
Delft University of Technology
Faculty of Electrical Engineering, Mathematics & Computer Science

Delft Institute of Applied Mathematics

Extraction of biological parameters of
wound-healing processes from time-lapse videos

Extractie van biologische parameters van
wondhelende processen uit time-lapse video’s

Bachelor thesis submitted to the
Delft Institute of Applied Mathematics

as part to obtain

the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

DANIEL TSANG

Delft, The Netherlands
June 2019

Copyright c© 2019 by Daniel Tsang. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Extraction of biological parameters of
wound-healing processes from time-lapse videos”

“Extractie van biologische parameters van
wondhelende processen uit time-lapse video’s”

DANIEL TSANG

Delft University of Technology

Supervisors

Dr. N.V. Budko
Dr.ir. F.J. Vermolen

Other members of the committee

Drs. E.M. van Elderen

June, 2019 Delft

1 Abstract

Experimental data have been extracted from wound-healing time-lapse videos. These data include the
detection of the area of the wound and the detection of individual cells. Extracting the area of the wound
is done by using a function in Python OpenCV called cv2.findcontours. An improved method to extract
the area of the wound is introduced as well using the Sobel filter. Detecting the individual cells is done
by localizing the local maxima in an image. Histogram equalization is applied to enhance the global
contrast to increase the performance of cell detection. The continuum model is applied in one of the
videos, where we used different parameters to model the data. A method is described to find the optimal
parameter of the continuum model by using the method of least-squares. Finally, two methods using the
kernel density estimation are described which can be useful in future studies.

4

Contents

1 Abstract 4

2 Introduction 6

3 Frame processing 7

3.1 Extracting the area of the wound . 7

3.1.1 Frames . 7

3.1.2 Analysis of the frames . 8

3.1.3 Contour drawing . 12

3.2 Area calculation . 13

3.3 Improvements on extracting the area of the wound. 15

3.3.1 Sobel Operator . 15

4 Cell Detection 22

4.1 Local maxima . 23

4.2 Histogram equalization . 27

5 Continuum model 31

5.1 Finding the parameter D . 32

5.2 Results of modelling . 34

5.3 Source term . 36

6 Results from other videos 38

6.1 Boundary detection . 38

6.2 Cell detection . 40

7 Further research 42

7.1 Kernel density estimation for boundary detection . 42

7.2 Kernel density estimation for cell detection . 46

8 Conclusion and discussion 49

A Python Code 51

A.1 Boundary detection . 51

A.2 Cell detection . 54

A.3 Continuum model . 56

A.4 Kernel density estimation . 59

5

2 Introduction

The mathematical modelling of wound-healing processes is an active research field, where many people
have already been working on for many years in this research area, such as [3] and [9]. Many mathematical
models have been developed in order to describe such a complicated biological process. For example in
[3], a mathematical model for tissue regeneration has been considered, which can be applied to bone
regeneration as well. This model is based on the reaction-diffusion equation, which describes the rate of
change of the concentration of a certain substance. In this paper, the concentration of growth factors
was examined. These factors play an important role in the regeneration of bones and other tissues.

Another example is described in [9]. Here, a model of epidermal1 wound healing has been developed and
investigated. The model described in this paper is also based on the reaction-diffusion equation, but now
the cell density per unit area was taken into consideration. The last example is the so-called ’Cellular
Automata’ model described in [6]. This paper formulated a spatial Markov-Chain model to describe the
progression of skin cancer. This model is based on a probabilistic point of view, where cells are either
in ’cancer-state’ of in ’non-cancer state’, both with a certain probability. Although the paper used this
model to simulate the progression of skin cancer, there is the possibility to adjust or to expand this model
to describe wound-healing processes as well.

Eventually, all these mathematical models that have been developed over the years must be evaluated
against experimental data, to see how accurately certain models describe such a complicated process.
One way to retrieve experimental data is by looking at wound-healing videos on the internet, such as
on YouTube. The aim of this project is to extract data or parameters from these videos to evaluate it
against existing mathematical wound-healing models. The videos we are going to use are all recorded
after performing an in vitro scratch assay, which is a method used to study cell-migration in vitro2. The
links of the videos being used are found throughout the thesis.

In this project, the first parameter we are going to extract from these videos is the area of the wound and
how it changes over time. This is described in section 3 and section 6. After that, we are going to measure
the amount of cells in a given video(frame), from which we can determine the cell density. This will be
discussed in section 4 and section 6. After that, we are going to fit one of the existing wound-healing
models to the data we extracted from the videos. This is described in section 5. At last, we discuss two
methods we wanted to use to extract data from videos as well, but further research and improvements
are needed to use these methods correctly.

1The skin consists of three layers, where the epidermis is the uppermost layer of those three.
2meaning: in the glass.

6

3 Frame processing

In our first goal to extract the wound-healing data from a video, we have to analyse the video itself at
first. Throughout the frame processing, we are going to use Python 3.7.3 and open-source libraries such
as OpenCV, which stands for Open source Computer Vision. This library is specifically developed to
analyse images and videos with many built-in functions which we will use.

3.1 Extracting the area of the wound

One of the things we want to extract from a video is the change of the area of the wound over time.
Under normal circumstances, we expect that the area of the wound declines over time and eventually
the wound vanishes. In our attempt to extract the area of the wound from the video and looking at its
change over time, we will take the following steps:

1. First, we will divide the video into a collection of frames.

2. After that, every frame will be analysed. This means that every frame will be filtered in order to
distinguish the wound from its surrounding.

3. Next, when the wound is distinguished from its surrounding, we draw a contour that encloses the
wound.

4. And finally, we calculate the area of the wound that is enclosed by the contour and repeat this
process for every frame.

3.1.1 Frames

The first video3 we are going to analyse shows us a clear distinction between the wound and the tissue
on the sides. Because of this, we found that this is a good video to start with. This video lasts for 39
seconds and with a built-in function in OpenCV, the video is then divided into 399 frames.

On the next page in Figure 1 there are four frames of the video displayed. The sizes of the frames are
in pixels, with height 720 pixels on the vertical axis and width 960 pixels on the horizontal axis. As you
can see, the wound becomes smaller because the cells on the sides are moving towards the wound, and
eventually, the gap is closed.

3https://www.youtube.com/watch?v=v9xq GiRXeE

7

(a) Frame 0. (b) Frame 50.

(c) Frame 150. (d) Frame 398.

Figure 1: Several frames of the video displayed.

3.1.2 Analysis of the frames

In the next step, we need to distinguish the wound from its surrounding, so that we are able to detect the
boundary of the wound, which will be explained later on in the next section. Distinguishing the wound
can be done by making a binary image out of the frame using a suitable threshold for the intensity values
of the wound. The idea then is to choose a value such that the wound in the binary image will have the
color white, whereas the color outside the wound will be black.

Before we determine what threshold value we should choose, we need to convert the frame into a grayscale
image. A grayscale image is an image in which the colors are composed exclusively of shades of gray. In
this way, all the pixels will have intensity values that ranges from 0 to 255, with 0 black colored and 255
white colored, so that our threshold value lies in this range as well.

After converting the image, we can start with the determination of a suitable threshold value so that we
can distinguish the wound from its surrounding.

8

Figure 2: Intensity histogram of the frame.

First, we will look at the intensity histogram of the frame, in particular the histogram of frame 0. This
is shown in Figure 2. We see in this histogram the intensity values on the horizontal line and the number
of pixels with those intensity values on the vertical line. Clearly, most of the pixels correspond to the
intensity values between about 120 and 150. This is also not surprising, because this corresponds to the
wound seen in the frame. Overall, the wound has a more or less the same (monotone) colour, which
means that the intensity values are in the same range. Moreover, the size of the wound is quite large
compared to the size of the frame. Thus the number of pixels with values in that specific range must be
very high as well, which explains the large spike in the histogram.

To confirm this even more, we make two plots to see how the intensity values look like if we plot the
values along the horizontal and vertical line.

(a) Intensity along the horizontal line. (b) Intensity along the vertical line.

Figure 3: Intensity line in one dimension.

In Figure 3a, we fixed a value on the vertical (height) line and then we plot the intensity values over
that particular line. In this case, we chose height = 100 pixels. But, if we choose another height, then

9

the plot will be similar to that of Figure 3a. In this plot, we see that there is an almost horizontal line
from about width 380 to 700 pixels. If we look back at Figure 1a, it is not difficult to see that this line
corresponds to the intensity value of the wound, at height = 100 pixels. This value is around 130.

In Figure 3b, we did the same as in Figure 3a, but now we fixed a value on the horizontal (width) line.
For this plot, we chose width = 500 pixels, so that the line and the corresponding intensity values are
only from the wound itself. From the plot we see that the values are between 125 and 145.

We now know that the wound has intensity values in the range of 120 to 150, so we actually want that
those values will have the same colour (white) and all other intensities black. So we put two thresholds
on the image separately, with values 150 and 120. After that we subtract the images from each other to
receive the binary image. This can be seen in Figure 4.

(a) Threshold value 150. (b) Threshold value 120. (c) Subtracted image.

Figure 4: Results of putting thresholds on the image.

Although there are some black spots, the subtracted image in Figure 4c shows us the white-coloured
wound. But outside the wound, there are still some white-coloured spaces, which we do not want because
otherwise too many contours are drawn. This will be explained in 3.1.3. In order to remove the white
spaces outside the wound, we use the function cv2.erode from OpenCV. This function is based on the
morphological operation erosion. The effect of this operation is that it erodes away the boundaries of
regions of white pixels, so that these regions will shrink in size, and holes within those regions become
larger.

To use this function, it needs two data sets as input. The first one is the input image where we apply
this operation. The second one is called a structuring element or kernel. The kernel is a small set of
coordinate points that determines the precision of this operation on the input image. Mathematically,
the definition of erosion for binary images is as follows:

Definition 3.1. Let E = R2 be the Euclidean space and let X be the set of Euclidean coordinates
corresponding to the input binary image. Furthermore, let K be the set of coordinate points corresponding
to the kernel. Then erosion of the binary image X by the kernel K is defined by:

X 	K = {x ∈ E|Kx ⊆ X},

where Kx is the translation of K by the vector x, so that the center of K is at x, or:
Kx = {k + x|k ∈ K},∀x ∈ E.

The result of eroding the image in Figure 4c can be seen in Figure 5.

10

Figure 5: Erosion of the image.

11

3.1.3 Contour drawing

Now that we have eroded the image, we are able to find and draw intensity levels contours in the
image. Again, we use a function in OpenCV that finds the contour for us. This function is called
cv2.findContours, which uses an algorithm that is explained by Satoshi Suzuki et al [1]. In short,
this algorithm scans every pixel in a given binary image and it decides whether a pixel is a border point
or not. A border point is defined as a 1-pixel (white) (i, j) having a 0-pixel (black) (p, q) in its 8-(4-)
neighborhood. The result of this algorithm is that it finds all white objects from a black background in
a binary image and calculates the contours around those objects. That is why we had to make sure the
wound is white-colored after putting a threshold on the frame and eroding the image to have a better
accuracy of finding the contour of the wound.

The function cv2.findContours returns a list of all the contours that the function finds and every
contour is a Numpy array of coordinates (x, y) of boundary points of the contour. Now to find the contour
of the wound, we assume that this contour is the largest of all other contours that the function may find.
We make this assumption because in Figure 5 we see that the wound is indeed the largest white object
after erosion. Thus, the contour with an array length that is larger than any other contour will be chosen
as the wound contour. After that, we use the function cv2.drawContours to draw the wound contour.
The result of the contour is given in Figure 6.

Figure 6: Contour of the wound.

As we can see, the contour is drawn quite accurately because it follows the edges of the wound, and so
the contour encloses the whole wound. If we apply the threshold, erode and then calculate the contour
of the wound for the other frames displayed in Figure 1, we will get the following contours in Figure 7.

(a) Frame 50. (b) Frame 150. (c) Frame 398.

Figure 7: Contours drawn in other frames.

12

3.2 Area calculation

In the previous section, we were able to find and draw the contour of the wound for every frame. These
contours all consist of a finite amount of pixels (x, y). Now in order to calculate the (approximate) area
of the wound encircled by the contour, we can make use of Green’s Theorem. This theorem states as
follows:

Theorem 3.2 (Green’s Theorem). Let P and Q be continuous functions of (x, y) with continuous partial
derivatives

∂P (x, y)

∂y
,

∂Q(x, y)

∂x

and let C be a piecewise smooth, positively oriented, simple closed curve in a plane. Furthermore, let D
be the region bounded by C. Then the following holds:∮

C

P (x, y) dx+Q(x, y) dy =

∫∫
D

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

)
dx dy. (3.1)

Now from Calculus we know that the area of the region D is equal to
∫∫
D
dx dy. So if we use Green’s

Theorem to calculate the area of D, we have to set:

∂Q(x, y)

∂x
− ∂P (x, y)

∂y
dx dy = 1. (3.2)

There are many ways to define P and Q such that the integrand is equal to 1. By choosing P (x, y) = 0
and Q(x, y) = x, it is easy to see that the requirement is satisfied. So we have that the area A of the
region D is equal to:

A =

∮
C

x dy. (3.3)

Now in our case, the curve C around the wound consists of many small line segments, so we can write
C = C0 ∪ C1 ∪ . . . Cn−1 ∪ Cn, where Ck starts at the point (xk, yk) and ends at the point (xk+1, yk+1).
From Calculus we know that for a line integral evaluated over a piecewise smooth curve, the integral is
equal to the sum of the integrals evaluated over each of the pieces:

A =

∮
C

x dy =

∫
C0

x dy +

∫
C1

x dy + . . .+

∫
Cn

x dy (3.4)

In order to compute the integral over a line segment Ck, we have to parametrize the line segment from
(xk, yk) to (xk+1, yk+1). We set x(t) = (xk+1 − xk)t + xk and y(t) = (yk+1 − yk)t + yk, with 0 ≤ t ≤ 1.
If we substitute the parametrization into the integral, we get the following:∫

Ck

x dy =

∫ 1

0

((xk+1 − xk)t+ xk)(yk+1 − yk) dt

=
(xk+1 + xk)(yk+1 − yk)

2

By summing over all the line segments Ck’s, we get the total area A of the region D:

A =

n∑
k=0

(xk+1 + xk)(yk+1 − yk)

2
(3.5)

We can now implement equation (3.5) in Python to calculate the area of the wound by calculating the
area of the contour in pixels. We have done this for every frame, so we get the following result in Figure 8.

13

Figure 8: Area of the wound per frame.

The result in Figure 8 shows us that the area indeed decreases as the time (frames) passes by and
eventually the wound is closed. But surprisingly, we see two spikes between the frames 100 and 150.
Unless something happens unexpectedly, the spikes should not be there at all, because we see in the
video that the area decreases constantly. If we zoom in on the spikes, we see that the sudden increase
is at frame 112 and frame 142 in Figure 9. To see what is happening with the contours, we will look at
the frames around 112, because that spike is larger than the second one, so that we have a better look
at what is happening.

Figure 9: Close-up on the spikes in Figure 8.

We can see in Figure 10b and Figure 10c that the sudden increase is due to the fact that the contour is
partially drawn outside the wound. So the area of the contour increases because now both the wound
and a part of the area outside of the wound are taken into account. Also, comparing to Figure 6, these
contours in Figure 10 contain some small loops which affect the area calculation as well. So there are
some improvements needed to have a better approximation of the area of the wound.

14

(a) Frame 110. (b) Frame 111.

(c) Frame 112. (d) Frame 113.

Figure 10: Frames around frame 112.

3.3 Improvements on extracting the area of the wound.

As we have seen in the previous sections, we were able to detect the wound and calculate the area of it.
However, we also saw that by detecting the wound, the contour that is drawn is not very accurate. It
has some loops and part of the cells just outside the wound are also included in the contour. So to have
a better estimation of the area of the wound, we need a different method to detect the wound.

3.3.1 Sobel Operator

The Sobel operator (or Sobel filter) is an operator that is used in image processing, in particular to detect
edges within an image. The operator calculates the gradient of the intensity function of the image. This
is very useful in edge detection, because finding an edge in the image is to find the regions in the image
where the intensity changes suddenly (an increase or decrease), see for example again in Figure 3a. If we
can calculate the gradient (derivative) of the sudden change in intensity value of a certain pixel, then we
know if that pixel belongs to an edge or not. In other words, in order to detect edges in an image, we
need to locate the pixel locations where the gradient is higher than the gradient of its neighbours.

The Sobel operator actually calculates two derivatives. Namely the change of intensity in the horizontal
line and in the vertical line. This is done by convolving the input image with the kernels Sx for the

15

horizontal derivative and Sy for the vertical derivative. The convolution is defined as:

g(x, y) = k ∗ I(x, y) =

a∑
s=−a

b∑
t=−b

k(s, t)I(x− s, y − t), (3.6)

where g(x, y) is the output image after convolution, k is the kernel being used and I the input image. If
the kernel is of size 3× 3, then s and t ranges from -1 to 1.

If we define I as the input image, Gx and Gy the output images containing the horizontal and vertical
derivative at each point respectively, then the operation is defined as:

Gx = Sx ∗ I =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I (3.7)

for the horizontal derivative and

Gy = Sy ∗ I =

+1 2 +1
0 0 0
−1 −2 −1

 ∗ I (3.8)

for the vertical derivative, where * here is the convolution operation.

The kernels Sx and Sy can be decomposed as a product of two smaller kernels. The decomposition is
given by

Sx =

−1 0 +1
−2 0 +2
−1 0 +1

 =

+1
+2
+1

 ∗ [−1 0 +1
]
, (3.9)

and

Sy =

+1 +2 +1
0 0 0
−1 −2 −1

 =

−1
0

+1

 ∗ [+1 +2 +1
]
. (3.10)

Note that the kernels [−1, 0,+1] in Sx and [−1, 0,+1]> in Sy are the coefficients of the numerical ap-
proximation of the derivative of the intensity function.

Remember that the derivative of a function f (assuming all the conditions are satisfied) at a point x is
defined by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (3.11)

To approximate the derivative, we can make use of finite differences. There are three methods of these
which are used most often:

• Forward difference, defined by

Qf =
f(x+ h)− f(x)

h
, h > 0.

• Backward difference, defined by

Qb =
f(x)− f(x− h)

h
, h > 0.

• Central difference, defined by

Qc =
f(x+ h)− f(x− h)

2h
, h > 0.

16

So when h is small, it would approximate the derivative of the function f in a point x. However, we know
from Numerical Methods that the approximation error of the forward and backward differences are O(h),
which tends to zero if h→ 0, whereas for the central difference, the approximation error is O(h2), which
tends faster to zero if h→ 0. So the central difference gives us a better approximation of the derivative as
h→ 0. The Sobel operator uses the central difference method to calculate the derivative of the intensity
function at a certain pixel. Notice that the kernel [−1, 0,+1] represents the central difference, with −1
the pixel at x−h and 1 the pixel at x+h of x. The kernels [+1,+2,+1] and [+1,+2,+1]> represent the
(weighted) averaging kernels. To illustrate how the operator works, we will show a quick example of this
operation.

Example 3.3. Assume we have an input image I, which is grayscaled and the kernel Sx defined by

I =


50 50 200 200
50 50 200 200
50 50 200 200
50 50 200 200

 , Sx =

−1 0 1
−2 0 2
−1 0 1

 . (3.12)

As we can see, between the second and third column, the intensity difference between the values in those
columns is large. This indicates that we are dealing with an edge. Now the convolution is done by putting
the kernel Sx over the elements with the same colour. Then calculating the sum of all the elements that
have been weighted, we have -50 + -100 + -50 + 200 + 400 + 200 = 600. This value is non-zero, so there
is an edge. If the kernel was placed over a region of an image where no edges can be seen (for example
when all the elements have the same value), then the sum would be zero. So the brighter the edge, the
bigger the value of the sum. Note that the sign of the value does not matter whether or not an edge is
detected.

As we said earlier, the Sobel operator computes the gradient in the x direction and the gradient in the
y direction at each point. But it is also possible to combine these two approximations to calculate the
magnitude of the gradient in each point. This can be done using:

G =
√
G2
x +G2

y. (3.13)

This is also called the gradient magnitude. The following equation can be used as well:

G = |Gx|+ |Gy|. (3.14)

Now we will look at some of the results using the Sobel operator. First, we will compare the contours
that have been drawn on the frames using the Sobel operator and without the operator, see Figure 11.

17

(a) Without Sobel operator. (b) Sobel operation in the x direction.

(c) Sobel operation in the y direction. (d) Combined operation.

Figure 11: Results of the Sobel operator.

In this figure we compared the contours after applying Sobel operation with Figure 6. In Figure 11b we
see at the bottom left of the wound a small spike coming out. This is because the Sobel operator in the
x direction detected an edge in that location, so that the contour is actually drawn along that edge too.
But overall, it can be seen that all the operations could find the edges of the wound, which is a good
start.

Now we want to look at how the Sobel operator has performed on the same frames as in Figure 10.
Obviously, we do not want to have a sudden overestimation of the area of the wound when the wound did
not become bigger as seen in the video. So in the next figures, we will look at these frames and contours.

18

(a) Frame 111 with Sx. (b) Frame 112 with Sx.

(c) Frame 111 with Sy. (d) Frame 112 with Sy.

(e) Frame 111 with combined operation. (f) Frame 112 with combined operation.

Figure 12: Results of Sobel operation on the frames 111 and 112.

From these figures, we can easily see that the contours are drawn more accurately than the contours in
Figure 10. This is because in our previous method, the contour is drawn over a quite large part of the
cells just outside of the wound, which gives us an overestimation of the area of the wound. But with the
Sobel operator, this is not the case. Although some small loops are still being seen in these contours and
some small parts of the cells outside the wound are inside the contour, the estimation of the wound is
more accurate when the Sobel operator is applied compared to the images in Figure 10. The results of

19

(a) Area of the wound of Sx. (b) Area of the wound of Sy.

(c) Area of the wound of combined operation. (d) Areas with and without Sobel operation.

Figure 13: Areas of the wound over time (frames) after Sobel operation.

the area of the wound over time are seen in Figure 13. Now looking at Figure 13d, the Sobel operators
do not have the sharp spikes as in the blue area plot, which was the result of our first area estimation.
As we would expect, the area of the wound gradually decades over time, without any spontaneous spikes.
Moreover, the graphs of Sx, Sy and the combined operations all look very similar to each other, but there
is some noise to be seen around frame 150. The reason is because around that frame, the wound (almost)
closes in the middle of the wound. Therefore, the wound itself consist of two parts, say an upper and
lower part.

Figure 14: Wound detection only catches a part of the wound when the wound is partly closed in the
middle.

20

Also, because we assumed that the contour that is drawn along the wound is the largest contour of all
other contours that may be drawn, we only get to catch one part of the wound instead of both (see Figure
14). This jumping from the upper to lower part of the wound happens for several frames.

Overall, we do not have large spikes anymore after using the Sobel operator, which is certainly an
improvement on the first boundary detection method.

21

4 Cell Detection

Another aspect we want to know from these videos is to find out how many cells are present during the
video. Over time, we not only see the cells moving to the wound, some cells split into two or some may
die as well. So we want to be able to count the amount of cells (per frame) and moreover to estimate
the cell density. The cell density is very useful to know in order to apply one of the existing continuum
models:

∂u

∂t
−D∆u = f, (4.1)

with u(x, y, t) is the cell density, D the diffusion coefficient, f is the source term (cell division rate) and
∆ the Laplace operator:

∆ =
∂2

∂x2
+

∂2

∂y2
.

This model is a partial differential equation and is also known as the Fisher-Kolmogorov model in
the context of cellular dynamics. It describes the change in space and time of the concentration of a
substance. In our case, the cell density is the substance we want to describe. More of this model will be
discussed in Section 5.

As in Section 3.1, our video will be divided into frames, and every frame is going to be analysed. But
before we start analysing the frames, let us have a look at some of the properties of each cell. Figure 15

Figure 15: Zoomed image of the cells.

is a zoomed image on the cells of frame 0 with dimensions 243 × 257. If we look at it, then the cells are
recognizable because of the following observations:

• Generally, the cells have a clear, bright boundary. This means that the intensity values of the
boundary of the cells are very high.

• The interior of the cells are much darker, which means a lower intensity value on the inside. Fur-
thermore, in most of the cells, the intensity values on the inside of the cells are more or less constant.

22

With these observations, we can start with the detection of the cells.

4.1 Local maxima

The idea of detecting the cells in an image is to find the center of each of the cells (or at least the interior
of every cell). This can be done by looking for the local maximum in every cell. We know from our
observations that the boundary of every cell is brighter than the interior of the cells. Hence, if we try
to find the local maximum in a cell, it would certainly detect the boundary. Thus to avoid this, we are
going to invert the image (actually, we could also find the local minima if we did not want to invert the
image). By inverting the image, all the dark pixels become bright and the bright pixels become dark.
More precisely, if I is an n×m image, then for every pixel p(n,m) with pixel value val(n,m), the inverted
image is the image Iinv with pixel values valinv = 255− val(n,m).

(a) Original image. (b) Inverted image. (c) Blurred image.

Figure 16: Results of inverting and applying a Gaussian blur filter on the image for a suitable σ.

After inverting the image, we have that the interior of the cell has a higher pixel value than the value
of the boundary, as seen in Figure 16b. The next step is to apply a Gaussian blur filter on the inverted
image. As a result, the image is made smooth and thus the interior of the cells can be detected because
the cells will look like ’hills’ on the blurred image in Figure 16c.

23

Figure 17: Detection of cells after blurring with σ = 4.

Now from the library SciPy, we can find all the local maxima in the blurred image with the func-
tion filters.maximum filter from the package ndimage. An example of a result is seen in Fig-
ure 17, with σ = 4. The blue dots in the image represent the local maxima that are found by the
filters.maximum filter function. In this image, there are 288 local maxima that have been found. If
we count the cells by hand, the number of cells are around 262. We can see that most of the cells are
detected, but there are some cells left which were not detected at all. An explanation for this is because
the cells which are not detected, do not have clear, bright boundaries compared to their neighbouring
cells. Rather, the boundaries look more or less like the interior of the cells. So a group of cells will look
like a single cell, and thus not all the local maxima of each cell are detected.

Notice also that some cells have two or more dots very close to each other. The reason for this is that
these cells do not have a constant interior, but rather have a ’mountain-like’ interior with both low and
high intensity values. As a consequence, the function detects multiple local maxima within a single cell.

24

(a) σ = 2 with 470 detect local maxima. (b) σ = 3 with 333 detected local maxima.

(c) σ = 5 with 351 detected local maxima. (d) σ = 6 with 175 detected local maxima.

Figure 18: Cell center detection for different values of σ’s.

We have also done this for different σ values, see Figure 18. We see that for some values of σ, the total
amount of detected cells are less than the actual amount of cells in the image. Also, the dots that have
been drawn are more or less clustered in small areas, see for example Figure 18c and Figure 18d. If the
σ value is too low, then too many local maxima will be detected, even though all the cells are detected.
This means that for many cells in the image, they have multiple dots in their interiors. This can be seen
in Figure 18a.

25

Now the question that may arise is how to choose a suitable σ to detect all (or most) of the cells in an
image? To answer it directly, we will make use of the following formula [2]:

σopt = arg
σ>0

min |#LM(Gσ ∗ I)− S(I)|, (4.2)

where σopt is the optimal choice of σ and #LM(Gσ ∗ I) denotes the number of detected local maxima
after blurring the image with a Gaussian filter. S(I) denotes the approximate number of cells calculated
using the algorithm described in [2]. This algorithm counts the number of cells in an image (filtered by
a Gaussian blur) by counting the number of boundary crossings of the cells in a row and divide that
number by 2. Repeat this process for every row, so that the average number of cells in the horizontal
direction can be calculated. Then doing the same process for every column, we get the average number
of cells in the vertical direction. The total number of cells in an image is then calculated by taking the
product of the two averages.

Notice also that we need to choose a suitable σs for S(I) if we want to use the algorithm to calculate the
number of cells in the image. So we will look at the number of cells S(I) for different values of σs. The

(a) Number of cells S(I) for different values of σs.
(b) Difference between #LM(Gσ ∗ I) and S(I) for dif-
ferent values of σ.

Figure 19: Finding the optimal value σ.

red band in Figure 19a denotes the interval [260,290]. Because the number of cells counted by hand was
around 262 and our result in Figure 17 detected 288 local maxima, we found that this interval represents
a good approximation of the exact number of cells. As we can see, the choice for σs for this image lies in
the interval [0.6; 0.8]. But the σs may vary depending on the image that needs to be analysed.

To find σopt, we will look at different values of σ and find the minimum difference between #LM(Gσ ∗ I)
and S(I). This is visualized in Figure 19b.

From this figure, one can see that the minimum value is achieved if σopt = 3.6, where we used σs = 0.70,
S(I) = 273 and steps of 0.1 to obtain σopt. But when choosing σopt = 3.6, the number of local maxima is
actually 338. This number is too high though, compared to when using σ = 4 with 288 located maxima
and 262 when the number is counted by hand. This means that our method is very sensitive to small
changes of the parameter σ.

26

4.2 Histogram equalization

So far, the method we have used in the previous section only consists of the use of a Gaussian blur filter
and then finding the local maxima in the image. But as we can see, not all the cells were detected, and
some cells were detected more than once. To improve our method, we are going to make use of Histogram
Equalization. Histogram Equalization is an image processing method used to increase the global image
contrast by adjusting the histogram of a given image. When a histogram has many pixels within a (small)
range of intensity values, the histogram will be more evenly distributed when the equalization is applied.
It spreads out the most frequent intensity values. In this way, areas with a lower local contrast will get
a higher contrast.

We will use this technique because the video we have used does not have a high contrast. If we increase
the contrast, then we will have a better distinction between the cell’s interior and the boundary, and so
detecting the cells would be easier.

Histogram equalization goes as follows:

Let I be a given (grayscale) image with dimension i × j and Vi,j the pixel value on pixel (i, j) ranging
from 0 to L−1. L denotes the number of possible intensity values. Usually, L = 256 for grayscale images.
Let ni be the number of pixels that have intensity value k and n the total number of pixels of the image.
Then the probability for a pixel to have intensity value i is

pk =
number of pixels with intensity k

total number of pixels
=
ni
n
, k = 0, 1, . . . , L− 1.

Note that pk is the image’s histogram for pixel value k that is normalized to [0,1].

Now the equalization of the histogram of image I is defined by transforming the intensity value s ∈
[0, L− 1] of I by the function

T (s) = floor((L− 1)

s∑
k=0

pk), (4.3)

where floor() is the operator that rounds T (s) down to the nearest integer [4],[5].

To apply equation (4.3) on the histogram, we used a function in OpenCV called cv2.EqualizeHist to
make this work.

27

(a) Original histogram of the frame. (b) Equalized histogram of the frame.

(c) Inverted frame. (d) Inverted frame after histogram equalization.

Figure 20: Result of histogram equalization.

The result of equalizing a histogram can be seen in Figure 20. Again, we used the histogram of frame
0 to illustrate the effect of histogram equalization. Indeed, the intensity values with a high number of
pixels are spread out more evenly over the other values. Having a higher contrast on the image, we see
a better distinction between the interior of the cells with a high intensity value and the boundary of the
cells with low intensity. Then applying the same method as used in Section 4.1, we can compare these
results with our previous method. The result of applying both methods is seen in Figure 21.

28

Figure 21: Cell detection with and without histogram equalization (and σ = 3.6).

The blue dots in this figure represent the detected local maxima without applying histogram equalization
and the orange dots are the ones after applying histogram equalization. Here we used σ = 3.6 because
that was the optimal choice for σ we had found. As said earlier, the amount of detected blue dots are
338, whereas for the orange dots there are 269 local maxima detected (the actual cell count is 262 for this
frame). Many blue and orange dots overlap each other because they detected the same local maxima.
Also, we plotted the blue dots first and then orange. So at first sight it looks like we have more orange
dots than blue, but this is not the case.

As we can see, almost all cells are detected after histogram equalization as well, but some cells still have
multiple dots in their interior. However, we see that there are less clustered orange dots compared to
blue, which explains why there are less local maxima detected after equalization. Moreover, the number
of orange dots comes closer to what we have counted by hand and what we have calculated with S(I)
than the number of blue dots. Also this number is within the ’acceptable’ range of [260, 290].

29

Figure 22: Number of local maxima detection for different values of σ.

Figure 22 shows us the number of local maxima detection for σ ∈ [0, 10] with steps 0.1 and the red
band represents the acceptable range of [260, 290]. What stands out the most is that the detection
of cells swings heavily when no equalization is applied, whereas the detection is far more stable when
equalization has been used. Following the blue line, we see that for some values of σ the number of local
maxima is indeed within the red band. But as mentioned before under Figure 18, the maxima are more
or less clustered in small areas. So even though the number of local maxima is within the red band,
not every cell will be detected. Thus from these observations, it seems like using histogram equalization
before detecting the local maxima in an image will give us a better approximation of the number of cells
in an image.

30

5 Continuum model

In this section, we will finally apply the continuum model we have mentioned before in equation (4.1):

∂u

∂t
−D∆u = f. (5.1)

To solve this equation, we are going to discretize it in space and time. First, we set up a grid of points
over the domain D of the image I, like so in Figure 23. The black box represents the frame of the image,

Figure 23: Grid of points

with length L and width W . The red line with the corresponding points is the boundary ∂D and the
distance between the grid points is h. The blue square represents the small window with length a where
the amount of cells will be counted in that small window. Then the grid point (xi, yj) is the center of
the blue square, with value u(xi, yj) = ui,j

4. Here we have xi = a/2 + ih, for i ∈ {0, 1, . . . ,M}, where
W−a = Mh (otherwise the blue square exceeds the frame). Same for yj = a/2+jh, for j ∈ {0, 1, . . . , N},
where L − a = Nh. The video we analysed so far had L = 720 pixels and W = 960, where we chose
h = 10 and a = 80. Thus M = 88 and N = 64 in our case. In the next iterations, the blue square moves
lexicographically, which means it runs through all xi for y0, then it runs through all xi for y1 etc.

The Laplace operator consists of two partial derivatives. We can use central differences to approximate
these derivatives in each coordinate (xi, yj):

(∆u)i,j =
∂2ui,j
∂x2

+
∂2ui,j
∂y2

≈ ui−1,j − 2ui,j − ui+1,j

h2
+
ui,j−1 − 2ui,j − ui,j+1

h2
, (5.2)

with i ∈ {1, 2, . . . ,M − 1} and j ∈ {1, 2, . . . N − 1}. Combining the two derivatives gives us

∂2ui,j
∂x2

+
∂2ui,j
∂y2

≈ ui−1,j − 4ui,j + ui+1,j + ui,j−1 + ui,j+1

h2
. (5.3)

The boundary values are denoted as u:,0, uM,:, u0,: and u:,N , where u:,0 means ui,0 for i = 0, ..M . The
solution vector û ∈ R(M−1)(N−1) (without the boundary values) would be

û = (u1,1, u2,1, . . . , uM−1,1, u1,2, u2,2, . . . uM−1,2, . . . , u1,N−1, u2,N−1, . . . , uM−1,N−1)>

4It must actually be written as u
(k)
i,j , with k the frame number of the video, because the uki,j changes over time. The

same holds for f . But for now, we omit the notation for convenience.

31

Now define the (M − 1)× (M − 1) matrix

Q =



−4 1
1 −4 1

1 −4 1
. . .

. . .
. . .

1 −4 1
1 −4


(5.4)

and I the (M − 1)× (M − 1) identity matrix. Because our solution vector û ∈ R(M−1)(N−1), we will get
a linear system of (M − 1)(N − 1)× (M − 1)(N − 1):

∆u ≈ Aû + b

, with A the (M − 1)(N − 1)× (M − 1)(N − 1) block matrix defined by:

A =



Q I
I Q I

I Q I
. . .

. . .
. . .

I Q I
I Q


, (5.5)

and b the boundary values defined by:

b = (u1,0, u2,0, . . . , uM−1,0, 0, . . . , 0, u1,N−1, . . . , uM−1,N−1)>+

(u0,1, 0, . . . , 0, uM,1, u0,2, 0, . . . , 0, uM,2, . . . , . . . , u0,N−1, 0, . . . , 0, uM,N−2, u0,N−1, 0, . . . , 0, uM,N−1)>,

with the first term of b the ’north-south’-boundary and the second term the ’west-east’-boundary. These
are Dirichlet boundary conditions, since we can determine the boundary values explicitly.

Now using finite difference for the time derivative, we get:

∂u

∂t
≈ û(k+1) − û(k)

∆t
, k = 0, 1, 2, . . . (5.6)

Combining all the results from above, we obtain the finite difference scheme using the Forward Euler
method:

û(k+1) = u(k) +
∆tD(k)

h2
(Au(k) + b(k)) + ∆tf(k) (5.7)

We use the Forward Euler method because it is a relatively fast algorithm and it is easy to implement.
In this case, ∆t is set to 0.1. This is because the video lasts for 39 seconds, whereas the video has 399
frames, so that the time between two frames is about 0.1 seconds.

5.1 Finding the parameter D

Now we want to find a suitable parameter D(k) such that the difference between the real data u(k+1) and

the finite difference scheme û(k+1) is minimized:

‖u(k+1) − û(k+1)‖22. (5.8)

For convenience, we write down û(k+1) = u(k) + D(k)Bu(k) + D(k)v
(k) + g(k), with B = ∆t

h2A and

v(k) = ∆t
h2 b(k) and g(k) = ∆tf(k). But first, we need to write out the term (carefully) before we can find

32

the suitable parameter. This goes as follows:

‖u(k+1) − û(k+1)‖22 = ‖u(k+1) − (u(k) +D(k)Bu(k) +D(k)v
(k) + g(k)‖22 (5.9)

= ‖u(k+1) − ([I +D(k)B]u(k) +D(k)v
(k) + g(k))‖22. (5.10)

This is an inner product, written as

〈u(k+1) − [I +D(k)B]u(k) −D(k)v
(k) − g(k),u(k+1) − [I +D(k)B]u(k) −D(k)v

(k) − g(k)〉. (5.11)

Now equation 5.11 can be written in the form:

‖u(k+1) − û(k+1)‖22 = akD
2
(k) + 2bkD(k) + ck, (5.12)

with the coefficients

ak = 〈v(k),v(k)〉+ 〈Bu(k), Bu(k)〉+ 2〈v(k), Bu(k)〉 (5.13)

bk = −〈Bu(k),u(k+1)〉 − 〈v(k),u(k+1)〉+ 〈Bu(k),u(k)〉+ 〈Bu(k),g(k)〉+ 〈u(k),v(k)〉+ 〈v(k),g(k)〉 (5.14)

ck = −2〈u(k),u(k+1)〉 − 2〈u(k+1),g(k)〉+ 2〈u(k),g(k)〉+ 〈u(k),u(k)〉,+〈g(k),g(k)〉+ 〈u(k+1),u(k+1)〉
(5.15)

Taking the derivative in D(k) and setting the equation to zero gives us an extremum (5.8):

D(k) = − bk
ak
. (5.16)

Now, we do not know our source term g(k), so we set it to zero instead to be able to calculate the D(k)’s.
The graph of Dk can be seen in Figure 24.

Figure 24: Plot of the Dk’s for every frame number k.

We see that the parameter D(k) differs for every frame k, with an interesting spike at frame 316. Appar-
ently, the value there is zero. Now we want to look for a single constant D such that the overall difference
between the measured data and the model is minimal. Therefore, we apply the method of least-squares,
which is a method widely used in statistics. In our case, the method of least squares becomes:

F(D) =

m∑
k=1

‖u(k+1) − û(k+1)‖22, (5.17)

33

starting with k = 0, u(0) = û(0).

To find the parameter D that fits the model to the real data, we need to take the derivative of (5.17) and
then set it to zero:

F(D) =

m∑
k=1

‖u(k+1) − û(k+1)‖22 (5.18)

=

m∑
k=1

(
akD

2 + 2bkD + ck
)

(5.19)

F′(D) =

m∑
k=1

(2akD + 2bk) (5.20)

= D

(
2

m∑
k=1

ak

)
+

m∑
k=1

2bk = 0. (5.21)

→ DLS = −
∑m
k=1 bk∑m
k=1 ak

. (5.22)

So here we found the optimal parameter DLS in least-squares. Using the formula for D, we obtain the
value DLS ≈ 170.27449884853527. We can also look at the average of the D′ks, with

Davg =
1

m

m∑
k=1

Dk =
1

m

m∑
k=1

(
− bk
ak

)
. (5.23)

Then from Figure 24, the average Davg ≈ 170.98490044714137. Note that the dimensions of DLS and
Davg are in pixels and seconds, whereas the actual units are in µm and hours.

5.2 Results of modelling

In this section, we are going to show the results of modelling with the parameters DLS and Davg.
Remember that we do not know our source term, so we set it to zero. In this way, we can see if diffusion
will take place in our model.

Figure 25: Real measurements of several frames and their corresponding cell densities. From left to right,
we have frame 0, 100, 200 and 300.

34

Figure 25 shows us the real measurements of the cell density, with low cell density at the wound and
higher density outside the wound, as we would expect. Now we want to be able to have similar results
when we model this process using the finite difference scheme.

Figure 26: Comparison of the results of modelling with DLS and Davg and the real measurements. From
left to right, the upper frames are frame 0, frame 100 and frame 200. The lower figures are the average
cell density plots in vertical direction for frames 0, 100, 200 and 300. From left to right, we have the real
measurements, then the plot from the model with DLS and right the plot from the model with Davg.

Figure 26 shows us the results of the real data and the data from the model. We took the average cell
density in vertical direction for the frames, so that we can see how that changes over time. The actual
data shows us that the average cell density increases over time, especially in the wound, so diffusion does
take place here. Also, the cell density in the surrounding tissue increases, which indicates that cells have
been dividing during the process as well.

In the plots with parameter DLS and Davg we see similar results compared to the real measurements.
Both have increase in density in the wound and also in the boundary. Because the difference between
the values of DLS and Davg is small, the plots of those two look almost exactly the same.

Figure 27: Cell density plot with parameter DLS ≈ 170.27449884853527. From left to right, the corre-
sponding frames are 0, 100, 200 and 300.

Figure 27 shows us the cell density ’maps’ of frame 0, 100, 200 and 300, with parameter DLS . The images
look smooth, so that we see that diffusion takes place in our model, which is what we wanted.

35

Figure 28: Cell density plots with parameter Davg ≈ 170.98490044714137. From left to right, the
corresponding frames are 0, 100, 200 and 300.

Figure 28 are the results with Davg ≈ 170.98490044714137. It should come as no surprise that the images
in Figure 27 and Figure 28 look exactly the same. Of course the images with parameters DLS and Davg

are not fully matched to the real measurements, because we did not consider the cell divisions that took
place during the video as well. However, the method we used to derive a suitable parameter gave us a
good estimation of the parameter, where diffusion can be seen which is similar to the real measurements.

5.3 Source term

Although we did not model the diffusion of cells with a source term, the method to find a suitable
parameter (or parameters) described in Section 5.1 can be used as well with a source term. For example,
let f in equation (5.1) be the mitotic generation term, given by:

f = αu

(
1− u

u0

)
, (5.24)

where α is a positive parameter and u0 the unwounded cell density. This term describes the cell growth
in a logistic form, which is mentioned in [9]. Then the diffusion equation becomes:

∂u

∂t
−D∆u = αu

(
1− u

u0

)
. (5.25)

We will not go too deep into detail about this source term, but we will rather focus on how to find the
parameters D and α.

From equation (5.11), we have written out the difference between the measured data and the modelled
data, with a general source term g(k). Now , if we substitute the source term in equation (5.11), then
the equation can be written as:

‖u(k+1) − û(k+1)‖22 = akD
2
(k) + 2D(k)bk + 2D(k)αck + 2αdk + α2ek + fk, (5.26)

with the coefficients:

ak = 〈v(k),v(k)〉+ 〈Bu(k), Bu(k)〉+ 2〈v(k), Bu(k)〉 (5.27)

bk = −〈Bu(k),u(k+1)〉 − 〈v(k),u(k+1)〉+ 〈Bu(k),u(k)〉+ 〈u(k),v(k)〉 (5.28)

ck = 〈Bu(k),u(k) ◦ (1− u(k)

u0
)〉+ 〈v(k),u(k) ◦ (1− u(k)

u0
)〉 (5.29)

dk = 〈u(k),u(k) ◦ (1− u(k)

u0
)〉 − 〈u(k+1),u(k) ◦ (1− u(k)

u0
)〉 (5.30)

ek = 〈u(k) ◦ (1− u(k)

u0
),u(k) ◦ (1− u(k)

u0
)〉 (5.31)

fk = 〈u(k),u(k)〉+ 〈u(k+1),u(k+1)〉 − 2〈u(k),u(k+1)〉. (5.32)

Here, u(k) ◦ (1 − u(k)

u0
) is discretized, with ◦ the Hadamard product and 1 a column vector with all the

elements having value 1. So our source term is still a vector.

36

Now, define the functional

F(D,α) =

m∑
k=1

‖u(k+1) − û(k+1)‖22 (5.33)

=

m∑
k=1

(
akD

2 + 2Dbk + 2Dαck + 2αdk + α2ek + fk
)
. (5.34)

Then the optimal parameters D and α are found by taking the gradient of (5.33) and setting the partial
derivatives to zero: 

∂F

∂D
= 0→

(
m∑
k=1

ak

)
D +

(
m∑
k=1

ck

)
α = −

m∑
k=1

bk,

∂F

∂α
= 0→

(
m∑
k=1

ck

)
D +

(
m∑
k=1

ek

)
α = −

m∑
k=1

dk.

(5.35)

(5.36)

This is a system of equations which can be solved for D and α, which will give us the optimal values for
the parameters in least-squares.

37

6 Results from other videos

In this section, we will be looking at two other videos to see how our methods work on these videos as
well. We will be looking at the area calculations and also the cell detection. The second video5 we are
going to analyse looks similar to the first one, so we will see in the next figures how it works out.

6.1 Boundary detection

First we will look at the area calculation of the wound, using the Sobel filter and without the Sobel
filter in Figure 29. Obviously, the blue line gives an odd result compared to the Sobel filter lines. The

(a) A frame from the video. (b) Contour of the wound.

(c) Area calculation of the wound.
(d) Blue histogram at the beginning of the video and
orange the histogram after the beginning.

Figure 29: Results of area calculation of the wound with provided with two examples of histograms of
the video.

blue line starts with zero area of the wound and then suddenly it makes a huge jump. The reason for
this happening is because the video is darker at the beginning compared to the rest of the video (Figure
29d). So the intensity values are lower at the beginning, and the method without the Sobel filter depends
heavily on the intensity of the video, by putting thresholds. The thresholds values will be in the range
of the orange histogram, causing the method to not detect the wound at the beginning.

5https://www.youtube.com/watch?v=O8CQSva1G50

38

Another thing that stands out is that every line in Figure 29c has some jumps around frame 100 for the
Sobel filters and around frame 120 without the Sobel filter. The reason for this is the same as back then
in Figure 13a. The wound actually closes faster in the middle of the wound, causing the wound to have
an upper part and lower part, making it difficult to catch both of the parts. But overall, the graphs look
similar to the results in Figure 13d.

We will also calculate the area of the wound in the third video6. This video is different than the previous
videos, so that we can see how well the methods perform under different circumstances. The results in

(a) Frame of the third video. (b) Contour of the wound.

(c) Area calculation of the wound.
(d) Contour at frame 19, which explains the spikes in
the graphs.

Figure 30: Results from the third video.

Figure 30 are quite interesting. First of all, we see that the method without a Sobel filter has a hard time
approximating the area, probably due to poor (pre)processing of the image. Whereas the Sobel plots
are more consistent, except for some huge spikes. These spikes come from the fact that the video itself
’blinks’ a few times, making the video darker, causing the filter to actually catch the whole frame as the
contour, see Figure 30d. But if we would follow the graphs and ignore the spikes, the graphs also look
similar to that of Figure 29c and Figure 13d.

6https://www.youtube.com/watch?v=c47IWzRo3Ao

39

6.2 Cell detection

For both videos we will also look at the cell detection, with and without using histogram equalization.
Figure 31 shows us the results of cell detection of the second video. Here, the blue dots represent the

(a) (b) Detection of the wound with σ = 4.5.

(c) Blue dots removed for clarity. (d) Zoomed image of the frame.

Figure 31: Results of cell detection from the second video.

method without histogram equalization and orange the opposite. The cells in this video are quite hard
to see with our own eyes, since the boundaries are darker. But it should be clear from these figures
that there are too many blue dots to be seen (Figure 31b and Figure 31d) compared to the orange ones.
For the sake of some clarity, we provided Figure 31c without the blue dots to see how the cell detection
worked out with histogram equalization. Similar to previous results of the first video, apart from some
cells, most of the cells are detected, and some cells have more than one dot in their interior. The total
amount of local maxima here is 1496.

Figure 32 is the result of cell detection in the third video. In Figure 32b, we see that the method with
histogram equalization actually detects parts of the wound as well. This is because the wound is not
that smooth compared to the previous videos. Instead, there are some places where tiny black dots can
be seen, and these dots will be detected. But it is possible to remove the orange dots in the wound, see
Figure 32c. Furthermore, in Figure 32d the white cells are not detected, these are the cells which are
about to divide. We assumed that the interior of the cells were dark instead of light. So our method was
not able to detect them. But again, we were able to catch (almost) all other cells in the frame.

40

(a) (b) Detection of the wound with σ = 5.

(c) Adjusted image. (d) Zoomed image of the frame.

Figure 32: Results of cell detection from the third video.

41

7 Further research

In this last section, we describe two methods where we have been working on it during this project, but
they did not work completely or they were not finished yet, probably due to coding errors. Both of these
methods have to do with kernel density estimation. The kernel density estimation is a method to smooth
the observed data by estimating the probability density function of the given data, for example when one
is working with histograms [8]. The first method describes the detection of the boundary and the second
method describes a measure to determine the amount of cells in a given image.

7.1 Kernel density estimation for boundary detection

In our attempt to improve the boundary detection of the wound, we have looked at the different histograms
of specific regions. In particular, we looked at regions where a group of cells are present, regions of the
wound and at the boundary of the wound. Examples of these histograms are shown below, where we
normalized the intensity values to [0,1].

(a) Region with cells. (b) Region of the wound.

(c) Region of the boundary.

Figure 33: Different histograms for different regions of the frame.

Now, the idea of this method is that we want to make three classifications based on the given histograms.
These classifications are: ‘cells’, ‘wound’ and ‘boundary’. So for example, if we create a small window
in an image, then based on the histogram of that small window, is it possible to decide whether we are

42

dealing with ‘cells’, the ‘wound’ or the ‘boundary’? Eventually, we want to get the pixels which are
classified as ’boundary’. The following steps are what we have done to accomplish this method:

• We create a small window in the frame near the boundary and for every pixel in that small window,
we look at the histogram within a small area of each pixel.

• Then, we compare the histogram of each pixel with the histogram of the boundary (Figure 33c) by
looking at the ’smallest difference’ between these histograms.

• Next, the pixel that corresponds to the histogram with the smallest difference will be added to the
set of coordinates that corresponds to the boundary of the wound.

• After that, the window will be moved to the coordinates of the pixel which was most recently added,
and then repeat this process.

By saying the ’smallest difference’, we actually mean the smallest distance between the histograms. This
distance can be computed using the Euclidean distance (also called Euclidean metric or L2-norm.
The Euclidean distance is defined as:

‖x‖2 =

(
n∑
k=1

|xk|2
)1/2

=

√√√√ n∑
k=1

|xk|2, x = (x1, x2, . . . , xn). (7.1)

However, to get a better comparison between the histograms, we will look at the corresponding kernel
density estimations of the histograms. Our histograms in Figure 33 have many intensity values which are
not counted at all (discontinuities). As a consequence, calculating the distance between the histograms
will have some difficulties.

The definition of the kernel density estimator is as follows:

Definition 7.1. Let x1, x2, . . . , xn be the sample of size n from a random variable with an unknown
density f . Then the kernel density estimator of f at the point x is defined by

f̂h =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (7.2)

where K is the kernel, a non-negative, real-valued integrable function and h is called the bandwidth, a
smoothing parameter which is positive-valued. The kernel Kh with subscript h is the scaled kernel given
by Kh = 1

hK(xh).

The kernel function K satisfies the following conditions:∫ ∞
−∞

K(u) du = 1. (7.3)

This condition ensures that the kernel density estimator f̂h is indeed a probability density function. The
second condition is not entirely necessary, but often in practice, the kernel is symmetric about zero. So
in this case, the mean of the kernel is also zero:∫ ∞

−∞
uK(u) du = 0. (7.4)

There are several functions which satisfy the conditions of a kernel, but we will use the so-called Gaussian
kernel , given by:

K(u) =
1√
2π
e−

1
2u

2

. (7.5)

We will use the Gaussian kernel because this kernel is defined for all values of u ∈ (−∞,∞), whereas for
many other kernels, they are only defined on u ∈ [−1, 1] and for all other values of u, K(u) = 0. Also,

43

this kernel is used very often and the Gaussian function is a well-known function in probability theory,
so we will stick to this choice too.

A suitable choice for h needs to be chosen so that the kernel density estimator is a good representation
of the real data. In the book written by Silverman [8], a suitable choice for h is given by:

h =

(
4σ5

3n

)1/5

≈ 1.06σn−1/5, (7.6)

where σ denotes the standard devitation of the data and n the total number of observations. Implementing
the kernel density estimator given by (7.2) with the Gaussian kernel (7.5) and with bandwidth h (7.6)
will give us the figures in 34. Both the histograms and the kernel density estimation are plotted to clarify

(a) Region with cells. (b) Region of the wound.

(c) Region of the boundary.

Figure 34: Histograms and their corresponding kernel density estimation.

the shapes of the kernel density estimation. We see that the kernel density estimations fit the data quite
well, so that we can work with them instead of the histograms. One should notice though that the density
plots and the histograms have different scales on the y-axis. So when the same scales is used for both
the histograms and density plots, the density plots will be much smaller than what we see now in Figure
34. Especially Figure 34c looks a bit odd when different scales are used, but if one would use the same
scale on the y-axis and zoom in on the plot, then the density plot fits the given data quite well too.

44

Figure 35: Detection of the wound using KDE.

In Figure 35, we see that the detection of the boundary went quite well. The lines are a bit more inside
the wound then on the boundary itself and on the right side, it looks like the detection went a bit rough.
However, the overall shape of the wound remains.

Figure 36: Detection of the wound using KDE on a different frame.

If we look at another frame and apply the same detection, the result is less accurate, see Figure 36. One
of the reasons why the detection is not accurate is that we did not update the histogram of the boundary
in every frame. Instead, we keep comparing to the histogram given in Figure 34c.

Also, we only compared the histograms of the pixels to the histogram of the boundary. However, it would
be better if the pixels are also compared to the histogram of the cells and the wound. In this way, the
classification process would be more accurate. In future studies, this can be an alternative way to detect
boundaries (of wounds).

45

7.2 Kernel density estimation for cell detection

In previous sections, we showed how to detect the cells by detecting the local maxima in every frame.
But in this section, we will look at a different perspective to measure the amount of cells (or cell density)
in an image. This is mostly based on the analysis of the image’s histogram and their corresponding
kernel density estimation (KDE). We want to be able to say something about the amount of cells (or
cell density) purely by looking at the histogram of the image. In this way, we are less dependent on the
image that must be analysed.

First, we will show an image that is going to be analysed and the corresponding histogram.

(a) Image. (b) Histogram and the KDE.

Figure 37: Image to be analysed.

In this image, we counted about 45 cells by hand. Now is it possible to derive a measure for the amount of
cells purely from the image’s histogram? We see from this image that the boundaries are bright, whereas
the interior of the cells are darker. This can be seen from the histogram as well, where most of the pixels
are between values 0.4 and 0.6. One way to look at the histogram is to consider the ratio between the
pixels that are dark and bright. To define ’dark’ and ’bright’, we will make use of the kernel density
estimator again, given also in Figure 37.

Figure 38: KDE split into two Gaussians.

Because we want to know what the ratio is between the ’dark’ and ’bright’ pixels, we want to fit the

46

KDE with two Gaussian curves (the KDE is already a sum of Gaussians), one that represents the ‘dark’
pixels and the other that represents the ’bright’ pixels. We define the Gaussian curves as:

f(I) = Ne−α(I−I1)2 +Me−β(I−I2)2 , (7.7)

with the first term representing the ’dark’ pixels, and the second term the ’bright’ pixels. N,α, I1,M, β,
and I2 are the parameters to be estimated. Fitting has been done by the function optimize.curve fit

from SciPy, which uses non-linear least squares to fit the curves with the given parameters, and the
results are seen in Figure 38.

The parameters (N,α, I1,M, β, I2) are given by the (rounded) values (1.55, 106.30, 0.46, 1.57, 14.44,
0.54). Surprisingly, the curve ’Gaussian 2’ with (mean) I2 = 0.54 is much wider than the curve ’Gaussian
1’. We actually expected that the curves would be reversed, so that ’Gaussian 1’ is much wider than
’Gaussian 2’ because there are more dark pixels to be seen (interior of the cells) than bright pixels (the
boundaries).

The area under the ’Gaussian 1’ curve is approximately 0.27, whereas ’Gaussian 2’ has area 0.73 (it should
be summed up to 1, because the KDE is a probability density function). So we are actually dealing with
some kind of probability. Looking at Figure 38 and their areas, one might say that the probability of a
pixel being ’dark’ is pdark = 0.27, whereas the probability of being ’bright’ is then pbright = 0.73. But
unfortunately, this does not correspond to what we see in the image. We have also tried it for other
functions as well, but the results were mixed:

Figure 39: Left: three Gaussian curves plotted. Middle: One Beta distribution. Right: two Beta
distributions plotted, but the values of the parameters were assigned the same.

The left figure did not change at all, except for an extra Gaussian curve that is not in the same range
as the other Gaussians. The middle and right figures are the Beta distributions, but we were only able
to plot a single Beta distribution, whereas plotting the sum of two Beta distributions would give us an
interesting curve. Also, using different images give us similar plots such as Figure 38. Perhaps using
other distribution functions which are similar to the Gaussian will have a better performance.

If we are able to get the distributions that correspond to the image, we have the probability of being a
bright pixel pbright and a dark pixel pdark. Then the area of dark pixels in an image (the area of all the
cells) is given by:

Adark = pdarkAimage = (1− pbright)Aimage. (7.8)

Furthermore, if we know the (average) area of a single cell, then the total amount of cells would be:

Ncells = Adark/Acell. (7.9)

Looking back at Figure 2, we know that the large spike in the histogram corresponds to the pixels of the
wound. If we can determine a distribution function that corresponds to the spike, we have a probability

47

that a pixel is in the wound, say pwound. Then in the same way as in equation (7.8), we can determine
the area of the wound in pixels:

Awound = pwoundAimage. (7.10)

48

8 Conclusion and discussion

In this thesis, we began by detecting the area of the wound in one of our videos. To detect the wound, we
used the open-source package OpenCV in Python to draw a contour around the wound. This could only be
done in binary images, so frame processing was needed at first to create binary images, such as filtering
and eroding the frames. The resulted drawings were quite accurate, and we were able to calculate the
corresponding area. But at some video frames, the graph of the area of the wound over time did not
correspond entirely to what we saw in the video. Instead of detecting the wound, it detected also some
parts of the surrounding tissue as well.

We showed a method to improve the wound detection, by using a different filter called the Sobel filter,
which calculates the gradient of the image. The results after the Sobel filter gave us a better representation
of what we saw in the video. A drawback of the wound detection is that it can be affected when the
wound is almost closed. What happens then is that the wound consists of multiple parts and only the
largest part will be detected. A possible solution for this is by extracting the top two or three largest
contours that are found in those frames. After that, if we sum up the areas of those contours, then we
will have the area of the whole wound. Perhaps if we used a different filter, the results would be even
better. There are many filters in the field of image processing which we did not examined, many of them
already exist in the Python package Scikit-image.

Next, the detection of individual cells has been showed. By blurring the image and localizing the local
maxima, we were able to detect almost all of them. But some cells were more than once located, so we
would have to much cells detected. Therefore, histogram equalization has been applied on the images to
increase the overall contrast of the image before detecting the local maxima. In this way, the detection
was more consistent and accurate.

If we could compare our results with other existing software packages that extract the cell density and
the area of the wound, that would be interesting to see how well our methods performed. One of the
software packages we had in mind was CellProfiler7. Unfortunately, we did not have enough time to use
this software and compare it with our results.

After that, we applied the continuum model on the video. We derived an approximation of the continuum
model by using finite difference. The parameter estimation has been discussed as well to find a suitable
parameter to fit the model with the real data. We actually found two suitable parameters DLS and Davg,
where the results were similar to the real measurements using these parameters. In the end, a method
to use a source term is explained as well. In the same way, it may be possible to determine the optimal
parameters for other existing wound-healing models as well.

We have shortly displayed several results of boundary detection and cell detection in two other videos.
Most of the results look similar to the results that we obtained at first, but the results were also dependent
on the videos themselves.

At last, we described two methods where we have been working on it during this project, but we were not
able to finish it or to make it work completely. Both methods are based on the kernel density estimation.
The first method was used to detect the boundary of the wound and the second method was used to
determine a new measure of the amount of cells in an image.

7https://cellprofiler.org/

49

References

[1] Satoshi Suzuki et al. Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.

[2] den Bakker, D. (2018). Analysis of Microscopic Images: A Gradient Vector Flow Based Ap-
proach. Retrieved from http://resolver.tudelft.nl/uuid:d34e0179-f911-40f3-94a8-73944cb7e2ff

[3] Adam J.A. (1999). A simplified model of wound healing (with particular reference to the
critical size defect). Math Comput Model 30(5–6):23–32

[4] Histogram Equalization. Retrieved from
https://www.math.uci.edu/icamp/courses/math77c/demos/hist eq.pdf

[5] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Third Edition, page 91-93, 2008.

[6] Vermolen, F.J. and Pölönen, I. (2019). Uncertainty quantification on a spatial Markov-Chain
model for the progression of skin cancer.

[7] Snowden, J.M. (1983). Wound Closure: An Analysis of the Relative Contributions of Con-
traction and Epithelialization.(pp.453-463).

[8] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.(pp.44-45)
Chapman and Hall, London.

[9] Sherratt, Jonathan A., and J. D. Murray. “Models of epidermal wound healing.”Proceedings
of the Royal Society of London B: Biological Sciences 241.1300 (1990): 29-36.

50

A Python Code

In this section, the most important codes are found. Throughout this project, we worked with Python
3.7.3. Many open-source libraries such as OpenCV, SciPy and Numpy were used.

A.1 Boundary detection

1 import cv2

2 import scipy.ndimage as nd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import scipy

6 from scipy.spatial import distance as dist

7 from skimage import util

8

9 cap = cv2.VideoCapture('video_file')

10

11 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

12

13 ## ========================== Boundary wound detection ======================== ##

14 def boundary_sobelx(im): #Boundary detection using Sx filter

15 gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

16 blurred = cv2.GaussianBlur(gray,(5,5),3)

17 sx = nd.sobel(blurred,axis = 0, mode = 'constant')

18 invert_x = util.invert(sx)

19 dif_x = invert_x - sx

20 ret3, newthresh = cv2.threshold(dif_x,254,255,cv2.THRESH_BINARY)

21 dilate = cv2.dilate(newthresh,None,iterations = 2)

22 contours, hierarchy = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

23 B_array = max(contours,key = len) #finds the largest contour

24 img = cv2.drawContours(im,B_array,-1, (0,0,255),5) #draws contour on frame

25 return B_array

26

27 def boundary_sobely(im): #Boundary detection using Sy filter

28 gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

29 blurred = cv2.GaussianBlur(gray,(5,5),3)

30 sy = nd.sobel(blurred,axis = 1, mode = 'constant')

31 invert_y = util.invert(sy)

32 dif_y = invert_y - sy

33 ret0, newthresh = cv2.threshold(dif_y,254,255,cv2.THRESH_BINARY)

34 dilate = cv2.dilate(newthresh,None,iterations = 2)

35 contours, hierarchy = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

36 B_array = max(contours,key = len) #finds the largest contour

37 img = cv2.drawContours(im,B_array,-1, (0,0,255),5) #draws contour on frame

38 return B_array

39

40 def boundary_sobel(im): #Boundary detection using combined filter

41 gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

42 blurred = cv2.GaussianBlur(gray,(5,5),3)

43 sx = nd.sobel(blurred,axis = 0, mode = 'constant')

51

44 sy = nd.sobel(blurred,axis = 1, mode = 'constant')

45 sobel = abs(sx) + abs(sy)

46 invert_s = util.invert(sobel)

47 dif_s = invert_s - sobel

48 ret4, newthresh = cv2.threshold(dif_s,254,255,cv2.THRESH_BINARY)

49 dilate = cv2.dilate(newthresh,None,iterations = 2)

50 contours, hierarchy = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

51 B_array = max(contours,key = len) #finds the largest contour

52 img = cv2.drawContours(im,B_array,-1, (0,0,255),5) #draws contour on frame

53 return B_array

54

55 def boundary(im): #no sobel filter

56 gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

57 blurred = cv2.GaussianBlur(gray,(5,5),3)

58 ret1, threshblur1 = cv2.threshold(blurred,130,255,cv2.THRESH_BINARY)

59 ret2, threshblur2 = cv2.threshold(blurred,92,255,cv2.THRESH_BINARY)

60 newblur = threshblur2 - threshblur1

61 erode = cv2.erode(newblur,None,iterations = 2)

62 contours, hierarchy = cv2.findContours(erode.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

63 B_array = max(contours, key = len) #finds the largest

contour↪→

64 img = cv2.drawContours(im,B_array,-1, (0,0,255),5) #draws contour on frame

65 return B_array

66

67 def area(curve): #Green's Theorem on calculating area

68 n=0

69 res = 0

70 for n in range(len(curve)-1):

71 res = res + (1/2)*(curve[n+1][0]+curve[n][0])*(curve[n+1][1] - curve[n][1])

72 n = n+1

73 return abs(res)

74

75 ##============================= Area calculation ==============================##

76

77 def calc_area(k): #calculating area contour until frame number k

78 B = {}

79 B_x = {}

80 B_y = {}

81 B_s = {}

82 Area_x = []

83 Area_y = []

84 Area = []

85 Area_s = []

86 for i in np.arange(k):

87 ret,frame = cap.read()

88 if ret:

89 aa = boundary(frame)

90 aa = np.squeeze(np.array(aa))

91 B[str(i)] = aa

92 aaclose = np.insert(aa,0,aa[len(aa)-1],0) #make contour closed

93 Area = Area +[area(aaclose)]

94

95 #sobel x

52

96 bb = boundary_sobelx(frame)

97 bb = np.squeeze(np.array(bb))

98 B_x[str(i)] = bb

99 bbclose = np.insert(bb,0,bb[len(bb)-1],0) #make contour closed

100 Area_x = Area_x +[area(bbclose)]

101

102 #sobel y

103 cc = boundary_sobely(frame)

104 cc = np.squeeze(np.array(cc))

105 B_y[str(i)] = cc

106 ccclose = np.insert(cc,0,cc[len(cc)-1],0) #make contour closed

107 Area_y = Area_y +[area(ccclose)]

108

109 #sobel

110 dd = boundary_sobel(frame)

111 dd = np.squeeze(np.array(dd))

112 B_s[str(i)] = dd

113 ddclose = np.insert(dd,0,dd[len(dd)-1],0) #make contour closed

114 Area_s = Area_s +[area(ddclose)]

115

116 i = i+1

117 cap.release()

118 cv2.destroyAllWindows()

119 return Area, Area_x, Area_y, Area_s

53

A.2 Cell detection

1 import cv2

2 import scipy.ndimage as nd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import scipy

6 import scipy.ndimage.filters as filters

7

8 cap = cv2.VideoCapture("video_file")

9 ret, frame = cap.read()

10

11 def findMaxima(I,sigma): #cell detection without histogram equalization

12 invert = np.invert(I)

13 size = 5

14 threshold = 2

15 im_gauss = nd.gaussian_filter(invert,sigma)

16 im_gauss_min = filters.minimum_filter(im_gauss, size)

17 im_gauss_max = filters.maximum_filter(im_gauss, size)

18 maxima = (im_gauss == im_gauss_max)

19 diff = ((im_gauss_max - im_gauss_min)>threshold)

20 maxima[diff == 0] = 0

21

22 labeled, num_objects = nd.label(maxima)

23 slices = nd.find_objects(labeled)

24 x, y = [],[]

25 for dy, dx, dz in slices:

26 x_center = (dx.start + dx.stop - 1)/2

27 x.append(x_center)

28 y_center = (dy.start + dy.stop - 1)/2

29 y.append(y_center)

30 return x,y

31

32 def findMaxima_eq(I,sigma): #cell detection with histogram equalization

33 gray_frame = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)

34 equ = cv2.equalizeHist(gray_frame) #Histogram equalization, higher contrast

35 invert_equ = np.invert(equ)

36 size = 5

37 threshold = 2

38 im_gauss = nd.gaussian_filter(invert_equ,sigma)

39 im_gauss_min = filters.minimum_filter(im_gauss, size)

40 im_gauss_max = filters.maximum_filter(im_gauss, size)

41 maxima = (im_gauss == im_gauss_max)

42 diff = ((im_gauss_max - im_gauss_min)>threshold)

43 maxima[diff == 0] = 0

44

45 labeled, num_objects = nd.label(maxima)

46 slices = nd.find_objects(labeled)

47 x, y = [],[]

48 for dy, dx in slices:

49 x_center = (dx.start + dx.stop - 1)/2

50 x.append(x_center)

51 y_center = (dy.start + dy.stop - 1)/2

52 y.append(y_center)

54

53 return x,y

54

55 def count_cells(I,sigma):

56 imshape_x, imshape_y = I.shape[:2]

57 num_lines = round(imshape_y/10) # number of rows and columns used to compute

S(I)↪→

58 im_gauss = nd.gaussian_filter(I, sigma)

59 avg_x_cells , avg_y_cells = 0, 0

60 for c in range (num_lines):

61 n = c* imshape_x / num_lines

62 m = c* imshape_y / num_lines

63 line_x = im_gauss[int(n),:,0]

64 line_y =im_gauss[:,int(m),0]

65 line_x_mean = line_x.mean ()

66 line_y_mean = line_y.mean ()

67 boundary_x = (line_x < line_x_mean)

68 boundary_y = (line_y < line_y_mean)

69 switch_x = abs(np.diff(boundary_x))

70 switch_y = abs(np.diff(boundary_y))

71 count_x = switch_x.sum() *0.5

72 count_y = switch_y.sum() *0.5

73 avg_x_cells += count_x / num_lines

74 avg_y_cells += count_y / num_lines

75 num_cells_scan = avg_x_cells * avg_y_cells

76 return num_cells_scan

55

A.3 Continuum model

1 import cv2

2 import scipy.ndimage as nd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import scipy

6 import scipy.sparse as sp

7 import scipy.sparse.linalg as spla

8

9 #setting up grid

10 h = 10

11 a = 80

12 M = 88

13 N = 64

14 ## ===================== Real measurement ====================##

15 def measured_data(frame_number): #measured data at frame number

16 u2d = []

17 cap.set(cv2.CAP_PROP_POS_FRAMES,frame_number)

18 _,frame = cap.read()

19 for j in range(0,N+1):

20 u = []

21 for i in range(0,M+1):

22 window = frame[(h*j): a +(h*j),(h*i):a +(h*i)]

23 u += [count_cells(window,0.7)]

24 u2d += [u]

25 u2d = np.array(u2d)

26 img = u2d.reshape((j+1,i+1))[1:j,1:i]

27 u_vec = img.ravel() #vector of measured data lexographically

28 return u_vec, img

29

30 ## ================== Laplacian matrix ==================== ##

31 Q = sp.diags([1,-4,1],[-1,0,1], shape = (M-1,M-1))

32 block = np.kron(np.eye(N-1),Q.toarray())

33 l = sp.diags([1,1],[-(M-1),(M-1)],shape=((M-1)*(N-1),(M-1)*(N-1))).toarray()

34 A = l + block

35

36 ## =================== Boundary values ======================##

37 def boundary_west_east(frame_number): #boundary value at frame number

38 bdy_west_east = []

39 cap.set(cv2.CAP_PROP_POS_FRAMES,frame_number)

40 _,frame = cap.read()

41 bdy = []

42 for j in range(1,N):

43 u2 = []

44 for i in range(0,M+1,M):

45 window = frame[(h*j):a +(h*j),(h*i):a+(h*i)]

46 u2 += [count_cells(window,0.7)]

47 bdy += [u2]

48 nul = np.zeros((i-1)*(j))

49 for k in range(0,j):

50 nul[(i-1)*k] = bdy[k][0]

51 nul[(i-1)*k + (i-2)] = bdy[k][1]

52 bdy_west_east = nul

56

53 return bdy_west_east

54

55 def boundary_north_south(frame_number): #boundary value at frame number

56 bounds = []

57 bdy_north = []

58 bdy_south = []

59 bdy_vec = []

60 cap.set(cv2.CAP_PROP_POS_FRAMES,frame_number)

61 ret,frame = cap.read()

62 for j in np.arange(0,N+1,N):

63 u = []

64 for i in range(0,M+1):

65 window = frame[(h*j):a+(h*j),(h*i):a+(h*i)]

66 u += [count_cells(window,0.7)]

67 bounds += [u]

68 bdy_north = bounds[-2][1:i]

69 bdy_south = bounds[-1][1:i]

70 bdy_vec = np.concatenate([bdy_north,np.zeros((i-1)*(j-3)),bdy_south])

71 return bdy_vec

72

73 ##================ Finite Difference model ==================##

74 def model_data(k,D):

75 u_model,_ = measured_data(0) #begin data

76 it = 0

77 while it < k:

78 bwe = boundary_west_east(it)

79 bns = boundary_north_south(it)

80 u_model = u_model + ((dt*D)/((h)**2))*(A.dot(u_model))

+((dt*D)/(h**2))*(np.array(bns) +np.array(bwe))↪→

81 it += 1

82 img_model = u_model.reshape((63,87))

83 return u_model,img_model #solution vector and img

84

85 ## ===================== D_k calculation =====================##

86 def Dif(k):

87 u_k_1,_ = measured_data(k + 1)

88 u_k,_ = measured_data(k)

89 bwe = boundary_west_east(k)

90 bns = boundary_north_south(k)

91 v_k = (dt/(h**2))*(bns+bwe)

92 B = (dt/(h**2))*A

93 b_k = - u_k_1.dot(B.dot(u_k)) - v_k.dot(u_k_1) + u_k.dot(B.dot(u_k)) +

u_k.dot(v_k)↪→

94 a_k = v_k.dot(v_k) + + v_k.dot(u_k) + (B.dot(u_k)).dot(B.dot(u_k)) +

(B.dot(u_k)).dot(v_k)↪→

95 D_k = - (b_k/(a_k))

96 return D_k, b_k,a_k

97

98 ## ================ Function used to count cells =============##

99 def count_cells(I,sigma): #sigma = 0.7

100 imshape_x, imshape_y = I.shape[:2]

101 num_lines = round(imshape_y/10) # number of rows and columns used to compute

S(I)↪→

102 im_gauss = nd.gaussian_filter(I, sigma)

103 avg_x_cells , avg_y_cells = 0, 0

57

104 for c in range (num_lines):

105 n = c* imshape_x / num_lines

106 m = c* imshape_y / num_lines

107 line_x = im_gauss[int(n),:,0]

108 line_y =im_gauss[:,int(m),0]

109 line_x_mean = line_x.mean ()

110 line_y_mean = line_y.mean ()

111 boundary_x = (line_x < line_x_mean)

112 boundary_y = (line_y < line_y_mean)

113 switch_x = abs(np.diff(boundary_x))

114 switch_y = abs(np.diff(boundary_y))

115 count_x = switch_x.sum() *0.5

116 count_y = switch_y.sum() *0.5

117 avg_x_cells += count_x / num_lines

118 avg_y_cells += count_y / num_lines

119 num_cells_scan = avg_x_cells * avg_y_cells

120 return num_cells_scan

58

A.4 Kernel density estimation

1 import cv2

2 import scipy.ndimage as nd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy import ndimage as nd

6 import scipy

7 from scipy.optimize import curve_fit

8 from scipy.integrate import quad

9 from scipy.special import gamma

10

11 cap = cv2.VideoCapture("video_file")

12 ret, frame = cap.read()

13

14

15

16 ##==================== Kernel Density Estimation ==============##

17

18 def K(u): #Gaussian kernel

19 return (1/np.sqrt(2*np.pi))*np.exp(-0.5*(u**2))

20

21 def kde(x,norm_hist): #KDE

22 som = 0

23 h = 1.06*norm_hist.ravel().std()*((len(norm_hist.ravel())))**(-1/5)

24 if h > 0:

25 for i in range(len(norm_hist.ravel())):

26 som = som + K((x - norm_hist.ravel()[i])/h)

27 res = som/(len(norm_hist.ravel()) * h)

28 return res

29

30 ##======================= Histograms ========================##

31

32 ## Histogram wound

33 crop = frame[500:520,500:520]

34 wound_gray = cv2.cvtColor(crop,cv2.COLOR_BGR2GRAY)

35 f_wound = kde(t, (wound_gray)/255)

36

37 ## Histogram cells

38 crop2 = frame[200:220,200:220]

39 cells_gray = cv2.cvtColor(crop2,cv2.COLOR_BGR2GRAY)

40 f_cells = kde(t, (cells_gray)/255)

41

42 ## Histogram boundary

43 crop3 = frame[545:565, 375:395]

44 bound_gray = cv2.cvtColor(crop3,cv2.COLOR_BGR2GRAY)

45 f_bound = kde(t,(bound_gray)/255)

46

47 def kde_boundary(I,l,r):

48 c = boundary_sobely(I)

49 c = np.squeeze(np.array(c))

50 coord_left = np.array([[l,r]]) #begin

51 while coord_left[-1][0] < I.shape[0]:

52 dic = {}

59

53 for i in range(1,11):

54 for j in range(0,21):

55 if coord_left[-1][1]+j> I.shape[1] or coord_left[-1][0]+i+10 >

I.shape[0]:↪→

56 break

57 else:

58 zoom = I[int(coord_left[-1][0]+i):\

59 int(coord_left[-1][0]+i+5),int(coord_left[-1][1]+j-20)\

60 :int(coord_left[-1][1]+j)]

61 zoom_gray = cv2.cvtColor(zoom,cv2.COLOR_BGR2GRAY)

62 f_zoom = kde(t, (zoom_gray)/255)

63 dic[i,j]= [np.linalg.norm(f_grens - f_zoom)] #L2-norm

64 for key, val in dic.items():

65 if val == max(dic.values()):

66 coord = key

67 new_coord_left = np.array((coord_left[-1][0] +

coord[0],(((coord_left[-1][1]+coord[1])-20) +

coord_left[-1][1]+coord[1])/2))

↪→

↪→

68 coord_left = np.vstack((coord_left,new_coord_left))

69 return coord_left

70

71 ## =================== Cell measurement =================== ##

72

73 t = np.arange(0,1,1/256)

74 zoom = frame[250:350,220:310]

75 zoom_gray = cv2.cvtColor(zoom,cv2.COLOR_BGR2GRAY)

76 ydata = kde(t,(zoom_gray/255))

77

78 #define function with two Gaussians

79 def func(I,N,a,I_1,M,b,I_2):

80 return N*np.exp(-a*(I - I_1)**2) + M*np.exp(-b*(I - I_2)**2)

81

82 def func2(I,N,a,I_1):

83 return N*np.exp(-a*(I - I_1)**2)

84

85 def Beta(a,b):

86 return (gamma(a)*gamma(b))/gamma(a+b)

87

88 def Beta_pdf2(I,a,b,c,d): #Beta distribution

89 return (1/Beta(a,b))* (I**(a-1))*((1-I)**(b-1)) +\

90 (1/Beta(c,d))* (I**(c-1))*((1-I)**(d-1))

91

92 def Beta_pdf(I,a,b):

93 return (1/Beta(a,b))* (I**(a-1))*((1-I)**(b-1))

94

95 popt,pcov = curve_fit(func, t,ydata, bounds =

(0,[np.inf,np.inf,1,np.inf,np.inf,1,np.inf,np.inf,1]))↪→

96

97 curve1 = func2(t,popt[0],popt[1],popt[2])

98 curve2 = func2(t,popt[3],popt[4],popt[5])

99

100 ##integration of function

101 ans, err = quad(func2,0,1,args=(popt[0],popt[1],popt[2]))

60

