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Synopsis 

Fixed bed arrangements find wide applications, particularly in reaction engineering, where 

they are employed as multi-tubular catalytic reactors for the transformation of reactants into 

desired products. The importance of such complicated reactors can be realized by their 

extensive applications as the process workhorse in various industries, e.g. chemical, 

pharmaceutical and petrochemical. The design of such systems is predominantly rooted in 

macroscopic models, e.g. pseudo-continuum approaches, with effective parameters extracted 

from averaged semi-empirical correlations. However, such simplistic design procedures are 

inadequate for design of tubular fixed beds with low tube-to-particle diameter ratios, say 

dt/dp<10, where lateral heterogeneities of the tortuous structure lead to dominance of localised 

phenomena. These local or “pellet-scale“ effects cannot be captured nor explained by pseudo-

continuum models, and call for 3D spatially-resolved simulations of flow and transport scalars. 

However, majority of the prevailing efforts within the context of “particle-revolved CFD 

simulation”, have dealt with fixed beds of spheres, because generating random packing of non-

spherical pellets necessitates a cumbersome and complicated strategy to account for the 

orientation freedom of such pellets, specifically when collisions occur.  

The main aim of this research is therefore to develop and validate/benchmark an efficient 

and integrated workflow to predict the in-situ behaviour of hydrodynamics and thermal field 

in fixed beds containing non-spherical and even non-convex pellets with high accuracy. The 

workflow consists of a sequential Rigid Body Dynamics and Computational Fluid Dynamics 

(RBD-CFD) approach, applied to perform particle-resolved CFD simulations in fixed beds of 

(non-)spherical and non-convex pellets.  RBD is an analytical scheme capable of simulating 

the dynamic behaviour of assemblies of pellets based on Newton’s laws of motion and 

Lagrangian mechanics. The concept of RBD is used to develop a hard-body random packing 

algorithm to synthesize realistic packing structures of non-spherical pellets. The proposed 

algorithm uses impulse theory together with a quadratic optimization routine to model collision 

phenomena. The RBD-algorithm is used to generate random packing of spheres, cylinders and 

Raschig rings and then benchmarked against published analytical and empirical data. Using 

the RBD-algorithm, the influence of physio-mechanical properties of pellets such as friction 

and restitution coefficient on packing densification are investigated. A series of steps is then 

pursued to construct a computational CFD grid over the RBD-generated packing of spheres, 

cylinders and Raschig rings. These steps involve an inflationary meshing scheme for such 

complicated tortuous topologies using a combination of patch conforming and patch 

independent meshing approaches. This meshing approach provides a high-quality mesh to 
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appropriately capture phenomena at the contact regions, and immensely facilitates solution 

convergence in the turbulent region, without the need to manipulate the under-relaxation 

factors. The workflow, i.e. RBD-CFD methodology, is then benchmarked for a wall-heated 

fixed bed problem, where particle-resolved CFD simulations of hydrodynamics and heat 

transfer are performed in laminar, transient and turbulent regimes, for 5 ≤ Rep ≤ 3,000, in 

random packing of spheres, cylinders and Raschig rings with tube-to-pellet diameter ratios 

ranging from 2.29 to 6.1. The results are compared with literature data concerning azimuthally-

averaged axial velocity profile, pressure drop and particle-to-fluid heat transfer Nusselt 

number, Nufs. The post-processing of RBD-CFD simulation results reveal a large influence of 

local structure on the velocity and temperature distributions at the pellet scale, particularly in 

narrow packings, where the spatial heterogeneity of the structure is very strong along the bed 

axis. Compared to random packing of spheres, in random packing of cylinders and Raschig 

rings more intense inhomogeneities in local velocity and temperature fields are observed. This 

feature is completely neglected when using pseudo-continuum models with averaged 

parameters. Furthermore, the results demonstrate that the azimuthal averaging of velocity and 

temperature fields lead to underestimating local velocity and temperature values by more than 

400% and 50 K, respectively. The last part of this thesis is centered around the classical pseudo-

continuum models, where we employed the results of RBD-CFD simulations, i.e. so-called 

numerical experiments, to elucidate the effective heat transfer parameters introduced in the 

2D axial dispersive plug flow pseudo-homogenous model, i.e. 2D-ADPF heat transfer model. 

The results demonstrate that the reactor length-dependency of the values of ker and hw are 

conceptually inherent in such effective thermal parameters and stems from the evolutionary 

trend of the thermal (dis-)equilibrium between fluid and catalyst phases along the bed length. 

A detailed sensitivity analysis is conducted to find the influence of pellet shape and thermal 

conductivity, as well as tube-to-pellet diameter ratio, on the effective heat transfer parameters. 

The results provide an intuitive picture of the contributions of the different transport 

mechanisms to the effective thermal properties, concluding that the models of 

Specchia/Baldi/Gianetto/Sicardi for all flow regimes and of Martin/Nilles for the turbulent 

regime can be recommended for practical use for spherical pellets. Overall, the results of this 

thesis show that the RBD-CFD methodology is a robust and reliable tool, providing detailed 

information on the “pellet-scale” behavior of transport processes in fixed bed reactors of non-

spherical pellets. Furthermore, the methodology can be used as a tool to tune simplistic pseudo-

continuum models to improve their reliability.    

 

 



 

iii 

 

Samenvatting 

Gepakte bedden hebben veel toepassingen, met name in reactor engineering, waar ze 

worden ingezet als multitubulaire katalytische reactoren voor de omzetting van reactanten in 

gewenste producten. Het belang van dergelijke gecompliceerde reactoren wordt duidelijk door 

hun uitgebreide toepassing als proces werkpaard in allerlei industrieën, zoals de chemische, 

farmaceutische en petrochemische. Het ontwerp van deze systemen is voornamelijk op basis 

van macroscopische modellen, met bijvoorbeeld een pseudo-continue aanpak, met effectieve 

parameters uit gemiddelde semi-empirische correlaties. Dergelijke simplistische 

ontwerpprocedures zijn echter ontoereikend voor het ontwerp van tubulaire gepakte bedden 

met een lage tube-tot-deeltje diameter ratio, zeg dt /dp < 10, waar laterale inhomogeniteiten 

van de bochtige structuren leiden tot overwegend gelokaliseerde fenomenen. Deze lokale of 

“deeltjes-schaal” effecten kunnen niet gevangen worden, noch verklaard worden, door pseudo-

continue modellen, en vragen om 3D ruimtelijke simulaties van stroming en scalaire 

transportgrootheden. Echter, de meeste “deeltjes-opgeloste CFD simulaties” hebben zich bezig 

gehouden met gepakte bedden van bollen, omdat het genereren van een willekeurige pakking 

van niet-ronde deeltjes noodzakelijkerwijs een lastige en gecompliceerde strategie vereist om 

rekening te houden met de rotatie vrijheid van zulke deeltjes, met name wanneer er botsingen 

optreden. 

Het voornaamste doel van dit onderzoek is daarom het ontwikkelen en valideren van een 

efficiënte en geïntegreerde werkstroom die de in-situ hydrodynamica en thermische velden in 

gepakte bedden met niet-ronde en zelfs niet-convexe deeltjes met hoge nauwkeurigheid kan 

voorspellen. De werkstroom bestaat uit een opeenvolgende Rigid Body Dynamics en 

Computational Fluid Dynamics (RBD-CFD) aanpak, welke wordt toegepast om deeltjes-

opgeloste CFD simulaties van gepakte bedden met niet-ronde en niet-convexe deeltjes uit te 

voeren. RBD is een analytische aanpak waarmee het dynamische gedrag van een verzameling 

deeltjes kan worden gesimuleerd, gebaseerd op Newton’s bewegingswetten en Lagrangiaanse 

mechanica. Het concept van RBD is gebruikt om een algoritme te ontwikkelen voor harde 

lichamen, waarmee realistische willekeurige pakkingen van niet-ronde deeltjes gegenereerd 

kunnen worden. Het voorgestelde algoritme maakt gebuik van impulstheorie, tezamen met een 

kwadratische optimalisatie routine, om de botsingsfenomenen te modeleren. Het RBD 

algoritme is gebruikt om willekeurige pakkingen te genereren voor bollen, cilinders en Raschig 

ringen, en is vervolgens vergeleken met gepubliceerde analytische en empirische data. Met 

behulp van het RBD algoritme is de invloed van fysisch-mechanische eigenschappen van de 

deeltjes, zoals wrijving en restitutiecoëfficiënt, op de pakkingsdichtheid onderzocht. Vervolgens 
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is een serie stappen ondernomen om een CFD rooster te construeren, over de RBD-

gegenereerde pakkingen van bollen, cilinders en Raschig ringen. Deze stappen omvatten een 

inflatoir roosterschema voor dergelijke gecompliceerde bochtige topologieën, met behulp van 

een combinatie van een patch conforming en patch onafhankelijke roosteraanpak. Deze 

roosteraanpak leidt tot een hoge kwaliteit rooster welke de fenomenen in de contactregio’s goed 

kan vangen, en de convergentie van de oplossing in de turbulente regio’s vergemakkelijkt, 

zonder de noodzaak om onderrelaxatiefactoren aan de passen. De werkstroom, d.w.z. de RBD-

CFD methodologie, is vervolgens gebenchmarked voor een wandverwarmd gepakt bed 

probleem, waarin de deeltjes-opgeloste CFD simulaties van hydrodynamica en 

warmteoverdracht zijn uitgevoerd in het laminaire, transitie en turbulente regime, voor 5 ≤ 

Rep ≤ 3,000, in willekeurige pakkingen van bollen, cilinders en Raschig ringen met tube-tot-

deeltje diameter ratio’s variërend van 2.29 tot 6.1. De resultaten zijn vergeleken met 

literatuurdata over azimutaal-gemiddelde axiale snelheidsprofielen, drukval en deeltje-naar-

vloeistof warmteoverdracht Nusselt nummer, Nufs. Post-processing van de RBD-CFD 

simulatieresultaten laten een grote invloed van de lokale deeltjes structuur op de snelheids- en 

temperatuurdistributie op de deeltjesschaal zien, met name in smalle pakkingen, waar de 

ruimtelijke heterogeniteit van de structuur langs de as van het bed heel sterk is. Vergeleken 

met willekeurige pakkingen van bollen, worden in willekeurige pakkingen van cilinders en 

Raschig ringen meer intensieve inhomogeniteiten in lokale snelheids- en temperatuursvelden 

waargenomen. Dit kenmerk wordt compleet genegeerd wanneer men pseudo-continue modellen 

met gemiddelde parameters gebruikt. De resultaten laten zien dat azimutaal middelen van 

snelheids- en temperatuurvelden leidt tot een onderschatting van de lokale snelheid en 

temperatuur van meer dan, respectievelijk, 400% en 50K. Het laatste onderdeel van dit 

proefschrift concentreert zich op klassieke pseudo-continue modellen, waar we de resultaten 

van RBD-CFD simulaties hebben gebruikt in zogenaamde numerieke experimenten, om de 

effectieve warmteoverdrachtsparameters te vinden welke gebruikt kunnen worden in een 2D 

axiaal dispersieve propstroom pseudo-homogeen (2D-ADPF) warmteoverdrachtsmodel. De 

resultaten laten zien dat de reactor-lengte afhankelijkheid voor de waarden van ker en hw 

conceptueel onafscheidelijk verbonden zijn aan dergelijke effectieve thermische eigenschappen, 

en veroorzaakt zijn door de evolutionaire trend van het thermische (niet-)evenwicht tussen 

vloeistof en vaste fases langs de hoogte van het bed. Een gedetailleerde gevoeligheidsanalyse 

laat de invloed zien van deeltjesvorm en thermische geleiding, alsmede de tube-tot-deeltjes 

diameter ratio, op de effectieve warmteoverdrachtsparameters.  

De resultaten bieden een intuïtief beeld van de bijdragen van verschillende 

transportmechanismen aan de effectieve thermische eigenschappen, met de conclusie dat de 
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modellen van Specchia/Baldi/Gianetto/Sicardi voor alle stromingsregimes en van 

Martin/Nilles voor het turbulente regime aangeraden kunnen worden voor praktisch gebruik 

voor ronde deeltjes. De resultaten van dit proefschift laten zien dat de RBD-CFD methodologie 

een robuust en betrouwbaar gereedschap is, welke gedetailleerde informatie kan verschaffen 

over het gedrag op deeltjes-schaal van transport processen in gepakte bed reactoren met niet-

ronde deeltjes. De methodologie kan verder gebruikt worden om parameters in simplistische 

pseudo-continue modellen af te schatten, en zo de betrouwbaarheid van deze modellen te 

verhogen. 
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1.1.   Background 

Fixed bed arrangements are widely used in processing industries, for example as catalytic 

reactors, separators, absorbers, dryers, and heat exchangers, where aspects of heat transfer 

play a crucial role in determining the overall performance of such units. The most extensive 

application of fixed bed systems can be found in the field of reaction engineering, where they 

play a dominant role (due to enhanced wall-to-bed transport rate) in highly endothermic 

catalytic reactions such as methane steam reforming [1,2] and in highly exothermic catalytic 

reactions such as oxidation of n-butane to maleic anhydride [3]. An optimal and safe design of 

such systems, with predominantly low bed-to-particle diameter ratios, N, stacked in multi-

tubular fixed bed arrangements, requires dependable information on lateral heat transfer 

through the tortuous structure. Poor radial heat transfer is considered as a major problem, 

with the possibility of a thermal runaway, i.e. uncontrolled temperatures in specific locations 

within the reactor.  

The best course of action for the design of such complicated systems is to adopt refined 

models, capable of reflecting the underpinning physiochemical concepts and therefore 

predictively mimicking system behavior. Because of the crucial role of heat transfer in the 

design of fixed beds, numerous researchers have paid particular attention to this subject over 

the past few decades, covering various modeling approaches and “effective” design parameters 

[4]. However, the main trend of most of these research efforts has been towards developing or 

improving simple (macroscopic) models, e.g. pseudo-homogenous models, which reflect a few 

selected features of such systems, suitable for fast and repetitive engineering calculations for 

the study of design, control, parametric sensitivity, etc. There are a number of prevailing 

doubts and shortcomings connected with such pseudo-continuum approaches, including the 

lack of universality as well as a remarkable disagreement between existing correlations for 

effective parameters. The shortcomings can be ascribed to the concepts and approximations 

behind such models, e.g. pseudo-homogeneity, unidirectional plug flow assumption, and 

(lumped) effective parameters [5]. This has made it extremely difficult for designers of fixed 

bed reactors in selecting appropriate/dependable design approaches, particularly in case of 

narrow tubular fixed beds where the radial heat transfer (especially at vicinity of tube wall) is 

one of the most important design aspects [6,7]. Moreover, the problematic roles of wall-effects 

in radial thermal behaviour of such low-N beds, say N≤10, have exacerbated the intricacies 

associated with the design of such complicated arrangements. In narrow tubular fixed beds, 

the modeling of the near-wall heat transfer with a single apparent wall heat transfer coefficient, 

hw, is very questionable: this effective parameter is used to describe the temperature jump at 
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the wall that is not physically present but which, based on experimental results, cannot be 

described more accurately [4]. Despite extensive research efforts on modelling of transport 

processes in fixed bed systems, even sophisticated macroscopic models still rely on simplifying 

assumptions and, consequently, disparity and disagreement between various existing design 

correlations are evident [5,8–10]. This situation effectively forces the designers to seek 

validation of their design calculations through supplementary experimental studies, thereby 

imposing large additional expenses to a project. 

Over the last few decades, advances in computer performance and computational 

techniques have allowed researchers to conduct comprehensive 3D simulations of flow fields 

and transport scalars within tubular fixed beds containing several hundred particles using 

Computational Fluid Dynamics (CFD) and Lattice Boltzmann methods (LBM), see e.g. [11–

16]. However, majority of these particle-resolved efforts have concentrated on spherical packing 

structures, whilst applications of catalyst pellets of non-spherical shape such as cylinders, 

Raschig rings, trilobe, quadrulobe, hollow extrudates, etc. are common in industry because of 

their potential to enhance transport processes (e.g. Raschig rings are used in ethylene 

epoxidation, and multi-hole shaped catalyst pellets are used in methane steam reforming units). 

The dominance of spherical packing studies can be attributed to the cumbersome and 

complicated strategies needed to generate 3D models for packing structures of non-spherical 

pellets, which is an essential prerequisite for CFD simulations. The orientational freedom of 

non-spherical particles makes the procedure of packing simulations very problematic, both in 

terms of modeling the collision phenomena and computational expense. Nonetheless, the 

amount of literature addressing the structural properties of non-spherical packings is very 

scarce, see e.g. [14,17–19]. 

With all these outstanding issues on simulation and design of tubular fixed beds, the 

research described in this thesis is aimed at tackling and addressing certain aspects of the 

overall problem, in particular aspects of the prevailing heat transfer. The methodology not 

only needs to improve on the main limitations of earlier models, but it should also be found 

on realistic hypotheses about the underpinning physicochemical concepts, and lead to an 

improvement of our understanding of localised phenomena, e.g. the role of spatial heterogeneity 

of the tortuous structure and shape of the pellets on system performance. We will employ a 

novel and integrated computational approach based on sequential Rigid Body Dynamics 

(RBD) and Computational Fluid Dynamics to characterise flow hydrodynamics and heat 

transfer features in tubular fixed beds containing (non)-spherical pellets. This RBD approach 

enables us to synthesize random packing structures of non-spherical and even non-convex 

particles, which are then compared, in terms of both global and local topological properties, 
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with realistic random packing arrangements. The generated structures are then fed to a CFD 

simulation tool for further analysis of the in-situ behaviour of hydrodynamics as well as the 

prevailing temperature fields inside tortuous structures. 

In the post-processing of the RBD-CFD simulation results, we will strive to elucidate the 

role of tortuous structure and flow mal-distribution and, accordingly, the interaction between 

radial temperature field and velocity distribution. The RBD-CFD simulation results will also 

be used to explain the prevailing ambiguities connected with pseudo-homogeneous models, 

and, moreover, to investigate the influence of particles of different shape on the thermal 

behaviour of random packing structures.  

1.2.   Scope of thesis  

The main aim of this study is to characterise the hydrodynamics and heat transfer in fixed 

beds through a novel integrated workflow based on the sequential RBD-CFD methodology. 

We will focus on wall-heated fixed beds for a wide range of particle Reynolds numbers, covering 

all relevant flow regimes. In particular, this study is aimed at: 

1. Development of a hard-body random packing algorithm to synthesize realistic packing 

topologies of non-spherical and non-convex pellets. 

2. Investigation of the influence of the physio-mechanical properties of pellets, e.g. surface 

friction factor and coefficient of restitution, on packing densification. 

3. Development, verification and validation of an integrated workflow to perform particle-

resolved CFD simulation of flow hydrodynamics and heat transfer in randomly packed 

fixed beds of non-spherical pellets.  

4. Post-processing analysis of RBD-CFD simulation results. The in-situ behavior of 

velocity and thermal fields as well as the role of structural heterogeneity are 

meticulously addressed.   

5. Investigating the influence of dimensionality (tube over pellet diameter) and pellet 

design changes on the thermal behaviour of random packing structures. 

6. Elucidating and explaining the shortcomings linked with macroscopic models, i.e. tailor-

made pseudo-homogeneous models. 

Identifying and quantifying bed length effects on the effective heat transfer parameters 

(design parameters).  

The findings of this research should contribute significantly to the subject matter of 

transport processes in fixed bed systems, and show that the methodology of “Numerical 
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Experiments” can achieve and access data comparable to those obtained from expensive 

advanced experimental techniques such as MRI and 3D-CT. 

1.3.   Outline of thesis 

This thesis is arranged in seven chapters as outlined below: 

Chapter 2, “Literature Review on Modelling of Tubular Fixed Bed Reactors: 

Aspects of Hydrodynamics and Heat Transfer”, presents a comprehensive review 

concerning design aspects of tubular fixed bed reactors. The main concerns, as well as the 

often-cited hindrances towards modeling of hydrodynamics and wall-to-bed heat transfer in 

narrow fixed beds, are highlighted. This review highlights the still unresolved problems that 

call for further research.  

In Chapter 3, “A Rigid Body Dynamics Algorithm for Modelling Random 

Packing Structures of Non-Spherical and Non-Convex Pellets”, we propose and 

validate a novel physics-based hard-body packing algorithm, based on Rigid Body Dynamics 

(RBD), to simulate fixed bed arrangements of non-spherical and non-convex pellets.   

Chapter 4, “RBD-CFD Simulation of Fluid Flow and Heat Transfer: 

Preprocessing, Setup and Validation Study”, presents an integrated workflow consisting 

of a sequential RBD and CFD approach to simulate the hydrodynamics and heat transfer in 

fixed beds containing non-spherical pellets. The stepwise flowchart of the workflow will be 

elaborated. The problem of a wall-heated fixed bed system will be explicitly described. The 

chapter is completed by a thorough benchmark analysis for simulations of hydrodynamics and 

heat transfer, covering wide range of particle Reynolds number, in random packings of spheres, 

cylinders and Raschig rings.  

Chapter 5, “RBD-CFD Simulation of Fluid Flow and Heat Transfer: 

Importance of Heterogeneities and Inadequacy of Pseudo-Continuum 

Approaches”, deals with the post-processing of RBD-CFD simulation results for the problem 

of a wall-heated fixed bed described in Chapter 4. The in-situ behavior of velocity and thermal 

fields in random packings of spheres, cylinders and Raschig rings are meticulously analyzed. 

The chapter is completed by addressing and explaining the inadequacies of modified versions 

of pseudo-continuum approaches in predicting radial heat transfer.  

In Chapter 6, “Evaluation of Effective Heat Transfer Parameters in Tubular 

Fixed Beds of Non-Spherical Pellets”, we perform numerical experiments to elucidate the 

effective heat transfer parameters introduced in the classical ker-hw pseudo-homogenous model. 

A part of this chapter deals with the problem of reactor length-dependency of the values of ker 
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and hw, as well as the roles of shape and thermal conductivity of pellets and tube-to-pellet 

diameter ratio on ker and hw. The chapter is completed with a benchmark analysis, where the 

most promising literature correlations for Peer and Nuw are examined to compare the predicted 

radial temperature profiles using ker - hw pseudo-homogenous model with those obtained from 

RBD-CFD simulation results.  

Finally, in Chapter 7, “Conclusions and Recommendations”, we summarize the 

main conclusions and provide suggestions for future work.  
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Abstract 

A comprehensive review concerning design aspects of tubular fixed bed catalytic reactors is 

presented. The main concerns, as well as the often-cited hindrances towards modeling of hydrodynamics 

and wall-to-bed heat transfer in narrow fixed beds, are highlighted. The review shows that the prevailing 

radial porosity data are restricted to random packings of spheres, and few experimental works have 

dealt with non-spherical pellets. Recent advances in pseudo-continuum models are addressed and the 

position of Computational Fluid Dynamics (CFD) as a design tool for predicting the in-situ behavior 

of flow field and heat transfer is addressed. An overview of the most widely-used correlations for pressure 

drop and effective heat transfer parameters is presented. A comparison between published correlations 

demonstrates a large scatter of the predicted values for both effective Peclet number, Peer, and apparent 

wall Nusselt number, Nuw, evidencing lack of a consensus between researchers concerning the 

description of the radial heat dispersion using pseudo-continuum models. This review discusses the 

current progress of the field and highlights the still unresolved problems that call for further research.   

2.1.   Introduction 

Fixed bed arrangements have found wide applications, particularly in reaction engineering 

where they are used as catalytic reactors for the transformation of reactants into desired 

products. A fixed bed reactor (FBR) is an assembly of usually uniformly sized catalytic 

particles, which are randomly arranged and firmly held in position within a vessel or tube. In 

such reactors, the reactants are supplied to the reactor with the bulk of fluid, flowing through 

the voids of the bed and in this way, the reactants are transported firstly from the bulk of the 

fluid to the catalyst external surface, then through catalyst pores, where the reactants adsorb 

on catalytic sites on the surface of the pores and then undergo chemical transformation. The 

products are then desorbed and are eventually transported back into the fluid bulk. FBRs are 

usually equipped with external heating or cooling systems, whereby the rates of reactions, bulk 

temperature and accordingly the product yield and selectivity are controlled. In some cases, 

hindrances associated with the process controllability (e.g. thermal run-away) may lead to a 

particular design of fixed beds, so-called shell side fixed beds, in which thermal tubes, including 

cooling or heating media, pass longitudinally through a shell filled by catalyst pellets.  

The design of fixed bed catalytic reactors is very challenging because of the complexities 

inherent in the behaviour of transport scalars in a tortuous flow pattern, which make 

optimizing towards the product selectivity and yield, energy consumption as well as the total 

capital cost of a unit very problematic. The best course of action for a safe and reliable design 

is to develop appropriate models, describing the underpinning physio-chemical concepts, to 

mimic the behaviour of the system at the pellet scale. Most of the prevailing models, e.g. 
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pseudo-continuum models, have been developed for fixed beds of high tube-to-pellet diameter 

ratios (N), where the gradients in thermal and flow fields are reasonably mild, and hence can 

be averaged over the bed radius. However, handling highly exothermic or endothermic catalytic 

reactions (e.g. methane steam reforming and ethylene epoxidation) requires specific thermal 

management to avoid thermal runaway condition. This has led to employment of state-of-the-

art fixed bed configurations with N < 10, i.e. multi-tubular fixed beds. The modelling of such 

a narrow tubular fixed bed is very complicated because of the presence of wall effects across 

the entire of tube radius, resulting in very sharp gradients in both flow and temperature fields. 

Such flow and thermal fields cannot be thoroughly addressed by simplistic pseudo-homogenous 

plug flow models with averaged transport properties [1–5]. In fact, the premise behind these 

models does not allow us to take the roles of topological non-uniformities as well as local flow 

maldistribution into account, whereas these can strongly influence the distribution of transport 

scalars within the narrow-tube fixed bed reactors [5–8]. In the 1990s, a series of investigations 

have been conducted to improve the classical models in terms of dispersion and fluid flow. For 

example, Stewart et al. [9] proposed the data-based Green’s function methodology, and 

Kronberg and Westerterp [10] suggested a new “wave” model of dispersion and fluid flow. A 

group of researchers were inspired by the void fraction distribution, and thus strived to explain 

the radial inhomogeneities in the overall velocity field by flow channeling in the wall region, 

where the local porosity approaches one.  This group suggested coupling a simplified version 

of a radially varying axial velocity profile, vz(r), with homogenous heat transfer models to 

account for the roles of velocity field, e.g. [11–13]. However, these modifications could not 

compensate for the oversimplifications inherent in homogenous models, e.g. using so-called 

“effective” heat and mass transfer parameters to describe the local transport processes and 

mechanisms, specifically in low-N fixed bed reactors.  

Major developments in computer performance and numerical computations in the 2000s 

have allowed researchers to use Computational Fluid Dynamics (CFD) simulations to obtain 

a better understanding of transport processes within fixed beds. In fact, a more rigorous 

“discrete particle” or “particle resolved” CFD simulation of fixed bed reactors can provide 

further details of a reacting flow and transport processes at the pellet scale, aiding a more safe 

and reliable design of the system compared with the macroscopic pseudo-continuum 

approaches. A large quantity of publications has appeared, indicating the importance of CFD 

in providing valuable information on the nature of transport processes occurring within fixed 

beds [8,14–19]. However, the majority of these efforts have concentrated on spherical pellet 

packing structures, whilst application of catalyst pellets of non-spherical shapes such as 

cylinders, Raschig rings, trilobe, quadrulobe, hollow extrudates, etc. is becoming more popular 
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in industry because of their potential to enhance transport processes (e.g. Raschig rings are 

used in ethylene epoxidation process and multi-hole shaped catalyst pellets are used for 

methane steam reforming). The relative absence in CFD literature may be attributed to the 

difficulties inherent in discrete pellet modeling of random packing structures of such non-

spherical pellets [20].  

The aim of this chapter is to address the progress in modeling and design aspects of fixed 

bed reactors, with an emphasis on hydrodynamics and heat transfer. We will shed light on 

current progress, bottlenecks of the design, and areas that call for further research.  

2.2.   Fixed bed structures  

The design of randomly-packed fixed bed reactors is strongly influenced by the structure 

of the packing matrix, which in turn is governed by the shape, dimensions and the loading of 

the constituent particles. Fundamentally, the structure of a packing affects the hydrodynamics, 

heat and mass transport at the pellet scale, which, in turn, influences macroscopic parameters, 

e.g. yield and selectivity, in reaction processes. This has inspired researchers to delve 

profoundly into the topological features of random packing structures, e.g. [22–35]. These 

studies can be classified into three main categories, based on their main point of interest: (i) 

bulk porosity, (ii) radial porosity distribution, and (iii) algorithms for generating random 

packing structures. Here a brief review of the bulk and local porosity is given, whilst a deep 

coverage of the third category will be presented in chapter three.   

2.2.1.   Bulk porosity 

The packing structure of spherical particles is the most well-studied topology in fixed bed 

systems. The minimum bulk porosity, corresponding to the highest packing density, of such a 

packing is reported as 0.36 for uniform-sized spheres, while values for real random packings 

typically fall in the range of 0.36 to 0.42, [33]. Similar to spheres, cylindrical pellets are 

prevalent in chemical engineering applications, where they have remarkable advantages for 

enhancing transport processes in fixed bed unit operations. However, the packing structure is 

fundamentally different from sphere packings, because cylinders have orientational degrees of 

freedom, and their geometry embraces a diversity of surface elements, i.e. sharp corners as well 

as flat and curved surfaces. These essential differences have resulted in more diverse packing 

geometries of cylinders, which is evidenced by the wide range of bulk porosity values reported 

in the literature, e.g. the bulk porosity for random packings of equilateral cylinders varies from 

0.25 (Roblee et al. [36]) to 0.445 (Coelho et al. [37]), which is evidently much broader than for 

spheres. From a practical point of view, this observation may suggest that correlating the bulk 
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heat and mass transport properties for packings of cylinders is significantly more difficult than 

for packings of spheres. Similar interpretations can be found for other non-spherical pellets, 

e.g. Raschig rings, hollow cylinders, trilobes, etc., although the amount of literature on packings 

of non-convex pellet shapes is very scarce. The most-used correlations for bulk porosity relate 

to the experimental works by Dixon [23] and Foumeny and coworkers [29,38,39]. Dixon [23] 

measured the bulk porosity of a number of packings, including spheres, equilateral cylinders 

and Raschig rings, and developed correlations as a function of column-to-pellet diameter ratio, 

N. However, in this work, the columns were packed by slow pouring of the packing material 

manually without tamping, resulting in certain random loose packings. Foumeny and 

coworkers have measured the bulk void fraction of packings of different pellets shapes, 

including spheres, cylinders with different aspect ratios and Raschig rings, and proposed 

empirical correlations for dense packing porosities. In these works, pellets were simply poured 

into a column and gently vibrated in order to generate a much denser structure.  Table 2.1 

gives a summary of the correlations proposed by these research groups.  

Table 2.1 Summary of the most-used predictive correlations for bulk porosity 

Pellet shape Authors            Correlations N 

Sphere 
Dixon [23]  

Foumeny et al. [39] 
  

ε

ε

2

0.923

0.4 0.05 + 0.412

1
0.383 0.254           

0.723 1

−

= +

= +
−

N N

N
N

 
≥ 2 

 

≥ 1.86 
 

Cylinder 
Dixon [23] 

Foumeny & Roshani [29] 
  

ε

ε

2

0.85

0.36 0.1 + 0.7

1
0.293 0.684   

1.837 1

−

= +

= +
−

pv pv

pv

pv

N N

N
N

 
≥ 1.67 

 

≥ 1.86 
 

Raschig rings 
Dixon [23] 

Foumeny & Benyahia [38]  
  
( ) ( )

( ) ( )
( )

2
hc i o pv

2
i o sc

2
hc sc sc i o

1 1 2(d d 0.5) (1.145 1 N

              1 (d d ) 1

0.97 1 (d d )

− ε = + − −

× − − ε

ε = ε + − ε

 

 

≥ 1.67 

 
≥ 1.86 

 

2.2.2.   Radial porosity distribution 

The porosity variation of randomly-packed fixed beds in the near wall region has been 

investigated intensely during the last four decades as it influences the pressure drop, bed 

permeability, transport properties and residence time distribution. The role of the near wall 

region becomes more significant in tubular fixed beds with small bed-to-particle diameter 

ratios, typically less than 10 [5]. Roblee et al. [36] were one of the first research groups to 

measure the radial void fraction distribution in the near wall region experimentally. The 

authors used packing cardboard cylinders with cork spheres and filled the void space with 

molten wax. After the wax solidified in the void volumes, sections were cut out and the wax 
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fraction in each section was analyzed. The authors reported a damped oscillatory trend for the 

radial void fraction distribution, which approaches a constant value after 4 to 5 particle 

diameters from the wall. After this finding, several investigations were devoted to the 

determination of the radial porosity distribution in fixed bed arrangements [7,8,22,24,30,33,40–

43]. Virtually all these studies showed that the local porosity varies in an oscillatory pattern 

with an amplitude declining with increasing distance from the wall, and this oscillation is 

damped after a distinct number of particles (from 4 to 6) from the wall (see Fig.1). However, 

a major part of these studies focused on random packings of spheres, whilst only a few works 

have dealt with the local porosity variation in non-spherical packings [12,44].  Table 2.2 

presents the correlations proposed by de Klerk [30] for sphere packings, which have been 

widely-used in several studies, and by Roshani [44] for cylindrical pellets. 

 

Fig. 2.1 Radial porosity distribution for random sphere packings for N = 10. 

 

Table 2.2 Predictive correlations for radial porosity distribution where X is the dimensionless distance 

from tube wall based on the diameter of an equivalent sphere volume, i.e. X = (Rt-r)/dpv. 

Pellet shape   Authors                              Correlations 

    Sphere   de Klerk [30]  
( )

ε
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ε
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5 pv
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2.3.   Hydrodynamics in fixed beds  

In fixed bed reactors, radial heterogeneities in the packing structure, as evidenced by the 

radial porosity distribution, are present due to topological constraints imposed by the confining 

wall. This lateral heterogeneity becomes very pronounced in moderate to low N beds, say 

N<10, significantly influencing the pressure drop, local flow distribution and consequently the 

propagation of heat and species across the bed [4,17,19,45–47]. Numerous experimental and 

analytical studies have thus been devoted to the flow structure and pressure drop in fixed beds. 

A brief review of these studies is given in the following subsections.  

2.3.1.   Pressure drop 

A precise prediction of pressure drop in fixed beds is of great importance as it determines 

the energy requirements of the supplying pumps and compressors. Numerous studies have dealt 

with the pressure drop, both experimentally and theoretically, and a general consensus has 

been reached as to the way of describing the roles of Rep and mean porosity, ε, in infinite beds. 

The pressure drop for a large range of Reynolds numbers of fluid flow through a packed column 

with spherical particles is commonly described by the semi-empirical Ergun equation: 

μ ε ε ρΔ

ε ε

2 2
E s E s

3 2 3
p p

A (1 ) u B (1 ) uP

L d d

− −
= +  (2.1) 

where ∆P is the pressure drop, L is the bed length, us is the superficial flow velocity (i.e. 

volumetric flow rate divided by the cross-sectional area of the tube), ρ is the fluid density, μ 

is the molecular viscosity of fluid, dp is the pellet diameter, ε is the mean porosity of the bed, 

and the constants AE and BE equal to 150 and 1.75, respectively. However, the Ergun and 

similar equations,  e.g. [48], do not reflect the role of confining walls, specifically in tubular 

fixed beds, nor of pellets of different shape [49–52]. Several researchers have addressed the wall-

effect on the pressure drop in low N beds, resulting in elaborate correlations, such as those 

proposed by [49,51,53–55]. One of the most promising correlations was proposed by Eisfield 

and Schnitzlein [49], who presented a thorough review on the wall-effect in fixed beds and took 

a database of several thousands of experiments from 24 published studies, thereby improving 

the parameters of the friction coefficient proposed by Reichelt [53]. Relatively recent studies 

on pressure drop have also scrutinized the influence of confining walls [51,52]. Cheng [52] 

proposed a capillary-type model to improve the Ergun equation constants in terms of bed-to-

pellet diameter ratios, say 1.1 < N < 50.5. The author also discussed the suitability of his 

proposed formula by comparing it to other well-known correlations. Nonetheless, the opinions 

concerning the influence of different pellet shape, specifically in tubular fixed beds, on the 
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predicted pressure drop are very contradictory. Most investigators have tried to cater for the 

role of shape by using an effective particle diameter as well as a shape factor in the Ergun 

equation [56–58].  

Here we present some of the most-used correlations for pressure drop in a dimensionless 

form, called the pore-based friction factor F which is expressed as: 

εε Δ Δ

ε ερ ρ ε

3
p p

2 2
s s

d dP P
F

1 L (1 )u (u / ) L
= =

− −
 (2.2) 

Rearranging the Ergun equation in the form of Eq. (2.2), we obtain: 

E
E E

E

A
F B

Re
= +  (2.3) 

where ReE is the modified particle Reynolds number computed from: 

ρ

μ ε ε

s p p

E

u d Re
Re

(1 ) (1 )
= =

− −
 (2.4) 

One of the earlier attempts to deal with the influence of confining walls in the pressure 

drop was that of Mehta and Hawley [48]. The investigators proposed the hydraulic radius, RH, 

to account for the influence of the walls on the pressure drop in narrow fixed beds, i.e. low N 

beds.  Based on their proposition, RH is modified as follows:  

ε

ε

ε

p

H

d
R
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2
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=
−

= +
−

 
(2.5) 

 

(2.6) 

This modification has been frequently pursued by other researchers working on the 

pressure drop in tubular fixed beds, e.g. [49,52,59, etc.]. Using the modification factor M, Eqs. 

(2.3-4) are revised to: 

εε Δ Δ
Ψ

ε ερ ρ ε

3
p p WE

W W2 2
Ws s

2
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E W
E

d d AF P 1 P 1
B

M 1 L M (1 ) M Reu (u / ) L

A M
or F B M

Re

= = = = +
− −

= +

 
(2.7) 

 

 

(2.8) 

where ReW = ReE / M and AW and BW are constants.  

Table 3 summarizes the constants AW and BW for some of the most famous correlations 

used for predicting pressure drop in tubular fixed beds. 
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Table 2.3 Empirical correlations proposed for evaluating AW and BW 

    Authors AW BW N 

Mehta &Hawley [48]         150 1.75 7−91 

Reichelt [53] 
150 for sphere 

 

200 for cylinder 

2
2

2
2

1.5N 0.88  for sphere

2N 0.80    for cylinder

−
−

−
−

 + 

 + 

 1.7−91 

Fumeny et al. [60]       
2

130

M
 

N

M(2.28 0.335N)+
 3.23−23.8 

Eisfield & Schnitzlein  

[49] 

154 for sphere 
 

190 for cylinder 

2
2

2
2

ps

1.15N 0.87  for sphere

2N 0.77      for cylinder

−
−

−
−

 + 

 + 

 1.624−250 

Montillet et al. [59] 

α

ε

0.2

2

1000
N

M (1 )−
 α 0.212

N
M

 

 

3.8−14.5 

where α=0.061 & 0.05 for dense and loose packings, respectively 

Cheng [52] 
ε

ε

2

2

N 1
185 17 ( )

(1 ) N 1 M

 
+ − − 

 
ε

ε

1/3 2N 1
1.3( ) 0.03( )

1 N 1 M

 
+ − − 

 1.1−50.5 

Allen et al. [58] have recently revisited the Ergun equation concerning the prediction of 

pressure drop in a rectangular duct packed with rough spheres, smooth cylinders, cubes and 

crushed rock. The authors reported a poor estimation of Ergun equation in beds of non-

spherical pellets, e.g. under-estimating the pressure drop through beds of rocks by a factor as 

high as 5. The investigators measured the pressure drop in a wide range of N from 11 to 100 

and proposed some modifications and corrections on the Ergun equation to account for the 

role of pellet shape.   

A group of researchers have used CFD tools to investigate hydrodynamics and pressure 

drop in tubular fixed beds, e.g. [4,7,19,45,46,61–63]. Because of the high computational costs, 

these studies have been limited to low-N packing structures of spheres with several hundred 

particles. This coverage was adequate to address the role of walls on pressure drop, but the 

essential difficulties with generating random packings of non-spherical pellets remained. CFD 

studies of the flow field in fixed beds of non-spherical pellets are very scarce [19,25,64]. It is 

worth mentioning that the treatment of the pellet contact points to generate the packing can 

strongly affect the bulk porosity of the model, and thus the predicted pressure drop [46]. 
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2.3.2.   Flow structure  

A detailed knowledge of the flow field is essential for a proper design of fixed bed reactors 

as it directly affects the temperature and mass distribution inside the tortuous structure. This 

has inspired several researchers to use noninvasive experimental methods to measure the local 

flow structures in fixed beds. McGreavy et al. [65] used Laser Doppler velocimetry (LDV) in 

low-N fixed beds, for both liquid and gas experiments. Rashidi et al. [66] and Stephenson and 

Stewart [67] used particle tracking methods. The latter authors employed marker bubbles as a 

noninvasive approach to measure the in-situ radial distribution of velocity of a matched-

refractive index fluid in a packing of transparent cylinders with N = 10.7. They found that the 

global maxima and minima of local superficial velocities occur at 0.2dp and 0.5dp from the wall, 

respectively. Moreover, both studies reported an oscillatory trend for a radial velocity profile. 

The same pattern for radial velocity profile was also found using LDV by Giese et al. [12] for 

packed columns of spheres and cylinders with N = 10. Some researchers have used Magnetic 

Resonance Imaging (MRI) to characterize the flow field. For example, a quantitative MRI 

analysis by Sederman et al. [68,69] demonstrated generally accepted flow concepts such as 

velocity increase in void spaces, as well as inhomogeneous velocity distribution in different 

pores, in columns packed with ballotini spheres with N = 9, 14 and 19. The same results have 

been reported based on LDV measurements of radially-varying axial velocity by Krischke [70]. 

Ren et al. [71] have also used MRI to investigate the in-situ behavior of interstitial velocity 

distribution in packed columns of spheres for a wide range of N from 1.4 to 32. The authors 

demonstrated that the radial velocity distribution displays an oscillatory pattern, which reflects 

the ordering of the void spaces in the bed cross section. They also found a velocity rise near 

the tube wall of up to a factor of 4 of the average velocity. Baker et al. [25] used an image-

based meshing technique to create a packing geometry from MRI scans of fixed beds of 

cylindrical particles, which is a prerequisite to start CFD simulations of the flow field. The 

authors discussed the potential of this approach for re-structuring such complex geometries 

based on MRI and CT techniques to access the in-situ flow field information using 

supplementary CFD analysis. Despite the invaluable information of the interstitial flow 

behavior achieved by such non-invasive experimental techniques, each of these approaches is 

subject to severe limitations [5].  

Several researchers have been inspired by the similarities between the radial distribution 

of the axial velocities and the radial distribution of void fraction, and thus try to relate the 

former to the latter; this similarity is particularly clear for flow channeling at the wall region, 

where the local porosity approaches one. Giese et al. [12] and Bey and Eigenberger [11,72] have 

proposed a form of the Brinkman-Forcheimer-extended Darcy (BFD) equations and a modified 
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momentum balance, respectively, to describe the superficial velocity profile inside a packing 

structure. Their approaches assume a certain averaged velocity distribution, usually in the 

form of a radially-varying axial velocity field. Such models use an “effective turbulent viscosity” 

to account for turbulent flow fluctuations inside the packing. The main disadvantage of such 

approaches is the necessary use of effective parameters which lump the transport mechanisms 

occurring in a real fluid-porous system, possibly in a turbulent regime. These models can be 

regarded as an extension of the classical pseudo-continuum approach, in which a real solid-

fluid flow system is modelled as two inter-penetrating continua. The extended Brinkman 

equation proposed by Bey and Eigenberger [11] is expressed as: 
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where dH is the hydraulic diameter of a hollow cylinder after Brauer [73], which is expressed 

as: 
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and a is the specific surface area of a Raschig ring.  

Developments in computer performance and computational techniques during the two last 

decades have allowed researchers to increasingly make use CFD to model flow systems 

occurring in reaction engineering [74]. Several CFD studies have been devoted to the 

hydrodynamics in fixed beds, e.g. [7,45,62,75–77]. Virtually all of these efforts have considered 

tubular fixed beds containing several hundred spheres. Just a few works have recently been 

published, which cover shaped particles [8,19,78,79]. This is primarily due to the difficulties 

connected to generating a realistic packing of non-spherical particles, and also due to difficulties 

in meshing the resulting complex geometries. This is unfortunate because many common 

industrial processes use non-spherical particle shapes, such as Raschig rings for ethylene 
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epoxidation and multi-hole cylindrical particles for methane steam reforming. A detailed review 

of the application of CFD in this field will be given in Chapter 4.  

2.4.   The problem of wall-to-bed heat transfer 

A precise and safe design of fixed-bed chemical reactors requires an appropriate description 

of reaction kinetics, and radial heat and mass transfer processes. Among these, the role of wall-

to-bed heat transfer is of great importance, particularly in multi-tubular catalytic reactors 

which are often employed to handle highly exothermic and endothermic reactions. However, 

both measurements and simulations of radial temperature profiles in fixed beds have posed 

problems for many years, especially for narrow (tubular) fixed beds, because of the dominance 

of wall-effects across the entire tube cross-section [15,77].  The importance of this problem is 

evidenced by the amount of reviews over the last five decades that are either focused on fixed 

bed radial heat transfer, or have it as a major component [2,5,13,15,80–87]. Recent studies 

have mostly focused on the in-situ behavior of fluid flow by means of CFD tools, and reviews 

of the literature have concentrated on how the flow will affect heat transfer, e.g. [8,17,77]. 

Nonetheless, the amount of CFD literature directly studying the heat transfer in fixed beds is 

very scarce, as such studies require making a mesh inside the pellets as well, imposing a great 

deal of computational expenses [8,16,78,81]. A detailed review of the relevant published 

material will be given in chapter 4.   

As mentioned above, a full 3D CFD study of the flow field and heat and mass transport 

in a bed of several thousand particles comes at a large computational expense. Besides, the 

inherent topological complexities associated with non-spherical pellets are restricting the 

application of this methodology. Therefore, there is a continued interest in usage of classical 

pseudo-homogenous models, with a focus on selected features of flow and transport. Numerous 

researchers have dealt with the pseudo-continuum or macroscopic models of fixed bed reactors, 

which are based on fairly radical simplifications, such as unidirectional axial plug flow, pseudo-

homogeneity, effective transport parameters and uniform catalyst pellet surroundings. The 

simplest pseudo-homogenous model is one-dimensional (along the axial direction), and contains 

an overall heat transfer coefficient (U) based on the difference between the radially averaged 

temperature of the bed and the corresponding wall temperature [88]. A detailed review on this 

form of macroscopic models was given by Dixon [89]. The author used a model matching 

approach based on a one-point collocation method to correlate U as a function of the two-

dimensional pseudo-homogenous model parameters. A more complicated version of pseudo-

homogenous heat transfer models is two-dimensional (along the axial and radial direction), 

with either a plug flow or an axially-dispersed plug flow assumption. The former is often 
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referred to as the 2D-PF model and uses an effective radial thermal conductivity, ker, and an 

apparent wall heat transfer coefficient, hw, while the latter is called the 2DADPF model and 

utilizes an effective axial thermal conductivity, kea, to account for axial dispersion as well [90]. 

Here, ker lumps all mechanisms engaged in the radial heat transfer from the bed center up to 

the reactor wall. However, the observed increase in thermal resistance near the reactor wall 

has been a great challenge. One of the most-used concepts to describe this phenomenon is to 

idealize thermal resistance at the wall and lump all the mechanisms into an apparent wall heat 

transfer coefficient, hw. The following dimensionless equations represent the pseudo-

homogeneous two-dimensional axially-dispersed plug flow (2D-ADPF) heat transfer model: 

θ θ θ θ
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2 2
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 >∂ 
= → + = 

∂ <
 (2.15) 

where θ is dimensionless temperature defined as θ
w w 0

(T T)/(T T )= − − , ζ and ω  are 

dimensionless axial and radial coordinates defined as ζ
t

z /R= and ω t
r /R= , respectively, Peer 

and Peea are dimensionless effective radial and axial Peclet numbers defined as 

ρ
er 0 f p er

Pe ( v cp d )/ k=  and ρ
ea 0 f p ea

Pe ( v cp d )/ k= , respectively, and Bi is the apparent wall Biot 

number defined as w t er
Bi (h R )/k= . The effective parameters can be obtained by comparing 

accurate experimental results to the solutions of the pseudo-homogenous heat transfer model, 

i.e. by effectively solving the inverse problem. A detailed review has recently appeared which 

describes the current state of research and the perception of lateral heat transfer in fixed bed 

reactors [81]. The author describes the classical pseudo-homogenous ker-hw model, and explains 

the problems concerned with obtaining and analyzing experimental heat transfer data to 

compute ker and hw. Furthermore, the author has evaluated the prevailing correlations for ker, 

and highlighted the existing debates over the meaning and fitness of hw to predict heat transfer 

at the wall region. This effective parameter has been correlated to both Biot and Nusselt 

numbers in literature, which can be interrelated by means of the so-called Stanton number for 

heat transfer, Sth. The Stanton number is a dimensionless parameter, relating heat transfer 

coefficient to heat capacity of the fluid stream per unit cross-sectional area per unit time, and 

can be composed from either Nusselt or Biot number as: 
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h,w

f 0 f p er

ah R Nu Bi 2
St

v cp Re Pr Pe N

 
= = =  

 
 (2.16) 

Tables 2.4 and 2.5 summarize the frequently-used correlations for Peer and Bi or Nuw. 

Table 2.4 Empirical correlations of Peer 

Authors              Correlations 
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Even though these effective parameters (design data) have been investigated through 

extensive research attempts over the last five decades, wide disagreements on the 

experimental values and predictive correlations, particularly in apparent wall heat transfer 

coefficient can be observed [15,101]. Fig. 2.2 illustrates a large deviation between the values 

of Nuw and Peer predicted by frequently-used correlations over Rep.  
 

 

Fig. 2.2 Empirical correlations of Nuw and Peer for tubular fixed beds of alumina sphere with  

N = 3.1. 

Several researchers have assessed the difficulties concerned with the prediction of wall-to-

bed heat transfer in low-N reactors and also discussed the inadequacy of pseudo-homogenous 

models in prediction of the behavior of transport scalers in such cases due to wall-effect 

phenomenon [1,77,78,102,103].  

The major efforts towards improvements the classical pseudo-homogenous ker-hw models 

have been commenced in 1990s, where several researchers have tried to account for the role of 

velocity field in the models to address both the lateral heterogeneity in topology, and 

accordingly flow maldistribution. One of the interesting modifications relates to the work of 

Winterberg and Tsotsas [3,104], who proposed a quasi-homogeneous model for heat transport, 

so-called Λr(r)-model, accounting for laterally uneven distributions of porosity, radially-varying 

axial velocity profile and effective thermal conductivity. Even though a remarkable 

improvement on predicting radial temperature profile compared to the classical ker -hw models 

has been presented, the Λr(r)-model still requires the effective heat transfer parameters to 

describe heat transfer mechanisms, and even introduces another effective parameter, i.e. the 

effective bed viscosity. This implies the re-correlating of these parameters using models that 

include the velocity profile, where the parameters still represent several lumped transport 

processes. It is of noteworthy that the Λr(r)-model uses the real boundary condition, i.e. T =Tw 
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at the wall zone instead of the artificial one, i.e. Eq. (2.15). Bey and Eigengerger [72] have 

coupled BFD approach, i.e. Eq. (2.9-11), with axial dispersive ker -hw model to account for the 

role of wall-effect in the modeling of wall-to-bed heat transfer. The authors have claimed 

improved predictions of reactor behavior at low-N beds, confirming that the next generation 

of models needs to embrace more information concerning the flow field in the reactor. However, 

the same drawbacks to the Λr(r)-model can be counted for this simplistic version of CFD 

model. Magnico [15] has compared the predicted temperature profile by 2DPF heat transfer 

model, i.e. ker -hw model without axial dispersion, based on different effective heat transfer 

parameter correlations with the CFD results of heat transfer for random packing models of 

sphere with N = 5.6 and 7.8 at Rep laying between 80-160. The author demonstrated that the 

radial and axial profiles of temperature show a good agreement with the model of Zehner and 

Schlünder [105] research group and the model of Martin and Nilles [100]. A number of 

investigators have exercised the Zehner-Schlünder equations to obtain pointwise values of 

effective stagnant thermal radial conductivity, to cater for the change of this parameter across 

the radial position in the bed cross section, e.g. [106,107]. The former research group have 

suggested that a sophisticated representation of the bed structure is needed, and they 

substituted the radial porosity distribution, ε(r), into the Zehner–Schlünder equations to 

obtain ker,s(r). However, they have not presented any justification as to the procedure of this 

modification. Dixon et al. [107] conducted CFD simulations of a 3D annular fixed bed (ordered-

packing of sphere with N = 4) without flow to determine radial porosity and temperature 

profiles, and then used the computed ε(r) in the Zehner–Schlünder formulas to assess the 

pointwise effective thermal conductivity, ker,s(r). The authors then applied the modified 

Zehner–Schlünder model in a 1D pseudo-homogenous model using the finite element package 

COMSOL Multiphysics v.3.5. They demonstrated a very good agreement between the 

temperature profiles from the modified pseudo-homogenous model and that found from 3D 

CFD model. Behnam et al. [77] presented an improved version of velocity-based pseudo-

continuum model, which uses the pointwise-based Zehner–Schlünder model to reproduce the 

2D contour plot of temperature field obtained by 3D CFD simulations. They used an averaged 

axial and radial velocity components extracted from detailed 3D CFD simulations in a 2D 

velocity-based homogenous model, which is then solved in COMSOL Multiphysics v. 3.5 

software, and compared with the 3D CFD results of heat transfer. The advantage of this model 

is that the usual effective radial thermal conductivity and apparent wall heat transfer 

coefficient are not incorporated into the model, and there are no further adjustable parameters.  

Despite the inherent inadequacies connected with the classical pseudo-continuum 

approaches, as evidenced and addressed by vast bulk of researches in this field, astonishingly, 
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there is still a continued interest in the use of such simplistic models, particularly in the works 

within the context of catalysis and synthesis, e.g. [108–111].  However, the prevailing doubts 

and ambiguities as to the reliability of pseudo-continuum approach have hardly assisted 

designers of fixed bed reactors in selecting appropriate/dependable predictive correlations.  

Such situations effectively force the designers to seek validation of their design calculations 

through supplementary experimental studies, thereby imposing large additional expenses to a 

project.  It is for the noted reasons that the effective heat transfer parameters need to be given 

further attention, in particular in relation to: (i) effects of tube and catalyst pellet shapes and 

size, (ii) wall-effects and high amounts of azimuthal asymmetry emerging in moderate-to-low 

N structures, and (iii) the importance of tube length-dependence.  

2.5.   Concluding remarks 

In this chapter we presented a comprehensive literature review on the modeling of 

hydrodynamics and heat transfer in fixed bed reactors. The topological features of random 

packing structures were described and some of the most-used correlations for bulk and local 

porosity in packings of spheres, cylinders and Raschig rings were presented. The review showed 

that the prevailing radial porosity data are visually restricted to random packings of spheres, 

and only a few experimental works have dealt with non-spherical pellets.  

We also surveyed the literature on fluid flow hydrodynamics in fixed beds. The role of the 

wall-effect on pressure drop and widely-used correlations have been presented. The review 

showed a scarcity of information concerning pressure drop in random packings of non-spherical 

pellets. We described the progress in both experimental and theoretical studies of the velocity 

field within fixed bed systems and highlighted the disadvantages of simplistic BFD models and 

limitations of experimental techniques. The advantages and limitations of CFD approaches in 

predicting the in-situ behavior of the flow field were also highlighted. The problem of lateral 

heat transfer, i.e. wall-to-bed heat transfer, in tortuous structures was explained. This was 

followed by a deep survey of the relevant literature on the radial heat transfer problem, 

covering a range of approaches from the most simplistic pseudo-homogenous to more recent 

advances such as the velocity-based pseudo-continuum approach, based on the pointwise 

version of the Zehner–Schlünder model. Finally, we addressed the often-cited disagreement 

between the literature data on effective heat transfer parameters and the limitations connected 

with the classical ker -hw models.  

This review has highlighted the prevailing concerns as well as limitations in this field and 

directed us towards the crucial areas which call for further research. 
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Nomenclature 

a Specific surface area   [m2.m-3] 

cp Heat capacity [J.kg-1.K-1] 

dp Pellet diameter [m] 

dpv Diameter of a sphere of equal volume [m] 

dps Diameter of a sphere of equal specific surface area  [m] 

dt tube diameter [m] 

g gravity acceleration [ms-2] 

hw Apparent wall heat transfer coefficient [Wm-2K] 

k Molecular thermal conductivity [Wm-1K] 

L Bed length [m] 

N Tube to pellet diameter ratio [-] 

Npv Tube to pellet diameter ratio based on dpv [-] 

Nps Tube to pellet diameter ratio based on dps [-] 

r Radial direction [m] 

Rt Bed radius [m] 

Rep Reynolds number based on dpv: ρ μu ds pv    [-] 

us Superficial velocity  [m.s-1] 

vz(r) Artificial velocity after Bey and Eigenberger  [11] [m.s-1] 

X dimensionless distance from tube wall (Rt-r)/dpv) [-] 

z Axial coordinate [m] 

Greek Letters 
ε bulk porosity [-] 

εhc bulk porosity of packings of hollow cylinders  [-] 

εsc bulk porosity of packings of solid cylinders  [-] 

ε(r) radial porosity  [-] 

μ Molecular viscosity [kg.m-1s-1] 

∆P pressure drop [kg.m-1s-2] 

ρf Fluid phase density [kg.m-3] 

ηeff Effective viscosity [kg.m-1s-1] 

ω Dimensionless radial coordinate (r/Rt) [-] 

ζ Dimensionless axial coordinate (z/Rt) [-] 
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Abstract 

Structural features of random packings play an essential role in the design of fixed bed reactors. 

Despite common use of non-spherical catalyst pellets in chemical engineering applications, packing 

structures of such pellets have not been as systematically studied and characterized as spherical 

packings. Here, we propose and scrutinize a novel physics-based random packing algorithm, based on 

Rigid Body Dynamics (RBD), to simulate fixed bed arrangements of non-spherical and possibly non-

convex pellets. The proposed algorithm uses a hard-body approach to detect the collision/contact 

incidence and employs impulse theory to model the collision phenomena. The novelty is that the 

transition between moving and resting particles is controlled by a cut-off on the relative contact 

velocities, instead of artificially damping linear and angular velocities to stabilize the algorithm. The 

packing algorithm is used to synthesize random packing of spheres, equilateral solid cylinders and 

Raschig rings with tube-to-pellet diameter ratios ranging from 3 to 9.16. The packings are examined 

and validated in terms of bulk porosity and radial void fraction distribution, finding satisfactory 

agreement with the literature data for both global and local bed properties. Furthermore, a thorough 

analysis concerning the influence of physio-mechanical properties of catalyst pellets on packing 

densification is performed. Denser packing structures can be generated with restitution coefficients 

closer to one, and friction factors closer to zero. In all cases, the confining tube walls play an important 

role, especially for narrow packing geometries, with highly fluctuating bulk porosities. The novel 

physics-based packing algorithm can aid in furthering the knowledge of design of fixed bed unit 

operations. 

3.1.   Introduction 

Fixed bed arrangements find extensive applications, particularly in reaction engineering, 

where they are employed as catalytic reactors for the transformation of reactants into desired 

products. The design of such systems is highly influenced by the structure of the packing 

matrix, which, in turn, is governed by the pellet and container size and shape, the loading 

method, and the subsequent treatment of the bed. Classical approaches in modeling fixed bed 

reactors, from the most simplistic model such as the pseudo-homogenous plug flow model to 

the more improved Λ(r) model proposed by Winterberg and Tsotsas [1], which imposes a 

Brinkman-Forcheimer-extended Darcy (BFD) model to account for the axial velocity field, 

incorporate global and local bed properties, including bulk porosity and radial void fraction 

distribution. However, these pseudo-continuum models cannot provide an accurate prediction 

of the temperature field in tubular fixed beds, particularly for those with narrow to moderate 

tube-to-pellet diameter ratios (N), say N≤10, where the role of wall effects as well as pellet 

shape is completely neglected in such simplistic models [2–4].  
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During the last decades, advanced numerical techniques such as Computational Fluid 

Dynamics (CFD) and Lattice Boltzmann (LB) methodologies are increasingly used to fully 

resolve the three-dimensional mass-, momentum-, and heat transport around (and inside) 

individual catalyst pellets inside a bed [5–10]. Before such detailed simulations can be executed, 

we need to know the positions and orientations of the individual catalyst pellets inside the bed. 

This has persuaded researchers to delve profoundly into topological details of random packing 

structures through either experimental techniques such as Magnetic Resonance Imaging (MRI) 

and X-ray Computer Tomography (CT), e.g. [11–14], through numerical procedures in the 

form of inhouse and ad hoc algorithms, e.g. [15–18], or even through commercial codes such as 

PFC3D, which is a commercial Discrete Element Method (DEM) package, e.g. [19]. 

The majority of the prevailing efforts have concentrated on  random packings of spheres, 

whilst application of catalyst pellets of non-spherical and often non-convex shapes, such as 

cylinders, Raschig rings, pall rings, trilobes, etc., are becoming increasingly popular, 

particularly in chemical reaction applications because of their specific potential to enhance 

transport processes [4]. The amount of literature addressing structural properties of such non-

spherical packings is scarce [8,10,14,20,21]. This can be ascribed to the cumbersome and 

complicated strategies necessary to predict the trajectories of non-spherical objects during the 

loading process, where the orientational freedom of such pellets may not only be very 

problematic in terms of collision modelling, but also leads to exceptionally high computational 

expenses [22,23].  

The main aim of this contribution is to propose and examine a novel physics-based hard-

body packing algorithm, capable of simulating the dynamics of the random packing process of 

non-spherical and even non-convex pellets. The novelty of our method lies in the combination 

of an explicit treatment of instantaneous binary collisions with a global treatment of network 

of contacts between multiple particles when they are reaching their resting state. The transition 

between moving and resting particles is controlled by a cut-off on the mutual contact velocity. 

The fidelity and robustness of the proposed packing procedure in reproducing the statistical 

mean properties of realistic fixed bed arrangements is then thoroughly investigated and 

validated using published experimental and analytical data. Before introducing the proposed 

algorithm, a detailed survey on previous research efforts in this field is given, highlighting their 

advantages and restrictions.  
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3.1.1.   Literature review 

Topological features of random packing structures have been the subject of numerous 

analytical and experimental studies during the last five decades [11,14,29–33,15,17,22,24–28]. 

Nonetheless, only a minor selection of these studies has concentrated on evaluation and 

assessment of the spatial distribution of catalyst particles inside a bed, e.g. [11,15,31,33–35], 

whereas the amount of literature dealing with non-spherical pellets is scarce, e.g. [14,20,33]. 

Their generally opaque nature prohibits the exertion of conventional optical imaging techniques 

to address the spatial distribution of pellets of different shapes in random packing arrangements 

[22]. To circumvent this, several research groups have utilized advanced experimental 

techniques such as non-invasive imaging methods, e.g. MRI and 3D-CT [12–14,29,36]. For 

example, Sederman et al. [12] have used MRI in combination with image analysis techniques 

to characterize random packing structures of spheres with N = 9, 14 and 19.  Ren et al. [13] 

have employed MRI, coupled with velocity encoding and pulsed-field-gradient nuclear 

magnetic resonance (PFG-NMR), to analyze the flow structure in random packings of cylinders 

and spheres with N in the range of 1.4 to 32. Zhang et al. [29] have coupled X-ray micro-

tomography with a digital packing algorithm, which combines Monte Carlo and Distinct 

Element Methods, to reconstruct packing structures of equilateral cylinders with N = 12.8 from 

the micro-tomography images on a pellet-by-pellet basis.  Baker et al. [14] have investigated 

the fidelity of an image-based meshing approach as a tool for reconstructing random packing 

structures through pellet-scale data extracted from non-invasive methods such as MRI and 

CT. Fundamentally, using such non-invasive methods, an automated image-based algorithm 

must be used to extract the pellet-scale information, which is challenging even for realistic 

packings of spheres (see refs [37,38]).  However, for the case of non-spherical pellets, where 

their geometry embraces a variety of surface elements, i.e. flat and curved surfaces as well as 

corners, more complicated and rigorous reconstruction techniques are needed to accurately 

compute the positions and orientations of each pellet in a bed [36].  

On the whole, the complexities and costs associated with non-invasive experimental 

measurement of full 3D granular systems, together with the large computational costs for post-

processing, have persuaded researchers to seek alternative numerical methods. This has 

resulted in a multiplicity of packing algorithms, models and codes for generating random 

packing structures numerically [11,15,17,31,34,35,39].  Even though the specific details make 

each model unique, the majority of the prevailing algorithms can be classified into one of the 

following categories: i) Sequential-Deposition or deterministic algorithms, ii) Collective 

Rearrangement algorithms, and iii) Physics-based methods.  



Chapter 3 

42 

 

Sequential Deposition (SD) algorithms are principally initialized by either a sphere or 

sphere cluster. The packing structure is then generated based on a procedure known as random 

settlement [40,41], whereby the filling process is usually modeled by instantaneous placement 

of a new sphere in contact with either three spheres or with two spheres and the container 

wall, all of which are already fixed in their positions. A subcategory of deterministic approaches 

is the drop-and-roll type algorithm [42], in which a packing is initially assembled in vertical 

direction and then is compacted through lateral displacements of pellets by imposing a 

gravitational force field. Coelho et al. [43] proposed a sequential packing model based on the 

successive deposition of grains in a gravitational field. Their model initiates with random 

placement of grains above the bed, and then the filling process is continued layer after a layer, 

until the grain particles reach a local minimum of their potential energy. The algorithm allows 

any displacement and rotation of particles that contributes to a lowering of their barycenters. 

Atmakidis and Kenig [44] have employed an improved version of this approach proposed by 

Kainourgiakis et al. [45] to generate random packing model of spheres with N = 5. Mueller [39] 

has investigated four different deterministic algorithms including modified Bennett [46], layer, 

alternate and percentage methods, to synthesize packing geometries of mono-sized spheres. 

What distinguishes these proposed approaches are the methods adopted to model the loading 

process, viz. the procedures devised for placement of new spheres in the alternative positions. 

Mueller demonstrated that the percentage model gives the best results for radial void fraction 

distribution out of the other approaches considered. The basis of this method is to locate a 

sphere at the lowest alternative vertical positions based on a prescribed percentage. It means 

that the resting site for a new sphere is determined by comparison between the percentages of 

accessible alternative sites and the prescribed one.  Mueller suggested that the optimum value 

of this percentage corresponds to the lowest bed porosity, however his further analyses 

demonstrated the severe dependence of this value on N, where for N ranging from 3.96 to 20.3, 

the optimum value of the percentage decreases from 70% to 10%. Furthermore, it was noticed 

that the accuracy of these deterministic approaches becomes lower as the bed-to-pellet 

diameter ratio increases. Mueller has improved his algorithm in another work [34], by proposing 

a dimensionless packing parameter, thereby enhancing the procedure of the sphere’s sequential 

placement. Using this improvement, Mueller generated packings of mono-sized spheres with 

much better approximation of the radial void fraction profile, even for cases of large N-beds. 

Magnico [47] has used a modified version of the Bennet method, which was improved based 

on the Mueller method [39] to account for wall effects, to generate random packings of spheres 

with N = 5.96 and 7.8. Basically, the distinct advantages of SD techniques are their low 

computational expenses as well as their intrinsic simplicities in terms of programming. 
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However, as a major disadvantage, it is very difficult to manage the porosity of the resulting 

structures even with highly complex deposition algorithms.  

Collective Rearrangement (CR) algorithms form another category of packing simulation. 

CR is fundamentally regarded as a process whereby (i) the overlapping particles undergo a 

series of repetitive minor displacements so that all detected overlaps in the computational 

domain are removed (if the initial condition is overlapping), and (ii) the particles are migrated 

stochastically with the aim of decreasing the bulk porosity (if the initial condition is non-

overlapping). Liu and Thompson [48] have proposed a CR algorithm to generate random 

packing structures of spheres. The authors have investigated the influence of different boundary 

conditions on the generated packing structures. Maier et al. [49] have used a hard-sphere Monte 

Carlo algorithm to synthesize random packings of mono-sized spheres. In this algorithm, 

spheres are initially arranged at the intersections of a cubic lattice within a cylindrical tube 

with periodic boundaries set at its ends. Each sphere is then migrated stochastically, where a 

displacement is allowable if it does not lead to overlap with another sphere or the wall. The 

investigators benchmarked the radial void fraction profiles obtained from three generated-

structures with N > 10 against experimental data.  Sobolev and Amirjanove [50] have proposed 

a similar CR algorithm, however their model benefits from a method allowing for a much 

denser initial arrangement of spheres in the container, thereby reducing the computational 

expenses significantly. The authors have shown that the density of simulated structures 

increases by repetition of the CR procedure, i.e. the number of packing trials. Freund et al. [5] 

have exercised a two-step Monte Carlo process based on the packing algorithm proposed by 

Soppe [11] The CR algorithm exerted starts with initial placement of spheres inside a 

cylindrical tube, and then the packing is compressed through rearranging the spheres with an 

increased possibility into the direction of gravity. The packing process is stopped using 

convergence criteria that take into account changes in potential energy as well as mechanical 

stability. 

A subcategory of CR algorithms is the digital packing approach, which is based on 

‘pixelation’ (2D), or ‘voxelation’ (3D) of both objects and packing space [20,31]. The basis of 

a code called DigiPac, which has been developed and improved by Caulkin et al. [20,31], is to 

allow random migration of particles, one grid for each time interval, on a cubic lattice. This 

random movement includes both directional and diffusive motions, imitating a random walk-

based sedimentation model. In fact, the movement of particles over a grid facilitates the process 

of collision detection as it can be examined whether two particles occupy the same grid space 

at the same time. This interesting feature significantly reduces the computational expense of 

a typical run compared to other CR algorithms, whereby overlap detection is mostly 
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undertaken by further mathematical analysis [20].  One of the most important advantages of 

this algorithm is to use digitization for representing packing objects, allowing for synthetic 

generation of random packings of even non-spherical particles. The investigators have inspected 

the validity of DigiPac by comparing the radial void fraction profiles, extracted from a number 

of simulated packing structures of both solid and hollow cylinders with 7  < N <  16, with their 

own experimental data. Baker and Tabor [51] have employed DigiPac to generate random 

packings of spheres including 160 particles with N = 7.14.  

Fundamentally, CR algorithms have significant advantages compared to SD algorithms. 

For instance, the final bed porosity can be adjusted a priori, and a spatial correlation for 

particle size distribution as well as their initial placement can be prescribed. Nonetheless, the 

main disadvantage of such randomized particle packing algorithms is that they are neglecting 

the physical aspects of the packing process. Moreover, their computational demands are high 

due to the very slow process of convergence, particularly for very dense or very loose packings 

[48].  

The third classification, i.e. Physics-based methods, embraces the whole procedure that 

realistically describes the interactions between pellets and between pellets and wall. The 

foundations of such procedures are rooted in Newtonian mechanics. Salvat et al. [15] have 

proposed a Physics-based approach in the form of a soft-sphere algorithm to generate a packed 

bed structure of mono-sized spheres in a cylindrical container. The algorithm allows some 

interpenetration between particles, but does not account for friction forces. The authors 

validated their model by comparing the predicted particle center distribution for N = 7.99 to 

experimental data by Mueller [52]. Dixon et al. [6] have employed an improved version of this 

algorithm using part of Mueller’s algorithm [39] concerning the initial placement of spheres at 

the base of the cylindrical container. The authors have then validated their packing generation 

procedure, for models of more than 1000 spheres, with N = 5.45 and 7.44, by comparing the 

predicted radial void fraction profile to the literate data reported by Benenati and Brossilow 

[24]. In a similar work, Behnam et al. [7] have validated their packing generation model using 

the experimental data reported by Mueller [52]. Siiria and Yliruusi [16] have developed a 

program based on Newton’s laws of motion to generate random packing of spheres. Their 

model accounts for all forces including gravity, collision forces and friction. 

The Discrete Element Method (DEM) can be considered as a subcategory of physics-based 

methods. DEM (Cundall and Strack [53]) is conceptually related to molecular dynamics, in 

which the trajectories of individual particles are computed by evaluating all forces. Since the 

main emphasis of researchers in this area is to investigate dense granular flows, thereby 

generating the most packed particulate beds, most of investigators have thus implemented 
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time-driven (soft-sphere) class of DEM. Nowadays, DEM has become a common and reliable 

computational tool to either probe the dynamics of grains in a particulate bed,[54] or to be 

coupled with CFD tools to investigate the hydrodynamics of a packed bed [10,19,21,55,56].  

For example, Theuerkauf et al. [57] used DEM to investigate the local and global bed properties 

in narrow tubular fixed beds. The investigators have introduced DEM as a robust tool for 

generating random packing structures of spheres with moderate to low tube-to-pellet diameter 

ratios. Bia et al. [19] have exercised a commercial DEM code, PFC3D, to generate realistic 

random packings of spheres and cylinders with N ≤ 4 as a part of a CFD study of flow field 

and pressure drop in packed beds. The authors have highlighted the difficulties associated with 

simulation of non-spherical packing structures using DEM. Eppinger et al. [55] have exercised 

coupled DEM-CFD using a commercial CFD package, STAR-CD, to investigate the behavior 

of the flow field in DEM-generated packings of spheres with 3 ≤ N ≤ 10. The authors inspected 

the validity of their simulated models by comparing with published correlations concerning 

radial void fraction distribution. Yang et al. [58] have also employed the same DEM package 

as in the work of Bai et al. [19] to generate random packings of spheres with 3 < N ≤ 8, as a 

part of a CFD analysis of flow and thermal fields in packed beds. The investigators have shown 

satisfactory agreements between the radial void fraction data obtained from the models and 

published experimental data. In fact, DEM seems to be the most promising concept among 

the available methods for predicting both macroscopic and microscopic features of particulate 

flows. However, a particular challenge, not only in DEM but in every numerical approach, is 

the accurate incorporation of non-sphericity, convexity and non-convexity of packing objects, 

as frequently encountered in practical situations. Only a few studies have dealt with non-

spherical DEM, investigating various strategies to model non-spherical objects and contact 

detection algorithms. For a detailed review on the application of DEM in non-spherical 

particulate system, we refer to the works of Lu et al. [22] and Zhong et al. [23]. These reviews 

have surveyed recent advances in 3D modelling of non-spherical objects, covering the main 

findings as well as the inherent difficulties concerned with non-spherical particulate systems 

using DEM.  

The simplest non-spherical objects that have been incorporated into DEM are  ellipses in 

2D and ellipsoids in 3D, where a surrogate model of such particles can be simply represented 

by algebraic equations [59,60]. However, this method, i.e. modeling a non-spherical particle 

using algebraic equations, is restricted to particle shapes which can be expressed algebraically, 

as an (often relatively simple) equation. To date, one of the most frequent and straightforward 

approaches in non-spherical DEM is the so-called composite-sphere or glued-sphere method, in 

which the established framework of spherical DEM is applied to approximate non-spherical 
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particles and their collisions during the packing process. A number of researchers have 

addressed the hindrances associated with the application of DEM glued-sphere approach such 

as its sensitivity to the parameters and the need for calibration [61,62].  Wu et al. [33] have 

employed this approach to investigate the behavior of cubical particle packings. The authors 

have investigated the influence of vibration conditions on packing densification. Dong et al. 

[10] have implemented the same approach using a commercial DEM code, STAR-CD (using 

the methodology proposed by Eppinger et al. [55]) to generate random packings of steatite 

rings (with do/di/h equal to 6.2/3.5/4.5 and 8/6/8 mm), as part of a CFD analysis of the flow 

field and heat transfer in pack beds. However, the main disadvantages of the composite-sphere 

method are: i) the computational expenses, which increase tremendously with the number of 

spheres required for 3D approximation of a non-spherical object, viz. the more realistic the 

geometry of a particle, the higher the number of spheres necessary per particle, and ii) the 

occurrence of multiple contact points, which is inherent in non-spherical particles, which may 

lead to inaccurate force calculation [22]. This has urged several researchers to improve the 

glued-sphere DEM method [62,77]. Furthermore, alternative approaches to model collisional 

contact between particles have recently been proposed and applied to different problems, 

addressing different issues for modelling non-spherical particles [22,78,79]. Notably, the Gilbert-

Johnson-Keerthi (GJK) distance algorithm is a fast computational procedure that can be used 

to detect overlap between non-spherical particles, which has recently been combined with a 

soft-particle approach for the contact model [79]. Of course, a GJK contact detection algorithm 

could also be combined with a rigid body dynamics approach (discussed next), but a major 

disadvantage of the GJK approach is that it is inherently limited to convex particles, i.e 

particles without any holes and with only convex outer surfaces. 

Despite the above seeds of research covering non-spherical pellets, there has been relatively 

little progress in this field. Several important modeling aspects, such as the contact detection 

procedure in such complicated systems, and the problem of force-torque coupling upon 

collision, require substantial research efforts. 

The main purpose of this chapter is to address this complex problem, introducing a 

procedure of generating packings of non-spherical and even non-convex pellets. To this end, a 

physics-based packing algorithm based on rigid body dynamics (RBD) is developed and 

examined for generating random packings of catalyst pellets with different shapes, including 

spheres, equilateral solid cylinders and Raschig rings. The essential features of our algorithm 

are i) a realistic representation of non-spherical pellets using triangular face mesh, which  allows 

for simulation of  even non-convex pellets with sharp edges; ii) the exertion of a hard-body 

collisional model whereby avoiding the unphysically large overlap of particles that might be 
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caused by artificially lowered spring stiffness, frequently employed in DEM simulations to 

prevent unfeasibly small time steps in the treatment of particle collisions; and iii) an explicit 

way of modelling resting contacts between multiple particles based on relative velocities, which 

avoids artificial damping of linear and angular velocities. The fidelity of the approach in 

reproducing the topological properties of realistic packing arrangements is then discussed using 

comparisons between the predicted data obtained from computer-generated structures and 

published experimental and analytical data.  

3.2.   Numerical set-up and model formulations  

3.2.1.   Rigid Body Dynamics (RBD) 

RBD is frequently used in the field of graphic design and simulation [63]. Fundamentally, 

it is an analytical scheme capable of simulating the dynamic behaviour of assemblies of 

arbitrarily shaped objects based on Newton’s laws of motion and Lagrangian mechanics. The 

background of RBD has been thoroughly investigated by several authors [64,65]. The main 

hypothesis of this approach is to consider the objects as rigid bodies, thereby facilitating the 

analysis of their motion by describing the translation and rotation of reference frames attached 

to each rigid body. Furthermore, contrary to the widely-used time-driven DEM which benefits 

from the soft contact approach, RBD is more akin to hard contact methods, streamlining the 

process of collision analysis, particularly in a system of non-spherical objects, where any overlap 

between non-convex objects makes the detection of contact points/edges very problematic [22]. 

RBD has been frequently used as an appropriate middleware framework in computer graphics 

and animation software such as FlipBook by DigiCel, Blender by the Blender Foundation, 

Maya by Autodesk and Cinema 4D by Maxon. The application of RBD in the field of chemical 

reaction engineering has recently been introduced by Boccardo et al. [8], where the authors 

used the open-source code Blender (which uses the Bullet Physics Library) to synthesize packed 

beds of different pellet shapes such as spheres, cylinders and trilobes. Following this, Partopour 

and Dixon [66] proposed an integrated workflow for resolved-particle fixed bed models with 

non-spherical pellet shapes. The authors have also used the Bullet Physics Library for 

generating packing structures of spheres, cylinders, Raschig rings, and quadrilobes with five 

holes. In the Blender software, a simplified approach based on damping the translational and 

rotational velocities of each object is used to speed up the process of getting objects to the 

resting position (see Blender reference manual at www.blender.org and Partopour and Dixon 

[66]). This simplistic approach is pursued to avoid overshoot and jiggling of objects in the 

resting contact condition which accordingly leads to a more stable simulation and convergence. 

However, the damping of linear and angular velocities is implemented on each “active” object 
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during the simulation, i.e. at each time step, and causes a violation of the law of conservation 

of linear and angular momentum and energy over each time interval.  

In this chapter we offer an alternative RBD-based packing algorithm in which no damping 

forces are applied to moving particles. Rather, the transition between moving and resting 

particles is controlled by a cutoff on the relative contact velocity followed by a detailed balance 

of constrained forces acting on each pellet to model the resting contact condition rigorously 

and to facilitate the stability of convergence in RBD simulations.  

3.2.2.   Description of a non-spherical pellet  

In this work, a catalyst pellet is regarded as a non-deformable material, which is 

characterized by a translation vector x(t), indicative of the barycenter of a pellet in the world 

space, and a unit quaternion 0 1 2 3
(t) [q (t),q (t),q (t),q (t)]=q , with 2 2 2 2

0 1 2 3
q q q q 1+ + + = , which 

determines the orientation of a pellet around its center of mass in the world space. A rotation 

matrix R(t) that transforms the orientation of the particle from a body(-fixed) to the world 

space coordinate system, can be expressed in terms of quaternions as: 

2 2 2 2

0 1 2 3

2 2 2 2

0 1 2 3

2 2 2 2

0 1 2 3

2 2

2 2

2 2

1 2 0 3 1 3 0 3

1 2 0 3 2 3 0 1

1 3 0 2 2 3 0 1
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 

= + − 
 − +  

R  (3.1) 

Using the quaternion-based approach, we can circumvent singularities (“gimbal lock”) 

inherent in the Euler angle method [67], and also diminish numerical drifts, and corresponding 

topological skewness, stemming from the direct exertion of rotational matrices in computing 

the orientation of a pellet during numerical simulation of the packing process. The other 

constant parameters describing the physio-mechanical properties of a catalyst pellet are its 

mass m, moment of inertia tensor Ib in the fixed body space, collisional dissipation measured 

by a coefficient of restitution COR, and surface friction factor µk. Lastly, the most important 

part of the preprocessing step in RBD-based simulations is the 3D modeling of the pellet shape, 

accomplished by describing the particle boundaries in the fixed body space. In order to model 

a surrogate for the pellets, a fast and simplified subdivision-based polygonal approach proposed 

by Loop [68] is adopted, by which the body surfaces of an object are approximated using 

triangular meshes. Having incorporated the general formula of packings such as sphere, 

equilateral solid cylinder and Raschig ring, into the Loop algorithm, the body space of surrogate 

geometries is modeled optimally and in the most smoothed fashion. Fig. 3.1 illustrates 3D 

models of the pellets investigated in this work.  
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            (a)                         (b)                           (c)     
 

Fig. 3.1 3D models of catalyst pellets, represented by triangular face mesh; (a) sphere with dp 

= 10mm, (b) equilateral solid cylinder with dp = h = 10mm and (c) Raschig ring with dpo/h/δ 

= 10/10/2 mm. 

3.2.3.   Rigid body of equation of motion  

The translational and rotational state of a moving object in the world space at time t is 

described here by a state vector, X(t), which is expressed as: 

where x(t) is the position of the center of mass in world space, q(t) is the unit quaternion 

describing the object orientation, and P(t) and L(t) are linear and angular momenta, 

respectively. The equation of motion, EOM, for an assembly of rigid pellets would hence be 

the derivative of the state vector at time t:  
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where i=1, 2, ..., np denote the pellet index number, vi(t) is the linear velocity of the center of 

mass of a pellet, i(t)ω  the angular velocity around its center of mass, Fi(t) is the total external 

force acting on pellet i, i(t)τ  is the torque on the object (around its center of mass), and Ii(t) 

is the moment of inertia tensor of pellet i, which can be simply computed from the body-fixed 

moment of inertia tensor Ib and the rotation matrix Ri(t). Note that both world space and 
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body space (local) coordinate systems are required to rigorously describe the rotational motion 

of a non-spherical pellet in the world space during numerical packing simulations (see Figure 

3.2a). Transformation between these two reference frames is conveniently performed using the 

rotation matrix at each time step. To compute the rotational motion of pellets in the world 

space system, the vector transformation approach is applied, which has been demonstrated to 

be more computationally efficient compared to the tensor transformation approach [69].  

To track the change of the state variables of the catalyst pellets over time, the EOM for 

each pellet, which is conceptually an initial value ODE problem, is resolved using a midpoint 

scheme. The reason behind adopting such a method to handle EOMs is the order of precision 

of O(h3), which alleviates skewing effects in the orientations of pellets stemming from numerical 

drift during the packing process. The algorithmic update for the ith pellet can be expressed as: 
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where ∆tm is the time step at iteration m. To eliminate error accumulation in updating the 

orientation of a pellet, the quaternion of each pellet is re-normalized after each time interval 

[70]. 

3.2.3.1.   Implementation of force fields and torque 

The total force acting on the ith pellet at time t, Fi(t) can be expressed as: 

i i i,n i,t
(t) (t) (t) (t)= + +F W F F  (3.6) 

where Wi is a body force, in this case the weight acting on the center of mass of the pellet, 

causing it to accelerate at 9.81 ms-2 in the direction of gravity. This force is simply described 

as:  

g
i i
=−

)
W zm  (3.7) 

where 
)
z is the unit vector in the direction of the z-axis in the world space coordinate system. 
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Fi,n(t) and Fi,t(t) describe the collision forces on pellet i due to its interaction with 

neighboring pellet or tube walls. In essence, for a typical oblique contact between two rigid 

objects, the contact force can be decomposed into normal and tangential directions. The normal 

contact force Fi,n(t) includes a repulsive force and viscous dissipation (associated with a certain 

coefficient of restitution). The tangential contact force Fi,t(t) is considered as a friction force. 

Fig. 3.2 shows a typical schematic of the forces acting on two colliding cylindrical pellets.  
 

(a)                               (b) 

Fig. 3.2 Typical 3D-schematic of collision between two rigid cylinders, (a) spatial variables of 

colliding pellets, (b) normal and tangential forces acting on the contact point. 

The total tangential force acting on the body of pellet i is expressed as:  

i,t iL,t iB,t ik,t
k

(t) (t) (t) (t)= + + ∑F F F F  (3.8) 

where FiL,t(t) and FiB,t(t) are the tangential friction forces caused by lateral and bottom walls, 

respectively, and Fik,t(t) is the tangential friction force due to collisional contact between the 

ith and kth pellets. Fundamentally, the friction force between two objects resists sliding motion 

of two contacted surfaces against each other. Here, the Coulomb friction model is employed to 

describe the friction force at contact time t. This model can be represented for colliding contact 

between pellets i and k as: 
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where ik,n(t)f  is the magnitude of the normal force at the contact point (discussed later), μd is 

the kinetic friction coefficient, ik(t)
)
t is the unit vector in the world space coordinate system 
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that friction force acts along, ik(t)
)
n  is the normal unit vector of the cell face or plane to which 

the contact point p belongs, and vpi(t) and vpk(t) are the surface velocities at the contact points 

on the ith and kth pellets, respectively, which can be mathematically expressed by: 
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(3.13) 

     In order to evaluate if dynamic friction should occur at the contact point, a threshold ԑf, 

based on the relative tangential velocity of the colliding pellets on the face cell or plane, i.e. 

pik ik.
)

v t , is considered, thereby restricting the role of this force in the analysis when packings 

are being stabilized. It is worth remarking that both FiL,t(t) and FiB,t(t) can be computed using 

a simpler procedure by setting vpL = vpB =0. Using the scalar pik,n pik ik(t) (t). (t)
)

v = v n , which 

describes the relative contact velocity in the direction of ik

)
n , we can classify the behavior of 

collision, into three categories. Fundamentally, positive values of pik,n(t)v , i.e. εpik,n p(t)>v , mean 

that the pellets are separating and the contact point is vanishing after tc. In this condition, the 

ODE solver can still continue the computational procedure. A zero value within a numerical 

threshold, ε εp pik,n p(t) <− < v , indicates that the pellets are neither approaching nor receding, 

which describes a situation called resting contact. This is a complicated condition for modelling 

support and counter forces at contact points (this is meticulously tackled in section 3.2.3.2). 

The last possibility, i.e. a negative value of this quantity, εpik,n p(t)< -v , corresponds to the case 

of colliding contact. These alternative cases are illustrated in Fig. 3.3.  

 

 

                                                                     (a)                        (b)                       (c) 

Fig. 3.3 The three alternatives for collision phenomena in a 2d vertex/face contact; (a) pellets are 

separating, (b) pellets are in resting contact, and (c) pellets are in colliding contact situation. 

Similarly, the total normal force acting on the body of ith pellet, i.e. Fi,n(t), is described by 

the following relation: 
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i,n iL,n iB,n ik ,n
k

(t) (t) (t) (t)= + + ∑F F F F  (3.14) 

where the first two terms in the right-hand side of Eq. (3.14) describe the normal force acting 

on the contact points of the ith pellet whilst in collisional contact with lateral and bottom walls, 

respectively, and the rightmost term, i.e. Fik,n(t), is the normal force due to interaction between 

the ith and kth pellets. Conceptually, FiL,n(t) and FiB,n(t) are always directed at the normal of 

the confining walls at the contact points and only affect the pellets, whilst Fik,n(t) acts on the 

contact points in the direction of normal vector of either the cell face or the plane passing 

through the two crossed cell edges, whereat two pellets are colliding (the procedure of contact 

time/point evaluation is explained in section 3.2.4). 

Conceptually, upon a collision the normal relative velocities of the colliding pellets are 

suddenly reversed in a discontinuous way so that the bodies do not interpenetrate. Such a 

situation would violate the assumption under which the ODE solver is able to work, namely a 

smooth variation of Xi(t) over the time intervals. Therefore, the ODE solver for the pellets 

engaged in collision conditions, whether it is colliding or resting contact, ought to be stopped, 

and another computational procedure should be pursued to trace the trajectories of the pellets. 

We note that this computational procedure is founded on the state vector of colliding objects 

at a time step before the contact time tc, implicating that we assume that (i) the state vectors 

of colliding objects do not change during the collision period, i.e. tc ϵ [tm,tm+1], and that (ii) the 

state vectors of objects in collisional contact change discontinuously at the end of the collision 

period, i.e. at tm+1.  

In this study, we will work with the impulse due to a colliding contact when εpik,n p(t) < - .v

For such a collision, taken place at time tc within the interval [tm,tm+1], with the net impulse is 

defined as:  

Δ
m 1

m 1

m
m

t t

i i i tt

(t) (t)dt
+

+= =∫J F P  (3.15) 

The above equation is nothing but the statement that the total impulse of all collisional 

forces on pellet i corresponds to the difference in linear momentum of pellet i. As for the case 

of friction force, consider that two pellets i and k are in colliding contact at the vertex point p 

in their body spaces at time tc, where pi(tc) = pk(tc) = p. In this condition, the velocities of the 

collided objects need to instantly undergo a drastic change to prevent the bodies from 

interpenetration. The impulse, Jik(tc), for this case can be expressed by the following relation: 
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ik,n c ik,n c ik c

ik,t c ik,t c ik c

(t ) (t ) (t )
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(t ) (t ) (t )

(t ) (t ) (t )

= +

=

=

)

)

J J J

J n

J t

j

j

 

(3.16) 

 
(3.17) 

(3.18) 

where jik,n and jik,t are undetermined scalars representing the magnitude of impulse in normal 

and tangential directions with respect to the contact face, respectively. It is worth remarking 

that if the impulse of Jik acts on pellet i, the body of pellet k would then be subjected to an 

equal but opposite impulse of -Jik to satisfy the momentum conservation law. The impulse 

acting on pellet i (due to its collision with pellet k) produces an impulsive torque, ,ikJ
τ , which 

is expressed as: 

( ),ik c i c i c ik c
(t ) (t ) (t ) (t )= − ×

J
τ p x J  (3.19) 

In order to evaluate the magnitude of the impulse in the normal direction, jik,n, an empirical 

model describing the colliding contact is used, where the relative normal velocities of the 

contact vertices before and after collision are connected by the coefficient of restitution, COR. 

This empirical law can be expressed as: 

pik,n pik,n
(COR)+ −= −v v  (3.20) 

where pik,n
−v  and pik,n

+v  are the relative velocities at the location of the contact in the ik c(t )
)
n  

direction before and after the collision time tc ϵ [tm,tm+1], respectively. The coefficient of 

restitution lies between 0 and 1. When it is equal to 1, the collision is perfectly elastic and no 

kinetic energy is lost, whilst COR = 0 results in pik,n
0+ =v , corresponding to a plastic impact, 

where maximum kinetic energy is lost. Substitution of pik,n
−v  and pik,n

+v  in Eq. (3.20), together 

with a convenient mathematical procedure (see appendix A for a derivation), results in the 

following equation for the magnitude of normal impulse jik,n: 

( )

( ) ( ) ( )

pik,n

ik,n T
ik ik,n ik

1 1
ik,n i k 0 i c i ik c i k c k ik c k

* * *

1 COR

and

 (t ) (t ) (t ) (t )

−

− −

− +
=

   + + × × + × ×   
= −

) )

) )

v
j

1 m 1 m

n K n

K = I I r n r I r n r

r p x

 

 

(3.21) 

 
(3.22) 

 

where I0 is the unit matrix and Kik,n is a collision matrix for the colliding contact between 

pellets i and k. In case pellet i is in colliding contact with a confining wall, whether lateral or 
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bottom wall, the magnitude of impulse can be derived in a straightforward way. For example, 

jiL,n, which describes FiL,n(tc), can be expressed by: 

( )

( ) ( )

L

pi,n

iL,n T
iL iL,n ii

1
iL,n i 0 i c i iL c i

1 COR

where

(t ) (t )

−

−

− +
=

 = + × × 

) )

)

v
j

1 m

n K n

K I I r n r

 

 

(3.23) 

 

Suppose that the relative tangential velocity at the contact point p, where the ith and kth 

pellets are in colliding contact, pik,t pik ik
(t) (t). (t)− −=

)
v v t  is non-zero. The magnitude of the tangential 

impulse jik,t acting at contact time tc ϵ [tm,tm+1] is defined by the product of the dynamic friction 

coefficient μd and jik,n using Coulomb’s friction model as:  

m 1

m

t

i k,t d i k,n d i k,n
t

(t)dt
+

= =∫j μ f μ j  (3.24) 

However, if pik,t
−v  is very small, jik,t calculated by Eq. (3.24) may reverse the sign of pik,t

+v , 

resulting in unphysical motion. To circumvent such an incidence, we assume that jik,t = 0 if 

pik,t pik,t
0− + ≤v v .  

Having computed the total impulse, Jik(tc), for a typical colliding contact between the ith 

and kth pellets, the discontinuous changes of linear and angular velocities of the pellets after 

collision can be expressed as: 

 

The same relations can also be written for the linear and angular velocity differences of 

pellet k by substituting –Jik(tc) in the above equations. 

3.2.3.2.   The problem of resting contact 

One of the most problematic conditions occurring during the numerical simulation of the 

packing process is the resting contact, in which bodies are neither colliding nor detaching at 

their contact points, i.e. ε εp pik,n p(t) <− < v . This situation may cause a divergent number of 

collisions in a finite time span, which hence needs a specific procedure to handle the contacts, 

such that the pellets are kept fixed in their positions without any interpenetration. Consider a 

configuration of n contact points at which bodies are in resting contact (see Fig. 3.4). We 

assume that in rest there are no tangential forces, and therefore the resting contacts can be 

( )

( )

ik,n ik c d ik cik c
i c i c i c

i i

1
i c i c i c i ik c

(t ) (t )(t )
(t ) (t ) (t )

(t ) (t ) (t ) (t )

+ − −

+ − −

+
= + = +

= + ×

))
j μ

m m

n tJ
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(3.26) 
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resolved by specifying a set of forces acting normal to the contact surface, i.e. ik ik c(t )
)

φ n , chosen 

in such a way that they obey 3 constraints: (i) they should prevent the pellets from 

interpenetration, (ii) they should act repulsively in a way that holds the bodies together in 

contact, and (iii) they should become zero at the moment the bodies begin to detach again. 
 

 

Fig. 3.4 Typical schematic of resting contact condition. 

It is worth noting that all ikφ need to be determined simultaneously, since a force acting 

on one contact point may influence objects involved on other contact points. To this end, we 

introduce a distance function, p,ik(t)d , describing the distance between the resting contact 

points from two pellets i and k in the collision period. Considering the notations exercised 

before in describing colliding contacts, the distance function for a typical resting contact point 

p (whether it is a vertex/face or edge/edge contact), at the contact time tc ϵ [tm,tm+1], can be 

expressed by p,ik c(t )d :  

p,ik c ik c i c k c
(t ) (t ). (t ) (t ) = − 

)
d n p p  (3.27) 

The first constraint is to prevent bodies from interpenetration. Since both p,ik c
(t )d  and 

p,ik c
(t )&d , where the later describes the relative contact velocity in the direction of ik

)
n , pik,n c(t ),v

are intrinsically zero (within the numerical threshold), we need to ensure that the second 

derivative of the distance function, measuring how two pellet surfaces accelerate towards each 

other at the contact point, to be equal to or greater than zero (within a numerical tolerance), 
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i.e. p,ik c
(t ) 0.≥&&d  The expression, describing p,ik c

(t )&&d  can be simply derived by two times 

differentiating Eq. (3.27): 

( )
p,ik c ik c pi c pk c ik c pi c pk c

pi c i c i c i c i c i c i c

(t ) (t ). (t ) (t ) 2 (t ). (t ) (t )

and  (t ) (t ) (t ) (t ) (t ) (t ) (t )

   = − + −   
= + × + × ×

) )&& && &

&& &

d n v v n v v

v v ω r ω ω r
 (3.28) 

(3.29) 

where pi c(t )&v  and pk c(t )&v  are the accelerations of the contact points in the world space 

coordinate system. It is worth remarking that if a pellet is in resting contact with the tube 

wall, Eq. (3.28) can be simplified by setting the rightmost term to zero, viz. iL c iB c(t ) (t ) 0.= =
) )& &n n  

Based on the second constraint, each of the contact forces needs to act outwardly which 

means that ik 0≥φ . The third constraint can simply be described in terms of ikφ  and p,ik c(t )&&d . 

Since the contact force must possess a value of zero if the resting contact starts breaking, it 

implies that ik c
(t )φ  must be zero when a resting contact is broken. This constraint can be 

expressed by the following relation: 

ik c p,ik c
(t ) (t ) 0=&&φ d  (3.30) 

The magnitudes of ik c(t )φ  can thus be computed such that the mentioned constraints are 

satisfied for each contact point. Suppose that for a configuration of n (resting) contact points 

at tc ϵ[tm,tm+1], the distance acceleration for each of the contact points depends on the normal 

forces acting on all contact points together with some other constant forces and velocity-

dependent terms related to the objects involved in that particular contact point at the pre-

collision time step, tm. In that case, we can express p,ik c(t )&&d  in terms of all unknown constraint 

forces, including those directly affecting the pellets i and k as: 

p,ik c ik,j (i,k)j c ik c
j

(t ) (t ) (t )= +∑&&d a φ b  (3.31) 

where ik, ja  describes how a unit change in ij c(t )φ , if pellet i is in direct contact with pellet j as 

well, can affect the contact point pik. A more detailed derivation is given in Appendix B. 

If we define p
&&D  as the column vector of p,ik c(t )&&d  for n resting contact points, at time tc, 

and Nψ  as the column vector of all constraint forces ik c(t )φ , then the problem of resting 

contact for n contact cases can be described in matrix form as:  

n 1 n 1

p N

p p,ik N ik ,j ik, j n n ik n 1
where    , and [ ] ,  =[ ]

× ×
× ×

= +

   = = =   

&&

&&&& d φ a b

D Aψ B

D ψ A B
 (3.32) 

with the following constrains: 
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p N

N

T T
N p N N

(i) 0 0

(ii) 0

(iii) 0 0

≥ → + ≥

≥

= → + =

&&

&&

D Aψ B

ψ

ψ D ψ Aψ B

 
(3.33) 

(3.34) 

(3.35) 

With the understanding that Eqs. (33) and (34) apply to each component of the column 

vectors. Eqs. (3.32-35) can be regarded as a quadratic programing problem, QP, in which we 

attempt to minimize the quadratic term T
N p
&&ψ D  subject to the conditions N 0≥ψ  and p 0.≥&&D  

In this work, the procedures proposed by Baraff [71] is used to solve the problem, which has 

been proven as a reliable and fast solution algorithm.  
 

3.3.   Collision/Contact detection philosophy  

The collision/contact detection procedure exerted here is based upon scrutinizing the 

proximities between body spaces of approaching rigid objects. This is implemented through a 

coherence-based two-layer search procedure, whereby the proximity between all pairs of face 

meshes are assessed to see if the minimum distance between their bounding volumes are lower 

than a preset threshold.  The first layer of the search algorithm employs a series of criteria to 

narrow down the list of pairwise collision/contact possibilities at each time interval. These 

criteria are as follows:  
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(3.36) 

 

 
(3.37) 

where λ = 0.1Rp is a proximity threshold considered between two approaching objects and 

Δ
tm 1

ik tm

+
x  is the change of distance between barycenters of two objects in two successive time 

steps. The result of this search layer, in the form of a sorted list of pairs of pellets which are 

possibly colliding, is then be fed to a supplementary search engine, thereby determining the 

time of contact as well as details of intersections between the face meshes of collided objects. 

Henceforward, to avoid any probable interpenetrations of the pairs of pellets reported by the 

first search layer, the midpoint scheme is run using a much smaller time interval, δtm. To 

estimate δtm, let us consider two pellets i and k, detected by the first collision detection search 
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procedure, with a maximum relative surface velocity of max
ik m(t )v . For the maximum allowable 

proximity of 0.2λ, the second collision search sub-algorithm can initiate at: 

δ

λ
δ

m 1 m m

m max
ik m

t t t

0.2
and t

(t )

+
= +

≤
v

 (3.38) 

Using this time interval hereafter, the inner search layer is executed in the form of a 

sweep/sort algorithm, by which a sorted list of data including the points and cell face with 

minimum distance to the body spaces of each pair of listed objects is created. The list is then 

scanned for either an overlap or a contact between two meshes, viz. vertex/cell face or 

edge/edge contacts. A simple penalty method based on the distance between the reported 

contact points and the center of mass of the pair of pellets in contact is then exercised to avoid 

any interpenetration. Following this, the algorithm returns to the latest pre-collision time, 

allowing the post-collision calculation to proceed by computing the collision responses based 

on the type of collision. Fig. 3.5 illustrates how the two-layer collision detection procedure 

works:  
 

λ
p i k p

L (t) (t) 2L  ≤ − ≤ +x x  

Fig. 3.5 Typical representation for two-layer collision search procedure. 

3.4.   Packing algorithm  

The physics-based algorithm is founded on the equation of motion of rigid bodies as well 

as other auxiliary models describing collision phenomena. This algorithm can be described in 

four main stages: preprocessing, initialization, simulation and termination. 

In the preprocessing stage, the details of rigid objects, i.e. catalyst pellets and container, 

including the physio-mechanical properties as well as their 3D models in the world space, are 

defined. This (preset) information is summarized in Table 3.1. 
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Table 3.1 The preset data in preprocessing stage 

O
bjects 

   Size 

(mm) 

Moments of Inertia (Ib) 

(kg.m2) 
            Other preset data 

                   C
atalyst pellets                                                C

ontainer 

 

dp=10  

2

b,xx p

2

b,yy p

2

b,zz p

1
I Md

10
1

I Md
10
1

I Md
10

=

=

=

 

       Mechanical data 

 

1. Pellet Density (ρ):  3.95 gr/cm3 

2. Gravitational acceleration: 9.81 m2/s 

3. Friction coefficient (µd): [0.05-0.95] 

4. Surface Bounciness (COR):  

[0.05-0.95] 

 
 

       3D Model data 

 

1. General mathematical formula of pellet 

in world space 

2. Vectors of vertex data on body space 

of each pellet 

3. Vectors of center of mass for each 

pellet 

4. Number of surface meshes generated 

for a pellet 

 

dp=10 

Lp=10 

2 2

b,xx p p

2 2

b,yy p p

2

b,zz p

1 1
I ML Md

12 16
1 1

I ML Md
12 16
1

I Md
8

= +

= +

=

 

 

dpi=6 

dpo=10 

Lp=10 

2 2 2

b,xx pi po p

2 2 2

b,yy pi po p

2 2

b,zz pi po

1 3
I M (d d ) L

12 8

1 3
I M (d d ) L

12 8

1
I M(d d )

8

 
= + + 

 
 

= + + 
 

= +

 

Size (mm) 
Diameter: dt is set to synthesize packings with 3.06 < Npv < 9.16  

Height: H=120 mm 

Other Data 
1. Friction coefficient (µd) = 0.6 

2. Surface bounciness (COR) = 0.6 

3. Vectors of vertex data on body space of tube wall 
   

The initialization stage involves the initial placement of the pellets at the top of the tube 

as well as setting all thresholds for friction and collision/contact detection sub-algorithms. 

Having placed the pellets at the top of the container, we set the time interval Δtm for the 

iterative calculation procedure (in our tests 1/40 sec) as well as the desired total simulation 

time. We can then proceed with the simulation, in which the ODE solver is run simultaneously 

with the collision search sub-algorithms to determine the trajectories of the barycenter and 

orientations of the pellets in the bed at each time step. To inspect whether dynamic equilibrium 

occurs, i.e. the termination stage, the work-energy theorem is exercised: a system of moving 

pellets reaches a dynamic equilibrium if the change in total kinetic energy of the system over 
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a typical time period approaches zero. The following flowchart exhibits the skeleton of the 

proposed packing algorithm. 

 

 

Fig. 3.6 Flowchart of packing algorithm 

3.5.   Results and discussion 

Several series of packing simulations were conducted to assess the influence of preset 

parameters, i.e. physio-mechanical properties such as coefficient of restitution (COR) and 

surface friction factor, as well as initial placement of pellets at the top of the tube, on the 

structural properties of the packings. We investigated packing structures of spheres, solid 

cylinders and Raschig rings, with a tube-to-pellet diameter ratio, N, within the range of 3.06 

to 9.16.  

To inspect the fidelity and robustness of the proposed packing algorithm, the simulated 

packings have been scrutinized and benchmarked, first and foremost, in terms of bulk porosity 
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and radial void fraction distribution. To this end, the experimental and analytical data from 

[25,28,72] for bulk porosity and [24,26,27,52,73,74] for radial void fraction distribution were 

tested, which all together provide data for a wide range of tube-to-pellet diameter ratios, 

1.7≤N≤27.95. 

3.5.1.   The role of loading methods and filling speed 

The choice of initial placement of catalyst pellets, i.e. the loading method, in the setup of 

the packing simulations is of paramount importance as it may have a considerable influence 

on the dynamic behavior of the packing process and densification, and accordingly on the 

topological properties of the generated structures. The packing algorithm is set up based on 

the data given in Table 3.1, with COR = 0.6 and µd = 0.6, to simulate random packings of 

spheres with three different loading strategies: 1) in the first scheme the pellets are introduced 

in a column in line with the tube axis; 2) in the second scheme the pellets are placed in two 

columns, equidistant from the tube axis; 3) in the third scheme the pellets are placed in 4 

columns, equidistant from the tube axis. These scenarios (see Fig. 3.7) have been examined for 

two packings with tube-to-pellet diameter ratios of N = 3.1 and 6.1. 
 

    (1)                  (2)                    (3)                             (1)                           (3) 

                                 (a)                                                                     (b) 

Fig. 3.7 Various scenarios considered for loading method; (a) spherical packing with N = 3.1, (b) 

spherical packing with N = 6.1 

The simulated structures then were examined in terms of bulk voidage to determine which 

scenario would result in a denser structure. The mean voidage of the generated packings was 

computed precisely based on the mesh counts of catalyst pellets up to a packing altitude of H 

= 100 mm, and were benchmarked against empirical correlations proposed by Dixon [25] and 

Foumeny et al. [72]. The results are shown in the following bar plots.  
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Fig. 3.8 The influence of different loading schemes on the bulk voidage of generated structures; (a) 

spherical packing with N = 3.1, (b) spherical packing with N = 6.1. 

As demonstrated in Fig. 3.8, the first loading strategy not only results in denser packings 

among all test cases but is also in better agreement with empirical correlations. This can be 

attributed to the higher intensity of lateral displacements of the pellets for loading method 1, 

leading to a higher order of densification. The same analysis has been performed for packings 

of cylindrical pellets with N = 6.98; the results of the mean porosity analysis have confirmed 

the superiority of the first scenario, where the cylinders are placed obliquely with an angle of 

45⁰ with respect to the gravity direction. This leads to the densest structure for such narrow 

fixed beds and is in best agreement with published correlations. Similar results have been found 

by Fernengel et al. [75] for random packing of spheres with N = 6.25, where the authors 

investigated the influence of number of spheres per layer in the loading scheme on bulk voidage 

of simulated structures using LIGGGHTS® and Blender packages. It was also found that 

increasing the distance between successive pellets in their initial placement allows the tube to 

be a little more compacted.  

In a second step, we imposed random translational and orientational disturbances on the 

pellets in the first scheme of loading, resulting in five extra loading schemes, to account for the 

influence of random pouring on the bulk voidage of RBD-simulated structures. This analysis 

was conducted for random packings of spheres (including translational disturbances) with N 

= 3.1 and 6.1 and cylinders (including both translational and orientational disturbances) with 

N = 3.55 and 6.98. Fig. 3.9 illustrates the imposed disturbances on the first loading scenario 

for packing of cylinders with N = 6.98.  
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         (1)                      (2)                      (3)                     (4)                      (5)                      (6) 

Fig. 3.9 Random disturbances imposed on the first loading scheme to mimic the influence of 

random pouring on bulk voidage in random packings of cylinders with N = 6.98. 

Overall, the results show that denser structures can be synthesized using the original 

version of the first loading scheme for all cases. Here, for the sake of brevity, the result of 

comparison analysis for random packing of cylinders with N = 6.98 is presented in Table 3.2, 

where the bulk voidage obtained from the generated packings according to the loading schemes 

presented in Fig. 3.9 is compared with the empirical coloration by Dixon [25].  

Table 3.2. Influence of imposing translational and orientational disturbances on the first loading 

scheme on the resulting bulk voidage for packing of cylinders with N = 6.98. 

Loading Scenario 1 2 3 4 5 6 

Bulk voidage 

(calculated) 
0.405 0.410 0.419 0.416 0.420 0.425 

Predicted voidage 

after Dixon (1988) 
0.395 0.395 0.395 0.395 0.395 0.395 

MER (%) -2.4 -3.8 -6.1 -5.2 -6.2 -7.5 

It is worth remarking that the aforementioned loading schemes were also implemented in 

our further analysis described in sections 3.5.2 and 3.5.3., where we have investigated the roles 

of restitution and friction factors in the bulk voidage of simulated structures. Similarly, our 
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results demonstrate that denser packing structure can be generally generated using the original 

version of first loading method for such narrow beds for all ranges of restitution and friction 

coefficients considered. 

3.5.2.   The role of surface bounciness (Coefficient of Restitution) 

The amount of surface bounciness, expressed as the coefficient of restitution, can 

substantially affect the subsequent chain of collisions, and therefore the final structures. Zhang 

et al. [76] investigated the influence of the coefficient of restitution on packing density, but 

their work was restricted to packings of spheres in large-N beds, say N = 24, where in the effect 

of container wall on the packing process and final bulk voidage cannot be elucidated. Since the 

impact of this physio-mechanical property on the packing densification has not yet been 

systematically investigated in low-N packings of (non-) spherical pellets, an effort is made here 

to monitor the role of this property on the bulk porosity of packings of shapes and cylinders. 

To this end, the packing algorithm is set up based on the data given in Table 3.1, to synthesize 

random packings of spheres with N = 3.1 and 6.1 and cylinders with N = 3.55 and 6.98. The 

friction factor is set to µd = 0.6, whilst the restitution coefficient is set to 0.05, 0.15, 0.35, 0.55, 

0.75 and 0.95, respectively, covering the whole range of collision behavior from semi-plastic to 

semi-elastic. The first loading scheme is applied. However, to generate statistically independent 

samples for averaging, random disturbances (with a maximum magnitude of 0.8dp and 

maximum angle of 45⁰) have been imposed to the initial pellet positions and orientations for 

each packing case (see Fig. 3.9). This was repeated 6 times for each case, leading to 144 

generated test cases for spherical and cylindrical packings.  Fig. 3.10 shows some typical results 

of generated packings.  
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COR = 0.05   COR = 0.55       COR = 0.95    COR = 0.05   COR = 0.55 COR = 0.95 

 

               

    
COR = 0.05             COR = 0.55          COR = 0.95        

 

 
  COR = 0.05           COR = 0.55           COR = 0.95              

 

Fig. 3.10 The influence of COR on a number of samples simulated based on the first scenario of 

loading for packings of spheres (with N = 3.1 & 6.1) and cylinders (with N = 3.55 & 6.98). 
 

The mean voidage of all test cases was then computed based on the number of pellets 

stacked within a tube up to the altitude of H = 120 mm and depicted versus COR in Fig. 3.11. 

Overall, the results of this analysis agree with the prevailing hypothesis on the influence of 

restitution coefficient, viz., higher values of COR generally result in denser packings, because 

with more elastic collisions, the probability of longer-lasting successive collision chains 

increases. This allows pellets to be further displaced laterally, and to be vibrated for a longer 

duration of time, allowing them to find their optimal positions. However, our results also show 

considerable variability of the mean porosity from sample to sample, in particular in narrower 

structures (see Fig. 3.11a-b), which can be reasonably attributed to the restrictive role of the 

tube wall. The trends in wider beds, as shown in Fig. 3.11c-d), demonstrate a lower amount 

of variability. Furthermore, the results demonstrate that the influence of COR on the resulting 

packing density is more discernable for COR values beyond 0.5, where it causes an intensive 

vibration of catalyst pellets in the bed. 
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Fig. 3.11 Influence of coefficient of restitution (COR) of catalyst pellets on the bulk porosity of 

generated structures for packings of (a) spheres with N = 3.1, (b) cylinders with N = 3.55, (c) spheres 

with N = 6.1 and (d) cylinders with N=6.98. Results of 6 independent simulations for each COR (with 

different random disturbances on the initial pellet positions and orientations) are shown, indicating the 

variability of the results. Dashed lines are trendlines based on the average of these independent 

simulations. 

3.5.3.   The role of surface roughness  

The surface roughness of a pellet, which is fundamentally described by its friction 

coefficient, is another physio-mechanical property that can affect the process of packing. To 

assess the impact of this parameter on structural properties of random packings, the same 

procedure as for the role of COR is pursued. In this case, the pellet’s COR is set to 0.6, whereas 

the surface friction coefficient is set to 0.05, 0.3, 0.5, 0.7 and 0.95, respectively, covering a large 

spectrum of dynamic friction coefficient. Fig. 3.12 shows some typical results of physical 

simulations. 
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µd = 0.05                 µd = 0.5                 µd = 0.95 µd = 0.05               µd = 0.5                 µd = 0.95 

 

 µd = 0.05               µd = 0.5                  µd = 0.95 µd = 0.05               µd = 0.5                 µd = 0.95 
 

 

 

Fig. 3.12 The influence of pellets friction coefficient on a number of samples simulated based on the 

first loading scheme for packings of spheres (with N = 3.1 & 6.1) and cylinders (with N = 3.55 & 6.98). 

The bulk porosity of all samples for each test case has been computed, and plotted against 

friction coefficient in Fig. 3.13. 
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Fig. 3.13 Influence of friction factor of catalyst pellets on the bulk porosity of generated structures for 

packings of (a) spheres with N = 3.1, (b) cylinders with N = 3.55, (c) spheres with N = 6.1 and (d) 

cylinders with N = 6.98. Results of 6 independent simulations for each µd (with different random 

disturbances on the initial pellet positions and orientations) are shown, indicating the variability of the 

results. Dashed lines are trendlines based on the average of these independent simulations. 

The results confirm the general understanding of the effect of surface friction on packing 

density: lower values of friction facilitate sliding of the contact surfaces relative to each other, 

leading to denser packing structures. In fact, the influence of friction factor on the packing 

density appears to be 1.5 times larger (in the studied range) than that of the COR, leading to 

an apparently lower variability between different samples.  

3.5.4.   Validation study and postprocessing of the results 

The main goal of this chapter is to introduce a new RBD methodology to synthesize 

realistic random packings of particles of any shape. We now present a detailed validation study, 

whereby the reliability of the RBD-algorithm in replicating structural properties of realistic 

packings is scrutinized. The specifications of the physical simulations (see Table 3.3) were 
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chosen to reproduce the experimental arrangements utilized in the works of Benenati and 

Brosilow [24], Roshani [73] and Mueller [52]. More simulation runs have been performed to 

generate random packings in the range 3.1 ≤ N ≤ 9.16 to examine the restrictive role of 

confining walls on the predicted bulk porosity over a range of tube-to-pellet diameter ratios, 

and to benchmark the predicted radial porosity distribution against some of the most-

frequently used empirical correlations. Table 3.3 addresses the specifications and data used in 

setup of RBD simulations. 

Table 3.3 RBD simulation setup for validation study 

Catalyst pellet Bed environment 

No. of face 

mesh 

(per pellet) 

Sphere: 3120 

Bed Size: 

Spherical beds: dt = 31, 39.6, 41, 56, 59.6, 

61& 79.9 mm & Bed altitude: 120 mm 

Cylinder: 4400 

cylindrical beds: dt=33.65, 35.49, 45.79, 

46.93, 69.83 & 91.58 mm & Bed altitude: 

120 mm 

Raschig ring: 8008 
Raschig ring beds: dt = 30.58, 40.45, 60.18 & 

79.91mm & Bed Altitude: 120 mm 

Density:  8030 kg/m3 Tube wall friction factor (dynamic): 0.6 

Surface friction factor (dynamic): 0.1 Tube wall surface bounciness (COR): 0.6 

Surface bounciness (COR): 0.9 Gravity acceleration: 9.81 ms-2 

Fig. 3.14 illustrates the dynamic behavior of the random packing process, in four frames, 

for typical spherical, cylindrical and Raschig ring packings.  
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Fig. 3.14 The dynamics of packing process for packings of spheres, cylinders and Raschig rings 

with COR = 0.9 and μd = 0.1 in a tube with N = 4.1, 4.69 and 4.05 respectively. 

Several packings have been generated, based on the specifications in the Table 3.3, 

including seven different tube-to-particle ratios for packings of spheres, five for packings of 

solid cylinders, and four for packings of Raching rings. Each case has been executed in triplo 

with slightly perturbed initial pellet positions to generate statistically independent data. Fig. 
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3.15 illustrates some typical results of RBD-simulated packings of spheres, cylinders and 

Raschig rings. 

 

 

 

 

   

 

 

 

 

The bulk porosity of the generated structures has been computed based on the total 

amount of pellet material up to the altitude of 100 mm, and compared with well-known 

published correlations in Fig. 3.16.  

 

                                 N = 4.1    N =  4.69    N = 4.05 

 

           N = 8.1             N = 9.16            N = 7.99 

Fig. 3.15 Examples of RBD-simulated structures of spheres, cylinders and 

Raschig rings. 
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Fig. 3.16 Comparison between the mean porosity extracted from RBD simulations and empirical 

correlations for three types of pellets: (a) spheres, (b) equilateral solid cylinders, and (c) Raschig rings. 

The RBD simulation results demonstrate satisfactory agreement with the empirical 

correlations for all cases, giving a maximum relative error (MRE) of 3.9%, 17.6% (relating to 

the narrowest bed case) and 6.6% for packings of spheres, cylinders and Raschig rings, 

respectively, based on the empirical correlation by Dixon [25].  

The local structural properties of the RBD-simulated packings have also been examined. 

For this, the axially-averaged radial void fraction distribution of the RBD-simulated structures 

was extracted, and compered to published experimental and analytical data. To evaluate radial 

void fraction profiles, a planar mesh-based approach [10] was adopted, in which a packing 

structure is intersected with a series of concentric tubes with different diameters (see Fig. 3.17). 

The local void fraction at a specific radius can then be precisely computed by the following 

formula:  
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where Sint. is the intersecting area with pellets and Stotal is the area of tube that intersects the 

packing at radius r.  

 

 

Fig. 3.17 Implementation of the planar mesh-based approach for evaluating axially-averaged 

radial void fraction data for RBD-simulated structure of Rachig ring with N = 6.02. 
 

The radial void fraction profiles from the RBD-simulations versus the distance from the 

tube wall (made dimensionless by dpv, the equivalent diameter of a sphere of the same 

volume) is shown in Fig. 3.18 -19 for spheres and cylinders, respectively.  
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Fig. 3.18 Comparison between radial void fraction profiles obtained from RBD-simulations of sphere 

packings and literature data. The experimental data presented here are extracted with permission from 

[G.E. Mueller, Angular void fraction distributions in randomly packed fixed beds of uniformly sized

spheres in cylindrical containers, Powder Technology. 77 (1993) 313–319, and R.F. Benenati, C.B. 

Brosilow, Void fraction distribution in beds of spheres, AIChE Journal. 8 (1962) 359–361]. 
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Figs. 3.18-19 show a very good agreement between the radial void fraction profiles 

extracted from RBD-simulations and the corresponding experimental data by Mueller [52] for 

packings of spheres and Roshani [73] and Geise et al. [74] for packings of cylinders. The same 

conclusion can be made when comparing the RBD data with empirical correlations by de Klerk 

[27] and Roshani [73], giving R-squared and root mean square error values of more than 0.85 

and  lower than 0.08 for spheres, respectively, and more than 0.84 and lower than 0.07 for 

cylinders, respectively.  

Overall, it can be concluded that the proposed packing algorithm is able to reasonably 

reproduce the essential features, including the oscillatory-damped behavior as well as amplitude 

and period of oscillations, of the most-frequently used experimental data. 

We can now use the method to investigate the radial void fraction profile in packings of 

Raschig rings, as shown in Fig. 3.20.  

Fig. 3.19 Comparison between radial void fraction data obtained from RBD-simulations of packings of 

cylinders and analytical and experimental data by Roshani [73] and Giese et al. [74]. The experimental 

data presented here are extracted with permission from [S. Roshani, Elucidation of Local and Global 

Structural Prperties of Packed Bed configurations, The University of Leeds, (Thesis),(1990), and M. 

Giese, K. Rottschafer, D. Vortmeyer, Measured and modeled superficial flow profiles in packed beds 

with liquid flow, AIChE J. 44 (1998) 484–490]. 
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As depicted in Fig. 3.19, the behavior and pattern of the void fraction distribution over 

the dimensionless distance from the tube wall in Raschig ring packings is quite different 

compared to those known for sphere and cylinder packings. A similar trend has been reported 

by Giese et al. [74] (1998) for a Raschig ring bed with N = 10. This difference in packing has a 

large influence on the flow distribution, as we will show in the next chapter. 

3.6.   Conclusion 

A novel physics-based packing algorithm, founded on the concepts of Rigid Body 

Dynamics (RBD), has been presented and validated. The algorithm enables us to synthesize 

random packing structures of non-spherical and non-convex shapes. The advantage of our 

approach, compared to popular computer graphics software such as Blender, is that we 

proposed a more rigorous and realistic approach to model the resting contact phenomenon, 

wherein the transition between moving and resting particles is controlled by a cut-off on the 

relative contact velocity followed by a detailed balance of constrained forces acting on each 

Fig. 3.20 Radial void fraction profiles obtained from RBD-simulations of packings of Raschig 

rings. 
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pellet, facilitating the stability of convergence in RBD simulations. Our approach avoids the 

usage of artificial translational and angular momentum sinks on moving particles, and therefore 

exactly obeys the laws of conservation of linear and angular momentum. 

 We used our new approach to generate realistic random packings of spheres, cylinders 

and Raschig rings with a bed-to-pellet diameter ratio N ranging from 3 to 9.16, where the role 

of confining walls in the packing process is very important. The results of our validation study 

have demonstrated satisfactory agreement with literature data concerning bulk porosity and 

radial void fraction profiles, substantiating the merits of this approach in replicating the 

structural properties of realistic random packing geometries of non-spherical catalyst pellets. 

Furthermore, the influence of essential physio-mechanical properties of catalytic particles, such 

as surface roughness and bounciness, were studied for both spherical and cylindrical particulate 

beds. 

A particular feature of this approach is that it can synthesize both loose and dense packing 

structures, depending on the precise loading scheme and physio-mechanical properties, thereby 

in a way mimicking both sock-loading and dense loading methods utilized in industrial practice.  

The packing algorithm provides detailed information concerning the topological features 

of randomly packed fixed bed structures, e.g. the position and orientation of catalyst pellets in 

the bed. Therefore, it has the potential of being used as a supplementary tool to Lattice 

Boltzmann or Computational Fluid Dynamics simulations of reacting flows and heat and 

species transport characteristics of such complicated unit operations.  

We finish our conclusions by noting that from the results presented in this work, we cannot 

yet make a statement about the possibly improved quality of the packing structures by our 

method relative to other methods such as Blender, DigiDEM and LIGGGHTS. We have shown 

that the packing structures are highly sensitive of pellet shape, physiomechanical properties, 

and loading methods. To trustfully show the differences between the different methods, it is 

therefore necessary to conduct a systematic comparison study, covering different pellet shapes 

with different ranges of physiomechanical properties and loading methods. We note that small 

but significant differences in the void fraction of sphere packings in cylindrical beds predicted 

by Blender, compared to DigiDEM and LIGGGHTS, have already been found in a recent 

paper by Fernengel et al. [75] (see their Fig. 2). At this point it is not certain whether such 

differences are caused by differences in handling the dynamics of the packing process (which 

for instance is influenced by the magnitudes of the translational and angular momentum 

damping terms) or by small differences in the contact model. Small differences in predicted 

voidage may even be acceptable for certain applications in view of the greatly enhanced 
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computational speed of Blender relative to these other packages. In any case, a careful and 

systematic comparison of these different methods is clearly needed, and will be the topic of our 

forthcoming contribution. 
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Nomenclature 

A a multiplier introduced in Eq. (31)   [kg-1] 

B an acceleration source term introduced in Eq. (31) [ms-2]  

COR coefficient of restitution [-] 

dp pellet diameter [m] 

dt tube diameter [m] 

dpv Equivalent diameter of a sphere volume [m] 

f The magnitude of normal force [N] 

F force vector [N] 

g gravity acceleration [ms-2] 

I moment of inertia tensor  [kgm2] 

j The magnitude of impulse [kgms-1] 

J Impulse  [kgms-1] 

K collision matrix [kg-1] 

L angular momentum [kgm2s-1] 

M Mass of a pellet [kg] 

�� unit vector at the normal direction [-] 

N Tube to pellet diameter ration [-] 

p Position of contact vertex at the surface of a pellet [m] 

P linear momentum  [kgms-1] 

r distance between a contact point and center of mass [m] 

Rt tube radius [m] 

�̂ unit vector at the tangential direction [-] 

v Linear velocity at specific direction [ms-1] 

v Linear velocity [ms-1] 

W weight force [N] 

x position of center of mass of a pellet [m] 

X state vector  [-] 

	
 unit vector at the direction of gravity [-] 

Greek Letters  

ε bulk porosity [-] 

ε(r) radial porosity  [-] 

ε p numerical threshold [-] 

μd dynamic friction coefficient  [-] 
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ω Angular velocity [s-1] 

φ Normal force acting on resting a contact point [N] 

Subscripts  

i pellet i  

j pellet j  

k pellet k  

n normal  

p contact point  

t tangential  
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Abstract  

A novel and efficient workflow to predict the hydrodynamics and heat transfer in fixed beds 

containing non-spherical pellets is presented. The workflow consists of a sequential Rigid Body 

Dynamics and Computational Fluid Dynamics (RBD-CFD) approach. The RBD is founded on the 

physics-based hard-body packing algorithm presented in Chapter 3. The methodology is benchmarked 

for simulation of hydrodynamics and heat transfer in laminar, transient and turbulent regimes, for 5 ≤ 

Rep ≤ 3,000, in random packings of spheres, cylinders and Raschig rings with tube-to-pellet diameter 

ratios ranging from 2.29 to 6.1. Using a combination of patch conforming and patch independent 

meshing approaches, implemented by an ad-hoc Python-based script in ANSYS Workbench v.16.2, an 

inflationary volume mesh topology is created in the random packing structures. This meshing approach 

provides a high-quality mesh to appropriately capture phenomena at the contact regions, and 

immensely facilitates solution convergence in the turbulent region, without the need to manipulate the 

under-relaxation factors. Both verification and validation studies are performed. For verification, the 

mesh refinement analysis is conducted, resulting in an optimum size of mesh with a numerical error of 

1.77% and 1.74% for bed pressure drop and azimuthal-averaged temperature profile, respectively, based 

on the Richardson extrapolation method. For validation, the CFD results of velocity and temperature 

fields are benchmarked against published data, concerning azimuthally-averaged axial velocity, bed 

pressure drop and interphase heat transfer Nusselt number.  

4.1.   Introduction 

Fixed bed unit operations have found extensive applications, particularly in reaction 

engineering, where they are used as the process workhorse in various chemical and process 

industries to handle highly exothermic and endothermic reactions. Such reactions require 

specific thermal management to prevent runaway reaction conditions. For this reason, narrow-

to-moderate tubular fixed bed configurations are regularly employed, with tube-to-pellet 

diameter ratios N in the range of 2 to 10. The design of such reactors is predominantly 

performed on the basis of pseudo-continuum models, wherein the essential role of topological 

non-uniformities and local flow mal-distribution are neglected. This leads to failure of pseudo-

homogeneous models in accurate prediction of the transport scalars at the pellet scale [1–5]. 

These inadequacies have led to numerous experimental and analytical research efforts to 

incorporate the effects of bed structure, in particular the wall effect, into these models. Several 

investigators have employed non-invasive experimental techniques, e.g. McGreavy et al. [6], 

Bey and Eigenberger [7], Giese et al. [8] and Krischke [9] used Laser Doppler Velocimetry 

(LDV), and Sederman et al. [10], Suekane et al. [11], Ren et al. [12], Baker et al. [13] used 

Magnetic Resonance Imaging (MRI) to investigate the flow field. Both methods are of limited 

coverage due to intrinsic restrictions connected to these non-invasive methods, as addressed 



 RBD-CFD Simulation of Fluid Flow and Heat Transfer: Preprocessing, Setup & Validation Study  

91 

 

by Dixon et al. [5]. A number of researchers has been inspired by the void fraction distribution 

over the bed radius, and tried to explain the radial inhomogeneities in the velocity field by 

flow channeling occurring near the wall region where the local porosity approaches unity. This 

observation has resulted in a simplified version of the radially dependent axial velocity profile, 

vz(r), from a modified momentum balance, e.g. [7], or a form of the Brinkman-Forcheimer-

extended Darcy (BFD) equation, e.g. [8], with pseudo-homogeneous models to account for the 

wall-effect in low-N fixed beds. Using such velocity-based pseudo-continuum models, e.g. Λr(r) 

model, several reactor studies have attained better agreement with experiments [14–16]. 

However, even these more sophisticated models are still based upon lumped (effective) 

properties, e.g. effective transport parameters. These lumped properties not only obscure the 

physical premise of the model, but also are very questionable for modeling low-N tubular fixed 

beds, where the cross-section contains only a few catalyst pellets, and thus azimuthal symmetry 

cannot be reasonably expected [4,5,17]. In fact, a spatially resolved 3D simulation of the reactor 

system needs to be performed, so that the velocity, thermal and species concentration fields 

are thoroughly addressed [4,18,19]. Over the last decades, advances in computer performance 

and computational techniques have allowed researchers to conduct comprehensive 3D 

simulations of flow fields and transport scalars within tubular fixed beds containing several 

hundred particles using Computational Fluid Dynamics (CFD) and Lattice Boltzmann 

methods (LBM), e.g. [17–36]. However, majority of the prevailing efforts has concentrated on 

spherical packing structures, whilst application of catalyst pellets of non-spherical shape such 

as cylinders, Raschig rings, trilobe, quadrulobe, hollow extrudates, etc. is common in industry 

because of their potential to enhance transport processes (e.g. Raschig rings are used in 

ethylene epoxidation, and multi-hole shaped catalyst pellets are used in methane steam 

reforming units). The dominance of spherical packing studies can be attributed to the 

cumbersome and complicated strategies needed to generate a 3D surrogate model for packing 

structures of non-spherical pellets, which is an essential prerequisite for CFD simulations. The 

orientational freedom of non-spherical particles makes the procedure of packing simulations 

very problematic, both in terms of modeling the collision phenomena and computational 

expense.  Some researchers use the Discrete Element Method (DEM) to synthesize random 

packings of non-spherical pellets [26–28,37]. The most frequent approach in non-spherical DEM 

is the so-called multi- or composite-sphere method (Lu et al. [38]), in which the established 

framework of soft-sphere DEM is applied to model shaped particles and their collisions during 

the loading process (see Fig. 4.1). 
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            (a)                  (b) 

Fig. 4.1 (a) Actual CAD particle shape, (b) approximated by 100 DEM spheres; extracted from 

Wehinger et al. [27]. 

The approximation of non-spherical pellets by the composite-sphere method can lead to 

inaccurate contact force computations, particularly when collisions occur [38,39]. Nevertheless, 

some research groups have employed this approach in a CFD analysis of the local flow and 

transport properties in narrow-tube fixed beds of cylinder and Raschig ring pellets [26,28].  

Wehinger et al. [26] have assessed the performance of the dry reforming of methane (DRM) 

process over three different pellets, including spheres, cylinders and Raschig rings, with N = 

4.5, 3.6 and 3.6, respectively, using a sequential DEM and CFD method. The authors used a 

composite-sphere approach to generate random packings of solid cylinders, and used a post-

treatment in CAD software to replace solid cylinders with hollow cylinders, thus generating a 

Raschig ring packing structure. Even though interpenetration between Raschig rings during 

the packing process, due to the presence of an axial hole in the pellet’s topology, is basically 

omitted using this strategy, the computed bulk porosity was in accordance with literature data. 

This may be caused in part by the inherently soft interactions used in DEM, allowing for a 

finite amount of overlap. The authors have discussed the behavior of the flow field and species 

transport inside the mentioned structures in the laminar flow regime. In another study, 

Wehinger et al. [27] dealt with the role of contact point treatment in CFD simulations of heat 

transfer in a tube stacked with cylindrical pellets. They used a multi-sphere model consisting 

of 100 DEM spheres as a surrogate model for a solid cylinder to synthesize a packing structure 

of cylinders with N = 4.17. Their analysis covers three flow conditions with particle Reynolds 

number Rep = 191, 382 and 763, corresponding to the experimental work of Bey and 

Eigenberger [7]. Dong et al. [28] investigated the behavior of radial heat transfer in tubular 

fixed beds of glass spheres (N = 7) and steatite rings (N = 3.39) using a sequential DEM and 

CFD approach in the laminar flow regime, where Rep was in the range of 60 to 100. The 

investigators pursued the same approach as Wehinger et al. [26] to generate a geometrical 

model for steatite rings, and validated their CFD results of heat transfer by comparing radial 

temperature profiles extracted from CFD results to their own experimental data.  
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Other approaches than DEM have also been tried. For example, Boccardo et al. [40] have 

employed an open-source work-flow, based on Blender, which is a graphics and animation 

software released by the Blender Foundation, to generate random packings of spheres, cylinders 

and trilobes with N = 16.1, 27 and 23.3, respectively. The investigators then utilized the 

packing geometries for a CFD analysis of the flow field and pressure drop using Open-FOAM 

CFD code.  Even though there is no access to the basic algorithms and concepts used for the 

modelling collision phenomena and handling of resting contacts in such a real time simulator, 

e.g. Blender software, a few works with the subject of fixed beds of shaped particles have 

recently been published, e.g. [29].   

Overall, progress in fixed bed modeling is hampered by the complexities associated with 

the construction of realistic non-spherical packings. The main aim of this contribution is to 

introduce a novel and efficient workflow to investigate the in-situ behavior of hydrodynamics 

and wall-to-bed heat transfer in fixed beds containing non-spherical pellets. The workflow 

consists of a sequential Rigid Body Dynamics and Computational Fluid Dynamics (RBD-CFD) 

approach. The RBD is founded on the physics -based hard-body packing algorithm, presented 

in Chapter 3. The results of this workflow will be assessed in terms of both verification and 

validation using the published empirical and analytical data.  However, before dealing with 

the details of the workflow, a concise review over the CFD studies of hydrodynamics and heat 

transfer in fixed beds is given. The review will address the prevailing classifications, progress, 

advantages and restrictions concerning the application of CFD tools for modeling 

hydrodynamics and heat transfer in such a complicated topology.   

4.1.1.   Literature review on CFD studies in fixed beds  

The applications of CFD approach has been extended to the field of chemical engineering 

from 1990s, with the introduction of specially tailored fluid mixing program (Nijemeisland and 

Dixon [18]; Dixon and Nijmemeisland [19]). Fundamentally, the approach makes it realizable 

to numerically solve the momentum, mass and energy balances together with other auxiliary 

models, accounting for the turbulent flow regime, radiation mechanisms, etc., in complicated 

structures, such as fixed beds. The methodologies referred to by the term “CFD” in the field 

of fixed bed modeling can be classified into two main categories. In the first, a tortuous 

structure is modelled as an effective porous medium, with effective lumped parameters for 

dispersion and heat transfer [41]. Here the velocity field is coupled with the heat and species 

transport models using an azimuthally-averaged axial velocity field obtained from simplistic 

models e.g. those proposed by Bey and Eigenberger [7] and Giese et al. [8]. The inadequacy of 
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this simplified version of CFD approach has been profoundly addressed in Chapter 2 within 

the context of advances in pseudo-continuum models.  

The second type of CFD simulations in fixed beds accounts for the topological complexities 

of a real random packing structure instead of an effective porous medium. This, more rigorous 

“discrete particle” CFD, would provide a detailed insight into local flow structure as well as 

the propagation of heat and species at the pellet scale within a reactor. Earlier efforts on 

discrete pellet simulations of fixed beds has been surveyed by several researchers, e.g. [5,19]. 

Sørensen and Stewart [42] studied interphase transfer under creeping flow in a 3D cubic array 

of spheres. Dalman et al. [43] dealt with the flow structure in an axisymmetric radial plane 

with two spheres, presenting a first insight into flow patterns at the pellet scale. The authors 

showed that eddies could form between the spheres, resulting in a region with poor heat 

transfer. In a similar work, Lloyd and Boehm [44] performed a CFD simulation, however with 

eight instead of two spheres in line. The investigators dealt with the influence of the sphere 

spacing on the drag coefficients. McKenna et al. [45] studied the effect of pellet size on pellet-

to-fluid heat transfer using a 2D CFD simulation of small clusters of particles and a single 

catalyst sphere close to a wall. Logtenberg and Dixon [46,47] studied the heat transfer in an 

eight-sphere model, including two layers of four spheres perpendicular to the flow in the tube 

with a tube-to-particle diameter ratio, N = 2.43. Logtenberg et al. [48] used a 3D 10-sphere 

model with N = 2.68 to obtain the effective heat transfer parameters from CFD simulations of 

wall-to-bed heat transfer.  

Nijemiesland and Dixon [18] studied heat transfer in an ordered packing structure 

consisting 44 spheres in a tube with N = 2. The geometry used was a 3D surrogate model of 

their experimental setup. The authors showed very good quantitative and qualitative 

agreement between the simulation results and the measured temperature profile. Calis et al. 

[49] investigated the flow field and pressure drop in Composite Structured Packing (CSP) 

models with the channel-to-sphere diameter ratios of 1 and 2. The authors validated their CFD 

simulations with comparing the predicted velocity profiles and the in-situ velocity field 

measured with LDV. In a similar work, Romkes et al. [50] investigated the particle-to-fluid 

heat and mass transfer in CSP models with channel-to-sphere diameter ratios between 1 and 

5, and for a wide range of particles Reynolds numbers.  Basically, the majority of CFD studies 

in 2000s decade has been performed on a small clusters of ordered packing geometries or a 

periodic wall segment model, which consists of a 120⁰ slice of the bed cross-sectional area of a 

few layers of pellets, addressing flow field and heat transfer, e.g. Dixon and coworkers 

[5,31,32,51,52] and Guardo and coworkers [35,53–55]. The former research group showed that 

the velocity and the temperature fields predicted in a 120⁰ periodic wall segment model matches 
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well with those obtained from an ordered full-packed bed model of spheres with six particles 

layers for N = 4. However, they found these results based on an ordered packing model, where 

the angular and axial symmetries are one of the main features of the ordered packing structures. 

A number of researches have exercised computer-generated random packings for CFD 

simulation of flow and transport scalers in fixed beds, [17,20,21,22,26,28, 29,33,34,36,40, 56–

58].  

Magnico [33] studied the influence of radial heterogeneities of the granular structures on 

the local flow and radial mass transfer in packed tubes of N = 5.96, 7.8 at low to moderate Rep 

range, say 7 to 200. In a similar work, Freund et al. [4,34] have used Lattice Boltzmann method 

to investigate the hydrodynamics and mass transfer in a packed tube of spheres with N = 5.96 

at Rep ≤ 100. Similarly, Reddy and Joshi [59], Jafari et al. [36], Atmakidis and Kenig [57], Bai 

et al. [60] and Baker and Tabor [61] have used computer-generated random packings of spheres 

in CFD studies of hydrodynamics in a wide range of Rep. These studies have specifically focused 

on the influence of wall-effect on the bed pressure drop. Evidently, the majority of CFD studies, 

including random packings as geometrical domains, have only dealt with flow or dispersion of 

mass, in which the solid particles need not to be meshed, thereby reducing the size of the CFD 

computations. Very few efforts have considered heat transfer, which requires meshing inside 

the pellets as well, e.g. Augier et al. [20–23,28,62]. Therefore, it seems that there are two main 

obstacles towards CFD study of a reacting flow in fixed beds, first the inherent difficulties 

concerning the computer-generated model of random packings of non-spherical pellets as tersely 

indicated in the introduction (a detailed review is given in Chapter 3), and second is the 

computational cost imposed by the creation of mesh inside pellets, which is essential in study 

of heat transfer. Therefore, the aim of this chapter is to introduce and validate a novel and 

efficient workflow to predict the hydrodynamics and heat transfer in fixed beds containing non-

spherical pellets.  

4.2.   Workflow 

4.2.1.   Step 1: discrete pellet modelling of random packing structures 

The first essential step in the numerical simulation of hydrodynamics and heat transfer 

through random packing structures is to generate a realistic 3D model of the packing topology. 

For this step, the physics-based Rigid Body Dynamics (RBD) algorithm presented in Chapter 

3 is employed to synthesize random packings of spheres, solid cylinders and Raschig rings. The 

RBD-based packing procedure can handle any non-spherical, even non-convex, pellet shape. 

Details and validation of the algorithm have been presented in Chapter 3. The essential features 

of RBD are (i) that each pellet is described by a triangular face mesh in a global coordinate 
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system (see Fig. 4.2), and (ii) that collisional contacts are handled as hard-body collisions, 

instead of the soft-particle approach used in DEM. The former feature allows for simulation of 

pellets with sharp edges. The latter feature avoids unphysically large overlap of particles caused 

by artificially lowered spring stiffness, frequently employed in DEM simulations to prevent 

unfeasibly small time steps in the treatment of particle collisions. As illustrated in Fig. 2.4, the 

sharp edges of the cylindrical pellet are well-reproduced by the polygonal modeling used in the 

physics-based packing algorithm. In contrast, the composite-sphere method leads to a poor 

approximation of the edges (see Fig. 4.1), which can result in imprecise prediction of contact 

forces, and accordingly erroneous packing structures. 

 

Fig. 4.2 3D model of a sphere (dp = 10 mm), a cylinder (l =dp = 10mm) and a Raschig ring (dpo/dpi/l 
= 10/6/10 mm). (a) The exact 3D model of pellets built in ANSYS Workbench 16.2; (b) The model 

described by a face mesh for the RBD algorithm. 

Table 4.1 Specification of RBD-simulated packing structures to be exercised in a supplementary CFD 

study 

Pellet shape 
Pellet size 

   (mm) 

Tube diameter 

(mm)     (H=120 

mm) 

N 

(dt/dp) 

Particle count up 

to H=100 mm 

Sphere  dp = 10 

    31 

    41 

    61 

    3.1 

    4.1 

    6.1 

       73 

      131 

      319 

Cylinder 

dp = l= 10            

dpv = 11.45 

dps = 10 

   22.9 

   35.5 

   45.8 

    2.29 

    3.55 

    4.58 

      48* 

      63 

     126 

Raschig ring 

dpo = l =10     

dpi = 6 

dpv/dps = 9.87/5 

   30.6 

   40.5 

   60.2 

    3.1 

    4.1 

    6.1 

      51 

     100 

     251 

(a) 

(b) 
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              * This particle count is up to a height of H=200 mm. 

The physical dimensions used to synthesize realistic random packings of spheres, cylinders 

and Rascig rings are given in Table 4.1.  

After the pellets have settled in the container, information about the simulated packings, 

in particular bulk porosity and radial porosity profiles, is generated using a post-processing 

mesh-based analysis, as elaborated in Chapter 3. Typical results of computer-generated 

packings to be employed in our CFD simulations are illustrated in Fig 4.3.  
 

 

(a)               (b)               (c)                           (a)                (b)              (c) 

Fig. 4.3 Typical results of RBD-simulated random packings; (a) spherical packing with N = 4.1, 

(b) cylindrical packing with N = 4.69 and (c) Raschig rings packing with N = 4.05. 

4.2.2.   Step 2: Contact point treatment  

The second step in the workflow is to transfer details of the packing structure, i.e. the 

position and orientation of each non-spherical pellet, to a mesh developer software. To this 

end, the face mesh data of each pellet is extracted with the format of an “stl” file and imported 

into ANSYS Workbench 16.2 to produce a CAD model of the packing structure. One of the 

most important issues before meshing such a complicated topology is to deal with the contact 

points. Near contact points, the computational cells are in danger of becoming exceedingly 

skewed, meaning that some of their surfaces can be much larger than others, which can result 

in convergence problems in the turbulent flow regime. A detailed assessment of the prevailing 
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alternative treatments for the contact point problem in fixed beds of spheres was performed 

by Dixon et al. [21,63]. Local treatment methods, such as the so-called bridge and cap methods, 

cannot be generally applied to non-spherical packings because of the complexities arising from 

the probable edge-edge or face-face contacts, which make the creation of a bridge or a cap at 

the contact regions very difficult. Therefore, here the global gap approach is necessarily 

implemented. Based on this method, all pellets in the reconstructed packing model in ANSYS 

Workbench software are locally shrunk by 0.5% of their nominal diameter around their 

respective centers of mass, resulting in an interstice at each contact region. Imposing such a 

small interstitial space can resolve the convergence problem by creating a computational mesh 

with appropriate skewness and orthogonal quality in such regions (see step 3). The shrinking 

factor should be kept sufficiently small to have a negligible effect on the bulk porosity of the 

packings, and to prevent jet formation in the gap regions at high Rep conditions [5,18,63]. The 

former researchers have performed a detailed sensitivity study to determine the allowable gap 

size between spherical particles, and it was deduced that a gap of 1% of the particle radius 

does not adversely affect the velocity field at low to moderate range of Rep. Fig. 4.4 shows the 

reconstructed (CAD) models of spherical and cylindrical packings including contact point 

refinement.  
 

 

                (a)                                                                      (b) 

Fig. 4.4 Reconstructed models of the RBD-generated packings in ANSYS Workbench 16.2 with 

0.005dp gap; (a) spherical packing with N = 4.1, (b) cylindrical packing with N = 4.58. Red lines 

indicate the sharp edges of the cylinders (and a random equator for the spheres). 
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4.2.3.   Step 3: mesh generation 

The third step in the workflow deals with generating a high-quality mesh for CFD 

simulations. Conceptually, the quality of the mesh plays a crucial role in the accuracy and 

stability of a numerical computation. As always, there is a compromise between the mesh 

quality, i.e. fine or coarse, and the accuracy and computational expense. In fact, a coarse mesh 

results in an oversimplified velocity and temperature fields, conceivably obscuring substantial 

flow and thermal characteristics within the system, and may lead to a non-converging iteration 

process, whilst, a very fine mesh leads to a larger computational domain, resulting in a huge 

computational demand. Therefore, to determine an optimal mesh topology for a geometry, a 

trial and error process so-called mesh-independency study needs to be performed. Based on 

this analysis, we obtain a specific threshold for the mesh size, where more refinement of the 

mesh increases the model size without displaying a more detailed data for flow or temperature 

fields in a solution domain. Fig. 4.5 illustrates a general sketch of the geometry and mesh 

processing for a typical CFD study. 

 

Fig. 4.5 A general sketch of CFD pre-processing steps. 

In this work an advanced meshing approach, based on a combination of patch-independent 

and patch-conforming mesh methods, is implemented to generate a graded mesh topology for 

a random packing structure. This meshing approach is founded on a top-down meshing method 

to create an inflationary face mesh topology. This is controlled by an ad hoc Python-based 
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script in ANSYS Workbench. Following this, a bottom-up meshing method based on the Quick 

(Delaunay) technique is applied to create a graded volume mesh in the void spaces. This 

procedure is applied to generate a graded mesh topology for packing structures of spheres and 

cylinders. 

We note that in a recent release of ICEM CFD V.18.2, an algorithm has been introduced 

by which the mesh can be automatically refined based on geometry curvature and proximity. 

Similar to our ad hoc meshing procedure in ANSYS Workbench, this algorithm can create an 

inflationary meshing scheme in a random packing consisting a pre-defined gap between pellets, 

with large elements on flat planar surfaces and smaller elements in areas of high curvature or 

within small gaps. Therefore, the graded volume mesh topologies for case studies including 

Raschig ring packings have been generated automatically via ICEM CFD 18.2, which is 

favorable due to its simplicity and lower computational time.  Furthermore, to achieve a precise 

prediction of the velocity field in the near wall region, which depends on reliable prediction of 

wall-bounded turbulent flows, a number of prismatic layers needs to be implemented on the 

solid surfaces, i.e. both tube wall and pellets [32,49,50,64].  This would be realizable provided 

that the y+ criterion (the thickness of near-wall cell layer) for a particular wall function (e.g. 

standard, non-equilibrium, enhanced wall treatment), which is coupled with the Reynolds 

averaged turbulence models (RANS), is satisfied. However, several researchers have reported 

that the y+ criterion is hardly satisfied, e.g. [5,32,49,53,64]. This can be explained by the limited 

allowable values of cell size due to the need for squeezing grids in the gap regions, resulting in 

y+ values being too small (say y+ <<1).  In this work, the thickness of prismatic layers, δBL, is 

chosen based on the estimated thickness of the momentum boundary layer (Dhole et al. [65]). 

The authors presented a correlation for the thickness of momentum boundary layer, δBL,u, at 

the forward stagnation point for spheres:  

δ
BL,u 0.5

p
p

1.13Re
d

−=  (4.1) 

As an initial approximation, we assumed to hold this thickness for the entire pellet. It is 

worth mentioning that the thermal boundary layer is a little thicker in our study, because

δ δ1/3
BL,T BL,u

Pr−= . 

To this end, after several trials based on the medium mesh level (see Table 4.3), our 

boundary-layer treatment for the flow simulations in the turbulent regime consisted of 6 layers 

of prisms with an initial height of 2.5×10-6 m, and a growth factor of 1.2, leading to a total 

prism depth of 2.48×10-5 m. This allows the laminar sub-layer to be resolved for the highest 

inlet Rep by obtaining the dimensionless distance parameter, i.e. y+ between 0.5 - 2, as 
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recommended by Dixon et al. [63]. Figs. 4.6 to 4.8 show how the proposed inflationary meshing 

scheme results in finer grids at the contact regions of packings of different shapes.               

                                (a)                                                              (b) 
Fig. 4.6 The face mesh quality on pellet surfaces based on a medium mesh size (see Table 4.3); 

(a) spheres (b) cylinders.  

 

                 (a)                                                        (b) 

Fig. 4.7 Graded mesh topology in random packing of cylinders with N = 3.55 based on a medium mesh 

level (see Table 4.3); (a) face mesh on the tube wall, (b) a cut plane of the volume mesh at height z = 

6dp. 
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                          (a)                                  (b) 

Fig. 4.8 Cut planes of the graded volume mesh generated based on a medium mesh level (see Table 

4.3) at cross section of z = 5dp for random packings of (a) Raschig rings with N = 3.05, (b) spheres with 

N = 3.1 

4.3.   CFD setup 

4.3.1.   Problem description and boundary conditions 

CFD simulations of fluid flow and heat transfer are performed for the random packing 

models addressed in Table 4.1 in the laminar, transitional and turbulent flow regimes, using 

the finite volume code ANSYS Fluent 16.2. The fluid phase is assumed to be incompressible 

and non-isothermal with the physical properties of air, which is available in the database of 

ANSYS Fluent 16.2. Furthermore, ideal gas law and Sutherland’s law are used to account for 

density- and viscosity-temperature dependencies, respectively. The solid phase is consisted of 

the entire pellets within a tube with the specifications, i.e. size, shape and number, summarized 

in Table 4.1. To investigate the influence of catalyst pellets of different thermal conductivities 

on the lateral heat transfer inside a fixed bed, the thermal conductivity of solid phase is set as 

1.01, 16.27 and 40 W/mK, corresponding to glass, steel and alumina catalyst materials.   

The air at the total pressure of 1.01325 bar and temperature of 298K, which gives the 

physical properties of ρ=1.225 kg/m3, cp=1006.43 J/kgK, kf =0.0242 W/mK, μ =1.7894×10-5 

Pa.s (yielding the molecular Prandtl number of 0.74) enters from the bottom of the packed 

column with a unidirectional and uniform velocity and temperature to provide a consistent 

basis for further comparison. The inlet air velocities are chosen in accordance to the desired 



 RBD-CFD Simulation of Fluid Flow and Heat Transfer: Preprocessing, Setup & Validation Study  

103 

 

particle Reynolds number Rep (based on the volume-equivalent pellet diameters) ranging from 

5 to 3000. These inlet flow conditions also cover the flow conditions used in the experimental 

work of Krischke [9]. To provide a consistent basis for comparisons, the initial inlet turbulence 

intensity (for Rep ≥ 200) is computed based on the formula 1/ 8I 0 .1 R e −= . 

The thermal boundary condition at tube wall is considered as constant temperature (Tw 

= 700K for Re p ≤ 200 and Tw = 1500K for Rep ≥ 400). No-slip boundary conditions are applied 

to the column wall and pellet surfaces, i.e. at fluid/solid interfaces. Furthermore, the coupled 

heat transfer boundary condition is applied to the fluid/pellets interfaces to account for the 

conjugate heat transfer. ANSYS Fluent uses a discrete form of Fourier’s law (Eq. 4.2) to 

compute fluid/solid film heat transfer at a pellet surface in laminar flow regime. However, for 

turbulent flow, the law-of-the-wall (defined by a wall function, which here is Enhanced Wall 

Treatment) together with the analogy between heat and momentum transfer is applied.  

w fs

pellet surface

T
q h

n

 ∂
=  

∂ 
 (4.2) 

where n is the local coordinate normal to a pellet surface.  

For the bed outlet, a pressure-outlet boundary condition, which is substantially a “free” 

boundary condition for an unconfined flow, is defined. Moreover, to minimize boundary effects 

at the column inlet and outlet, the bed entry and exit are extended by 1 and 6 particle 

diameters, respectively. A schematic overview of the flow model and boundary conditions is 

given in Fig. 4.9. 

It is worth mentioning that several researchers applied the transitional periodic boundary 

condition, which is basically exercised when the physical geometry of interest and the expected 

pattern of the flow/thermal solution have a periodically repeating nature e.g. [31–33,66,67]. 

This allows a pressure drop occurring across the translational periodic boundaries, and 

accordingly enables the modeling of “fully-developed” periodic flow. However, using such a 

boundary condition, specifically in narrow tubular fixed beds, is arguable, as it omits the 

longitudinal heterogeneity inherent in such low-N structures. In fact, both the lateral and 

longitudinal distribution of catalyst pellets in narrow-tube packing structures cannot be 

described by a periodically repeating nature applied for a small segment of a packed bed, 

although this approach can accelerate the convergence of computations. For this reason, we 

implemented a “real” boundary condition, as described earlier, in our CFD simulations.   
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Fig. 4.9 Schematic overview of a Raschig ring packing model and boundary conditions used in 

the CFD simulations; N = 4.05. 

4.3.2.   Governing equations and computational procedures 

The governing equations for CFD simulations of hydrodynamics and heat transfer include 

the equations of conservation of total mass (continuity), momentum and energy. The equation 

used for the continuity equation can be expressed as:  

u∂∂
+ =

∂ ∂
i

m
i

t x

ρρ
S  (4.3) 

where summation over the same indices appearing twice is implied (Einstein convention). The 

source term Sm covers the mass added through phase changes or user-defined sources. This 

generalized form of the continuity equation can be even more reduced for our case studies, 

where no source term is present and a constant density is assumed: 

u∂
=

∂

ρ

x

i

i

0  (4.4) 

The equation for conservation of momentum in the direction i is expressed by 
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where μ is the molecular viscosity, p is the static pressure, τij is the stress tensor, ρgi is the 

gravitational body force in direction i. Fi represents external body force in direction i which is 

zero for the present work.  

The energy equation is solved with the following form:  

u u
τ

j j
ji i

ik k
j i i i k

( ) D

D

∂∑ ∂ ∂∂ ∂ ∂
+ = + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

h J
ρ hρh T p

k S
t x x x x t x

 (4.6) 

where h is the sensible enthalpy and Sk includes heat of chemical reaction, any inter-phase 

exchange of heat, and any other user defined volumetric heat sources.  

The above equations, i.e. Eqs. 4.3-4.6, are solved for the laminar flow regime (Rep ≤ 100).  

For fully-turbulent flow, i.e., Rep ≥ 600, a Reynolds-Averaged Navier-Stokes (RANS) model is 

employed. Reynolds-averaged turbulence modeling remains the most widely-used method for 

describing turbulence in the engineering domain. Fundamentally, in Reynolds averaging, the 

solution variables in the instantaneous (exact) Navier-Stokes equations are decomposed into 

the mean (ensemble-averaged or time-averaged), u i  and fluctuating, u'i  components, and then 

integrated over an interval of time large compared to the small-scale fluctuations. This way, 

the Cartesian tensor form Reynolds averaged Navier–Stokes (RANS) equation can be written 

as:  

u u u u' u'u u ui jj j i ji i l

j i j j i l j

( )( ) 2

3

  ∂ ∂ ∂ − ∂ ∂ ∂∂ ∂  + = + + − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

ρ ρρ p
μ μ

t x x x x x x x
 (4.7) 

In fact, the velocities and other solution variables are thus described by ensemble-averaged 

values, and the effects of turbulence are represented by the Reynolds stresses, u' u'i j−ρ . Several 

approaches have been proposed to represent the influence of the Reynolds stresses in terms of 

time-averaged flow quantities, e.g. the Boussinesq approach and Reynolds Stress Transport 

models, resulting in a variety of Reynolds-averaged-based turbulence models, e.g. Spalart-

Allmaras model, k-ε family models, k-ω family models, and RSM models. A detailed 

description of these models is available in standard references, e.g. [41,68]. Several researchers 

have examined different forms of RANS models in CFD simulations of fixed beds, e.g. 

[21,35,54,64]. In this work, for fully-turbulent flow, i.e., Rep ≥ 600, a Reynolds-Averaged 
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Navier-Stokes (RANS) model is adopted, using the realizable k-ε model (Shih et al. [69]) with 

an Enhanced-Wall-Treatment (EWT) to model the turbulence. Compared to the standard k-

ε model (Launder and Spalding [70]), this model has an improved modeling of the turbulent 

energy dissipation rate (ε) and applies a variable Cµ instead of a constant value, offering a 

more sophisticated approach for simulation of flow fields with strong streamlines curvature, 

vortices and rotations, as typically found in random packing structures [68]. Furthermore, 

Enhanced-Wall-Treatment (EWT) was proposed by ANSYS Fluent which is described by 

blending the linear (laminar) and logarithmic (turbulent) law-of-the-wall using a function 

suggested by Kader [71]. Details of this method are described in the theory guide of ANSYS 

Fluent 12. In the transitional flow regime, where 100 < Rep < 600, both the (laminar) Navier-

Stokes equations and the realizable k-ε model were examined.  

To solve the governing equations, a pressure-based solver with the SIMPLE scheme (Van 

Doormaal and Raithby [72]) for pressure-velocity coupling was utilized. Moreover, the 

PRESTO! (PREssure STaggering Option) method (Patankar [68]) was adopted as the 

interpolation scheme for computing cell-face pressures, which is fundamentally devised for 

strongly curved domains. A second-order upwind interpolation scheme was applied for both 

the convection and diffusion terms to interpolate the field variables (stored at cell centers) to 

the faces of a control volume. Furthermore, the gradients of solution variables at cell centers 

were determined using a Green-Gauss Node-Based method to minimize false diffusion. The 

CFD runs were initially set under isothermal conditions with only momentum and turbulence 

activated. Having established a converged flow field throughout the geometrical domain, the 

heat transfer simulations are run by setting the thermal boundary conditions and the 

temperature-dependent properties of the flowing fluid. Contrary to previous works, e.g. 

[21,32,63,73], convergence can be properly achieved without a need for manipulating the under-

relaxation factors, due to our high-quality mesh topology. Convergence was monitored by the 

common residuals as well as the computed drag coefficient on the packings and vertex value 

of axial velocity in a predefined point behind the packing section (at the position 0,0,125 mm). 

Furthermore, the overall mass balance of the system was checked for accurate conservation for 

all flow field results.  
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4.4.   Results and discussion 

4.4.1.   Mesh verification study 

To investigate mesh convergence, three mesh sizes were compared for the cylinder packing 

with N = 2.29. Details of the mesh, including the cell size and total cell count, are given in 

Table 4.2. 

Table 4.2 Specification of the mesh refinement study, based on the cylindrical packing with 

N=2.29. 

Description Fine Medium Coarse 

Mesh size range (mm)  0.05-0.4 (dp/25) 0.05-0.55 (dp/18.2) 0.05-0.8 (dp/12.5) 

Fluid Cell (×106)  15.29 10.87 6.80 

Total cell (×106)  23.27 17.70 10.04 

The three mesh levels are compared based on the CFD results of flow and heat transfer 

in Fig. 4.10-12. Fig. 4.10 shows the comparison results for axial velocity component along a 

typical line, (passing through the points (-0.011496,0,0.11 m) and (0.011496,0,0.11 m)) at bed 

height z = 100 mm at Rep = 10000.  Figs. 4.11 and 4.12 show the azimuthally-averaged 

temperature profile at different bed cross sections together with the local temperature along 

the bed axis for very high (Rep = 10000) and very low (Rep = 10) flow rates, where the 

convective and the conductive heat transfer mechanisms are dominant, respectively. Overall, 

the results demonstrate very good agreement between the medium and fine mesh levels for 

both the computed axial velocity and temperature profiles. The inadequacy of the coarse mesh 

can be distinctly recognized for predicting the temperature profile (see Fig. 4.11), where the 

convection is the dominant mechanism, and the axial velocity at the wall region (see Fig. 4.10), 

where the gradients are essentially steeper, at a very high Rep.  
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Fig. 4.10 Comparison between the computed axial velocity profiles obtained from three mesh levels 

at a typical line located at bed height z =100 in a cylindrical packing with N = 2.29 at Rep = 10000. 
 

 

Fig. 4.11 Comparison between the computed temperature profile obtained from three mesh levels in 

a cylindrical packing with N = 2.29 at Rep = 10000; (a) azimuthally-averaged temperature profile at 

z = 100 and 180 mm, (b) local temperature data along the bed axis. 
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Fig. 4.12 Comparison between the computed temperature profile obtained from three mesh levels in 

a cylindrical packing with N = 2.29 at Rep = 10; (a) azimuthally-averaged temperature profile at z = 

30 and 40 mm, (b) local temperature data along the bed axis. 

However, as shown in Fig 4.12, the difference between the coarse mesh profile and the 

profiles from the fine and medium meshes is negligible, suggesting that when using such a 

graded meshing scheme, even the course mesh is fine enough to show mesh independence for 

the conductive mode of heat transfer in the fluid phase.  

The Richardson extrapolation (RE) approach (Roache [74]) was used to assess the 

discretization error of the medium mesh level for the computed velocity and temperature fields. 

The RE method uses the field variables from the medium mesh, φm, and the fine mesh, φf, to 

compute the values that would theoretically be obtained at zero mesh size, φ∞, using the 

following formula: 

φ φ
φ φ f m

f 2
g
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−
= +

−
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N
 r

N
=  

(4.8) 
 

(4.9) 

where Nf and Nm are the mesh sizes of the fine and medium meshes, respectively. This formula 

assumes a second order discretization error. The extrapolated relative error (ERE) for the 

medium mesh is given by: 
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This approach was applied to the CFD results of pressure drop at Rep = 10,000 and 

azimuthally-averaged temperature profile, according to Fig. 4.10a, for fine and medium mesh 

levels to predict the value of the bed pressure drop and temperature profile at zero grid size, 

i.e. ∆p∞, Tr,∞. Using this method, the numerical error was computed as 1.77% for pressure 

drop and the average errors for radial temperature profiles at z = 100 and 180 mm were 

estimated as 1.74% and 1.03%, respectively. Since the highest Reynolds numbers present the 

most challenging conditions, this shows the medium mesh to be at the appropriate level for all 

remaining CFD simulations.  

4.4.2.   Validation study 

To validate the CFD results of the flow field, the computed bed pressure drops and axial 

velocity profiles are compared with literature data. For the pressure drop, the correlations by 

Eisfield and Schnitzlein [75] and Cheng [76], which properly account for the wall effects in low 

N-packings, are used. The former authors have performed a detailed analysis based on several 

thousands of experimental results to improve the correlation proposed by Reichelt [77] for 

different types of packings. Here, a dimensionless form of these correlations, the so-called pore-

based friction factor, ΨW, is used for the analysis. To this end, we used Eq. (2.7-2.8) to compute 

the pore-based friction factor based on the predicted pressure drop from CFD simulations. 

Furthermore, the parameters and further details of the correlations by Eisfield and Schnitzlein 

[75] and Cheng [76] are given in Table 2.3.  
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Fig. 4.13 Comparison between dimensionless pressure drops obtained from the CFD results and 

empirical correlations for packings of spheres (left) and cylinders (right). 
 

As shown in Fig. 4.13, the computed dimensionless pressure drops and the correlation 

results are in very good agreement in all flow regimes for both spherical and cylindrical 

packings.  It is noteworthy that the maximum deviation found from the correlation of Eisfield 

and Schnitzlein [75] is 17% for the cylindrical packing with N = 3.55 at Rep = 5, which is 

reasonably justified by the range of experimental errors reported by the authors. 

The validity of local flow distribution was also investigated based on the experimental 

data from Krischke [9]. The author has conducted LDV measurements to probe the axial 

velocity distribution inside random packings of glass spheres with N = 4 and 6.15 at different 

Rep.  
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Fig. 4.14 Comparison between simulated azimuthally-averaged axial velocity profiles and the 

experimental (LDV) data from Krischke [9] for random packings of spheres with N = 4.1 at (a) Rep = 

50; (c) Rep = 450, (e) Rep = 1000, and with N = 6.1 at (b) Rep = 50; (d) Rep = 350, (f) Rep = 670. 

In Fig. 4.14, the empirical (LDV) data of the azimuthally-averaged and bed volume-

averaged axial velocity profiles, measured by Krischke [9], have been compared with the CFD 

results of azimuthally-averaged axial velocity profiles, obtained from two cross sections at the 
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bed heights of 4dp and 5dp, as well as the 2D axially (bed volume)-averaged z-velocity profiles. 

Overall, the results are in reasonable agreement with the experimental data for both packing 

structures and for all Rep cases, as the typical oscillatory behavior of the radially varying axial 

velocity profiles are appropriately predicted both near the wall and in the inner bed regions. 

This oscillatory flow behavior has also been observed and described by Bey and Eigenberger 

[7] and Giese et al. [8].  It is worth mentioning that for N = 4 both CFD results and LDV data 

indicate the presence of a channel in the bed center, as the velocity increases significantly in 

this region. This feature of the random packings of spheres with N ≈ 4 has previously been 

observed in Chapter 3, where the local porosity at the center of the bed increases tremendously. 

Such a behavior has also been observed by several other researchers, e.g. [17,22,78].  

To inspect the validity of our CFD results with regards to the wall-to-bed heat transfer, 

the computed fluid-to-solid film heat transfer, represented by Nusselt number, Nufs was 

benchmarked against published correlations. To this end, the correlations by Gupta et al. [79], 

Gunn [80] and Wakao et al. [81] have been used (see Table 4.3) which covers a wide range of 

bed porosity and flow conditions.  

Table 4.3 Predictive formulas for fluid/solid film heat transfer coefficient (Nufs) 

Author Fluid/Solid Nusselt Number (Nufs) 
Application    

range 
Rep 

Gupta et al. [79]     
ε

1/3

fs P 0.58
P

Pr 0.929
Nu Re (0.0108 )

Re 0.483
= +

−
 0.26 < ε < 0.78 10−0000 

Gunn [80]     
ε ε

ε ε

2 0.2 1/3
fs P

2 0.7 1/3
P

Nu (7 10 5 )(1 0.7 Re Pr )

       (1.33 2.4 1.2 )(Re Pr )

= − + +

+ − +
   0.35 <ε < 1 20−105 

Wakao et al. [81]     
0.6 1/3

fs P
Nu 2 1.1Re Pr= +   2 < N < 107.6 15−500 

To obtain hfs from the CFD results, the facet-averaged value of total heat flux for the solid 

phase, ′
fs

q , is computed and then divided by the difference between mass-weighted average of 

fluid phase temperature, Tf,b and the facet-averaged values of pellets’ wall temperature, Tp,w.  
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(4-12) 

 

(4-13) 

where v and A are the momentum and facet area vectors.  

Furthermore, correlations were also defined as custom field functions in ANSYS Fluent, 

thereby accounting for the mass-weighted average of Rep and Pr from the fluid phase.  

As shown in Fig. 4.15, the computed fluid/solid film heat transfer Nusselt number and 

the correlation results are in good agreement in all flow regimes for packings of spheres with 

N = 3.1, 6.1. The same results were also found for other packing models. (not shown here for 

sake of brevity). 

 

Fig. 4.15 Comparison between computed fluid-to-solid film Nusselt number and the published 

correlations for packing models of glass spheres with glass particles; (a) N = 3.1, (b) N = 6.1. 

4.5.   Conclusions 

A novel and efficient workflow was introduced to simulate the hydrodynamic sand heat 

transfer in fixed beds containing non-spherical pellets. The workflow, entitled the RBD-CFD 

approach, consists of three main sequences, starting with physical simulation of random 

packings using the RBD-based packing algorithm presented in Chapter 3, followed by a contact 

point treatment in the computer-generated structures, and creation of an inflationary volume 
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mesh topology using an ad-hoc python-based script in ANSYS Workbench 16.2. The 

methodology was implemented and validated for a CFD study (using ANSYS Fluent 16.2) of 

the velocity field, pressure drop and fluid-to particle heat transfer in both spherical and 

cylindrical packing structures with tube-to-pellet diameter ratio N ranging from 2.29 to 6.1.  

The distinct advantages of the RBD simulation of a packing structure, over more 

conventional composite-sphere DEM approaches, are a better representation of the sharp edges 

of the particles and avoidance of any particle overlap. Therefore, the algorithm can provide a 

realistic packing structure for a supplementary “discrete particle” CFD study of flow and 

transport scalars within the reactor.   

The inflationary meshing scheme has been applied to random packing structures using a 

combination of patch conforming and patch independent approaches. This approach does not 

only provide a fine mesh to appropriately capture details of the phenomena occurring at the 

contact regions, but it also facilitates the solution convergence in the turbulent flow regime 

without any need for manipulating the under-relaxation factors, which is a routine method 

contrived by most other researchers to resolve the convergence problem in such complicated 

flow domains.  

The CFD results of the hydrodynamics were validated by comparing the pressure drop as 

well as azimuthally-averaged axial velocity profiles to published empirical data. Furthermore, 

to confirm the validity of the computed temperature fields, the interphase Nusselt number 

obtained from CFD simulations were compared with published correlations.  

This chapter, with the aid of validated data, offers the RBD-CFD method as a reliable 

methodology for understanding the in-situ behavior of hydrodynamics and thermal field at the 

pellet scale of non-spherical fixed beds. The post-processing of the validated CFD results will 

be presented in Chapter 5.  
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Nomenclature 

dp Pellet diameter [m] 

dpv Diameter of a sphere of equal volume  [m] 

dps Diameter of a sphere of equal specific surface area  [m] 

dt Tube or bed diameter [m] 

I Turbulence intensity [-] 

L Bed length [m] 

N Tube-to-pellet diameter ratio  [-] 

Npv Tube-to-pellet diameter ratio based on dpv [-] 

Nu Nusselt number: )
f

(hd kps  [-] 

Rt Bed radius [m] 

Rep Reynolds number based on dpv: ρ μu ds pv  [-] 

us Superficial velocity  [m/s] 

vo Inlet velocity [m/s] 

vz Azimuthally-averaged axial velocity [m/s] 

∆p Pressure drops [kg.m-1s-2] 

r Radial Coordinate [m] 

z Axial Coordinate [m] 

Greek letters 

ε Bulk porosity [-] 

ε(r) Radial porosity profile [-] 

μ Fluid dynamic viscosity [kg/(ms)] 

ρf Fluid phase density [kg/m3] 

Ψ Pore-based friction factor 
[-] 
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Abstract  

The in-situ behavior of velocity and thermal fields in random packings of spheres, cylinders and 

Raschig rings were meticulously analyzed by postprocessing the results of RBD-CFD simulations, 

described in chapter 4. The results reveal a tremendous influence of local structure on the velocity and 

temperature distributions at the pellet scale, particularly in narrower packings, where the spatial 

heterogeneity of the structure is very strong along the bed axis. Compared to random packings of 

spheres, in random packings of cylinders and Raschig rings more intense inhomogeneities in local 

velocity and temperature fields were observed. This can be ascribed to the role of sharp edges of such 

pellets in imposing stronger curvatures of the flow streamlines along the packing. Furthermore, the 

results show that the azimuthal averaging of velocity and temperature fields result in the under-

estimation of local velocity and temperature values by more than 400% and 50 K, respectively. This 

explains the inadequacy of even modified versions of pseudo-continuum approaches in predicting the 

radial heat transfer in tubular fixed bed reactors. The results of this chapter suggest the RBD-CFD 

methodology as a robust and reliable tool, providing detailed information on the “pellet-scale” behavior 

of transport processes in fixed bed reactors of non-spherical pellets.  

5.1.   Hydrodynamic results 

5.1.1.   3D structure of flow fields 

Having a detailed knowledge of the flow distribution inside fixed bed reactors is crucial 

for the design because it strongly influences local propagation of transport scalars and thus the 

reactor performance. 

Fig. 5.1 exhibits three examples of the 3D structure of flow fields, in the form of contour 

plots of the axial velocity normalized by the inlet velocity for several cross sections, together 

with flow streamlines colored by the local axial velocity, for packings of spheres, cylinders and 

Raschig rings at Rep = 100. The contour plots of normalized axial velocities at different bed 

cross sections demonstrate a tremendous inhomogeneity in the velocity distribution, which 

directly arises from the structural features of the randomly-packed fixed bed arrangements. 
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(c) 

Fig. 5.1 Examples of 3D flow fields using streamlines and contour plots of normalized axial velocity at 

different cross sections at axial positions 0.5dP, 2.5dP, 4.5dP, 6.5dP, 8.5dP and +0.5dP behind the packing 

section, for packings of (a) spheres, (b) cylinders and (c) Raschig rings, with Npv = 3.1 at Rep = 100. 

This inhomogeneity can be much more pronounced in packings of cylinders and Raschig 

rings, where the sharp edges of the cylinders at each crosscut impose stronger curvatures of 

the streamlines along the packing. Besides, as shown in 5.1c, the presence of an internal hole 

in the Raschig ring pellets leads to even a higher level of heterogeneity in the flow field, 

specifically when a Raschig ring is situated perpendicular to the flow direction. Furthermore, 

the contours reveal a local increase of axial velocity up to factors of 7.24, 7.72 and 5.81 for 

packings of spheres, cylinders and Raschig rings, respectively, for Npv =  3.1 and Rep = 100. The 

lower local increase of axial velocity in the packing of Raschig rings compared to spheres and 

cylinders can be ascribed to the shape of such pellets, where the existence of an axial hole 

inside the particle increases the local porosity. The high velocity “hotspots” are found 

predominantly near the wall region and also partially in the inner regions of the packing 

structures. The latter phenomenon can be more clearly observed in the contours of axial 

velocity at the central plane (XZ plane) of the packings, as shown in Fig. 5.2. 
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Fig. 5.2 Contour plots of normalized axial velocity at the central plane (XZ) of different random 

packings at Rep = 100; (a) spheres with N = 3.1, 4.1 and 6.1; (b) cylinders with N = 2.29, 3.55 and 4.58; 

(c) Raschig rings with N = 3.06, 4.05 and 6.02. 

As illustrated in the contour plots, a local increase in axial velocity mostly occurs in areas 

where the structure is not so dense, such as the near-wall region (the so-called wall channeling 

phenomenon) and connected axial interstices. However, it is evident that for some packings 

the maximum axial velocities occur at the center of the packing geometry, which originates 

from the high local porosity near the tube center in such packing structures. Conceptually, 

such flow characteristics can be a priori anticipated from the radial porosity profiles of these 

packing structures (see Figs. 3.17-19). Several researchers have reported similar observations, 

albeit only for packing of spheres with N around 4, e.g. [1–3]. Our CFD results demonstrate 

that maximum axial velocities also appear in the center of cylindrical packings with N slightly 

larger than 4 and Raschig ring packings with N around 3 (see Fig. 5.2b-c). Furthermore, the 

contour maps of vz/v0 show that the local rise in axial velocity increases with N at specific Rep, 

which can be explained by the decreasing the bulk porosity with increasing N. Similar results 

were fond for the magnitude of negative z-velocity (not shown here). Moreover, the contour 

plots reveal that areas with stagnant and backflow velocity fields, i.e. vortices, are emerging in 
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the wakes of pellets (and also inside the internal holes of Raschig rings, see Fig. 5.3) and behind 

the packing sections. As illustrated in Fig. 5.3, such regions become increasingly common with 

increasing Rep. Our CFD results show that the magnitude of negative axial velocity increases 

with the increase of Rep, viz. vz/v0 = -0.13, -2.76 and -2.81 at Rep = 10, 100 and 1000, 

respectively, for Raschig rings packing with N = 4.05. 

 

 
 

 

 
 

 

 
 

                    (a)                    (b)          (c) 

Fig. 5.3 Regions with stagnant and backflow velocity fields in a random packing of Raschig rings 

with N = 4.05; (a) Rep = 10, (b) Rep = 100 and (c) Rep = 1000. 

5.1.2.   Azimuthally-averaged velocity profile 

Because of the important role of flow maldistribution in lateral heat and species transport 

in fixed bed reactors, several researchers have tried to describe the hydrodynamic features of 

such tortuous structures using a simplified radially-varying axial velocity profile. Therefore, 

this section deals with the behavior of the 2D (azimuthally-averaged, axial and radial position-

dependent) axial velocity profile in different packing structures.  

-1.32 

-1.10 

-0.88 

-0.66 

-0.44 

-0.22 

0.00 

v� 
�⁄ ��� 

-2.76 

-2.30 

-1.84 

-1.38 

-0.92 

-0.50 

0.00 

v� 
�⁄ ��� 

-2.81 

-2.34 

-1.87 

-1.41 

-0.94 

-0.45 

0.00 

v� 
�⁄ ��� 



Importance of Heterogeneities and Inadequacy of Pseudo-Continuum Approaches 

131 

 

Fig. 5.4 shows the azimuthally-averaged axial velocity distributions, extracted from two 

different bed heights, and the axially-and-azimuthally-averaged profile, for all packing models 

at Rep=1000. The plots show the occurrence of the first maxima adjacent to the tube wall, 

which varies between 1.5 and 3 times the inlet superficial velocity. Furthermore, the position 

of the first minimum occurs approximately at 0.5dp from the tube wall in packings of spheres, 

while this position shifts to around 0.65dpv and 0.85dpv from the tube wall for cylindrical and 

Raschig ring packings, respectively, all corresponding to the minimum in local porosity profiles 

shown in Fig. 5.5. Nonetheless, a distinct difference between the local (azimuthally-averaged) 

and the global (axially-and-azimuthally-averaged) vz/v0 profiles can be found, specifically at 

the points where the local porosity has its extreme values. For example, the local (azimuthally-

averaged) velocity ratio, i.e. vz(r,z) shows a maximum local deviation about 76% of v0 (with 

the average deviation of 18% for z- velocity obtained profile from z = 3.5dp), up to 95% (with 

the average deviation of 27% for z-velocity profile obtained from z = 3.5dp) and up to 89% 

(with the average deviation of 28% for z-velocity profile obtained from z = 3.5dp) from its global 

(axially-and-azimuthally averaged) values for packings of spheres with N = 6.1, cylinders with 

N = 2.29 and Raschig rings with N = 6.02, respectively, at Rep = 1000. These local deviations 

culminate in narrower packing structures, e.g. Npv = 2 and 3.1, where the azimuthal symmetry 

basically cannot be fulfilled, resulting in large heterogeneity in the radial velocity profiles along 

the bed axis. It is worth remarking that a higher local deviation between azimuthally-averaged 

and axially-and-azimuthally averaged z-velocities in the Raschig ring packing with N = 6.02 

compared to spherical packing with N = 6.1 implies a higher level of circumferential asymmetry 

even in larger N-beds of such non-convex pellets.  Furthermore, considerable differences 

between the local and global values of vz/v0 can be observed in the vicinity of the tube wall in 

all packings. These observations are very important, because of the important role of convective 

mechanisms in the wall-to-bed heat transfer. In the literature, global axially-and-azimuthally-

averaged vz/v0 profiles, which can also be predicted from a modified version of the Navier-

Stokes equations, e.g. [4], are regularly used to improve pseudo-continuum heat transfer 

models. Our results suggest that using such global vz/v0 profiles can lead to erroneous 

predictions of transport properties in this region, specifically for low N fixed bed reactors. 
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Fig. 5.4 Azimuthally–averaged axial velocity profiles at the cross sections z = 3.5dp, 6dp and axially-

averaged profile at Rep = 1000 for packings of (a) spheres with N = 3.1, (b) cylinders with N = 3.55 (c) 

Raschig rings with N = 3.06, (d) spheres with N = 4.1, (e) cylinders with N = 4.58, and (f) Raschig rings 

with N = 4.05. 

In Fig. 5.5a-c, the axial-and-azimuthally-averaged axial velocity profiles at Rep=1000 are 

plotted together with the radial porosity distribution against dimensionless distance from tube 

wall for all packing structures. Fig. 5.5d compares the normalized axial-and-azimuthally-

averaged axial velocity profiles between the packings of spheres, cylinders and Raschig rings 
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with N = 3.1 at Rep = 100. Furthermore, we show the artificial axial velocity profile proposed 

by Bey and Eigenbereger [4,5] for cylindrical and Raschig ring packings at Rep = 1000 (Fig. 

5.5e).  
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Fig. 5.5 (axial-and-azimuthally-averaged) axial velocity distribution, together with the porosity profiles 

at Rep = 1000 for random packings of (a) spheres (b) cylinders and (c) Raschig rings; (d) axial-and-

azimuthally-averaged axial velocity profiles for all packings with Npv = 3.1 at Rep = 100; (e) the artificial 

normalized axial velocity profile after Bey and Eigenberger [4] at Rep = 1000 

Overall, the results demonstrate a meaningful harmony between the axially-and-

azimuthally averaged bed topology data, i.e. radial porosity distribution, and axially-and-

azimuthally averaged axial velocity profile in spherical and cylindrical cases, in the sense that 

the oscillatory pattern in the radial porosity distribution is closely reflected by the radial-

dependent axial velocity profile, whereas such a harmony can hardly be realized in packings of 

Raschig rings. Moreover, the normalized artificial z-velocity profiles (Fig. 5.5e) show peaks in 

the velocity ratio between 2 and 3 near the wall region, which is in agreement with the 
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measurements of Vortmeyer and coworkers [6] and Bey and Eigenbereger [4,5]. Nonetheless, 

the above averaged axial velocities are basically positive for every Rep, which implies the 

inadequacy of such flow information in reflecting the appearance of vortex regions, i.e. backflow 

as well as stagnant flow fields. This is also exemplified by the fact that there is a noticeable 

deviation (more than 400%) between the azimuthally-averaged values of axial velocities (see 

Fig. 5.5d), even when obtained for a specific bed cross section and the local normalized axial 

velocity values shown by the contour plots in Fig. 5.1, for typical packings of spheres, cylinders 

and Raschig rings with Npv = 3.1 at Rep = 100. This elucidates to what extent the averaging of 

velocity fields (or the exertion of artificial velocity profiles based on averaged porosity data) in 

modeling fixed beds neglects the localized phenomena at the pellet scale, which can lead to 

erroneous predictions of the behavior of transport scalars inside the reactors 

5.2.   Heat transfer results 

5.2.1.   Contour maps of thermal field   

The analysis of heat transfer in tubular fixed beds is essential as it can strongly influence 

the reactor performance in terms of the product yield and selectivity. In lower N-beds, say 

N<10, as discussed in chapter 3, the reactor wall induces a radial heterogeneity in the local 

packing structure. The consequence of such a topological feature, as explained in the previous 

sections, is the occurrence of a tremendous local inhomogeneity in the velocity fields. In this 

section we are going to address the influence of (bed-related) local flow maldistribution in such 

complicated structures on the temperature field. Following this, the role of pellet shape and 

tube-to-pellet diameter ratio on temperature field is investigated at the pellet scale.  

Fig. 5.6 shows three examples of the pellet-scale temperature fields in both fluid and solid 

(i.e. catalyst) phases, in the form of contour maps of temperature for several cross sections 

together with the pellets surface temperature, for the packings of spheres, cylinders and Raschig 

rings at Rep = 100. 



 Chapter 5 

136 

 

 

 

(0.5 dp) 

(6.5 dp) (8.5 dp) (11 dp) 

(2.5 dp) (4.5 dp) 
T [K] 

(0.5 dp) (2.5 dp) (4.5 dp) 

(6.5 dp) (8.5 dp) (11.9 dp) 

T [K] 

(a) 

(b) 



Importance of Heterogeneities and Inadequacy of Pseudo-Continuum Approaches 

137 

 

 

Fig. 5.6 Contour plots of temperature field on the surface of pellets and at different cross sections at axial 

positions 0.5dP, 2.5dP, 4.5dP, 6.5dP, 8.5dP and +0.5dP behind the packing section, for packings of alumina 

pellets; (a) spheres, (b) cylinders and (c) Raschig rings, with Npv = 3.1 at Rep = 100. 

The contour plots of temperature fields at different bed cross sections demonstrate a 

tremendous inhomogeneity in the temperature distribution along the packing depth, which 

directly arises from the local flow maldistribution in such narrow-fixed bed arrangements. This 

inhomogeneity is much more discernable in packings of cylinders and Raschig rings (see Fig. 

5.6b-c), closely connected to the role of topological features of such shaped pellets in the local 

velocity distribution. Furthermore, the temperature contour maps at each cross section 

substantiate that there is no azimuthal symmetry in temperature distribution, which is caused 

by the extreme radial and angular heterogeneity inherent in the low-N fixed bed structures. 

This observation can also explain why a 120⁰ wall-segment model proposed by Dixon and 

coworkers [7–9] cannot be adequate for analysis of flow and heat transfer in a full fixed bed.  

To investigate the influence of N on the temperature distribution, contour maps of 

temperature fields at different cross sections are depicted for random packings of spheres and 

Raschig rings with Npv = 3.1,4.1 and 6.1 in Figs. 5.7 and 5.8, respectively.  
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Fig. 5.7 Contour plots of temperature field on the surface of pellets and at different cross sections at axial 

positions 0.5dP, 2.5dP, 4.5dP, 6.5dP, 8.5dP and +0.5dP behind the packing section, for packings of alumina 

spheres; (a) N = 3.1, (b) N = 4.1 and (c) N = 6.1 at Rep = 100. 
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Fig. 5.8 Contour plots of temperature field on the surface of pellets and at different cross sections at axial 

positions 0.5dP, 2.5dP, 4.5dP, 6.5dP, 8.5dP and +0.5dP behind the packing section, for packings of alumina 

Raschig rings; (a) N = 3.1, (b) N = 4.1 and (c) N = 6.1 at Rep = 100. 
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As shown in Figs. 5.7-8, a considerable inhomogeneity in the temperature fields can be 

observed in wider packing structures as well. This behavior is more pronounced in packed 

tubes of Raschig rings (see Figs. 5.7c and 5.8c), where the presence of an internal hole in such 

pellets causes even a much sharper temperature gradient along a typical azimuth at each 

crosscut. This thermal heterogeneity can be clearly discerned near the wall region, where the 

sharpest temperature gradients in both fluid and catalyst phases exist.  Overall, Figs. 5.6-8 

demonstrate a large difference between the fluid and catalyst phases’ temperature along the 

azimuthal direction at each cross section. This implies that azimuthal-averaging of the 

temperature field in tubular fixed beds can lead to underestimation of the wall-to-bed heat 

transport in a wall-heated tubular fixed bed reactor. This is shown more quantitatively in Fig. 

5.9. 

 

Fig. 5.9 Temperature field data at different azimuthal positions together with the azimuthally-averaged 

temperature profiles at cross section z = 6dp for packings of alumina Raschig rings with N = 4.05 at Rep 

= 100. 

Fig. 5.9 suggests the maximum deviation between the local and the azimuthally-averaged 

temperature data is more than 50 K, occurring at a distance of around 0.5dp from the tube 

wall for this case.  

Furthermore, using the contour maps of temperature field, we can shed light on the 

properties of the thermal boundary layer near the tube wall. A closer look at the wall region 

in the contour plots of the temperature fields at different cross sections shows that the thermal 

wall boundary layer is broken by the presence of catalyst pellets in this region, i.e. contacts 

between tube wall and particles. This observation substantiates that the thermal boundary 

layer introduced by pseudo-continuum models are rather artificial and do not represent the in-
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situ or pellet-scale temperature field data. The same conclusion can be deduced for the velocity 

boundary layer at the tube wall.  

5.2.2.    Radial temperature profile 

In Fig. 5.10, the azimuthally-averaged dimensionless temperature profile is compared for 

packings of spheres, cylinders and Raschig rings with Npv = 3.1 at packing height z = 6dp and 

for different pellet conductivities (corresponding to alumina and glass particles, respectively).  
 

 

 

 
 

Fig. 5.10 Azimuthally-averaged temperature profile for packings of spheres, cylinders and Raschig rings with 

Npv = 3.1, at the packing depth z = 6dp for glass and alumina pellets at Rep = 100; (a) azimuthally-averaged 

fluid phase temperature, (b) azimuthally-averaged pellet phase temperature, (c) azimuthally-averaged 

temperature of all phases. 
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Overall, as shown in Fig. 5.10, the temperature profiles in packings of cylinders and 

Raschig rings are much smoother than for spheres for both fluid and pellet phases, evidencing 

a more efficient radial heat dispersion in such packing structures. Furthermore, the graphs 

demonstrate a considerable influence of the exact value of the thermal conductivity of the 

catalyst pellets on the radial temperature profiles in the individual phases, and accordingly on 

the azimuthally-averaged temperature profile. This observation, i.e. the influence of thermal 

conductivity of catalyst phase on the fluid phase bulk temperature, can explain why the 

correlations proposed by Singhal et al. [10,11] under-predict the fluid/pellet Nusselt number. 

The authors have neglected the role of solid phase in their heat transfer simulations, where 

they just set a constant temperature at the surface of pellets as the thermal boundary condition 

to analyze fluid/solid film heat transfer (characterized by the Nusselt number).  

The behavior of the azimuthally-averaged temperature profiles suggests two different 

thermal regions along the tube radius: first is the near wall region with a thickness of around 

0.2dp from the tube wall for low-N packings, where a large temperature gradient exists, and 

second, the core region in the remaining radius. Such a differentiation is in agreement with 

experimental observations by Froment and coworkers [12,13] and, more recently, by Dong et 

al. [14]. It is worth remarking that the sharpest temperature gradient at the wall region occurs 

within the distance of 0.2dp from the tube wall, where the axial velocity peaks appear (see 

Figs. 5.4-5). Since the local porosity at the location of axial velocity peaks in the wall region is 

larger than 0.75, the contribution of the fluid phase temperature is considerable in the 

azimuthally-averaged temperature profile. This observation can also explain the influence of 

the wall-channeling phenomenon on the radial temperature profile.    

Fig. 5.11. illustrates the 2D (azimuthally-averaged) temperature profiles in the packings 

of spheres, cylinders and Raschig rings with Npv = 3.1 at different cross sections for Rep = 100.  
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Fig. 5.11 Azimuthally-averaged temperature profiles for packings of alumina pellets with Npv = 3.1, at 

the packing depth z = 3.5dp, 6dp and 9.5dp at Rep = 100; (a) spheres, (b) cylinders, and (c) Raschig 

rings. 

Contrary to the azimuthally-averaged axial velocity profiles, which show local fluctuations 

along the tube radius at different cross sections (see Fig. 5.4), the azimuthally-averaged 

temperature profiles show a stable pattern at different cross sections. Furthermore, the 

temperature profiles in Figs. 5.10-11 demonstrate the presence of a “hump” at a distance of 

around 0.8dpv to 1dpv from the tube wall in all packings with Npv = 3. This behavior can be 

explained by the appearance of a very sharp temperature gradient at the surface of the pellets 

adjacent to the tube wall. The humps appear to be a little smoother in packings of cylinders 

and Raschig rings. It is worth noting that these features, i.e. the presence of a hump or shoulder 

in the 2D temperature profile, have been previously addressed by several researchers, e.g. [14–

17]. Fig. 5.11 shows that the position of the observed hump does not change along the bed 

height, although it seems to be smoothened or even disappear as the local temperature in fluid 
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and the catalyst phases approaches thermal equilibrium conditions. Moreover, our CFD results 

demonstrate independence of the radial position of the observed humps with changing Rep (not 

shown). It is noteworthy that the presence of a low temperature gradient field over a large 

fraction of the tube radius, say 0.2 < (Rt-r)/dpv < 0.8dpv, in low-N packings, can explain why 

the effective radial thermal conductivity, ker is enormously high in narrow-tube fixed bed 

reactors. Such a region emerges due to the higher contribution of the catalyst phase 

temperature in the azimuthally-averaged temperature profile, where the thermal gradient is 

quite low, particularly for alumina pellets (see Fig. 5.10b).  

Fig. 5.12 illustrates the azimuthally-averaged temperature profile in packing of spheres, 

cylinders and Raschig rings with different N at cross section z = 6dp and Rep = 100.   
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Fig. 5.12 Azimuthal-averaged temperature profiles for packings of alumina pellets with Npv = 3.1, at the 

packing depth z = 3.5dp, 6dp and 9.5dp at Rep = 100; (a) spheres, (b) cylinders, and (c) Raschig rings. 

Fig. 5.12 reveals the presence of a second hump in wider beds at a distance of around 

1.6dpv to 2dpv from the tube wall, although it is clearly much smoother than the first hump. It 

can also be deduced that the presence of a hole at the middle of the packing structures of 

spheres and cylinders with Npv = 4, leads to a poor radial heat transfer compared to the packing 

of Raschig rings with Npv = 4.1. Furthermore, Fig. 5.12 shows much smoother temperature 

profiles in packings of cylinders and Raschig rings, even for wider tubes.  

5.3.   Conclusions 

This chapter presented the post-processing results of RBD-CFD simulations in order to 

obtain characteristics of the fluid flow and wall-to-bed heat transfer in packed beds of different 

types of non-spherical pellets. The RBD-CFD approach can provide detailed information, 

which in terms of resolution and precision is not only comparable to the results of advanced 

experimental techniques, but often very difficult to obtain using methods such as PIV, MRI, 

3D CT, etc. This way, the RBD-CFD method can be regarded as a novel design philosophy 

within the context of “Numerical Experiments”, which enables a deep understanding of 

complex physio-chemical phenomena in fixed bed reactors of non-spherical pellets. 

The 3D flow field results reveal a remarkable influence of local structure on the velocity 

distribution at the pellet scale, where the presence of wall effects, i.e. flow channeling, across 

the entire tube radius can be clearly observed in the contour plots of the velocity field in narrow 

tubular fixed beds. These results demonstrate large inhomogeneities in the velocity field, 

particularly in random packing of cylinders and Raschig rings, where sharp edges in such pellets 

impose stronger curvatures of the flow streamlines along the packing. It is also shown that 
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azimuthal averaging of the 3D velocity field along the bed, which has been an advancement in 

plug flow idealization in classical modelling, cannot reflect the vortex regions (areas with 

negative axial velocities) inside the structure, and underestimate the local velocity values by 

more than 400%. 

The contour maps of the temperature fields also show substantial inhomogeneities in the 

temperature distribution along the packing depth, which is attributed to the role of (bed-

related) local flow mal-distribution in low-N fixed beds. This inhomogeneity is even more 

discernable in Raschig ring packings, where the presence of an internal hole in such pellets 

leads to a sharper temperature gradient along the azimuthal direction. This result suggests 

inadequacy of the 120⁰ wall-segment model proposed by Dixon and coworkers [7,9] for analysis 

of heat transfer in a full fixed bed. Moreover, the temperature field results also show a 

remarkable influence of the solid catalyst phase thermal conductivity on the fluid phase local 

and bulk temperatures. This observation can explain why the correlations proposed by Singhal 

et al. [10,11] under-predict fluid/film Nusselt number.  

The azimuthally averaged temperature field shows deviations of more than 50 K from the 

local temperature data, at a distance of around 0.5dp from the tube wall for the case studied. 

Azimuthal averaging of the temperature field reveals the occurrence of humps in the radial 

profile at a distance of around 0.8dpv to 1dpv from the tube wall, implying a sharp temperature 

gradient at the surface of pellets adjacent to the tube wall.  

In summary, the observed deviations caused by azimuthal averaging of velocity and 

thermal fields, particularly in tubular fixed beds of non-spherical pellets, can explain the 

inadequacy of even modified versions of pseudo-continuum approaches in predicting the radial 

heat transfer in fixed bed reactors.  
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Nomenclature 

dp Pellet diameter [m] 

dpv Diameter of a sphere of equal volume  [m] 

dt Tube or bed diameter [m] 

L Bed length [m] 

N Tube-to-pellet diameter ratio  [-] 

Npv Tube-to-pellet diameter ratio based on dpv [-] 

Rt Bed radius [m] 

Rep 
Reynolds number based on dpv: ρ μu ds pv  [-] 

T Temperature  [K] 

vo Inlet velocity [m/s] 

vz Azimuthally-averaged axial velocity [m/s] 

vz(r) Artificial velocity after Bey and Eigenberger [4] [m/s] 

R Radial Coordinate [m] 

Z Axial Coordinate [m] 

Greek Letters  

ε Bulk porosity [-] 

ε(r) Radial porosity profile [-] 
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Chapter 6  

 

Evaluation of Effective Heat Transfer Parameters 

in Tubular Fixed Beds of Non-Spherical Pellets 
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Abstract 

Chapter 5 showed the inadequacy of azimuthal averaging of the thermal fields in tubular fixed 

bed reactors. Still, from a point of view of design and control, it is very desirable to have simple pseudo-

homogenous models available for such reactors. In this chapter, we perform numerical experiments to 

elucidate the effective heat transfer parameters introduced in classical ker -hw pseudo-homogenous model. 

The results demonstrate that the reactor length-dependency of the values of ker and hw is basically 

inherent in such effective thermal parameters and originates from the evolutionary trend of the thermal 

equilibrium in fluid and catalyst phases along the bed length. Furthermore, we show that the procedures 

suggested in the review paper by Dixon (2012) do not solve the length-effect problem. We conducted 

a detailed sensitivity analysis of the influences of the pellet shape and thermal conductivity, as well as 

tube-to-pellet diameter ratio, on the effective heat transfer parameters. The results provide an intuitive 

picture of the contributions of the different transport mechanisms to the effective thermal properties. 

The most promising literature correlations for Peer and Nuw are examined to predict the radial 

temperature profile using the ker
 - hw pseudo-homogenous model and then compared with the 

azimuthally-averaged temperature data obtained from RBD-CFD simulation results for random 

packing of spheres with N = 6.1. It is concluded that the models of Specchia/Baldi/Gianetto/Sicardi 

for all flow regimes and of Martin/Nilles for the turbulent regime can be recommended for practical 

use for spherical particles. The results of this chapter suggest that the RBD-CFD methodology can be 

used as a tool to tune simplistic pseudo continuum models to improve their reliability.    

6.1.   Introduction 

The prediction of wall-to-bed heat transfer rate in fixed bed reactors is a topic of 

continuing interest for reactor design [1–11]. Of particular concern is the case of low-N tubular 

fixed bed reactors due to their inherent advantage of enhanced wall-to-bed heat transport, 

which is essential for handling highly exothermic and endothermic reactions. Despite the 

intrinsic inadequacies connected with pseudo-continuum models with respect to the prediction 

of radial heat transfer, there is a continued interest in the use of classical pseudo-homogenous 

ker -hw models (see e.g. [12–15]). Such models are suitable for fast and repetitive computations 

for selected features of the 2D (axial-radial) temperature field, allowing for fast design, 

optimization, and control of such reactors. Nonetheless, our results in Chapter 5 demonstrated 

how azimuthal-averaging of the temperature field leads to noticeable deviations from local 

temperature data, particularly in low-N tubular fixed beds with non-spherical pellets, where 

the influence of local structure on both the velocity and temperature fields is substantial. 

Similar remarks are made in relatively recent review papers (e.g. [9,16]). Our review of the 

problem of radial heat transfer in Chapter 2 showed a large disagreement between the predicted 

values and literature correlations for the effective radial Peclet number, Peer, and the apparent 
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wall Nusselt number, Nuw, versus particle Reynolds number, Rep. The reasons for such 

discrepancies can be sought in experimental errors, e.g. insulation problem, and in the neglect 

of essential features such as the role of tube-to-pellet diameter ratio, shape and thermal 

conductivity of pellets that can strongly affect the local transport processes.  

Another major problem associated with the evaluation of effective heat transfer 

parameters Peer and Nuw is their dependence on the bed height. Several research groups have 

noticed that using a 2D-PF heat transfer model as the fitting model, both ker and hw evaluated 

from the temperature profiles show a bed length dependency. Paterson and Carberry [1] 

demonstrated that the disagreement between observed and computed hot spots may be 

attributed to either neglecting the axial heat dispersion term in the modeling or to the use of 

length-dependent parameters in the descriptive heat transfer models. In fact, the authors 

suggested the use of a 2D-ADPF model instead of a 2D-PF model to overcome length 

dependency problem. Earlier researches, e.g. by Gunn and Khalid [17] and Dixon et al. [18], 

have shown that when the 2D-ADPF model with three parameters, i.e. kea, ker and hw, is fitted 

to the thermal data for different bed lengths, the results do not reveal any length dependency. 

However, the values of kea were poorly overestimated, being larger than any realistic values by 

an order of magnitude. This observation has resulted in a debate about the use of kea as one of 

the three fitted parameters in the 2D-ADPF model [1,19]. Following these studies, Dixon [20] 

investigated the influence of bed length on the effective parameters using several heat transfer 

experiments. The author confirmed that ker and hw decrease to asymptotic values along the 

bed depth even when the 2D-ADPF model with a fixed predefined kea is used as a fitting model. 

The Author also claimed that this observation stems from experimental errors, and thus 

presented some recommendations for heat transfer experiments to overcome the length effects. 

He noticed that the heat conduction along the length of the tube wall from the heated test 

section to the unheated calming section leads to preheating of the inlet gas (see Fig. 6.1) and 

therefore a radially varying temperature profile at the bed inlet instead of a constant 

temperature, thereby leading to the so-called “length effect” in ker and hw. 

Similar conclusions were also reached by Freiwald and Paterson [21] and Borkink and 

Westerterp [22]. They found that the length dependence effect could be eliminated by using 

the 2D-ADPF model instead of the 2D-PF model, provided that the heat loss from the calming 
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section and thermocouple cross are either effectively avoided or taken into account in the 

modelling by improving the inlet temperature boundary condition.  

Fig. 6.1 Schematic of a generic laboratory heat transfer experiment for steam heating of a flowing gas 

through a bed of particles, with radial temperature measurement by a thermocouple cross (Dixon [23]). 

 Nonetheless, Wen and Ding [24]  and Liu et al. [25] have demonstrated the appearance 

of a reactor length dependency on the effective transport parameters, although they have 

pursued the procedures suggested by Dixon [20] and Freiwald and Paterson [21] to reduce 

experimental sources of error. The first authors claimed that, based on the analogy to an empty 

tube, this phenomenon might be caused by an entrance length, over which the flow and 

temperature profiles become fully-developed. Furthermore, the authors noted that the 

configurations used in their experimental setup is more realistic in terms of industrial 

applications, where there is no calming section to obtain an artificially fully developed velocity 

field.    

In essence, the reactor length dependency, in addition to the observed dichotomy in 

literature correlations for the effective parameters, have led to ambiguities which are not very 

helpful to designers of fixed bed reactors in selecting appropriate predictive correlations. This 

situation effectively forces designers to seek validation of their design calculations through 

supplementary experimental studies, thereby imposing large additional expenses to a project. 

However, using the concept of Numerical Experiments introduced and elaborated in Chapters 

4 and 5, in this chapter we will shed some light on the prevailing ambiguities associated with 

the effective heat transfer parameters introduced by the classical pseudo-homogenous ker-hw 

model. The RBD-CFD methodology is able to provide a deeper insight into such “lumped” 

transport properties because it can methodically address the roles of flow regime (typified by 
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Rep), tube-to-pellet ratio N, bed length, pellet shape, and pellet material (typified by thermal 

conductivity).  

6.2.   Parameter estimation problem 

Parameter estimation is a key problem in the development of process models, and thus an 

important issue in both process design and control. In fact, parameter estimation plays a 

critical role in accurate description of the behavior of complex systems through mathematical 

models such as statistical probability distribution functions, parametric dynamic models, etc.  

Fundamentally, using pseudo-homogenous models such as the 2D-PF or 2D-ADPF heat 

transfer models, we translate the transport processes taking place in a 3D two-phase gas-solid 

system into a 2D one-homogenous phase system. This requires “effective” parameters that 

reflect the underlying transport mechanisms occurring in a real two-phase system. These 

parameters are obtained by resorting to the inverse problem using pseudo-homogeneous heat 

transfer models to predict observed (and suitably averaged) temperature field data. In essence, 

the objective of an inverse problem is to find the best model, Ω, such that E ≈ O(Ω), where O 

is an operator representing the governing equations that relate the model parameters with the 

observed data, E.  

In this study, a 2D-ADPF model, Eq. (6.1), is considered as the fitting model and the 

temperature fields obtained from RBD-CFD results of heat transfer, i.e. numerical experiments, 

form the observed data. The objective of our analysis is to compute the effective radial thermal 

conductivity, ker, and apparent wall heat transfer coefficient, hw, for an entire fixed bed of a 

certain length, using an optimization process so that the best fit between the model results 

and observed RBD-CFD data is achieved. The 2D-ADPF heat transfer model is presented in 

the following dimensionless form: 

θ θ θ θ

ζ ω ωω ζ

2 2

2 2
er ea

1 2 1 1 2

Pe N Pe N

      ∂ ∂ ∂ ∂
= + +         ∂ ∂∂ ∂      

 

with the following boundary conditions: 
 

(6.1) 
 

ζ θfor  0  1= → =  (6.2) 

θ
ω

ω
for  0  0

∂
= → =

∂
 (6.3) 

ζθ
ω θ

ω ζ

Bi  ( 0)
for 1 Bi

0   ( 0) 

 >∂ 
= → + = 

∂ <
 (6.4) 

Here ζ = z/Rt is the dimensionless axial position and ω = r/Rt the dimensionless radial 

position, non-dimensionalized by the tube radius Rt, and θ = (Tw -T)/(Tw -T0) is the 
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dimensionless temperature, non-dimensionalized by the difference between wall and inlet gas 

temperatures Tw and T0. The radial and axial heat dispersion is characterized by the effective 

radial and axial Peclet numbers Peer = Gcpdpv/ker and Peea = Gcpdpv/kea, with G = ρv the mass 

flux. The wall-to-bed heat transfer is characterized by the Biot number Bi = hwRt/ker. As 

explained in Chapter 2, this one-phase model describes the overall heat transfer resistance by 

an effective radial thermal conductivity, ker, lumping together all heat transfer mechanisms in 

the radial direction, and an apparent wall heat transfer coefficient, hw, which is postulated to 

account for the temperature jump near the wall region. The 2D-ADPF heat transfer model 

has an analytical solution in terms of an infinite series of Bessel functions, which can be 

obtained using the Fourier method. Several researchers report the analytical solution of this 

model, e.g. [17,26], which can be represented in the following dimensionless form: 

ζ ω λ ω λ γ
θ ζ ω

λ λ λ

ζ

γ

λ

2
w 0 i i

2i 1
w 0 i i 1 i

er

2
i

er ea
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T T 1 ( Bi) J ( )

where

1 1
4

Pe N

1 1 1
1 1 16

Pe Pe N

∞

=

− −
= = ∑

−  + 

=

+ +

 

and the eigenvalues λi are the roots of the characteristic equation:  

(6.5) 

 

 

 
(6.6) 

 
 

λ λ λ
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J ( ) BiJ ( ) 0 − =  (6.7) 

To examine if the procedures proposed by Dixon [20,23] and Borkink and Westerterp 

[22,27,28] are able to resolve the problem of length-dependency, the inlet gas temperature that 

is needed to make a dimensionless temperature profile is computed based on two methods: (i) 

the mass weighted-average of temperature at the bed inlet, which is calculated by Eq. (6.8), 

and (ii) the azimuthally-averaged radial temperature profile at the bed inlet, i.e. T0(ω).  

ρρ
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=

∑∫
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∫ ∑

v Av A
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 (6.8) 

The observed data to be employed in our parameter estimation problem includes the 

azimuthally-averaged temperature profile obtained from the RBD-CFD simulations for all case 

studies presented in Chapter 4 (Table 4.1). This allows access to an extensive data pool of 

temperature fields in packing structures of spheres, cylinders and Raschig rings with different 

tube-to-pellet ratios N, and for a wide range of particle Reynolds numbers, 5 ≤ Rep ≤ 3000. 

Furthermore, to investigate the influence of bed length on ker and hw, azimuthally-averaged 

temperature data at different bed cross sections z = 1dp, 3dp, 5dp, 7dv, 9dp, 10dp to 11dp 
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(representing the end of the packing section) and +2dp behind the packing section are utilized 

to solve the parameter estimation problem. This way the temperature field data at different 

cross sections can be translated into 2D radial temperature profiles, which can be compared 

with the pattern predicted by Eqs. (6.5 -7). It is important to note that in our optimization 

procedure we do not aim to determine local effective parameters. Rather, for each specific 

cross-section we aim to determine the set of global (volume-averaged) effective parameters 

which, when applied to the entire volume from the entrance of the fixed bed to that specific 

cross section, yields the same azimuthally-averaged (radial) temperature profile as in the RBD-

CFD simulations. Fig. 6.2 illustrates a general schematic of our procedure to obtain an 

azimuthally-averaged temperature profile from the CFD results.  

Before proceeding to the solution, it is essential to deliberate on the role of the axial Peclet 

number, Peea. Wakao et al. [29] demonstrated that the influence of Peea on the minimum error 

obtained from their model optimization is negligible. Note that this explains why it is possible 

that some literature values for kea are larger than any realistic value by an order of magnitude. 

Overall, there are no severe comments found in the literature that address any shortcomings 

or discrepancies on the published correlations for the axial heat transfer Peclet number. 

Therefore, in this work, Peea is kept constant and computed from the empirical correlation 

proposed by  Dixon and Cresswell [30], assuming Peaf(∞) = 2, and using the correlation presented 

by Zehner and Schlünder [31] for the effective solid conductivity. 

as

ea af ( ) f p

k1 1 1

Pe Pe k Re Pr
∞

= +  

Where 
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(6.10) 

and C is 1.25, 2.5, 2.5(1+(di/do)2) and 1.4 for spheres, solid cylinders, and hollow cylinder, 

respectively. In Eq. (6.9), Pr is the Prandtl number defined as μcp/kf. 
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Fig. 6.2 General sequence pursued to obtain azimuthally-averaged temperature distribution at different 

cross sections for random packings of alumina Raschig rings with N = 4.05 at Rep = 100. In this 

example, we focus on the cross section at axial position z = 7dp. Bottom right: individual temperature 

measurements as a function of x-coordinate. Bottom left: azimuthally averaged radial temperature 

profile. 

6.2.1.   Multi-variable optimization method 

Accurate solution of a multi-variable parameter estimation problem necessitates a robust 

and rigorous optimization method, which allows computing the most dependable parameters, 

resulting in the best achievable fit between predictions and measurements. In this work, a 

nonlinear least squares (NLLS) method is applied to compute Peer and Bi. The approach uses 
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an initial guess for the effective parameters, whereby the radial temperature profile is predicted 

using Eqs. (6.1-10) at locations corresponding to the measurements, i.e. at a specific cross 

section where the azimuthal-averaged temperature data is obtained, and a sum of squares of 

the differences is accordingly formed. The parameters are then altered using a multi-variable 

optimization approach to minimize the sum of squares of the differences, giving the best-fit 

parameter estimates. The objective function in this optimization problem is therefore an error 

function, which is the root of the mean square error between the predictions and measurements. 

1 2

2
Pr e CFD

1
Error (T T )

n

 
= −∑ 
 

 (6.11) 

where TPre and TCFD are the predicted and measured temperatures, respectively, and n is the 

total number of points of comparison at the specified cross section. The variation of different 

effective parameters will result in an error map in which the minimum can be located, and the 

effective parameters corresponding to the minimum error represent the best that predict the 

measured temperatures, i.e. azimuthally-averaged temperature profile obtained from the CFD 

results. To obtain the global minimum, a robust optimization function, FMINCON, available 

in Matlab software is used, which enables us to compute a constrained minimum of a scalar 

function of several variables starting at an initial guess. A detailed description as well as the 

background of this nonlinear optimization function can be found in standard references [32–

34]. It mentions that such an optimization routine is adopted because, first, our problem 

includes functions with strong nonlinear dependencies on the variables, and secondly, both of 

the Per and Bi conceptually possess a limited range of values, enabling the optimization solver 

to narrow down the search regions, and accordingly reduce the computational expenses. 

Appendix C supplies the Matlab M-file code for solving our two-parameter estimation 

problem. The code uses the empirical correlations proposed by Melanson and Dixon [35] and 

Dixon et al. [18] to make a reasonable initial guess for Peer and Bi, respectively. Despite the 

observed scattering of the predicted values of Peer and Nuw versus Rep based on different 

literature correlations (as discussed in Chapter 2), these parameters appear to vary within 

certain ranges. To this end, we assume the values of Peer and Bi(dp/Rt) should be within the 

ranges [0.1-15] and [1-10], respectively. Furthermore, the physical properties of air are 

calculated at the average temperature at a specific cross section.  To ensure that the computed 

values by the FMINCON function addresses the global minimum of our objective function, we 

also examined another nonlinear least-squares solver programmed in Matlab, LSQNONLIN, 

which solves nonlinear least-squares cure fitting problems. The background of this algorithm 

is elaborated in Coleman et al. [32]. 
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6.3.   Results and discussion  

The optimization code was run for 168 case studies, including the packing structures of 

spheres, cylinders and Raschig rings with different N to investigate the effect of bed length on 

the effective 2D-ADPF heat transfer model parameters, i.e. ker and hw. The analysis of the 

results allows us to shed light on the influences of pellets of different shapes and thermal 

conductivities and also different tube-to-pellet diameter ratios on the effective heat transfer 

parameters.  

6.3.1.   Verification study 

To assure that the FMINCON optimization results reflect the global minimum of the 

objective function, we have first compared its prediction with LSQNONLIN. The computed 

values of Peer and Bi based on the both solvers are very comparable: the difference is of the 

order of the third decimal digit. Furthermore, to measure the accuracy of the optimization 

results, the observed temperature data, i.e. azimuthally-averaged temperature profiles obtained 

from the RBD-CFD heat transfer results, are compared with the radial temperature profiles 

predicted by the 2D-ADPF heat transfer model, based on the optimum values of Peer and Bi 

in Fig. 6.3. The Figure shows the comparison at different bed cross sections in random packings 

of alumina Raschig rings with N = 4.05 and 6.02 at Rep = 100. The good agreement between 

the azimuthally-averaged temperature profiles and the radial temperature profiles predicted 

by 2D-ADPF at different bed cross sections substantiate the reliability of the optimization 

results. At the same time, it is also evident that the pseudo-continuum 2D-ADPF model cannot 

predict the presence of the observed hump in the temperature profile. This can be ascribed to 

the simplifying assumptions, i.e. plug flow idealization (implying neglect of granularity on the 

pellet scale) and thermal equilibrium between catalyst and fluid phases. 
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Fig. 6.3 Comparison between the azimuthally-averaged temperature profiles obtained from RBD-

CFD results and the radial temperature profile predicted by the 2D-ADPF heat transfer model at 

cross sections z = 1dp, 3dp, 5dp and 9dp in random packings of alumina Raschig rings with (a) N = 

4.05 and (b) 6.02, at Rep = 100. 

Furthermore, the results demonstrate that when the two phases approach thermal 

equilibrium, as can be realized at z = 9dp, a better prediction of the radial temperature profile 

is possible by the 2D-ADPF model. Nevertheless, we remind the reader of the inadequacy of a 

2D radial temperature profile for estimating the wall-to-bed heat transfer rate, caused by the 

granularity of the flow field as was discussed in Chapter 5 (Fig. 5.9).  

6.3.2.   Influence of the inlet temperature profile 

Here we explore whether the suggestion by Dixon [23] and Borkink and Westerterp 

[22,27,28], i.e. to use a radially dependent inlet temperature profile T0(ω) in Eqs. (6.1-7) instead 

of a flat inlet temperature profile, can explain the reactor length effect. To this end, we 

performed several optimization runs using both a mass-weighted average (flat profile) inlet 

temperature and radially dependent inlet temperature T0(ω) for a case study including random 

packing of alumina spheres with N = 3.1 at Rep = 10,100 and 1000. Here, for the sake of brevity, 

only the results at Rep = 100 are presented in Fig. 6.4, where the computed values of Peer are 

compared and benchmarked against the predictive correlation by Melanson and Dixon [35]. 
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Fig. 6.4 Comparison between computed Peer based on different inlet temperature profiles for 

random packing of alumina sphere with N = 3.1 at Rep = 100.  

As shown in Fig. 6.4, no matter by which method, i.e. mass-weighted average or radially-

varying profile, the inlet temperature in the 2D-ADPF model is introduced, the results still 

show the length dependency of Peer. Furthermore, applying T0(ω) leads to an underestimation 

of Peer by around 200% compared to the predicted values by the Melanson-Dixon correlation. 

Similar results have been found for Bi and also for both Peer and Bi at Rep = 1000. This means 

that the length-dependency of the effective heat transfer parameters cannot be explained or 

circumvented by using T0(ω) instead of a flat temperature profile, and conceptually does not 

stem from experimental errors per se. It is worth remarking that the predicted values of Peer 

and Bi at Rep = 10 are the same between the two approaches, which is explained by the fact 

that the radially dependent temperature profile approaches a flat profile as Rep → 0. 

6.3.3.   The influence of pellet shape and tube-to-pellet size ratio 

The behavior of the volume-averaged ker and hw as a function of bed length is elucidated 

in Figs. 6.5-6, respectively, for all packing structures at three values of Rep, representative for 

laminar, transient and turbulent flow regimes. Overall, the graphs demonstrate that the 

computed values of ker and hw vary with bed length, and this length-dependent behavior does 

not pertain to pellets shapes, thermal conductivity (see Fig. 6.9-10 for the role of thermal 

conductivity) and tube-to-pellet diameter ratio.  The length-dependency is observed, despite 

the fact that the observed data has been obtained from our RBD-CFD simulations, thereby 

completely avoiding the prevailing shortcomings connected to conventional experimental 

analysis, i.e. heat leaks into calming sections as well as heat losses from thermometers, as 

addressed by Dixon [20]. This result again demonstrates that the procedures suggested by 

Dixon [20,23] and Borkink and Westerterp [22,27,28] cannot unravel and solve the problem of 

the bed length-effect.  
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As shown in Fig. 6.5, the graphs exhibit different patterns concerning the behavior of ker 

versus the length of packing section. In the laminar flow regime, ker shows a decreasing trend 

as a function of bed length progression, and eventually approaches an asymptotic value (see 

Fig. 6.5 for plots at Rep = 10 as a representative of laminar flow regime). Similar trends have 

been found for all cases at Rep < 100. This result is in agreement with the observations by De 

Wasch and Froment [36], Gunn and Khalid [17], Dixon et al. [18] and Dixon [20]. In the 

transient flow regime, which is expected to occur at Rep in the range of 100 or 200 to 600 

(although it seemingly depends on N), the behavior of ker as a function of bed length does not 

reach a discernable trend (see Fig. 6.5 for plots at Rep = 100 as a representative of the transient 

regime). This behavior can be attributed to the formation of local vortices, which partially 

emerge along the packing section, resulting in scattering of the ker data with an untraceable 

trend. For Rep higher than 600, i.e. in the fully turbulent regime, ker is shown to increase to an 

asymptotic value as the bed length increases (see Fig. 6.5 for plots at Rep = 1000 as a 

representative of the turbulent regime).  
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Fig. 6.5 The influence of bed height and N on ker in random packings of spheres (first row), cylinders (second row) and Raschig rings 

(third row). 
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Fig. 6.6 The influence of bed height and N on hw in random packings of spheres (first row), cylinders (second row) and Raschig rings (third row). 
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This increasing trend can be explained by the increasing role of eddy transport along the 

bed, which can be represented by the change of turbulent intensity and/or turbulent kinetic 

energy along the bed (see Fig. 6.7). 

 

Fig. 6.7 Averaged axial turbulent intensity profile as a function of axial position in a random 

packing of alumina Raschig rings with N = 4.05 at Rep = 1000. 

Nonetheless, a reliable interpretation regarding the trend of ker for the turbulent flow 

regime requires much longer beds, so that the residence time of the flowing fluid is high enough 

to allow both phases to reach thermal equilibrium. 

The results depicted in Fig. 6.5 demonstrate a very poor radial heat transfer in the packing 

structures that include an axial hole, e.g. packing of spheres, cylinders and Raschig rings with 

N = 4.1, 4.58 and 4.05, respectively, where the computed values of ker are clearly lower than 

for other cases. Neglecting such structures from our window of analysis, the results generally 

show that ker increases as N increases in the laminar flow regime (see Fig. 6.5 for Rep = 10 as 

a representative), whilst in the transient and turbulent regimes, the computed values for ker 

are comparable making it difficult to find a correlation between ker and N. As shown in Chapter 

2 (Table 2.4), the number of published correlations that account for the influence of N of ker 

at low Rep is very scarce.  

The results shown in Fig 6.5 can also confirm our previous observation in Chapter 5 

concerning the advantage of shaped pellets for improving the wall-to-bed heat transfer rate. 

We find higher computed values of ker for packings of cylinders and Raschig rings compared 

to packing of spheres.  

Fig. 6.6 shows that, in general, hw decreases as a function of bed length, apparently 

approaching an asymptotic value, with much smoother trends compared to ker. Several other 

researchers have reported similar patterns for hw based on their experimental and theoretical 

analyses, e.g. [17,18,20,36]. To explain the length-dependent behavior of the apparent wall heat 

transfer coefficient, we look into the trend of wall heat flux along the bed depth. The results 
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of circumferential-averaged wall heat flux are depicted as a function of axial position in Fig. 

6.8 for random packing of alumina Raschig rings with N = 4.05 at Rep = 10, 100 and 1000.  
 

 

Fig. 6.8 Azimuthally-averaged axial profile of wall heat flux in a random packing of alumina 

Raschig rings with N = 4.05; (a) Rep = 10, (b) Rep = 100 and (c) Rep = 1000. 

Overall, the results show that the apparent wall heat transfer coefficient as a function of 

bed length emanates from the axial trend of the wall heat flux in conjunction with the trend 

of radial heat dispersion along the bed. This can be expressed through the boundary condition 

of heat transfer at the tube wall, i.e. Eq. (6.4), wherein the apparent wall heat transfer 

coefficient plays the role of a thermal resistance to account for the so-called “temperature 

jump”. This equation can be rewritten in dimensional form as: 

w w w er

T
q h (T T) k

r

∂
= − =

∂
 (6.12) 

Fundamentally, the fluid and catalyst solid phases approach thermal equilibrium for 

sufficiently long beds, i.e. Tf  → Ts → Tw as z → ∞, thereby reducing the wall heat flux to the 

bed, as shown in Fig. 6.8. This explains why for example in the laminar flow regime both hw 
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and ker decrease along the bed depth. In this case, the reduction of ker as a function of bed 

length implies that the decreasing rate in the wall heat flux would have been higher than the 

decreasing rate of the radial temperature gradient, i.e. T r∂ ∂ , and accordingly (Tw -T) along the 

bed, thereby causing a decreasing trend for hw along the packing length. It is consequently 

evident that in turbulent and transient flow regimes, the behavior of hw as a function of bed 

length would also be governed by the simultaneous behavior of the effective radial thermal 

conductivity and wall heat flux. Since there is an intense connection between the rate of wall 

heat flux and the thermal equilibrium condition at a specific axial position in the bed, it can 

be deduced that the length-effect phenomenon stems from the trend of temperature non-

equilibrium along the bed length. Reiterating that the pseudo homogenous models are based 

on the thermal equilibrium assumption between fluid and catalyst solid phases, the effective 

thermal parameters thus need to capture effectively how far the two phases are from local 

thermal equilibrium, as well as the radial heterogeneity in the bed structure and local flow 

mal-distribution.   

Furthermore, as in the case of ker, the presence of a channel near the center of the some 

of the packing structures leads to a poor heat transfer rate in the wall region. This is reflected 

in Fig. 6.6 by the lower fitted values of the apparent wall heat transfer coefficient for random 

packings of spheres, cylinders and Rachig rings with N = 4.1, 4.58 and 3.06, respectively, in all 

flow regimes. As explained in Chapter 5, the presence of a flow channel reduces the radial 

dispersion in a packed column, thereby reducing the radial heat transfer rate, which is 

quantitatively evidenced here by the lower values of ker and hw. Based on these results, we 

cannot find a correlation between hw and N which is in conformity with the published 

correlations, because none of the known correlations account for the role of N.  

It is remarkable that the results depicted in Fig. 6.6 do not show a major influence of the 

pellet shape on hw (contrary to the results found for ker), which means that the rate of heat 

transfer at the wall region cannot be improved by the use of non-spherical pellets. This 

observation can be explained by the high local porosity at the wall region, which implies a 

dominance of convection mechanisms in this region.  

6.3.4.   The influence of pellet thermal conductivity 

To investigate the role of pellet thermal conductivity on the effective heat transfer 

parameters, we now turn to fixed beds with pellets of different thermal conductivities, namely 

of alumina and glass. We investigate different shapes with Npv = 3.1 at Rep = 10, 100 and 1000. 

The results for ker and hw are depicted as a function of bed length in Figs. 6.9 and 6.10, 

respectively.  
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Generally, the results show a large influence of the pellet’s thermal conductivity on the 

effective radial thermal conductivity in all flow regimes (see Fig 6.9), while the influence on 

the apparent wall heat transfer coefficient can only be recognized at low Rep (see Fig 6.10). 

The first observation highlights how remarkably important is the role of stagnant contributions 

to ker, even for transient and turbulent regimes. This reflects the sizeable contribution of radial 

conduction within the catalyst solid phase to the radial heat dispersion. The second observation 

is in agreement with the presence of a high local porosity in the wall region, which suggests 

dominance of convective mechanisms. This justifies our observation that at higher Rep hw does 

not depend on the pellet’s thermal conductivity at high Rep, say Rep > 100. Nonetheless, it 

seems that at low Rep the role of conductive transport at the wall region becomes important 

(see Fig. 6.10 for Rep = 10).  
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Fig. 6.9 The influence of pellet thermal conductivity and bed length on ker in random packing of spheres (first row), cylinders (second row) and 

Raschig rings (third row) with Npv = 3.1 at Rep = 10 (first column), 100 (second column) and 1000 (third column). 
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Fig. 6.10 The influence of pellet thermal conductivity and bed length on hw in random packing of spheres (first row), cylinders (second row) and Raschig 

rings (third row) with Npv = 3.1 at Rep = 10 (first column), 100 (second column) and 1000 (third column)
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6.3.5.   Reliability and accuracy of literature correlations  

In this section we deal with the accuracy and dependability of classical ker -hw heat transfer 

models in terms of anticipating the wall-to bed heat transfer rate. To this end, the radial 

temperature profiles predicted by the 2D-ADPF heat transfer model based on different sets of 

literature correlations are compared to the azimuthally-averaged temperature data from RBD-

CFD simulation results. In spite of a multiplicity of choices with evidently conflicting results, 

we have employed the often-cited correlations used in design computations, embracing those 

proposed by the “schools” of Yagi/Kunii/Wakao [37–39], Zehner/Bauer/Hennecke/Schlünder 

[31,40–42], Specchia/Baldi/Gianetto/Sicardi [43,44], Cresswell/Dixon/Paterson [2,18,30,35,45] 

and Martin/Nilles [46–48]. A summary of these correlations was given in Chapter 2 (Tables 

2.4-5). Since most of these researchers have focused on fixed beds of spherical pellets, our 

comparisons and analyses are thus conducted based on the heat transfer results in random 

packing of spheres with N = 6.1. A comparison between the azimuthally-averaged temperature 

profile at cross section z =9dp and the radial temperature profiles predicted by the 2D-ADPF 

model based on different correlations is shown in Fig. 6.11 for different Rep. Overall, a detailed 

comparisons of radial temperature profiles demonstrates that the model of 

Specchia/Baldi/Gianetto/Sicardi [43,44] for all flow regimes and of Martin/Nilles [46–48] for 

the turbulent regime agree reasonably with the RBD-CFD simulation results for the case 

investigated. It is worth remarking that the deviation observed for the other models, e.g. Yagi 

and Wakao [38] and Dixon [2], in our typical case study, together with the inherent deviations 

which arise from the azimuthal-averaging of the 3D temperature field (as addressed in Chapter 

5) can cause erroneous predictions of hotspot zones in tubular fixed bed reactors. 

The accuracy of the model of Specchia/Baldi/Gianetto/Sicardi [43,44] is further examined 

in Fig. 6.12 in terms of predicting the radial temperature profile at different axial positions 

along the bed. 
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Fig. 6.11 Comparisons between azimuthally-averaged temperature profile and the radial temperature 

profile predicated by 2D-ADPF model based on different correlations at the bed cross section z = 9dp 

in random packing of spheres with N = 6.1; (a) Rep = 100 and (b) Rep = 1000.  

 

Fig. 6.12 Comparisons between azimuthally-averaged temperature profile and the radial temperature 

profile predicated based on the model of Specchia et al. (1980) at different cross sections in random 

packing of spheres with N = 6.1; (a) Rep = 100 and (b) Rep = 1000 

As shown in Fig. 6.12, using the model of Specchia/Baldi/Gianetto/Sicardi [43,44], results 

in a reasonable prediction of the radial temperature profile at different bed cross sections. 

However, it is evident that such a simplistic model cannot reproduce the trend of radial 

temperature distribution close to the wall, which, as explained before, is due to the presence 

of a high thermal disequilibrium between the two phases in this region.  
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6.4.   Conclusion 

The effect of bed length on the volume-averaged effective heat transfer parameters used 

in the 2D-ADPF heat transfer model, i.e. ker and hw, is thoroughly investigated by fitting the 

model prediction to our RBD-CFD simulation results.  

Most previous researches explained the so-called length-effects as a cause of either the 

experimental error arisen from the poor/inadequate insulation of the calming section or  

thermocouple’s cross (Dixon, [20,23]; Freiwald and Paterson [21], to name a few) or the under-

developed velocity and thermal fields to be extended over a specific bed length after the bed 

entrance (Li and Finlayson [49]; Paterson and Carberry [1]; Wen and Ding [24]). The results 

of this study demonstrated that this phenomenon actually originates from the evolutionary 

trend of thermal (non-)equilibrium between the fluid and catalyst solid phases along the bed. 

The results of this Chapter have also shown that the procedures suggested by Dixon [20] and 

Borkink and Westertrep [22,27,28] cannot resolve the problem of the length-effect.  

A detailed sensitivity analysis is performed, whereby the influences of shape and thermal 

conductivity of catalyst pellets as well as the tube-to-pellet diameter ratio on both ker and hw
 

are investigated. The results give appropriate insight into the contribution of the different 

transport mechanisms in the effective thermal properties. The performances of the most 

promising theoretical- and empirical-based literature correlations for Peer and Nuw were 

investigated in a comparison of the azimuthally-averaged temperature data obtained from 

RBD-CFD simulation results. It is concluded that the models of Specchia/Baldi/Gianetto/ 

Sicardi [43,44] for all flow regimes and of Martin/Nilles [46–48] for the turbulent regime can 

be recommended for practical use for spherical particles. 

Overall, in spite of the severe shortcomings inherent in the pseudo-continuum models for 

predicting the thermal behavior of a fixed bed reactor, we have shown that the RBD-CFD 

methodology can be used as a design tool to tune such simplistic approaches to improve the 

reliability of the model results. 

 

 

 

 

 

 



          Evaluation of Effective Heat Transfer Parameters in Fixed Beds of Non-Spherical Pellets                                               

175 

 

Bibliography  
 

[1] W.R. Paterson, J.J. Carberry, Fixed bed catalytic reactor modelling: The heat transfer 

problem, Chemical Engineering Science. 38 (1983) 175–180. doi:10.1016/0009-

2509(83)80149-3. 

[2] A.G. Dixon, Wall and particle-shape effects on heat transfer in packed beds, Chemical 

Engineering Communications. 71 (1988) 217–237. doi:10.1080/00986448808940426. 

[3] G.D. Wehinger, C. Fu, M. Kraume, Contact Modi fi cations for CFD Simulations of 

Fixed-Bed Reactors : Cylindrical Particles, (2017). doi:10.1021/acs.iecr.6b03596. 

[4] H. Dixon, A G, Tsotsas, E and Martin, Letters to the editor- Thermal Conductivity of 

Packed Beds, Chemical Engineering and Processing: Process Intensification. 24 (1988) 

177–179. doi:10.1097/01.JAA.0000451871.48448.1f. 

[5] A.G. Dixon, J.H. Van Dongeren, The influence of the tube and particle diameters at 

constant ratio on heat transfer in packed beds 1, Chemical Engineering and Processing: 

Process Intensification. 37 (1998) 23–32. 

[6] O. Bey, G. Eigenberger, Gas flow and heat transfer through catalyst filled tubes, 

International Journal of Thermal Sciences. 40 (2001) 152–164. doi:10.1016/S1290-

0729(00)01204-7. 

[7] S.J. Romkes, F.. Dautzenberg, C.. van den Bleek, H.P.. Calis, CFD modelling and 

experimental validation of particle-to-fluid mass and heat transfer in a packed bed at 

very low channel to particle diameter ratio, Chemical Engineering Journal. 96 (2003) 3–

13. doi:10.1016/j.cej.2003.08.026. 

[8] M.E. Taskin, A.G. Dixon, M. Nijemeisland, E.H. Stitt, CFD Study of the Influence of 

Catalyst Particle Design on Steam Reforming Reaction Heat Effects in Narrow Packed 

Tubes, (2008) 5966–5975. 

[9] P. Magnico, Pore-scale simulations of unsteady flow and heat transfer in tubular fixed 

beds, AIChE Journal. 55 (2009) 849–866. doi:10.1002/aic.11806. 

[10] M. Behnam, A.G. Dixon, M. Nijemeisland, E.H. Stitt, A New Approach to Fixed Bed 

Radial Heat Transfer Modeling Using Velocity Fields from Computational Fluid 

Dynamics Simulations BT - Industrial & Engineering Chemistry Research, Industrial 

and Engineering Chemistry Research. 52 (2013) 15244–15261. doi:10.1021/ie4000568. 

[11] Y. Dong, B. Sosna, O. Korup, F. Rosowski, R. Horn, B. Sosna, O. Korup, F. Rosowski, 

R. Horn, Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations 

and profile measurements, Chemical Engineering Journal. 317 (2017) 204–214. 

doi:10.1016/j.cej.2017.02.063. 

[12] O. Nekhamkina, M. Sheintuch, Approximate characteristics of a moving temperature 

front in a fixed-bed catalytic reactor: Effect of mass dispersion, Chemical Engineering 



Chapter 6 

176 

 

Journal. 154 (2009) 115–119. doi:10.1016/j.cej.2009.04.043. 

[13] L. Obalová, K. Jirátová, K. Karásková, Ž. Chromčáková, N 2 O catalytic 

decomposition–From laboratory experiment to industry reactor, Catalysis Today. 191 

(2012) 116–120. 

[14] D. Schlereth, O. Hinrichsen, A fixed-bed reactor modeling study on the methanation of 

CO2, Chemical Engineering Research and Design. 92 (2014) 702–712. 

[15] X.P. Dai, P.Z. Liu, Y. Shi, J. Xu, W.S. Wei, Fischer–Tropsch synthesis in a bench-scale 

two-stage multitubular fixed-bed reactor: Simulation and enhancement in conversion 

and diesel selectivity, Chemical Engineering Science. 105 (2014) 1–11. 

[16] A.G. Dixon, G. Walls, H. Stanness, M. Nijemeisland, E.H. Stitt, Experimental 

validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale 

fixed bed tube, Chemical Engineering Journal. 200–202 (2012) 344–356. 

doi:10.1016/j.cej.2012.06.065. 

[17] D.J. Gunn, M. KHALID, Thermal Dispersion and Wall Effect in Packed Beds, Chemical 

Engineering Science. 30 (1975) 261–267. 

[18] A.G. Dixon, D.L. Cresswell, W.R. Paterson, Heat Transfer in Packed Beds of Low 

TubejParticle Diameter Ratio, Edinburgh, 1978. http://www.worldcat.org/title/heat-

transfer-in-packed-beds-of-low-tubeparticle-diameter-ratio/oclc/638440257 (accessed 

December 15, 2017). 

[19] B.A. Li, Chi-Hsiung; and Finlyson, Heat transfer in packed beds-a reevaluation, 

Chemical Engineering Transaction. 32 (1976) 1055–1066. 

[20] A.G. Dixon, The Length Effect on Packed Bed Effective Heat Transfer Parameters, 

Chemical Engineering Journal. 31 (1985) 163–173. 

[21] M.G. Freiwald, W.R. Paterson, Accuracy of model predictions and reliability of 

experimental data for heat transfer in packed beds, Chemical Engineering Science. 47 

(1992) 1545–1560. doi:10.1016/0009-2509(92)85003-T. 

[22] J.G.H. Borkink, K.R. Westerterp, Determination of Effective Heta Transport 

Coefficients for Wall-Cooled Packed Beds, Chemical Engineering Science. 47 (1992) 

2337–2342. 

[23] A.G. Dixon, Fixed bed catalytic reactor modelling—the radial heat transfer problem, 

The Canadian Journal of Chemical Engineering. 90 (2012) 507–527. 

[24] D. Wen, Y. Ding, Heat transfer of gas flow through a packed bed, Chemical Engineering 

Science. 61 (2006) 3532–3542. doi:10.1016/j.ces.2005.12.027. 

[25] G.B. Liu, K.T. Yu, X.G. Yuan, C.J. Liu, A computational transport model for wall-

cooled catalytic reactor, Industrial and Engineering Chemistry Research. 47 (2008) 

2656–2665. doi:10.1021/ie070737y. 



          Evaluation of Effective Heat Transfer Parameters in Fixed Beds of Non-Spherical Pellets                                               

177 

 

[26] N. Wakao, S. Kaguei, T. Funazkri, Effect of fluid dispersion coefficients on particle-to-

fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers, Chemical 

Engineering Science. 34 (1979) 325–336. 

[27] J.G. H.Borkink, K.R. Westerterp, Influence of tube and aprticle diameter on heat 

transport in packed beds, AIChE Journal. 38 (1992) 703–716. 

[28] J.G.H. Borkink, W. K.R., Significance of the radial porosity profile for the description 

of heat transport in wall-cooled packed beds, Chemical Engineering Science. 49 (1994) 

863–876. doi:10.1016/0009-2509(94)80023-5. 

[29] N. Wakao, S. Kaguei, H. Nagai, Effective diffusion coefficients for fluid species reacting 

with first order kinetics in packed bed reactors and discussion on evaluation of catalyst 

effectiveness factors, Chemical Engineering Science. 33 (1978) 183–187. 

[30] A. Dixon, D. Cresswell, Theoretical prediction of effective heat transfer parameters in 

packed beds, AIChE Journal. 25 (1979) 663–676. doi:10.1002/aic.690250413. 

[31] P. Zehner, E.U. Schlünder, Die effektive Wärmeleitfähigkeit durchströmter 

Kugelschüttungen bei mäßigen und hohen Temperaturen, Chemie Ingenieur Technik. 

45 (1973) 272–276. 

[32] T.F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization 

subject to bounds, SIAM Journal on Optimization. 6 (1996) 418–445. 

[33] R.H. Byrd, J.C. Gilbert, J. Nocedal, A trust region method based on interior point 

techniques for nonlinear programming, Mathematical Programming. 89 (2000) 149–185. 

[34] R.A. Waltz, J.L. Morales, J. Nocedal, D. Orban, An interior algorithm for nonlinear 

optimization that combines line search and trust region steps, Mathematical 

Programming. 107 (2006) 391–408. 

[35] M.M. Melanson, A.G. Dixon, Solid conduction in low dt/dp beds of spheres, pellets and 

rings, International Journal of Heat and Mass Transfer. 28 (1985) 383–394. 

doi:10.1016/0017-9310(85)90071-7. 

[36] A.P. de Wasch, G.F. Froment, Heat transfer in packed beds, Chemical Engineering 

Science. 27 (1972) 567–576. doi:10.1016/0009-2509(72)87012-X. 

[37] S. Yagi, D. Kunii, Studies on effective thermal conductivities in packed beds, AIChE 

Journal. 3 (1957) 373–381. doi:10.1002/aic.690030317. 

[38] S. Yagi, N. Wakao, Heat and mass transfer from wall to fluid in packed beds, AIChE 

Journal. 5 (1959) 79–85. 

[39] S. Yagi, D. Kund, Heat transfer in packed beds through which, 7 (1964) 333–339. 

[40] P. Zehner, E.U. Schlünder, Wärmeleitfähigkeit von Schüttungen bei mäßigen 

Temperaturen, Chemie Ingenieur Technik. 42 (1970) 933–941. 



Chapter 6 

178 

 

[41] R. Bauer, E.U. Schlunder, Effective Radial Thermal-Conductivity of Packings in Gas-

Flow. 2. Thermal-Conductivity of Packing Fraction without Gas-Flow, International 

Chemical Engineering. 18 (1978) 189–204. 

[42] F.W. Hennecke, E.U. Schlünder, Wärmeübergang in beheizten oder gekühlten Rohren 

mit Schüttungen aus Kugeln, Zylindern und Raschig‐Ringen, Chemie Ingenieur 

Technik. 45 (1973) 277–284. doi:10.1002/cite.330450510. 

[43] V. Specchia, G. Baldi, A. Gianetto, Solid-Liquid Mass Transfer in Concurrent Two-

Phase Flow through Packed Beds, 17 (1978) 362–367. 

[44] V. Specchia, G. Baldi, S. Sicardi, Heat Transfer in Packed Bed Reactors With One 

Phase Flow, Chemical Engineering Communications. 4 (1980) 361–380. 

doi:10.1080/00986448008935916. 

[45]  a. G. Dixon, D.L. Cresswell, Effective heat transfer parameters for transient packed-

bed models, AIChE Journal. 32 (1986) 809–819. doi:10.1002/aic.690320511. 

[46] H. Martin, Low Peclet number particle-to-fluid heat and mass transfer in packed beds, 

Chemical Engineering Science. 33 (1978) 913–919. 

[47] H. Martin, Thermal Conductivity of Packed Beds : A Review, (1987) 19–37. 

[48] H. Martin, M. Nilles, Radiale Warmeleitung in durchstromten Schuttungsrohren, 

Chemie Ingenieur Technik. 65 (1993) 1468–1477. 

[49] B.A. Finlayson, Packed bed reactor analysis by orthogonal collocation, Chemical 

Engineering Science. 26 (1971) 1081–1091. 

 

 

 

 

 



                                                

179 

 

 

   Chapter 7  
 

      Conclusions and Recommendations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 

180 

 

7.1.   Conclusions 

The research described in this thesis has dealt with several important topics in the field 

of fixed bed reactor modelling and design, namely the development of a Rigid Body Dynamics 

algorithm for generating random packing structures of non-spherical and non-convex pellets, 

an efficient and integrated workflow for predicting the in-situ or “pellet-scale” behaviour of 

hydrodynamics and heat transfer within realistic fixed-bed reactors, and to address and explain 

the prevailing ambiguities and shortcomings connected with classical macroscopic design 

procedures. Our research road-map is summarized in the following flowchart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 7.1 The research road-map. 

In the first step we have dealt with the structural feature of fixed bed reactors, as it plays 

a crucial role in the design of such a complicated unit operation. A novel physics-based 

algorithm founded on the concepts of Rigid Body Dynamics (RBD) was developed to 
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synthesize realistic packing structures of non-spherical and non-convex pellets. The proposed 

RBD algorithm benefits from a hard-body approach to detect the collision/contact incidence 

and employs impulse theory in conjunction with a quadratic optimization routine to model 

different collisional contact situations. The RBD algorithm was used to generate random 

packings of spheres, equilateral solid cylinders and Raschig rings with tube-to-pellet diameter 

ratios ranging from 3 to 9.16. These conceptual models were then examined and validated in 

terms of bulk porosity and radial void fraction distribution, finding satisfactory agreement with 

the literature data for both global and local bed properties. The advantage of our approach, 

compared to popular computer graphics software such as Blender, is that we are explicit about 

the treatment of binary collisions and frictional forces, and explicit about the transition to and 

treatment of multi-particle assemblies in resting contact. We also conducted a thorough 

analysis concerning the influence of physio-mechanical properties of catalyst pellets on packing 

densification. The results demonstrated that denser packing structures can be generated with 

restitution coefficients closer to one, and friction factors closer to zero. This finding shows the 

capability of our algorithm to generate packing structures of non-spherical pellets with a wide 

range of packing densities, which mimics both loose and dense packing topologies.    

In the second step, we employed RBD-generated structures in a supplementary 

Computational Fluid Dynamics (CFD) study to probe the pellet-scale behavior of flow and 

thermal fields inside packing structures of spheres, cylinders and Raschig rings. To this end, 

we devised an efficient and integrated workflow, consisting of a sequential RBD-CFD approach. 

To facilitate convergence in the turbulence regime and to optimize the computational expenses 

of our “Numerical Experiments”, we created an inflationary meshing scheme using a 

combination of patch conforming and patch independent meshing approaches, which results in 

a high quality computational cells at contact regions, followed by a detailed mesh refinement 

analysis. The workflow was benchmarked for simulations of hydrodynamics and heat transfer 

in laminar, transient and turbulent regimes in random packings of spheres, cylinders and 

Raschig rings with tube-to-pellet diameter ratios ranging from 2.29 to 6.1.  

In the third step, the in-situ behavior of the velocity and thermal fields were investigated 

in detail by post-processing the results of RBD-CFD simulations. Overall, it was demonstrated 

that the proposed workflow can provide detailed information of flow and thermal fields, which 

in terms of resolution and precision is comparable to the results of advanced experimental 

techniques such as PIV, MRI, and 3D CT, which however are often very difficult to obtain. 

The contour map results reveal a tremendous influence of local structure on the velocity and 

temperature distributions at the pellet scale, particularly in narrow packings, where the spatial 

heterogeneity of the structure is very strong along the bed axis. Compared to random packings 
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of spheres, in random packings of cylinders and Raschig rings more intense inhomogeneities in 

local velocity and temperature fields were observed. This is ascribed to the role of sharp edges 

of such pellets in imposing stronger curvature of the flow streamlines along the packing. This 

result suggests inadequacy of the 120⁰ wall-segment model proposed by Dixon et al. (2006, 

2008) for analysis of heat transfer in a full fixed bed reactor. Furthermore, it was shown that 

the azimuthal averaging of velocity and temperature fields leads to an underestimation of the 

local velocity and temperature values by more than 400% and 50 K, respectively. The 

maximum deviation from the local data was found at a distance of 0.5dp from tube wall for 

the temperature field.  

The last effort in this research was centered around the macroscopic pseudo-continuum 

models, where we used the results of our numerical experiments to elucidate the effective heat 

transfer parameters introduced in the ker -hw pseudo-homogenous model. The results of our 

multi-variable parameter estimation analysis demonstrated that the reactor length-dependency 

of the values of ker and hw is basically inherent in such effective thermal parameters and 

originates from the evolutionary trend of reaching thermal equilibrium in fluid and catalyst 

phases along the bed length. Furthermore, we showed that the procedures suggested in the 

review paper by Dixon (2012) and the publications by Borkink and Westertrep (1992,1994) do 

not solve the length-effect problem. In a detailed sensitivity analysis, we explained and 

addressed the influences of the pellet shape and thermal conductivity, as well as tube-to-pellet 

diameter ratio, on the effective heat transfer parameters. The results provide an intuitive 

picture of the contributions of the different transport mechanisms to the effective thermal 

properties. We also investigated the differences between the most promising theoretical- and 

empirical-based literature correlations for Peer and Nuw in a comparison analysis based on the 

azimuthally-averaged temperature data obtained from RBD-CFD simulation results.  

It was concluded that the models of Specchia/Baldi/Gianetto/Sicardi for all flow regimes 

and of Martin/Nilles for the turbulent regime agree reasonably well with the results of our 

numerical experiments and can be recommended for practical use for fixed beds of spherical 

pellets. 

7.2.   Recommendations for future work 

One of the main obstacles in the design and optimization of fixed bed and even fluidized 

bed reactors is to address the role of non-sphericity of catalytic and adsorbent particles in fluid 

flow (drag, lift, pressure drop, etc.) and in heat and mass transfer (transport and kinetic 

mechanisms at pellet scale). The capabilities of the proposed workflow for providing a detailed 

understanding of flow and heat transfer inside random packings of non-spherical pellets were 
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evidenced and discussed. We can now use the RBD-CFD methodology as a tried and tested 

tool to look deeply into a variety of subjects relevant to the field of fixed bed and even fluidized 

bed reactors, such as: 

1) Exploring the topological properties of random packing structures of non-spherical 

particles such as cylinders with different aspect ratio, multi-hole cylinders, pall rings, 

saddle rings, trilobed particles, etc.  

2) Using RBD as an alternative approach for modelling fluidization processes. 

3) Correlating the bed pressure drop in packed columns of non-spherical pellets using 

particle-resolved CFD simulations. 

4) Coupling reaction kinetics and adsorption isotherms with the particle-resolved CFD 

simulations to analyse pellet-scale behaviour of physio-chemical phenomena inside fixed 

bed reactors of non-spherical particles. 

5) Improving the pseudo-continuum reactor models for non-spherical catalytic particles 

based on numerical experiments. 
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Appendix A 

Let us define the relative position of the contact point p with respect to the center-of-mass 

of each body as ri(tc) and rk(tc), meaning ri(tc) = p(tc) -xi(tc) and rk(tc) = p(tc) -xk(tc). Let us 

also describe the pre-impulse and post-impulse variables by superscripts of – and + 

respectively. Therefore, Eq. (3.12) can be rewritten for post-impulse contact point velocity as:  

pi c i c i c i
(t ) (t ) (t )+ + += + ×v v ω r  (A.1) 

since at the first step we assume that the impulsive force acts only in normal direction, 

the spatial variable, i.e. linear and angular velocities, of the ith pellet after collision can be 

computed based on the normal impulse as:   

ik,n ik c

i c i c
i

1
i c i c i c i ik,n ik c
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(t ) (t )

(t ) (t ) (t ) (t )

+ −

+ − −
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 = + × 
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ω ω I r n

j

m
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(A.3) 

where mi is the mass of pellet i. Substitution of Eqs. (A.2-3) into Eq. (A.1) will result in: 
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(A.4) 

Similarly, the velocity of point p on the body space of packing j with the mass of mj after 

collision can be computed using the exertion of opposite impulse, i.e. ik,n ik c(t )
)

j n , yielding: 

 1ik c
pk c pk c ik,n k c k ik c k
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(A.5) 

Using Eqs. (A.4-5) to compute 
pik c(t )+v , followed by a scalar product with ik c(t )

)
n , yields 

the following relationship for 
pik,n c(t )+v : 
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1
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Using Eq. (3.20) in which pik,n c(t )+v  is expressed in terms of  pik,n c(t )−v  and COR, the 

magnitude of normal impulse can be computed by substitution of Eq. (A.6) in to Eq.(3.20). 

( )

( ) ( ) ( )

p ik ik c

ik ,n T
ik ik ,n ik

1 1
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Appendix B 

Considering the notation presented in Fig. 4, for a particular contact point Pik with the 

normal vector ik c(t )
)
n  pointing out from body k towards body i, we can express 

p,ik c
(t )&&d  in 

terms of all unknown contact forces that directly affect Pik as:  

p,ik c ik,j ij ik,i ik ik,l il ik
(t ) )= + + +&&d a φ a φ a (-φ b  (B.1) 

It is worth noticing that here ij c(t )
)
n  points out from body i towards body j and lk c(t )

)
n  

points out from body k towards body i. Let us start by determining ���,� which specifies how 

the ��� contact force affects the acceleration of the contact distance between i and k, i.e. 
p,ik c

(t )&&d

. Using Eq. (3.28), we realize that the second term, i.e. ik c pi c pk c
2 (t ). (t ) (t ) − 
)&n v v , is velocity 

dependent, and is thus part of ik
b . Therefore, the ik c

(t )φ  dependent part of Eq. (3.28) is 

ik c pi c pk c
(t ). (t ) (t ) − 

)
& &n v v  and since pellets i and j are in resting contact, the trace of 

ik ,j
a  should 

be found in pi c(t )&v , which is expressed by Eq. (3.29). Looking at this equation, the last term, 

i.e. ( )i c i c i c(t ) (t ) (t )× ×ω ω r  is a velocity dependent term as well, and hence can be considered 

as a part of ikb . The linear and angular accelerations of body i, in Eq. (3.29), contributed by 

the contact force ik c(t )φ  can be expressed as: 

( )
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i c ik , j ij i

1 1
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ω I P x n I L ω  (B.2) 

(B.3) 

where the second part of Eq. (B.3) is also velocity dependent term and can be transferred to 

ik
b . 

Substituting for linear and angular velocity contributions into pi c(t )&v  followed by a dot 

product with ik c(t )
)
n , the total dependence of p,ik c(t )&&d  on ik c(t )φ  is: 

( )1
ik , j ik , j ik c ij c i i c ij c i c ij c i ik , j

( t ) . ( t ) ( t ) ( ( t ) ( t )) ( t )− + − × × 
) ) )

a φ m φ= n n I P x n r  
(B.4) 

Similarly, we can determine the dependence of p,ik c
(t )&&d  on lk c

(t )φ  with the same 

procedure, which will result in a derivation of ik,la : 
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( )(- ) (- )1
ik ,l ik ,l ik c lk c k k c lk c k c lk c k ik ,l
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a φ m φ= n n I P x n r  
(B.5) 

To determine ikb we also have to take the contributions of 
pi c
(t )&v  and pk c(t )&v  due to 

unknown external forces such as gravity as well as the force independent terms into account. 

Thus, the contribution of 
pi c
(t )&v  to ikb , after scalar product to ik c

(t )
)
n can be expressed as: 
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(B.6) 

where Fi and i
τ  are the net external force and torque acting on pellet i, belonging to the 

previous time step. The same formula can be derived for contribution of pk c(t )&v  to ik
b . 

Combining these contributions and adding them to the velocity term in Eq. (3.29), i.e. 

ik c pi c pk c
2 (t ). (t ) (t ) − 
)&n v v , the value of ikb  is simply determined.  
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Appendix C 

This appendix presents the optimization code developed for solution of the multivariable 

parameter estimation problem for evaluating Peer and Bi dimensionless numbers.  

function opt 

clc 

clear 

%options = optimset('Display','iter','TolFun',1e-10) 

options=optimset('Display','iter','TolFun',1e- 

7,'LargeScale','off','Algorithm',... 

    'active- 

set','UseParallel','always','MaxFunEvals',10000,'PlotFcns',@plotfun_fmi 

n);%,'MaxIter',1e5,'NonlEqnAlgorithm','lm' 

N=input('please enther the tube-to-particle diameter ratio ='); 

Re=input('please enter the particle Reynolds number ='); 

Bi0=5.73*N^0.5*Re^-0.262 

%%%%%%%%Dixon(1988)%%%%%% 

eps=0.491; 

Pr=0.701; 

%Zehner-Schulander (1973) 

kp=1.01; 

kf=0.076; 

K=kf/kp; 

%Fluid Phase Radial Peclet Number 

 Prfinf=7; %9.98 and 8.56 

 Perf=(1/Prfinf+(2/3)*eps/Re*Pr)^-1; 

%Fluid Phase Radial Biot Number 

 Nufw=.24*Re^.75*Pr^.334;   %100<Re<  best result 

%Nufw=.2*Re^.8*Pr^.34;   %40<Re<2000  Good Result 

 Bif=Nufw.*(N/2).*Perf./(Re*Pr); 

 Bis=2.41+.156*(N-1)^2; 

%Solid Phase Radial Peclet Number 

 C=2.5; 

 B=C*((1-eps)/eps)^(10/9); 

 kesPkf=2/(1-K*B)*((1-K)*B/(1-K*B)^2*log(1/(B*K))-(B+1)/2-(B-1)/(1-  

K*B)); 

 krsPkf=(1-eps)^0.5*kesPkf; 

 Pers=Re*Pr/(krsPkf); 

 pehr0=Bi0/(Bi0+4)*((Perf)^-1*Bif/(Bif+4)+Pers^-1*Bis/(Bis+4))^-1 
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%%%%%%%%%%% Yagi and WAKAO 1959%%%%%%%% 

%  kerPkf= 6+0.11*Re*Pr;  %Glass sphere 

%     Per= Re*Pr/(kerPkf); 

%     kerPkf= 13+0.11*Re*Pr;  %Metal sphere 

%      Per= Re*Pr/(kerPkf); 

%       pehr0=12; 

x0=[Bi0,pehr0]; 

 A=[]; 

 b=[]; 

 Aeq=[];     

 beq=[]; 

lb=[0.01,1]; 

ub=[30,30]; 

nonlcon=[]; 

 [x,fval] = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 

% [x,fval] = lsqnonlin(@myfun,x0) 

 function answ = myfun(xx) 

Bi=xx(1); 

pehr=xx(2); 

x=6.736653006; 

tet=[…]'; 

y=[…]'; 

m=size(tet,2); 

for i=1:m 

    f(i)=teta(Bi,pehr,x,y(i)); 

end 

answ=norm(real(f-tet)); 

  

function tet=teta(Bi,pehr,x,y) 

N=3.114; 

eps=0.491; 

Re=600; 

n=100; 

Pr=0.701;        

%Zehner-Schulander (1973) 

kp=1.01; 

kf=0.07601; 

K=kf/kp; 

%C=1.25 for sphere 

%C=2.5 for Cylinder and Raschig rings 
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%C=1.4 cruhed particles 

%C=2.5*(1+(di/do)^2) Hollow Cylinder 

C=2.5; 

B=C*((1-eps)/eps)^(10/9); 

kasPkf=(1-eps)^0.5*2/(1-B*K)*((1-K)*B/(1-K*B)^2*log(1/(B*K))-(B+1)/2-   

(B-1)/(1-K*B)); 

Peas=Re*Pr/(kasPkf); 

Peafinf=2; 

peha=1/(1/Peafinf+1/Peas); 

%Vortmeyer (1974) 

slan=1; 

i=1; 

lani=2; 

lan(i) = fzero(@(L) Bi*besselj(0,L)-L*besselj(1,L),lani); 

i=2; 

while slan<n+1 

    lani=lani+1; 

    lan(i) = fzero(@(L) Bi*besselj(0,L)-L*besselj(1,L),lani); 

    if abs(lan(i)-lan(i-1))>0.00001 

        i=i+1; 

    end 

    slan=size(lan,2); 

end 

lan(end)=[]; 

lan'; 

tet=0; 

for i=1:n 

%     B=(1+4*lan(i)^2/peha/pehr)^0.5; 

%     tet=tet- 

Bi*(1+B)*besselj(0,lan(i)*y)/(Bi^2+lan(i)^2)/B/besselj(0,lan(i))... 

%         *exp(-peha*(B-1)*x/2); 

B=4*x/pehr/N/(1+(1+16*lan(i)^2/peha/pehr/N^2)^0.5); 

     tet=tet+besselj(0,lan(i)*y)*exp(- 

lan(i)^2*B)/(lan(i)*(1+(lan(i)/Bi)^2)... 

        *besselj(1,lan(i))); 

end 

% tet; 

tet=2.*tet; 
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