracy due to spin is not g
lifted by an electric field in donors. For simplicity, we will

therefore not count those degeneracies in this section.

1
The conduction band of silicon has six equivalent minima a = \f_TZ(_ 1,-1,-1,-1,2,2

located on th¢100] and equivalent axes. These minima are , T,

commonly called “valleys” and we label them by the num- .= }(1 1,-1,-1,0,0

bers 1 to 6 as shown in Fig(d). The band structure in the S22t T T

vicinity of valley 1, located ink space ak;=(ky,0,0), can \

be approximated as 1
a,=—+=(1,-1,0,0,0,0

h? 2, B2 s V2
E=Eg+ —(Kki— + +k
0* o ko) 5 (1S +10), R

a,=—=(0,0,1,-1,0,0 p, Ts. (3)

wherem;=0.98n and m, =0.19n are the electron effective V2

masses andn is the free electron mass. Furthermokg, _i(o 0,0,0,1,-1

=0.85x 27/a,'® wherea is the size of the silicon unit cell. = T

Similar expressions hold for the remaining five valleys. /
From effective mass theoryEMT) it follows that the Each of the vectora defines a wave functioW through Eqg.
ground state wave function of the Hamiltonian of an electron(1). Here, the basis functions of the two- and three-
bound to a donor can be writtenlas dimensional representations have been chosen such’that

. and¥ transform undely as 3?-r? and 3(x*-y?), respec-
_ tively. Similarly, ¥,, ¥,, and¥, have been chosen such that
W(r)= 2_1 ,F () e,(r), @) they transform undeTZ asx, y, andz, respectively.
" The potential term in the EMT Schrddinger equati@nis
where thea, are numerical coefficients and titg,(r) are  a good approximation only for=a, wherea is the lattice
envelope wave functions, which are slowly varying on theconstant of silicon. For smatl, the charge of the nucleus is
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TABLE I. Reduction of the site symmetry of an impurity in a the size of the effect depends on the donor in question
uniform electric field in various directions and the resulting reduc-“valley-orbit splitting.” The remaining state@specially the

tion of the irreducible representatio(Ref. 20. non=s state$ are quite well described by EMT, because the
— electron density at the nucleus is negligible. As an example,
Direction in case of phosphorus in silicon, the(IL;) state(the ground
(100 (113 (110 statg has been measured to be located 45.29 meV below the
Group conduction band minimurh,while the EMT prediction is
— — — 1
Cor Ca, C. 31.27 me\?
I, (T 01 01 I B. Symmetry of the donor ground state in an electric field
T, (Tg) T3 T, I, - Symmeny g
I's (To) 14T I [y+I After this brief review of established knowledge of silicon
Iy (Tg) Ip+T3+Ty I+l ry+2r, donors, we return to the main subject of this paper. From
I's (Ty) [+05+1, | PR IS 2 +1, purely symmetry based considerations, we can find how the
e (Ty) s T, T344 Hilbert subspace spanned by the original six valley wave

— r r T functions is decomposed by the application of an electric
7 (T ° 4 sra field in a certain direction. The impurities considered in this
Ig (Ty) 2l [+ lsi6 2344 paper occupy substitutional sites in the silicon lattice and

their wave functions transform according to representations

not screened by other electrons and it will attract electron®f Site symmetry grouplq. The symmetry group of a uni-
much more strongly than described by the potential in Eqform electric field€ is C.,,. When £ is applied in an arbi-

(2). Because the symmetry of the potential is not affectedirary direction in the silicon crystal, the symmetry groip

the states are still described by the representatioig,dfut  of the Hamiltonian reduces to the trivial grou@. Only

they are no longer degenerate. ThestateW, is the only ~ when the direction of the field is along one of the main
one of the six ground state wave functions that has nonzerorystallographic directions of the crystal, the resulCis for
electron density at the nucleus=0). Therefore, it has a £I11(100, Cs, for £1(111, andC, for £1(110. The reduc-
larger binding energy than predicted by EMT and for mosttion of symmetry can induce a splitting in the original energy
donors in silicon the 4I';) state is the true ground state. levels as shown in Table I. As expected, the electric field
This effect is generally called “chemical splittingbecause does not remove degeneracy due to time-reversal symmetry

TABLE Il. By considering the symmetry of the valley wave functions in an electric field, the symmetry
of the total wave function they induce can be obtained. The results forghevél, without considering
valley-orbit splitting, are shown in this table. The direction&in the first column is denoted by the vectors
defined in Fig. 1&). The fifth column lists the representations of the appropriate site symmetry group, given
in the second column. The basis vectors are given in the notation aBEQ.

Direction of £ Site symmetry Valley Valley symmetry [I'(site) Basis

z C,, 1,2,3,4 C; r, (1,1,1,1,0,0
r, (1,-1,1,-1,0,0
I's (1,1,-1,-1,0,0
ry (1,-1,-1,1,0,0

5 Cy, r, (0,0,0,0,1,0

6 Cy, r, (0,0,0,0,0,1

w Cs, 1,3,5 Cs r, (1,0,1,0,1,0
I'y (02,0,0,0,1,0

(0,0,0%,0,1,0

2,3,6 Cs ry (0,1,0,1,0,1

I's (0,w%,0,0,0,1)

(0,w,0,w2,0,1)

v Cs 1,3 C, Iy (1,0,1,0,0,0
I, (1,0,-1,0,0,0

2,4 C, r, (0,1,0,1,0,0

I, (0,1,0,-1,0,0

5 Cs Iy (0,0,0,0,1,0

6 Cs Iy (0,0,0,0,0,1
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and therefore all resulting levels are at least twofold degenandI’s levels of T4.2 The result for various directions of the
erate. electric field is shown in Table III.

To make the connection to the valley wave functions
F.(r)¢,(r), we will now discuss the symmetry of thes 1
levels in an electric field from another point of view. We start C. Shift and splitting in an electric field
by looking at the individual valley wave functions and sub-
sequently derive which linear combinations form appropriat

e ) e S :
donor wave functiongusing the method of Ref. 22When a dpnor Ievells |fn an Elecltrlc {'eld frobm 3 perttérbatllon cr:1alcula—
donor impurity in silicon is situated in an electric field along 10N: Results for other levels can be derived using the same

the positivez direction, the valleys 5 and 6 keep theéls, method, althoughbecause _the level spacing is sma_lller for
symmetry, while the field reduces the symmetry group of thgnghgr Ieyel$ t.he. range of fields where the perturbation cal-
other four valleys tcC;. These four valleys are mixed by the culation is valid is much smaller. o
elements of the site symmetry gro@, and are therefore ~ Although the sixfold degeneracy of the levels is lifted
grouped together in the third column of Table II. l:_)y the valley-orbit interaction, the complete manlfold_ is rela-
In case of a & state, the valley wave functions belong to tively well separated from the higher levétae separation of
the I'; representation of,, (for valleys 5 and gor C, (for ~ the highest &(I';) level to closest exited leve(2po) is
1, 2, 3, and 4 This is found by reducing the evem=0  roughly twice as large as the separation between HE; 1
representation ob.., to C,, and C,, respectively. By using and 1(I's) leveld. Therefore, we consider thes inanifold as
Frobenius’ theorem, it can be deduced that these generate farwhole in a single perturbation calculation, taking only the
the impurity wave function the representatiofig and I'; coupling among the dlevels themselves into account.
+I',+1'3+T", of C,,, respectively. This is also shown in Table  The electric field couples to thgnduced dipole moment
Il, together with the(set of) induced wave functioi) span- D=er of the impurity state and gives rise to an additional
ning the subspace of that representation. In a similar way, wterm in its Hamiltonian € -D, reflecting the energy associ-
obtained results for the electric field in the other main crys-ated with the dipole in the field. By making use of the
tallographic directions. They are also shown in the table. Wigner-Eckart orthogonality theorem from group the#ftt,
Due to the valley-orbit splittingwhich has been ignored is possible to find the vanishing matrix elements as well as
so fap the three irreducible components of the donor groundhe dependencies between the nonvanishing matrix elements,
state are already energetically separated at zero field. Theras they follow from the symmetry of the system. The 1
fore, the basis vectors have to be chosen in such a way thaubmatrix[#] of the total Stark Hamiltoniaf{=Hy+&-D
they agree with the zero-field energy splitting of thg I's, is given by

Now, we will derive the shift and splitting of the lowest

Ex 0 0 P15Ex P1sEy P1sE;
0 Es 0 —Pasfx  —Pasfy  2Psst;
0 0 Es  pssV3 —pssV3E, O
Pistc ~Pasti PasV3E s s, PsEy
PisSy ~Pasfy Pas\3E,  Pst; Es  Ps

Pz 2Pz O PsEy  Pséx Es

The elements of this matrix are given l[)%]ij:(goi|H|goj>, products of wave functions, e.gp15:e(\1fg|x|\lfx> and pg
where the wave functionsy are taken from the basis =e(W|x|V,).

(Wg, V¥, W, ¥, ¥, ¥, as defined before. The energies Perturbation theory is invoked by calculating the eigen-
E;, and Es are the eigenvalues of the unperturbed Hamil-values and eigenvectors of this<@ matrix up to second
tonian H,, that is, the zero-field energies of thes(l;), order in&. This yields the & energy levels and wave func-
1s(I'5), and B(I's) level, respectively. For phosphorus in sili- tions as a function of electric field f& along the three main
con, the values ar&;=-45.59 meV,E;=—32.58 meV, and crystallographic directions. The energy levels are presented
Es=-33.89 meV with respect to the conduction band edge.in the last column of Table Ill. From Table Il it can be seen
The parameter®,s, pss, and ps describe the coupling be- that the B(I';) ground state experiences an isotropic qua-
tween the % levels. As can be seen, these are the only thredratic shift downward? while for the other levels the behav-
independent parameters describing the coupling between ther depends on the direction of the electric field. In Fig. 2 the
levels. They can be expressed in terms of integrals overesults for€1(100 are plotted schematically.
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TABLE lIl. Reduction of the % donor energy levels in an electric field. The basis vectors belonging to these states argngtiien
notation of Eq.(3)] in the limit £—0 (w=€%7"3). The eigenvaluegup to second order if) are the result of the perturbation calculation

described in the text.

Field
direction £=0 E#0 Basis vectqps) Eigenvalue
z I'y(Ty) I'1(Cy,) (1,1,1,1,1,1/\6 E1—|p1s?/ (Es—Eq)E?
I'3(Ty) I'1(Cy,) (1,1,1,1,-2,-2/12 Ea+|2psd 2/ (E3—Ey)E2
I'3(Cy,) (1,1,-1,1,0,0/2 E;
[Ty T1(Cy) (0,0,0,0,1,~1/\2. Es+[|P1sl?/ (Es—Eq) +|2pas?/ (E3~Ey) J€2
I'x(Cy) (1,-1,1,-1,0,0/\2 Es+|ps|€
I'4(Cy,) (1,-1,-1,1,0,0/\2 Es—|psl€
w I'(Ty) I1(Cg) (1,1,1,1,1,1/46 E1—|p1s/2/ (Es—Ep)E2
I'x(Ty) I3(Cg,) (0,02, 0,0,1,1/\6 Es+2|psg?/ (E3—Es)E2
(w,w,wz,wz,l,l)/\e‘%
I's(Ty) I1(Cg) (1,-1,1,-1,1,-Y \“%_ Est(2/3)\3|ps|€+[]| p15|2/(Es‘_E1) —4|pag|?/ (E3—Es) ]2
I'5(Cs,) (0?,~0?, 0,~w,1,-1)/6 Es+ (1/3)3|ps/€
(a),—w,a)z,—wz,l,—l)/\c%
v I'y(Ty) ry(Cy (1,1,1,1,1,16 E1-|p1g?/ (Es—Ey)E?2
I'3(Ty) I'4(Cy) (1,1,1,1,-2,-2/12 E3+|pss®/ (E3—Eq)E?
I'5(Co (1,1,-1,1,0,0/2 E;+3|pss?/ (E3—E)E?
I's(Tg) I'4(Cy) (0,0,0,0,1,-1/\2 Es+|ps|€—(1/2[|pagl?/ (E3—Eq) ~[ 152/ (Es—Ey)]€2
I'1(Cy) (1,-1,1,-1,0,0/\2 Es~|psl€=(1/2)[|pss®/ (Es~Ey) = |p1g®/ (Es—Ep)1E?
I'5(Cy (1,-1,-1,1,0,0/\2 Es—3|pss®/ (E3~Eq)E?

The corresponding eigenvectors were also obtained from
this calculation. In the limitf—0 they coincide with the
vectors given in Table lll, allowing us to label each eigen-
value with the correct representation. These results are di-
rectly applicable in the prediction of allowed optical transi-
tions between the various levels.

We discuss the behavior of the three dtates in more
detail. The normalized eigenfunctions in an electric field par-
allel to z (again up to second order &) corresponding to the
eigenvalues already given in Table IIl are

Field —

FIG. 2. (Color onling Schematic plot of thedenergy levels as
a function of the electric field. The values of the parameteps,

r

,

~~~~~~~ where
I-l
EIN

® =<1—}|,8|2€2>‘lf +BE2.W, - BE W
g 2 g r 4l

O, =-p'E.V +(1—1|ﬁ’|252)~1f +BEV
r g 2 r 2z

1
D=, & .= 5&(% +W),

1
o, =

y— E\’Z(\PX - \I’y) l

1
= BE Wg- BE Vot | 1= (|84 B IE |,

(4)

B= P1s

2pss ,_ = 2Pss
E5 - E]_’ E

B’:E— =Bz _ -

3_E5’ S_Ell

The initial zero-field wave function?; has the highest
spatial symmetry possible in a tetrahedral lattice. To get
more insight into the contribution of the six valleys as a

P15 andpss have been chosen such that the plot clearly illustrateunction of the applied field, we can write the perturbed

the qualitative features of the Stark effect in the energy levels.
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(1,1,1,1,1,1+(0,0,0,0,—~", Y& A. Linear Stark effect
=y ==Y v—v .- Y )E, To derive the small-field splitting of acceptors in silicon in
an electric field, we use degenerate perturbation theory for
where each level individually. To that end, the Hamiltonian subma-

trix (@i|H|¢;) of the level under consideration must be cal-

1 _ 1 _ L culated and diagonalized, where thgform a suitable basis
y==(B1%+B\2), v ==(B?-28"\2),y' =BV3 for the subspace of that particular level.

2 2 As mentioned before, the components of the electric di-
pole operatorer transform according to the rows of tHg
representation ofTy. Because the antisymmetrized direct
products {I'¢ X I'g} ={I'; X I'7}=I"; do not containl's, the
first-order Stark matrix vanishes for levels wiify or T';

ymmetry. Hence, such levels do not experience a linear

and an overall factor 16 was omitted. From these expres-
sions, we see that the contribution of the valley in the -
direction increases linearly with the field, while the contribu-
tion of the opposite valley decreases linearly with the field.

This reflects the field-induced dipole moment of the groun tark effect. On the other hanflg X T'g} =, + 5+ T's does

state. . . . .
The results of this calculation could be made quantitative1ceci/rgflz'7n I's, so that a linear Stark effect is possible fof'a

if the values of the parametes, p,s, andpss were known. The effective linear Stark Hamiltoni&hfor a I'g level is
This can be done by evaluating the integrals defining these. 9
: . iven by
parameters and using, e.g., the EMT wave functions fro
Eqg. (1). However, due to the strongly oscillating integrants, )
this is numerically a nontrivial task. Furthermore, the EMT HN = S (E430 I+ €4 I+ E4. ]
wave functions have a higher symmetry than the lattice, and [ \s’3p8( Ay dal + E3 3 + Eddo Iy,
the value forpg obtained in this way is always zero. An

estimate forps can be obtained only using more sophisti- yhere the parametgy; is related to the effective dipole mo-
cated approximations for the wave functions. More impor-ment of such a state. Thi (i=x,y,z) are matrices of the

tantly, the applicability of such results is Iimit_ed, especially components of the angular momentum operator with respect
for the Is state, as the effects of valley-orbit interaction are;; ome convenient basis abtl, B =1(AB+BA) is the anti-
’ 2

not mc!uded in the EMT wave funct|0r_15. . commutator. The eigenvalues of this matrix are given by
It is important to note that the energies in Table Il and the

eigenstates in Eq4) are based on symmetry properties only

and not on the explicit form of the EMT wave functions. Eg+[pglé,

Therefore, these results remain valid, even if valley-orbit in-

teraction and central cell corrections are fully included. Suchwhere both eigenvalues occur twice. This is a symmetric

modifications would influence only the values of the param-splitting of the level, which is independent of the direction of

etersps, pis andpss. E. Note thatpg vanishes within the EMT, similar tps be-
fore. Estimates opg obtained in literature range from 0.01 D

(Ref. 29 to 0.26 D12
I1l. ACCEPTORS

Acceptor wave functions can be equally well used for B. Quadratic Stark effect
ASE as donors. Recent experiments showing that the coher-
ence time of spins of bound holes is more than 12fresjen
justify the prospective use of acceptor wave functions as qu
bits. We therefore also briefly outline the properties of silicon
acceptors in an electric field, taking the silicon valence band Heft, quad= aing,
structure into account. The initially threefold degenerate va-
lence band maximum is split by spin-orbit interaction, which A~ . i i )
causes one of the bands to shift downward-b$3 meV? wherel-ls the identity matrix and the; (i=6,7) are phenom-
Due to the spin-orbit interaction, spin is not a good quantur@nologmal parameters, W_hlch can be expressed in terms of
number anymore and the bands must be characterized by tH@egrals over wave functions. It follows that tiig andI';
total angular momentum, which ffor the upper two bands. levels experience an isotropic quadratic shift
Due to the half-valued angular momentum, the Bloch wave
function at the valence band maximum transforms according E +a&2,

to one of the double-valued representationsTgf namely,

I's. As a result, the total impurity wave functions transform wherek; is the unperturbed energy ofla level. The twofold
according to representations of the same group. The groundkbgeneracy due to time-reversal symmetry is obviously not
state wave function, as well as the first few excited levelgemoved by the electric field.

belong to thel'g representation and they are all fourfold de- The quadratic part of the effective Hamiltonian fol'a
generatgincluding spin. level, such as the ground state, is giverf®y

Becausel'g X I'gt={I'; X I';}=TI";, the quadratic effective
Stark Hamiltonian for d’¢ andI’; level is simply given by
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vad - 22 2. w2 1o, TABLE IV. Atomic units for some relevant physical quantities
[H1§"%°= ag€?l + bg| JE+ &) + &5 - 53 in vacuum and in silicon. For silicon the values=11.4 andm’
=0.26 (appropriate for electronsvere taken.

2
+ \TECSHJX"JY}SX% + {‘Jy"Jz}gng"' {I2 €], Quantity Unit Value in vacuum Value in Si
whereag, bg, andcg are again phenomenological parameters.E"€'%Y 2Ry 2r.2ev 54 meV
The total Hamiltonian has two distinct eigenvalues Length a9 0.053 nm 2.3nm
) 2 | 1 2ed 5 o on  ed 2D Electric field 2 Ryky 510 GV/m 24 MV/m
agE” + [pgE” + bge™ + (cg =~ B0p) (EYE; + EE; + EEY) Time #12 Ry 2.4x10 s 1.2x10 % s
+ 6p8c8gxgyg£|l/2a (5)

each of which is still doubly degeneratiue to time-reversal anq |ength in units of the effective Bohr radius. Conversion
symmetry.*® For £1I(100 this expression reduces (@p to  of units of the relevant quantities for both vacuum and sili-
second order irf) con are given in Table IV.

In the past, several algorithms have been described in the
literature to calculate electric field dependence of the energy
For £1{111) we find levels of the.hydrogen atom. However, very few results in

the range of interest for ASHields up to~0.1 a.u.; Ref. 3

Eg* [pgl& + ags”.

1= ) have been published. Therefore, we found it important to fill
Egt |pgl&+ | agt §V3Cs &, this gap by fully presenting the results of our calculation. For
this purpose, we used the slightly adapted version of a varia-
and for £11{110 we have tional algorithm that yields not only the energy levels, but
also their lifetimes’
Eg+ |pgl& + a852, For completeness, we will very briefly outline the main

. features of this method. The hydrogen Schrddinger equation
both up to second order ifi The results fo€(100 and for  (including the electric fielgin parabolic coordinates can be
E1{110 are the same in this approximation, but different in separated, which allows for high numerical accuracy without
third order. too much computational effort. In order to be able to find the

Obviously, the wave functions of donors and acceptors arenergy positions of the resonances as well as their lifetimes,
very different and this is reflected in their respective electricche complex scaling method was applfédrhen, for each
field behavior. The donor ground state undergoes an isotropigoordinate the Hamiltoniagincluding the electric fieldis
quadratic shift. The acceptor ground state has an isotropiexpanded with respect to a truncated basis of unperturbed
linear splitting, superposed on an anisotropic quadratic shifiwave functions. This can be done analytically. Finally, the

To demonstrate the applicability of these results, we conenergy levels and lifetimes are obtained by trackisgpa-
sider White’s spectroscopic measurements of boron accepately for each levelthe eigenvalues of this matrix from zero
tors in silicon subject to an electric field parallel to {#16.0) field in small steps to larger fields.
direction! He observes four peaks, which are associated By using the method described above, we calculated the
with transitions from the ground state to excitEg levels  energies of all states with=1,2,3 for 0<£<0.2 a.u. The
(peaks 1, 2, and)a&and al’; level (peak 4.3 Level splitting
was not observed, most likely due to limited resolution. In-
deed, assuming thayg for the levels involved has the same 0= A ey
order of magnitude as the ground state vald26 D; Ref. e
12), the expected splitting is only-1 uV. However, all ks e
peaks do show a quadratic shift, which can directly be linked e T v LT
to the value ofag for each of the three excitdd; levels and al ~
a, for theI'; level.

E (a.u.)
=}
i
,/

IV. LARGE ELECTRIC FIELDS IN THE SHM 04| O

In this section, we will calculate energy levels of an im- AN
purity in a semiconductor as a function of electric field in the 05555 \\\
range from zero to~5 MV/m. This is done within the )
scaled hydrogen model, where the band structure of the 103 102 07
semiconductor is accounted for by a single effective mass £(aw)
and the dielectric constant only.

For this calculation it is convenient to express all quanti-  FIG. 3. (Color onling Evolution of the lowest-lying energy lev-
ties in so-called effective atomic units. For instance, energiesls (n=1,2,3 of a hydrogenlike system versus electric fi€ldFor
are expressed in units of twice the effective ionization energyonversion of a.u. to conventional units, see Table IV.
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100f 100 0
-0.1
T 104+ 1104 —<
—~ { £
g ‘34 -0.2
= 108f 1108 5 s
3 = £ .03
4 : s
oo {1027
g J 0.4
m
10-161 {1016 -0.5 ————
107 02 101
& (a.u) 103 102 10°!
£ (a.u.)
FIG. 4. (Color onling Energy width and lifetime of the lowest-
lying energy levels of hydrogen-like systenis=1,2,3 versus FIG. 5. Map of the energy levels from Fig. 3, converted to
electric field£. For conversion of a.u. to conventional units, see Lorentzians using the data of Fig. 4. For conversion of a.u. to con-
Table IV. ventional units, see Table IV.

results for the energy levels are depicted in Fig. 3. The levels . . " .
are labeled by parabolic quantum numBerén,,ny,m), one “intensity map,” where the levels are displayed as nor-

which are more suitable for hydrogen in an electric field tha allzeq Lorent2|ar_1 line shapes, the width of which is tgk(_en
the more common spherical quantum numters, m). The rom Flg'. 4. The figure shows clearly that for the realistic
magnetic quantum numben has the same meaning in both electric flt_ald5:0.04 a.u(about 1 MV/m; see Table_l)/the
representations. The main quantum numbirrelated to the energy width of all levels except the ground state is already

parabolic quantum numbers y=n, +n,+|m|+1. The elec- larger than or comparable to their binding energy. The
tric field lifts all degeneracies except for spin and ground state lifetime is only 10 ns at that field. We also note
(n,,n,, £m). So (including spin there are both twofold de- thgt for our purpose it is not very useful to extend the calcu-
generate levelm=0) and fourfold degenerate levelsn lation to higher fields, as already &:0.2 a.u. all levels are
+0) very much broadened and strongly overlapping. Although in
Figure 3 shows that the ground stete=1) exhibits a the case of hydrogen atoms in vacuum such large fields

. . (0.2 a.u~100 GV/m) are realized only in astronomy, in
fnToaiLrS:eCIoenvde-lzrd‘l?vxr/osg;f;hi?nwgiév)??rﬁz;rl:ng ﬁnfgﬁl :Ellf':s semiconductors they can be easily achieved under laboratory
: y conditions(0.2 a.u~5 MV/m).

ing upward and downward. The middle one has no first-order L L
shift, consistent with the well-known results from perturba- Tho_ugh the S.HM oversimplifies the banq structure, itis in
tion theory®? Finally, the ninefold degenerate=3 level can our opinion particularly useful to estimate lifetimes. Figure 4
be seen to split into six levels. As expected, the effect of th .hOWS. th"?‘t the Ilfet!mes are pr_lmanl)_/ a func_:t|on of the zero-
ield binding energies. Assuming this is still true when the

electric field on higher levels is larger, due to their larger ilicon band structure is included, interpolation of the results
spatial extent. At large values of the field, several levels cros§an be expected to provide a 0'0 d firsﬁ-or der approximation
each othé¥* and some of them show nonmonotonic behavior. Pe e 9 pproxin

of the level's true lifetime. For example, the=1 value in

The few results of calculations that can be found in theFi 4 underestimates the phosphorus donor ground state life-
literature (obtained by different methogi&nd overlap with rr?e because it is morepstrorr: v bound th%n assumed in
our results are in very good agreement, both for the groun MT, gly

) . 5
state and for the first excited staten=1). When the electric field is generated by a small local gate,

extlzg:igg I%locvinr trllsrmeeftir(l.cl)c(ijsWt()au;j isteacjsfc? rhgl;rtﬁglgtél\z/aatllrc])tr;s : %;gis gate is usually separated from the semiconductor by a
o Ty 1arg ' . ntag potential barrier that is sufficiently high to prevent tunneling.
yielding the width of the energy levels. The increasing en-

ergy width of the hydrogenlike levels in an electric field is If the distance of the dopant atom to the barrier is not too

the results of the ability of the field to ionize the atom. Thes.ma”’ lonization Of. the dc_Jpant atom can st|I_I oceur in large
- . . , fields (and the lifetimes discussed before still appliow-
finite probability for the carrier to tunnel out of the nucleus

potential well leads to a finite lifetin?é of the level. In Fig. ever, the charge carrier will not be "lost,” but transferred to

4, the evolution of the width of several hydrogen energythe potential well created by the biased date.

levels is depicted. Obviously, the width of all levels is zero at

zero field, which is equival_ent to an infin_ite_:ly long Iifetime. V. DISCUSSION AND CONCLUSION

For any nonzerd, the lifetimes have a finite value, which

decreases monotonically with the field. The stronger the In the preceding sections, we have used two distinct ap-

binding energy of a level at zero field, the faster the lifetimeproaches to study the behavior of impurity wave functions in

decreases when the field increases. an electric field. The first includes details of the band struc-
In Fig. 5, the results of Figs. 3 and 4 are combined intoture, but is valid only for small fields and is somewhat quali-
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tative. From this symmetry-based analysis, we derived th@ecessary computational power. The reason is the omission
energy level shift and splitting for donors and acceptors inof valley-orbit interaction, which affects not only the ground
small electric fields, as well as the modification of the donorstate, but also the coupling to excited states. Especially for
wave function. Furthermore, the symmetry classification ofiarge fields, the coupling influences the propertiesilbfen-
the resulting levels prowdes for straightforward prediction Ofergy levels. It has been shown that interva”ey Coup"ng ac-
allowed optical transitions. ~ counts for the splitting of theslstate for P in S#’ Inclusion

The second approach, the scaled hydrogen model, is fullis thjs effect appears to be a minimum requirement for ob-
quantitative and applicable up to large fields, but neglectg,ining accurate quantitative results valid at large fields.
most features of the silicon band structure. Still, the SHM Recently, calculations of a silicon donor in an electric

offers a manageable and valuable way to describe importagh iy the tight binding approach have been preseffted.
phenomena in atomic scale electronics. We presented the his approach seems to be a useful alternative to calculations
efgy_W'dth and I|fet|me_of_ the_lmpurlty levels in large elec- based on effective mass theory. Given the fact that this
mc|tﬂiildf)'s(s:ﬁilcé"tztecgr;vt:{iwg ttgéstxgzewrc:)r:(.:hes and treat E method inherently includes the band structure of the semi-
P bp %onductor host, it is striking how similar the results are to

gﬁi)sn;sair\]/vaﬁ:gn'Ifrstt?a}hﬁ;g;\ig‘:gtiﬂ;nresf&;g' ?Igﬁ]ﬁr calculations based on the SHMIhis underlines the power
P P 9 ' y Yof the SHM in this type of calculation.

T st o . ! SLTIMar. e Pave Calcled h Stk fectof
y j ' P rities in silicon in two different approaches. Moreover, we

direction of the electric field with respect to the valley axis IS jiscussed the results and the computation methods used in

not the same for all valleys. As an example, oz the "o evt of atomic scale electronics and quantum compu-
energy levels ofr5 and Fg are affected in a different way tation

from those of the other fouf,,. If the solutions for the vari-
ous valley wave functions are known, they can be combined
into impurity wave functions using the data in Table II. ACKNOWLEDGMENT
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