

Delft University of Technology

A Theoretical and Empirical Analysis of Program Spectra Diagnosability

Perez, Alexandre; Abreu, Rui; Deursen, A. Van

DOI
10.1109/TSE.2019.2895640
Publication date
2019
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Perez, A., Abreu, R., & Deursen, A. V. (2019). A Theoretical and Empirical Analysis of Program Spectra
Diagnosability. IEEE Transactions on Software Engineering, 47(2), 412-431. Article 8627980. Advance
online publication. https://doi.org/10.1109/TSE.2019.2895640

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2019.2895640
https://doi.org/10.1109/TSE.2019.2895640

A Theoretical and Empirical Analysis of
Program Spectra Diagnosability
Alexandre Perez ,Member, IEEE, Rui Abreu , Senior Member, IEEE,

and Arie Van Deursen ,Member, IEEE

Abstract—Current metrics for assessing the adequacy of a test-suite plainly focus on the number of components (be it lines, branches,

paths) covered by the suite, but do not explicitly check how the tests actually exercise these components and whether they provide

enough information so that spectrum-based fault localization techniques can perform accurate fault isolation. We propose a metric,

called DDU, aimed at complementing adequacy measurements by quantifying a test-suite’s diagnosability, i.e., the effectiveness of

applying spectrum-based fault localization to pinpoint faults in the code in the event of test failures. Our aim is to increase the value

generated by creating thorough test-suites, so they are not only regarded as error detection mechanisms but also as effective

diagnostic aids that help widely-used fault-localization techniques to accurately pinpoint the location of bugs in the system. We have

performed a topology-based simulation of thousands of spectra and have found that DDU can effectively establish an upper bound on

the effort to diagnose faults. Furthermore, our empirical experiments using the Defects4J dataset show that optimizing a test suite

with respect to DDU yields a 34 percent gain in spectrum-based fault localization report accuracy when compared to the standard

branch-coverage metric.

Index Terms—Testing, coverage, diagnosability

Ç

1 INTRODUCTION

THIS paper discusses the importance of measuring
diagnosability of software, i.e., the ability of a pro-

gram and its test suite to effectively and accurately locate
faults when errors arise. It proposes DDU, a new metric
for evaluating the diagnosability of a test-suite when
applying spectrum-based fault localization approaches,
and provides a thorough theoretical and empirical analysis
of its effectiveness. Aimed at complementing adequacy
measurements that focus on maximizing error detection
of a suite, DDU provides an assessment on the effort
required to pinpointing the root cause of potential fail-
ures. The proposed measurement increases the value of
having a thorough test-suite, since an optimal suite with
respect to DDU can not only act as an error detection tool
but also can boost the accuracy of widely used fault local-
ization approaches.

Current test quality metrics quantitatively describe how
close a test-suite is to thoroughly exercising a system
according to an adequacy criterion. Such criteria describe
what characteristics of a program must be exercised.

Examples of current metrics include branch and path cover-
age [1], modified decision/condition coverage [2], and
mutation coverage [3]. According to Zhu et al., such meas-
urements can act as generators, meaning that they provide
an intuition on what components to exercise to improve the
suite [4]. However, this generator property does not provide
any relevant, actionable information on how to test those
components to improve the diagnosability of the spectrum.
These adequacy measurements abstract away the execution
information of single test executions to favor an overall
assessment of the suite, and are therefore oblivious to anti-
patterns like the ice-cream cone.1 The anti-pattern states
that the vast majority of tests is written at the system level,
with very few tests written at the unit granularity level.
Even though high-coverage test-suites can detect errors in
the system, it is not guaranteed that inspecting failing tests
will yield a straightforward explanation for the cause of the
observed failures, since fault isolation is not a primary con-
cern. Our hypothesis is that a complementing metric that
takes into account per-test execution information can pro-
vide further insight about the overall quality of a test-suite.
This way, if a regression happens, one would have a test
suite that is not only effective at detecting faults, but also
aids spectrum-based techniques to pinpoint them among
the code.

Previous test-suite diagnosability research has proposed
measurements to assess diagnostic efficiency of spectrum-
based fault localization techniques. One measurement uses

� A. Perez is with the Faculty of Engineering, University of Porto, Porto
4099-002, Portugal. E-mail: alexandre.perez@fe.up.pt.

� R. Abreu is with the INESC-ID and Instituto Superior T�enico, University
of Lisbon, Lisbon 1649-004, Portugal. E-mail: rui@computer.org.

� A. van Deursen is with the Delft University of Technology, Delft 2628,
The Netherlands. E-mail: arie.vandeursen@tudelft.nl.

Manuscript received 14 Jan. 2018; revised 28 Dec. 2018; accepted 15 Jan.
2019. Date of publication 28 Jan. 2019; date of current version 11 Feb. 2021.
(Corresponding author: Alexandre Perez.)
Recommended for acceptance by S. Kim.
Digital Object Identifier no. 10.1109/TSE.2019.2895640

1. Ice-cream cone software testing anti-pattern mentioned in Alister
Scott’s blog: http://goo.gl/bhXOrN (accessed January 2019).

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

0098-5589� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5809-0550
https://orcid.org/0000-0002-5809-0550
https://orcid.org/0000-0002-5809-0550
https://orcid.org/0000-0002-5809-0550
https://orcid.org/0000-0002-5809-0550
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
mailto:
mailto:
mailto:
http://goo.gl/bhXOrN

the density (r) of a test-coverage matrix—also known as
spectrum [5]: input to all spectrum-based fault localization
techniques [6], [7] —, which encodes what software compo-
nents have been involved in each test. Gonz�alez-Sanchez
et al. have shown that when spectrum density approaches
the optimal value, the effectiveness of spectrum-based
approaches is maximal [8]. Another approach is one by
Baudry et al., that proposed a test for diagnosis criterion that
attempts to reduce the size of dynamic basic blocks to improve
fault localization accuracy [9].

Unfortunately, the existing diagnosability metrics rely on
impractical assumptions that are unlikely to happen in the
real world. The approach by Baudry et al. focuses on detec-
tion of single-faults in the system. The density approach
assumes that all tests programmers write exercise a differ-
ent path through the code and therefore produce different
coverage patterns. In practice, it is common for tests to cover
the same code. If one does not account for test diversity, it is
possible to skew the test-coverage matrix to have a (suppos-
edly) optimal density by repeating similar test cases. It also
has the assumption that all tests cover, on average, the same
number of code components. In reality, a test-suite can
encompass tests ranging from a targeted, narrow unit test to
a sweeping system test.

We detail the optimal coverage matrix for achieving
accurate spectrum-based fault localization. In this opti-
mal scenario, the test-suite contains a test case exercising
every possible combination of components in the system,
so that not only single-faults can be pinpointed but also
allows for multiple-faults—which require simultaneous
activations of components for the fault to manifest—can
be isolated. Such a matrix is reached when its entropy
is maximal. This is the theoretically optimal scenario.
However, this entropy-maximization approach is intrac-
table due to the sheer number of test cases required to
exercise every combination of components in any real-
world system.

Nevertheless, the entropy-optimal scenario helps elicit a
set of properties coverage matrices need to exhibit for accu-
rate spectrum-based fault localization. We leverage these
properties in our proposed metric, coined DDU.2 This met-
ric addresses the related work assumptions detailed above,
while still ensuring tractability, by combining into a single
measurement the three key properties spectra ought to have
for practical and efficient diagnosability: (1) density (r),
ensuring components are frequently involved in tests; (2)
test diversity (G), ensuring components are tested in diverse
combinations; and (3) uniqueness (U), favoring spectra with
less ambiguity among components and providing a notion
of component distinguishability. The metric addresses the
quality of information gained from the test-suite should a
program require fault-localization activities, and is inten-
ded as a complement to adequacy measurements such as
branch-coverage.

To measure the effectiveness of the proposed metric, we
perform theoretical and empirical evaluations. The theoret-
ical evaluation simulates a vast breadth of software sys-
tems and test suite compositions so that the range of
DDU values can be effectively generated and analyzed in

a holistic manner. Our simulation is built upon a tree-
based representation of system structures—which we call
topologies—that are randomly generated following phylo-
genetic processes. Topologies then guide the generation of
multiple spectra, which are then fault-injected and diag-
nosed. This theoretical analysis reveals that DDU can effec-
tively predict an upper-bound on the effort required to
diagnose. We also empirically evaluate DDU by generating
test suites for real-world faulty software projects. Test gen-
eration, facilitated by the EVOSUITE tool, is guided to opti-
mize test suites regarding a specific metric, and oracles are
generated from correct project versions. The first empirical
evaluation shows that generating tests that optimize DDU
produces test-suites that require less diagnostic effort to
find the faults compared to the state-of-the-art of diagnos-
ability metrics such as density. The second empirical evalu-
ation generates test-suites for a wide range of subjects in
the DEFECTS4J collection. We provide empirical evidence
that optimizing a suite regarding DDU yields an increase
of 34 percent in diagnostic accuracy when compared to
test-suites that only consider branch-coverage as the opti-
mization criterion and 17 percent when compared to opti-
mizing mutation score.

This paper extends our previous work [10] by (1) provid-
ing a generalization to the information-theoretic reasoning
behind targeting a certain optimal spectrum density value,
(2) providing a large-scale evaluation of DDU through a
topology-based program spectra simulation—so that we are
able to generate and analyze a vast breadth of qualitatively
distinct faulty spectra—, (3) expanding our evaluation by
comparing the diagnostic effectiveness of DDU versus
mutation coverage, and (4) expanding our discussion on
the implications of using the DDU metric for assessing
diagnosability.

2 MOTIVATION

We present two code snippets along with runtime informa-
tion of several test cases as a motivational example demon-
strating the need for a new metric that accurately describes
the diagnostic ability of a test-suite.3

The first example, depicted in Fig. 1a, shows a snippet of
code from a sensor array capable of measuring distance
to the ground both when submerged and airborne. The pur-
pose of groundAltitude is to measure distance to the
ground using the internal altitude sensor (ALT) and the
ground elevation sensor (GND). This method has a bug: it
will produce negative values if ALT is greater than GND.
Line 10 should then read return sub(ALT, GND). Test t1
does indeed detect the error in the system. But the problem
is that no other test also exercises the code path followed by
t1 to exonerate them from suspicion. When considering the
test suite t1 to t4, the developer will have to manually
inspect all components that do not appear in passing tests.
Six lines out of a total of 12 will have to be inspected, corr-
esponding to nearly 50 percent of the total code in the
snippet. In this small example, it is feasible to inspect all
components, but component inspection slices can grow to

2. DDU is an acronym for Density-Diversity-Uniqueness.
3. We use line of code as the component granularity throughout the

motivation section.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 413

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

fairly large numbers in a real world scenario. So, even
though test suite t1 to t4 has 100 percent branch-coverage, it
does not provide many diagnostic clues. Adding test t0 to
the test suite will, in fact, not result in a change in coverage,
but it will positively impact our proposed metric, as well as
further isolate the fault.

The second example, depicted in Fig. 1b, contains a
snippet of code for controlling the ascent and descent of a
drone. The descend method uses meters to quantify the
amount of descent, while the ascend method uses feet.
Assuming there is no explicit check for altitude available,
testing these methods independently will not reveal
the failure. Even though test suite t1 to t4 has reached
100 percent branch coverage, this test suite has not man-
aged to expose the fault in the code. Also note that even
satisfying a stronger coverage criterion like the modified
condition/decision coverage or even a stronger intra-
procedural analysis will not expose the fault. To expose
the fault in this example one would need to exercise com-
binations of decisions from different methods. In fact, only
a test that covers both methods’ else branches may reveal
it if, for instance, there is an unexpected liftoff after a
descent, as is depicted in test t0, which also positively imp-
acts our proposed metric.

3 BACKGROUND

This section describes the background work on which the
metric proposed on this paper is inspired. Namely, we
cover the concept of Spectrum-based Reasoning (SR)—
which is amongst the best performing spectrum-based fault
localization approaches [11]—and detail previous attempts
to define a diagnosability metric.

3.1 Spectrum-Based Reasoning (SR)

SR reasons about observed system executions and their out-
comes to derive diagnoses that can explain faulty behavior
in software [12]. In SR, the following is given:

� A finite set C ¼ hc1; c2; :::; cMi of M system compo-
nents. Components can be any source code artifact
of arbitrary granularity such as a class, a method, a
statement, or a branch [5];

� A finite set T ¼ ht1; t2; :::; tNi of N system transac-
tions, which can be seen as records of a system exe-
cution, such as, e.g., test cases;

� The outcome of system transactions is encoded in the
error vector e ¼ he1; e2; :::; eNi, where ej ¼ 1 if trans-
action tj has failed and ej ¼ 0 otherwise;

� A M �N activity matrix A, where Aij encodes the
involvement of component ci in transaction tj.

The pair ðA; eÞ is commonly referred to as spectrum [5].
Several types of spectra exist. The most commonly used is
called hit-spectrum, where the activity matrix is encoded in
terms of binary hit (1) and not hit (0) flags, i.e., Aij ¼ 1 if ci is
involved in tj and Aij ¼ 0 otherwise. An example to be used
throughout this section is shown in Fig. 2, which is analo-
gous to the depiction of spectra from Fig. 1. This spectrum
consists of four transactions (i.e., executions) of a system
composed of three components. Transactions t1, t2 and t3
fail, whereas in t4 no error was observed.

Prior approaches using spectra were based on a so-called
similarity coefficient to find a correlation between a compo-
nent ci’s activity (i.e., hAijjj 2 1::Ni) and the observed trans-
action outcomes encoded in error vector e [6], [7], [11], [13],
[14]. SR relies instead on a reasoning approach that lever-
ages a Bayesian reasoning framework to diagnose the sys-
tem. SR was also shown to outperform similarity-based
approaches [12]. The two main steps of SR are candidate
generation and candidate ranking:

3.1.1 Candidate Generation

The first step in SR is to generate a set D ¼ hd1; d2; :::; dki of
diagnosis candidates. Each diagnosis candidate dk is a sub-
set of C, and dk is said to be valid if every failed transaction
involved at least one component from dk. A candidate dk is

Fig. 1. Code snippets showing test and coverage information. Test
passes and failures are represented by @and •. � indicates that the com-
ponent in the respective row was exercised.

Fig. 2. Spectrum of a system with 3 components and 4 transactions.

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

minimal if no valid candidate d0 is contained in dk. We are
only interested in minimal candidates, as they can subsume
others of higher cardinality. Heuristic approaches to finding
these minimal candidates, which is an instance of the mini-
mal hitting set problem, thus NP-hard, include STACCATO [15],
SAFARI [16] and MHS

2 [17].
In our example from Fig. 2, the collection of minimal diag-

nostic candidates that can explain the erroneous behavior is

� d1 ¼ hc1; c2i
� d2 ¼ hc1; c3i

3.1.2 Candidate Ranking

For each candidate dk, their fault probability is calculated
using the Na€ıve Bayes rule

Prðdk j ðA; eÞÞ ¼ PrðdkÞ �
Y

j21::N

PrððAj; ejÞ j dkÞ
PrðAjÞ

: (1)

Let Aj be short for hAijji 2 1::Mi—i.e., the jth column of
matrix A, represented by a set encoding all component
involvements in test tj. The denominator PrðAjÞ is a normal-
izing term that is identical for all candidates and is not con-
sidered for ranking purposes.

In order to define PrðdkÞ, let pi denote the prior probabil-
ity4 that a component ci is at fault. The prior probability for
a candidate dk is given by

PrðdkÞ ¼
Y
i2dk

pi �
Y

i2Cndk

ð1� piÞ: (2)

PrðdkÞ estimates the probability that a candidate, without
further evidence, is responsible for erroneous behavior.

PrððAj; ejÞ j dkÞ is used to bias the prior probability taking
observations into account. Let gi (referred to as component
goodness) denote the probability that a component ci per-
forms nominally

PrððAj; ejÞ j dkÞ ¼

Y
i2ðdk\AjÞ

gi if ej ¼ 0

1�
Y

i2ðdk\AjÞ
gi otherwise

8>><
>>: : (3)

In cases where values for gi are not available they can be
estimated by maximizing PrððA; eÞ j dkÞ—i.e., maximum
likelihood estimation (MLE) for the Na€ıve Bayes classifier—
under parameters fgi j i 2 dkg [19]. This work uses MLE to
estimate component goodness.

If we consider our example, the probabilities for both
candidates are

Prðd1 j ðA; eÞÞ ¼
�

1

1000
� 1

1000
�
�
1� 1

1000

��zffl}|ffl{PrðdÞ

�

ð1� g1 � g2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t1

�ð1� g2Þ|fflfflfflffl{zfflfflfflffl}
t2

�ð1� g1Þ|fflfflfflffl{zfflfflfflffl}
t3

� g1|{z}
t4

zffl}|ffl{PrððA;eÞ j dÞ
(4)

Prðd2 j ðA; eÞÞ ¼
�

1

1000
� 1

1000
�
�
1� 1

1000

��zffl}|ffl{PrðdÞ

�

ð1� g1Þ|fflfflfflffl{zfflfflfflffl}
t1

�ð1� g3Þ|fflfflfflffl{zfflfflfflffl}
t2

�ð1� g1Þ|fflfflfflffl{zfflfflfflffl}
t3

� g1 � g3|fflffl{zfflffl}
t4

zffl}|ffl{PrððA;eÞ j dÞ

:

(5)

By performing a MLE for both functions it follows
that Equation 4 is maximized for g1 ¼ 0:47 and g2 ¼ 0:19.
Equation 5 ismaximized for g1 ¼ 0:41 and g3 ¼ 0:50. Applying
the goodness values to both expressions, it follows that
Prðd1 j ðA; eÞÞ ¼ 1:9� 10�9 and Prðd2 j ðA; eÞÞ ¼ 4:0� 10�10. It
is customary to normalize fault probabilities over the set of can-
didates under consideration, producing: Prðd1 j ðA; eÞÞ ¼ 0:83

andPrðd2 j ðA; eÞÞ ¼ 0:17, entailing the ranking5 (d1; d2).

3.2 Measuring Quality of Diagnosis

To measure the accuracy of fault-localization approaches,
the cost of diagnosis Cd metric is often used [11], [12], [20],
[21]. It measures the number of candidates that need to be
inspected until the real faulty candidate is reached, given
that the candidates are being inspected by descending order
of probability.6 A value of 0 for Cd indicates an ideal diag-
nostic report where the faulty candidate is at the top of the
ranking and thus no spurious code inspections will occur.
The Wasted Effort metric (or merely Effort) normalizes Cd

over the total number of components in the system so that
the metric ranges from 0 (optimal value—no developer time
wasted chasing wrong leads) to 1 (worst value—states that
the whole systemwill be inspected until the fault is reached)
in all cases.

Another widely usedmetric is Recall@N [22] (also referred
to as Top@N [23] orHit@N [24]),which computes the percent-
age of faults among the set of subjects that can detected by
exclusively examining the top N (N=1,2,3,...) components of
the ranked diagnostic report. Good fault localization techni-
ques should allow developers to find more faults while
inspecting less code, thus the higher the Recall@N value, the
better the diagnostic performance.

Quality of diagnosis measurements assume perfect fault
understanding, meaning that when the real faulty candidate
is inspected, it is correctly identified as such. This assump-
tion may not always hold [25], but there are approaches to
mitigate it (e.g., [26]).

3.3 Diagnosability Assessment by Measuring
Matrix Density

Previous work [8] has used matrix density (r) as a measure
for diagnosability:

r ¼
P

i;j Aij

N �M
: (6)

The intuition is to find an optimal matrix density such that
every transaction observed reduces the entropy of the diag-
nostic report set R ¼ hPrðdkjðA; eÞÞjdk 2 Di. It has been

4. Component prior probabilities depend on the chosen granularity.
For instance, if components are statements, one can approximate pj as
1=1000, i.e., 1 fault for each 1000 lines of code [18].

5. Also known as diagnostic report.
6. Or likelihood score, depending on the fault-localization approach

used.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 415

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

previously demonstrated that the information gain can be
modeled as:

IGðtgÞ ¼ �Prðeg ¼ 1Þ � log 2ðPrðeg ¼ 1ÞÞ
�Prðeg ¼ 0Þ � log 2ðPrðeg ¼ 0ÞÞ; (7)

where Prðeg ¼ 1Þ is the probability of observing an error in
transaction tg, conversely Prðeg ¼ 0Þ is the probability of
observing nominal behavior. Optimal information gain
(IGðtgÞ ¼ 1) is achieved when Prðeg ¼ 1Þ ¼ Prðeg ¼ 0Þ ¼ 0:5.
With the assumption that transaction activity is normally dis-
tributed, then it follows that a transaction’s average compo-
nent activation rate equals the overall matrix density. Thus, it
can be said that Prðeg ¼ 1Þ ¼ r, yielding r ¼ 0:5 as the ideal
value for diagnosis using SR approaches [8]. Density was also
leveraged by Campos et al. to guide automated test genera-
tion [20]. This work shows that density-guided test-suites
managed to reduce diagnostic effort when compared to using
branch coverage as the fitness function for the generation.

3.4 Diagnosability Assessment by Measuring
Uniqueness

Baudry et al. propose a diagnosability metric that tracks
the number of dynamic basic blocks in a system [9]. Dynamic
basic blocks, which other authors also call ambiguity groups
[27], correspond to sets of components that exhibit the same
involvement pattern across the entire test-suite. For diag-
nosing a system, the more ambiguity groups there are, the
less accurate the diagnostic report can be, because one
cannot distinguish among components in a given ambiguity
group, as they all show the same involvement pattern across
every transaction.

This metric, that we call uniqueness, can be used to
ensure that the test-suite is able to break as many ambiguity
groups as possible. A matrix A decomposes the system into
a partition G ¼ g1; g2; :::; gL of subsets of all components
with identical columns in A. Then, measuring the unique-
ness U of a system can be done by

U ¼ jGj
M

: (8)

When U ¼1 =M all components belong to the same ambiguity
group. When U ¼ 1, all components can be uniquely
identified.

4 DIAGNOSABILITY METRIC

This section presents the DDU metric. First, we detail a
method for quantifying the exhaustiveness of a test suite
using the notion of entropy, motivated by the optimal diag-
nosability scenario. Although we use SR in our motivation,
the entropy approach can be applied to other spectrum-
based fault localization strategies as well, because it focuses
on isolating diagnostic candidates. We show that entropy
may not be suitable in practice due to the number of transac-
tions needed to reach an ideal spectrum. Finally, we propose
the DDU metric as a relaxed alternative, based on previous
work that uses density as an indicator for diagnosability.

4.1 Activity Matrix Entropy

To maximize the effectiveness of SR approaches, the ideal
activity matrix is one that contains every combination of

component activations—as depicted in Fig. 3 —, since it fol-
lows that every possible fault candidate in the system is
exercised.

A metric that accurately captures this exhaustiveness is
entropy—the measure of uncertainty in a random variable.
Shannon Entropy [28] is given by

HðXÞ ¼ �
X
i

P ðxiÞ � log 2ðP ðxiÞÞ (9)

in this context,X is the set of unique transaction activities in
the spectrum matrix. P ðxiÞ is the probability of selecting a
transaction t 2 T and it having the same activity pattern as
xi. When HðXÞ is maximal, it means that all possible trans-
actions are present in the spectrum. For a system with M
components, maximum entropy is Mshannons (i.e., number
of bits required to represent the test suite). Therefore, we

can normalize it to HðXÞ!=M . Matrices with a normalized
entropy of 1.0 would, then, be able to efficiently diagnose
any fault (single or multiple) provided that the error detec-
tion oracles that classify transactions as faulty are suffi-
ciently accurate.

The main downside of using entropy as a measure
of diagnosability is that one would need 2M � 1 tests to
achieve this ideal spectrum (and thus a normalized entropy
of 1.0). In practice, some transaction activities are impossible
to be generated, either due to the system’s topology or
due to the existence of ambiguity groups: a set of compo-
nents that always exhibit the same activity pattern.7

4.2 DDU

Our DDU is detailed next. Its goal is to capture several
structural properties of the activity matrix that make it ideal
for diagnosing, while avoiding the combinatorial explosion
of the optimal entropy approach. We start by considering
activity matrix density as the basis for our approach, and
then propose the diversity and uniqueness enhancements
so that the impractical assumptions of the base approach
can be lifted.

4.2.1 Density

As discussed in Section 3.3, the r metric captures the
density of a system. Fig. 4 shows two activity matrices
of different densities. A sparse activity matrix, depicted
as a diagonal matrix in Fig. 4a, while achieving a high

Fig. 3. Ideal hit-spectra matrix for a system withM components.

7. An example of an ambiguity group is the set of statements in a
basic block.

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

component coverage due to the fact that every component is
executed by the test suite, does not exercise components in
tandem, and therefore many potential diagnostic candidates
are left unexercised. Conversely, a dense activity matrix as
depicted in Fig. 4b is unable to exonerate diagnostic candi-
dates from suspicion as all components are active in all
transactions. The ideal density value (r ¼ 0:5) is in fact in
between the two extremes depicted, as the theoretical work
of Gonz�alez-Sanchez et al. [8] and the empirical work of
Campos et al. [20] show.

It is also straightforward to show the optimality of the
value of 0.5 for the density measurement by induction, as
depicted in Fig. 5. Suppose that we have an activity matrix
A0, which is optimal for diagnosis. Suppose also that we
want to add a new component c0 to our system. To preserve
optimality, we would need to repeat the optimal sub-matrix
A0 both when c0 is active and when it is inactive. Therefore,
the involvement rate of component c0 would be 0.5.

Note that in the case of dependent faults—ones where mul-
tiple simultaneous components must be involved for the
fault to trigger—the optimal value depends on the fault car-
dinality. Suppose that a system contains Nf dependent
faults. The total number of fault candidates can then be

expressed by the binomial coefficient C
Nf

� �
. If the system’s

coverage matrix density is r, tests that exercise it cover, on
average, r � C components, and thus the number of candi-

dates of cardinality Nf exercised by the test are r�C
Nf

� �
. The

probability of a test failing is then

PrðtfÞ ¼
r�C
Nf

� �
C
Nf

� � : (10)

A binomial coefficient can be expressed using Pochhammer’s
falling factorial8

PrðtfÞ ¼

ðr�CÞNf

Nf !

ðCÞNf

Nf !

¼
ðr � CÞNf

ðCÞNf

: (11)

As the falling factorial ðxÞn is equal to
Qn

i¼1ðx� iþ 1Þ,
Equation 11 can be rewritten as

PrðtfÞ ¼
YNf

i¼1

r � C � iþ 1

C � iþ 1
: (12)

And since C � Nf , we can approximate the value of
PrðtfÞ

PrðtfÞ � lim
C!þ1

YNf

i¼1

r � C � iþ 1

C � iþ 1
¼ rNf : (13)

Then, the information gain from any given test case can be
computed as demonstrated in Equation 7 from Section 3.3

IG ¼ �PrðtfÞ � log 2ðPrðtfÞÞ � PrðtpÞ � log 2ðPrðtpÞÞ

¼ �rNf � log 2ðrNf Þ � ð1� rNf Þ � log 2ðð1� rNf ÞÞ: (14)

The optimal IG ¼ 1 value corresponds to rNf ¼ 0:5,
which means that the optimal density is

r ¼ 1

2
1
Nf

: (15)

Fig. 6 shows the evolution of IG’s value over the density
for faults of cardinality 1, 2, and 4, where we can see a skew
favoring higher densities the more components are involved
in a fault. The reason for this behavior is that it is unnecessary
to run sparse tests which execute less components than the
number of components needed to trigger a failure. In the
general case, since one does not know a priori about the cardi-
nality of a failure, targeting a r ¼ 0:5 is still the safest action
in terms of covering all possible fault cardinalities. However,
if one has a means of deducing the fault cardinality (for
instance, using the defect prediction methodology as out-
lined in [29]), then such information can be exploited—e.g.,
by turning off sparse tests guaranteed to not trigger the com-
plex fault and reduce the time to run the test suite.

Since r ¼ 0:5 is our optimal target value, we propose a
normalized metric r0 where its upper bound (1.0) is the
actual target

r0 ¼ 1� j1� 2 � rj (16)

Fig. 4. Sparse and dense activity matrices.

Fig. 5. Depiction of the optimal density proof. Fig. 6. r versus IG for different fault cardinalities.

8. http://mathworld.wolfram.com/FallingFactorial.html

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 417

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

http://mathworld.wolfram.com/FallingFactorial.html

and the lower bound 0 means that every cell in the matrix
contains the same value. However, this optimal target is
only valid assuming that all transactions in the activity
matrix are distinct. Such assumption is not encoded in the
metric itself (see Equation 6). This means that a matrix with
no diversity (depicted in the example from Fig. 7a) is able to
reach the ideal value for the r0 metric.

4.2.2 Diversity

The first enhancement we propose to the r0 analysis is to
encode a check for test diversity. In a diagnostic sense, the
advantage of having considerable variety in the recorded
transactions is related to the fact that each diagnostic can-
didate’s posterior probabilities of being faulty are updated
with each observed transaction. If a given transaction is fail-
ing, it means that the diagnostic candidates whose compo-
nents are active in that transaction are further indicted as
being faulty—so their fault probability will increase. Con-
versely, if the transaction is passing, then it means that the
candidates that are active in the transaction will be further
exonerated from being faulty—and their fault probability
will decrease. Ensuring diversity is also prone to minimize
the impact of coincidental correctness—when a fault is exe-
cuted but no failure is detected—as shown in the work by
Masri and Assi, which remove passing tests which exhibit
the same coverage pattern as failing tests, resulting in
improved diagnostic accuracy [30]. Having such diversity
means that more diagnostic candidates will have their fault
probabilities updated so that they are consistent with the
observations, leading to a more accurate representation of
the state of the system.

We use the Gini-Simpson index to measure diversity
(G) [31]. The G metric computes the probability of two ele-
ments selected at random being of different kinds:

G ¼ 1�
P

n� ðn� 1Þ
N � ðN � 1Þ ; (17)

where n is the number of tests that share the same activity.
When G ¼ 1, every test has a different activity pattern.
When G ¼ 0, all tests have equal activity. Fig. 7a and 7b
depict examples of repeated and diverse test cases, respec-
tively. We can see that the r0 metric by itself cannot distin-
guish between the two matrices, as they have the same
density. If we also account for diversity, the two matrices
can be distinguished.

4.2.3 Uniqueness

The second extensionwe propose has to dowith checking for
ambiguity in component activity patterns. If two or more
components are ambiguous, like components c1 and c2 from

the example in Fig. 8a, then they form an ambiguity group
(see Section 3.4), and it is impossible to distinguish between
these components to provide a minimal diagnosis if tests t1
and t3 fail. As finding potential diagnostic candidates can be
reduced to a set-cover/minimal-hitting-set problem, then
two things may happen as a result of breaking an ambiguity
group and having those components being tested indepen-
dently. One is that some diagnostic candidates containing
components from that ambiguity group can become incon-
sistent with the observations and thus would be removed
from the set of possible diagnostic candidates, improving the
tractability of the bayesian update step of the SR approach.
The other is that diagnostic candidates will be of lower cardi-
nality, thus improving our confidence in the accuracy of
diagnosis. This happens because, as faults are considered to
be independent, then the probability of having multiple
faults as the explanation for the system’s behavior is gener-
ally several orders of magnitude lower when compared to
low-cardinality candidates.9

We use a check for uniqueness (U) as described in Equa-
tion 8 to quantify ambiguity. Uniqueness is also used by
Baudry et al. to measure diagnosability [9]. However, we
argue that uniqueness alone does not provide sufficient
insight into the suite’s diagnostic ability. Particularly, it does
not guarantee that component activations are combined in
different ways to further exonerate or indict multiple-fault
candidates. In that aspect, information regarding the diver-
sity of a suite provides further insight.

4.2.4 Combining Diagnostic Predictors

Our last step is to provide a relaxed version of entropy
(which we call DDU) by combining the three aforemen-
tioned metrics that assess the key properties (i.e., necessary
and sufficient) a coverage matrix ought to have to ensure
proper diagnosability:

DDU ¼ r0 � G � U (18)

and its ideal value is 1.0. We reduce r0, G and U into a single
value by means of multiplication. The reason being that
since in each term the value of 0.0 corresponds to the worst-
case and 1.0 to the ideal case, we are able to leverage proper-
ties of multiplication such as multiplicative identity and the
zero property.

5 THEORETICAL EVALUATION

A simulation approach to spectra generation enables us to
consider an otherwise infeasible breadth of scenarios, so

Fig. 7. Impact of diversity on r0 and G.
Fig. 8. Impact of component ambiguity on r0, G and U.

9. Thus having to be supported by many observations for our confi-
dence on that diagnosis to increase.

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

that the metric’s diagnosability performance can be ana-
lyzed from a holistic, theoretical standpoint—akin to related
work on spectrum based fault localization [8], [12], [32].
Therefore, we first evaluate the DDU metric by generating a
multitude of program spectra via simulation to further con-
firm the claims we make while devising the DDU metric in
the previous section. This section (1) describes the topology-
based spectra simulator and fault injector we created for
this theoretical analysis; (2) details the experimental setup,
where thousands of qualitatively distinct spectra were
automatically generated by the simulator; and (3) presents
an assessment on the correlation of DDU—and coverage—
with diagnostic effort, as well as an assessment on the influ-
ence of a system’s topology on its diagnosability, based on
the simulated data. Afterwards, in Section 6, we empirically
evaluate the DDUmetric.

5.1 Spectra Simulator

The spectra simulator we built for this theoretical assess-
ment is able to generate a breadth of qualitatively distinct
coverage matrices. It uses topology-based10 policies to select
which components are active on each test, and relies on
component goodnesses—as described in Section 3.1.2—to
inject test failures. Fig. 9 depicts the overall process followed
by the simulator to generate a set of faulty program spectra
and their respective diagnoses. The following subsections
detail each step of the simulation process.

5.1.1 Topology Generation

The first step in the simulation process is to generate a ran-
dom tree with as many leaves as components to be simu-
lated. Tree generation follows a uniform birth-death process,
commonly used to simulate phylogenetic trees [33], in which

lineages (or tree paths) have a constant probability of speciat-
ing (splitting into multiple branches), and a constant proba-
bility of going extinct, per time unit. The generated tree acts
as the system topology, and is predicated on the fact that, in
most programming paradigms, source code is structured
in a hierarchical fashion—especially in the case of object-
oriented languages. Specifically, tree leaves correspond to
the components in the spectrum abstraction—the units of
computation used to diagnose the system, which can be
branches, statements, etc—, and inner nodes correspond to
hierarchical source code artifacts of coarser granularity such
as methods, classes and subclasses, and package folders.
We note that, much like system topologies, our generated
trees are not necessarily balanced.

5.1.2 Component Activation

After generating a topology, the component activation step
generates a vast amount of test cases by activating compo-
nents and propagating these activations through the topol-
ogy. This step starts with the selection of a component
(which we call the anchor) and setting it as active in a newly
created test-case. Anchor components are shown as red tree
nodes in the Component Activation step depicted in Fig. 9.
With the selection of an anchor, we randomly activate other
components based on their distance to the anchor—follow-
ing the assumption that the farther away two components
are, the less related they are and hence less likely to be cov-
ered in the current test-case being generated. To confirm
our assumption, we have constructed a topology tree for
each subject in the Defects4J catalog (further described
in Section 6.1) and measured the frequency with which dis-
tances11 between any two covered components appear in
test cases. Fig. 10 depicts these findings, which indicate that,
indeed, the further two components are from each other,

Fig. 9. Process followed by the spectra simulator.

10. The use of topologies to generate spectra is inspired by SERG-
Delft’s simulator: https://github.com/SERG-Delft/sfl-simulator

11. i.e., the minimal number of edges one needs to traverse to go
from a given node in the tree to another given node.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 419

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SERG-Delft/sfl-simulator

the less frequently both of them are covered in the same
execution.

It is worth noting that coverage density of a test can be
manipulated by multiplying the activation probability by a
density term. If this term is < 1, then sparse test cases are
generated. Conversely, a value > 1 yields denser test cases.
We generate test cases using a wide spectrum of density
terms. This component activation process is repeated nume-
rous times for each component in the system, so that a large
collection of test cases is available to the next steps in the
simulation.

5.1.3 Test Selection

This step consists of selecting a set of test cases out of the
test case pool generated in the previous step. We have cho-
sen to select as many tests as there are components in the
system—yielding square coverage matrices. Having the test
suite depend on the number of components allows it to
grow with program size, with the assumption that the larger
the code base is, the more tests are created.

5.1.4 Fault Injection

For each matrix that the previous step produces, we inject it
with: (1) a single fault, (2) multiple independent faults, and
(3) multiple dependent faults. In the first case, we randomly
assign a component from the system as the faulty one, and
set each test which covers the faulty component as having a
failing outcome. In scenario (2), multiple components are
considered as being faulty, and thus tests that cover any
non-empty subset of faulty components are set to failing. In
the last scenario, only tests that cover the conjunction of all
failing components are set to failing. We include multiple-
faulted scenarios in our analysis since, as studied in previ-
ous work [34], such scenarios account for a non-trivial por-
tion (20 percent) of bug-fixing tasks in open-source projects.

The fault injection step is also able to consider com-
ponent goodnesses, which, as described in Section 3.1.2,
describe the probability of a faulty component exhibiting
nominal behavior (and thus not triggering a test failure).
For instance, in a single-faulted scenario modeled with 0.25
goodness, a test case that covers the fault has a 75 percent

chance to be labeled as failing. Such a component goodness
modeling therefore allows us to replicate coincidentally
correct scenarios.

5.1.5 Diagnosis

We diagnose the faulty spectra generated in the previous
step using the reasoning-based fault-localization technique
described in Section 3.1.

5.2 Setup

We have run our simulation 40 times so that 40 distinct
topologies ranging from 100 to 500 components were con-
sidered. To assess if we generate distinct topologies, we
measure the Robinson-Foulds distance metric [35], [36] for
every pair of generated topology topologies. Robinson-
Foulds measures the minimal number of operations (such
as adding or removing nodes and edges) that are required
to transform a given tree A into tree B. The metric’s lower
bound is zero and it corresponds to the case when the two
trees under consideration are identical. The upper bound is
equal to the sum of all edges among both trees, and it means
that the entirety of tree A has to be reconstructed to obtain
tree B, thus the two trees do not share any similar structure.
Since the upper bound depends on the sizes of the two trees
under consideration, the metric’s value can be normalized
(dividing by the upper bound value) such that it ranges
between 0 and 1. Fig. 11 shows the normalized Robinson-
Foulds metric values for every pair of topology trees we
generate. Results show that any tree exhibits high Robin-
son-Foulds values when compared to all other generated
trees, which leads us to conclude that all our generated
topologies are different and qualitatively distinct from
each other.

For each topology, all components acted as anchors,
generating a test-case pool using several density terms. Each
test-case pool produced 100 matrices, which were fault-
injected—with a single fault, two/three independent faults,
and two/three dependent faults. We have used the follow-
ing goodness values for our simulation: 0.0, 0.25, 0.50, and
0.75. Regarding metrics, we have gathered coverage, DDU,

Fig. 10. Frequency of component distances in test cases for each
Defects4J subject.

Fig. 11. Robinson-Foulds metric values for every generated topology.

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

entropy, and effort to diagnose for every faulty spectra gen-
erated by the simulator.

To ensure reproducibility, our spectra simulator, and its
respective configuration file describing this experiment, are
made available.12 In total, more than half amillion spectrawere
simulated, fault injected, and diagnosed in this experiment.

5.3 Results

Below we present and discuss the spectra simulation results
by (1) evaluating the diagnostic quality using the effort met-
ric as described in Section 3.2, and by (2) evaluating the
simulated spectra’s propensity for error detection.

5.3.1 Diagnostic Quality

Diagnostic effort results for every spectrum generated in
this experiment are shown in Figs. 12, 13, 14, 15. Each figure
shows a scatter plot portraying the relation of diagnostic
effort13 with different metrics—namely coverage, DDU,
entropy, and the average of density, diversity and unique-
ness. Points in the scatter plot represent simulated spectra.
Beside each scatter plot are three two-dimensional histo-
grams depicting the distribution of spectra containing each
fault type described in Section 5.1.4.

Fig. 12 portrays the relation between coverage and diag-
nostic effort for all simulated spectra. Regarding spectra
that were injected with a single fault, their diagnosability
improves by increasing coverage. Note that single-faulted
spectra seem to form several downward lines in the scatter
plot—each of these lines corresponds to a different topology
used as the basis for emulating software structure. We can
therefore make two observations. The first is that, for a
given topology, the selection and composition of the test
suite influences not only coverage but also the effort to diag-
nose. The second is that the choice of base topology also
influences diagnostic quality.

While single-fault diagnostic effort mostly decreases
with coverage, the same cannot be said for scenarios with

multiple faults, especially ones where dependent faults
were injected, since several spectrum instances with high
coverage are not in the bottom-right of the plot. For these
scenarios, high coverage is not a good indicator of diagnos-
ability. An illustrative example of such phenomenon is as
follows. Consider a spectrum that resembles a diagonal
matrix, where each test exercises a single distinct compo-
nent. Such a spectrum has high coverage—because every
component is exercised—and, at the same, is sparse—since
all tests contain a single component activation. In effect, this
is analogous to a high-coverage unit test suite with no inte-
gration tests exercising multiple components. For single
fault scenarios, this suite is very likely to find and accurately
isolate faults. However, in cases where a fault requires set of
component activations for an error to be triggered, this suite
cannot provide enough evidence for fault localization algo-
rithms to pinpoint faults.

Fig. 13 depicts the relation between DDU and effort. We
can tell that this metric upper bounds the effort to diag-
nose—the higher the DDU, the lower the maximal diag-
nostic effort—providing a more accurate expectation of
diagnosability when compared with coverage. As opposed
to coverage, multiple faults do not negatively influence the
DDU’s diagnostic accuracy.

Fig. 14 shows test entropy—as described in Section 4.1—in

the x-axis. Note that entropy values range from 0 to 1, but to

improve legibility, we are showing a partial range of entropy

values up to 0.08 as no spectra in our simulation exceeded this

value. In effect, the number of test cases generated by the simu-

lator (set to be the same as the number of components in every

generated spectra) is insufficient to significantly explore the

entire range of entropy values. Limiting the number of tests

was an intentional way to model how developers test in prac-

tice, and therefore it leads us to conclude that optimizing for

entropy is infeasiblewith a reasonable number of tests.
We discuss in Section 4.2.4 the reasons for choosing mul-

tiplication as a way of reducing the composing terms of
DDU (namely density, diversity and uniqueness) into a sin-
gle value that represents the system’s diagnosability. While
we explain why each term is important for the overall diag-
nosability, it might be the case that there is a better way to

Fig. 12. Relation between diagnostic effort and coverage.

12. Available at https://github.com/aperez/sfl-simulator.
13. Normalized over the number of components, so that spectra of

systems with a different number of components can effectively be
compared.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 421

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/aperez/sfl-simulator

reduce them into a one-dimensional value. Fig. 15 depicts
using the average of density, diversity and uniqueness val-
ues as the measure for diagnosability—as opposed to their
multiplication, which is depicted in Fig. 13. We can con-
clude that the multiplication of density, diversity and
uniqueness more accurately predicts the diagnostic perfor-
mance of the test suite.

5.3.2 Error Detection

Besides investigating diagnostic quality, which relates to the
actual effort bugs take to be located, we have also recorded
the error detection rate. This evaluates the propensity for faults
in a given coverage matrix to induce test errors, and is
achieved by keeping track of the frequency in which errors
are detected in faulty spectra. As readers may recall
fromSection 5.1.4, each coveragematrixwe generate is subject
tomultiple rounds of fault injection. As a result, we generate a
sets of spectra that exhibit the same coverage matrix and dif-
ferent error vectors. Error detection rate is then the frequency
bywhich these sets of spectra exhibit failing error vectors.

Fig. 16a and 16b show two-dimensional histograms depict-
ing the error detection frequency of coverage matrices along

coverage values and DDU values, respectively. Fig. 16a tells
us that the majority of high coverage spectra are able to pro-
duce test failures when faults are injected, as portrayed by the
intensity of the top-right portion of the histogram. However,
we still observe a significant portion of cases with low error
detection despite their coverage value, as evidenced by the
intensity of the bottom row in the histogram. Such spectra do
not have adequate test cases that detect the injected faults. In
contrast, we see that when DDU is considered—Fig. 16b —,
there are considerably less cases of high-DDU spectra yield-
ing low error detection rates. This is initial evidence that DDU
may be suited for measuring the adequacy of test suites,
besides simplymeasuring diagnosability.

6 EMPIRICAL EVALUATION

Results obtained by simulating a breadth of program spec-
tra seem to indicate that, from a theoretical standpoint,
DDU effectively estimates the diagnostic effort required to
pinpoint bugs, regardless of fault type. However, these
promising results do not exclude the need to evaluate the
metric against real-world subjects. This section details our

Fig. 13. Relation between diagnostic effort and DDU.

Fig. 14. Relation between diagnostic effort and entropy.

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

following experiment, in which we empirically evaluate the
proposed metric in regard to its ability to assess diagnostic
quality. We aim to address the following research questions:

RQ1: Is the DDU metric more accurate than the state-of-
the-art in diagnosability assessment?

RQ2: How close does the DDU metric come to the (ideal
yet intractable) full entropy?

RQ3: Does optimizing a test-suite with regard to DDU
result in better diagnosability than optimizing adequacy
metrics?

RQ1 asks if there is a benefit in utilizing the prop-
osed approach as opposed to density and uniqueness—
which have been used in related work. RQ2 is concerned
with assessing if DDU shares a statistical relationship with

entropy—the measurement whose maximal value descri-
bes an optimal (yet intractable and impractical) coverage
matrix. RQ3 asks if using DDU as an indicator of the diag-
nostic ability of a test-suite is more accurate than using
standard adequacy measurements like branch-coverage in a
setting with real faults.

6.1 Experimental Setup

Our empirical evaluation compares DDU to several metrics
in use today. To effectively compare the diagnosability of
test-suites of a given program that maximize a specific
metric, we leverage a test-generation approach. EVOSUITE

14

is a tool that employs Search-based Software Testing (SST)
approaches to create new test cases. It applies Genetic
Algorithm (GAs) to minimize a fitness function which
describes the distance to an optimal solution. The metrics
to be compared are DDU—our proposed measurement;

Fig. 15. Relation between diagnostic effort and the average of density, diversity and uniqueness.

Fig. 16. Two-dimensional histograms depicting the number of simulated matrices along with the relation between error detection and several metrics.

14. EVOSUITE tool is available at http://www.evosuite.org. Version
1.0.2 was used for experiments (accessed January 2019).

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 423

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

http://www.evosuite.org

density and uniqueness to be able to answer RQ1; entropy
to answer RQ2 and lastly branch-coverage for RQ3. These
metrics were encoded as fitness functions in the EVOSUITE

framework. As the GA in EVOSUITE tries to minimize the
value of a function over a test suite TS, the fitness functions
for each metricM are as follows

fMðTSÞ ¼ jOM �MðTSÞj; (19)

where OM is the optimal value of metric M (e.g., 1.0 for
the case of branch-coverage, and 0.5 for density), and
MðTSÞ is the result of applying metric M to test suite TS.
To account for the randomness of EVOSUITE’s GA, we
repeated each test-suite generation experiment 10 times.
EVOSUITE’s maximum search time budget was set to
600 seconds, which follows the setup of previous studies
also using the tool [20].

EVOSUITE by itself does not generate fault-finding
oracles—otherwise, a model of correct behavior would have
to be provided. Instead, it creates assertions based on static
and dynamic analyses of the project’s source code. This
means that if we run the generated test-suite against the
same source code used for said generation, all tests will
pass (provided the code is deterministic15). Thus, if the
source code submitted for test-generation contains faults,
no generated test oracle will expose them.

For the experiments comparing with the state-of-the-
art and the idealistic approach (to answer RQ1 and RQ2,
respectively), we need a controlled environment so that
oracle quality (which in itself is an orthogonal factor)
does not affect results. Therefore, the experiment des-
cribed in Section 6.2 mutates the program spectrum of
generated test-suites to contain seeded faults and seeded
failing tests. In each experiment a set of components
were considered as faulty, and tests that exercise
them were set as failing according to an oracle quality
probability—in our experiments, the oracle quality is 0.75,
meaning that whenever a faulty component is involved
in a test, there is a 75 percent chance that the test will be
set as failing. The chosen value is a compromise between
perfect error detection (i.e., oracle quality of 1) and essen-
tially random error detection (oracle quality of 0.5) This
fault injection approach is common practice among con-
trolled, theoretical evaluations of spectrum-based diag-
nosis [8], [19].

For assessing the applicability in real world scenarios
and to answer RQ3, we need real life bugs and fixes. There-
fore, in Section 6.3 we make use of DEFECTS4J 16—a software
fault catalog—to generate test-suites from fixed versions of
a program and then gather program spectra by testing the
corresponding faulty version.

Spectrum gathering was performed at the branch granu-
larity for both experiments, so every component in our
subjects’ coverage matrices corresponds to a method
branch—this way we can fairly compare our approach to
branch coverage. Each program spectrum gathered in the

previous step is then diagnosed using the automated diag-
nosis tool CROWBAR.17 This tool implements the approach
described in Section 3.1, and generates a ranked list of diag-
nostic candidates for the observed failures.

For a given subject program, to compare the diagnosabil-
ity of a test-suite generated by the DDU criterion with the
one generated by a criterion C, we use the following metric

DEffortðCÞ ¼ EffortC � EffortDDU; (20)

where EffortDDU is the effort to diagnose using the test-suite
generated with the DDU criterion and EffortC is the effort to
diagnose with the test suite by maximizing some criterion
C. Effort takes as input the ranked list of diagnostic candi-
dates from CROWBAR and estimates quality of diagnosis as
described in Section 3.2. The DEffortðCÞ metric ranges from
�1 to 1. Positive values of DEffortðCÞ mean that the bug is
found faster in diagnoses that use the DDU generated test
suite. Negative values mean that the faulty component is
ranked higher in the C-generated test-suite than the DDU
one, thus requiring less spurious diagnostic inspections.
DEffortðCÞ of value 0 means that the faulty component is
ranked with the same priority in both test generations. We
consider that the use of the normalized effort to create the
paired DEffortðCÞ provides an adequate means of comparing
diagnostic quality that captures the magnitude of effort dif-
ferences over distinct subjects. Conversely, such magnitude
could be incorrectly measured using other quality of diag-
nosis metrics described in Section 3.2, such as Recall@N—
due to the N threshold —, or Cd—due to different program
sizes among subjects.

We make use of kernel density estimation plots to show
the DEffortðCÞ values in Figs. 17 and 18. Such plots estimate

the probability density function of a variable, i.e., they

describe the relative likelihood (y-axis) for a random variable

(DEffortðCÞ in our case) to take on a given value (x-axis). Thus,

these plots help visualize the distribution of data over a con-
tinuous interval and can be considered as smoothed, contin-
uous histograms. In our experiments, the higher the density
value at a certain value in the x-axis, the more instances with

DEffortðCÞ near that value were observed. Note that the

observed data is shown as a rug plot, with tick marks along
the x-axis (reminiscent of the tassels on a rug). Also, the
dashed vertical line at DEffortðCÞ ¼ 0 is present to aid the

interpretation of results. DEffortðCÞ ¼ 0 is an important land-

mark to take into consideration because for positive values

of DEffortðCÞ it means that the test generation using the DDU

yielded better diagnostic reports that the C criterion. Vice
versa for negative values ofDEffortðCÞ.

It is worth noting that the setup of our empirical evalua-
tion differs from that of the theoretical evaluation. In the
theoretical evaluation we simulate a multitude of qualita-
tively distinct spectra ranging the entire range of DDU and
coverage values to observe how changing these variables
impacts diagnosability. Repeating that evaluation on an
empirical setting would mean devising a (reasonably small)
windowed stopping criterion so that the test generation15. EVOSUITE also tries to replicate the state of the environment at

each test-run so that even some non-deterministic functionality such as
random number generation can be tested.

16. DEFECTS4J tool is available at https://github.com/rjust/defects4j.
Version 1.0.1 was used for experiments (accessed January 2019).

17. CROWBAR tool is available at https://github.com/TQRG/
crowbar-maven-plugin (accessed January 2019).

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/rjust/defects4j
https://github.com/TQRG/crowbar-maven-plugin
https://github.com/TQRG/crowbar-maven-plugin

process could be ran across the entire metric range. In prac-
tice, such an approach is not guaranteed to ever terminate,
because of, e.g., local maxima near the stopping window.
Instead, in this empirical experiment, we are generating test
cases to maximize a given metric and comparing test suites
generated by distinct test generation strategies.

6.2 Diagnosing Seeded Faults

Our first experiment attempts to answer RQ1 and RQ2 by
generating test-suites and seeding faults in their spectra in a
controlled way. We use the same set of subjects as empirical
evaluations from related work [20]. Namely, we use the
open-source projects Apache Commons-Codec, Apache
Commons-Compress, Apache Commons-Math and Joda-
Time. For each subject, we generate test-suites that optimize
DDU, branch-coverage, entropy, density, and uniqueness. In
total, 1050 program spectrawere generated and diagnosed.

Experimental results are shown in Fig. 17. When we con-
sider the entropy generation, we can say that the resulting
test-suites are very similar in terms of diagnosability com-
pared to DDU, since DEffortðHÞ is denser at the origin. For the
remaining generation criteria, their respective DEffort

probability masses are shifted to DEffort > 0, so their diag-
nostic reports perform worse at diagnosing the faults than
when DDU is utilized. In fact, our inspection of experim-
ental results reveals that, when optimizing branch-coverage,
78 percent of scenarios showed lower diagnostic accuracy
when compared to DDU. For both the density-optimized
and uniqueness-optimized test generations—which are the
state-of-the-art measurements for test-suite diagnosability—
this figure rises to 100 percent of scenarios.

We show in Table 1 the dominant metric median values
for each generation criterion along with the median number
of tests generated. By dominant metric we mean the metric
which that particular test generation was trying to optimize.
Along with the median value we also show (where avail-
able) the metric’s Pearson correlation with entropy (denoted
by rH) and the p-value of the correlation. With 95 percent
confidence, we can say that the correlation values shown
are statistically significant. DDU exhibits a high correlation
with entropy, having rH > 0:95 for all subjects. In all other
generation criteria, the correlation with entropy fluctuates
considerably between subjects. Also, note that for both r

and branch-coverage criteria, their dominant mean values

Fig. 17. Kernel density estimation of seeded fault experiment. Entropy generation criterion shows similar diagnostic accuracy when compared DDU.
The remaining generation criteria exhibit worse diagnostic performance than DDU.

Fig. 18. Kernel density estimation of the DEffortðBCÞ metric for DEFECTS4J subjects. 77 percent of instances have a positive DEffortðBCÞ, meaning that
branch-coverage generations perform worse than DDU generations.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 425

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

approach the theoretical optima (at 0.5 and 1.0, respectively)
while DEffort still shows that DDU test generation was able to
produce suites with better diagnostic accuracy.

Revisiting the first research question:

RQ1: Is the DDU metric more accurate than the state-of-
the-art in diagnosability assessment?

A: There is a clear benefit in optimizing a suite with
regard to DDU compared to density if we consider the effort
of finding faults in a system. This is evidenced by the fact
that 100 percent of scenarios in our seeded fault experiment
show improved diagnostic accuracy when using DDU
when compared to the state-of-the-art density and unique-
ness measurements.

If we look at the second research question:

RQ2: How close does the DDU metric come to the (ideal
yet intractable) full entropy?

A: Table 1 shows a strong correlation between entropy
and DDU, with a Pearson correlation value above 0.95 for
all subjects. Correlation of other metrics is much lower and
varies greatly across subjects. Thus, we can conclude that
DDU closely captures the characteristics of entropy.

The reader might then pose the question: if maximal
entropy does indeed correspond to the optimal coverage
matrix, why should one avoid using it as the diagnosability
metric? While we agree that in automated test generation
settings entropy can be plugged as the fitness function to
optimize,18 for manual test generation entropy will yield
very small values for any complex system, as one can see
from Table 1. In fact, for a system composed of only 30 com-
ponents, the number of tests needed to reach entropy of 1.0
surpasses the billion mark. This makes it difficult for devel-
opers to leverage information out of their test-suite’s

entropy value to gauge when can one confidently stop writ-
ing further tests.

6.3 Diagnosing Real Faults

We used the DEFECTS4J database [37] for sourcing the experi-
mental subjects. DEFECTS4J is a database and framework that
contains 357 real software bugs from 5 open source projects.
For each bug, the framework provides faulty and fixed ver-
sions of the program, a test suite exposing the bug, and the fault
location in the code. The idea behind DEFECTS4J is to allow for
reproducible research in software testing using real-world
examples of bugs, rather than using the more common hand-
seeded faults or mutants. In our evaluation, we generate test
suites for each of DEFECTS4J’s 357 catalogued bugs, using both
branch-coverage and DDU as EVOSUITE’s fitness functions, and
then compare the two generated suites with regard to their
diagnosability and adequacy. The experiments’ methodology
is as follows. For every bug in DEFECTS4J’s catalog, we use EVO-

SUITE to generate test suites for the fixed version of the program.
The test suites are executed against the faulty program ver-
sions. Thismeans that any test failure is due to the bug—which
is the delta between the faulty and fixed programversions.

Out of the 357 catalogued bugs in DEFECTS4J, not all were
considered for analysis. Scenarios were discarded due to
the following reasons:

� EVOSUITE returned an empty suite;
� The generated suite did not compile or produced a

runtime error;
� No failing tests were present in either DDU or

branch-coverage criteria for generating test suites.
In total, 171 scenarios were filtered out. The remaining

186 listed in Table 2 are fit for analysis and their results are
used throughout this section.

TABLE 1
Metric Results for the Seeded Faults Experiment

Subject Median / Size / Correlation / Correlation p-value

H DDU r U BC

Apache

Commons-
Codec

2:65�10�2 0.620 0.476 0.669 0.910
177 170 126 81 177
N:A: 0.957 0.658 0.902 0.793
N:A: 2:71�10�3 1:98�10�2 3:58�10�2 2:08�10�3

Apache
Commons-

Compress

4:66�10�2s 0.962 0.510 0.669 0.825
108 108 30.5 29.5 126
N:A: 0.999 0.999 0.873 0.968
N:A: 1:08�10�6 7:51�10�7 1:47�10�3 9:62�10�4

Apache

Commons-

Math

4:36�10�2 0.818 0.424 0.659 0.922
497 467 402 246 528.5
N:A: 0.989 0.905 0.725 0.885
N:A: 4:68�10�4 1:85�10�2 4:79�10�2 2:31�10�2

JodaTime 1:580�10�2 0.582 0.369 0.417 0.790
265 265 267 171 267
N:A: 0.976 0.674 0.921 0.654
N:A: 8:54�10�4 1:60�10�2 2:59�10�2 2:09�10�2

TABLE 2
DEFECTS4J Projects

Identifier Project
Name

Scenarios Considered

Chart JFreechart 26 1, 4, 6, 8–11, 13–15,
18, 20, 22, 24, 26

Closure Closure
Compiler

133

3, 4, 7, 9, 12, 14–17,
19, 20–28, 30
33–35, 39, 43, 44,
46–49, 51, 52
54–56, 58, 63, 65, 66,
67, 69, 71–74
76–78, 82, 85, 87,
107, 108, 110–113
115, 116, 118, 119,
124, 126, 127, 129–
132

Lang
Apache

Commons-
Lang

65
1–7, 9–14, 16, 17, 19,
21, 22, 24–28, 30, 31,
33, 36, 38–42, 46, 47,
49, 50–57, 59–61, 65

Math
Apache

Commons-
Math

106
1–10, 14–16, 18–20,
24–27, 29, 30, 32, 34,
35, 37–42, 44–46,
48–56, 100, 101,
103, 105, 106

Time JodaTime 27 6, 8, 12, 15, 21, 22,
26, 27

18. Because tools like EVOSUITE can be configured with a time budget
as another stopping criteria.

426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

Experimental results are shown in Fig. 18. Results are
shown per-subject. We can see that for every subject in the
DEFECTS4J catalog, all their estimated probability density
funtions are shifted towards DEffortðBCÞ > 0, meaning that
the majority of instances have better diagnostic accuracy
when test generation optimizes DDU. In fact, our experi-
ments reveal that 77 percent of scenarios (144 in total) yield
a positive DEffortðBCÞ.

Weperformed severalmeasurements and statistical tests to
assess whether the gathered metrics yielded statistically sig-
nificant results. Table 3 shows the relevant statistics. The first
three rows show the median values for branch-coverage,
DDU, generated suite size and diagnosis effort for both
EVOSUITE test generations. As to be expected, the median
branch-coverage is higher in the branch-coverage-maximizing
generation. Conversely, the DDU criterion yields the higher
DDU. The following three rows display Recall@N figures for
N=1, N=10 andN=25, respectively, which show that the DDU
criterion is more effective at prioritizing the inspection of the
real fault even for small (and practical) values for N. Results
in the effort row corroborate our observations from Fig. 18—
the test suites optimizing DDU take on average less effort to
diagnose the fault. In fact, our results show that the effort
reduction when considering DDU over branch-coverage is
34 percent on average. However, this fact alone does not guar-
antee that the results are significant, which prompted us to
perform statistical tests. The first test performed was the
Shapiro-Wilk test for normality of effort data for both genera-
tions. The results, which can be seen in the fourth row
of Table 3, tell us that the distributions are not normal, with
confidence of 99 percent.

Given that the effort data is not normally distributed and
that each observation is paired, we use the non-parametrical
statistical hypothesis test Wilcoxon signed-rank. Our null-
hypothesis is that the median difference between the two
observations (i.e., DEffort) is zero. The fifth row in Table 3
shows the resulting Z statistic and p-value. With 99 percent
confidence, we can refute the null-hypothesis.

We have also repeated this experiment using EVOSUITE ’s
strong mutation criterion for test generation. For the same
set of DEFECTS4J subjects in Table 2, we generate, using each
subject’s fixed version, a test suite that maximizes strong
mutation score. This EVOSUITE criterion creates a set of

program mutations by applying mutation operators such as
statement deletion, negation of conditions, unary operator
insertion, operator replacement, variable replacement,
among others. Subsequently, it generates test cases that not
only cover the mutants, but also that yield different out-
comes between the original program instance and its
mutated counterpart. We have run the generated test suites
against the faulty DEFECTS4J subjects, and obtained the
results depicted in Table 4. Our results show a median effort
of 0.26 using the strong mutation, and an effort reduction of
17 percent when considering DDU over strong mutation.
Results also show that the mutation criterion yields better
Recall@N performance compared to coverage, but they
also show that this criterion is not as effective as the DDU
criterion at prioritizing the real fault. Furthermore, we show
that the effort distributions are not normal (with a confi-
dence of 99 percent) by performing the Shapiro-Wilk test.
Again, by performing the Wilcoxon signed-rank test, we
can, with 99 percent confidence, refute the null-hypothesis
which stated that the median difference between the to
observations is zero.

Revisiting RQ3:

RQ3: Does optimizing a test-suite with regard to DDU
result in better diagnosability than optimizing adequacy
metrics?

A: Since the median effort in the DDU generation is lower
we can say that optimizing for DDU produces better, statis-
tically significant, diagnoses when compared to test suites
that optimize for branch-coverage or mutation score.

6.4 Threats to Validity

The main threats to validity of this study are related to
external validity. When choosing the projects for our study,
our aim was to opt for projects that resemble a general
large-sized application being worked on by several people.
To reduce selection bias and facilitate the comparison of
our results, we decided to use the real-world scenarios
described in the DEFECTS4J database. Another threat to exter-
nal validity relates to the choice of test suites generated by
EVOSUITE. Additional research is needed to see how the

TABLE 3
Measurements and Statistical Tests Comparing

Coverage and DDU Test Generations

Branch-Coverage DDU

Generation Generation

Branch Coverage 0.85 0.75
DDU 0.10 0.42
Suite Size 291 374
Recall@1 6:3% 26:3%
Recall@10 23:7% 46:2%
Recall@25 35:6% 58:3%
Effort 0.31 0.10

Shapiro-Wilk W ¼ 0:92 W ¼ 0:85
p-value ¼ 1:70�10�8 p-value ¼ 1:05�10�12

Wilcoxon Z ¼ 2335:0
Signed-rank p-value ¼ 3:50�10�13

TABLE 4
Measurements and Statistical Tests Comparing
Strong Mutation and DDU Test Generations

Strong Mutation DDU

Generation Generation

Branch Coverage 0.68 0.75
DDU 0.08 0.42
Suite Size 71 374
Recall@1 18:0% 26:3%
Recall@10 32:6% 46:2%
Recall@25 50:0% 58:3%
Effort 0.26 0.10

Shapiro-Wilk W ¼ 0:93 W ¼ 0:85
p-value ¼ 5:82�10�7 p-value ¼ 1:05�10�12

Wilcoxon Z ¼ 3227:5
Signed-rank p-value ¼ 4:03�10�3

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 427

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

metric behaves both with different test-generation frame-
works (such as RANDOOP [38]) and with hand-written test
cases.

A potential threat to construct validity relates to the
choice of effort as indicator for diagnosability. However, as
argued in Section 3.2 this choice reflects the effort that a pro-
grammer with minimal knowledge about the system would
require to effectively pinpoint all the faults that explain the
observed failures.

The main threat to internal validity lies in the complexity
of several of the tools used in our experiments, most notably
the EVOSUITE test generator and our diagnosis tool.

7 DISCUSSION

DDU was shown to be useful for evaluating the quality of a
test-suite. But what are the practical implications of this
finding? We outline such assessments next.

7.1 Composition of a Test Suite

We argue that the DDU analysis can suggest an ideal bal-
ance between unit tests and system tests (i.e., when DDU
reaches its optimal value) due to its density term. We are
then able to compare the balanced suites to ones created fol-
lowing testing practices currently established at software
development companies. For instance, Google suggests a
70%/20%/10% split between unit, system and end-to-end
tests in a suite.19 Is this split indeed ideal in terms of diag-
nostic accuracy? We believe a DDU analysis can provide
guidance as to what the answer is, as evidenced in the theo-
retical evaluation. Our simulation of spectra shows that
changing the composition of a test suite through test selec-
tion does impact the diagnostic effectiveness for a given
base topology, and as such, an optimal selection can be
achieved through minimization of the DDUmetric.

7.2 Test Design Strategy

We expect the DDU analysis to be used as the first step of a
test design strategy that aims to increase diagnostic accu-
racy of a suite. For that, we envision that new test patterns
that focus on optimizing diagnosability will need to be
researched and incorporated in established test strategy cor-
pora such as [39].

Additionally, an ensemble of strategies that individually
improve DDU’s density, diversity, and uniqueness terms
could also be considered. Density-based test strategies
would focus on selecting the optimal test scope. Diversity-
based strategies would focus on identifying and exercising
untested code paths. Uniqueness-based strategies would
focus on decoupling component executions. Tying into
genetic-algorithm-based automated test generation tools
such as the one used in our evaluation, these three strat-
egies could serve as the cornerstone for a multi-objective
approach to test generation, that maximizes the ability of a
test suite to further isolate faults, similar to test suite amplifi-
cation strategies [9], [40].

At a broader scope, our simulation experiment also tells
us that system structure or architecture—which we call

topology—also has an influence on diagnosability. Test
design strategies will necessarily need to utilize such struc-
tural information to provide better assessments as to what
tests should be performed to improve diagnostic quality.
Conversely, it is also not unreasonable to expect that a
change in the structure could yield considerable gains in
diagnosability.

7.3 Visualization

In coveragemetrics, it is straightforward to visualize the anal-
ysis of a system so that users know what code components
were left untested, highlighting where to focus when writing
new test cases. Is there a way to visualize DDU analysis in a
similar way? In our opinion, the challenge for creating such
visualization would be conveying the three diferent proper-
ties that the DDU metric captures in such a way that would
elucidate the user regarding what his/hers best next action is
in order to increase the system’s diagnosability. We envision
that visualization approaches for program comprehension,
such as EXTRAVIS [41] and PANGOLIN [42], will constitute a solid
starting point for a study on visual, interactive and actionable
ways to improve the system.

7.4 Generalization to Other Debugging Techniques

We show that DDU depicts the diagnosability of spectrum-
based fault localization approaches. However, our intuition
is that DDU is general and applies to any diagnosis tech-
nique that uses a failing test suite as the basis for locating
faults. For example, program repair approaches that require a
diagnostic report to guide the program synthesis process,
such as SemFix [43], will benefit from the fact that there is
less wasted effort in highly diagnosable test suites.

We plan to investigate the hypothesis that DDU app-
lies to other runtime-based diagnostic techniques as future
work.

7.5 Adequacy Assessment

DDU provides an assessment of the diagnostic effective-
ness of a given test suite. It remains to be seen if that can
also be said for evaluating the fault finding effectiveness.
Thus, gathering more empirical data on the development of
real systems and expanding previous assessments on the
usefulness of the DDU metric [10], [44] is a particularly
interesting avenue for future work. In the meantime we con-
sider our metric to be a complement to adequacy metrics,
and envision that testers will employ a hybrid approach
that relies on branch coverage and DDU to assess adequacy
and diagnosability, respectively. Namely, we argue that
developers, when writing new test cases that either exercise
uncovered branches or live mutants within the code, should
do so with the understanding that test suite diagnosability
is of critical importance to ensure an effortless debugging
experience in the event that a failure is detected in the sys-
tem, and should therefore follow a test design strategy that
also takes into account the DDUmeasurement.

8 RELATED WORK

Related work in the assessment of the diagnosability of a test
suite has focused on three key areas: test-suite minimization
and generation strategies, and assessing oracle quality.

19. Google Testing blog: Just Say No to More End-to-End Tests.
http://goo.gl/S5HhZ7 (accessed January 2019).

428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

http://goo.gl/S5HhZ7

The topic of test-suite minimization is a prime candidate
for our approach, since it has been shown that there is a
tradeoff between reducing tests and the suite’s fault locali-
zation effectiveness [45]. In minimization settings, one tries
to reduce the number of tests (and thus its overall runn-
ing time) while still ensuring that an adequacy criterion—
usually branch coverage—is not greatly affected. Current
minimization strategies can often improve the diversity
score of a coverage matrix by removing tests with identical
coverage patterns [46] at the cost of overlooking density
and uniqueness, which we argue are of key importance to
assess diagnosability.

The uniqueness property is also exploited by Xuan et al.,
with a test-case purification approach that separates a test-
case into multiple smaller tests [47]. This approach, since it
separates tests into small fractions, has the potential to
optimize component uniqueness and therefore can be a
crucial tool to minimize ambiguity grouping. As new
(qualitatively distinct) tests are added, this approach also
has the potential to improve test diversity. However, since
it will create several test cases which cover small portions
of code, resulting in a decrease in overall density, it poten-
tially overlooks the case where a specific combination of
components need to be involved in a test for a failure to
occur, much like in the second example of our motivation.
Nevertheless, we believe that a combination of test-case
purification and test-case amplification approaches, that break
tests into smaller fragments, and then generate combina-
tions of such fragments can be a way to extend the
approach proposed by Xuan et al., in such a way that
improves DDU.

Current test-suite minimization frameworks that take
adequacy criteria into account could also benefit from
our approach to preserve diagnostic accuracy if a multi-
objective optimization (such as, e.g., [48], [49]) to also
account for DDU is employed. This paves an interesting
avenue for future work.

On the test-suite generation front, previous work has
also started considering diagnosability as a generation cri-
terion. The work of Campos et al., which generated tests
that would converge towards coverage matrix densities
of 0.5 [20], has paved the way for creating improved
measurements like DDU. Checks for diversity and
uniqueness were not explicitly added, and we show when
we answer RQ1 in Section 6 that the density criterion pro-
duces results that are less diagnostically accurate. Another
approach to suite generation is one by Artzi et al., that
proposes an online approach that leverages concolic analy-
sis to generate tests that are similar to existing failing tests
in a system [50].

Lastly, we highlight some of the work targeting diag-
nosability by improving test oracle accuracy. Schuler et al.
propose checked coverage as a way of assessing oracle qual-
ity [51], [52]. Checked coverage tries to gauge whether the
computed results from a test are actually being checked
by the oracle. Wang et al. have proposed a way of
addressing coincidental correctness by analyzing data and
control-flow patterns [53]. Just et al. investigated the use
of mutants to estimate oracle quality, and compared their
performance against the use of real faults [54]. Their
results suggest that a suite’s mutation score is a better

predictor of fault detection than code coverage. We con-
sider this topic of assessing and improving oracle quality
of critical importance towards test-suite diagnosability,
but also orthogonal to DDU in that the two would com-
plement each other.

9 CONCLUSION

This paper highlights the importance of diagnosability—the
ability to effectively locate potential faults in the code—as a
criterion for assessing the quality of a test suite, and pro-
poses DDU as a measurement of program spectra diagnos-
ability. Ideal diagnostic ability can be proved to exist when
a suite reaches maximum entropy, however, the number of
tests required to achieve that is impractical as the number of
components in the system increases. DDU focuses on three
particular properties of entropy: a) ensures that test cases
are diverse; b) ensures that there are no ambiguous compo-
nents; c) ensures that there is a proportional number of tests
of distinct granularity; while still ensuring tractability.
As opposed to adequacy measurements such as coverage
which mainly tackle the issue of error detection, a diagnos-
ability measurement like DDU analyses how combinations
of components are exercised in tandem in order to maxi-
mize the usefulness of fault localization techniques at pin-
pointing the cause of any error that may occur.

Our topology-based simulation of program spectra was
able to reveal that DDU effectively establishes an upper-
bound on the maximal effort required to diagnose faults,
regardless of fault type or cardinality. We also performed an
empirical evaluation to assess DDU as a metric for diagnos-
ability. It used the EVOSUITE tool to generate test suites for
faulty programs from the DEFECTS4J catalog that would opti-
mize different metrics. We observed a statistically significant
increase in diagnostic performance of about 34 percent when
locating faults by optimizing DDU compared to branch-
coverage.

Besides paving the way for a more comprehensive use of
test-suites, we also consider this study on the diagnosability
of software to have broader implications. Namely, that the
relative amount of system tests, unit tests and end-to-end
tests that compose a test-suite is critical for its diagnostic
effectiveness and that the structure of systems directly influ-
ences their diagnosability.

ACKNOWLEDGMENTS

We thank Maur�ıcio Aniche, Lara Crawford and Alexey
Zagalsky for the useful feedback on previous versions of
this paper. The work reported in this article was partially
supported by national funds through Fundaç~ao para a Ciên-
cia e Tecnologia (FCT) with reference UID/CEC/50021/
2019, the FaultLocker Project (ref. PTDC/CCI-COM/29300/
2017), by the FCT scholarship number SFRH/BD/95339/
2013, by EU Project STAMP ICT-16-10 No.731529 and by
4TU project “Big Software on The Run”.

REFERENCES

[1] J. C. Miller and C. J. Maloney, “Systematic mistake analysis
of digital computer programs,” Commun. ACM, vol. 6, no. 2,
pp. 58–63, 1963.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 429

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

[2] J. J. Chilenski and S. P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Softw. Eng. J., vol. 9,
no. 5, pp. 193–200, 1994.

[3] T. A. Budd, “Mutation analysis of program test data,” Ph.D. dis-
sertation, Yale University, New Haven, CT, USA, 1980.

[4] H. Zhu, P. A. V. Hall, and J. H. R.May, “Software unit test coverage
and adequacy,” ACM Comput. Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[5] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” in Proc. SIGPLAN/SIGSOFT
Workshop Program Anal. Softw. Tools Eng., 1998, pp. 83–90.

[6] J. A. Jones and M. J. Harrold, “Empirical evaluation of
the tarantula automatic fault-localization technique,” in Proc.
20th IEEE/ACM Int. Conf. Automated Softw. Eng., 2005, pp. 273–
282.

[7] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009.

[8] A. Gonz�alez-Sanchez, H. Gross, and A. J. C. van Gemund,
“Modeling the diagnostic efficiency of regression test suites,” in
Proc. 4th IEEE Int. Conf. Softw. Testing Verification Validation Work-
shop, 2011, pp. 634–643.

[9] B. Baudry, F. Fleurey, and Y. L. Traon, “Improving test suites for
efficient fault localization,” in Proc. 28th Int. Conf. Softw. Eng.,
2006, pp. 82–91.

[10] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosabil-
ity metric for spectrum-based fault localization approaches,” in
Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 654–664.

[11] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey of
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[12] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-
based multiple fault localization,” in Proc. 24th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2009, pp. 88–99.

[13] Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended com-
prehensive study of association measures for fault local-
ization,” J. Softw.: Evolution Process, vol. 26, no. 2, pp. 172–219,
2014.

[14] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Trans. Rel., vol. 63,
no. 1, pp. 290–308, Mar. 2014.

[15] R. Abreu and A. J. C. van Gemund, “A low-cost approximate
minimal hitting set algorithm and its application to model-based
diagnosis,” in Proc. 8th Symp. Abstraction Reformulation Approxima-
tion, 2009, pp. 2–9.

[16] A. Feldman, G. M. Provan, and A. J. C. van Gemund, “Computing
minimal diagnoses by greedy stochastic search,” in Proc. 23rd
AAAI Conf. Artif. Intell., 2008, pp. 911–918.

[17] N. Cardoso and R. Abreu, “MHS2: A map-reduce heuristic-driven
minimal hitting set search algorithm,” in Proc. Int. Conf. Multicore
Softw. Eng. Perform. Tools, 2013, pp. 25–36.

[18] J. Carey, N. Gross, M. Stepanek, and O. Port, “Software hell,” in
Proc. Bus. Week, 1999, pp. 391–411.

[19] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “A new bayes-
ian approach to multiple intermittent fault diagnosis,” in Proc.
21st Int. Joint Conf. Artif. Intell., 2009, pp. 653–658.

[20] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-
based test generation for improved fault localization,” in
Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng., 2013,
pp. 257–267.

[21] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
pp. 314–324.

[22] R. Wu, H. Zhang, S. Cheung, and S. Kim, “Crashlocator: locating
crashing faults based on crash stacks,” in Proc. Int. Symp. Softw.
Testing Anal., 2014, pp. 204–214.

[23] M. Wen, R. Wu, and S. Cheung, “Locus: locating bugs from soft-
ware changes,” in Proc. 31st IEEE/ACM Int. Conf. Automated Softw.
Eng., 2016, pp. 262–273.

[24] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proc. ACM/
IEEE Int. Conf. Automated Softw. Eng., 2014, pp. 127–138.

[25] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 199–209.

[26] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5 visualiza-
tions in software fault localization,” in Proc. 1st IEEE Working
Conf. Softw. Vis., 2013, pp. 1–10.

[27] A. Gonz�alez-Sanchez, R. Abreu, H. Gross, and A. J. C. van Gemund,
“Prioritizing tests for fault localization through ambiguity group
reduction,” in Proc. 26th IEEE/ACM Int Conf. Automated Softw. Eng.,
2011, pp. 83–92.

[28] C. E. Shannon, “A mathematical theory of communication,”
Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001.

[29] R. Abreu, A. Gonz�alez-Sanchez, and A. J. C. van Gemund, “A
diagnostic reasoning approach to defect prediction,” in Proc. 24th
Int. Conf. Ind. Eng. Other Appl. Appl. Intell. Syst. Part II, 2011,
pp. 416–425.

[30] W. Masri and R. A. Assi, “Cleansing test suites from coincidental
correctness to enhance fault-localization,” in Proc. 3rd Int. Conf.
Softw. Testing Verification Validation, 2010, pp. 165–174.

[31] L. Jost, “Entropy and diversity,”Oikos, vol. 113, no. 2, pp. 363–375,
may 2006. [Online]. Available: http://dx.doi.org/10.1111/
j.2006.0030-1299.14714.x

[32] N. Cardoso and R. Abreu, “A kernel density estimate-based
approach to component goodness modeling,” in Proc. 27th AAAI
Conf. Artif. Intell., 2013, pp. 152–158.

[33] K. Hartmann, D. Wong, and T. Stadler, “Sampling trees from evo-
lutionary models,” Systematic Biol., vol. 59, no. 4, pp. 465–476,
2010.

[34] A. Perez, R. Abreu, and M. d’Amorim, “Prevalence of single-fault
fixes and its impact on fault localization,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation, 2017, pp. 12–22.

[35] D. Robinson and L. Foulds, “Comparison of phylogenetic trees,”
Math. Biosciences, vol. 53, no. 1, pp. 131–147, 1981.

[36] N. D. Pattengale, E. J. Gottlieb, and B. M. E. Moret, “Efficiently
computing the Robinson-Foulds metric,” J. Comput. Biol., vol. 14,
no. 6, pp. 724–735, 2007.

[37] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of
existing faults to enable controlled testing studies for Java pro-
grams,” in Proc. Int. Symp. Softw. Testing Anal., 2014,
pp. 437–440.

[38] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
random testing for java,” in Proc. Companion 22nd Annu. ACM
SIGPLAN Conf. Object-Oriented Program. Syst. Lang. Appl., 2007,
pp. 815–816.

[39] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools. Reading, MA, USA: Addison-Wesley, 2000.

[40] J. R€oßler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure
causes through test case generation,” in Proc. Int. Symp. Softw.
Testing Anal., 2012, pp. 309–319.

[41] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled
experiment for program comprehension through trace visual-
ization,” IEEE Trans. Software Eng., vol. 37, no. 3, pp. 341–355,
May/Jun. 2011.

[42] A. Perez and R. Abreu, “Framing program comprehension as
fault localization,” J. Softw.: Evolution Process, vol. 28, no. 10,
pp. 840–862, 2016.

[43] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: program repair via semantic analysis,” in Proc. 35th Int.
Conf. Softw. Eng., 2013, pp. 772–781.

[44] A. Ang, “Exploring DDU in Practice,” Department of Software
Technology Master’s thesis, Delft Univ. Technol., Delft, The Neth-
erlands, 2018.

[45] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the
effects of test-suite reduction on fault localization,” in Proc. 30th
Int. Conf. Softw. Eng., 2008, pp. 201–210.

[46] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Diversity maximization
speedup for fault localization,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2012, pp. 30–39.

[47] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 52–63.

[48] S. Yoo and M. Harman, “Using hybrid algorithm for pareto effi-
cient multi-objective test suite minimisation,” J. Syst. Softw.,
vol. 83, no. 4, pp. 689–701, 2010.

[49] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce,
“Evaluating non-adequate test-case reduction,” in Proc. 31st IEEE/
ACM Int. Conf. Automated Softw. Eng., 2016, pp. 16–26.

[50] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proc. 19th Int. Symp. Softw. Test-
ing Anal., 2010, pp. 49–60.

[51] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in Proc. 4th IEEE Int. Conf. Softw. Testing Verification
Validation, 2011, pp. 90–99.

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1111/j.2006.0030-1299.14714.x
http://dx.doi.org/10.1111/j.2006.0030-1299.14714.x

[52] D. Schuler and A. Zeller, “Checked coverage: An indicator for
oracle quality,” Softw. Testing, Verification Rel., vol. 23, no. 7,
pp. 531–551, 2013.

[53] X. Wang, S. Cheung, W. K. Chan, and Z. Zhang, “Taming coinci-
dental correctness: Coverage refinement with context patterns to
improve fault localization,” in Proc. 31st Int. Conf. Softw. Eng.,
2009, pp. 45–55.

[54] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in soft-
ware testing?” in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 654–665.

Alexandre Perez received the MSc degree in
informatics and computing engineering from the
University of Porto, Portugal, and the PhD degree
in informatics engineering from the University of
Porto, Portugal. He has a background in software
engineering and artificial intelligence research,
with a focus on the diagnosis of software sys-
tems. His research interests include fault localiza-
tion, code analysis, and language design. He is a
member of the IEEE.

Rui Abreu received the MSc degree in computer
and systems engineering from the University of
Minho, Portugal, and the PhD degree in computer
science—software engineering from the Delft
University of Technology, The Netherlands. His
research revolves around software quality, with
emphasis in automating the testing and debug-
ging phases of the software development life-
cycle as well as self-adaptation. He has extensive
expertise in both static and dynamic analysis
algorithms for improving software quality. Before

joining IST, ULisbon as an associate professor and INESC-ID as a
senior researcher, he was a member of the Model-Based Reasoning
group at PARC’s System and Sciences Laboratory and an assistant pro-
fessor with the University of Porto. He is a senior member of the IEEE.

Arie van Deursen received the PhD degree from
the University of Amsterdam, in 1994. He is a
professor in software engineering with Delft Uni-
versity of Technology, where is presently head
of the Department of Software Technology. His
research interests include software architecture,
software testing, human aspects of software
engineering, and AI-based software engineering.
He will serve as program co-chair for ICSE 2021,
the 43rd International Conference on Software
Engineering. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PEREZ ET AL.: A THEORETICAL AND EMPIRICAL ANALYSIS OF PROGRAM SPECTRA DIAGNOSABILITY 431

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 18:36:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

