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Preface
There is no doubt that the smallest spacecraft platforms (CubeSats, NanoSats and microsats) are revo-
lutionizing the market. The possibilities of developing spacecraft through standard platforms, commer-
cial of the shelf components and then reduced the cost of development has allowed new organizations
to enter the space section. On top of that, traditional businesses have been benefited by these type of
new spacecraft, as more technology demonstrations and riskier missions have been able to be devel-
oped through this technology.

Nevertheless, these spacecraft systems cannot compete with their larger counterparts due to their
size limitations. The extra space will allow for larger spacecraft to accommodate more complex and
precise instruments and payloads. Therefore, an individual CubeSat will never be able to compete
with a larger system. Nevertheless, in the last two decades, the concept of using the combined power
of these simple and cheap systems to perform a task only possible with larger spacecraft has been
proposed. One of the most interesting possibilities among the use of these distributed space systems
is the use of swarming. Swarming is a technique which consists of the combination of a large number
of simple elements to allow for the emergence of properties that allow the whole system to act as more
than just its parts. The benefits of spacecraft swarming are undeniable, as inherently swarming brings
robustness, flexibility, and scalability to the system, all three properties extremely valued in space mis-
sions.

For the moment spacecraft swarming has been mostly based on generating formation patterns with
a large degree of autonomy. Still, only a handful of techniques have been explored. This work aims
to further advance the knowledge of spacecraft swarming techniques. To do so, the implementation of
a swarming algorithm never tested in space will be studied The advantage of this algorithm is double.
First, as all swarming techniques, it presents a certain degree of artificial intelligence that will allow
the swarm to cope with unexpected situations. Second, by design, this algorithm requires really little
knowledge of the swarm environment. This translates in less need for information processing between
spacecraft and within each spacecraft. Since the application is focused on already spacecraft with
limited capabilities, this is certainly advantageous.

This project will reflect the research work done at the TU Delft’s department of Space Systems En-
gineering on the use of the mentioned algorithm. This project was carried as the master thesis of the
author. The aim will be to determine the advantages, disadvantages, and range of application of the
algorithm. The work will be specially focused small spacecraft with limited actuation capacity. To study
the algorithm a simulation tool has been created to simulate the dynamics and control of a swarm of
spacecraft. This tool has been developed under a certain set of models and assumptions which will
be presented throughout the report. The tool will be used to test the algorithm with several relevant
spacecraft configurations to have a full overview of the performance of the algorithm. Also, optimiza-
tion techniques have been used to improve the performance and have a clear picture of the current
capabilities of the swarming algorithm. The tool created has been designed in such a way that future
users can also incorporate their own modules of control, swarming or spacecraft design and test new
swarming techniques, transcending its use on this project.

To fully understand the work here presented, it is recommended that the reader possesses graduate-
level knowledge on orbital dynamics and control, as well as some undergraduate notions of computer
programming and artificial intelligence techniques. If the reader lacks knowledge on any of the men-
tioned areas, it is recommended to read the associated literature study referenced in the bibliography.

A. Ripoll Sanchez
Delft, April 2019
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1
Introduction

Clearly miniaturization and size reduction has become a trend in the spacecraft world. Small space-
craft, especially microspacecraft and smaller systems (less than 100kg) [36] have the advantage of
allowing for a faster development and, therefore lower cost. A good example of these kind of sys-
tems are the CubeSats. Since its introduction in the 1990’s by Twigs and Puig Suari, CubeSat have
revolutionized the space industry by allowing small capital organizations to access the possibility of
launching their own space mission [60]. CubeSats have not only changed the whole development cy-
cle of a spacecraft mission by switching the concept from tailored components to the use of Commercial
of the Shelf (COTS) and standardized components, but also pushed space science to make the most
of miniaturized elements. Still, the smallest spacecrafts present the major disadvantage of not being
able to compete against the larger size instruments on board of larger size spacecraft individually [96].
In order to fully exploit the capabilities of these technologies a leap forward to collaborative spacecraft
missions is needed. This is why probably, the smaller the size of the spacecraft, the more missions
on collaborative approaches [36]. Among the many options presented in literature for collaborative
spacecraft missions [41] one of the most interesting for its application in small spacecraft technologies
is swarming. Swarming is a technique inherited from robotics which consists in the collaboration of a
set of relatively simple elements (from now on agents) in such a way that the behaviors and actions
resulting from the collaboration allow the emergence of more complex behaviors and actions than the
ones that the agents by themselves could generate [42].

Swarming allows for the exploiting of the commercial advantages of less capable spacecraf while
adding on the mission its three intrinsic properties: robustness, flexibility and scalability [11]. Further-
more, the emergence of properties due to swarming allows for the increase in the capabilities of the
overall mission while still keeping the simplicity of the agents of the swarm. All these advantages, plus
some others such as the cost reduction associated with the mass production of the agents, have in-
creased the interest in spacecraft swarming in the last two decades. Both concepts for large budget
interplanetary missions [38, 83] as well as lower budget university founded projects [27, 41, 47] based
on swarming have been proposed in the last two decades. But it seems that there is no consensus on
how to implement the guidance and control algorithms that allow the swarming of the spacecraft. Whilst
the most classical approaches such as behavioral control seem to be preferred, they still present some
inherited problems in scalability and required knowledge that cannot easily be solved for spacecraft
missions. On the other hand, approaches based on advanced techniques such as deep learning still
present a lack of understanding that makes them unsafe to use in a mission [16]. There is still a clear
need for a reliable swarming guidance and control algorithm for spacecraft missions.

The goal of this thesis project will be to present a mode to form patters with a swarm spacecraft in
a realistic space dynamic setting. This chapter intends to present first a small review of the state of
the art of the given topic so all the concepts that will be needed to fully understand both the report and
the motivation of the project become familiar to the reader. Then a short introduction of the method
of swarming presented in this report will be also given in slightly more depth. The next section will
then present a selected study case that will be used throughout the report to obtain and work with
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4 1. Introduction

realistic constraints. Finally, the last section of this chapter will be dedicated to present the reader with
the project statement and objectives of this project, which will be the formal presentation of the report
goals and its justification.

1.1. Swarming in Spacecraft-State of the Art
The current state of the art of spacecraft swarming algorithms have been focused in designing algo-
rithms that allow to establish a desired pattern through two major techniques, behavioral algorithms and
machine learning based controllers. Additionally, in the last couple of years some interesting concepts
with space application have been rising from the literature in swarm robotics such as the use of Finite
State Machines (FSMs) [2] for the guidance and control of large swarms. Finally, there has been some
interest in including the use of optimization techniques in the design of the swarm controllers, especially
with the use of evolutionary algorithms. Even though this has not been popularized yet in spacecraft
swarming, some interesting applications have been proposed in literature which lead to believe that
evolutionary robotics will soon be an integral part of spacecraft swarming.

1.1.1. Behavioral Algorithms
Behavioral algorithms are the most common choice in swarm guidance and control design. It consists
in the definition of a set of mathematical functions which generate a set of behaviors that every single
agent follows. The combination of those behaviors and the interaction of the swarm agents with each
other then gives rise to the more complex global behavior of the swarm. An easy example of this could
be the design of a flight in a spacecraft swarm where all agents must stay close to a reference orbit
without colliding. This could then be translated into a local gather behavior of each agent towards the
reference orbit to keep the agent close to the reference orbit. Then a repel behavior could be added
so each agent does not collide with its neighbors.

Within behavioral algorithms the most popular implementation in space is the subset called Artificial
Potential Fields (APF). Due to their popularity some authors even define them as a different subset
of controllers [76]. Nevertheless given how they fit the general description of behavioral controllers,
this report will follow the classification in [11, 16] and consider them a subset of behavioral controllers.
These controllers are based on defining an artificial potential function for each behavior required by
the agents of the swarm in such a way that the required global behaviors of the swarm represent the
minimums of the global potential of the agent (that is, including the real dynamics on top of the artifi-
cial). Then, by adding all these artificial potentials to the dynamic model implemented it is quite straight
forward to obtain the required action by the agent, while at the same time the solution can adapt to the
changing conditions of the environment and still present the desired global behavior. These control
algorithms are especially popular in spacecraft swarming design, with multiple interesting variants pro-
posed [12, 53, 72]. Also a similar subset of behavioral algorithms quite popular in spacecraft control
are the virtual forces models, which instead of the artificial potential define fictitious forces to be added
to the dynamics models [25]. In any case the advantage of using these kind of behavioral algorithms
seems to be an ease in the design as the designer can draw inspiration from nature forces or potentials
to generate the desired functions.

Although the theory is pretty straightforward, there are many ways to implement a behavioral control
depending on how the different behaviors interact with each other. Three main architectures can be
considered in this case: subsumption, cooperative and Null-State-Based (NSB).

• Subsumption control consists in creating a competition among the different behaviors, only
choosing the winning behavior each time to be executed [6]. A regulator function dependent
on the sensors inputs is in charge of selecting the applied behavior.

• Cooperative control consists in generating a sum of all behaviors, therefore taking into account
all behaviors in each iteration of the controller [7, 8]. Usually this kind of control is implemented
following Arkin’s motor’s scheme where a supervisor generates a sum of the different behaviors,
based or not on the sensory inputs [6]. Opposite to subsumption control, this scheme of behavioral
control does not need a clear definition of hierarchies between the different behaviors, but still
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Figure 1.1: Example of the Working of Behavioral Algorithms from a Frontal and Top View from [12]

requires some hand tuning of the supervisor.

• Null State-Based control is proposed by [6] as a middle ground between the other two well es-
tablished solutions. NSB allows for the existence of a hierarchy but at the same time does not
force for only one behavior to be used. Instead NSB analyzes which behaviors are not generating
conflicting actions in the state space and allows for the principal to be added with the non conflict-
ing ones. In spacecraft swarming most of the behavioral control algorithms are artificial potential
functions or virtual forces models with subsumption [72] or cooperative control [53] probably due
to the fact that most of the behaviors are quite conflicting to fully exploit the NSB architectures.

Most designs mainly consist of a gather and a repel potential as they are the basis for pattern gen-
eration [52, 72]. Nevertheless, where many authors differ is in the different ways to add and improve
on the swarm properties and in the design of these algorithms. In [52] a method is proposed to gener-
ate the manifold that leads from all possible final configurations to the velocity field that leads to them,
reducing and automatizing more the design. Another interesting point that is not usually covered by
the behavioral algorithms is how to address and plan the flexibility to, for example, change the pattern
formed. In [74] it is proposed to address this problem by using bifurcating potentials, which vary the
shapes by modifying the value of a certain pattern and allow for controlled transitions. Also to address
this issue [25] proposes the control of the transitions by using Gabriel graphs [62] which avoid discon-
nections during the transitions.

Overall, these controllers seem to be an interesting option given the ease of design for the engineer-
ing teams, as there are already many functions to represent the different behaviors and inspiration from
natural forces can be used to design new ones. Interesting results have been obtained proving both
flexibility and automatization [52, 71] and scalability [74]. It is surprising thought that the loss of agents
does not seem to be extremely studied in many of the articles. Nevertheless, the use of the behavioral
algorithms still presents some major inherent drawbacks such as the recognized convergence in unex-
pected minimums [16, 53, 76]. This problem is likely to scale with the increase in size of the proposed
swarms, and the different solutions proposed still seem to rely too much on human interaction or runs
of many simulations in order to find the anomalies and hand tune for them [53, 76]. This, together with
the need of large times tuning the artificial potentials to obtain the desired final patterns [6] pose two
major areas of improvement for other techniques with respect to behavioral algorithm swarming.

1.1.2. Machine Learning Based Controllers
The second popular method to control a swarm comes from one of the current hot topics in academia,
Machine Learning (ML). The classical definition of ML is the one from Mitchel [65]:

A computer program is said to learn from experience Ewith respect to some class of task
T and performance measure P, if its performance at task T, measured by P, improves

with experience E

Specifically in swarm control for spacecraft most ML controllers are based on a technique named
Deep Learning (DL) which is used to generate a Neural Network (NN) controller. A NN is a set of logical



6 1. Introduction

operations layered whose goal is to mimic a certain (not necessarily known) function g by learning a
certain subset of parameters vector 𝜃 such that the mapping y = f(x,𝜃) fits best the function g [48]. The
learning process will consist of an optimization of the parameters in such fashion that given a subset
of examples a certain cost function (for example the norm squared) of the difference between y and g
is minimized.

A controller for a swarm can be generated such that for each agent, giving its current state, a NN
generates the action necessary to result in the desired pattern. This technique has extensively been
proven in robotic swarming, especially in the field of evolutionary robotics, which tries to optimize the
controller through the use of evolutionary algorithms [11]. Examples of these kind of controllers can be
found in [16] [11] or [48]. By design NNs can easily model unknown non-linear dynamics. That is why
in spacecraft swarming most applications of NN in controllers are found in the modeling of non-linear
dynamics within the control unit [59, 107, 108]. Nevertheless, some interesting efforts have been pre-
sented by Izzo et. al. which use two neural networks to control both attitude and dynamics of three
small spacecraft on board the International Space Station (ISS) [53, 54]. These efforts prove that these
controllers can have interesting applications in space swarming.

NN controllers allow for an automatic design process, probably much more optimized than any
which a human designer could do with behavioral algorithms in the same time span. Furthermore, their
combination with evolutionary algorithms allows to find solutions closest to the absolute minimums[11].
They also allow to include non-linear effects in the system models which should produce better results
in certain cases [108]. Nevertheless, they present a major disadvantage. As they are seen by humans
as ”black-boxes” [16, 48] it is not easy, if possible at all, to understand what they are exactly doing,
and therefore their behavior cannot be readily predicted. This, together with the fact that the learning
process usually is not expected to take place during the mission due to computational requirements
[11], generates a big risk as flying it on a mission will mean to have a controller not fully understood and
only validated (and trained) by a simulation model on ground. Certainly NN controllers have a bright
future ahead as they provide with a well tailored controller to the given data with minimal need for hu-
man interaction. Therefore, it is possible that when on-board computers reach the power necessary
to train and refine models in space, this technique of swarm control will become popular. But, for the
moment, using an NN will mean using a not fully understood element to manage a key subsystem such
as the AOCS. This seems unlikely given the stringent requirements that usually govern space systems.

1.1.3. Other Techniques
The different inherent problems that NN and APF present, together with the peculiarities of the space
environment seem to have moved researchers to also present some interesting swarming guidance
and control algorithms as alternatives to the previous ones. These techniques usually come from ei-
ther other areas of the space guidance and control [49, 55, 67] or other fields [44]. A more complete
review of these and other swarming methods can be found in [78].

One of the most relevant groups of other techniques are Passive Relative Orbits (PROs) designts.
These are a set of orbits predesigned to bound as much as possible the relative drift between agents.
These require, once the swarm agents are placed in their designed orbits, a minimum amount of correc-
tions easy to automatize or even command from ground. This technique is quite popular in formation
flying [4], and has been introduced to swarms of spacecraft in through a minimization of the differential
energy of the different agent orbits with a reference circular near-Earth orbit and only considering the
effects of the 𝐽 spherical harmonic component of the gravity [67]. In the same line of thought [55]
presents a new subset of conditions to ensure the minimization of the energy differences of the dif-
ferent orbits that escalate less quickly with the number of agents, allowing to ease the computational
power requirement on the agents. This is coupled with the use of the Relative Orbital Elements (ROE)
guidance and control scheme, proposed by D’Amico [33]. These methods have the advantage of being
both originally designed for space, therefore the particularities of the spacecraft dynamics and environ-
ment are taken into account in the design of the algorithms. Nevertheless the results are hardly useful
for other reference orbits or case studies. Furthermore, even though these examples are labeled as
swarms, they certainly do not put much emphasis on interesting aspects of swarming such as how to
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automatize them, how the swarm has knowledge of other agents, or how the swarm proves its flexibil-
ity, scalability and robustness.

Another interesting guide and control swarming method is presented in [45, 68, 69], the Satellite
Assignment and Trajectory Optimization (SATO) algorithm. This algorithm joins a sequential convex
programming [15] to optimize the trajectories of the swarm agents with an auction algorithm to select
the final positions of each agent in each iteration of the algorithm. All this is integrated with a Model
Predictive Control (MPC) controller. This algorithm optimizes the flight time, but also requires the ca-
pacity of recognizing the current and target positions as well as a full communication system within the
swarm. It is also one of the few algorithms that seems to account for the massive lose of agents and
for both homogeneous and heterogeneous swarms.

1.2. Swarming based on Probabilistic Finite State Machines
The previous section shows that the current state of the art techniques still have major improvement
areas. NN and APF have been proven apt for space missions but still have some pitfalls as unexpected
minimums, difficulties to generate complex behaviors, problems with scalability or lack of understand-
ing. On the other hand ad. hoc. techniques still are too specific for certain cases or require large
quantities of information and computing power to work. With this scenario it only seems logical to ex-
plore new solutions for spacecraft swarming.

One interesting method for swarming that has never been used in spacecraft is the use of FSMs.
FSM can be defined as an algorithm that, given a set of limited states Q, and initial state, I, a final state,
F, and an application, 𝛿, a transition is generated such that (𝐹 = 𝛿(𝐼)) ∈ 𝑄. This artificial intelligence
technique has been widely used in natural language processing [58] and even some of the initial at-
tempts of neural networks clearly resemble FSMs [63]. In swarm control FSMs become an interesting
solution as by creating a discretization in a state-space of the agents the necessary information to both
generate and evaluate the state can be contained. Furthermore, being an artificial intelligence tech-
nique, it tries to reproduce the reasoning processes of an intelligent being [105], therefore it can cope
with unexpected situations. This is extremely valuable for spacecraft as reduces both the operation
cost and the need of continuous communication with the spacecraft. In the case of swarms the au-
tonomy of the system is even more paramount as individually controlling the agents or adapting the
whole system to changing conditions can generate an extreme increase in the ground station hours
needed. Constellations such as Iridium or GlobalStar with tens of satellites already require hundreds
of operators. Bearing in mind the low-cost idea behind nano-sats, which are the most likely realization
in spacecraft of swarm agents, the cost associated with such a huge number of operations is simply
unbearable. Therefore the adoption of AI solutions seems necessary to reduce these costs and allow
for easier, cheaper and more efficient operation [89].

The use of PFSMs in swarm control is not new. Açıkmeşe and his collaborators [2, 3, 35, 39, 73]
have been working on its use for a general purpose guidance system for years now. Their design is
based on the view of the swarm from a probabilistic and density point of view, which allows for an ease
in the control of extremely large swarms. Their idea is based on dividing the state space in sections
or bins, possibly prepared for the task at hand (for example with a bigger bin density in interest areas)
and then define a desired density distribution of the agents in said bins, such as the desired number
of agents in each bin. A Markov chain is then generated to lead the transitions of the different agents
from one bin to another as well as to keep track of the global state of the swarm locally. The idea is
that for a large enough swarm the final density distribution will be really similar if not equal to the de-
sired one. Therefore they use a probabilistic control method which instead of controlling the positions
controls the propagation of the probability that an agent is in each of the bins. Given sufficient time
and number of agents the difference between the desired distribution and the actual distribution will be
minimal. As the Markov chain is generated with a Metropolis-Hastings locally in each agent, it allows
for a decentralization of the algorithm. Also test have been performed for self-repair of the swarm as
well as collision avoidance methods are implemented.
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Figure 1.2: Açıkmeşe’s algorithm example from [2]

Açıkmeşe ’s work proves the interesting properties of using PFSMs as guidancemethods for swarms.
Nevertheless, some of the properties of following a probabilistic guidance approach as proposed can
be counterproductive in space. It is mentioned that this algorithm works better on large swarms than
in small swarms, which are better controlled by deterministic methods such as APF and NN. Never-
theless, a tentative spacecraft mission seems to be a middle-ground case in the size of the swarm.
This technology is usually envisioned with small nano-sats [38] [45], whose launch is usually done as
a piggy-back ride taking advantage of the space left in another lunch. It is not strange to consider that
the swarm will vary in size, starting with a small number of elements and steadily growing as more
and more launches are available. Furthermore, some of the considered systems such as CubeSats
a standard, developed with a focus on enabling university and small organization projects. Therefore,
this piggy-back ride launch strategy and the growth of the swarm with time and availability of resources,
medium and variable size swarms should be something to consider. That is why this work will focus
in the application of PFSMs with another algorithm, which has been named for this work Desired State
Heuristic Algorithm (DESHA for now on) for the sake of brevity.

DESHA is a multipurpose swarming algorithm developed by Coppola et. al. [31] based on PFSMs
developed with consideration for space and autonomous air vehicle uses. The idea behind DESHA is
the definition of a desired global-state of the swarm such that it can be decomposed in a set of unique
local states in such fashion that the only possible combination of said local states is the desired global
state. Thanks to this the only state in which all elements of the swarm detect that they are in a de-
sired state is when the global state is achieved. Meanwhile, a set of transitions are generated. Said
transitions are encoded in the transition matrix 𝑄 which is created in such way that transitions which
disconnect the swarm or transitions that lead to infinitely recursive movements are not allowed. Though
originally the transitions in DESHA are generated with an equal probability, further developments on
the theory [30] also have allowed methods for reducing the required number of steps to form the pattern
through the use of evolutionary algorithms and reduction of allowed movements. The main advantage
of this approach is the reduced knowledge required by the algorithm with respect to other methods
which require global knowledge of the swarm such as Açıkmeşe ’s, SATO or many of the APF pre-
sented. Given the scales up to which a swarm can grow, it seems unrealistic to pretend that hundreds
of agents can communicate with each other to relay their current state in an acceptable amount of time.
Another advantage of using DESHA versus Açıkmeşe ’s approach lies in the more controlled collision
avoidance by design included in it. Desired densities do not make the swarm avoid collisions, only
make it less likely on low density areas since less agents will end up in them, but a second mechanism
in the low level control of the agents needs to exist to avoid collisions if several agents are expected on
a bin. By implementing DESHA, most collisions are avoided in the high level controller (DESHA itself).
Given that a collision in spacecraft would be catastrophic both for the mission and other missions that
might collide with the debris, this seems to support the use of the DESHA and other algorithms that
consider the risk of collision at all times.

1.3. OLFAR, A Case Study in the Far Side of the Moon
In order to properly study the use of DESHA for spacecraft swarming it was considered interesting to
find a study case which allows the reader to see one of the possible uses of spacecraft swarming.
Also, this was interesting as a mental exercise to actually find real implementation problems rather
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Figure 1.3: DESHA patterns and desired states. DESHA is capable of guiding the swarm to this pattern. From [31]

than just randomly defining a desired state in a random orbit and trying to obtain it. Although so far
no real spacecraft swarming mission has been flown, there are several interesting concepts already
developed, some of them with documentation developed. Examples of this are the APIES mission
[38], the ANTS mission [32] or the SWIFT mission [27]. The case study selected is linked to one of
the most interesting applications found by the scientific community to spacecraft swarms, distributed
array space telescopes. In a nutshell, these consist in a set of small antennas whose combined effects
allow to obtain observations of the same wavelengths as larger monolithic telescopes [34]. By using a
swarm in orbit to develop this kind of distributed system it is possible to launch telescopes to receive
these signals without the need of an extremely large antenna. The study mission selected is OLFAR
[13, 19, 34, 94], a distributed array radio telescope mission to the far side of the Moon developed by
the Dutch Universities of Technology. The advantage to send this radiotelescope to the far side of the
Moon is the shielding effect that the Moon will have on Earth noise radiation.

From a practical perspective, this mission has been selected as the study case for this project
thanks to all the available information published about it, which includes from tentative designs of the
intersatellite links to a preliminary design of the orbit of the spacecraft. This allows to avoid taking too
many assumptions on the mission which might end up in non-realistic proposals and at the same time
generate conditions real enough to be published to the scientific community as a proposal. Neverthe-
less, the mission will not be the core of this project but rather a working reference frame. If needed,
assumptions will be taken and, if so, they will be indicated.

Figure 1.4: OLFAR mission scheme. From [19]
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1.4. Problem Statement
The main objective of this thesis report is to record the advances done during this project in order to
improve on the current knowledge of the scientific community about spacecraft swarming. Ultimately,
the whole thesis project aims to answer one un-answered scientific question whose resolution will
enlarge the body of knowledge of the topic. Said question is:

Is it possible to control and guide a swarm of spacecraft using DESHA?

The main rationale behind the main question is to pose in a question form the main goal of the
project, the analysis of the DESHA algorithm for spacecraft swarming. The project will try to answer if
DESHA is suitable for space application also answering which kind of systems are suitable for the use
of DESHA. Also the analysis of the limitations and performance of the algorithm will be performed in
order to fully address the suitability of DESHA.

These goals will be formally presented in a set of three sub-questions, whose answer will provide
input to the answer the main research question:

1. Does DESHA comply with the swarm properties of flexibility, scalability and robustness?

2. Does DESHA perform within reasonable limits in use of propellant and time with respect to the
reference mission and the current state of the art of small spacecraft technology?

3. Does DESHA present any kind of pitfall or unexpected blockage?

The first sub-question will address the performance of DESHA by analyzing the properties that
swarming brings to the spacemission. In order for the algorithm to present that extra swarm intelligence
that the algorithm should bring, these preoperties shoudl be present.

This analysis could be achieve both through quantitative and qualitative methods and will measure
the performance of DESHA as a swarming algorithm. Therefore the scope of this sub-question will
be both general as it will analyze DESHA as a swarming algorithm and specific as it will analyze its
performance in a certain scenario.

The second sub-question will analyze specifically the extend in which DESHA is suitable for space-
craft swarming scenarios. The scope of the analysis will be limited to small spacecraft with real ac-
tuation capacity (i.e. microsatellites to nanosatellites). Smaller spacecraft such as chipsats or larger
spacecraft such as medium and large size spacecrafts of several tons will not be considered. The first
ones will be discarded as it is supposed that the current state of the art does not allow them to have
active actuation capacities required by DESHA. Nevertheless, future developments might lead to these
kind of spacecraft to achieve similar capacities as the ones considered in this report. In said case, the
results obtained could be extrapolable to these systems. On the other hand, due to the cost of devel-
opment of an spacecraft of more than 100kg and the launch costs, considering a swarm of tenths or
thousands is regarded as just not feasible from the economic point of view. Therefore the actuation
and possibilities of these systems will not be considered for this work.

Finally, the last sub-question will analyze the limitations found while applying DESHA to the space
scenario. This sub-question will address possible unexpected situations that will occur while imple-
menting and using the algorithm in space. Since this is a research project on a previously unexplored
algorithm, it is not unlikely that the implementation of the algorithm in the space scenario will generate
unexpected situations. This sub-question therefore will address the conclusions on unexpected situa-
tions of pitfalls found while implementing the algorithm in space.

Overall, the answering the three sub-questions will allow to address the suitability of DESHA for
space applications, both benchmarking its performance and its suitability.

1.5. Structure of the Report
This report will be structured in four main parts. Part I will be this introduction. Part II will encompass
Chapters 2 to 6 which will contain the methodologies used to study the use of DESHA in spacecraft
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missions. Part III will encompass Chapters 7 to 9. On it the experiments performed with the developed
methodology and the results obtained will be presented. Some initial discussions will also be presented
in each of the experiments and as a conclusion at the end of each round of experiments. Finally Part
IV will end the project with a set of discussions on the overall project, the conclusions, and future
recommendations on the project. This structure is also shown in Figure 1.5.

Guidance and Control of  a Swarm of Spacecraft with Limited Knowledge

I. Introduction II. Methodologies III. Results IV. Conclusions Appendices

7. Reference
Case
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Figure 1.5: Report Structure
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Introduction to Methodologies
In this part of the report, the methodologies used to proceed with the study which will lead to the
resolution of the research question are presented. The main methodology used are computational
simulations. These will allow to proceed with a set of experiments which will determine the capaci-
ties of DESHA in spacecraft missions. This choice is mainly motivated by the time, available facilities
and budget constraints of the thesis project. An accurate enough simulation allows, in the span of 7
months, to study if there are any issues in the implementation of DESHA in spacecraft missions and
what are the advantages and pitfalls of it. At the same time the cost of the project is reduced to the
student/supervisor hours needed and the computer resources required to run the simulation. Further-
more, it was seen in the literature review that this is the most common method to approach spacecraft
swarm research [3, 68].

The simulation tool created and presented in this part of the report is called SwarmSimulator. The
goal of this simulator double. On one side the simulator must be able to simulate all the physical as-
pects of the problem at hand. This means that it must be capable to simulate the spacecraft dynamics
and main environmental effects affecting the swarm. Also, it must be able to reproduce the physical
properties of the swarm agents and relevant hardware elements. On the other hand, it must be capable
of incorporating the full guidance and control algorithm so that it works as a test bed for DESHA. It is
expected that by achieving these two objectives the simulations can give sufficient confidence levels
to the results obtained such that the scientific community regards them as valid.

Given that the main goal of this project is to generate a relevant contribution to the scientific commu-
nity. To this end, it was preferred to develop the simulator in a prototyping language. The advantage of
using a prototyping coding language instead of a language more oriented to hardware implementation
or more optimized for faster run times, is that the writing and implementation of the algorithm is ex-
pected to take less time. This generates more time for testing and developing algorithms and solutions
to encountered problems, which is more interesting from the scientific point of view. The language cho-
sen was MatLab® given all the available documentation and tools included already with the license. It
was also valued the possibility of transforming the code to other languages more suited for hardware
implementation automatically.

This part of the report is organized in five chapters. The first one (Chapter 2) will present present a
general overview of SwarmSimulator. This is expected to give the reader some context on the overall
picture of the tool developed. The following chapters then will get into depth in the main four elements
of the simulator. Chapter 3 will present the modelling of the dynamics and environmental effects used.
Chapter 4 will present themodelling of the hardware used in the swarm. Chapter 5 will review the design
of the low-level controller implemented. Finally Chapter 6 will present how the high-level controller
(DESHA) has been implemented. It is expected that the reader will be able to fully understand the
workings, assumptions and decisions taken after reading this part of the report Also the extend and
limitations of the model of the methodologies used for the project.
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2
Swarm Simulator Overview

SwarmSimulator is a specific software package developed for the testing and development of space-
craft swarms. Even though it has been mainly developed for the application of DESHA, it has been
designed in such a way that other high-level and low-level controllers can be added in order to explore
their properties. SwarmSimulator is designed based on a ”global-to-local” approach. The intention is
to design a set of high-level programs easy to read to the coder which generate a set of calls to more
specific modules, with slightly more complex functions. This pyramidal structure allows for future de-
velopers and users to be able to have a quick overview of the whole system and be able to get in-depth
just in the parts of the code where there is a need for advancement or change. Said pyramidal structure
can be appreciated in Figure 2.1.

SwarmSimulator

SSlo_LoadOptions SSis_InitializeSimulator SSmp_MainProcess SSpt_Plotting

Main  
Options Situate Agent in GridSimulation  

Options
Safety  
Options Load Reference Orbit Initialize  

Plotters
Result  
Options

Initialize  
Agents

State  
Search

Real  
Time Plot

Show Convergence 
Time

Plot Control  
Errors

Show Fuel  
Usage

Plot Inertial 
 Orbits

Figure 2.1: Swarm Simulator Functional Overview. It can be appreciated how the deeper layers of the simulator have more
specialized functions than the upper ones.

SwarmSimulation is presented in this chapter. First in Section 2.1 a detailed view of the processes
and elements composing SwarmSimulator will be shown. This section does not intend to work as a
software manual. Therefore it will present the information from a functional point of view and technical
details will be kept to the minimum. Then in Section 2.2 the outputs and goals of SwarmSimulator will
be introduced briefly. Finally, SwarmSimulator has been designed with expansion capabilities as said
before. In Section 2.3 these capabilities will be presented. The goal of this chapter is to let the reader
have a full overview of the simulator. Thanks to this, the reader will have an overall context when the
detailed models for the different elements of it are explained in the upcoming chapters.

2.1. SwarmSimulator – A Detailed Overview
A detailed overview of SwarmSimulator is presented in Figure 2.2 with a mix functional/programming
approach. In this overview it can be seen both the internal working of each of the main processes of
SwarmSimulator as well as the objects manipulated by the simulator.

SwarmSimulator is composed by four main processes:

• Loading of Options

• Initialization of the Simulator
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Figure 2.2: Detailed view of SwarmSimulator presenting both the different processes and task performed as well as the objects
and specialized functions used.

• Main Process

• Results Processing

Each of these processes will manipulate a set of global variables and objects to finally output the
results of the simulation. The global variables will define main options of the simulator, such as the
size of the movements, the size of the swarm, the desired pattern, etc. These variables will be used to
transfer the information through the whole simulator, making sure that all processes are working with
the same parameters. With respect to the classes SwarmSimulator presents three main classes which
define the objects modelled in the simulator:

• Orbit. Orbit objects contain the information and operation for the orbits used in the simulation. In
this case this will be the reference orbit.

• Agent. The agent class will encompass all the properties that define the design of the agents of
the swarm, as well as all the performed actions on them, including the control, collision avoidance,
used propellant, definition of the state,etc. The class supports a series of subclasses which will
define used elements of the agents and reduce the size of the main code for the class, such as
thrusters or state-related operations.

• Plotter. This class will define all necessary objects to plot and analyze the results, both in real
time during the simulation and after post-processing of the results.

Once the main elements that carry the simulator’s information have been presented, the following
subsections explicitly define how the main processes of SwarmSimulator work.

2.1.1. Loading of Options
SwarmSimulator has been defined as a versatile simulator, capable of carrying simulations with several
patterns, several modes of high-level control, the use of optimized approaches, etc. The use and
definition of all these options is done in this routine. For a better understanding, in an analogy with a
Graphic User Interface (GUI), this is the code representation of an options tab in the simulator. In it,
four main types of options, which might correspond to four sub-tabs, are loaded:

• Main Options. These refer to the characteristic options that will define this simulation. These
include the type of pattern desired or the use of optimized approaches for example.
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• Simulation Times. These options load time related parameters such as time-step used or total
simulation time.

• Safety Related Options. This part will define options such as the inter-satellite safety distance
or the station keeping tolerances of the simulation.

• Output Options. In this part the type of output plots and messages required are set. Options
such as simulate in debugging mode or generate a log in the console of MatLab® are also set.

All the elements defined in this process are set as variables with the capacity to be accessed by
any other main process in the simulator. These variables are supposed not to be modified during the
simulation. So they will act as non-varying parameters of the simulation.

2.1.2. Initialization of the Simulator
Following the GUI analogy presented in Section 2.1.1, this process is a tentative set of tabs to define
the elements of the simulator. This process initializes the different objects using to perform and store
the operations used in the simulator. For example the swarm would be initialized in this process as
a set of agent objects, whose positions and states would be latter manipulated to perform the simulation.

Four main sub-processes are performed in the initialization:

• Agent Initialization. The agents of the swarm are initialized for this simulation. Properties such
as the design of their actuators, length of their movements or communications are set.

• RandomPositioning of the Agents. The agents are set in a random initial state, but maintaining
a connected topology. This will be essential for the use of DESHA (see Chapter 6) and it is done
through a routine specifically designed for it.

• Reference Orbit Initialization. The reference orbit of the swarm is created. It is designed as a
two body keplerian orbit. For more details on the propagation of this orbit see Appendix B.

• Initialization of Plotters. According to the options set, a series of figures are initialized (but not
displayed) to plot in real time the simulation.

Most of the designs in this process are already set to a default value, although some changes such
as the size of the swarm, the radius of communication or the distances moved by action can be changed
here. The objects created in this process now have all the information to be manipulated by the sim-
ulation process. Unlike the options, these objects have some of their variables modified, such as the
positions of the agents, by the main process of the simulator.

2.1.3. Main Process
As its name indicates, this is the process of the simulator that actually performs the simulation. This
process can be subdivided into three sub-processes:

• Situate Agents in Grid. As it is explained in [31], DESHA is an algorithm that discretizes the
space state, analyzes it and acts consequently. It improves the performance of the system if the
agents are situated in points of this discretization of the state space. Thanks to this the errors for
the discretization are reduced to only the control tolerance, as agents only move in points of the
grid generated by the discretization. This part of the main process basically moves the agents,
initialized already, to the closest point of the grid.

• State Search. The algorithm from [31] has been named Desired State Heuristic Algorithm (DE-
SHA) as it performs a search for a set of desired local states. This is done in this sub-process,
which use the high-level controller to generate the targets for the low-level controller to move the
agents to the new desired locations. These positions are the steps in the search for the desired
final state.
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• Real Time Plotting. According to the options selected, the simulator plots the position of the
agents, either relative to the reference orbit or an inertial reference frame (in this case centered
in the Moon), for every time step of the simulation.

The two first sub-processes are performed thanks to the use of the high-level controller, the low-
level controller and a routine to ensure the station keeping. This station keeping routine situates each
agent in their current locations if the high-level controller has not generated any new movements for
it in that time step. All these three actions are performed with their own functions and software modules.

When the main process is finished, the simulation is technically finished. The results of the move-
ments of the agents according to the controllers used, the dynamics implemented and the agent design,
are stored for their processing.

2.1.4. Results Processing
This process takes the results of the simulation and present them to the user, modifying them to obtain
the desired presentation form. This process is composed of four sub-processes:

• Plot Inertial Orbits. The orbits of the agents, as well as the reference orbit, are plotted in an
inertial reference frame centered in the Moon.

• Low-Level Control Errors. The errors of the low-level controller are plotted to analyze its per-
formance.

• Show Fuel Use. The total fuel use and change in velocity needed are shown per agent.

• Show Convergence. The total number of actions, which will be called from now on convergence
of the simulation (or convergence), are presented. This is the total number of moves requested
by the high-level controller.

Also stored in the memory the history of the movements of the agents relative to the reference orbit
is stored for possible uses and analysis needed. The execution of this process means the end of the
simulation run. If multiple runs are needed, the results should be saved from the work space as the
next run will erase all the existing information in the workspace.

2.2. SwarmSimulator Goals
In the end, it is expected that SwarmSimulator is capable of giving enough information to actually
evaluate if the combination of the high-level controller (in this case DESHA) and the low-level controller
selected for the given swarm is able to reach the requested state and maintain it during the simulation
time. Furthermore, it is expected that DESHA can generate the following outputs:

• Time of Convergence of the Swarm. Understood as the time that the algorithms have required,
under the selected dynamic and propagation model, to reach the desired state for all agents.

• Propellant Used. Understood as an estimation, based on the designed on-board agent and its
hardware specifications, of the propellant used per agent to achieve and maintain, during the
whole simulation time, the desired states.

• Ability of the Swarm to Maintain the Desired State. The results obtained with the simulator
should allow evaluating if the control algorithms used will be able to, once reached, maintain the
desired state.

SwarmSimulator also allows the user to give a real-time view of the movement and actions of the
swarm. This permits a human supervisor to check for the proper working of collision avoidance mech-
anisms and avoidance of disconnections. Overall, the results obtained with the simulator shall allow
answering, under the assumptions taken during the project, the research question and sub-questions
presented in the first chapter.
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2.3. SwarmSimulator – Possibilities for Expansion
SwarmSimulator has been designed with a modular philosophy to allow for the future study of new
components, controllers, orbital dynamics and similar elements. Originally implemented in the simulator
there are modules and functions for:

• Attitude Control. Attitude control functions are already designed (but empty) in the Agent class.
Also a reaction wheel subclass is included in the Agent class with some properties and a con-
structor already designed.

• New State Discretizations. Three state shapes are included in SwarmSimulator (see Chatper
6), but new definitions can be included through the State subclass of the Agent class.

• NewDynamic Models. Adding dynamic functions in the dynamics folder and their corresponding
propagator in the agent class will allow for the exploration of different relative dynamics.

• New Controllers. By varying the calls to the main or low level controls new controllers can be
tested.

Furthermore, new modules, classes and functions can be defined and easily implemented in the
SwarmSimulator flow by creating the desired function and adding the proper call within the processes
of SwarmSimulator.





3
Astrodynamic Simulation

This chapter will present the models and assumptions taken to simulate the space dynamics and envi-
ronment in SwarmSimulator. The astrodynamic model is composed of three elements, which represent
the effects of the surrounding environment and its physics on the swarm. These are:

• The Reference Scenario. In the case of this report, the reference scenario will be the OLFAR
mission [41]. This will determine which bodies are affecting the orbit of the swarm, which effects
are dominant, the availability of communications with the ground station, the possibility of using
space-born systems such as GNSS constellations, etc.

• The Dynamic Model. This will be the representation of the forces that affecting the agents of the
swarm, as well as the reference systems used to express them.

• The Propagation Model. In order to evaluate the motion of the agents and the swarm under the
effect of the dynamic forces, it will be necessary in some cases to integrate a set of differential
equations through numerical methods. The selection of the method is vital as an error due to its
use will be present.

This chapter will be dedicated to evaluate all these three elements, as well as the assumptions taken
and the reasoning behind the suppression of the neglected effects and its consequences. First, in
Section 3.1, an overview of the reference case will be given, this will give context to the reference orbit
used as well as some peculiarities of the chosen scenario, such as the fact that the main body is the
Moon instead of a more dominant body such as the Earth or the Sun. Then in Section 3.2 the set of
assumptions taken for the design of the astrodynamic model will be stated and motivated. In Section
3.3 the dynamic models, that will be the main element of the astrodynamic simulation, are presented.
Linked to this section, in Section 3.4 the consequences of the neglected environmental effects in the
dynamics modelling will be shown. Finally in Section 3.5 some notes on how these models were im-
plemented will be given.

3.1. OLFAR Context
OLFAR is a proposed space mission based on a swarm for radio-astronomy purposes where its oper-
ational time will be spent in the far side of the Moon. This poses a set of special characteristics that
must be taken into account when simulating the dynamics and effects of the environment:

• Lack of Access to the GNSS Systems. Nowadays it is quite usual to find systems in LEO and
even MEO orbits which make use of the GNSS constellation to obtain their positions and even
velocities [37, 75]. Even though there is a clear intention to expand their use to higher orbits
with the Service Volume Extension planned [10, 23], so far GNSS nominal working radius does
not reach Moon orbits. Even though some proposals for the use of weak GNSS signals in such
missions have been issued [61], the lack of real and tested data for these methods excludes their
use for this application. This will entail that the agents will not have a constant signal that will allow
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them to determine their global position. Their knowledge of their global position will be limited to
Orbit Determination (OD) data from the ground.

• Reduced Sphere of Influence. The sphere of influence of a body is the volume around the
main body where the orbital dynamics problem can be considered a two body problem. In the
case of the Moon its sphere of influence has about 66183km of radius , as calculated in [98].
But also the calculations are less accurate than, for example, the values for planetary spheres
of influence with respect to the Sun [98]. Therefore, if orbits below this altitude around the Moon
are considered, the precision will be limited for a two body problem.

• Eclipse Times with Respect to the Ground Station. As the system is supposed to perform
its scientific operations while it is on the dark side of the Moon this will imply that the swarm
will not be able to communicate with the ground station at least during this time. Therefore the
communication of information from the ground station will be limited.

In [34] two reference orbits are proposed for OLFAR in an attempt to create a free-drifting swarm
with the specified baseline requirements. These orbits will be used during this project as reference
orbits. The orbits are presented in Table 3.1. The first orbit is designed for better coverage with a
smaller swarm (25 agents) while the second one accepts a higher number of agents (100) for the same
coverage with a smaller drift. It is notable to say that in neither of these cases the atmospheric drag
plays a role, as the atmosphere of the Moon is extremely tenuous and was not considered in [34], nor
it will be during this project. The orbit choice will be performed in the results part of the report, based
on the conclusions of other elements of the simulator (see Chapter 5)

Orbit a (km) i (rad) e Ω
(rad)

𝜔
(rad) 𝜏 (s) Description

Orbit
1 1937.4 0 0 N.A. N.A. 0

Circular equatorial
orbit of 200km of

altitude.

Orbit
2 4737.4 0 0 N.A. N.A. 0

Circular equatorial
orbit of 3000km of

altitude.

Table 3.1: Description of the two reference orbits proposed in [34]

3.2. Assumptions
Before studying how to model the environment effects a set of assumptions must be taken. These
assumptions will be divided into those which affect the modeling of the environment and those which
affect the swarm. The former will allow for both the simplification of the definition of the dynamics and
the effects considered for modeling the environment while the latter will define constraints on some
aspects of the swarm.

3.2.1. Assumptions on the Environment
1. AS-EN-EN-001: The dynamics will be considered a two body problem.

2. AS-EN-EN-002: The Moon and the agents will be considered point masses.

3. AS-EN-EN-003: No solar radiation or other perturbation effects will be considered.

Assumption AS-EN-EN-001 stands to reason as the two proposed orbits in [34] are within the sphere
of influence of the Moon. Therefore, the dominant effect on the swarm will be the Moon by far. This
will be further analyzed in 3.4. Assumption AS-EN-EN-002 will allow approximating the gravity effects
of the Moon without having to consider density distribution of the bodies, as well as momentum, tides,
and attitude. Assumption AS-EN-EN-003 follows the same idea. The perturbations will be neglected
in order to simplify the dynamics. In Section 3.4 it will be shown that the omission of said effects will
not be extremely relevant for obtaining a good dynamic model.
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3.2.2. Assumptions on the Swarm
1. AS-EN-SW-001: The swarm will be able to communicate with the ground station once every orbit.

2. AS-EN-SW-002: The swarm will receive from the ground an updated version of the reference
orbit once per orbit.

3. AS-EN-SW-003: The swarm will be able to receive the necessary solar input to have its batteries
fully charged at all times.

4. AS-EN-SW-004: The swarm will be considered as undamaged by any environmental effects
unless otherwise stated.

Assumption AS-EN-SW-001 and Assumption AS-EN-SW-002 ensure that the swarm will be able to
have a sufficient model of its reference orbit at all times. The dynamic models simulating the move-
ment of the swarm will be focused on relative dynamics around the reference orbit of the swarm. This
means that the devised agents are expected to have the capacity to propagate their states with respect
to a ground truth common to all, the reference orbit. The best way to ensure that this reference orbit
is common to all is that the orbit, or at least a point of reference for all the swarms (such as a set of
coordinates at a given time), is given to all the agents. The communication of this information to all
agents of the swarm will be presented in Chapter 4.

Assumptions AS-EN-SW-003 and AS-EN-SW-004 basically state the fact that the swarm will not be
damaged by aging effects or the environment unless otherwise stated. This will allow addressing the
swarm in its operative form. Of course, further developments of this work should target agents affected
by aging, with reduced actuation capabilities, etc. However for the current case, this is considered out
of the scope.

3.3. Dynamic Models
Once the assumptions made have been analyzed, the next step will be to explain how the environment
has been simulated within the software. In the case of the effects of the environment on the swarm,
none of the assumptions generate any requirements for the codding. Assumption AS-EN-SW-001 only
generates a need for the swarm to be able to autonomously operate on one orbit, while Assumptions
AS-EN-SW-002 and AS-EN-SW-003 only relate to the fact that the swarm and its agents will be con-
sidered fully operative at all times unless otherwise stated. It is with the dynamics model where the
environment plays a role in the calculations necessary to study the performance of DESHA in space
missions.

In this section, the equations used to model the dynamics affecting the swarm will be explained.

3.3.1. Hill-Clohessy-Wiltshire Equations
Hill-Clohessy-Wiltshire (HCW) equations (presented as Equations 3.3.1) are one of the most, if not the
most, common way to model the relative position and velocity of a spacecraft with respect to another
one. They represent a particular case of the restricted three body problem under three assumptions
(see derivation in [98]:

• The masses of two of the three bodies are negligible when compared to the third one, called the
central body.

• One of the bodies (hereafter named the main body) will move in a circular Keplerian orbit around
the central body.

• The separation between the two ”massless” bodies is much smaller than the radius of the orbit of
the main body.

The advantage of using this approach is the fact that the equations provide a set of closed analytical
solutions that allow determining the position and velocity of the secondary spacecraft with respect to
the main spacecraft in a local-horizontal-local-vertical reference frame centered in the main body given
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an initial state and the mean motion of the main orbit[98]). Therefore, if a virtual agent is considered
to be always in the swarm’s reference orbit, the movement of each of the agents of the swarm can be
studied with these equations with respect to the reference orbit.

𝑥 = 𝑥 (4 − 3𝑐𝑜𝑠(𝑛𝑡)) + 𝑥𝑛 𝑠𝑖𝑛(𝑛𝑡) +
2�̇�
𝑛 (1 − 𝑐𝑜𝑠(𝑛𝑡)) + 𝑓

𝑛 (1 − 𝑐𝑜𝑠(𝑛𝑡)) +
2𝑓
𝑛 (𝑛𝑡 + 𝑠𝑖𝑛(𝑛𝑡))

𝑦 = 𝑦 − �̇�𝑛 (3𝑛𝑡 − 4𝑠𝑖𝑛(𝑛𝑡)) − 6𝑥 (𝑛𝑡 − 𝑠𝑖𝑛(𝑛𝑡)) − 2
𝑥
𝑛 (1 − 𝑐𝑜𝑛(𝑛𝑡)) −

2𝑓
𝑛

𝑧 = 𝑧 𝑐𝑜𝑠(𝑛𝑡) + �̇�𝑛 𝑠𝑖𝑛(𝑛𝑡) +
𝑓
𝑛 (1 − 𝑐𝑜𝑠(𝑛𝑡))

�̇� = 3𝑥 𝑛𝑠𝑖𝑛(𝑛𝑡) + �̇� 𝑐𝑜𝑠(𝑛𝑡) + 2�̇� 𝑠𝑖𝑛(𝑛𝑡) + 𝑓𝑛 𝑠𝑖𝑛(𝑛𝑡) + 2
𝑓
𝑛 (1 − 𝑐𝑜𝑠(𝑛𝑡))

�̇� = −�̇� (3 − 4𝑐𝑜𝑠(𝑛𝑡)) − 6𝑥 𝑛(1 − 𝑐𝑜𝑠(𝑛𝑡)) − 2�̇� 𝑠𝑖𝑛(𝑛𝑡) − 2𝑓𝑛 (1 − 𝑐𝑜𝑠(𝑛𝑡)) − 2
𝑓
𝑛 (
3
2𝑛𝑡 − 2𝑠𝑖𝑛(𝑛𝑡))

�̇� = −𝑧 𝑛𝑠𝑖𝑛(𝑛𝑡) + �̇� 𝑐𝑜𝑠(𝑛𝑡) + 𝑓𝑛 𝑠𝑖𝑛(𝑛𝑡)
(3.1)

In Equations 3.1 𝑥 , 𝑦 , 𝑧 refer to the initial radial, initial along track and initial cross track relative
position respectively, �̇� , �̇� , �̇� refer to the initial radial, along track and cross track relative velocity,
𝑛 is the mean motion of the orbit and 𝑡 is the time since the initial condition. Since these equations
do not require the use of any numerical methods to be solved, they can be directly implemented in
SwarmSimulator to analyze the dynamics model. This allows for the propagation of the position of
each agent with respect to the reference orbit at every time step of the simulation just by having the
previous position. The reference frame used will be the classical one of the HCW equations. The X
axis will be the radial direction of pointing outwards the main body. The Y axis will be the along track
direction and the Z axis the cross track direction. The origin will be set in the main body, which in this
case will be the reference position in its orbit of the swarm at that moment.

Verification of HCW Equations Implementation
Equations 3.3.1 are quite popular in literature [80, 98], being a common choice for first analysis in
spacecraft swarming and formation flying missions [74, 104]. Nevertheless, when implemented in
SwarmSimulator, they need to be validated in order to ensure that they have been properly coded. To
do so a simple analysis is done comparing a reference case (offered in [98]) to the solution with the
dynamic model implementation of Equations 3.3.1 in SwarmSimulator. The results are presented in
Figure3.1. In both cases, the motion of a secondary spacecraft originally at the same point as the main
spacecraft but with a difference in velocity of -0.5m/s in the radial direction and a difference in position
of 0.5m in the along track direction is presented. As it can be readily seen, both the results from the
dynamics model implemented in SwarmSimulator (Figure 3.1a) and the ones in [98] (Figure 3.1b) fully
coincide.

Equations 3.3.1 are further validated by following the example of the TU Delft’s Astrodynamics
Toolbox (TUDat) Unit Test [1]. The equations system implemented in SwarmSimulator is tested by
inputting the same initial state as in the unit test for the clohessyWiltshirePropagator function. Said
result is compared with the one presented from a reliable source (and peer reviewed, therefore can be
considered reliable) in the literature [93]. In this case, the result of applying the HCW equations to a
case of an Earth orbiting formation where the main spacecraft is at an altitude of 400km in a circular
orbit and the secondary spacecraft has the initial state listed in Table 3.2 after 1800 seconds is known.
The expected result, the obtained result and the difference between them are presented in Table 3.2.

The analysis provided by Table 3.2 seems to indicate that the implementation of the dynamic model
is correct, therefore it can be safely used in the SwarmSimulator to model, under the assumptions and
limitations related to the HCW equations, the dynamics of the swarm.

Limitations of the Model
The HCW equations are quite popular due to their simplicity, the fact that they do not require numerical
methods to propagate the orbit of the formation and the fact that they allow for a quick exploration of
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Figure 3.1: Result Comparison of HCW. In Figure 3.1a the results obtained by the implemented model of the HCW in SwarmSim-
ulator. In 3.1b the results obtained by Waker in [98] both for an orbit of 400km of altitude above the Earth being the secondary
body in the same position of the primary body in the start of the propagation but with a difference in velocity of -0.5m/s in the
radial direction and 0.5m in the along track direction.

Case Radial Along Track Cross-Track Ve-
locity

Initial Position (m) 45 37 12
Initial Velocity (m/s) 0.08 0.03 0.01
Expected Position (m) 380.65 -543.74 2.51
Expected Velocity
(m/s) 0.15 -0.73 -0.02

Obtained Position (m) 380.65 -543.74 2.51
Obtained Velocity
(m/s) 0.15 -0.73 -0.02

Difference in Position
(m) 0 0 0

Difference in Velocity
(m/s) 0 0 0

Table 3.2: Comparison between the results from a case from the literature used in the unit test of TUDat’s clohessyWiltshire-
Propagator [1] with respect to the ones obtained with the implemented dynamics.

the main dynamics of the relative dynamics and rendezvous operations [98]. Nevertheless, it is good to
remember that this is a linearization of an already specific problem (the restricted three body problem).
This means that variations on the assumptions listed at the beginning of this subsection might cause
large offsets between the results obtained here and the real trajectories of the spacecrafts. Slight
modifications of the reference conditions assumed by the HCW model can generate long time errors
which deviate the simulated results from the ones obtained with more accurate models, as shown in
[51]. There it is proven that slight eccentricities already generate in few orbits offsets of kilometers.
Therefore, this model only allows obtaining preliminary results on the behavior of the system. Still, as
the goal of this work is a first evaluation on DESHA, the model is considered good enough.

3.4. Evaluation of Neglected Effects
Of course, the assumptions taken in Section 3.2 already set some constraints in the validity of the
results. This section aims to roughly evaluate the effects neglected in the modeling of the dynamics
both quantitatively and qualitatively.

3.4.1. Considering a Two Body Problem
Considering that the only gravitational influence comes from the main body, the Moon, obviously ig-
nores the effect of other bodies that are affecting the dynamics of each agent. Even though the effects
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of the main body are still bigger than any other since the whole swarm is within the sphere of influence
of the Moon, there are other massive bodies that will affect the swarm. Here a small analysis of the
order of magnitude of the forces neglected is presented and their ratio with respect to the force from
the main body.

Setting an inertial reference frame whose axes are coincident with the ECI (Earth Centered Inertial)
reference frame but whose origin is on the Moon, the force over each agent of the swarm can be
described as in Equation 3.2 [98], where 𝑟 , 𝑟 are the distances from the agent of the swarm to the
main body (the Moon) and the distance of the 𝑗 body to the main body respectively, 𝐺 is the universal
constant of gravitation, and 𝑚 ,𝑚 ,𝑚𝑗 refers to the mass of the agent, main body and 𝑗 body.

𝑑 �̄�
𝑑𝑡 = −𝐺𝑚 +𝑚

𝑟 �̄� + 𝐺 ∑
,
𝑚 (

�̄� − �̄�
𝑟 −

�̄�
𝑟 ) (3.2)

Considering that the most massive bodies affecting the Moon’s orbit are the Earth and the Sun, it
is only logical to analyze those as main perturbing bodies. This is done in Table 3.3:

Body Moon Earth Sun
Force (N) 1.305 2.7398 ⋅ 10 1.5478 ⋅ 10

Ratio wrt. Total 99.9979 0.0021 1.1857 ⋅ 10

Table 3.3: Gravitational influence of the effect of theMoon, Sun and Earth on the swarm calculated with Equation 3.2 as calculated
in Appendix A

Results presented in Table 3.3 correlate with the knowledge presented in literature [93, 98] which
says that the Moon is within the sphere of influence of the Earth and that the Moon’s sphere of influence
is 60,000km in the Moon-Earth system. Therefore the orbit of the swarm is a perturbed orbit around
the Moon. Furthermore, results show that the perturbations generated by the other possible massive
bodies are small enough to be neglected without loss of generality.

3.4.2. Neglecting Perturbations
Besides the effects of other bodies, other perturbation effects have been neglected while modeling
the dynamics. Following the approach presented in [98], there are three main effects besides other
celestial bodies that can be considered in the agents of the swarm:

• Spherical Harmonics

• Atmospheric Drag

• Radiation Force

The spherical harmonics are actually not a physical effect (see AS-EN-SW-002). In a first approxi-
mation, bodies can be considered point masses. Nevertheless, the Moon, like any other celestial body,
is not a perfect sphere of constant density. Rather than that, it is an amorphous shape whose density
varies in all the geometry. Clearly, the gravity effects will change with this change in the distribution of
the mass. This is addressed by modeling the body’s potential with spherical harmonics. Besides the
effects of dynamic movements inside the body (e.g if there are internal tectonics or tides), this approach
better models the reality of the gravity effects of the Moon. According to the General Potential Theory
used to model these effects, the gravitational potential of the effects of a body in a point outside the
body can be modeled as in Equation 3.3.

𝑈 = −𝜇𝑟 [1 −∑ 𝐽 (𝑅𝑟 ) 𝑃 (𝑠𝑖𝑛𝜙) +∑ ∑ 𝐽 , (
𝑅
𝑟 ) 𝑃 , (𝑠𝑖𝑛𝜙) {𝑐𝑜𝑠 (𝑚(Δ − Δ , ))} ] (3.3)

Where 𝜇 is the standard gravitational parameter, 𝑟 is the distance from the center of the body to
the affected point, 𝜙 is the latitude, Δ is the longitude (so 𝑟, 𝜙, Δ are the spherical coordinates of the
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considered point), 𝑅 is the mean radius of the body, 𝑃 , are the associated Legendre functions of the
first kind of degree 𝑛 and order𝑚, 𝑃 are the Legendre polynomials of order 𝑛,and 𝐽 , 𝐽 , ,and Δ , are
parameters of the model [98]. The first sum represents the zonal harmonics, i.e. longitudinal bands of
mass distribution in the sphere, whereas the second one represents tesseral and sectorial harmonics,
bands from pole to pole and square patterns all around the sphere. The perturbing acceleration is
obtained with Equation 3.4.

𝑓 = −∇(𝑈 + 𝜇𝑟 ) (3.4)

The full model of the harmonics for the gravity field of the Moon can be found in [82]. Although
not exactly as oblate as the Earth, the most relevant harmonic of the Moon is the 𝐽 zonal harmonic,
representing how oblate the sphere is. It is thus possible to calculate the perturbing acceleration of said
harmonic component by substituting the 𝐽 term ∑ 𝐽 ( ) 𝑃 (𝑠𝑖𝑛𝜙) of Equation 3.3 in Equation 3.4.
The necessary calculations are presented in Appendix A.

The second perturbation to take into account is the solar radiation pressure. This is the effect of the
radiation, both incoming from the Sun and reflected by the Moon, on the spacecraft exerting a pertur-
bation force. This effect is labeled as hard to model [93]. Since the only goal is to estimate its effect,
the approximation presented in [98] will be used. Nevertheless, for more precise calculations in [93] a
more comprehensive description of the effects of solar radiation pressure is presented.

Waker [98] approximates the solar radiation perturbing acceleration as:

𝑓 = −𝐶 𝑊𝐴
𝑀𝑐 (3.5)

Where 𝑊 is the energy flux, 𝐴 is the reference area, 𝑀 is the mass of the spacecraft, 𝐶 is the re-
flectivity coefficient, and 𝑐 is the speed of light in vacuum. An estimation of all these values is presented
in Appendix A.

The result of the calculations presented in Appendix A to estimate the perturbing accelerations is
presented in Table 3.4

Effect Estimated Value (N)
J2 Effect 6.384 ⋅ 10

Radiation Force 4.564 ⋅ 10

Table 3.4: Estimation of the perturbation forces on the dynamics of the swarm as calculated in Appendix A

The results presented in Table 3.4 show that the most significant perturbation is the 𝐽 term of the
gravity field. This makes sense as, as shown in Section 3.4.1 the gravitational attraction of the Moon is
the main source of forces. The radiation pressure is a less dominant perturbation, but this was expected
as, according to [98] the same force for the EchoI mission, a mission much more affected by it, was in
the order of 𝑚𝑚/𝑠 .

It is worth noting that one of the common perturbations to be taken into account with Earth orbits
[93] has been omitted in this section, the atmospheric drag. As seen in [103], the atmosphere of the
Moon is extremely tenuous. Since the effects of the atmospheric drag depend on the density of the
atmosphere, it is not expected that at any orbit the effects of the atmospheric drag surpass those of
already neglected effects such as solar radiation pressure or gravity harmonics.

3.4.3. Conclusions on the Neglected Effects
After the evaluation of the most relevant neglected effects, it seems clear that the assumptions taken
are justifiable. No forces have been found to have an effect even close to the one of the main source
force, the gravitational pull of the Moon. Therefore, the precision of the used model is expected to
correlate well with reality. If further effects where to be modeled, it is recommended to start by taking
into account themost dominant terms of the harmonic gravity field, as they seem to generate the biggest
perturbations on the trajectory.
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3.5. Note on Implementation
The modelling here presented is the one implemented in Swarm Simulator. A folder called Dynamic
Models is included in the SwarmSimulator program. There, it is possible to define a new dynamic
modelling by including a new file with a function defining the dynamics. By creating a set of functions
that, given the necessary inputs for the model, output the state at the given time step. This will be later
used by the simulator to propagate the dynamics. If the model has not an analytic solution, such as the
HCW, a propagator will be required to integrate the dynamics. A set of interesting integration methods
are presented in [93]. For more details on how the environmental model is inputted in the simulator,
see Chapter 2.



4
Hardware Design

This chapter will be dedicated to the description of the agents and their included hardware. As in the
previous chapters, the OLFAR mission’s developed systems will be used as a reference point. The
OLFAR mission is still under development, therefore many subsystems are still to be determined. No
preliminary designs of the whole spacecraft exist in literature, only preliminary ideas for the models of
few subsystems such as the antennas and the inter-satellite link systems [19, 20].

In cases where there is a lack of data, assumptions based on previous missions with small space-
craft and current state of the art technologies will be taken. Key subsystems for the GNC system of
the spacecraft will be analyzed. A small review of the possible navigation systems will be included,
although in this project it is considered out of the scope the simulation of navigation effects, as multiple
solutions with sufficient accuracy are already available in the market.

4.1. Evaluation of the Elements to Analyze
The subsystems analyzed on this chapter are the ones that DESHA will need to be deployed and used
to swarm the spacecraft. These can be summarized in the guidance, navigation and control of the
spacecraft on top of the communication within and with the swarm and processing information. The
identified subsystems that allow the spacecraft to develop these tasks are:

• Actuators: these are in charge of taking the control actions required by the GNC algorithms.

• Inter-Satellite Links System: in charge of ensuring the communication in between the agents
and between the agents and the ground station. It will also take charge of the navigation side by
determining the relative position of the spacecraft.

• On-Board Computer: in charge of receiving all the sensor’s information, processing it and gen-
erating the output commands to the actuators.

The communication system and the inter-satellite link have been set together given their overlap-
ping. In the following sections, each of these subsystems will be analyzed. In each section possible
design options are offered, using solutions presented either in previous missions or from the COTS
components currently offered. This does not mean that the final solution here presented is the one
chosen for the reference mission nor that a mission using DESHA should include the selected compo-
nents. Nevertheless, it will allow to simulate the performance of DESHA with variables equivalent to
those of a real tentative mission. First, a list of all assumptions taken will be presented to give a full
overview of the tentative capacities of the spacecraft assumed. Finally, a note on how the hardware
models have been implemented in SwarmSimulator is presented.

4.2. Assumptions on the Hardware
This section presents a compendium of all the assumptions taken with respect to the hardware. Some
of them will be used to ease the choice of a certain hardware. Others will flow down after the design
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choice of the given subsystem. Those taken to ease the choice of the hardware or with general purpose
will be explained at the end of this section. The ones flowing down from the analysis on design options
or current status of the reference mission will be explained in their respective sections.

• AS-HW-001 : The agents will be actuated in all three axis.

• AS-HW-002 : The agents will always have the required attitude.

• AS-HW-003 : The swarm agents will be located at the start of the analysis nearby the reference
orbit.

• AS-HW-004 : The swarm will be composed of equal agents.

• AS-HW-005: During the uplink of information at least one agent will be facing the Earth for enough
time to uplink the reference orbit information.

• AS-HW-006: The inter-satellite link will be able to send all necessary information for the swarming
algorithm.

• AS-HW-007: The inter-satellite link system will allow for ranging with a precision up to 1m.

• AS-HW-008: The inter-satellite link system will allow for ranging with angular precision up to 15∘.

• AS-HW-009: The inter-satellite communications will be possible at all times during the mission.

• AS-HW-010: The agents will have all the necessary navigation information at all times.

• AS-HW-011: The on-board computer will be able to process, store and generate all necessary
data.

• AS-HW-012: It is supposed that the thrust is always varied through the variation of the mass flow
of the engine.

• AS-HW-013: It is supposed that the mass flow is constant (no need for a variation of the current
to compensate for variations in the plasma flow)

Assumption AS-HW-003 is more of an operational assumption which will ease the choice of the
propulsion options. It is expected that the design of the launch of the swarm to orbit will be such that
the agents are transferred to the right orbit. It is true that in many cases these maneuvers imply a last
impulse when the crossing between the transfer and the desired orbit coincide to equal the energy of
the spacecraft to the one of the desired orbit. Nevertheless, in it this work it will be assumed that this
has been done before the analysis. Therefore the thrust solutions analyzed should only be responsible
of correction maneuvers and the relocation of agents.

Assumption AS-HW-004 is a basic design option in OLFAR. It will ensure the robustness of the
system as there are no key elements unlike some other concepts [38]. Nevertheless, it will also put
some challenges as everything will have to be done with unsophisticated agents.

Assumptions AS-HW-012 and AS-HW-013 are assumptions of the modeling for some engine cal-
culations. They will be explained in Appendix B.

4.3. Actuators
Actuation systems translate the control actions generated in the controller into real movements. Usually
they can be classified in force and momentum actions. The attitude actuation will not be considered in
this work, as stated before, since the main goal is to test the capacities of DESHA for agent swarming
and specially to generate desired formations. Therefore only thrust actuators will be analyzed.

In this section first the actuation needs and their consequences will be analyzed. Then the results
of said analysis will be analyzed against the current state of the art technologies to see if it is realistic
to demand said actuations to the spacecraft. Finally, a final conclusion on how the actuators will be
modelled in the simulator will be presented.
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4.3.1. Actuation Needs
As it will be shown in Chapter 6, the more complex the pattern required, the more number movements
are required. This means that for the most complex patterns, an order of magnitude of 10 movements
will be expected. Furthermore, since we are considering only small sized spacecraft (100kg or less),
the storage available for propellants will be limited. This context leads to a need for extremely efficient
thruster. Usually in rocket propulsion this is measured through the specific impulse(𝐼 ) which mea-
sures impulse (force integrated over time) generated per weight of the propellant used. Higher specific
impulses will mean higher efficiency of the propellant use.

Usually the best specific impulses are obtained with electric thrusters, which reach specific impulses
of thousands of seconds versus the usual tenths to hundredths of other systems [92]. Nevertheless,
these come at a cost of an extremely low thrust force. This is not problematic. Unlike in launch where
the thrusts has to be high to overcome other forces, in this case prolonged switched times allow for
generating the maneuver although the thrust level is low. Nevertheless, the lower the thrust level, the
longer the maneuvers will take. This together with the high number of maneuvers necessary in some
cases (see Chapter 6) will generate extremely long times to achieve formation.

Finally, one last element to be considered in the selection of the actuators is the total mass of the
system. In the end extremely heavy systems will require even higher levels of thrust to be moved at
the same velocity than lighter systems. Obviously, the lighter the system, the faster it will move for the
same level of thrust. Since the total mass of the system will depend on the design of the spacecraft, it
is quite hard and useless to do any kind of estimation on this. Furthermore, as the goal of this work is
to evaluate the suitability of DESHA for spacecraft swarming, it will be useless to constrain the analysis
only to a certain level of mass for a spacecraft. To solve this, the mass variable will be coupled with
the thrust level through the definition of the acceleration level of the system.

Therefore, the actuation needs of the system will be:

• High Level of 𝐼 . The higher the 𝐼 offered by the system the better, as it will reduce the required
amount of propellant for the mission.

• Sufficient Level of Acceleration. The higher the acceleration attainable, the less time will the
system require to achieve formation.

In the following subsection a small review on the current state of the art thrusters for the spacecrafts
considered is presented. The idea will be to find which levels of 𝐼 and acceleration can be expected
from the spacecraft. Specially CubeSat and nanosat platformswill be reviewed as they tend to usemore
standardized solutions through theCOTS. Larger sized spacecraft considered, such asmicrospacecraft
tend to offer ad hoc solutions developed for the mission. Therefore as far as the actuations required
are within realistic limits, it is acceptable to assume that the required actuations will be attainable.

4.3.2. Current State of the Art of Actuators
Several reviews for COTS technologies on Cubesat and nanosat propulsion technologies are presented
in the literature [81, 92]. When looking at the multiple options and characteristics, it is clear that the
ones that best satisfy the need for a high 𝐼 are electric engines. In Figure 4.1 a comparison for dif-
ferent kinds of electric propulsion for Cubesat platforms is presented for reference. Even though some
of these solutions are designed for CubeSats, due to their size and power budgets, the most powerful
of them seem actually more fitted to larger spacecraft. In any case it is seen that these systems offer
an extremely high specific impulse, meaning an extremely high efficiency. However this comes at the
cost of a low thrust level. Therefore, the resulting acceleration will be low.

Other solutions in the literature trade 𝐼 for thrust. For example chemical engines achieve several
hundreds of seconds of 𝐼 [81, 92, 106] and depending on the size they can achieve from tenths to
several newtons of thrust. Another popular choice is the use of cold gas thrusters. The classical design
releases pressurized gas from a tank to generate the thrust, achieving also thrust levels of newtons
[106]. The COTS cold gas thrusters aim for a different approach, pressurizing the gas in its release to
the vacuum of space to avoid having pressurized containers inside the spacecraft. Their designs also
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Figure 4.1: Survey of different types of electric thursters as presented in [92]. In Figure 4.1a a comparison between Thrust and
of different electric thrusters is presented. In Figure 4.1b the same thrusters are presented, but this time the thrust to power

ratio is compared with the specific impulse.

offer lower 𝐼 and, of course, due to their size, lower thrust levels (around milinewtons) [24].

Overall, the literature shows that levels of thrust ranges frommilinewtons to several newton depend-
ing on the size of the propulsion system. On the side of the 𝐼 it is seen that levels between tenths of
seconds to thousands of seconds are available, depending on the kind of propulsion selected.

4.3.3. Conclusions on Actuation
Several options for thrusters are available for the considered spacecrafts. In the previous section it
was identified that thrusters with high 𝐼 will be necessary to achieve the required number of actions
with reasonable amounts of propellant. Also, the higher the thrusts level, the better as it will allow to
achieve the desired movements in the least time. Nevertheless, in order to fully explore the capabilities
of DESHA a final choice or assumption on the thrust level will not be made. This is due to the fact that
also the mission constraints will play a role in the selection. For example larger inter-satellite distances
will generate a need for higher thrust levels to achieve the required number of movements in an ac-
ceptable amount of time. This might even come at the cost of lower 𝐼 . Instead, in the third part of
this report an analysis on different acceleration levels (all coherent with the actuation capacities here
presented) will be done. This will allow to see the possibilities of DESHA according to the tentative
mission design. Also, analysis done based on real engines and tentative spacecraft will be done to
analyze the propellant use of the mission.

Overall only three major assumptions will be taken with respect to the actuators of the spacecraft:

• AS-HW-001: The agents will be actuated in all three axes.

• AS-HW-002: The agents will always have the required attitude.

• AS-HW-003: The swarm will be located at the start of the analysis nearby the reference orbit.

The first assumption allows to generate control systems for each of the directions. This does not
necessarily mean that one thruster in each direction is available as it can also be achieved with attitude
changes and one thruster. This assumption nevertheless allows to simplify the analysis leaving the final
decision on how many thrusters to include or how to achieve the thrusting in each direction to more
specific uses of DESHA. The second assumption is taken to avoid the design of the attitude control,
as this is deemed out of the scope of this project. The final assumption links with the fact that on
this analysis only the operations of DESHA are taken into account. This means that only movements
around the reference orbit will be taken into account, not transfer orbits.
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4.4. Inter-Satellite Link/Communications System
The inter-satellite link system is responsible for three key functions to the swarm:

• Communications with the Ground Station

• Inter-Satellite Communications

• Ranging

This section will analyze how these three functions will affect DESHA. The needs of DESHA to
satisfy these three functions will be analyzed in Section 4.4.1. Then, a review on systems for the con-
sidered spacecraft will be presented in Section 4.4.2 to analyze if current technologies allow to satisfy
the needs presented in Section 4.4.1. Finally, in Section 4.4.3 the conclusions on the communication
needs and assumptions taken will be presented.

4.4.1. Inte-Satellite Link/Communication Needs
Regarding the three functions presented in the introduction, the last two are specially interesting for
DESHA. The possibility to know the state of the neighbouring agents is necessary for the algorithm.
Ground communications is clearly necessary from the perspective of sending back the data retrieved by
the swarm. However given the multiple possible missions for the swarm, no specific need is generated
for DESHA out of it. In the context of the reference mission nevertheless, the need will be necessary to
have a sufficiently powerful antenna to communicate back the swarm in the reference orbits presented
in Chapter 3 with the ground station. Some work on the ground communications of the reference mis-
sion of this work is presented in [19] for further reference.

The inter-satellite communications between swarm agents is needed to be able to sense the state
of each agent. DESHA requires to know the surrounding neighbourhood. Therefore, it is fundamental
for the inter-satellite communication system to have an equal or similar range to the sensing distance
required. This will be closely related with the state definitions presented in Chapter 6. A state definition
requiring more positions to be sensed or more distant positions will require a larger communication
range. Also a state definition requiring sensing in a single direction will ease the communication needs
as compared with one that requires omni-directional sensing.

Related with inter-satellite communications will be the ranging between satellites. With the rang-
ing also the sensing will taken into account. This means that the communication system is not only
responsible of measuring the inter-satellite distance, but also of sensing the orientation with respect
to a reference frame fixed in the agent. The needs for the precision of these measurements is again
related with the definition of the inter-satellite distance and the state shape selected, as explained in
the previous paragraph.

The inter-satellite distance can be assumed to be in the range of other formation flying missions
with similar spacecraft. On the low level limit, it is possible to find close formation flying CubeSat based
missions, with inter-satellite distances of the order of 50m (see [14]), although larger spacecraft aim for
distances between hundreds of meters to kilometers [19].

The spacecraft need to be controlled in their position to avoid drifts and collisions. This means that
the agents also need to be able to range themselves with others to maintain a control window narrower
than this inter-satellite distance. This control window will be estimated in at least one order of magni-
tude below the inter-satellite distance. That is, in the lower limit the ranging will need to have an order
of magnitude around 1m.

Finally, with respect to the sensing different agents around, this will require to generate a need
in the precision of the sensing of the direction of arrival of the signal. Again, this will depend on the
state shapes selected. For example, a state shape formed of a square, as the one presented in [31]
or in Chapter 6 will require the agent to distinguish the direction of their neighbour in the plane with a
precision shorter or equal than 22.5∘. This is due to the fact that the states are separated equally each
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Figure 4.2: Representation of the angular accuracy for a square state shape. The blue agent has to difference the angles, ,
with an accuracy equal or smaller than 22.5∘to classify the yellow neighbour

45∘. For the case of the hexagonal state presented in Chapter 6 this will be reduced to 15∘. This is
illustrated in Figure 4.2 for a square shaped state.

Therefore, the needs of the communication system will be:

• The inter-satellite communication range should be larger or equal to the maximum inter-satellite
distance of the selected state shape.

• The inter-satellite communication system should be able to range agents with a precision of me-
ters.

• The inter-satellite communication system should be able to sense the surrounding agents with a
precision below 15∘.

Additionally the communication system should be able to communicate with the ground station.
This will be necessary to download the scientific data and perform housekeeping tasks and upload
telecommands to the agents.

In the following section an analysis of the state of the art components and solutions of previous
missions will be performed. This will allow to evaluate if these needs are possible to be satisfied by
current technology for the considered spacecraft. As in Section 4.3 special attention will be focused
to COTS solutions and CubeSat/Nanosat spacecraft, as the considered spacecraft spacecraft outside
these categories tend to use ad hoc designs tailored for the mission.

4.4.2. State of the Art of Inte-Satellite Link/Communication Systems
In this section a review of the state of the art for communication systems of the considered spacecraft will
be done. It will be analyzed if the needs presented are possible to be satisfied with current technologies.
Even though these are not specific needs for DESHA, communications with the ground will also be
analyzed first. Then inter-satellite links are analyzed to finish with the analysis of ranging.

Ground Communications
Ground communications between agents are quite advanced for the considered spacecraft. Current
state of the art systems allow even CubeSat to actually communicate in deep space missions. For
example the Lunar IceCube mission incorporates a high gain antenna to access NASA’s Deep Space
Network and communicate with the ground station [28] (see Figure 4.3). Therefore bigger spacecraft
can also incorporate this solutions to actually communicate each agent with the ground station.

This will also allow the agents of the swarm to receive information from the ground, such as orbit
determinations or housekeeping tasks.

Inter-Satellite Communication
On the inter-satellite communication side, also solutions are available even for the smallest systems
considered. For example for the reference mission a system based on 6 patch antennas (one in each
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Figure 4.3: JPL’s Iris X-band radio for CubeSats. With a size of half a CubeSat U and 35W of power consumption allows for
CubeSats to be tracked and navigated with NASA’s DSN. Image from [22]

side of the spacecraft) allows for a 90km range of communication between the agents [20]. In this work
it is also noted that some missions might need to go silent due to legislation limitations. DESHA does
need to maintain communication with the other agents at all times to ensure if the pattern needs to be
maintained (unless the drift does not exceed the size of the control window during the no communica-
tion time). Therefore an assumption will be needed to take this into account.

Overall, the inter-satellite distances will not reach, in the projects found, more than a couple of
kilometers. For the smallest systems considered, examples of communication ranges larger than this
distance exist. It can be assumed that the same systems fit in larger spacecraft Therefore it can be
said that there are technologies of the state of the art already achieve the needs of inter-satellite com-
munications of DESHA.

Ranging and Angular Measurements
Finally for the ranging and angular measurement of inter-satellite distances several approaches exist.
Examples in the literature ) use differential GNSS systems to determine their relative position with great
accuracy [14]s. Nevertheless, GNSS systems are not needed to be used with DESHA. The next most
common approach is the use of radio-signals to determine the position of other agents [85] mimicking
the use of GNSS systems.

With respect to the ranging several factors affect the measurement. For example the code used, the
signal to noise ratio of the measurement, etc. Still, an approximation can be set with the measurement
of the propagation time of the signal. A radio signal is sent from a neighbour to the agent with the time
stamp of when it was sent. Since the propagation speed is known (the speed of light in vacuum), if the
time elapsed between the sending and the arrival of the signal is computed, the distance between the
agents can be estimated. The better the precision of the time measurement, the better the precision
of the ranging. Since the speed of light (𝑐) is of order 10 𝑚/𝑠, then a precision of nanoseconds in
the time measurement will be necessary to achieve distance measurements on the order of meters.
Further details in the implementation of these systems can be found in [84]. Such precision also re-
quire a clock with both said nanosecond level precision and synchronization, as all clocks in the swarm
need to have the same time up to nanosecond level. Nevertheless both of these are already achieved
as presented in [77]. In this work, an algorithms to estimate the offset between clocks setting one of
them as reference is presented, allowing for the synchronization of the whole system. Also, nowadays,
there are lightweight atomic clocks designed even for extremely small platforms such as Nanosats [29].
These instruments allow for time measurements up to nanosecond levels, therefore achieving ranging
according to the needs specified in Section 4.4.2.

Finally, according to literature, the use of Smart Antenna approaches, as those presented in [66]
allow for precisely obtaining the direction of arrival of the signal by making use of the multiple antennas.
As in any kind of the considered systems other works prove that several patch antennas can be added
[20], this approach can be taken in all cases. Also the work of [95] shows that if instead of one patch
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antenna the antenna is divided into two patches, the estimation in each antenna of the angle of arrival
is possible with degree accuracy. Furthermore, estimations below these levels are possible with non-
bi-dimensional antenna systems [70]. These techniques allow for precision of degrees. Therefore it
is concluded that current state of the art techniques allow for satisfying the communication needs of
DESHA in angular measurements.

4.4.3. Conclusions on Inte-Satellite Link/Communication
After the identification of the communication needs of DESHA, the review of the state of the art tech-
niques and hardware available for small size spacecraft has shown that these needs are achievable
with the current technology. Therefore, it is possible to make the following assumptions with respect to
the communication of the agents of the swarm in this work:

• AS-HW-005: During the uplink of information at least one agent will be facing the Earth for enough
time to uplink the reference orbit information.

• AS-HW-006: The inter-satellite link will be able to send all necessary information for the swarming
algorithm.

• AS-HW-007: The inter-satellite link system will allow for ranging with a precision up to 1m.

• AS-HW-008: The inter-satellite link system will allow for ranging with angular precision up to 15∘.

• AS-HW-009: The inter-satellite communications will be possible at all times during the mission.

• AS-HW-010: The agents will have all the necessary navigation information at all times.

Assumptions AS-HW-007 and AS-HW-008 will cover the ranging needs specified in Section 4.4.1.
Assumption AS-HW-005 takes into account the ground communications. It is also taken since the
reference orbit is also used in the simulator to save the current position of the agents. Although rel-
ative positioning between agents can also be used, since the reference orbit was needed for plotting
purposes, it is also used for positioning. Then assumptions AS-HW-006 and AS-HW-009 are taken
accordingly to the inter-satellite communication needs identified. Finally, in order to keep up with As-
sumption AS-HW-002, Assumption AS-HW-010 will be taken. Then it is supposed that the attitude is
known and therefore always controlled and kept at all times.

Overall, the communication system allows for the transmission of the necessary information be-
tween agents and the generation of the agent state. These needs have been identified as attainable
with current state of the art techniques for all kinds of spacecraft analyzed in this work.

4.5. On-Board Computing
The on-board computing is responsible with respect to DESHA of:

• Processing all the sensors information.

• Running the DESHA algorithm.

• Running the low-level control algorithms.

• Generating the necessary responses to use the actuators.

This section will analyze the needs for the communication system to perform all these tasks. In
Section 4.5.1 the on-board computing needs will be analyzed. Then in Section 4.5.2 a review of the
state of the art on-board computing systems for the considered spacecraft will be presented. Finally
in Section 4.5.3 a set of conclusions on the on-board computing systems will be presented and the
assumptions taken will be motivated.
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4.5.1. On-Board Computing Needs
The on-board computing system is responsible of the processing the input information and the gen-
erating the required commands to the actuators. This task has to be done fast enough to be able to
control the system. The spacecraft will be moving in orbit, many times drifting from the position. The
control has to be fast enough to detect when the spacecraft is out of the control window designed and
actuate it to restore its position. Also, each time that a control action is taken, the system will vary
its state several times until achieving the desired new state. If the control system is not fast enough,
these actions will lead to an oscillatory or divergent behaviour as control actions will not be taken to
stabilize the agent in the desired position. Therefore the on-board computer will need to be fast enough
to take sufficient control actions fast enough to control the dynamics of the system, leaving time for the
actuators and sensors to generate the necessary inputs and outputs.

Of course the specific processing speed will vary depending on the final mission characteristics.
Larger inter-satellite distances and control windows will mean that the speed required will be less as
there will be more time available. On the other hand the larger the thrust available, the faster the
dynamics of the movements and the faster the controller needs to be. Therefore there is not a clear
specific need for the controller when using DESHA. Overall the main on-board computing system for
DESHA can be expressed as:

• The on-board computer needs to process all the information and generate the necessary com-
mands fast enough for the low-level controller and DESHA to control the spacecraft.

Of course more needs will be derived from the processing of the scientific information, the attitude
control system, etc. but these are considered out of the scope of this project as they do not affect
DESHA. In the following section a small review of the state of the art on-board computers will be given
to analyze if the considered need is achievable with state of the art hardware. Also spin-ins from other
fields will be presented given their possible relevance. The next section will be mostly focused again
on the smallest systems considered (CubeSats and Nanosats). It is assumed that if these systems
can incorporate technologies that allow the needs to be satisfied, then larger systems could also either
mount the same systems or better achieve the same needs.

4.5.2. On-Board Computing State of the Art
Space processors and on-board computers are less powerful than the onesmounted in current comput-
ers. This is due, among many other factors, to the extra qualification needs that the space environment
requires, such as the need for surviving constant radiation events. For example COTS for CubeSats
and Nanosats mount processors with processing speeds around MHz and memories of MBs [21]. Nev-
ertheless, previous missions have achieved formation flying between two agents by using several of
these systems on board [14] to both process the information and control the formation.

Still the most interesting technology is yet to come. In the latest years telecommunication systems
have been improving the performance of processors that fit on motherboards of small systems such as
phones or tablets. Nowadays it is possible to find several processors with comparable capacity to the
one of an average computer fitted in a small device [40]. It only seems logical that these technologies
will be soon adapted also on the world of spacecraft. However, some of the performance might be lost
while adapting these technologies to space. It is expected that in not too long all spacecraft will be
equipped with on-board computers with similar performance to current smartphones.

Therefore, previousmissions show that it is possible to run similar algorithms in the smallest systems
considered. This leads to think that current state of the art technologies allow for the performance of
all required tasks. Furthermore, spin-ins from other industries are expected, leading to an increase in
the on-board computer capacities.

4.5.3. On-Board Computing Conclusions
In this section the needs of the on-board computing system have been analyzed and the state of the art
of on-board computing technology has been shortly reviewed. The conclusion is that previous missions
have achieved the identified needs with current state of the art technologies. On top of that it is expected
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(a)

(b)

Figure 4.4: In 4.4a a modern on board computer for a CubeSat spacecraft from [21]. In 4.4b the motherboard of a modern
smartphone from [40]. Certainly size and form of the components is similar.

that the capacities of on-board computers are going to be dramatically increased in the upcoming years.

It is true that the DESHA algorithm has never been tested in space before. Furthermore, to test it
and find the true processing and memory needs of the algorithm the code should be programmed in
embedded software languages such as C/C++ and the code optimized. This is considered out of the
scope of this thesis project due to time constraints.

With all the above mentioned considerations the following assumption will be taken:

• AS-HW-011: The on-board computer will be able to process, store and generate all necessary
data.

On top of that, it will be assumed that as far as the algorithm can run (for a single agent) in real time in a
computer, the algorithm will be considered suitable for current or shortly upcoming on-board computers.

4.6. Note on Implementation
In this section the implementation in SwarmSimulator of the modeling of the agents and hardware pre-
sented in the previous sections will be reviewed. This does not intend to be a software manual for
SwarmSimulator, but rather an introduction on how the implementation was done.

The hardware of the spacecraft has beenmodeled mainly through the definition of a class, the Agent
class. This class encompasses all the values for the parameters determined by the hardware, such as
the agent mass, the definition of the state used for DESHA (which links with discrete possible locations
of the direction of arrival of the signal obtained with the antennas), etc. Most of the hardware design
has been used implicitly in the assumptions taken on the model. For example, no limitations on an-
gle of arrival of inter-satellite links have been considered, as the communication is full according to [20].

The only piece of hardware modeled more explicitly with respect to hardware considerations has
been the thrusters. A subclass of Agent has been created called Thruster which includes all the in-
formation both of a catalogue of suitable thrusters (mostly the Busek’s BIT family [90]) as well as the
possibility of user defined thrusters. This class also includes a set of functions to calculate the use of
propellant, the remaining propellant and the total Δ𝑉 used. More detail on the internal functions of the
class thruster is available on Appendix B.

For navigation, the solution of having the reference orbit transmitted to all the agents has been used.
This choice has been done due to the fact that for obtaining plots with the current orbit of each agent
with respect to a Moon centered inertial reference frame the swarm reference orbit was necessary.
Furthermore, this will link with the work presented in [34]. Nevertheless, this has been done without
loss of generality, as with the relative localization option the only difference will be that the agent will not
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store a variable with its current state at all times, but rather it will calculate with the proposed ranging
methods the state of its neighbourhood. This has been implemented in SwarmSimulator through the
Reference Orbit class, which calculates at the beginning of the simulation for each time step the coor-
dinates in Moon inertial reference frame of the orbit with Kepler’s equation [98]. The class also includes
some minor functions to obtain derived values useful for the setting of some simulation parameters or
calculations, such as the reference orbit mean motion or period. This class is public so each member
of the swarm can access it during the simulation, imitating the fact that all the swarm will have a shared
reference orbit.

Finally, two expansion options have been made available in the construction of the Agent class:
reaction wheel and antennas. For both elements a class file was created which represents a subclass
included in Agent. In future developments of Swarm Simulator it is possible to use the already defined
elements of said classes as well as to include new elements. This will allow, for example, to expand the
use of DESHA to attitude control; include radiation patterns for all the antennas and analyze the effects
of the smart antenna approach in the definition of the discrete states of DESHA; include in the analysis
models of the smart antenna approach and test them, etc. Nevertheless, since all these activities were
out of the scope of this project and will not allow to answer the research question, the classes were not
used.





5
Low-Level Control

DESHA is a high-level control algorithm. That means that it will generate as an output the necessary
state transitions, that is, the new final state required for each agent. Nevertheless, the transition from
the current to the new state of the agent will not be managed by DESHA. Therefore, for its proper
implementation (presented in Chapter 6) first it will be necessary to have a low-level controller capable
of controlling the spacecrafts in said transitions. This chapter presents the proposed solution for the
low-level control.

In Section 5.1 the proposed approach and control theory will be reviewed, leading to the selection of
a low-level controller. Then in Section 5.2 the tuning of the chosen low-level controller will be presented.
In Section 5.3 the tuned controller is validated through a series of tests. Finally in Section 5.4 some
notes on how this controller is implemented in Swarm Simulator are reviewed.

5.1. Proposed Approach to Low-Level Control
There are two main approaches to controllers: open loop controllers and closed-loop controllers. The
main difference between one and the other is the inclusion of what is known as the feedback loop. In
a closed-loop control after taking the control action, there is a measurement of the state of the system,
which is fed again to the controller, so the controller has actually a feedback loop analyzing the result
of its actions. Open loop control is a particular, much simpler, case of the closed-loop control where
the feedback loop is removed [88].

In the case of spacecraft automatic control, and more in the case of control in formation flying, the
use of closed-loop systems is the most current technique [4]. Specifically the use of Control Lyapunov
Functions and Linear Quadratic Regulators is proposed in [4, 87]. Nevertheless, the latest develop-
ments point out Model Predictive Control [17, 68] or the use of simple techniques such as Q-Guidance
Control [52, 71] for swarm low-level control.

In the end, the low-level controller will just be, at least in this first approach, a simple tool to perform
state transitions. Therefore for this project a simple and easy-to-implement solution was preferred to
more complex forms of control. The chosen controller for the low-level control was a Proportional In-
tegral Derivative (PID) controller. This controller works in a similar, but simpler, way than the Linear
Quadratic Regulator. It generates a response proportional to the error between the reference (end
state) and the current state, its derivative and the integral of the error during the control process. The
ratios to multiply the difference error is called the gain. The advantage of the use of the PID is that the
system is easily understood, the response is just proportional to the error (and its derived magnitudes).
Furthermore, its tuning can be done with a simple ”guess and check” method, although slightly more
analytic methods are available in literature to tune the gains of the controller [9].

On the requirements side, a PID requires a linear dynamics system and a controllable plant. Thank-
fully, the presented dynamic model in Chapter 3 is linear. For the controlability analysis, the model can
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be expressed in the form of a state space system (see [100]). This form is presented in Equations 5.1
and 5.2 where X is the state vector, 𝐴 and 𝐵 are matrices, u is the control vector, y is the output of the
system, and 𝐶 and 𝐷 are matrices.

Ẋ = 𝐴X+ 𝐵u (5.1)

�̇� = 𝐶x+ 𝐷u (5.2)

In this case the state and the output are the same, therefore 𝐶 is the identity matrix and 𝐷 is a matrix
full of zeros. For the rest of the matrices their values, according to the HCW equations are:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−3𝑛 0 0 1 2𝑛 0
0 0 0 0 −2𝑛 0 0
0 0 −𝑛 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

(5.3)

𝑢 = [𝑓 𝑓 𝑓 ] (5.4)

𝑥 = [𝑥 𝑦 𝑧 �̇� �̇� �̇�] (5.5)

According to [100] a system is controlable if the rank of its controlability matrix (defined in Equation
5.6) is equal to the number of rows of 𝐴.

[𝐵 𝐴𝐵 𝐴 𝐵 ... 𝐴 𝐵] (5.6)

MatLab® includes the functions ctrl and rank which allow to compute the controlability matrix and
the rank of a matrix respectively. By performing this analysis with the state space system presented
for the HCW equations the results show that the system is controlable. Therefore, for any initial state
𝑥 and desired state 𝑥 there will be an output 𝑢 that will transfer the state from the initial to the desired
in a finite time.

Therefore it will be possible to design a response in the form of a PID control as presented in Equa-
tion 5.7 which will generate the desired movement. 𝐾 , 𝐾 , and 𝐾 are vectors with the proportional,
derivative and integral gains of the system. In the following section the method used for tuning these
gains to obtain the desired responses will be presented

u = 𝐾 x+ 𝐾 ẋ+ 𝐾 ∫x𝑑𝑡 (5.7)

5.2. Tuning of the Controller
There are many methods in literature to design a PID control, from the bandwidth and damping rate
selection presented in [100] to the use of genetic algorithms to fully optimize the design of the controller
[99]. Also, there has been a rise in the use of automatic tuning methods [9] which allow the user to
tune the desired controller by just defining the desired parameters of the controller such as rise time or
overshoot.

In this case, a second effect has to be taken into account. There is a non-linearity in the system.
The actuators of the system, as defined in Chapter 4, have a limit in the maximum thrust possible. This
limits the control input. Therefore even if the PID is actually calculating the input, it will be necessary
to take into account the effects of the saturation of the actuators.

As explained in [9] this real effect on the PID has the risk of generating an up-winding effect. This
effect consist in an uncontrolled increase in the control output due to the accumulation of integral er-
ror. This is due to the fact that, although the controller is asking the system for a certain control input
to reduce the error, the system is saturated, so the error increases at a faster rate than expected. A
second source of risks of failure in the tuning comes from the scale of the control input versus the re-
quired new settling point. The use of the electric engine (which was deemed as interesting in Chapter
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3) is extremely interesting for this mission as it offers an extremely large specific impulse and available
velocity change. This will allow the high-level control to be able to achieve an extremely large amount
of movements before the system runs out of fuel. Nevertheless, it comes at the cost of a very low
actuation force. This will be reflected in the control input. On the other hand, the high-level controller
will generate a new reference position to the low-level controller. This will be translated in an instanta-
neous change in the error, in the same shape as the response to a step. Given again the saturation of
the low-level controller, integral error will even increase more as the errors accumulated will be bigger
and bigger. Nevertheless, as noted in, [64], including the integral term will get rid of steady state errors.

Tune Z Component
Check with Simulink

Model with Saturation
and Proper Move

Tune X-Y
Components

Slow Donw/Speed
Up Controller

Figure 5.1: Flow diagram of the PID tuning strategy implemented

The final design to tune the controllers used in this report consisted in an iterative method depicted
in Figure 5.1. It consists on four steps:

1. Tune with PID Tuner App. MatLab® includes a pidtuner application which allows both tune
and preview a PID controller. The only limitation to this tool is the necessity of using a single-
input single-output (SISO) controller. This is not the case of the HCW equations. The proposed
approach is to use the 𝑧 coordinate of the HCW equations, which is independent and can work
as a SISO system, to be tuned with the PID Tunner App of MatLab®.

2. Use Simulink® Model to Include the Saturation. Simulink® allows to actually take into account
the saturation of the controller in its PID Controller block. The solution of the previous step is
inputted in a Simulink® model (presented in Figure 5.2) of the 𝑧 coordinate with the controller.
Then it will be evaluated if the designed gains are able to cope with the given movement and with
the saturation of the actuator.

3. Iterate Between Steps 1 and 2. If the controller is not capable of controlling the system with
the saturation, the controller is slowed down to reduce the wind up problem. Opposite to that, to
speed up the controller, it will be sped up if it is possible.

4. Tune X-Y Components. Once the cross-track component has been tuned, the same solution
is inputted for the radial and along track components. Then, with the low-level control routine
from SwarmSimulator a series of tests moves are created to see if the controller can generate
the desired state transition. If it is not the case, the gains are hand tuned according to [64] to
obtain a better response.

The generated controllers will be validated. An example of the validation procedure will be presented
in Section 5.3. To do so the error between the current and desired positions will be plotted, which
will map the response of the controller for the system used in Chapter 7. This will allow to identify
parameters such as rise time or the level of overshoot. Nevertheless, before that, the limits of the
controller have to be explored so only possible moves are inputted to the controller. This will be done
in Section 5.4.

5.3. Limitations of the Control
In ideal systems, the low-level controller will generate the right output to obtain the desired positioning
required by the high-level controller. Nevertheless, the astrodynamic modelling done in Chapter 3 and
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Figure 5.2: Simulink®model of the cross-track coordinate of the HCW equations for tuning.

Chapter 4 poses a set of real constraints to the possibilities of the low-level controller. The limits that
these effects pose on the control problem are presented in this section.

In the end, the controller is mostly affected by the saturation of the actuators. The existence of a
real limit on the maximum (in absolute value) that the controller can actuate the system generates a
need for a tuned controller taking into account the possibility of wind up. It also poses a limit on the
locations attainable by the controller.

An analysis on the HCW Equations from Chapter 3 proves that there will exist a certain movement
with respect to the reference orbit for all agents not located within it. In other words, the agents will
move with respect to another if they are not actuated. This is not totally true, as orbit designs ex-
ist where the agents will not drift apart, at least in a first analysis (see [4, 55]). Nevertheless, given
the probabilistic nature of DESHA, it will be quite hard to only generate movements that only lead to
non-drifting orbits. Furthermore, it might generate an over-constrained state-space for the high-level
controller to only consider these orbits. This might lead to few designs of the swarm actually converging
when using DESHA (see Chapter 6. If an unconstrained space is desired for the agents to move, the
ability of the actuators to counteract these drifts will pose the constraints in the space available for the
agents to move.

To illustrate this idea, the calculations for the case of OLFAR, its reference orbit, and the actuator
BIT-3 used in Chapter 7 will be presented as an example. Given acceleration in the cross-track direction
within the HCW problem can be computed with Equation 5.8 [98].

�̈� = 𝑓 − 𝑛 𝑧 (5.8)

An agent is supposed to be left static at a certain point in the cross-track axis 𝑧 . In order for the
actuator to keep the agent static, the agent should be able to generate an acceleration capable of being
equal to the drift force:

𝑓 = 𝑛 𝑧 (5.9)

Therefore the maximum 𝑧 coordinate achievable can be defined by Equation 5.10. As the equation
is symmetric, the minimum achievable coordinate will be the same in absolute value, but with the
opposite sign. This is reflected in Equation 5.10.

|𝑧 | = |𝑓 |
𝑛 (5.10)

As the actuator presented in Chapter 7 has a maximum thrust of 0.0012 𝑁 and the design is a 6kg
Cubesat, the maximum acceleration possible is computed as:

𝑓 = 𝑇
𝑀 = 0.0002𝑚/𝑠 (5.11)
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Therefore, by applying this to Equation 5.10 the maximum controlable cross track coordinate will
be 𝑧 = 296.82𝑚 for an orbit of 200km of altitude around the Moon (the worst case scenario of the
two presented in Chapter 3). This was also verified by using MatLab®’s MPC Designer App. MPC is
a type of controller which allows for taking into control input limitations and also looks for optimizing
the movements and control actions [68]. Although MPC was deemed too complex for the current
application, its designer toolbox is extremely useful to find the maximum when control input saturation
is considered. A user case defining as variables to optimize only the positions and setting the limit of
the acceleration as defined above is created. Then a step of 1000m was inputted as reference signal.
As this is unattainable, the controller must stabilize in that position where the control effort equals the
disturbance acceleration. Results are presented in Figure 5.3.
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Figure 5.3: Results with MPC Model on Saturated Controller and HCW Equations. In Figue 5.3a the position calculated with the
control loop including the MPCmodel are presented. In Figure 5.3b the control inputs calculated with the controler are presented.
The results show that there are maximums in the control of both the radial and cross track components.

In Figure 5.3 the control output is depicted. It is shown that, the cross-track component, as exposed
analytically, saturates around 300m for the mean motion of the Orbit 2 presented in Chapter 2. Since
the drift due to positioning is variable (see Chapter 3) this will probably explain the oscillations in the
component. Therefore this tool can be used to obtain the control limits for along track and radial com-
ponents, whose coupling complicates the analysis. In the case of the along track direction it seems that
it is always to attain the required control. This is due to the fact that its acceleration is not dependent
on the position of any component. Analyzing it as a second order linear system there is no restoration
force in this coordinate, only damping, which leads to the offset. Nevertheless, it has a collateral effect
on the radial component, so the overshoot of this component depends on the value of the desired fi-
nal state of the along-track component. Therefore in the design this should be taken into account, as
extremely large overshoots will actually lead to disconnections of the agents, which is not acceptable
(see Chapter 6). The control limit for the radial component is around 100m. This is logical as, taking
only into account the restoration force of the first HCW equation the formula to calculate the maximum
radial control will be:

|𝑥 | = |𝑓 |
𝑛 = 98.94𝑚 (5.12)

Just as predicted with the MPC Designer App.
With respect to the control input, displayed in Figure 5.3b it is possible to see that the control is lim-

ited to the designed maximum value. Also it is shown that in both cases where the desired value is not
achieved the control input is set to the maximum for the whole time. On the other hand the along-track
coordinate, the reference is achieved without any trouble and there is no need for more control input.

In conclusion, the given combination of dynamics modeling and actuators limits the capacities of
the controller. This will inherently limit the attainable size of the swarm as agents situated in positions
further away from the given limits will drift apart from the swarm. This could be modified by adopting
different propulsion solutions, but as it will be exposed in Chapter 6, the high-level controller requires
an extremely large amount of actions (movements) to achieve the desired formations. This means that
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high changes in velocity will be needed. For swarms of larger sizes different actuators will be needed.

It is also concluded that the smaller the mean motion of the orbit, the larger the controlable area.
That is why from now on only the orbit of 3000km in altitude presented in Chapter 3 will be used.

5.4. Limits of the Controller Verification
To verify all the findings in the previous section, a set of moves have been designed and their errors
have been plotted. The movements have been designed taking into account the limitations presented
in Section 5.4 too. To this end the reference orbit 1 will be used, as well as the system presented in the
previous section, as it was used for the analysis already done.

The first test is presented in Figure 5.4. On it, an agent situated in the origin of the LVLH reference
frame is given an instruction to move in the radial (Figure 5.4a), along-track (Figure 5.4b) and cross-
track (Figure 5.4c) directions. In all cases the controller is capable of bringing the agent to the target
without overshoot or oscillations.
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Figure 5.4: Low-level controller verification test. A movement of 10m from the origin has been inputted as the new reference in
the radial 5.4a, along-track 5.4b and cross-track 5.4c

Once the short movements have been tested, the next step is to test longer movements close to the
limits of the controlable area. To do this the same test is repeated, this time with a movement of 100m.
The results are shown in Figure 5.5. In this case, being so close to the limit of the radial component, a
noticeable overshoot appears in the radial direction.

Finally the system is brought to almost its limits as presented in Section 5.4 in Figure 5.6. It is shown
how the radial direction presents extreme oscillations, while the cross-track and along track are able to
attain the desired state with little or no overshoot.

Following this test of the limits calculated, in Figure 5.7 the agents are situated in their limit positions
as the initial state. Then a small movement is requested for cross-track and radial directions. In the
case of the along-track direction, an extreme initial position is given to perform the analysis. In Figure
5.7a it is shown how the radial direction explodes, whilst in Figure 5.7c it is shown how the cross-
track components starts to oscillate. On the other hand in Figure 5.7b the along-track component is
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Figure 5.5: Long distance move. A movement of a 100m in each direction is requested.
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Figure 5.6: Low-level control of a combined maneuver close to the limits in the radial and cross-track directions.

controlled, but there is a quite large overshoot which is not convenient.
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Figure 5.7: Low-level control of a combined maneuver close to the limits in the radial and cross-track directions.
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In conclusion, the low-level controller designed works as expected, and the limits of the control
found in Section 5.3 are also verified when using the implemented low-level control moving the agents.
The dynamics and actuators used pose a set of constraints on the system which must be taken into
account in order to design the swarm and its controllers.

The Orbit 2 from Chapter 3 will be used as, for the least capable systems presented in the results
part of this report, it will still allow for a controlable area of kilometers. All controllers used in this
section will be then designed following the procedure presented in Section 5.2. To ensure their working
a visualization of a move using the real time plots from SwarmSimulator will be done.

5.5. Note on Implementation
The low-level controller will be implemented through the controller class in SwarmSimulator. This class
will be designed to include all the tuned parameters before and generate the given response. This class
can be further developed to study the effect of using other controllers. Another perk of the implementa-
tion is the inclusion of a control window and an end-of-move window. The control window will avoid the
agent to drift once it has reached the desired location whilst not constantly running the low level con-
troller. As noted in Chapter 4, there is a 1m assumed resolution on the precision of the ranging method.
This control window could be viewed as the effect of this resolution. Once the controller detects the
agent stable in this 1m radius zone around the agent it basically detects that it is one the required point.
Therefore it is switched off once it is detected that the agent has drifted (more than the given control
window). This will explain why in the final appearance of the control error has oscillations of short pe-
riod and small amplitude when it is supposed to be static. It means that the agent is oscillating, due to
the dynamics, around its nominal position.

The high-level control window will be slightly bigger than the control window of the agent. Since the
high-level control only generates commands for agents that it detect that are static. Depending on the
position the agents will oscillate in their position and will need small corrections frequently. To allow
the high-controller not to be affected by these oscillations and still operate with that agent, this larger
control window for the high-level controller is set.
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The most key element of this research project is the DESHA swarming algorithm. In this chapter the
implementation of DESHA in Swarm Simulator is presented. First in Section 6.1 a theoretical review
of DESHA algorithm and its fundamentals, as presented in [31] is presented. Then in Section 6.2 a
review of the adaptations done of DESHA in the context of this project is given.

6.1. Theoretical Background of DESHA
DESHA, as mentioned in Chapter II is the name given to the algorithm presented in [31] designed for
the swarming. This algorithm goal is to set each agent local state within a group of desired local states.
The union of said local states is such that the only possible emerging global state is the desired global
state. DESHA has been designed to achieve formations in swarms, therefore most of its development
has been focused on that. Nevertheless, it is understood that the final patterns and states could be
identified with other variables, giving DESHA quite some versatility. Following a set of design rules
it is ensured that reaching the pattern is possible and that the pattern is the unique patter capable of
emerging from the union of all the local states.

The algorithm originally is designed taking into account a syste m with 10 constrains and 4 assump-
tions, listed in Table 6.1.

These assumptions and constrains are the framework where the algorithm was developed. Nev-
ertheless, they do not have to always be true. Some of them might be violated without stopping the
algorithm. For example the agents can communicate, the swarming algorithm can expand its possibil-
ities by using this information (for example to double check some information), but even without active
communication the algorithm is supposed to work. Furthermore, it is implied in [31] that the constraints
might actually be to tight, and the performance of the algorithm could be improved by relaxing them.
This should not be a problem, as it is explained in [31] that the algorithm works with these constrains
as a reference frame, but they are not necessary. Actually, in the following sections it will be motivated
that some of them will be violated by the swarm system designed.

DESHA tries to achieve the acquisition of the desired state keeping in mind its local philosophy and
two key properties:

• Safe : Understood as without agent collisions or disconnections.

• Live : Understood as the fact that for any initial pattern 𝑃 the final global pattern 𝑃 will even-
tually form provided that both patterns have connected topology.

To guarantee safety, the agents have to avoid disconnections and collisions. The proposed ap-
proach is to only allow only moves compliant with three conditions:

• Each agent only moves when no other agents (that it senses) move.

• Each agent only moves in directions where it does not sense any other agents.

51
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Id Type Description
C1 Constraint The robots are homogeneous (all entirely identical)
C2 Constraint The robots are anonymous (they cannot sense each other’s identity).

C3 Constraint The robots are reactive (they only select an action based on their
current state).

C4 Constraint The robots are memoryless (they do not remember past states).
C5 Constraint No robot can be a leader or seed.
C6 Constraint The robots cannot communicate with each other.
C7 Constraint The robots only have access to their local state.
C8 Constraint The robots do not know their global position.
C9 Constraint The robots exist in an unbounded space.

C10 Constraint Each robot can only sense the relative location of its neighbors up to a
short range.

A1 Assumption The robots all have knowledge of a common direction (i.e., North).
A2 Assumption The robots operate on a 2D plane.

A3 Assumption
When a robot senses the relative location of a neighbor, it can sense it
with enough accuracy and update frequency to establish if a neighbor

is moving or standing still (e.g., hovering).

A4 Assumption 𝑃 ,the initial pattern formed by the robots, has a connected sensing
topology.

Table 6.1: Constraints and Assumptions of the algorithm developed in [31]

• Each agent moves to locations where it will remain connected to its previous neighbourhood.

The first assumption allows to avoid collisions by the appearance of moving agents in the knowl-
edge region of the agent. Ideally this assumption will also include that the agent is the only one to move
in the entire swarm, but this without clock synchronization or global knowledge becomes impossible.
The second is a trivial condition to avoid collisions. The third condition ensures that the local neigh-
bourhoods stay connected, and since the initial topology was already globally connected, the swarm
will remain connected.

Provided that the designed pattern is achievable while keeping the connectivity, there are two situ-
ations are identified that might prevent the 𝑃 to form. The first one is the occurrence of deadlocks,
i.e. situations where all the agents are blocked. The second one is the existence of livelock situations,
situations where an agent is trapped in an infinite transition between a set of patterns. The identification
of patterns that might include these kind of situations is vital to ensure that, with local knowledge, the
global pattern is obtained.

Desired patterns complying with Theorem 1 will be free of livelock situations, whereas those com-
plying with Lema 3 and Proposition 5 will be free of deadlocks (for proof see [31]).

Theorem 1
If the If the following conditions are satisfied:

1. 𝑃 is achievable,

2. a pattern in𝑃 ∈ 𝑃 ⋃𝑃 will always be reached fromanyother pattern𝑃 ∉ 𝑃 ⋃𝑃𝑑𝑒𝑠,
3. 𝐺 shows that any agent in any state 𝑠 ∈ 𝑆 ⋂𝑆 can move to explore all

open positions surrounding its neighbors (with the exception ofwhen a loop is formed
or when it enters a state 𝑠 ∈ 𝑆 ),

4. in 𝐺 , any agent in any state 𝑠 ∈ 𝑆 only has outward edges toward states 𝑠 ∈
𝑆 (with the exception of a state that is fully surrounded along two or more per-
pendicular directions),

then 𝑃 will always eventually be reached from any initial pattern 𝑃 .
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Lemma 3
If the following conditions are satisfied:

1. for all states 𝑠 ∈ 𝑆 ⋂𝑆¬ − 𝑠 , none of the cliques of each state
can be formed only by agents that are in a state 𝑠 ∈ 𝑆 ⋂𝑆 ,

2. 𝐺 shows that all static states with two neighbors will directly transition to an active
state,

thenapattern in𝑃 ∈ 𝑃 ⋃𝑃 will always be reached fromanyother pattern𝑃 ∉ 𝑃 ⋃𝑃 .

Proposition 5
If the conditions of Lemma 3 hold and 𝑆 ⊆ 𝑆 ⋃𝑠 , then all agents in a
deadlock must be in a state 𝑠 ∈ 𝑆 .

Where a clique is a defined as a connected set of agents and a simplicial a state not blocked for
which its neighbours only form one clique. 𝑃 is all patterns where there is at least one agent active
and simplicial, 𝑆 refers to all states matching said condition. Finally 𝐺 is the graph where all
vertices are the possible states represented by the move of an agent within the safe state space action
and 𝐺 represents a graph where all vertices are the states reached by an agent due to the move
of its neighbours within their local neighbourhood. The edges of said graphs represent the described
transitions. For examples see Figure 6.1

(a) (b)

Figure 6.1: In Figure 6.1a an example of a simplicial and its associated clique is presented. In Figure 6.1b examples of and
. Images courtesy of [31]

By designing desired final patterns according to the above specified rules it is guaranteed that the
final desired pattern will be achieved. These rules have to be encoded so that the transition from the
initial to the final pattern can be done. To do this, it is proposed to use probabilistic finite state ma-
chines(PFSM).

A finite state machine is a computational tool that encodes the transitions between states of a sys-
tem. That is, it is an element that evaluates the current state of the system and has encoded a transition
to a new state. These transitions are generated with a previous algorithm (in this case DESHA). A finite
state machine is by definition deterministic, by knowing the state, the transition is known, so given the
initial state of the system, the final state of the system can be determined. This might be productive in
some cases, but in the case of swarming, and more in the case of agents with local limited knowledge, a
higher level of intelligence, understood as the capacity to cope with unexpected situations, is necessary.

That is why it is proposed in [31] to use stochastic policies. These are a regarded as a more general
case of finite state machines [97] where the transitions are not determined. In this case, only proba-
bilities are assigned to each of the possible transitions of the system given its current state. Then the
state change is selected according to the given probabilities. In the case of DESHA, the PFSM will
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encode, for each of the possible states, a probability to select among all the possible moves that match
all the rules listed above (the safe state space) one. Their stochastic nature allows them to avoid stuck
situations if, for example, something unexpected in the design blocks one transition. In Figure 6.2 a
representation of all possible state transitions for a given pattern is presented.

Figure 6.2: Transitions to achieve the desired pattern for four agents.

In this section DESHA, as presented in [31] has been presented. It is worth to note that in said
article the authors point out that the algorithm presents some problems with the convergence of large
scale swarms. The authors indicate that the relaxation of some of the conditions or the increase in the
capabilities of the agents might improve said problems. Also some test are presented allowing to relax
some of the lemmas and propositions presented. Interestingly enough, said relaxations actually allow
for faster convergences. Nevertheless, given that said relaxations are not proven to always achieve
the desired pattern.The aforementioned problems and modifications will be taken into account in the
implementation of the algorithm in Swarm Simulator. In the following section, said implementation
will be presented together with some modifications on the implemenation of the algorithm in Swarm
Simulator.

6.2. Implementation of DESHA
DESHA was proven in [31] as a safe way to achieve formations with an extremely low requirement on
knowledge. Furthermore, as any swarming algorithm, it incorporates elements of artificial intelligence
as PFSMs [79] which allow the swarm to cope with unexpected situations and interactions with the
environment. Nevertheless, in the context of the current project, some of the constraints presented
either do not make sense or are not viable. This section will present the adaptation of the DESHA
algorithm to the current project.

6.2.1. DESHA in Spacecraft Swarming
DESHAwas designed with considering a swarmwith a set of constraints and assumptions. Some of the
constraints taken for the design will withstand when adapting the algorithm to spacecraft swarming, but
others will actually be relaxed. Similarly, the assumptions taken for the design will have to be reviewed,
as some differences might be found.

As noted in Chapter 4, communication both between agents and in between agents is already de-
signed and expected. They are actually key to determine and sense the other spacecraft. Other space
systems, such as the Galileo GNSS constellation, also incorporate these kind of systems to determine
their relative state [43]. Therefore it is understood that at least for fairly distant systems, the com-
munication, in the sense of a radio frequency system to allow sensing between the agents, will be
permitted. Nevertheless, as indicated in [31], the generation of full communication protocols requires
a large amount of time, therefore, the communication between agents will be kept to the minimum.

In the design of DESHA, the swarm was considered to have anonymous agents , that is, agents
cannot recognize any kind of identification between their neighbours. For example, the OLFAR sys-
tem already has designed communication protocols between the spacecrafts and the ground, and also
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housekeeping task will be most probably necessary in each agent. It is expected that, in order for the
ground station to keep track of the status of each element of the swarm, some kind of identification in
each agent is available. Since this information will be probably an alphanumeric code, so not a really
big package of information. Therefore it can be accepted that next to the radio signal to localize the
agents, the identifier of the emitting agent can be included without any delay. This will lead to admit
that the agents can know the identification code of their neighbours. Since the states, as presented in
[31] are only arrays of integers, it could be also theorized that sending that information will not require
too much effort either and will allow for the agents to enlarge by one order of magnitude their knowl-
edge area. But following the philosophy of keeping the communication to the minimum this idea will be
dismissed for the moment.

With respect to the constraint C8 of Table 6.1, the designed swarm actually does not have this
constraint. As explained in Chapter 4, it was decided to implement the idea of the agents having access
to the updated information of the reference orbit and the position of one of them, allowing the agents
to estimate their relative and positions. Nevertheless, it was explained that this was done more with
the idea of having in an efficient manner all the information for the data plotting within SwarmSimulator
rather than a need for the operations of the swarm. Therefore, it will be considered that the agents
will not have access to their global state. The effects of having the global position will probably render
the algorithm quite useless, as each agent could just have access to the global point in space where
it should go and go there. Only collision avoidance will be necessary to be implemented, but certainly
the interactions between agents will be far less.

The rest of the constraints seem to be reasonable, and quite common in for most swarms, so the
swarm considered will present them. Therefore it will be understood that they will hold also for the use
of DESHA in spacecraft swarming.

With respect to the assumptions taken in [31] only three of them seem to hold when applying DESHA
to a spacecraft swarm. Certainly there is not much problem in having a common reference direction,
as star trackers are available to small satellite systems (see Chapter 4). Also, assumptions taken in
this project also take into account the enough frequency and accuracy in the sensing and the initial
connected topology (see Assumptions AS-HW-009 and AS-HW-003). Nevertheless, space is a 3-
D environment. Theoretically all three directions of motion and rotations are viable, although it will be
shown later that for this specific case some of the directions of motion are not interested. Therefore it will
be necessary to allow for three dimensional capabilities in order fully represent the case of spacecraft
swarming. Relaxing this assumption does not seem to be a problem in the proves and designs of the
algorithm, it will just add some complexity to the problem. The only change will be that the agents will
now need to know two reference directions (North and East for example). This extra complexity will
make the states will grow in size as it will be shown in Section 6.2.3

6.2.2. Algorithm Overview
DESHA will be implemented in Swarm Simulator flowing the process depicted in Figure 6.3.

Figure 6.3: DESHA process with all identified steps of the algorithm.

The process of DESHA implies six steps:

1. Analyze Neighbourhood. The agent evaluates its neighbourhood and generates its current
state with the position of its neighbours.

2. Classify Agents. The agent defines if he is active, and therefore ready to request a move, or
static, either for being blocked or in a desired state.



56 6. High-Level Control

3. Determine Who Moves. More than one agent might be active in the same neighbourhood.
Nevertheless, in accordance with the safety principle of DESHA only one of them can move at
the same time. If there is a certain frequency at which the high-level control runs in the system,
it will be necessary to generate a negotiation between the agents to select which agent moves.

4. Select Action. The move to be performed is selected.

5. Ensure Connectivity and Safety: the move selected is evaluated to ensure that no disconnec-
tions are generated. If so, a new move is requested.

6. Send Action to Low-Level Controller: The selected action is set as the next target to be
achieved by the low-level controller from Chapter 5.

This process will have to be executed at the frequency of the high-level controller each time that
the agent is not in move. How these actions are executed is explained in the following subsections.

6.2.3. Analyze Neighbourhood
In order to evaluate its state, each agent will have to sense its surroundings and evaluate in which
positions of its state. By definition the states are discrete. This will imply that the algorithm will need to
assign the positions to the discrete locations of the state encoded in the agent.

For this report, three possible states have been considered: one in 3-D and two in 2-D. The rationale
behind this is to prove the use of DESHA in 3-D for the first possibility of the state. Later it will be shown
that actually for spacecraft swarming 2-D patterns hold more interest. Therefore, in order to have a
more efficient algorithm and runs in Swarm Simulator, a 2-D version of the 3-D patter will be encoded.
Finally a second 2-D pattern was included since it was more convenient for achieving certain shapes.
The three selected states are presented in be:

• Cubic State (see Figure 6.4a)

• Square State (see Figure 6.4b)

• Hexagonal State (see Figure 6.4c)

(a) (b)

(c)

Figure 6.4: Representation of the three state shapes incorporated in SwarmSimulator. In Figure 6.4a the cubic state is presented.
Its identifiers have been omitted for clarity. In Figure 6.4b the square state is presented with its identifiers. In Figure 6.4c the
hexagonal state is presented with its identifiers.

An important criterion to select the states was considering only states capable of tessellation. This
means the states will be shapes whose repetition can fill, without any free spaces, the entire space. The
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choice of tessellating shapes is motivated by the fact of maintaining a coherent grid while discretizing
the space. While evaluating the state, the importance of using tessellating is relative, as the agent will
just simply assign to the nearest state the located neighbours. As far as they are further away than a
safety radius, there will be no safety concerns. Nevertheless, the actions will be chosen to locations
within the state. If a non tessellating shape is selected, the positions of the states of the neighbours
and the states of the agent moving will not be coincident. Therefore, by the time the moving agent has
reached its new location, this might be so distant from the neighbour states that the moving agent might
have actually become disconnected from its previous neighbourhood. This can be solved by having a
knowledge area much bigger than the state. Another problem related with having a non-tessellating
state is the errors accumulated due to inconsistencies in the positioning of state nodes in neighbouring
agents. In each move, some offset will be generated due to the difference in positions between the
state node locations for the moving agent and its neighbours. Even if this does not cause disconnec-
tions, these errors will accumulate, forming much less precise patterns than with tessellating states.
Since so many inconveniences arise from the use of non-tessellating states, and no advantages are
perceived, only tessellating states will be used.

A graphical example of this is presented in Figure 6.5. As shown in Figure 6.5a, a transition with a
tessellating state will, after the transition, present a correspondence in position of both states. On the
other hand, not using a tessellating state, as in Figure 6.5b will end up with a lack of match between
the states of the neighbouring agents. In the limit case, if the knowledge area of the agent is equal to
its state, in Figure 6.5b a disconnection would have occurred.

(a) (b)

Figure 6.5: In Figure 6.5a a transition with a tessellating pattern (square) is presented. After the transition, the states of the
neighbour and the moving agent still match in position. In Figure 6.5b the same transition is presented with a non-tessellating
state. After the transition the states of both agents do not match, they will have to approximate the position of each other to the
closest state.

All three states selected are tessellating states. The cube is the most basic tessellation pattern that
covers all 3-D space. The square is just its equivalent in 2-D. The hexagon was selected for being not
only tessellating, but also for giving access to other tessellating figures such as the triangle (hexagon
all states filled) or rhombus.

The states will be representedmathematically by an array. 2-D states will be represented by a vector
where a logical 1 will be set in the occupied states. The numbers in Figures 6.4b and 6.1b indicate the
correspondence between the position and the index in the array. In the case of 3-D states a matrix will
be used to represent the state. The azimuths will correspond with the rows of the matrix whereas the
elevations will correspond with the elevations. The elevations will start in the bottom (South) direction
of the cube and the azimuths will start in the right (East) direction of the cube.

6.2.4. Classify Agents
Once the state has been evaluated the algorithm has to be able to classify the agents. The agents will
be classified in two groups: Active and Static. All agents which are not in a desired state and have any
states empty will be considered, in this step of the algorithm, as free. To match the definition of active
given in [31] still the connectivity of the move will have to be checked, but this will be done in a latter
step of the process.
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6.2.5. Determine Who Moves
As explained in Section 6.2.2, it might happen that two agents in the same neighbourhood decide to
move simultaneously. This is more prone to happen in cases where there is some kind of synchroniza-
tion in the whole swarm to run DESHA at the same time than in cases where each agent runs DESHA
at its own frequency. Only the synchronized case will be studied in this work, as the system in devised
in Chapter 4 all agents incorporate a Rubidium clock, stable enough to have a synchronization for the
whole swarm to the 10 𝑠 level or below [77].

In the event that two agents find their neighbourhood quiet at the same time and both are active,i.e.
ready to move, some sort of selection will be needed. Many approaches are possible, some of them
might even decrease the number of moves necessary for the swarm to converge to the desired pattern.
For example the agents could evaluate which of them is farther from reaching a desired state (num-
bers of filled positions missing to achieve the desired state). Then the agent with the state less similar
to a desired state then would move. Another approach could be using the ALT3 and ALT4 proposed
alterations in [31] where the moves towards more concentrated states are encouraged. Nevertheless,
these might cause some patters to form and violate Theorem 1. Even if it is pointed out that these
violations might not actually be so significant, as the subspace for moves that lead to livelocks and
deadlocks seems to be really small, they will not be considered. In space one of the key principles
given the lack of access to the system in many cases is safety. This will be violated if convergence
could not be assured at all times. Therefore ALT3 and ALT4 implementations will not be considered for
the moment.

As example of the selection by the pattern closes to the desired, in Figure 6.6 given the desired
pattern for a 4 element triangle (see Figure 6.6a, and the current pattern in Figure 6.6b, the yellow
agent will move. All three other agents has half or more of a desired pattern matching, but the bottom
agent, which has only one third of a desired pattern matching.

(a)

(b)

Figure 6.6: In Figure 6.6a the desired pattern for a four element triangle is presented along with the associated states. If a swarm
with the patter of Figure 6.6b were to achieve this pattern, and the selection of the moving agent were to be done by moving the
agent with the state less similar to a desired state, the agent moved will be the yellow one. All other agents have half or more of
a desired state completed.

Exploring some of the presented possibilities might be interesting. Nevertheless,with the main re-
search question in mind, the most practical approach is taken, at least on the first implementation of
DESHA. This is to fully respect the original algorithm and its simplicity principle. Therefore all agents
will have the same possibility to be the chosen to perform the move. To do so an number will be picked
from a uniform distribution among each pair requesting the move simultaneously. The one with the
biggest number will remain as active while the other will switch its state to static, as another agent in
its neighbourhood is moving. This will be repeated until only one agent in the neighbourhood is active.

From the hardware perspective the implementation of these protocols seems relatively easy. As
said before, the agents are allowed to know the identifier of their neighbours. Also, their ranging sys-
tem is based on radio communications (see Chapter 3). They could add in said communication their
identifiers, as said in Section 6.2.1 and, if active, a logical 1 in the message sent. Then active agents
receiving messages with these flag from their neighbours could start the random selection process.
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As several range measurements are done each time in order to gain precision [77], this addition of
information should not significantly add time to the already established ranging process.

6.2.6. Select Action
Once the agent to move has been decided, the next step is to decide where to move. In [31] a PFSM is
used to define the transitions of the agents. Usually a PFSM takes the form of a square matrix, where
the index of each row indicates one of the possible states that the state shape defined can take and
each column is one of the possible actions. These can be calculated with the possible selection of 𝑛
elements, being 𝑛 the number of elements of each state. This is calculated with the formula 2 − 1
where the state with all empty elements is the one subtracted. For example, in the square state shape,
depicted in Figure 6.4b all possible states are 2 − 1 = 255 and the possible actions are 𝑛 = 8. Then
the PFSM will take shape of a 255 by 8 matrix.

The probability of taking a given action, given a certain state, in each element of the matrix. This
means that the agent in state identified by column 1 for example will have in element (1, 1) the proba-
bility of moving to position 1 in the given state. Unsafe actions will have a 0 probability encoded. Also
the do not move state can be encoded in an extra column. The rationale of this will be explained in
Section 6.2.9.

The approach of using matrices to represent the PFSM is useful for states a with a relatively low
amount of positions in each state. This can be acceptable for 2-D states. Nevertheless, when using
3-D states, the risk of an estate explosion is high. For example the presented cube state has 24 pos-
sible positions. This implies that the implementation will be have 2 4−1 = 16777215 rows. Therefore
it will be a 16777215𝑥24 matrix with 402653160 elements. From a practical point of view this is not
efficient. The matrix will be probably encoded in a fixed memory in the agent. But loading and access-
ing this information each time that DESHA is run just to find a single element does not seem as the
most efficient way to generate the moves. Furthermore, implementing this in SwarmSimulator, where
not only one but tenths of agents have to be simulated at the same time will make an excessive use of
the computational resources available. Finally, each state shape will need its own PFSM encoded and
generated. This will require also a PFSM generator taking into account the rules of DESHA.

In the context of this project a different approach is proposed. In most cases, active agents not only
have one but many positions available in their state. Initially the probabilities encoded in DESHA are
uniform in all possible moves. Since the agents do not have any information on which moves are more
interesting than others, a uniform probability is the logical choice to select the moves. Taking this into
account, it will be more efficient then for 3-Dimensional states to simply randomly pick a movement
from the empty elements in the state. If said movement passes a connectivity check, the movement is
allowed. Else, a new movement is randomly picked.

The disadvantage of the implementation proposed is that, unlike pre-designed matrix PFSMs, the
probabilities of the moves cannot be tuned. The choice is made without any previous knowledge each
time. In Section 6.2.8 it will be shown that there is an interest in tuning the probabilities of the move-
ments. Given their advantages and disadvantages, both methods of movement generation will be
implemented in SwarmSimulator.

6.2.7. Connectivity Check
If the random move selection method presented in Section 6.2.6 is used, it is necessary to ensure
that the selected move does not break the connected topology of the local neighbourhood. Several
possibilities are available for analyzing the connectivity of the graph, as using pre-established routines
to generate a mathematical graph object and through its adjacency matrix evaluate the connectivity.
Nevertheless, the one chosen was what seems most obvious and simple, just follow the path. The
designed routine just evaluates the state resultant from taking the move. Then, the central object of
the graph is discarted and it is attempted to connect all the neighbours without moves larger than the
knowledge distance of the agent. If this is possible the movement has maintained the neighbourhood
connectivity, else, the movement is discarded. Both options are depicted in Figure 6.7.

Once the selected movement has been checked for connectivity, and has been approved, the in-
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(a)

(b)

Figure 6.7: Connected and Unconnected Moves. In Figure 6.7a the move selected generates a final neighbourhood where the
agent is further away than the knowledge distance of its original neighbours, the movement should be discarded. In Figure 6.7a
the same configuration is repeated, but this time the move is within the knowledge area of one of the previous neighbours, so
the move maintains local connectivity and its accepted.

formation of the new target will be sent to the low-level controller of Chatper 5, which will perform the
maneuver.

6.2.8. Practical Considerations
On top of the presented adaptations for DESHA to the space environment and the context of this project

Space Discretization
DESHA Run Time
Safety Limits
Possible Patterns
6.2.9. DESHA Expansions: Optimization and Large Scale
It is already noted in [31] that there are convergence issues with DESHA when the complexity of the
pattern required grows. Although only simple patterns could be researched in this project without lose
of generality, one of the key properties of swarms is scalability. Certainly with the increase in the num-
ber of agents, complexity will increase and therefore one might say that there will be scalability issues.
Therefore, in iterative improvements of the algorithm implementation some strategies were decided to
reduce the incidence of this problem.

The first strategy to reduce the convergence times comes from [30]. In it a series of measures are
taken to reduce optimize the time that DESHA needs to achieve the desired patterns:

• Reduce the size of the PFSM. This is done by seeing as static all agents moves that expect more
surrounding elements that agents are on the swarm. Also, each state 𝑠 is checked to see if it
could be fully surrounded by static agents. If not, this pattern is moved to 𝑆 as it is assured
that at least one active agent is available. Only the case of simplicial states will be accepted as
an exception to this.

• Optimize the PFSM. Once the PFSM has been reduced, the next action is to further reduce it by
minimizing the norm of the matrix maintaining the conditions of the previous step and the subset
𝑆 .

• Optimize the Probabilities. This will mean that the probabilities of the different moves will be
optimized. Given the spurious nature of the algorithm, the chosen method is evolutionary algo-
rithms, which will tune the probabilities by running many simulations of the convergence process
of DESHA.
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By generating PFSMs with this technique, according to [30] the number of agents necessary for the
convergence of the swarm is greatly decreased.

Nevertheless, this was not the only policy applied to speed up the convergence of the algorithm.
The context of a space swarm and of the reference case selected allows to think that large repetitive
patterns will be of interest. Already the fact that the state shapes have been selected as tessellating
shapes allows to think that a equally spaced coverage of a certain region can be achieved through these
patterns. This could be interesting for example for creating a swarm to image in a fast manner a whole
planet or give some kind of signal coverage to a large area. Nevertheless, making the whole swarm
achieve a desired state seems as a complicated mission. Nevertheless, locally making a subset of
agents converge to a simple shape has proven to be quite simple. The proposed idea is to create new
category, 𝑆 which already moves to static those agents whose state already covers a desired
state. This is better explained through Figure 6.8.

In Figure 6.8a the desired states and the associated semi-desired states of an hexagonal cell pattern
are presented. The semi-desired states are just the definition of the part of the state that is necessary
for the agents to generate the cells of the tessellating pattern (in this case an hexagon). Any state
matching the sequences represented in 𝑆 will set the agent as static (this includes 𝑆 . For
example any agent matching with its east and south-west states full and its south-east state empty will
match the top-left semi-desired state. Therefore it will stop moving. In Figure 6.8b this is represented.
All blue agents have the states in 𝑆 , their states fully match the original states desired for a hexagon
tessellation. The yellow agents only match with semi-desired states, as the green agent does not match
the desired pattern. With DESHA’s original approach, both the green and the yellow agents will move,
as none of them is fully in the desired state. Nevertheless, stands to reason that actually, only the green
agent has to move, as all the others are already achieving the desired pattern (the local hexagon). With
the semi-desired states, even though the yellow states do not comply with the fully desired state, the
one making the failure of the pattern will be the one moving.

(a) (b)

Figure 6.8

This will allow for agents which are actually in the cell pattern already not to move, only moving
those who need to form their own cell, reducing the actions to convergence. The reader might have
realized that in the case of Figure 6.8b the green agent will not stop mooving. Another interesting
aspect of tessellating patterns is that there is a required number of agents to ensure convergence. In
this case, for every cell on top of the first one, three agents will be needed. This will be further explored
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in the results part of the report.

6.3. Verification of DESHA in SwarmSimulator
Once implemented in SwarmSimulator, it DESHA was tested to see if similar results were obtained
as those presented in [30, 31]. To do so, a version of SwarmSimulator is made without the low-level
controller and the environment simulator. The agents are randomly initialized in a connected topology.
Then the agents are instantaneously move to their new locations according to DESHA. The number
of actions needed for convergence are computed. As this is a probabilistic algorithm, obviously the
actions for convergence vary depending on the simulation. That is why the simulations are run several
times. The number of runs will depend on the target pattern to avoid extreme computational loads. The
simulations performed are listed in Table 6.2.

Simulation ID Target Pattern Number of Runs Notes

1 Equilateral Triangle 4
Elements 100 Using PFSM model

from Secton 6.2.6

2 Equilateral Triangle 4
Elements 100 Using Optimized

PFSM from [31]

3 Equilateral Triangle 9
Elements 25 Using PFSM model

from Secton 6.2.6

Table 6.2: Simulations for DESHA Verification

The results obtained are presented in Figures 6.9a, 6.10a and 6.11a . The results present the total
number of actions required for the swarm to achieve the desired patterns (as listed in Table 6.2) against
the normalized probability that the swarmwill converge in said interval of actions. The probabilities have
been calculated with the results of the listed simulations. These results are comparable with the ones
from [30, 31] which use the same type of plots to present their results. These results are reproduced in
Figures 6.9b,6.10b and 6.11b. The baseline for Figure 6.9b and Figure 6.11b will be used, as in these
simulations not of the alternative approaches proposed in [31] have been taken due to the fact that they
do not ensure convergence. The ”After Step 3” solution has been used for comparison in Figure 6.10b
as the fully optimized PFSM has been used.
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Figure 6.9: DESHA Verification Results for 4 Element Equilateral Triangle. In Figure 6.9a the results for the simulations of an
Equilateral Triangle of 4 Elements are presented. The results for the same pattern from [31] are presented in Figure 6.9b

The results comparing Figure 6.9a and 6.9b show a similar tendency. The vast majority of the sim-
ulations are accumulated in the area between 0 and 100 total actions. It is true that in Figure 6.10a the
scale goes up to 400 actions, but it is shown also there that those seem as residual runs, accumulating
the vast majority of the results in the 0 to 200 actions area, just as in Figure 6.9a. This difference is
most probably due to a larger bin size in the simulations in [31].
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Figure 6.10: DESHA Verification Results for 4 Element Equilateral Triangle with Optimization. In Figure 6.10a the results for the
simulations of an Equilateral Triangle of 4 Elements are presented when the optimized PFSM from [30] is sued. The results for
the same pattern from [30] are presented in Figure 6.10b

A similar trend is seen in between Figure 6.9b and 6.10b, where the optimized PFSM has been
used to generate the movements. Again, probably due to a larger bin size, the results in [30] show
residual runs with larger convergence times (around 100 total actions). Nevertheless, the bulk of the
simulations show results coincident with the ones in Figure 6.5a. Also, as expressed in [30], a whole
order of magnitude in total number of actions is decreased when applying optimzied PFSMs.
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Figure 6.11: DESHA Verification Results for 9 Element Equilateral Triangle. In Figure 6.11a the results for the simulations of an
Equilateral Triangle of 9 Elements are presented. The results for the pattern from [31] are presented in Figure 6.11b.

Finally in Figure 6.11 the results for the Equilateral Triangle with 9 agents are presented. The same
trend as in the other two cases is seen, similar distribution, the bulk of the simulations converge for
the same number of total actions, but in the results from [31] there is a set of low probability runs with
larger number of actions. This is probably due to a larger bin size, which increases the probability for
non-usual cases with slower convergence.

Overall, it is verified that implementation of DESHA in SwarmSimulator works as expected, achiev-
ing the desired pattern and doing it in a similar number of actions as the ones obtained from the litera-
ture. Therefore the implementation of the algorithm is considered correct and the results obtained with
it valid. This will be key to give validity to the results of the full simulation.
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Introduction to Results
This part of the project will present the experiments performed to asses the research questions pre-
sented in Chapter 1 and some associated discussions.

The performed experiments will be grouped in three chapters. Each chapter will try to address
some aspects of the use of DESHA in space. The main goal of this analysis is to answer the research
questions presented in Chapter 1

1. Reference Case and Multiple Patterns: The first chapter will address the capacity of achieving
multiple patterns. The objective is to analyze the performance of the algorithm in achieving mul-
tiple patterns. The patterns will be selected in an increasing grade of complexity. The actuation
capacity level selected will be the lowest considered. The inter-satellite distance will also be the
minimum considered in this work. This will serve as a baseline to start analyzing on improvements
with using systems with more acceleration levels achievable.

2. Variation on Actuation Capacity: This chapter will be focused on analyzing the effect of varying
the actuation capacity of the system and studying its effect. This variations will also lead to an
increase in the some capacities of the swarm, such as the controlable area. The new limits of the
control will also be explored.

3. Optimized DESHA: In Chapter 6 it was shown that several approaches to make DESHA more
effective for large swarms or to reduce the time to achieve formation were possible. This chapter
will analyze their implementation on a spacecraft swarm.

In this work three levels of actuation are considered:

• Low Actuation Capacity: 10 𝑚/𝑠

• Medium Actuation Capacity: 10 𝑚/𝑠

• High Actuation Capacity: 10 𝑚/𝑠

Of course these three options are not the only ones available in the market. With the further de-
velopment of new technologies, both systems with higher and lower levels of thrust are expected to
arise. Furthermore, systems which offer higher thrust force are available in the market nowadays. For
example thrusters with newton level thrust forces are available for CubeSat platforms, whose order
of magnitude of mass is around 10kg [92]. Nevertheless, these systems are prone to present lower
levels of 𝐼 . As it has been noted in Chapter 6 and further expanded in Appendix C, many move-
ments are expected. Therefore, it is not logical to expect that these kind of systems are adequate for
their use with DESHA. On the other hand, smaller thrust levels are also available, with systems that
reach thrust levels of micronewtons [81]. Nevertheless, as it will be shown in Chapter 7, the times to
form the most complex patterns with the lowest acceleration level presented already reach extremely
large times to achieve the pattern. Therefore, considering even slower systems will be also not realistic.

By performing these test it is expected that sufficient information to generate conclusions on the
performance of DESHA in the space environment is attained.

Results of SwarmSimulator
As explained in Chapter 6, DESHA has a probabilistic component. This means that the results will vary
between simulations. In order to draw conclusions from the experiments, a set of metrics has to be
developed. Four parameters will be measured in the experiments:

• Time to Converge: time to form the pattern.
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• Total Number of Actions: Number of actions for the swarm to form the pattern.

• Δ𝑉: Velocity increase necessary for the agents to form the pattern.

• Remaining Fuel Per Agent: Remaining fuel in the agents.

Several options were considered to present the data from the simulations. Plots were discarded,
as four plots per simulation campaign, with two of them (the increase of velocity and fuel one) with one
line per agent in each simulation seemed really confusing. Another way of representing the results
was just to generate tables with all the raw data. But given that in some cases this meant tenths of
columns and rows, it seemed not really clear. Since the idea is to explore the capabilities of DESHA,
it was decided that three metrics, representative of the simulation campaign: minimum, maximum and
average value. The minimum and the maximum give an idea of the both the upper and lower limit of
the parameter measured during the simulation campaign. The average value intends to give the usual
value of the parameter. Nevertheless, a look into the expected number of movements either from [31]
or Appendix C shows that DESHA does not follow a normal distribution on simulation campaigns. A
quick look to the expected number of actions shows that for any pattern the actions seem to increase
up to a peak and then become more and more rare. Therefore, as the average gives the same weight
to all the values, it will represent a larger value than the most probable values. Since this is a conserva-
tive approximation, the average will be still calculated. This way future users will have a conservative
approach on the usual value expected for each parameter.

To give a sense of the distribution of the data, also the parameters of a probability distribution will
be given. This probability distribution needs to match the distribution of the number of actions in DE-
SHA, as all parameters are supposed to flow down from the movements. Note that this is not a deep
probabilistic study about the statistical properties of DESHA, but rather just a quick fitting to give future
tentative users an idea of how the measured variables are distributed. After analyzing several prob-
ability distributions, it was deemed that the best fit is the gamma distribution, which can be seen as
a union of several normal distributions. Given the multiple factors that might affect the forming of the
pattern, each one with their normal probability distribution, it make sense that this distribution was used.
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Figure 6.12: In 6.12a raw data is compared to the cumulative density function of the gamma probability estimated. In 6.12b the
estimated probability density function for the 4 element triangle is presented.

This distribution was fitted using MatLab®’s fitdist to an initial test set such as the ones presented in
Appendix C with 120 simulations of the DESHA movements to form a 4 element triangle. The result of
this analysis is shown in Figure 6.12a. There the raw data histogram is plotted against the cumulative
gamma probability density function whose parameters have been obtained with fitdist. It can be seen
how the cumulative probability perfectly fits the first bar. And if the two first bars are added, the prob-
ability is nearly the same as with the cumulative probability (0.75). The histogram fits the cumulative
probability as each of the histogram bars is the added probability of all the events that are in the range
of the bar. The gamma probability function (probability of each event) is plotted, for this case, in Figure
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6.12b.

For the time, actions, and mean Δ𝑉 of each simulation, the mean and standard deviation for the
gamma probability density function associated with the data will be given as results. These will be
obtained with MatLab®’s . This way the statistics offered are better fitted to the associated probability
distribution. No probabilities will be plotted, as this will mean at least three plots per simulation campaign
as this is considered not to add any more valuable information for the performance of DESHA. For the
fuel remaining in each agent, nor these parameters nor the maximum will be given. This is due to the
fact that in many cases some agents do not even move at all or perform few maneuvers. These leaves
several agents with almost all the tank of propellant full, skewing the statistics offered. For the Δ𝑉
the maximum will be the maximum of all simulations performed in the campaign and the minimum will
represent the minimum in the whole campaign of simulations. The distribution will be generated with
the averages from each simulation. Additionally, the mean of the standard deviations from all agents
of each simulation will be also given as the increase in velocity necessary for all agents tends to be the
same (so it is, per simulation, closer to a normal distribution).





7
Low Actuation Capacity Results

Once SwarmSimulator has been built, a series of test are performed to see its ability to cope with the
task of swarming a set of spacecraft. This chapter will present the analyis performed to evaluate the
capabilities of DESHA on spacecraft pattern formation. Specifically this chapter will analyze a system
with an acceleration level of 10 𝑚/𝑠 . This is the minimum level of actuation considered in this project
and it will set the reference case for further advancements.

On top of being dedicated to set an initial point for the analysis, this chapter will be dedicated to test
the performance under different patterns. To do so, four simulation campaigns will be designed to test
patterns in an increasing order of complexity. Complexity will be understood as the necessary number
of movements expected for the pattern to form. With these tests it is expected to establish the minimum
capacities of the algorithm to form patterns in space. The results of this chapter will be compared with
the ones obtained applying changes in the actuation capacity to evaluate the effect of having a faster
system in Chapter 8.

This chapter will be organized in the following manner. First the test case will be designed, based on
the capabilities of the spacecraft and low level control system. All decisions with respect to the selected
test case will be motivated. This will be presented in Section 7.1. Once this has been achieved, a series
of patterns will be tested, from simple to complex, to evaluate if DESHA is capable of swarming them
without surpassing a maximum time. Finally some conclusions of these first results will be drawn in
Section 7.6.

7.1. Test Case Set Up
The first simulation will take place with an acceleration level is 10 𝑚/𝑠 . This level of acceleration will
be selected as the minimum considered in this work as it will be expected to generate already large
times to form the pattern. Furthermore, in the case that in future analysis on the reference mission with
the Orbit 1 were to be taken (See Chapter 3) the controlable area will be of the order of meters. The
inter-satellite distance to be used will be in the order of tenths of meters whereas the control window
of agent in its position is of meters. This is done again to maintain both the simulation time and the
runtime of the simulation within acceptable tolerances. These distances are already low for pattern for-
mation in space, although achievable[14]. Furthermore, the control window is in the minimum distance
resolution considered (see Chapter 3). Therefore this will generate a test case that will analyze the
limit capacities of the algorithm in space pattern formation.

In order to also have a point of link with reality the level of acceleration will be linked to an engine
and a tentative platform. In this case Busek’s engine BIT-3 [90] and a 6U Cubesat platform will be used.
This will generate an acceleration level of 2 ⋅ 10 𝑚/𝑠 (assuming a mass of 6kg to the system, which
adheres pretty well with the CubeSat standard [26]). This will actually be the configuration of the Lunar
IceCube mission [28]. With this configuration also the Δ𝑉 and the propellant used will be calculated to
give an order of magnitude in these two variables.
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Figure 7.1: BIT-3 engine module [90] used in the Lunar IceCube mission [28], representative of the acceleration level considered.

In order to have comparable results between all patterns, a test scenario will be created. To create
this test scenario two criteria will be taken into account:

• Limitations of the System. As noted in Chapter 5, the given engine limits and the orbital drift-
ing limit the positions attainable by agents of the swarm. Furthermore, lower limits on relative
distances attainable have also to be set to avoid collision events.

• Computational Power Available. The work will be performed with a laptop computer with an In-
tel®i5 processor and 8GB of available RAM. This means that for extremely intensive calculations
it is quite possible that the system is incapable of performing the task in a reasonable amount
of time. Therefore the simulations will be set in such way that each one runs in less than three
hours in the computer.

With this two criteria in mind the parameters in Table 7.1 will be selected for this case.

Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 50 50 50 1000 10 1 2

Table 7.1: Test Case Parameters

The first parameter to be chosen is the type of states used (3-D or 2-D). Although SwarmSimulator
is designed and operative in 3-D cases, the possible moves are extremely large, this will increase even
more the times for convergence of the different patterns, unless delimited,. Furthermore, as mentioned
in [4], formation flying in the radial direction is not recommended as it will require much more control ef-
fort without any benefits. This last effect was also noticed while evaluating the control limits in Chapter
5, as the controlable area is smaller in the radial direction and the control presents higher overshoots.
Therefore the Cross Track - Along Track plane will be selected to perform the simulations and the used
states will be bi-dimensional.

The next selected criterion is the size of the discretized grid in which the algorithm will divide the
space. Following the procedure presented in Chapter 5, the agents are expected to have a limit of
hundreds of meters to move with this acceleration level . This means that the agents must lie in said
window if they want to stay connected at all times. Another possibility could be to use passive relative
orbit design and use the dynamics in space to keep the swarm together, but in this case all transitions
should occur between said orbits. As this will further constrain the space, which might lead to non-
convergence of the algorithm [31], this will not be the approach taken. As the whole swarm must lie
and move in the controlable area, the size of the movements must be of at leas an order of magnitude
less than the controlable area.
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A third parameter more related with the computational limits is the time step used in the simulations.
The time step is desired to be as large as possible to reduce the computational load in the equipment
running SwarmSimulator. It must also be small enough to allow for representing properly the dynamics
and control of the system. In the case at hand a time step of 50s is deemed a good trade-off between
computational load and representation of the dynamics.

The low-level controller will run at the same rate as the propagation of the dynamics. This is se-
lected as in reality, with current on-board computers, even faster frequencies would be possible. SO it is
likely that for the continuous thrust approach taken, the controller will even run faster than the time step .

Running DESHA at every time step was proven counterproductive. As the algorithm runs each time
that the agents are within tolerance of their desired positions, this caused that many times the algorithm
was requesting moves to agents not settled. This caused instabilities and many collision risk events.
In order to solve it, DESHA will make use of the synchronization of the swarm and with a certain fre-
quency (see Section 4.4.1). The frequency is matched to the order of magnitude of the movements
of the agents so that the high-level controller only runs when the agents are settled in their positions.
Furthermore, this will also serve to support the collision avoidance strategy implemented. This is rep-
resented in Figure 7.2. It is based on sending back the agents to their previous locations in case two
agents previously out of sight of each other pass too close to each other (for example because they are
aiming for the same target location). In order to avoid disconnections, two DESHA calls cannot happen
in more than the time it takes an agent to reach the collision avoidance distance with another agent and
go back to the knowledge radius of its previous neighbourhood. Given that each movement is expected
to require about 1000s with the current inter-satellite distance and acceleration level, DESHA will run
at a frequency of 1000s to allow for this.

Figure 7.2: Collision avoidance strategy. Both active agents target the same position. They move towards it, but when they
detect they are too close, one of them goes back to its original position whilst the other one finishes the maneuver.

As noted before, collision events might happen. The collision avoidance strategy is designed to
avoid those. The distance at which it is triggered in this case is 10m. This is a small distance, but due
to the small movements and the low thrust, it will be sufficient to slow down the agent and reverse its
thrusting direction. Also, such a small distance was selected to ensure that diagonal moves (in between
other agetns) were not stopped by the collision avoidance system.

In order to stabilize the agents around their position and avoid drifting two zones are defined. The
state tolerance, which represents an sphere of radius 1m (the minimum resolution assumed on the
ranging of the agents) around the desired position of the agent where the agent is said to be in the
right position. The station keeping tolerance is a sphere of a slightly higher radius (in this case 2m was
selected) where, if the controller detects that the agent has drifted that much, a small correction is per-
formed to return the agent to its nominal position. The station keeping tolerance represents in the end
the control window of the agent whilst the state tolerance is used by the low level controller to detect
a movement as finished. In this case the control window is set to be of 2m and the state tolerance of
1m. This is one order of magnitude below the inter-satellite distance, so no collisions can happen in
station keeping. In this case the narrow control window is expected to require many thrusting events
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to maintain the position of the agent.

Finally the maximum run time is not fixed for all simulations. The maximum run time is set in each
case trying to both allow for the computer simulation to run in less than 3h and at the same time to
achieve the pattern desired. The expected time required to form the desired pattern can be estimated
with Equation 7.1 where 𝑡 is the expected time to form the pattern; 𝑁 is the expected number
of movements (form Appendix C and Chapter 6); and 𝑡 is the time per movement of the simulation.
In this case the movement time is estimated to be around 1000s.

𝑡 = 𝑁 ⋅ 𝑡 (7.1)

7.2. Triangle of 4 Agents
One of the most simple patterns presented in [31] is the equilateral triangle formed by 4 agents with
square state. This simple pattern was used to get a first feeling of the capabilities of the algorithm
before advancing to more complex patterns such as the 9 element triangle or the hexagon.

The simulation campaign was set with the parameters presented in Table 7.2. The maximum simu-
lation time was selected to be a million seconds, since, according to the results of Figure 6.9a the usual
convergence of this pattern requires about 100-200 movements or less. Since every movement takes
about 1000s, the expected time is about 10 . Since collision avoidance maneuvers might take place,
these have to be taken also into account by adding one order of magnitude to the maximum simulation
time.

The choice of the knowledge radius is based on the maximum distance between two elements of
the state. In this case this was the diagonal of a 50m square, so about 70.7m. Some extra distance is
given to increase safety.

Parameter Value
Number of Agents 4
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 81

Movement Radius
(m) 50

Number of
Simulations 10

Table 7.2: Set up for the simulation of an equilateral triangle made of four agents

The simulation was run 10 times to ensure an acceptable sample of results. The results that had
converged in the first iteration by chance (so the random initialization algorithm had initialized randomly
already in the desired pattern) were removed. This left 9 successful simulations. The results of said runs
(average, minimums,etc.) are presented in Table 7.3. Only the minimum and average fuel remaining
have been shown as in many cases one or more agents are static, being always the maximum close
or equal to the initial propellant and therefore biasing the dispersion and maximum fuel.

The simulations results show some interesting data. The average time to converge was about 72h,
being the maximum about 8.5 days, which is acceptable given the available actuation capabilities.
Given that the average actions for convergence lies in the expected result from the data in [31], the
results are accepted as valid. Both the fuel and Δ𝑉 used show that the actuators still have much
actuation capability left. This is good as pattern reconfiguration or changes of pattern will be possible
as well as other maneuvers.

Finally, in Figure 7.3 the orbits of the agents in the along track-cross track plane have been plotted
with respect to time to see the evolution of the agent’s movements.



7.3. Line 6 Agent 75

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 14300 259965 728400 n.a. 103990 99941

Total Number of
Actions 2 62.2 165 n.a. 62.2 3.604

Δ𝑉 (m/s) 2.402 4.138 6.2397 1.718 4.1376 3.7765
Remaining Fuel
per Agent (kg) 1.4914 1.4981 n.a. n.a. n.a n.a.

Table 7.3: Results for forming a 4 agent equilateral triangle.
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Figure 7.3: Orbits of the 4 agent triangle convergence. The initial and final positions have been plotted as blue and green dots
respectively.

7.3. Line 6 Agent
The next simple pattern tested was a 6 agent line (in the cross track plane). In order to set the simulation
campaign parameters, an analysis on the number of movements required for the convergence of the
swarm is done as the ones performed in Section 6.3. The results for this analysis, as well as for all
other patterns not presented in Section 6.3 but used from now on, are presented in Appendix C. The
analysis shows that for a line composed of 6 elements the usual convergence lies within less than 1000
actions. Therefore a simulation time of about 10 should be sufficient for achieve convergence. With
this in mind the parameters in Table 7.4

Parameter Value
Number of Agents 6
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 81

Movement Radius
(m) 50

Number of
Simulations 15

Table 7.4: Set up for the simulation of a line made of six elements.

Simulations were run obtaining the results presented in Table 7.5.
The results presented in Table 7.5 show that the times to achieve the formation are higher than

desired. What is expected to be a simple pattern needs about 192h to be formed (máximum time
registered in this run). The number of actions correlate with those obtained in Appendix C. So these
simulations are representative of what can be expected with larger simulation campaigns. On the bright



76 7. Low Actuation Capacity Results

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 135650 357910 702400 n.a. 357910 160610

Total Number of
Actions 43 98.11 172 n.a. 98.11 40

Δ𝑉 (m/s) 4.04 5.147 6.425 n.a. 5.1465 2.2930
Remaining Fuel
per Agent (kg) 1.4943 1.4976 n.a. n.a. n.a. n.a.

Table 7.5: Results for forming a 6 agent line in the cross track direction.

side, the actuators still maintain much of their propellant.

For illustrative purposes the relative orbits in the cross-track along track plane have been plotted
with respect to the time. The initial and final positions have been plotted as blue and green dots
respectively. In the orbit it can be seen how the agents maintain their position and perform station
keeping maneuvers (oscillations in between big moves). Also the overshoot of the controller in some
actions can be seen in big step maneuvers (mostly on cross track maneuvers far from the reference
orbit) Finally it can be seen that the connectivity is maintained during the whole process of forming the
pattern. These results are presented in Figure 7.4.
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Figure 7.4: Orbits in the cross track-along track plane for the 6 agent line in the cross track direction. The initial and final positions
have been plotted as blue and green dots respectively.

7.4. Hexagon 7 Elements
Growing in complexity, the next pattern to be tested was the 7 element hexagon. As in Section 7.3
an estimation of the actions necessary to form the pattern was done by simulating only DESHA move-
ments. The results are presented in Appendix C. It was estimated that between 1000 and 2500 will
be necessary to generate the desired pattern This translated in to an expected need of 10 𝑠 to 10 to
ensure convergence as also collision events must be taken into account. As the hexagon state has
the advantage that the distances are all equal between the agent (in the center) and all the other loca-
tions of the state. Therefore the knowledge radius will only need to be set slightly above the value of
the movement radius to take into account the drifting in the static positioning. Since the hexagon is a
complex pattern compared with others such as the triangle of 4 elements or lines of elements, the num-
ber of simulations allowed was lowered to reduce the computational load of the simulation campaign.
Therefore the simulation campaign parameters were the ones presented in 7.6

The simulations were run, but the pattern did not form in any of them. Furthermore, upon inspection,
it was seen that the number of movements performed in several runs did not go over the couple of
hundreds movements. On top of that, the simulations run for more than the limit of 3h. It is clear
that the system is too slow. It can not reach the required movements in the allocated time. As this
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Parameter Value
Number of Agents 7
Max Simulation

Time (s) 5 ∗ 10 𝑠
Knowledge Radius

(m) 55

Movement Radius
(m) 50

Number of
Simulations 6

Table 7.6: Set up for the simulation of a hexagon made of seven elements.

time is already 115 days, it is considered unreasonable to allocate more time for these simulations.
Furthermore this will violate the second criterion showed on Section 7.1.

7.5. Triangle 9 Elements
Although the results obtained in Section 7.4 were quite discouraging, it was attempted to achieve the
9 agents equilateral pattern presented in [31]. The estimations presented in Chapter 6 show that this
pattern requires the order of 10 actions to be achieved. This means that the simulation should be of
about 10 𝑠 to take into account extra moves due to collision avoidance events. With this in mind the
parameters of Table 7.7

Parameter Value
Number of Agents 9
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 81

Movement Radius
(m) 50

Number of
Simulations 6

Table 7.7: Set up for the simulation of an equilateral triangle composed of 9 agents.

Again the test were run. But as in the case of Section 7.4 none of the test achieved the pattern
before running for 6h. Again less actions than required were detected (in this case the order was
thousands of actions). Single simulations were run in order to see if in any case the pattern was close
to be achieved over the simulated time. The result of one of said simulations (which already surpassed
by far the 3h limit run time) is presented in Figure 7.5. In said figure the final positions of the agents
are plotted in blue while the targets for the low-level controller have been plotted in black.

It is shown that the swarm maintains the connectivity, and some of the positions are actually close
to the desired pattern, but still many moves are expected to achieve the desired pattern. Some metrics
of said simulation are presented in Table 7.8.

Parameter Min Ave Max Std. Deviation
Δ𝑉 (m/s) 98.2017 121.607 142.137 14.4

Remaining Fuel
per Agent (kg) 1.4335 1.4431 1.454 0.007

Table 7.8: Results of a single simulation for a 9 agents equilateral triangle

As shown in Table 7.8 the results do not go over any limit of the system besides the simulation time.
Nevertheless, putting this in perspective, going over the limit of 10 𝑠 means that after more than a year
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Figure 7.5: Final state of a single simulation for 9 agents equilateral triangle. In blue the agents’ positions. In black the target
positions for the low-level controller.

of operations the swarm still is looking to achieve the desired pattern. Taking into account that most
CubeSat based missions have a lifespan lower than that [34], it is not realistic to accept these results
as positive. Therefore it can be concluded that the present design of DESHA and the spacecraft cannot
allow for the swarming of a pattern such a as 9 agent equilateral triangle in a reasonable amount of
time.

7.6. Conclusion
After running the first simulation campaign and generating the test case scenario, the results show that
it is not possible to achieve most of the patterns in a reasonable amount of time. In some cases the
simulation limit time was overridden and full years of orbit were simulated. The results showed that
even though the swarm still presented a connected topology, and no errors were found in the simu-
lation, the agents still had performed really few movements. It is concluded that this was due to the
extremely large times required by the actuators to achieve the next desired position, which had lead to
an even larger time between each request made by DESHA. This showed that only patterns with really
few movements will be achievable with the BIT-3 engine.

On the other hand simple patterns such as four agent triangle or six agents line were achieved with
an acceptable amount of propellant left. But again even for these cases the times necessary for the
formation acquisition surpassed the day.

Overall, it seems proven that the use of the minimum actuation level considered in this work only
allows for the formation of relatively simple patterns. More complex patterns seem to require larger
accelerations. Furthermore, the inter-satellite distance necessary for this acceleration level seems too
small to ensure a safe formation flying. This is especially true for the largest systems considered,
for example 50kg spacecraft. Again, larger acceleration capacities are expected to allow larger inter-
satellite distances. This will be explored in Chapter 8.
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Variations on the Actuation Capacity

The results for Chapter 7 showed that it is not possible to achieve, within an acceptable amount of time,
the desired patterns if those require a large amount of movements. This is mostly due to the fact that
the minimum acceleration level for the agents was considered. In this chapter the acceleration level
will be varied in order to study the effect of the variation of this parameter.

Two possible effects can be derived of rising the acceleration level. First, the time for each move-
ment is reduced, as the agent can change its position faster. Second, the agents can be controlled in
further distances from the reference orbit without drifting away. This allows to have larger inter-satellite
distances. The larger the inter-satellite distance, the larger the control window, the less thrusting events
needed to perform station keeping and the safer the system.

The chapter will be organized as follows. In Section 8.1 the acceleration level will be risen one
order of magnitude with respect to the reference case to test the improvements on time to form the
pattern.. Then the set up of the test case will be presented in Section 8.1.1 for the medium acceleration
level. After that, the patterns tested in Chapter 7 will be tested again in Section 8.1.2. Finally, a set
of first conclusions will be drawn in Section 8.1.3. The same procedure will be followed for the high
acceleration level in Section 8.2. In, Section 8.3 the inter-satellite distance is risen with both acceleration
levels to achieve all the same pattern. Finally in Section 8.4 conclusions on the variations of acceleration
level are drawn.

8.1. Medium Acceleration Level
The medium acceleration level considered in this work is 10 𝑚/𝑠 . This for example the acceleration
level of a 50kg spacecraft with a thrusters of 0.05N maximum thrust. As in the reference case created
in Chapter 7 a tentative system will be proposed to give some link with reality and estimate the Δ𝑉 and
use of propellant. In this case a CubeSat platform of 10kg and the BIT-7 engine [56] are considered as
analysis case. Even though the BIT-7 engine requires a higher power level than the BIT-3 presented
in Chapter 7, it can be assumed that all the extra weight of the system compared with the system pre-
sented in Chapter 7 is dedicated to this extra power generation. Therefore, the propellant on board will
be supposed to be equal to the one of BIT-3 (1.5kg)

A test case will be set for this system, with a maximum acceleration level of 1.1 ⋅ 10 𝑚/𝑠 , in
Section 8.1.1. Then the patterns analyzed in Chapter 7 will be analyzed again in 8.1.2 also maintaining
the inter-satellite distance. Finally in Section 8.1.3 some small conclusions will be drawn related to the
medium acceleration level systems.

8.1.1. Set Up of the Test Case
Once the low-level controller gains have been tuned for the new engine, the movement time is found to
be 500s. Then the DESHA running time is reduced in this case to 500s. Also, to avoid that the low-level
controller stops maneuvering the spacecraft before it is fully stabilized, the state tolerance is reduced.

79
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Also to allow for having the agents more time ready to move according to DESHA, the station keeping
tolerance is slightly risen. Therefore, the simulations with medium acceleration level will have the set
up presented in Table 8.1.

Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 50 10 10 700 20 5 1

Table 8.1: Test Case Parameters with Medium Acceleration Level.

8.1.2. Pattern Formation
This section will be dedicated to study again the formation of the patterns presented in Chapter 7. The
extra acceleration should allow now to achieve the patterns in less time. Therefore it is expected a lower
computational cost and time for convergence. Although it is now possible to increase the inter-satellite
distance, it will be maintained at 50m during all these simulations to generate comparable results to
Chapter 7.

Triangle of 4 Elements
The first pattern attempted will be the 4 element equilateral triangle. This pattern is the most simple
one attempted in this report. Table 8.2 reflects the specifics of the simulation. The idea is to mimic the
same simulation as the one in Section 7.2. The knowledge radius is slightly increased to maintain the
connectivity due to the slightly larger overshoot with this level of acceleration. Also the safety distance
is slightly increased.

Parameter Value
Number of Agents 4
Max Simulation

Time (s) 1 ∗ 10 𝑠
Knowledge Radius

(m) 82

Movement Radius
(m) 50

Number of
Simulations 15

Table 8.2: Set up for the simulation of a triangle made of four elements.

The results of the simulation are presented in Table 8.3.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 25240 51420 96220 n.a. 35567 26194

Total Number of
Actions 41 85 157 n.a. 58.8667 44.9762

Δ𝑉 (m/s) 5.6940 6.6347 7.8780 1.0554 4.6760 3.4381
Remaining Fuel
per Agent (kg) 1.4932 1.4969 n.a. n.a. n.a. n.a.

Table 8.3: Results for forming a 4 agent equilateral triangle.

As shown in Table 8.3, the time performance improves in a full order of magnitude. The maximum
time for convergence is reduced from 8 days to slightly over a day. These numbers are actually quite
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significant since in this simulation campaign the average number of movements and maximum number
of movements required are almost equal. The increment in velocity used is about 2𝑚/𝑠 bigger in all
cases, with a smaller dispersion, most probably due to the bigger capacities of the actuator. Finally, the
fuel used is of the same order of magnitude, proving again the interest of using highly efficient electric
thrusters.

Overall it seems that the use of a medium acceleration capacity reduces, as expected, the time to
form the triangle of 4 elments pattern. Furthermore, the proposed system used will be able to form the
pattern maintaining still a lot of capacity to change the pattern or perform further maneuvers.

Line of 6 Elements
The second pattern attempted is the line of 6 elements. As shown in the analysis in Appendix C, this
pattern is slightly more complex than the one presented in the previous section. Still this pattern was
achievable by the low actuation capacity system of Chapter 7. As in the previous section, the specific
set up for this simulation is copied from the equivalent one in Chapter 7 with minor changes.

Parameter Value
Number of Agents 6
Max Simulation

Time (s) 1 ∗ 10 𝑠
Knowledge Radius

(m) 82

Movement Radius
(m) 50

Number of
Simulations 15

Table 8.4: Set up for the simulation of a line made of six elements.

The results of the simulation campaign presented in Table 8.4 are presented in Table 8.5.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 21210 117010 430830 n.a. 117010 96348

Total Number of
Actions 32 232.8667 848 n.a. 232.8668 199.0184

Δ𝑉 (m/s) 10.9838 12.9633 15.5751 1.7518 12.9633 10.8749
Remaining Fuel
per Agent (kg) 1.4729 1.4988 n.a. n.a n.a. n.a.

Table 8.5: Results for forming a 6 agent line.

The results presented in Table 8.14 show that the improvement observed in the previous section
with the equilateral triangle of four elements is also presented in this pattern. The number of actions
obtained in the maximum are quite close to the maximum numbers expected. Still, the maximum time
to form the pattern is close to half the one obtained in Section 7.3. The trend presented in the previous
section with the necessary increase of velocity is also maintained. The increase in velocity necessary
is larger. Finally the fuel remaining is almost the whole original tank. Overall, the expected trends of
less time to form the pattern and higher increase of velocity seem to be maintained with the increase
of acceleration.

Hexagon of 7 Elements
Given the good results obtained with the previous patterns, the pattern of an hexagon composed of
7 elements is attempted again. It is expected that the use of a higher acceleration level will allow the
system to form the pattern within the simulation time. As done in previous sections, the simulation



82 8. Variations on the Actuation Capacity

setup is the same as the one presented in the equivalent section of Chapter 7. Only the knowledge
radius is changed for accommodating the performance of the algorithm with the new acceleration level.

Parameter Value
Number of Agents 7
Max Simulation

Time (s) 4 ∗ 10 𝑠
Knowledge Radius

(m) 55

Movement Radius
(m) 50

Number of
Simulations 10

Table 8.6: Set up for the simulation of a hexagon made of seven elements.

The increase in the actuation capacity lead, as expected, to a full campaign of successful simula-
tions. The simulation results of the simulation campaign in Table 8.6 are presented in Table 8.7.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 20860 589220 2640890 n.a. 530340 781520

Total Number of
Actions 43 1395.7 6259 n.a. 1256.1 1875

Δ𝑉 (m/s) 51.5486 61.3052 74.1338 8.0775 55.1784 81.8369
Remaining Fuel
per Agent (kg) 1.3442 1.4717 n.a. n.a. n.a. n.a.

Table 8.7: Results for forming a 7 agent hexagon.

The results presented in Table 8.7 are deemed representative enough, as the number of move-
ments obtained correlates with the ones expected (see Appendix C). The simulation times are within
tolerances, but for the worst case the simulation time reached a full month for the formation of the
pattern. Nevertheless this is an extreme case, being the nominal one closer to the average (as seen
in the analysis presented in Appendix C). The usual case is more simular to the average time of this
simulation campaign, with around 1500 moves and about a week of configuration time. The increase
in velocity required is close to one order of magnitude larger than the previous section. Analyzing all
previous simulations with this acceleration level, it seems that each increase in complexity rises both
the number of moves and the increase of velocity in around an order of magnitude. The remaining fuel
is still high, proving once more the suitability of the system used for this application.

Finally, for illustrative purposes the relative orbits in the cross-track along track plane have been
plotted with respect to the time. The initial and final positions have been plotted as blue and green
dots respectively. In the orbit it can be seen how the agents maintain their position and perform station
keeping maneuvers (oscillations in between larger movements). Opposite to what is shown in Chapter
7, these oscillations are not so noticeable given the larger number of movements and the scale of the
figure. It can also be noticed the extreme number of movements to achieve the pattern, many of them
not leading to a fast convergence. Finally it can be seen that the connectivity is maintained during the
whole process of forming the pattern. These results are presented in Figure 7.4.

Overall, it is concluded that the use of a higher level of acceleration already allows for the formation
of more complex patterns in acceptable times. The computational load of the simulation campaign is
also acceptable, although slightly high, already close to the set limit.
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Figure 8.1: Orbits in the cross track-along track plane for the 7 agent hexagon in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.

Triangle of 9 Elements
The most complex pattern attempted in this report is the equilateral triangle composed of 9 elements.
This pattern is presented also in [31] as one of the most complex patterns possible. Mostly this is due
to the lack of symmetry of its different composing states and large number of agents. This pattern was
not viable for the lowest actuation capacity, even if more than a year of simulation was allowed in Chap-
ter 7. The computing time took more than 3 times what was allowed, still not achieving the required
pattern. Nevertheless, the increase in actuation capacity, reducing the movement time, should allow
this time to achieve the desired pattern.

The simulation campaign set up is presented in Table 8.8. As in the previous sections the knowledge
radius has been accommodated to the new acceleration level (and its controller). Furthermore, previous
experiences proved that establishing the run time at levels higher than 10 𝑠 would violate the maximum
computing time. Therefore, the maximum allowed run time was set to this limit.

Parameter Value
Number of Agents 9
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 83

Movement Radius
(m) 50

Number of
Simulations 3

Table 8.8: Set up for the simulation of a triangle made of nine elements.

The results of the simulation campaign presented in Table 8.8 are presented in 8.9. I has to be noted
that originally the simulation campaign was set to be composed of six simulations. Nevertheless, each
one of them required about 12 hours of computational time. It was considered worthy to relax the
constraint in order to see if the swarm was able to form the pattern.

The results presented in Table 8.9 show that the results are representative, generating the pattern
in the expected number of movements (see Appendix C). The required time to form the pattern in the
three simulations performed oscillates between 29 days and 44 days.

As in previous cases, the increase in complexity implies an increase in the number of movements
and, with the presented system, an increase in the required Δ𝑉. It is remarkable that in this case the
remaining fuel still goes over the 90% in the most requiring case. Nevertheless for the first time the
maximum fuel use goes over 0.1kg. This shows that achieving this pattern is extremely intensive in
actuator use. Overall it is shown that the formation of the triangle with 9 agents is an extremely requir-
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Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 2506360 3025500 3834860 n.a. 3025500 561860

Total Number of
Actions 7979 9570.3 12125 n.a. 9570.3 1765.7

Δ𝑉 (m/s) 262.5186 315.0813 395.1955 43.111 315.0821 57.2727
Remaining Fuel
per Agent (kg) 1.2734 1.3548 n.a. n.a. n.a. n.a.

Table 8.9: Results for forming a 9 agent triangle.

ing mostly due to the extreme number of movements required for forming the pattern. Even though the
proposed system is perfectly capable of forming it, it requires a long time to form the pattern.

Overall, it is concluded that the acceleration level presented is capable of forming even the most
complex patterns considered. Nevertheless the times required for the forming pattern and the runtime
of the simulation reach the limits considered in this project. It is also worth noting that these limits
are reached even when the inter-satellite distance is set to the minimum considered. The larger the
amount of spacecraft considered, the better it is to have a large inter-satellite distance to avoid possible
collisions. Nevertheless given the current results, doubling for example the inter-satellite distance will
probably mean that several months will be required to form the final pattern.

Finally, as it has been done in previous sections, themovements of one of the simulations are plotted
in 8.2. A quick look at the figure shows the extremely high number of movements required to achieve
the pattern. Furthermore it is shown how the pattern is achieved, but the system has drifted away
from the reference orbit. This is also counterproductive as the swarm will require higher impulses to
avoid drifting away from the reference orbit. It is true that this drifting is a setback of using approaches
that do not consider the global position. There are possible solutions to this, such as just removing
the high-level control from one of the agents while the pattern is forming so the pattern will just form
around it. Nevertheless this would violate the assumption that all the agents are equal. The fixed agent
would act as an anchor of the swarm. But if something were to happen and the agent fails during the
formation of the pattern, the system will drift. Therefore this approach would generate a swarm with
key elements, and robustness will be diminished. Another option is to allow the agents to know their
position with respect to the reference orbit at all times. This way a virtual agent could be created and
fixed in the reference orbit without lose of robustness. However, the question of why not just letting
the agents know their final position and send them there might arise, mostly for swarms with not an
extremely large number of agents.

Figure 8.2: Orbits in the cross track-along track plane for the 9 agent triangle in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.
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8.1.3. Conclusions on Medium Acceleration Level
The increase in acceleration level has been proved extremely interesting in the use of DESHA for space
applications. The low level acceleration (10 𝑚/𝑠 proved itself useful only for the simplest patterns
and the shortest inter-satellite distance. The medium acceleration level (10 𝑚/𝑠 ) has allowed to
achieve all tested patterns with the minimum inter-satellite distance. Nevertheless, in the most com-
plex cases, the simulations have been close to reach the established limits.

A tentative system has been proposed. The system proposed presents a good performance, be-
ing able to cope with all the required increment of velocity and still maintaining more than 90% of the
propellant in most cases. Nevertheless if any of the assumptions taken for using this system results
to be incorrect or not feasible, the data obtain will not be valid. What is certain is that given the high
number of thrusting actions required, an extremely efficient thrusting system will be required to achieve
the most complex patterns.

It is also interesting to analyze how in the most complex patters it has been possible to see how the
dispersion of the number of movements required to achieve formation is of two orders of magnitude.
This is a characteristic of the algorithm, which will be further discussed in the last part of this report.
Nevertheless, it is already possible to see how the results are extremely dispersed due to this prob-
lematic.

For the most complex cases a higher inter-satellite distance is recommended. Nevertheless, this
will mean that a higher time for forming the pattern will be required. As the current acceleration level
was already reaching the established limits (or surpassing them) it will be interesting to analyze what
would happen with a more capable system. This will be presented in the following section.

8.2. High Acceleration Level
The highest acceleration level considered in this work is 10 𝑚/𝑠 . This for example the acceleration
level of a 100kg spacecraft with a thrusters of 0.1N maximum thrust. As in the previous cases, a real
engine and a tentative platform are selected to give a link with reality and calculate the increment in
velocity and propellant use. In this case a CubeSat platform of 10kg and the BGT-X5 engine [91] are
considered as analysis case. The engine selected provides a higher level of thrust than the previous
with an acceptable level of 𝐼 (hundreds of seconds). The main disadvantage is the fact that the
propellant tank in the default version is of only 0.250kg. It will be assumed that the weight difference
between this system and the one presented in Chapter 7 can be used to store more propellant. That
will allow the system to perform the most demanding patterns such as the Triangle of 9 elements.

As it was done in the previous section, a test case will be set for this system, with a maximum
acceleration level of 5 ⋅ 10 𝑚/𝑠 , in Section 8.2.1. Then the patterns analyzed in Chapter 7 will be
analyzed again in 8.2.2 also maintaining the inter-satellite distance. Finally in Section 8.2.3 some small
conclusions will be drawn related to the high acceleration level systems.

8.2.1. Set Up of the Test Case
As in previous sections, the low-level controller is tuned for the use of the new engine and acceleration
level. The time per movement is now decreased to the order of 100s, so DESHA is run at this rate
too. Also, initial test seem to prove that it is possible to run the simulations at a faster rate (20s), most
probably due to the higher breaking capacity of the system. The station keeping and state tolerances
are set equal to the ones in Section 8.1 following the same rationale. These changes generate the set
up presented in Table 8.10 which will be used throughout this section.

8.2.2. Pattern Formation
In this section the patterns attempted with the reference case in Chapter 7 are attempted again with the
new acceleration level. It is expected that with this acceleration level, even the most complex patterns
will be achieved without breaking any of the two criteria to design the reference case presented in
Section 7.1. Nevertheless, the selected system presents lower efficiency. Therefore, the propellant
use is expected to be more intensive than in previous cases.
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Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 50 20 20 100 10 5 1

Table 8.10: Test Case Parameters with High Acceleration Level.

Triangle of 4 Elements
As in previous cases, the first analysis done is the triangle made of four elements. This pattern will
serve to benchmark the algorithm in the most simple cases with this acceleration level. This simulation
can be compared with the ones in Section 7.2 and 8.1.2 to evaluate the improvements and drawbacks
of using a higher acceleration level.

Parameter Value
Number of Agents 4
Max Simulation

Time (s) 1 ∗ 10 𝑠
Knowledge Radius

(m) 82

Movement Radius
(m) 50

Number of
Simulations 15

Table 8.11: Set up for the simulation of a triangle made of four elements.

The results of the simulation presented in Table 8.13 are presented in Table 8.12.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 230 3515.3 15930 n.a. 3515.3 3751.6

Total Number of
Actions 3 53.67 157 n.a. 53.6667 56.5296

Δ𝑉 (m/s) 11.2610 15.7013 19.4772 3.6650 15.7013 15.7013
Remaining Fuel
per Agent (kg) 2.4509 2.8942 n.a. n.a. n.a. n.a.

Table 8.12: Results for forming a 4 agent equilateral triangle.

Analyzing the results in Table 8.12 it can be seen that the number of movements are the ones ex-
pected (see Appendix C). Therefore, this simulation campaign can be considered representative. It is
possible to see in this table how the maximum time has been reduced from a little bit over a day in Sec-
tion 8.1.2 or the week in Section 7.2 to about 4h. Furthermore, the maximum number of movements
is coincident with the one in Section 8.1.2. This allows for a one to one comparison between the two
convergence times.

With respect to the performance of the proposed system, it is notable how the increase of velocity
used has been one order of magnitude higher than the one in Section 8.1.2. This is due to the higher
speeds achieved by the agent. Also the lower performance of the system shows that the remaining
propellant is lower than in other cases. In the worst case only the 81% of the fuel is remaining. This
might seem high, but in all other cases the agents were remaining 99% in the worst case.

Overall, as expected the increase in actuation capacity has improved time wise the performance of
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the system. The pattern is formed in a few hours in the worst case analyzed. The proposed system is
capable of forming the pattern without running out of fuel or requiring an extreme increment in velocity.

Line of 6 Elements
The next pattern attempted, growing in complexity, is the line of 6 elements. This simulation campaign
will be comparable with the ones in Sections 7.3 and 8.1.2. As in the previous section, it is expected
that a higher acceleration level will allow for a faster formation of the pattern. Nevertheless, the lower
efficiency of the selected system will have a bigger effect on the propellant use. The simulation cam-
paign designed is presented in Table 8.13.

Parameter Value
Number of Agents 6
Max Simulation

Time (s) 1 ∗ 10 𝑠
Knowledge Radius

(m) 82

Movement Radius
(m) 50

Number of
Simulations 15

Table 8.13: Set up for the simulation of a line made of six elements.

The results of the simulation campaign presented in Table 8.13 are shown in Table 8.14.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 2330 16391 34760 n.a. 16391 12268

Total Number of
Actions 38 287.5625 579 n.a 287.5625 220.6362

Δ𝑉 (m/s) 45.1435 58.0615 73.8474 10.5414 58.0615 43.9836
Remaining Fuel
per Agent (kg) 2.0230 2.6129 n.a. n.a. n.a. n.a.

Table 8.14: Results for forming a 6 agent line.

The results presented in Table 8.14 show that as expected the performance, measured in time to
form the pattern, has been reduced. The results show the obtained number of movements is within
the expected number (see Appendix C). It is true that the maximum number of movements is close to
the maximum number of movements expected. Nevertheless, this will also allow to evaluate the full
span of expected performances of the algorithm, as the minimum is also close to the minimum number
of movements expected. The time to form the pattern has been reduced a whole order of magnitude
compared with Section 8.1.2 from 4 days to less than 10h. Nevertheless, the minimum number of
movements between Section 8.1.2 and this section is more comparable. The same reduction is ob-
served in this category, from 32 movements in about 6h of Section 8.1.2 to less than an hour for 38
movements in this section.

The increment in velocity required for the proposed system has been multiplied about 5 times with
respect to the one in Section 8.1.2. Nevertheless this comparison is not full as the propulsion systems
used are quite different. Also the propellant use is more intensive in this case, again due to the worst
efficiency of the engine used for this example. In this case, in the worst case, the remaining propellant
is about 66% of the original capacity.
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Overall it is concluded that, as expected, the trend that a higher acceleration capacity improves the
time to form the pattern for the same number of movements and inter-satellite distance. Nevertheless,
the selected system shows also a more intensive use of propellant, which reduces the capacity of the
system to generate further patterns or maintain the position in later phases of the mission.

Hexagon of 7 Elements
This pattern was the first one out of reach of the reference case generated, with the lowest acceleration
and inter-satellite distance considered. In Section 8.1.2 it was shown how an increase of acceleration
level to the order of 10 𝑚/𝑠 already allowed to achieve this pattern. Nevertheless, the high number
of movements (see Appendix C) leaded to a need of a full month in the worst case to generate the
pattern. This could be acceptable, as the nominal time of a mission, for example the reference case,
is about a year [34]. Nevertheless, this is not the most complex pattern that it was set to be achieved.
Therefore, it will be good to study if increasing the acceleration level would lead still to good results
without extreme requirements in the propelling systems of the proposed spacecraft. The simulation
campaign created for this is presented in Table 8.15.

Parameter Value
Number of Agents 7
Max Simulation

Time (s) 4 ∗ 10 𝑠
Knowledge Radius

(m) 53

Movement Radius
(m) 50

Number of
Simulations 10

Table 8.15: Set up for the simulation of a hexagon made of seven elements.

The results of the simulation campaign presented in Table 8.15 are presented in Table 8.16.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 5400 130744 452180 n.a. 93334 12440

Total Number of
Actions 27 1103.5 4432 n.a. 1014.6 1272.4

Δ𝑉 (m/s) 1.8288 206.77 905.69 28 206.11 247.2325
Remaining Fuel
per Agent (kg) -2.0489 1.7300 n.a. n.a. n.a. n.a.

Table 8.16: Results for forming a 7 agent hexagon.

The results in Table 8.16 are considered valid as the number of movements obtained lie within the
expected number of movements (Appendix C). As expected the time performance is greatly reduced
from about a month to slightly more than 5 days to form the pattern in the worst case. It is true never-
theless that the number of movements has been a bit larger in the case in Section 8.1.2 than in this one.

The increase in velocity needed also has been risen about an order of magnitude due to the higher
acceleration (and lower efficiency). It is good to see that on average the dispersion of the increase of
velocity is quite low on average. This means that no agent is using extremely more propellant than
other agents. Nevertheless, the system proposed already has trouble to create this formation. In the
worst case the spacecraft will need about a 66% more of propellant than the one available. This case
only happened in one of the simulations, being all the others within tolerances (even though one other
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case is also close to running out to propellant). This nevertheless points out again one of the main
problems of DESHA. As it is a probabilistic algorithm, it is never known when the algorithm is going to
finally form the pattern.

Finally, for illustrative purposes, the movements of the swarm in one of the simulations are plotted
in 8.3. The final positions of the agents have been plotted as greed dots whereas the initial ones are
plotted as blue dots. It can be seen in the figure also the station keeping motion and the overshoots of
the movements.
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Figure 8.3: Orbits in the cross track-along track plane for the 7 agent hexagon in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.

Overall, it can be concluded that as expected the trend of rising the acceleration level allows for
faster formation times. Nevertheless, this comes at the cost, at least with the proposed system, of in
the most extreme cases running out of propellant. This is unacceptable being the formation acquisition
only part of the operative side of the mission.

Triangle of 9 Elements
The most complex pattern considered in this work, the triangle of 9 agents, is presented in this section.
This pattern was already achieved by using a 10 𝑚/𝑠 acceleration level. Nevertheless, the required
time to achieve the formation was already close to the maximum limit accepted. Furthermore, each
simulation needed about 4 times more than the set limit to run. Both these reasons lead to think that
studying the performance under a higher acceleration level might be beneficial. Still, in the previous
section already some problems due to the less efficient propelling system selected were noticed for
similar number of movements to the ones expected in this section (see Appendix C). Therefore, it is
not clear if the results of these simulations will be fully positive. The simulation campaign set up is
presented in Table 8.17. In this case, given the faster propagation step and the faster dynamics, the
number of simulations has been risen. This is expected to allow for more general data and more prob-
ability to also have extreme cases included in the analysis.

Parameter Value
Number of Agents 9
Max Simulation

Time (s) 1 ∗ 10 𝑠
Knowledge Radius

(m) 83

Movement Radius
(m) 50

Number of
Simulations 10

Table 8.17: Set up for the simulation of a triangle made of nine elements.
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It is worth noting that, as expected, this simulation campaign run much more smoothly than the one
in Section 8.1.2. The whole campaign was finished in less than the 3 hour computational limit set. The
results of the campaign are presented in Table 8.18.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 39640 389604 1002100 n.a. 389600 350840

Total Number of
Actions 444 4894.9 12836 n.a. 4894.9 4458

Δ𝑉 (m/s) 49.5 596.445 1659.7 66.264 596.4357 503.0787
Remaining Fuel
per Agent (kg) -4.9288 -0.3126 n.a. n.a. n.a. n.a.

Table 8.18: Results for forming a 9 agent triangle.

As in all other cases, the number of movements correlates with the expected number of movements
from Appendix C. Therefore it is concluded that the simulations are representative of what could be ex-
pected in future simulations. The results show a radical decrease in the required amount of time to
achieve the pattern, being reduced from 44 days in Section 8.1.2 to 11 days in this case for the worst
simulation. The number of movements required on the worst case are similar, therefore these two
times are fully comparable.

As expected the performance of the thruster and system selected on the other hand is quite bad. On
average the system runs out of fuel by a 10% of the tank value, being this number a deficit of 164.3% in
the worst case. This again show how intensive DESHA is on complex patterns. This is also reflected in
the fact that the maximum increase in velocity of the system already reaches the thousands of meters
per second. Finally the dispersion is still kept low on average, showing that it is not expected that an
agent or group of agents run out of fuel much faster than others.

Unlike in the case of the hexagon, in this case finding simulations where the agents have all run
out of fuel is quite usual. Investigating the raw data it was seen that when the total number of moves
of the swarm reaches about 4000, the agents tend to run out of fuel. This happened in roughly half of
the simulations, showing that much more efficient systems are necessary for forming this pattern with
this level of acceleration.

For illustrative purposes in Figure 8.4 the movements of the swarm have been plotted. The initial
and final positions have been plotted as blue and green dots respectively. It has to be noted that this
case happens to be the worst case scenario of the simulations permed. Still, it can be seen the extreme
number of actions required to form the final pattern.
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Figure 8.4: Orbits in the cross track-along track plane for the 9 agent triangle in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.

Overall it is concluded that an increase in the acceleration level of the spacecraft to this level is
quite interesting, as formation times are reduced under the month level for this pattern. Nevertheless,
it is mandatory to use extremely efficient propulsion systems, given the extremely high number of
movements. The proposed system in this work as an example has shown to be not sufficient. The
reviews found in the literature [56, 81] show that the kind of systems for achieving this acceleration
level do not offer enough 𝐼 for CubeSats and NanoSats. It does not seem possible for larger systems
either. Electric thrusters, which seems to be the only ones with enough 𝐼 , only offer up to 0.1N [46].
But the required power for these reaches the level 1kW or more in some cases [86]). The rise of
new technologies or improvement on current ones might allow for the considered spacecraft to end
up reaching the sufficient efficiency in the propellant use to make this acceleration level viable. But
it seems that with the current technology only considering systems with an extremely large portion of
their mass for propellant will allow to achieve this acceleration level to form complex patterns.

8.2.3. Conclusions on High Acceleration Level
The maximum acceleration level considered on this work has been 10 𝑚/𝑠 . The current section has
evaluated the effects of using this acceleration level with the smallest inter-satellite distance considered
in this work, 50m. The results shown that this increase in the acceleration level has reduced a full order
of magnitude the time for achieving the pattern with respect to Section 8.1.

A system composed of the BGT-X5 thruster [56] and a 10kg spacecraft platform with 3kg of pro-
pellant. The most simple patterns are able to be achieved without using more than 50% of the fuel.
Nevertheless, when it comes to reach patterns above 4000 movements the agents start running out
of propellant. Therefore complex patterns will be not feasible with this proposed system. A more ef-
ficient system (𝐼 of the order of 1000s) is necessary to be able to achieve this kind of patterns with
this acceleration level or much more propellant on board the spacecraft. The current state of the art
of thrusting technology does not seem to offer this kind of solutions yet. Nevertheless, given the fast
development of small spacecraft technology it is not unlikely that in the near future systems with the
required levels of thrust and specific impulse will become available.

8.3. Variations on Inter-Satellite Distance
The increase in acceleration has been tested in Section 8.1 and Section 8.2 to reduce the simulation
time. Nevertheless, this increase of acceleration can also be used to generate formations with larger
inter-satellite distances and larger control windows. As noted in Chapter 5, the larger the acceleration,
the larger the area around the reference orbit where the spacecraft can be controlled without drifting
away. Also the less time is needed to make these large movements. This is desirable as said systems
are expected to be safer. This section will develop further into this.

To show the possibilities of said formations a single pattern is selected, as there is no interest
in testing again if complex formations are achievable. Estimations on that information are already
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available with Equation 7.1. That is why a medium complexity pattern (Hexagon of 7 Elements) is
chosen to be the only pattern to be formed. This pattern will be tested for an inter-satellite distance
in the order of hundreds of meters in the case of the medium acceleration system in Section 8.3.1.
Then in Section 8.3.2 it will be tested in the order of kilometers. Some of these systems may allow for
larger inter-satellite distances. But in order to avoid reaching extremely high fuel consumption levels
the kilometer level test will be considered the maximum.

8.3.1. Medium Acceleration Level
With the medium acceleration level the system will be tested to form a pattern with 300m inter-satellite
distance. Theoretically, the system can reach larger inter-satellite distances. Nevertheless, in order to
maintain the simulation time below 3h this will be the selected distance. The set up of the simulation
will be addapted to the new inter-satellite distance. This set up is presented in Table 8.19. The time
step is maintained to the same level, mostly to avoid too much drift in the station keeping and in the
proximities of the target location. The DESHA frequency was set to the estimated movement time of
the spacecraft, 1000s. The safety distance is increased to 120m to allow the agents to react before
a collision happens. Also the control window has been risen a whole order of magnitude, which is
expected to reduce the needed thrusting events.

Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 300 10 10 1000 120 1 50

Table 8.19: Test Case Parameters with Medium Acceleration Level and 300m Inter-Satellite Distance.

On top of these values, the specific set up of this simulation will be set up as presented in Table 8.20

Parameter Value
Number of Agents 7
Max Simulation

Time (s) 4 ∗ 10 𝑠
Knowledge Radius

(m) 310

Movement Radius
(m) 300

Number of
Simulations 10

Table 8.20: Set up for the simulation of a hexagon made of seven elements.

The simulation campaign presented in Table 8.20 offered the results presented in Table 8.21. It is
worth noting that one of the simulations was discarded due to the fact that randomly the swarm was
located already in the desired pattern. Another one was discarded due to a lack of convergence after
the whole simulation.

The results show that the number of movements is within the expected range (see Appendix C),
therefore the simulation is accepted as valid. The results show that the convergence is achieved in
about 8.6 days in the worst case. Compared with the average case in Section 8.1.2 which shows an
equal number of movements, there is only an increment of 2 days (a third) on the time. This is probably
explained due to the fact that the agents with longer distances expend more time in full acceleration.
This means that the velocities reached will be higher, reducing the time between movements.

The proposed system has required in the worst case an increment of velocity of about 800m/s,
which is high. This is also reflected on the propellant use, where for the first time the system has con-
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Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 6800 166672 740420 n.a. 112270 228700

Total Number of
Actions 13 401.8 1974 n.a. 311.3 430.45

Δ𝑉 (m/s) 0.0440 159.7846 804.2235 10.2824 125.36 169.95
Remaining Fuel
per Agent (kg) 1.1320 1.4265 n.a. n.a. n.a. n.a.

Table 8.21: Results for forming a 7 agent hexagon for 300m inter-satellite distance.

sumed more than a 20% of the propellant. This, again, is consequence of the longer thrusting arcs.

As it was done in previous sections, the movement of the agents is plotted, for one simulation, in
Figure 8.5. The initial and final positions of the agents are plotted as blue and green dots respectively.
It can be seen that the number of movements seems smaller than the one in Section 8.1.2. Also the
increase in the inter-satellite distance is also fully noticeable. In this image also one of the interesting
situations of DESHA is presented. Even though initially only one agent is missing to achieve the de-
sired pattern, all agents end up moving until the final pattern is reached. This is a consequence of the
local knowledge of DESHA.

Figure 8.5: Orbits in the cross track-along track plane for the 7 agent hexagon in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.

As a test, a movement of 1km in cross track and along track directions was studied with this pro-
posed acceleration level. The result is shown in Figure 8.6. It is shown how the movement will take
about 3000s. This means about three times what it took to move 300m. Therefore it will be expected
that in the worst case scenario the 7 agent hexagon pattern from Table 8.21 will form in the order of
months. Also, the overshoot is also quite high (almost half a movement radius), so maybe it is not
advisable to use this inter-satellite distance as a failure of the agent while it is moving will leave it too
close to neighbouring agents.

Overall it can be concluded that the medium acceleration system can easily reach and form pat-
terns of inter-satellite distances of hundreds of meters without trouble. Larger distances could be in
theory achieved, but initial test show that the increase movement time will risk the system to go over
extremely large computational times. Furthermore, the overshoot that larger movements produce on
the system will also further reduce the frequency at which DESHA is run. Therefore, due to the lack of
computational resources, these test were not conducted.
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Figure 8.6: 1000m movement with medium acceleration level. The error in all three axis is plotted.

8.3.2. High Acceleration Level
The highest acceleration level proposed in this work is 10 𝑚/𝑠 . This should easily let the agents
reach inter-satellite distances of several kilometers. Nevertheless, the proposed system in Section
8.2.2 already has suffered from lack of propelant with the pattern attempted in this section in the most
extreme cases. To minimize the risk of this happening again, the distance attempted has been set to
1km. The simulation set up is presented in Table 8.22.

Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 1000 20 20 800 300 1 100

Table 8.22: Test Case Parameters with High Acceleration Level and 1000m Inter-Satellite Distance.

The simulation time step has been set, as in previous cases, to 20s to accelerate the process. The
time for the agents to reach their new targets is about 800s, so this is set as DESHA run time. The
safety distance was risen to a third of the inter satellite distance. The state tolerance is set to 1m to
ensure that the low level control works up to the end of the maneuver. The control window, taking
advantage of the larger inter-satellite distance, is set to 100m.

The specific set up of this simulation campaign tries to mimic the one in Section 8.2.2 adapting it to
this case. The set up is presented in Table 8.23.

Parameter Value
Number of Agents 7
Max Simulation

Time (s) 4 ∗ 10 𝑠
Knowledge Radius

(m) 1300

Movement Radius
(m) 1150

Number of
Simulations 10

Table 8.23: Set up for the simulation of a hexagon made of seven elements.

The simulation campaign presented in Table 8.23 was run. The results obtained are presented in
Table 8.24.
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Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 24020 381978 747500 n.a. 381978 296140

Total Number of
Actions 39 477.2 944 n.a. 477.2 357.3032

Δ𝑉 (m/s) 236.449 1858.5 2414.1 29.5162 1858.5 924.8424
Remaining Fuel
per Agent (kg) -6.9767 -5.2148 n.a. n.a. n.a. n.a.

Table 8.24: Results for forming a 7 agent hexagon for 300m inter-satellite distance.

As in other cases, the number of movements is compared with the one in Appendix C to see if the
simulation is representative enough. In this case it randomly happens that the result are within the
accepted limits, but no cases of the maximum expected number of runs have happened. Neverthe-
less these result are deemed valid as they represent a usual case scenario. The results show that the
agents are capable of forming the pattern in similar times to those of Section 8.3.1. The results can
be compared with Section 8.2.2, where the same pattern was attempted with a smaller inter-satellite
distance. In this case the results show that for more or less the same number of movement (see both
minimums) the time to achieve the pattern is multiplied by almost 5.

With respect to the system presented as an example for this acceleration level, the results show
that an extremely large increment of velocity is necessary. To achieve the pattern, on average, the
agents will need about a 173.8% increment on average of the available propellant. In the worst case
this will rise to a 232.55%. This will mean that, as in previous cases, complex patterns are out of reach
of the proposed system due to a lack of propellant.

For illustrative purposes the movements of one of the simulations are plotted in Figure 8.7. As in
previous occasions the initial and final positions have been plotted in blue and green respectively. On
it is possible to appreciate the complexity required, as in previous cases, to achieve the pattern.

Figure 8.7: Orbits in the cross track-along track plane for the 7 agent hexagon in the cross track direction. The initial and final
positions have been plotted as blue and green dots respectively.

Overall it is concluded that the acceleration level of 10 𝑚/𝑠 allows for achieving a medium level
pattern in a matter of days, even if the inter-satellite distance is of the order of kilometers. Nevertheless,
the proposed system is unable to achieve this formation due to an (extreme) lack of propellant. As in
the most complex cases of Section 8.2.2, either more efficient engines or systems with larger fuel tanks
will be necessary to achieve these patterns at this acceleration level.
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8.4. Conclusions on Variations
In this chapter the reference case presented in Chapter 7 has been modified. Two possible new lev-
els of acceleration have been tested in the system: 10 𝑚/𝑠 and 10 𝑚/𝑠 . These change has two
possible translations in the system performance, either an increase in the inter-satellite system or a de-
crease in the time to create the pattern. Both options where studied by proposing two tentative systems
with the given acceleration level. The one representing the 10 𝑚/𝑠 will use a larger electric thruster
as compared with the reference case. To compensate for the extra power needed, 4kg of mass will
be added. The one representing the 10 𝑚/𝑠 will use, in order to achieve the required acceleration
level, a green propellant engine with a larger system to store the necessary propellant.

In both cases all patterns from Chapter 7 were tested with the same inter-satellite distance as the
reference case to investigate the effects over the time to form the pattern. In the case of the mid-
acceleration level, it was found that all patterns were achieved in less than a month and a half. All this
without consuming more than half the propellant on board. Compared with the reference case, where
the most complex patterns were not achievable even in a full year, this is a significant improvement.

The highest acceleration level the times reduced even further. The most complex patterns were
achieved in a matter of days whereas the simplest ones were achieved in hours. That is significantly
less than the days and years of the reference case. Nevertheless, the lower efficiency of the propeller
used meant that in the most complex cases the agents started running out of propellant. Specifically,
any time that an agent went over around 4000 moves (in total), it was shown that most of the agents
were out of propellant.

In the case of the increase of the inter-satellite distance, only one pattern (the hexagon of 7 ele-
ments) was studied. In this case the differences between the pattern with the minimum inter-satellite
distance considered (50m) and the tested ones. In order to avoid extremely large computing times the
inter-satellite distances used in the case of the medium acceleration case is limited to 300m. In this
case the pattern is achieved in all occasions, although the propellant use is much more intensive than
in previous occasions (up to 24.55% of the fuel). The computing time was within boundaries, although
it was seen that larger inter-satellite distances will end up in larger overshoot and about 5000s for a
movement of 1km. This means that for the same pattern (which requires about 2000 movements to
6000 movements) the final time for formation will require up to two months to achieve the formation.

In the case of the high-acceleration system the maximum inter-satellite distance was set to 1km.
This was done due to the identified problems with the propellant shortage on the medium and high
complexity patterns. Therefore, in order to try to avoid running out of propellant the inter-satellite dis-
tance is not set to the maximum. Nevertheless, the results show that the propellant required is about
a 200% more than what was initially available. Therefore, at least with the systems reviewed for this
acceleration level, these kind of patterns become impossible unless the most part of the spacecraft is
fully dedicated to propellant.

In conclusion, the agents increase of acceleration allows to achieve all patterns, no matter the com-
plexity, presented in this work. The highest acceleration level considered, 10 𝑚/𝑠 , is proven to be
extremely interesting to decrease the time to form the pattern. In the most complex case, the pattern
was achieved in less than two weeks. Nevertheless, all patterns that require about more than 4000
moves for the case of 50m in inter-satellite links provoke that the proposed system runs out of propel-
lant. This is especially worrying as a larger propellant tank than the original design of the manufacturer
was supposed. The conclusion is that with the proposed system only simple patterns are achievable.
Also it is not recommended to use with this system extremely large inter-satellite distance. It is true
that the same propeller could be used in a larger system, where a larger mass of the system will be
dedicated to propellant. This way the formation time will be reduced keeping the system with a rela-
tively long inter-satellite distance.

On the other hand, it can be concluded that the use of the medium acceleration level considered
offers a really interesting solution. The time to create the formation is high in the most complex cases,
but not extremely high. For example for a one year mission, such as the reference scenario used in this
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work [34], it will no go longer than a 16.6% of the whole operative time. Furthermore, the proposed sys-
tem allows to maintain up to 75% of the fuel to perform further maneuvers or change the pattern formed.

Finally, it is worth noting that after the analysis done on the different systems proposed shows that
the identified need of a really efficient thrusting system is confirmed. The longer the distances the
longer or the more complex the patterns, the more thrusting events needed. It is worth noting that the
maneuvers performed in this work have been focused on using a continuous thrust approach. With
electrical thrusting engines this is more common, but with other types of thrusters it is more common to
use a two impulse approach [98]. This means that first a thrusting event will set the agent in a trajectory
that will intersect with the desired position and when this position is reached a second maneuver will be
performed to stabilize the agent in that position. Then station keeping maneuvers can be performed.
This approach might be attempted and studied to reduce the propellant use in future versions of the
simulator.





9
Optimizing DESHA in Space

As seen in Chapter 7 and 8, one of the main problems of using DESHA to swarm spacecraft is the
extremely large number of actions required for the algorithm to finally form the pattern. Furthermore,
most of these actions are actually unnecessary or counter-productive to achieve the global pattern. Of-
tentimes the agents are close to form the pattern but, by choosing the wrong action, provoke a cascade
of movements in the whole swarm reshuffling system. For example, in Figure 8.5 only one agent needs
to be moved to achieve the pattern. Nevertheless, all other agents end up moving back and forth to
the same position until the pattern is reached.

To solve this issue, two approaches will be taken. First, in Section 9.1 optimized PFSM from [30]
will be used for the four equilateral triangles to reduce their actions to convergence. For the square and
honeycomb patterns, the use of the large scale technique will be implemented in sections 9.2 and 9.3.
The results will prove the extent of the improvements of the implementation of these two strategies.

9.1. Triangle 4 Elements
The first pattern attempted was the 4 element equilateral triangle using the optimized PFSM presented
in [30]. The simulation campaign was run with the same parameters as in Section 7.2, to have a com-
parable environment. The actuator set was the BIT-3, the low acceleration actuator. This was done to
have a comparison with the reference case presented in Section 7.2. The results of the simulation are
presented in Table 9.1. It is worth noting that since the simulation times are expected to be shorter due
to the smaller number of actions required (see Chapter 6), the simulation time was reduced to 10 s. In
this case 12 simulations were performed.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 7120 77950 277680 n.a. 51071 35591

Total Number of
Actions 2 10.14 26 n.a. 10.4167 7.7361

Δ𝑉 (m/s) 1.5⋅10 1.7⋅10 1.7⋅10 8.19⋅10 0.0017 4.5326⋅10
Remaining Fuel
per Agent (kg) 1.4987 1.4998 n.a. n.a. n.a. n.a.

Table 9.1: Results for forming a 4 element equilateral triangle with optimized PFSM.

As expected, the use of an optimized PFSM shows a great improvement compared to the ones
in Section 7.2. The time to form the pattern has been reduced a whole order of magnitude. Also, as
expected, the actions to form the pattern lie now in the order of magnitude of tenths. Finally, the capac-
ities of the actuator have not been overcome. The spacecraft still has plenty of propellant to perform
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further maneuvers. Overall, the use of optimized PFSMs seems to be a good strategy to reduce the
required number of actions to achieve the desired pattern. In this case, it reduced the convergence
time by a whole order of magnitude . Therefore, in the future it is recommended to always optimize the
PFSM to increase the effectiveness of the algorithm, no matter the acceleration level.

For illustrative purposes a sample orbit in the along track-cross track has also been plotted versus
the time. The original and final states have been marked as blue and green dots respectively. The
result is presented in Figure 9.1. It is possible to see how in a few movements all the agents have
addopted a desired state.
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Figure 9.1: Orbits of the agents to form a 4 agent triagle in the along track-cross track plane. The original and final states have
been marked as blue and green dots respectively.

9.2. Repeated 12 Agent Squares
The next strategy implemented was the semi-desired states presented in Chapter 6. In this case, a
four agent square is the tessellating unit. The first square will act as kind of a seed, allowing any two
pairs of agents that encounter next to each other to join the original square and grow the pattern.

To test this pattern the medium acceleration system with the BIT-7 actuator, will be used. This
choice is motivated with the fact that this is the actuator and acceleration level with the best overall per-
formance. The simulation set up will be very similar to the one used in Section 8.1.1. The time step was
discovered to be stable when it was increased to 20 seconds, so it was decided to apply this time step
to reduce the computational time. The simulation set up is presented in Table 9.2. The inter-satellite
distance is kept at 50m just to maintain comparability with the original patterns. Of course, as it was
proven in Section 8.3, this could be raised, at the cost of higher computational times to form the pattern.

Variable
Inter-

Satellite
Distance

(m)

Simulation
Time Step

(s)

Controller
Time Step

(s)

DESHA
Time Step

(s)

Safety
Distance

(m)

State
Tolerance

(m)

Station
Keeping
Tolerance

(m)
Value 50 20 20 500 10 5 1

Table 9.2: Set Up for Tessellating Squares Pattern.

The specific parameters of this simulation campaign are presented in Table 9.3. The selection of
the amount of agents was difficult as it requires that no matter how they arrange, a set of squares is
possible. For example 9 agents could not be used for this pattern as they could arrange either in a 9 by
9 square and converge or in two 4 by 4 squares, leaving one element alone. The simulation time was
set based on estimations with the number of actions required as calculated in Chapter 6 (see results
in Appendix C).
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Parameter Value
Number of Agents 12
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 82

Movement Radius
(m) 50

Number of
Simulations 10

Table 9.3: Set up for the simulation of a tessellating square pattern made of 12 agents.

The simulations were successful. The results of said simulations are presented in Table 9.4.
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Figure 9.2: Orbits of the agents to form a 12 agent squared pattern in the along track-cross track plane. The original and final
states have been marked as blue and green dots respectively.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to
Converge 10860 32358 67540 n.a. 32358 16246

Total Number of
Actions 21 41.9 65 n.a. 41.9 16.4437

Δ𝑉 (m/s) 0 3.3395 17.5115 1.5598 3.3395 1.4854
Remaining Fuel
per Agent (kg) 1.4919 1.4985 n.a. n.a. n.a. n.a.

Table 9.4: Results for forming a 12 agent squared pattern.

At a first sight, the results are by far the best ones obtained for a pattern of this size. The number
of movements required is so low that in some cases the agents do not even have time to drift and
need impulses. Nevertheless a close analysis of the relative orbits (plotted in Figure 9.2 shows that in
reality this is not a really successful simulation campaign. As shown in the figure, most of the agents
are actually in the desired states at the beginning of the simulation. This is due to the fact that the
first thing agents do is range themselves and go to the closest point of the grid in which the high-level
controller discretizes the space. As the selected pattern fully fills this space, all agents that are close
by will already fill the desired state, being only left to move those that do not have enough neighbours
nearby. These agents will act as simplicials around the clique formed by the already formed squares
until they find each others and fix their positions. This method achieves the pattern in short time, and
maintains the swarming algorithm. This means that in the event of lose of agents or addition these set
of rules will allow them to reconfigure. Nevertheless, it seems more of a configuration by ranging than
a proper pattern formation.

As it was done in the previous section, a sample orbit in the along track-cross track has also been
plotted versus the time. The original and final states have been marked as blue and green dots re-
spectively. The result is presented in Figure 9.2. Due to the few movements, it is also possible to see
in this figure how the agents oscillate around their positions while they do not perform a movement.
These oscillations correspond to the station keeping algorithm. Every time that the agents surpass
their station keeping tolerance (control window), the low-level control is activated and sends back to
their state tolerance position the agents.

9.3. Repeated 6 Element Hexagons
In order to test again the extreme scale approach, a final simulation was performed this time with a
state shape that does not fill completely the state shape, the honeycomb. An analysis on the expected
number of actions (see Appendix C for the results) already showed that this pattern will require a
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large number of iterations. Therefore the BIT-7 propulsion system was selected as given its good
performance in Chapter III after this number of movements.

Parameter Value
Number of Agents 10
Max Simulation

Time (s) 10 𝑠
Knowledge Radius

(m) 55

Movement Radius
(m) 50

Number of
Simulations 10

Table 9.5: Set up for the simulation of a tessellating honeycomb pattern made of 10 agents.

The simulation set up was the one presented in Table 9.5. The target pattern was a double hexagon,
so the number of agents selected was 10. The simulation time was set to 10 𝑠 according to the esti-
mations done with the number or required movements and the time per movement estimated also in
previous simulations. The simulations results are presented in Table 9.6.

Parameter Min Ave Max Std.
Dev.

Mean
Gamma

Std.
Dev.

Gamma
Time (s) to

Convergence 38280 1453990 3028720 n.a. 1440300 2196200

Total Number of
Actions 80 3848.8 10060 n.a. 3848.8 4029.7

Δ𝑉 (m/s) 2.615 198.71 509.04 19.597 198.7132 199.4484
Remaining Fuel
per Agent (kg) 1.26598 1.40837 n.a. n.a. n.a. n.a.

Table 9.6: Results for forming a 10 agent honeycomb pattern.

The simulation results show a number of movements corresponding with the expected number.
Therefore they are considered representative. The time to converge is about a month in the worst
case. Therefore the complexity of this pattern is comparable with the 9 agent triangle. Cases with
really fewer movements are also possible.

With the proposed system, the results are also positive, as expected. The required increment in
velocity is quite high, with a use of propellant also really high, similar again to the 9 agent triangle.
Initially it could be thought that the use of the semi-desired states would not be useful, as for a similarly
complex pattern with the same number of agents, the results seem to be similar.

Nevertheless, in Figure 9.3 shows the advantage of the semi-desired states. On it the state of the
swarm after 23920s and 94 movements is plotted. The agents have been plotted as blue dots, whereas
their targets are plotted as black empty circles. It is possible to appreciate how after only one hour the
first out of the two cells is already formed. This means that only after 94 actions in this example 60%
of the swarm is already in position. Furthermore, this first cell will work as the first seed, which will
allow to the next cell to be formed next to it. All the agents that are not in this first cell will work as
simplicials around this first cell, which will be a clique. Therefore, even though part of the swarm is
still reaching its final target, another part of it is operative. So for complex patterns and large number
of agents, this will allow to start scientific operations with part of the swarm before the total swarm is
formed. Furthermore, this part of the swarm will already be stable, not moving again with the random
actions of the agents that are left to from the rest of the cells.
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Figure 9.3: Middle step of the honeycomb pattern formation. The agents are plotted in blue while their next target is plotted in
black. It is possible to appreciate that the first cell is already formed.

As in other cases, the relative orbits of the spacecraft are plotted in Figure 9.4. In it the complexity
of forming the whole pattern is seen. Also the final and initial states of the agents are shown as green
and blue dots respectively.

Figure 9.4: Orbits of the agents to form a 10 agent honeycomb pattern in the along track-cross track plane. The original and
final states have been marked as blue and green dots respectively.

Finally, in order to show the power of this algorithm, a small test has been done with 28 agents.
The simulation was set with the high-acceleration actuator and the shortest inter-satellite distance (see
Section 8.2.2) to be able to cope with the computational load of the simulation in reasonable times. The
variable of interest is the number of movements, as then this can be scaled with the information of the
simulations in Chapters 7 and 8, and the previous sections of this chapter. The result of this simulation
is presented in Figure 9.4. These results are obtained after 6954 iterations. This is a similar number
to the one required for a triangle with 9 agents. Already 5 out of 8 cells expected are formed and the
ones missing are mostly formed.

It has also been noted that in some cases stuck situations have been observed with two positions.
The first one is when an agent is captured in the middle of a cell that is fully surrounded by other cells.
The other one is when an agent is stuck in between two cells and only one more agent is active. In
this case when the active agent reaches a position nearby the deadlock, the stuck agent reaches a
semi-desired state position. This avoids the stuck agent from moving when it could, perpetuating the
deadlock. Further study will be then necessary on which patterns are possible with the semi-desired.
Nevertheless, these formations allow still for creating formations of extremely large number of agents
partially in record times given their complexity and number of agents.
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Figure 9.5: Orbits of the agents to form a 10 agent honeycomb pattern in the along track-cross track plane. The original and
final states have been marked as blue and green dots respectively.

9.4. Conclusions on the Use of Optimization with DESHA
In this chapter, optimization techniques and large scale strategies were applied to the DESHA algorithm
in order to reduce the required number of actions for convergence. The results seem to indicate that
the use of PFSMs reduces also greatly the consumption of fuel and time for formation of the pattern,
proving itself a good asset. Nevertheless, further testing with other optimized PFSMs will be necessary
in order to ensure that these results are applicable to more complex patterns.

As for the use of large scale strategies, it has been proved that states that fully fill the space (i.e.
the squared pattern) allow a fast convergence of the algorithm for large patterns. But it comes at the
cost of generating the formation through ranging rather than forming actual complex patterns. On the
other hand, when the tessellating pattern does not fully fill the state such as the honeycomb, the ac-
tions require rise. Nevertheless, it offers the advantage that the majority of the swarm forms in really
few actions, being only the last cell the one that requires most of the actions to be formed. Still more
research on semi-desired states is needed to find patterns that only can form the desired tessellating
patters with these method without deadlocks or livelocks.

In conclusion, the use of both optimized PFSMs and large scale strategies proves that the the
required number of actions to convergence can be lowered to acceptable limits. Nevertheless, further
studies with different patterns and more optimal code approaches will be necessary to actually extend
the final conclusions.
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Conclusion and Recommendations

In this work the use of the algorithm presented in [31] for swarming spacecraft has been evaluated
trying to present a realistic scenario. To do so a simulation tool was designed which modelled both the
implementation of algorithm and the necessary environment and subsystems were developed. This
was presented in the second part of the report. Then, in the third part, a campaign of experiments was
launched to evaluate the suitability of the algorithm for spacecraft applications. Initially a reference
case was generated with the minimum acceleration and the minimum inter-satellite distance. This was
used as a reference case to then evaluate the effects on increasing the actuation capacity of the sys-
tem. Both the effects on the time to form the pattern and on the inter-satellite distance were evaluated.
Finally, in order to improve the results obtained in previous sections, a set of optimized and special
techniques were presented. These techniques allow to improve the algorithm’s performance and cope
with the most complex situations.

The final goal of this work was to answer the research question posed in Chapter 1 and its associated
sub-questions. After the analysis done with the simulator, an answer has been obtained for all of them.
The answers to the research sub-questions are presented in Section 10.1. Then, with said answers, a
more elaborated answer to the research question is presented in Section 10.2. Finally, the simulation
tool, as well as the obtained results, have opened an interesting line of investigation for upcoming
researchers. Thus, in Section 10.3 a set of recommendations and future work are presented. These
will give ideas and future lines of research that will probably increase the scientific output possible to
be achieved with DESHA.

10.1. Research Sub-Questions
Three research sub-questions were presented on Chapter 1 to elaborate more specifically on the dif-
ferent facets of the research question. After the experiments performed, it is possible to answer all of
them.

10.1.1. Sub-Question 1: Swarm Properties
The first sub-question was:

Does DESHA comply with the swarm properties of flexibility, scalability and robustness?

This question intended to first evaluate if DESHA, as an algorithm, complied with the swarm prop-
erties when it encountered a space scenario.

Flexibility
The property of flexibilty is clearly present. In the third part of the report multiple patterns with differ-
ent sizes were tested. For the most part the algorithm was able to reach the final pattern with the set
constraints. Pattern transitions are also possible depending on the system designed. For example,
the two systems proposed for the medium and low acceleration levels in Chapters 7 and 8 remain with
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most of their propellant tank by the time they achieve the formation. This means that re-shuffelling into
another pattern is possible and, since in any case more than 25% of the propellant tank is used, the
system will still maintain some actuation capacity.

It is true that the change of pattern will depend on the system selected. For example, the high
acceleration system proposed would run out of fuel if a medium complexity formation was the original
formation and then any other formation would be attempted. This puts into manifest again the key role
of the design of the system. As it was noted in Chapter 4 already, systems with unefficient thrusting
system will not be able to achieve the extraordinary number of movements that the most complex pat-
terns require unless most of the spacecrafts are composed of fuel.

The same conclusion can be drawn about the inter-satellite distance. Multiple inter-satellite dis-
tances can be achieved with DESHA, mostly for the medium and high actuation capacity systems.
Nevertheless, the larger the inter-satellite distance, the bigger the propellant consumption. This, to-
gether with the high number of movements that some patterns require, leads to a need for a system
either with a really large propellant tank or a really efficient thruster.

Robustness
The robustness of the algorithm, at least when adapted to space, is not so clear. DESHA is an algo-
rithm based on local knowledge. This means that the agents only know a local neighbourhood, not the
whole swarm. This allows for a reduction of the communication needs of the swarm as compared with
other algorithms [68]. Nevertheless, it also means that the system is not robust to the failure of some
of their elements, at least in some cases.

When the pattern is formed, depending on the shape, it can happen that some of the elements
become key. This is illustrated in Figure10.1. In Figure 10.1a the failure of an agent in a 9 Element
Triangle will provoke that two of the agents suddenly do not have a desired state. This will translate in
a cascade effect, where they will move the other agents of the swarm until eventually they start running
out of fuel. This is due to the fact that the pattern specifically requires a number of agents. Another
similar case is presented in Figure 10.1b. There, if an agent in the middle of the line were to fail, it
would split the swarm in two, as the agents only communicate with their neighbours. In the second
case the lack of knowledge of the agents of a further distance rather than their neighbourhood only
leads them to disconnect. On the other hand, in the first case the fact that DESHA only stops shuffling
the agents when all of the desired states are matched at least once leads to the infinite shuffling when
an agent is lost.

(a)

(b)

Figure 10.1: Different scenarios before and after the failure of an agent. In 10.1a the case of the failure of an agent in a 9 agent
triangle leaves the pattern ready for an infinite shuffle as the desired global pattern is not possible. In 10.1b the result of a failure
of an agent in the middle of the chain generates two independent and disconnected swarms.
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These failures do not happen with all patterns, as shown in Figure 10.2. Some patterns such as
repetitive square and hexagon patterns allow for a more robust solution. In these two cases, the failure
of agents will only lead to a couple of more agents (in yellow in Figure 10.1b) to wonder around the
cells until running out of fuel or a replacement agent arrives. This is due to the fact that both patterns
are composed of a basic unit cell and do not care about the surroundings once the cell is achieved
due to the semi-desired state approach (see Chapter 6). Also patterns based on rules rather than fixed
states (such as having always two neighbours) present this property. These patterns were not used in
this work as initial tests showed that they required really high numbers of movements to form a pattern
(a pattern never formed in the test performed).

(a)

(b)

Figure 10.2: Different scenarios before and after the failure of an agent. In 10.2a the failure of an agent only leaves one other
agent wandering around the swarm. In 10.2b the failure of an agent only leaves two agents wondering.

Overall DESHA only provides, at least in the applications presented in this report, robustness for a
limited number of patterns. Therefore if a robust swarm is required, for example due to long times to
send a replacement agent, cell-based patterns seem to be the best choice. Even though some agents
will be wondering around, the most part of the swarm will not change its shape. It will be necessary
nevertheless to have some kind of policy to send the agent away once it is close to run out of fuel.
This will avoid collisions with the remaining agents that run out of fuel. In conclusion, the robustness
of DESHA, due to its local approach, is dependent on the selected pattern.

Scalability
In [31] it is mentioned that when the algorithm is scaled to patterns with higher number of agents and
complex patterns the number of actions required scales faster. This has been corroborated in Chapters
7 and 8.

Nevertheless, in all cases but in the one with lowest acceleration level all patterns have been formed
in acceptable times. It is true that in the case of the 9 agent triangle some strange cases are expected
with even higher number of movements according to [31] and the analysis done in Chapter 5. Still, the
algorithm allows to form patterns with a wide variety of agents. Furthermore, the optimized techniques
or the large-scale techniques allow for the mitigation of this problem, allowing to form swarms of ex-
tremely large amounts of agents maintaining certain degree of complexity and the swarm intelligence
of DESHA.
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Therefore it is concluded that DESHA is scalable in the proposed application to space, as it offers
a good performance no matter the number of agents. It is worth noting that the scalability has been
analyzed only as the ability of the algorithm to cope with both low and high number of agents. It is true
that some patterns require a fixed number of agents such as the 9 agent triangle. This will mean that
adding agents will only result in an infinite shuffling of the swarm. Technically to scale the pattern up or
down it will be required to upload a new set of desired states. Nevertheless, as proven with the 4 agent
triangle, this is possible. Therefore concluding that DESHA allows for scalability is considered correct.

10.1.2. Sub-Question 2: Technical Aspects
The second sub-question aimed to address the implementation of DESHA to a space scenario taking
into account the state of the art of the considered spacecraft’s technology. The question was formulated
as:

Does DESHA perform within reasonable limits in use of propellant and time with respect
to the reference mission and the current state of the art of small spacecraft technology?

In Chapter 4 the needs and assumptions taken on the hardware were presented. All of them seem
reasonable and attainable, at least by the literature study done previous to this work [78] and the further
review done in Chapter 4. In the results part (Chapters 78 and 9) three tentative systems were ana-
lyzed, according to the acceleration level that they offered. The results obtained seem to confirm that
the use of DESHA is possible for all attempted patterns at least with the system presented for medium
acceleration level.

The two other systems proposed failed. The low acceleration level system required too much time
to form the most complex patterns. The high acceleration level system proposed ran out of propellant
for the most complex patterns. It is therefore concluded that a good trade-off between thrust and pro-
pellant use (and availability) is necessary in order to use DESHA in space applications.

Therefore it can be concluded that already with the current state of the art technical solutions it
seems that DESHA can be used in small spacecraft based missions for pattern formation with swarm
intelligence. For the patterns presented, the formation acquisition time in the most complex patterns
reached the level of months. This also will be increased with increasingly larger inter-satellite distances.
Nevertheless, optimization techniques and large scale techniques are expected to reduce these times.
Therefore, if one or twomonths are acceptable as formation times, the current state of the art technology
seems capable of swarming spacecraft with DESHA.

10.1.3. Sub-Question 3: Failures and Pitfalls
The third sub-question tried to answer if any unexpected situations from the implementation of DESHA
were to be identified.

Does DESHA present any kind of pitfall or unexpected blockage?

After the experiments presented in the third part of this work, it can be said that no unexpected
blockages or failures have been identified in DESHA. If the simulation is properly tuned, i.e. the run-
time frequency of the high and low level controller is properly tuned, the time step is according to the
dynamics, etc., the algorithm is expected to converge in all cases.

It is true that with the time constraints presented in this report, some pitfalls, such as the need for a
fairly powerful actuation system with efficient propulsion have been identified. Also in the tuning of the
simulator, it has been proven vital to properly select the knowledge radius of the agents. This is due to
phenomenons such as the overshoot and drift on the control window of the agents. If the knowledge
radius is strictly the inter-satellite distance, the agents that drift apart, within their control window, might
not be detected by their neighbours. This might lead to disconnection events. Also, the importance of
taking into account possible collision avoidance events, where one of the agents has to turn back to
its initial position has been identified . If DESHA is run while this is happening, it might disconnect the
returning agent. Still, if a proper tuning is performed, no problem should arise from the use of DESHA.
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10.2. Research Question
The main research question of this whole project was:

Is it possible to control and guide a swarm of spacecraft using DESHA?

The simulation tool presented in this work, as well as the experiments presented in the third part of
it, show that this question can be answered positively. Throughout this report it has been proven that,
if the assumptions presented in this work are met, it is possible to guide and control a swarm of space-
craft using the DESHA algorithm. Furthermore, depending on the scenario, it has been proven that
multiple patterns can achieve the formation desired. Also it has been shown in Section 10.1 that if the
right pattern is selected, the swarm will be flexible, robust and scalable. This will allow, as compared
with conventional formation flying, to cope with unexpected events, such as the loss of agents. Also,
the expansion of the mission by adding more agents, or the change of the purpose by modifying the
formation will be possible. This will give the formation an adaptability, thanks to the swarm intelligence,
which traditional approaches do not posses.

Compared to other approaches in the literature, such as behavioral algorithms or machine learning
approaches (see Chapter 1), this algorithm presents a set of advantages. Unlike behavioral algorithms
the time to tune DESHA is reduced to following a set really simple practical considerations. Further-
more, no stuck situations have been detected, nor any is expected as, by design the swarm always
converges to the pattern. Furthermore, all kinds of patterns that match the rules presented in [31] are
possible. This includes non-symmetrical patterns, not achievable with many behavioral approaches
[52]. Also, the algorithm and its working is fully understandable by humans, and does not depend on
any kind of simulation processes, unlike machine learning approaches [16].

On the other hand, some disadvantages have been detected. To start with, convergence times will
be larger than with other algorithms. This is due to the probabilistic nature of the artificial intelligence
approach taken. The use of an stochastic policy allows the swarm to actually cope with unexpected
situations and have a certain degree of intelligence, understood as the capacity to cope and solve
unexpected situations [79]. On the other hand, this and the local knowledge of the algorithm lead to
the fact that many movements are required to achieve the pattern. Furthermore, most of the times
the movements taken are not useful or even counter-productive. This translates in a large number of
thrusting actions, with their corresponding use of propellant.

Some approaches can be taken to reduce the number of actions required for convergence as op-
timized PFSMs [30] or large scale approaches (see Chapter 6). This was done in Chapter 9 and a
significant improvement on the performance of the algorithm was observed. Nevertheless, again due
to the probabilistic and local nature of the algorithm, still many movements will be taken with no sense.
This is inherent to the algorithm.

Overall it can be concluded that DESHA is capable of forming patterns and giving a certain degree
of adaptability through swarm intelligence to a swarm of spacecraft. Nevertheless, the fact that many
of the movements that it generates do not lead to productive actions lead to think that this might not
be the best option for a swarm to form a pattern. In space, due to the cost associated to put in orbit
any object, the use of propellant tends to be maximized. Therefore, using an algorithm that does many
wasteful actions does not seem to be the best option. Maybe centralized or global approaches, such
as the ones presented in [38, 68] would provide a better solution for pattern formation in spacecraft
swarms. Nevertheless, DESHA might be used in combination with those, or as a safety algorithm, to
mitigate the risk of losing the swarm when the communications between agents or the key elements of
the swarm fail, acting therefore as a safety algorithm.

10.3. Future Work
In this work DESHA has been proven to be useful to guide and control a swarm of spacecraft providing
the system with a certain degree of intelligence. DESHA has shown to offer some unique advantages
over other state of the art algorithms. Nevertheless, due to its local nature and probabilistic approach
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some disadvantages have been detected in its use.

In the future, further research on mitigating this inherited disadvantages of DESHA will be in or-
der. To do so, it is recommended to further explore to research the use of DESHA in conjunction with
other approaches. For example DESHA could be used as a secondary algorithm next to a behavioral
approach. The behavioral algorithm could be then used as primary high-level controller, but when it
would get stuck, DESHA might come into place to move the agents and avoid the stuck situation. Also
research on the optimization of the fuel would be in order to reduce the use of it. To do so, it is rec-
ommended to study the use of MPC (Model Predictive Control) as low-level controller. MPC is a kind
of controller which, by design, allows to minimize both the control output and the input. It is already
proposed in literature for swarm control [69] and for general spacecraft control [57] and presents the
advantage of also taking into account the control input limits (that is the maximum and minimum levels
of thrust). This will also ease the design of the controller, opposite to the algorithm to design a PID
controller needed in Chapter 5. Some preliminary studies on its implementation in SwarmSimulator
were already done. Originally the use of in-house routines from the TU Delft was attempted as the
whole code was available. Nevertheless the routines turned out not to be fitted to the problem at hand
and its tuning required further knowledge on control theory and optimization. Due to time constraints
this is left as future work. Also the use of MatLab® already implemented code was tested, and although
the results were positive, the form of the output was not suitable with the design of SwarmSimulator.
Further work on how SwarmSimulator can save and process the whole thrusting schedule created by
MatLab®’s can be incorporated will be necessary. Nevertheless, it is recommended that in future ver-
sions of SwarmSimulator a MPC controller is developed from scratch to tailor both the optimization
algorithms used and its output to SwarmSimulator.

Another interesting development proposed for future work to reduce the number of wasteful move-
ments is the increase of knowledge of the agents. As it has been noted in Section 10 global approaches
seem to avoid this problem, or at least mitigate it, as the agents can actually know if they should move
or if it is their neighbours who needs to move. For example in Figure 10.3 if the most right agent moves
down the pattern is completed. With the canonical implementation of DESHA all three active agents
just know that they need to move. Nevertheless, if they were to know a larger portion of the swarm they
might be able to actually detect that the one that should move should be the one of the right. It would
be interesting to study if there is an optimum on the portion of the swarm that the agents would need to
know to actually avoid most wasteful movements without overly increasing the communication needs.

Figure 10.3: Triangle of 9 agents mission one movement for creating the pattern.

Another point of improvement of the system to reduce the use of propellant, mostly for non-electric
propulsion systems, could be the use of two impulse approaches. As it has been noted before, in this
work a continuous thrust approach has been taken, as the initial needs on the thrusters indicated that
electric propulsion will be preferred. Nevertheless, the high level acceleration thruster was a chemical
propelled system. This system reduced greatly the time, but ran out of fuel most of the times when the
thruster is not extremely efficient (see [86]). That is why it is worth studying the use of two impulse ap-
proaches, as the ones used in orbit maneuvers [93, 98] for thrusters with higher thrust levels, but lower
efficiency. If the thrust is high enough, it can actually set with a single firing the agent in a course that
will intersect the desired position. Then the thrust could be shut off until the desired position is about to
be reached, moment when the thruster would be fired again to stabilize the agent in the position. This
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will reduce greatly the use of the thruster, more in long inter-satellite distances. On the other hand, the
time performance will be probably worst, as the agent might go slower than with continuous high thrust.
Therefore a trade-off between these to variables will be in order.

Finally, the last proposed future work is an improvement on the dynamic modelling. The HCW
equations are widely used in literature to model formation flying [4]. Nevertheless, they are only a
linearization and require a really specific reference orbit, a circular orbit. It is already proven in [51] that
even the slightest inclination might actually cause a drift between this dynamics model and reality quite
big over time. Furthermore, the linearization might not always be valid for the orbit used depending
on the full aperture of the swarm and the reference orbit. In the case that SwarmSimulator were to
be used to study and predict the orbit in a real mission, the HCW will not be sufficient. That is why
in SwarmSimulator another relative dynamic model has been implemented. This dynamic model is
presented in [18] and is based on the Gauss Variational Equations(GVE). This approach is already not
a linearization, so it is valid for a wider range of orbits than the HCW. Furthermore, it allows to include
the effect of perturbations (important on certain orbits or for long mission times) as shown in [18]. The
model implemented is based on the modified orbital elements, as the traditional ones do not allow for
the use of equatorial circular reference orbits. The set of elements used is the one presented in [5] as
they allow to use all kind of reference orbits. The equations were derived using the procedure showed
in [18] (without the 𝐽 term) and implemented as a state space model (see the HCW in Chapter 5). Also
the conversion from these orbital elements to Cartesian coordinates and standard orbital elements are
included in SwarmSimulator [5]. In order to use these model it should be validated first. This could be
done using specialized already tested software, such as GMAT [50] or real data from a space mission
(if available). This was not done during this project due to the limited amount of time, which did not
allow to master the use of the software required for validation. Nevertheless, with a small amount of
work it will be possible to include this model in SwarmSimulator.
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Appendix A: Neglected Effects in

Dynamics

A.1. Massive Bodies Effects
Following the formula presented in [98](Equation 3.2), allows calculating an estimate of the order of
magnitude of the forces affecting the swarm’s agents. For the sake of simplicity, and given that the goal
is to obtain just an estimate, all agents were considered to have 1kg of mass and be in the reference
orbit of 200km of altitude above the Moon. The reader can see that in the event these numbers were
changed to the actual masses and positions of the swarm agents, the order of magnitude and even
the forces calculated would barely change. Finally, as a reminder, the reference frame is an inertial
reference frame whose axes are coincident with the ECI but whose origin is located on the center of
the Moon.

𝑑 �̄�
𝑑𝑡 = −𝐺𝑚 +𝑚

𝑟 �̄� + 𝐺 ∑
,
𝑚 (

�̄� − �̄�
𝑟 −

�̄�
𝑟 ) (A.1)

First, the force due to the main body, the Moon, is calculated, which corresponds to the first term
on the right side of the equation. Since the mass of the Moon is much larger than that of the agent, the
first term is modified to:

𝐹 = −𝐺
𝑚 𝑚
𝑟 �̄� (A.2)

Now the magnitude of the standard gravitational parameter of the Moon (𝐺𝑀) can be obtained from
[103] as well as its volumetric mean radius. Taking into account that the distance from the center of the
Moon to the swarm is:

𝑟 = 𝑟 + 𝑟 = 1937.4𝑘𝑚
Therefore, by applying Equation A.2 is possible to obtain the gravitational acceleration of the Moon

on the swarm.
To calculate the effect of the perturbing bodies the second term of Equation 3.2 is used. In this case,

the considered perturbing bodies are the Earth and the Sun given that due to their mass/distance they
are the ones that most probably affect the most the swarm orbit. The effect of the perturbing bodies is
calculated with Equation A.3

𝐹 = 𝐺𝑚 𝑚 (
�̄� − �̄�

𝑟 −
�̄�
𝑟 ) (A.3)

The point here is to have an estimate for the Moon-Body distance and the Body swarm distances.
Unlike the swarm, the Earth rotates in an elliptical orbit around the Moon. In a first approximation, the
same can be said about the Sun. This means that the distances needed will vary with time. The best
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approach for estimating the force will be calculating it when it is maximum.

The distance between the body and the swarm can be decomposed in the distance from the Moon
to the body and the distance from the Moon to the swarm. Analyzing Equation A.3, the equation will
be maximized if the distance from the swarm to the body is minimum and the distance from the Moon
to the body is maximum. Nevertheless this leads to contradiction. The distance from the body to the
Moon is maximum at the apogee of the orbit of the body around the Moon, whereas since the swarm
orbits the Moon, the minimum distance between the swarm and the body will be in the perigee of the
orbit of the Moon. Since calculating the optimum to estimate the force is deemed unnecessary another
simplification is taken.

A good approximation to obtain the searched order of magnitude will be just to consider both orbits
circular and use the semi-major axis of the orbit as the used distance. Unlike the previously presented
approach, it is slightly less precise, but it allows for a faster calculating without loosing too much preci-
sion, as the eccentricities of the orbits considered are quite low.

Therefore the distances to between the bodies and the swarm will be calculated as:

𝑟 = 𝑎 − 𝑟

All needed data for the semi-major axes of the orbit of the Earth around the Moon and the Sun
around the Moon, as well as the standard gravitational parameters of both bodies will be obtained from
[101, 102]. Since the data of the orbit of the Sun around the Moon is not redily available, the semi-major
axis of the orbit of the Sun around the Moon will be estimated as:

𝑎 = 𝑎 − 𝑎

Considering therefore that the Moon orbits the Sun in a circular orbit slightly closer to it than the
Earth from the Sun’s perspective.

Then, to obtain the force ratios, in percentage, of each body’s effect body on the swarm, the following
formula is used:

𝑅𝑎𝑡𝑖𝑜 =
𝐹
∑𝐹

The results and used data are presented in Table A.1:

Moon Earth Sun Spacecraft
Distance to Origin

(10 km) 0 0.36329644 146.694647528 1.9374 km

Mass (10 kg) 0.07346 ⋅10 5.9724 1988500 1kg
Source of Data [103] [101] [102] n/a

Force (N) 1.305 2.7398 ⋅10 1.5478 ⋅10 n/a
% Force Ratio wrt.

Total 99.9978 0.0021 1.1856⋅10 n/a

Table A.1: Gravitational influence of the effect of the Moon, Sun and Earth on the swarm calculated with Equation 3.2

A.2. Perturbations: Spherical Harmonic Gravity
As explained in Section 3.4.2 the gravity potential of a solid body similar to a sphere but with a slightly
different shape and non-uniform mass distribution is represented by Equation 3.3 and its produced
acceleration is represented by Equation 3.4. In this section the order of magnitude of the 𝐽 term
geopotential acceleration of the Moon on the spacecraft is estimated. By substituting only taking until
the 𝐽 term in Equation 3.3 and substituting it in Equation 3.4 the formula for the acceleration produced
by the adding to an sphere a band of mass in its equator. This is represented in Equation A.4.
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̄𝑎 = −∇ [12𝜇𝐽
𝑅
𝑟 (3𝑧2𝑟 − 1)] (A.4)

Taking the derivatives the result is:

𝑎 = 3
2𝜇𝐽

𝑅
𝑟 (3𝑠𝑖𝑛 𝜙 − 1)

𝑎 = −32𝜇𝐽
𝑅
𝑟 𝑠𝑖𝑛(2𝜙)
𝑎 = 0

(A.5)

The Equations A.5 have a maximums at ± for the radial acceleration and ± for the longitudinal
acceleration. Said values for the maximums are:

|𝑎 | = |𝑎 | = 3𝜇𝐽 𝑅𝑟 (A.6)

Taking the data for the mean radius and of 𝐽 of the Moon, the value of the swarm distance from
the Section A.1 the estimate for |𝑎 | = 6.384 ⋅ 10 𝑚/𝑠. Again taking the a 1kg swarm agent this
results into a perturbing force of 6.384 ⋅ 10 𝑁.

A.3. Solar Radiation Pressure
The effects of the solar radiation pressure are estimated, according to Waker [98], as:

𝑎 = −𝐶 𝑊𝐴
𝑀𝑐 (A.7)

The speed of light and the mass of the spacecraft are already known constants. The energy flux
can be estimated by considering that the energy output from the Sun is constant. Knowing that the Sun
emits around 62.94 ⋅ 10 𝑊/𝑠 [102]. Considering that this energy is never dissipated:

𝑄 = 𝑄
𝑊 ⋅ 4𝜋𝑅 = 𝑊 ⋅ 4𝜋𝑅

By considering the swarm orbit as a circular orbit around the Sun and taking the same approxima-
tions as in Section A.1 the energy flux in the swarm orbit will be:

𝑊 = 1368.21𝑊/𝑚
To obtain an order of magnitude of the area of the spacecraft, the CubeSat standard is used. A

CubeSat unit is a 10𝑐𝑚𝑥10𝑐𝑚𝑥10𝑐𝑚 cube [26]. Therefore a good approximation to obtain the order
of magnitude of the affected area is the area of one of its faces, that is, 10 𝑚 . Note that this is just
an estimation, in reality not only one face, but probably more, will be affected by the radiation. Finally,
in [98] an example of a the effects of solar radiation pressure are presented for the EchoI, a giant
aluminum coated sphere. It is expected that the agents of the swarm have less reflectivety than a body
mainly made to reflect radiation. Since EchoI’s 𝐶 = 1.9 and only an order of magnitude is wanted, it
is fair to estimate the 𝐶 ≈ 1. With all these data:

𝑎 ≈ 4.564 ⋅ 10 𝑚/𝑠
Which, considering that the estimated mass is 1kg, the estimated perturbation force is 𝑓 = 4.564 ⋅

10 𝑁
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Appendix B: Description and Functions
of Swarm Simulator Relevant Classes

This Appendix describes the most relevant elements of some of the classes implemented in Swarm
Simulator. This does not intend to be a full software manual, but rather a guide for the reader of this
work to understand how some of the results and models have been implemented.

Here an index of the classed and functions within them are reviewed

• Agent

• Thruster

– updatepropellant

• Orbit

– propagate

• State

B.1. Agent
The agent class intends to incorporate all the information related to each of the elements of the swarm.
This class will include also a set of subclasses such as the controller, state or thruster classes which
will model specific elements of the design of the agents. To model the agents, the properties included
in Table B.1 will be defined:

The class will incorporate the functions compiled in Table B.2:
All functions either have been explained in several chapters of the thesis or are self explanatory.

Only the function agent.collisionavoidance will be reviewed in this section.

The main cause of collision is the movement by two agents out of sight of each other towards the
same target. The more agents, the more local neighbourhoods and the more probability of collision
events.

The strategy implemented is pretty simple. Each agent, during a movement, remembers to points,
the initial state and the final state. The former will act as a safety target, while the latter will act as the
target for the low level controller. In the even that two agents range themselves within less than the
safety radius, a collision event is created. The first agent to range the other is set to be in priority and
it exchanges its current target for its safety target. As it is the only one in its previous neighbourhood
to have moved, it is guaranteed that the agent will not disconnect by going back to the previous target.
Once the agent has been returned to its former position, the priority flag is set off.
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Name Property Name Variable Type
Thruster Thruster thruster object
Controller oController controller object

Reaction Wheel Weel reactionwheel object
Antenna Position AntPos real array

Antenna Antenna antenna object
Dry Mass of the Agent Mass real
Orbit Dynamics Model OrbitDynamics character string
Relative Position (in

LHLV) Position real array

Relative Velocity (in
LHLV) Velocity real array

Attitude Quaternion Attitude real array
State oState state object

Knowledge Ratius rKnowledgeRadius real
Movement Radius rMovementRadius real
Target of the high
level controller arTarget real array

Active Flag lActive logical
DeltaV Used rTotalDeltaV real
Priority Flag lPriority logical
Safety Target arSafetyTarget real array

Table B.1: Properties of the Agent class

Function Description
agent Class Initializer

CheckLocalState Checks if the agent is in a desired state
propagateorbit Orbit propagator

actuateorbit Control routine. Decides if the error is large
enough, and if so calls the controller.

collisionavoidance Collision avoidance routine

doIknowyou Function to check in another agent is within
the radius of knowledge.

gridpoint Function to translate a position to the nearest
point in the discretization of the space done

CreateReatcionWheel Creates the reaction wheel objects within the
agent.

CreateThrster Creates thruster objects within the agent.
CreateAntennas Creates antenna objects within the agent.

Table B.2: Functions of the Thruster class

B.2. Thruster
The thruster class intends to incorporate the modelling of the thruster. As such, it incorporates the data
in Table B.3as properties of the class:

The class will incorporate the functions compiled in Table B.4
The functions thruster and thruster.newthruster are pretty self explainatory and only have opera-

tional relevance. Therefore the only models reviewed will be those of thruster.updatepropellant.

For this function the following assumptions are taken:

• AS-HW-012: It is supposed that the thrust is always varied through the variation of the mass flow
of the engine.
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Name Property Name Variable Type
Thruster Name csName Character String

Maximum Thrust (N) rMaxThrust Real
Minimum Thrust
(Thrust Step) (N) rMinThrust Real

Specific Impulse (s) rIsp Real
Propellant Mass (kg) rPropMass Real
Max Mass Flow (kg/s) rMassFlow Real

Δ𝑉 (m/s) rDeltaV Real
Dry Mass (kg) rDryMass Real

Table B.3: Properties of the Thruster class

Function Description
thruster Class Initializer

newthruster

Creates a user
defined thruster

object. It is necessary
to define its properties

updatepropellant
Updates the Δ𝑉 used
of the thruster and the

propellant mass

Table B.4: Functions of the Thruster class

• AS-HW-013: It is supposed that the mass flow is constant (no need for a variation of the current
to compensate for variations in the plasma flow)

Assumption AS-HW-012 is used to omit the variations in thrust due to variations in the neutralizer,
electric field, etc. This also generates the assumption that the exit velocity of the propellant is constant.

Assumption AS-HW-013 the mass flow might slightly vary due to small variations in the electric field
or in the valves of propellant. This assumption implies an ideal working of the elements of the engine.

The function calculates the propellant used and the Δ𝑉 done for each thrusting action in the following
way. With Equation B.1 the mass flow is calculated (being �̇� the mass flow, 𝑇 the thrust, 𝐼 the
specific impulse and 𝑔 the reference gravity). Then with Equation B.2 the mass of the thrusting event
is calculated. Finally, the rocket Equation (B.3 allows to obtain the Δ𝑉 and the propellant left in the
tank is just updated using the result of Equation B.2. All these equations have been extracted from the
classical rocket engine theory. For more information on the derivations see [106].

�̇� = 𝑇
𝐼 𝑔 (B.1)

𝑀 = �̇� ∗ 𝑡 (B.2)

Δ𝑉 = 𝐼 𝑔 𝑙𝑜𝑔 ( 1 +𝑀
𝑀 +𝑀 ) (B.3)

𝑀 = 𝑀 −𝑀 (B.4)

Note that the 𝐼 is a charactersitic of the engine given by the manufacturer. As it is the ratio between
the thrust force and the weight of the propellant expelled, and said ratio was calculated at Earth with
the sea level gravity, 𝑔 will be sea level gravity on Earth.
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B.3. Orbit
The orbit class aims to incorporate all the information about the reference orbit of the swarm. This will
include orbit parameters, but also relevant variables such as the period or mean motion. All formulas
used to obtain the derived parameters are extracted from [98].

Name Property Name Variable Type
Semi-Major Axis (km) a Real

Inclination (rad) i Real
Eccentricity e Real

Argument of Perigee
(rad) omega Real

RAAN (rad Omega Real
Time constant (s) tau Real

Mean Motion (rad/s) rN Real
Orbital Period (s) rT Real
Gravitational

Parameter (𝑚 /𝑠 ) rMu Real

Table B.5: Properties of the Orbit class

The orbit class also incorporates the following methods:

Function Description
orbit Class Initializer

Polar2Cart
Transforms polar
coordinates into

Cartesian coordinates

GetApogee Obtains the apogee of
the orbit

propagate

Generates, given a
time step, a vector

with the orbit positions
in Cartesian
coordinates.

Table B.6: Functions of the orbit class

All functions are sufficiently self explanatory or its derivation is presented in [98]. The only function
here reviewed will be the propagation.

The propagation function generates, given a time step and the final time of the propagation the
positions of the orbit. To do so first, through the mean motion of the orbit a vector with the true anomaly
of the orbit at each time is obtained with:

𝜃 = 𝑛 ⋅ 𝑡

Where 𝜃 is the true anomaly, 𝑛 is the mean motion of the orbit and 𝑡 is the time. Then, the radius
of each position is obtained with the equation for keplerian orbits:

𝑟 = 𝑎 ⋅ (1 − 𝑒 )
1 + 𝑒𝑐𝑜𝑠𝜃

Where 𝑎 is the semi-major axis and 𝑒 is the eccentricity. Finally with the function Polar2Cart this
result is transformed to Cartesian coordinates.
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B.4. State
The state class aims to compile all the state shape related information. To do so it incorporates the
following properties:

Name Property Name Variable Type
State Vector arState Real Array

Shape of the State csType Character String
Radius Correction rRadiusFactor Real
Translation Vector arMoveMat Array Real

Table B.7: Properties of the State class

The radius correction will refer to the correction on the movement radius to reach the diagonal ele-
ments in cube and square state shapes. The translation vector translates the movements encoded in
the PFSMs from [30, 31] to SwarmSimulator.

The state class will incorporate the following public functions:

Function Description
state Class Initializer

create

Generates an array
with the

corresponding size full
of 0s

Translate State

Translates each
non-zero element of
the state to cartesian
coordinate positions
(with respect to the

agent)

reset Sets the state back to
all 0s

CheckConnectivity
Ensures that the state
represented is fully

connected

GenerateMovemat
Fills the arMoveMat
property according to

the state type.

Table B.8: Functions of the state class

All functions are self explainatory. For more details on the algorithms, the code is step-by-step
commented.





C
Number of Total Actions Analysis for

Several Patterns
This appendix presents the analysis on the number of total actions required for several patterns used
during this work. The procedure on how to obtain this results is presented in Chapter 6.
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Figure C.1: Convergence test for 4 Element Triangle (C.1a, 4 Element Triangle Optimized (C.1b, 9 Element Triangle (C.1c and
line of 6 elements (C.1d
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Figure C.2: Convergence test for 7 Element Hexagon (C.2a, 10 Element Square Pattern (C.2b, 10 Element HoneyComb (C.2c,
line of 8 elements (C.2d and line of 10 elements (C.2e)



D
Controller Settings

In this appendix the gains of the PID controllers used are presented. Each column will refer to the gain
set for the radial direction (first column), along track direction (second column) and cross-track direction
(third column).

D.1. BIT-3 Engine

[
𝐾
𝐾
𝐾
] = [

−0.000252124450108908 −0.000252124450108908 −0.000242124450108908
−1.47708305899997 ⋅ 10 −1.47708305899997 ⋅ 10 −1.47708305899997 ⋅ 10
−0.6042252304574286 −0.6042252304574286 −0.1642252304574286

]

(D.1)

D.2. BIT-7 Engine

[
𝐾
𝐾
𝐾
] = [

−0.000275371534485476 −0.000275371534485476 −0.000275371534485476
−1.829586613931737 ⋅ 10 −3.629586613931737 ⋅ 10 −3.629586613931737 ⋅ 10
−0.0856598299898347 −0.0856598299898347 −0.0856598299898347

]

(D.2)

D.3. BGT-X5 Engine

[
𝐾
𝐾
𝐾
] = [

−0.000564130197112355 −0.000564130197112355 −0.000564130197112355
−1.52115288208233 ⋅ 10 −1.52115288208233 ⋅ 10 −1.52115288208233 ⋅ 10
−0.051117310716962 −0.051117310716962 −0.051117310716962

]

(D.3)
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