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Abstract: In spectral wave models, the nonlinear triad source term accounts for the transfer of energy
to the bound higher harmonics. This paper presents an extension to commonly used spectral models
that resolves the evolution of the bound wave energy by keeping track of the energy that has been
bound by the triad interactions. This extension is referred to as the bound wave evolution (BWE)
model. From this, the spatial evolution of the bound wave height is obtained, which serves as a
proxy for the nonlinear wave shape. The accuracy of these bound wave heights, and thus wave shape
predictions, is highly dependent on the accuracy of the triad source term. Therefore, in this study, the
capability of the LTA and SPB triad formulations to capture the growth of the bound wave height is
evaluated. For both of these formulations, it is found that slope dependent calibration parameters
are required. Overall, despite being computationally more expensive, the SPB method proves to be
significantly more accurate in predicting the bound wave evolution. In the shoaling zone, where
the bound wave energy is dominated by triads, the BWE model is well capable of predicting the
nonlinear wave’s shape. In the surf zone, however, where a combination of triads and wave breaking
control the spectral evolution, the BWE model over-predicts the bound wave height. Nevertheless,
this paper shows the promising capabilities of spectral models to predict the nonlinear wave shape.

Keywords: wave shape; bound wave height; triads; SWAN; SWASH

1. Introduction

In deep oceanic waters, sea-swell surface waves can generally be described by Gaus-
sian statistics where the wave field consists of independent harmonic waves, provided that
the waves are not too steep [1]. When the waves propagate towards the coast, nonlinear
triad wave interactions occur under the influence of decreasing water depth and variable
ambient currents [2,3]. This changes the initially harmonic wave shape into a nonlinear
wave shape due to the presence of bound waves accompanying the freely propagating
primary waves [4,5]. The nonlinear wave shape ranges from skewed waves with steeper
crests and flatter troughs to asymmetric waves where the wave front has pitched forward,
creating a saw-tooth wave shape at breaking. This deformation of the wave shape is also
present in the near-bed velocity signal, generally resulting in a net-onshore transport due to
both skewness [6–9] and asymmetry [10,11]. This wave-shape induced sediment transport
can be the dominant transport mechanism under certain conditions, and is instrumental in
properly predicting the evolution of bars [12,13] and tidal deltas [14,15].

Morphodynamic process-based models typically rely on phase-averaged spectral
models for prediction of the wave field. In such models, the wave shape is not explicitly
resolved and thus needs to be parameterized before calculating wave-induced sediment
transport. For instance, in the morphodynamic model Delft3D [16], the approach by
Isobe and Horikawa [17] was initially adopted, which estimates that the bound wave and
associated non-linear wave shape using a combination of fifth order Stokes and third order
cnoidal wave theory. More recently, the empirically derived wave shape parametrization of
Ruessink et al. [18] was implemented, leading to improved long-term prediction of coastal
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morphodynamics [19]. Ruessink et al. [18]’s parametrization predicts the wave shape as a
function of the Ursell number, which is a nonlinearity parameter based on the local wave
height, wave period and depth. This means, in particular, that the effect of the beach
slope [20,21] and the spectral shape [21] are not accounted for, while they are known to
influence the development of higher harmonics and, thus, the wave shape. More generally,
such a parametrization intrinsically assumes that, at any point of the domain, the waves
have reached some equilibrium state, such that the wave shape can be accurately described
as a function of local hydrodynamic variables only. This was proven to be a limitation
when considering the wave transformation over a rapidly changing bathymetry [22,23].

In this paper, we present an alternative approach to estimate the wave shape from
phase-averaged spectral models. To do so, we use the fact that the sea-swell wave shape
can be estimated when the bound sea-swell wave energy is known [23], and propose a
method to estimate the bound sea-swell wave energy from standard spectral model outputs.
More specifically, a bound wave evolution (BWE) equation is added to an existing spectral
wave model SWAN [24–26]. The extended model (SWAN+BWE) not only resolves the
evolution of the total wave spectrum, but also keeps track of the evolution of the bound
super-harmonic wave spectrum. This is performed through the introduction of an energy
balance equation for the bound super-harmonic spectrum that relies on existing source
term formulations for triad wave–wave interactions and breaking-induced dissipation.
From this, the spatial evolution of the bound wave height is computed which, in turn, is
used to estimate the wave shape using an analytical expression, thereby removing the need
for a local parameterization.

Section 2 introduces the spectrum and bispectrum, and elaborates on how the non-
linear wave shape, the bound wave spectrum, and resulting bound wave height can be
estimated from those. The analytical expression linking the bound wave height to the
nonlinear wave shape, key to the proposed approach, is furthermore presented. The bound
wave height evolution equation and its practical implementation is discussed in Section 3.
This includes a detailed description of two existing source term parametrizations for the
triad interactions, for which the key calibration parameters are identified. The model is
then evaluated by comparing the predicted bound wave height and wave shape to those
obtained from a wave-resolving model, SWASH [27], for a range of offshore peak periods
and beach slopes. The model set-up and test simulations are explained in Section 4, while
the model performance for different triad formulations is presented in Section 5. Section 6
provides a discussion on the uncertainties associated with the modeling, and Section 7
gives the conclusions.

2. The Spectrum, Bispectrum and Wave Shape

Spectral changes in variance, the triad source term and the wave shape are all related
to each other via the bispectrum. This section describes how the spectrum and bispectrum
are defined, and how the wave shape and bound wave height can be obtained from those.

2.1. The Spectrum

The single-sided variance density spectrum is calculated as:

E( fm) =
E[CmC∗

m]
∆ f

for: 0 ≤ m ≤ N (1)

in which E[...] denotes the expected value and Cm and C∗
m the complex amplitude and

its complex conjugate at the discrete frequency fm = m∆ f , with ∆ f being the frequency
resolution, obtained by applying a Fourier transform to the surface elevation. N is the
number of discrete positive frequencies from the Fourier transform.
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From this, the sea-swell spectral moments can be calculated as:

mj =
imax

∑
m=imin

f j
mE( fm)∆ f (2)

in which mj is the j-th order spectral moment, and in which imin and imax are the indices
defining the lower and upper bound of the sea-swell frequency range. The spectral mo-
ments are used to obtain the significant wave height and spectral period estimates:

H =4
√

m0 (3a)

Tm0,2 =

√
m0

m2
(3b)

2.2. The Bispectrum

The bispectral density is here presented in double-sided form as:

B( fm, fn) =
E[CmCnC∗

p]

(∆ f )2 for: − N ≤ m, n, p ≤ N (4)

in which p = m + n. From the bispectrum, the biphase can be obtained as:

β( fm, fn) = tan−1
(
ℑ(B( fm, fn))

ℜ(B( fm, fn))

)
(5)

in which ℜ and ℑ denote the real and the imaginary parts.

2.3. Wave Shape and Bound Wave Height

From the spectrum and bispectrum, the normalized sea-swell wave shape [18], which
represents the combination of skewness Sk and asymmetry As, is given by:

S =
√

Sk2 + As2 =
6
∣∣∣∑ib,max

p=ib,min
∑

p−imin
m=imin

B( fm, fp−m)(∆ f )2
∣∣∣

m3/2
0

(6)

in which ib,min and ib,max are the indices referring to the lower and upper frequency limits
of the bound super-harmonic frequencies.

Following de Wit et al. [23], based on the work of Herbers et al. [28], the total amount
of bound variance associated with super harmonics can be obtained using:

ib,max

∑
p=ib,min

Eb( fp)∆ f = 4

∣∣∣∑ib,max
p=ib,min

∑
p−imin
m=imin

B( fm, fp−m)(∆ f )2
∣∣∣2

∑
ib,max
p=ib,min

∑
p−imin
m=imin

E( fm)E( fp−m)(∆ f )2
(7)

in which the factor 4 originates from the single-sided variance densities used in this
equation, instead of double-sided variance densities. Analogous to the wave height, the
bound wave height can be obtained from the bound variance density:

Hb = 4

√√√√ ib,max

∑
p=ib,min

Eb( fp)∆ f . (8)

The normalized wave shape can also be expressed as a function of the normalized
bound wave height [23]:

S = Ψ
Hb
H

, (9)
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in which proportionality factor Ψ is obtained after substitution of Equations (3a), (6) and (8)
in Equation (9):

Ψ = 3

√
∑

ib,max
p=ib,min

∑
p−imin
m=imin

E( fm)E( fp−m)(∆ f )2

m0
. (10)

The fraction on the right hand side of Equation (10) equals 1 (and, thus, Ψ = 3) if the
sums are evaluated over the full frequency range. However, if only part of the integrals are
included (for instance, in our case, by only including sea-swell frequencies), this fraction is
smaller than 1. In shallow water, where relatively more energy is present in the infragravity
frequency band and in the high-frequency tail, this fraction decreases. The formulation for
Ψ in Equation (10) is, as such, consistent with the empirically derived values (Ψ between
2.70 and 2.80) found by de Wit et al. [23] using data collected from three different field sites.

3. Spectral Evolution Equations for Total and Bound Variance Density

This section describes how information extracted from SWAN is used to solve the
evolution equation for the bound wave variance density, from which the bound wave
height and, ultimately, the wave shape is calculated (Equations (8)–(10)). As SWAN does
not distinguish between free and bound waves, the default evolution equation is referred to
as the total wave evolution equation. The evolution equation for the bound wave variance
density is the novel part introduced in this paper, which allows us to keep track of the
evolution of the bound wave height and wave shape. For reading purposes, the equations
are presented here in a 1D form, consistent with unidirectional normally incident waves
propagating over an alongshore uniform profile.

3.1. Total and Bound Wave Energy Balance

The 1D evolution equation for the total variance density in stationary conditions, as
computed by SWAN, is:

dE( f , x)cg( f , x)
dx

= Snl3( f , x) + Sbreak( f , x) (11)

where E( f , x) represents the variance density as a function of frequency f and cross-shore
distance x, and in which cg is the group celerity, which is computed using the linear
dispersion relationship. This implicitly assumes that, in such models, all energy is freely
propagating. Snl3 and Sbreak are source terms accounting for the effect of nonlinear triad
wave interactions and wave breaking, respectively. Other commonly used source terms
(wind, quadruplet, white-capping and friction) are ignored in this study to simplify the
analysis. Furthermore, their effects are expected to be negligible compared to Snl3 and Sbreak
in the intermediate water depth and over the limited propagation distance investigated in
this study.

In the following, a separate balance is introduced for the bound energy. The Snl3
source term accounts for energy transfers due to nonlinear triad wave interactions, which
are responsible for the growth of bound super-harmonics. It is positive at frequencies
towards which the (bound) energy is transferred and negative at the frequencies that this
energy originates from. For the bound energy equation, only the positive part of Snl3 is
considered as a source term. Furthermore, a wave breaking source term Sb,break is added
to account for the dissipation of the bound wave energy due to depth-induced breaking.
Subsequently, the evolution equation for the propagation of bound variance density in
steady conditions reads:

dEb( f , x)cg( f , x)
dx

= max(0, Snl3( f , x)) + Sb,break( f , x) (12)
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in which Eb( f , x) is the bound variance density. For consistency with the evolution equation
for the total variance (Equation (11)), it is also assumed here that the bound variance
propagates at the free wave group celerity cg.

By numerically solving Equation (12), the spatial evolution of Eb is obtained (see
Section 3.4 for more detail), from which Hb and, ultimately, S are estimated. The wave
shape estimates are thus directly dependent on the accuracy of the source terms represent-
ing the triad wave–wave interactions and wave breaking. These source terms and their
parametrizations are described in Sections 3.2 and 3.3.

3.2. Nonlinear Triad Energy Transfers Snl3

Different formulations are available for the Snl3 source term in spectral models [29–32],
which are all derived from the following equation relating energy transfers due to triad
interactions to the imaginary part of the bispectrum:

Snl3( fp) = 2cg,p

[∫ fp

0
Wm,p−mℑ(B( fm, fp−m))d fm − 2

∫ ∞

0
W−m,p+mℑ(B( fm, fp))d fm

]
(13)

in which Wm,n is the nonlinear interaction coefficient for two interacting components with
frequencies fm and fn. The first term on the right hand side of Equation (13) accounts for
the sum interactions (energy exchanges between components fm, fn and fp = fm + fn),
whereas the second term accounts for the difference interactions (between fm, fn and
fp = fm − fn).

In this section, we discuss two commonly used formulations that are both imple-
mented in SWAN: the LTA method [29] and the SPB method [30,33]. Both methods use the
same nonlinear interaction coefficient derived by Madsen and Sørensen [34], based on the
Boussinesq wave theory [35]:

Wm,n =
(km + kn)2[ 1

2 + cmcn(gd)−1]

−2(km+nd)2[ 2
15 + (km+nd)−2 − 2

5 c2
m+n(gd)−1]

(14)

in which g is the gravitational acceleration, c and k are the wave celerity and wave number
according to linear wave theory, with the subscripts indicating the frequency for which
these are calculated, and d the local water depth.

These two formulations differ in the number of nonlinear interactions that are ac-
counted for, and in the way the imaginary part of the bispectrum is estimated. More
specifically, the bispectral estimate needed in Equation (13) is derived from the evolution
equation for the bispectrum, which itself depends on the trispectrum. Estimating the bis-
pectrum, therefore, requires a closure approximation in which the trispectrum is expressed
in terms of lower order spectra, hence the spectrum and bispectrum.

3.2.1. LTA Method

The Lumped Triad Approximation (LTA) is a computationally efficient method which
assumes that the energy transfer to a certain frequency as a result of many interactions
can be represented by the self–self interaction only. LTA further relies on the quasi-normal
closure approximation [36], in which the trispectrum is expressed in terms of the variance
spectrum only. Based on these two assumptions, an approximation is found for the absolute
value of the bispectrum, which is multiplied by a parameterized form of the biphase to
obtain an estimate for the imaginary part of the bispectrum [29]:

Snl3,LTA( fp) = αLTAcg,pcp

[
Wp/2,p/2Q̃( fp/2, fp/2)− 2Wp,pQ̃( fp, fp)

]
sin(β) (15)

in which αLTA is a calibration coefficient, and Q̃ consists of variance cross-products:

Q̃( fp/2, fp/2) = Wp/2,p/2

[
E( fp/2)

2 − 2E( fp)E( fp/2)
]
. (16)
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β is a parameterized form of the biphase, based on the spectral Ursell number:

β =
π

2
tanh

(
Urcrit

Ur

)
− π

2
(17)

with

Ur =
gH

8
√

2

(Tm0,1

πd

)2

. (18)

This parametrization ensures a smooth transition from β = 0 (no energy transfer) for
low Ur to a maximum value of β = −π/2 for high Ur-numbers. Urcrit is a calibration
coefficient that controls how fast β evolves. A wide variety of Urcrit-values is found in
the literature, e.g., 0.20 by Eldeberky and Battjes [37] and 0.63 by Doering and Bowen [38].
Similarly, many variations for αLTA are found in the literature, (e.g., 0.05 [39], 0.1 [40],
0.25 [25], 0.5 [41] 1.0 [29] and, most recently, 0.87 [31]). In the SWAN version applied in this
study (version 41.31), the default values are Urcrit = 0.2 and αLTA = 0.87.

3.2.2. SPB Method

An alternative approach is the Stochastic Parameterized Boussinesq (SPB) method.
In contrast to the LTA method, the SPB method takes all co-linear sum and difference
interactions into account, and relies on Holloway’s closure approximation [42], which
assumes that the trispectrum is expressed in terms of the variance spectrum and the
bispectrum. The resulting expression is:

Snl3,SPB( fp) = 4αSPBcg,pK

[∫ fp

0

Wm,p−mQ( fm, fp−m)

∆k2
m,p−m + K2

d fm

−2
∫ ∞

0

W−m,p+mQ( fm, fp)

∆k2
m,p + K2 d fm

]
, (19)

with

Q( fm, fp−m) = Wm,p−mE( fm)E( fp−m)− Wp,mE( fp)E( fm)− Wp,m−pE( fp)E( fp−m). (20)

αSPB is a proportionality factor, which is 1 for unidirectional waves and lower
then 1 for directional waves, to compensate for not all interactions being co-linear.
∆km,p−m = kp − km − kp−m is the wave number mismatch, in which the individual wave
numbers are computed with the linear dispersion relationship as being freely propagating
components, and K is a calibration factor, with dimension L−1.

The connection between Equations (13) and (19) relies on the fact that, for the SPB
method, the imaginary part of the bispectrum is expressed as:

ℑ(BSPB( fm, fp−m)) = 2Q( fm, fp−m)
K

∆k2
m,p−m + K2

. (21)

In the SPB formulation, K is commonly taken as a linear function of the spectral peak
wave number kpeak:

K = a ∗ kpeak + b (22)

where a and b are calibration constants. Becq-Girard et al. [30] presented a form in which
K = 0.95kpeak,o f f shore − 0.75, based on a single laboratory calibration study [43]. Because it
is unclear where the offshore peak wave number kpeak,o f f shore should be defined for field
cases, and to prevent negative values of K that could arise as b < 0, Salmon et al. [31]
proposed using a different expression: K = 0.95kpeak. This is presently the default setting
in SWAN.
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3.2.3. Energy Conservation Correction for the SPB Method

The expression for SPB (Equation (19) is given by Becq-Girard et al. [30], and is, as
such, implemented in the default SWAN version [31]. As discussed by both Eldeberky [29]
and Becq et al. [33], a triad source term function based on the Holloway [42] closure
approximation is not energy (and energy flux) conservative. Therefore, it can lead to
an artificial decay or gain of energy. Although the difference between the frequency
integrated positive and negative fluxes is expected to be small, over a longer distance,
it can lead to significant changes in energy flux. Therefore, a correction factor, as was
suggested by Eldeberky [29], is applied in this study. This factor reduces the positive
S+

nl3,SPB contributions if
∫

S+
nl3,SPBd f > −

∫
S−

nl3,SPBd f , and reduces the negative S−
nl3,SPB

contributions (in an absolute sense) if −
∫

S−
nl3,SPBd f >

∫
S+

nl3,SPBd f . In the following, the
results of the SPB method include this correction factor, even when referring to default
SPB settings. The importance of including the energy conservation correction is shown in
Appendix A.

3.3. Wave Breaking Sbreak

Several source term formulations are available for the dissipation due to wave breaking.
Here, the well-known Battjes and Janssen [44] model is applied, in which a constant breaker
index γ defines the ratio of the maximum wave height over depth:

Sbreak( f , x) = −
αBJQb(x)γ2d(x)2

8π

m1(x)
m0(x)2 E( f , x) (23)

in which αBJ is a calibration constant taken equal to 1 in the following. Qb is the fraction of
breaking waves.

The amount of wave breaking for the bound wave height is assumed to be directly
related to the total wave breaking source term:

Sb,break( f , x) = αbreak( f , x)Sbreak( f , x) (24)

in which αbreak defines how much of the breaking source term affects the bound harmonics
and, thus, indirectly, also how much it affects the free harmonics. Here, it is assumed that:

αbreak( f , x) = Eb( f , x)/E( f , x) (25)

such that there is no preference, and the bound harmonics dissipate at the same rate as the
free harmonics.

3.4. Numerical Implementation

In this study, the spectral wave model SWAN is used to solve the energy evolution
equation (Equation (11)) and the source terms. Subsequently, an offline post-processing
routine is used to compute the bound energy evolution equation (Equation (12)). Therefore,
there is only one-way feedback: the SWAN model does influence the bound energy evolu-
tion equation, but not the other way around. The bound evolution equation for a given f is
numerically resolved using a first order upwind scheme:

Eb(x + ∆x) =
cg(x)

cg(x + ∆x)
Eb(x) +

∆x
cg(x + ∆x)

(
max(0, Snl3(x + ∆x)) +

Eb(x)
E(x)

Sbreak(x + ∆x)
)

(26)

with ∆x as the constant grid spacing used in the SWAN computations. This post-processing
routine is referred to as the bound wave evolution (BWE) model.

4. Test Simulations and Model Set-Up

The performance of the BWE model is quantified by comparing the predicted bound
wave height and wave shape to those obtained from the phase-resolving model SWASH [27].
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SWASH is a time-domain model, which solves the nonlinear shallow water equations, in-
cluding the non-hydrostatic pressure. It has been shown to capture short wave propagation
and dispersion [27], wave-breaking dissipation [45], nonlinear wave dynamics [46], wave-
induced currents [47–49] and infragravity wave dynamics [50–52]. Of specific interest to
this study is the work by [46], who convincingly showed the capability of SWASH to predict
the nonlinear wave shape parameters over a planar beach, skewness and asymmetry, as
well as the spectral evolution and the triad source term. More recently, ref. [53] showed, for
two different laboratory experiments with a planar beach, that SWASH serves as a good
benchmark model for nonlinear wave studies. Therefore, SWASH is deemed sufficiently
accurate to be used as a benchmark in this study.

The comparisons focus on 1D wave propagation over a constantly sloping beach. For
these simulations, the JONSWAP wave spectra are imposed at the offshore boundary with
an incoming significant wave height of 1 m and a varying peak period. As the bound wave
height evolution is known to be affected by the incoming wave period and the bed slope,
the model’s performance is evaluated for four different peak wave periods (6, 8, 10, and
12 s) and four different bed slopes (1/20, 1/50, 1/100, and 1/200). The reason to focus on
variations in wave period and bed slope, rather than incoming wave height, is that these
are expected to predominantly determine the uncertainty in nonlinear wave evolution
predictions by spectral triad formulations. This is because, in the literature and all triad
formulations, there is agreement that the triad energy transfer is a function of the energies
of the interacting components (e.g., [29]). The more complicated and, thus, uncertain part is
the performance of the interaction coefficients, tuning parameters, and which interactions
to be included.

These inter-model comparisons are used to investigate what the optimal calibration
parameters for the Snl3 terms are for the considered parameter space in both the LTA and
SPB formulations. While Snl3-calibration studies have been performed before, they did not
result in general guidelines, making it challenging to choose appropriate parameter values
from the large range found in the literature (see Sections 3.2.1 and 3.2.2). Furthermore, the
SPB-method has only been calibrated for laboratory scale experiments [31,43], limiting the
validity of the calibration for the dimensional parameter K.

The performance of the SWAN simulations is quantified with the root mean squared
errors (RMSE) of the significant wave height H, bound wave height Hb and spectral wave
period Tm02. For the evaluation of the Snl3 source term performance, the RMSEs are
computed for the region between the offshore boundary and the mean breakpoint location,
defined as the point where the wave height reaches its maximum, to exclude the region
where Sb,break significantly affects the bound wave height prediction. This region is referred
to as the shoaling zone in the remainder of this paper, whereas the region beyond the mean
breakpoint is referred to as the surf zone.

4.1. SWASH Model Set-Up and Output Processing

The SWASH model is set-up with a horizontal computational grid resolution ∆x of
1 m, ensuring a minimum of 48 grid cells per offshore peak wave length. In the vertical, the
grid is discretized with three vertical sigma layers. The offshore boundary is located in a
depth of 20 m for the cases with Tpeak = 8, 10, and 12 s, and in a depth of 10 m for cases with
Tpeak = 6 s. The offshore depth for the 6 s period is decreased to prevent high kd-numbers
at the boundary, resulting in poor dispersive properties for the number of vertical layers
considered [27]. Moreover, these depths are large enough to ensure sufficient linearity at
the wave maker boundary (Ur < 0.025 for all conditions at the offshore boundary). This
is important, because bound super-harmonics are presently not included at the offshore
boundary in SWASH. Nevertheless, Fiedler et al. [54] recently showed that ignoring the
bound super-harmonics at the wave maker boundary, provided that it is deep enough,
does not significantly influence the nearshore sea-swell third order statistics, such as the
bound wave energy, skewness and asymmetry. The simulations are performed with the
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Hydrostatic Front Approximation breaking routine with default parameters, in order to
improve the wave breaking dissipation in the case of a coarse vertical discretization [45].

Simulations are performed for 75 min, including 15 min of spin-up time in order
to have 60 min of surface elevation output with a sampling frequency of 4 Hz, which
is used to generate statistically reliable estimates for the spectrum and bispectrum. The
output timeseries are divided in 71 semi-overlapping blocks of 100 s each to generate
ensemble-averaged spectra and bispectra with a frequency resolution of 0.01 Hz and
142 degrees of freedom. To separate the sea-swell waves from the infragravity waves,
only spectral values between fimin = fpeak/2 and fimax = fN are included, with fpeak being
the peak frequency [55]. These spectra and bispectra are subsequently used to obtain the
bound super-harmonic wave height using Equations (7) and (8) with fib,min = 1.5 fpeak and
fib,max = 2.5 fpeak.

4.2. SWAN and BWE Model Set-Up

A horizontal grid resolution ∆x is used, being 1 m for a 1/20 slope, 2.5 m for a
1/50 slope, 5 m for a 1/100 slope, and 10 m for a 1/200 slope, such that the depth difference
between subsequent grid cells is similar for all simulations. The spectrum is discretized
using 71 frequencies between 0.01 and 0.5 Hz that are logarithmically distributed. Because
SWAN solves for the frequency directional spectra, 45 directional bins of width ∆θ = 4◦,
varying between −90◦ and 90◦, are used. Quasi-unidirectionality is achieved by applying
a cosM directional distribution with M = 300 to the input spectrum. In order to compare
simulations with exactly the same offshore spectrum, the SWASH spectrum at x = xboundary
is imposed at the boundary for the SWAN simulations. Breaker parameter γ is optimized
per simulation, such that the decay of H from the SWAN simulations closely resembles the
decay of H in SWASH in the surf zone. This results in γ ranging between 0.52 and 0.81,
depending on the bed slope and the wave period. Surface elevation spectra and Snl3 source
term outputs are generated at all computational points and used to compute the bound
wave energy spectrum and wave height using Equations (8) and (12) with fib,min = 1.5 fpeak
and fib,max = 2.5 fpeak.

The variations in the Snl3 calibration parameters considered in this study (αLTA and
Urcrit for LTA and a and b to compute K for SPB) are given in Table 1. As there is no physical
reason to add a dimensional offset b in the parameterization of K (Equation (22)), it is here
chosen to follow the approach proposed by Salmon et al. [31], i.e., to set b = 0 and only
vary a, such that K is a function of the local peak wave number only. The final range of
values considered is such that it includes values presented in previous calibration studies
(see Table 1). In total, 182 variations of the calibration parameters are considered for the
SWAN simulations using the LTA source term, and 46 for those using the SPB source term.

Table 1. Variations in conditions and calibration values applied for the SWAN calibration simulations
for the Snl3 source term formulations using the LTA and SPB methods. Here, default refers to the
default parameter values in SWAN version 41.31.

slope 1/20, 1/50, 1/100, 1/200
Tpeak 6, 8, 10, 12 s

αLTA 0.1–1.0 (default = 0.87)
Urcrit 0.0–1.0 (default = 0.2)

a 0.01–4.0 (default = 0.95)
b 0 (default = 0.0)

5. Results

The evolution of the (total) significant sea-swell wave height is accurately predicted
both using default LTA and SPB triads. Up to the break point, the RMSEH is, at most,
0.03 m for all SWAN simulations, regardless of whether LTA or SPB triads are used. As an
example, the wave height is visualized for the case with Tpeak = 8 s in Figure 1a. Because
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of this accurate prediction of H, mismatches in the evolution of Hb in the shoaling zone
discussed in the following are assumed to be associated with the used triad formulations,
rather than with a mismatch of the evolution of the primary sea-swell energy.

Figure 1. Evolution of H and Hb using SWASH (black lines) and SWAN with LTA (blue lines) and
SWAN with SPB (red lines), where different bed slopes are shown with different line widths for
Tpeak = 8s. The top panel (a) shows H results for default triad settings, the middle panel (b) shows
Hb for default triad settings, whereas the bottom panel (c) shows results for optimized triad settings.

5.1. Bound Wave Height Prediction
5.1.1. Default SNl3 Settings

The evolution of Hb, predicted by SWASH and SWAN using both LTA and SPB tri-
ads with default calibration coefficients, is visualized in Figure 1b for simulations with
Tpeak = 8s. Note that depth is represented on the horizontal axis in order to show simula-
tions with a different slope in the same figure. The evolution of Hb using the SPB triads (red
lines in Figure 1b) closely resembles that of reference model SWASH (black lines), resulting
in an average RMSEHb of 0.041 m. With the LTA triads (blue lines in Figure 1b), on the
other hand, Hb is initially under-predicted in deeper water, after which it overshoots and,
subsequently, leads to a substantial over-prediction. This is confirmed by a substantially
higher RMSEHb of 0.11 m.

A remarkable difference between the SWAN simulations and the SWASH reference
simulations is the slope dependence of the predicted bound wave height evolution as
function of depth. For SWASH, no clear distinction is observed between the simulations
with different slopes (i.e., black lines in Figure 1b overlap). In contrast, for the SWAN
simulations with both the LTA and SPB triads, a faster growth of Hb is observed for mild
slopes (thick lines) than for the steeper slopes (thin lines), indicating that the effect of
bottom slope is not properly included in the triad source terms.
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5.1.2. Optimized LTA Triads

The optimal LTA calibration parameters αLTA and Urcrit are first determined for each
reference simulation (i.e., the combination of the peak period and the bed slope) as the
parameter values that minimize the shoaling zone RMSEHb for this specific simulation
(Figure 2a). Notably, the optimal Urcrit is low for all conditions, and even zero for 8 out of
16 conditions (Figure 2b). This means that the parameterized biphase leading to the best
results is independent of the local Ursell number, and equals −π/2 (Equation (17)), corre-
sponding to a fully imaginary bispectrum. Since the nonlinear energy transfer is propor-
tional to the imaginary part of the bispectrum (see also sin(β)-dependence in Equation (15)),
this maximizes the energy transfers. This, in turn, explains the low values of the propor-
tionality coefficient αLTA (Figure 2c) needed to compensate for the overestimation of the
imaginary part of the bispectrum. In essence, this means that the uncertainty of Ursell-
based biphase parametrization in the form presented in Equation (17) is so high that it is
better to use a spatially constant value.

As the optimal values are more sensitive to changes in slope than in period, only
the slope-dependent optimized values for αLTA and Urcrit are retained (see Table 2). This
leads to an improved match with the SWASH results, compared to using the default values
(compare blue lines in Figure 1b,c). This improvement reduces the average RMSEHb from
0.109 m to 0.031 m (see Table 3). Interestingly, the RMSE for Tm02, bulk wave statistics used
in past Snl3-calibration studies appears relatively insensitive to the change in parameters (a
6.7% increase in RMSETm02 , while RMSEHb decreases by more than 70%). This highlights
the added-value of the current approach, where the performance of the triad source terms
is evaluated based on their skill to predict bound energy rather than relying on bulk
parameters derived from the total (bound + free) spectrum.

Figure 2. Overview of the errors and calibration parameters for SWAN LTA simulations with
optimized settings for the different slopes and conditions. Panel (a) shows RMSEHb for the simulation
with the lowest RMSE. Panels (b,c) show the corresponding optimal values for Urcrit and αLTA.

Table 2. Slope-dependent calibration parameters for the LTA and SPB triads (optimized based on
RMSEHb -values in the shoaling zone). Note that, for the SPB method, the a-values corresponding
to both local minima in RMSEHb are presented for the slopes ≤ 1/50. For these cases, the a-values
corresponding to the global minima are indicated by an asterisk.

LTA Triads SPB Triads

slope = 1/20 αLTA = 0.10, Urcrit = 0.0 a = 0.45
slope = 1/50 αLTA = 0.05, Urcrit = 0.0 a = 0.12 and a = 0.90 *
slope = 1/100 αLTA = 0.05, Urcrit = 0.05 a = 0.05 and a = 1.7 *
slope = 1/200 αLTA = 0.05, Urcrit = 0.15 a = 0.03 and a = 3.4 *
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Table 3. RMSEH , RMSEHb and RMSETm02 in the shoaling zone for LTA and SPB with default and
optimized calibration parameters per slope (see Table 2 for their values).

RMSEH (m) RMSEHb (m) RMSETm02 (s)

LTA default 0.025 0.109 0.30
LTA optimized 0.016 0.031 0.32

SPB default 0.016 0.041 0.25
SPB optimized 0.016 0.024 0.22

5.1.3. Optimized SPB Triads

To optimize the SPB triads, the shoaling zone RMSEHb is calculated for all simulations
with varying a-values (see Equation (22)). As was found for the LTA optimization, the
error curves are similar for simulations with the same slope, but different period (see
Figure 3). Therefore, the slope-dependent optimal a-values are obtained from the wave
period-averaged error curves (black dashed lines in Figure 3). Whereas, for the simulations
with a slope of 1/20, a clear single minimum is observed at a = 0.45, for the other slopes,
two local minima are observed in the error curves that move further apart for increasingly
milder slopes (see Figure 3 and Table 2). As the global minimum in RMSEHb is obtained for
the larger a-values, these will be used in the following. The significance of the secondary
minimum will be discussed in Section 6.1.2. By applying the slope-dependent, optimized
a-values, the prediction of Hb in the shoaling zone is improved (compare the red lines in
Figure 1b,c), with a reduction of the average RMSEHb from 0.041 m to 0.024 m compared
with the default values (see summary of error metrics in Table 3).

Figure 3. RMSEHb for simulations over a constant bed slope of 1/20 (panel a), 1/50 (panel b), 1/100
(panel c), and 1/200 (panel d) as a function of the SPB calibration parameter a. Different colors
indicate simulations with different incoming peak wave periods; the black dashed line indicates the
average over the four simulations with different periods.

5.2. Wave Shape Prediction

The wave shape is directly obtained from SWASH with Equation (6) and estimated
from the optimized SWAN simulations with Equations (9) and (10). As an example the
evolution of S is presented for the case with Tpeak = 8 s and a slope of 1/50, as this is the case
with the best prediction of Hb for both LTA and SPB (see Figure 4a). The better prediction
of Hb by SPB can be explained by the fact that it includes all of the sum and difference
nonlinear triad interactions, whereas LTA solely relies on the self–self sum interactions.
The development of S is accurately predicted by simulations with both triad formulations
in the shoaling zone (see Figure 4b). In contrast, within the surf zone (d < 3 m), S is
clearly over-predicted by both LTA and SPB formulations, even though using SPB triads
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results in a close match with H and Hb (Figure 4a) from SWASH in the surf zone. The
over-predictions are related to the differences in the spectral shapes between the SWAN
and SWASH predictions (further discussed in Section 6.2) and to the over-prediction of Hb
in the case of the LTA triads (Figure 4a).

Figure 4. Spatial evolution of the bound wave height (panel a) and normalized wave shape (panel b)
using reference model SWASH (black lines), SWAN with LTA triads with optimized settings (blue
lines), and SWAN with SPB triads with optimized settings (red lines).

Next, the SWAN-predicted wave shape S, using the optimized slope dependent
parameters (see Table 2), are compared with the SWASH benchmark for all slopes and
wave periods. Using LTA, the wave shape in the shoaling zone is under-predicted for
low S, but over-predicted for high S (Figure 5a). This results in an RMSES of 0.08 and
a R2 of 0.91. Improved results are obtained when the SPB triads are used (Figure 5b)
with a reduction in the RMSES to 0.05 and a R2 of 0.94. In the surf zone, both the LTA
and SPB triads over-predict S (Figure 5c,d) with a concurrent increase in the RMSES to
0.46 and 0.21 for LTA and SPB, respectively. This over-prediction is partly caused by the
aforementioned spectral differences between SWAN and SWASH, and their impact on Ψ.
The larger mismatch for the LTA results are related to the persistent over-prediction of Hb
within the surfzone (see Figure 1c).

Figure 5. SWAN-predicted normalized wave shape using LTA (a) and SPB (b) triads in the shoaling
zone and LTA (c) and SPB (d) triads in the surf zone as a function of normalized wave shape from
reference model SWASH.
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6. Discussion
6.1. Uncertainties Associated with the SNl3 Triad Formulations
6.1.1. Parametrization of the Biphase in LTA

In Section 5.1.2, it is shown that, by using the optimal calibration settings for SWAN
simulations with LTA triads, the biphase estimates (Equation (17)) are almost independent
on Ursell, given the very low values of Urcrit. For SWAN simulations with a steeper slope,
Urcrit is, in fact, zero (see Table 2), corresponding to an Ursell-independent biphase of −π

2 .
To further investigate this Ursell-dependence, the behavior of the biphase is examined using
the SWASH simulations. A reliable estimate of the biphase at ( fpeak, fpeak) is obtained from
the SWASH bispectra by applying an energy-weighted average of all biphases (Equation (5))
that satisfy 0.5 fpeak < fm, fn < 1.5 fpeak.

The biphase for all SWASH simulations is visualized in Figure 6. The large scatter in
biphase for very low Ursell values (Ur < 0.05) is explained by the fact that, for linear waves,
the biphase is expected to be randomly distributed between −π and π (because the real
and imaginary part of the bispectrum are both very close to 0). For higher Ur-numbers, the
SWASH-derived biphase estimates become increasingly negative with increasing values
of the Ursell number. Consistent with previous research [20,21,56,57], a clear bed slope
dependence is observed for the biphase from the SWASH simulations. More specifically, for
a given Ursell value, the biphase increases in absolute sense for simulations with steeper
slopes (Figure 6). In contrast, the Ursell-based biphase parameterizations (e.g., the ones
of Eldeberky and Battjes [37] and Doering and Bowen [38]; see the dashed and solid black
lines in Figure 6) are independent of the bed slope. This partly explains the wide range
of values for Urcrit proposed in the literature. The SWASH results additionally suggest
that the period dependence of the biphase is not accurately represented by the local Ursell
number, thereby adding to the scatter (see the vertical spread in datapoints of the same
color for a given Ursell-value in Figure 6).

Figure 6. Estimated biphase β( fpeak, fpeak) from SWASH simulations (colored dots) and parameter-
ized biphase using Equation (17) with Urcrit = 0.68 (solid black line, Doering and Bowen [38]) and
Urcrit = 0.20 (dashed black line, Eldeberky and Battjes [37]) as a function of the Ursell number. Each
color corresponds to a given bed slope, and includes the results for all peak wave periods considered.

6.1.2. Parametrization of K in SPB

In the SPB formulation, the imaginary part of the bispectrum ℑ(B), which ultimately
controls the strength of the nonlinear triad interactions, is expressed as a function of the
calibration parameter K and the spectral cross-products Q (Equation (21)). We have shown,
in Section 5.1.3, that a slope-dependent parametrization of a, and thus of K, was needed to
optimize bound wave height predictions. This explicitly introduces a slope dependence
into ℑ(B). In the following, we examine to what extent the proposed slope-dependent
SPB formulation is consistent with the evolution of the imaginary part of the bispectrum
predicted by SWASH.
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We focus more specifically on the self-interaction ( fpeak, fpeak), and examine the evolu-
tion of ℑ(B( fpeak, fpeak)) and Q( fpeak, fpeak) predicted by SWASH for a fixed peak period
Tpeak = 8 s but varying bed slopes (Figure 7). Reliable estimates of ℑ(B) are obtained
by ensemble-averaging the bispectra from 50 SWASH simulations that only differ by
the random wave phases imposed at the offshore boundary. The resulting evolution of
ℑ(B( fpeak, fpeak)) as a function of depth is presented in Figure 7a. ℑ(B( fpeak, fpeak)) ex-
hibits much stronger spatial variations for steeper slopes than for milder slopes, with large
differences between the slopes over most of the shoaling and surf zones (0 < d < 10 m in
Figure 7a). Q( fpeak, fpeak), on the other hand, only depends on the slope at the shallowest
locations (d < 5 m in Figure 7b).

Figure 7. Evolution of ℑ(B( fpeak, fpeak)) in panel (a) and Q( fpeak, fpeak) in panel (b) as a function of
depth for the SWASH simulation with Tpeak = 8 s and varying bed slopes.

In the SPB formulation, ℑ(B( fpeak, fpeak)) is assumed to be proportional to Q( fpeak, fpeak)
with a proportionality factor that depends on K and ∆kpeak,peak only (Equation (21)). Because
we compare simulations with the same peak period in Figure 7, the ∆kpeak,peak for a given
depth is the same for all simulations and, hence, only the dependence on K remains to explain
differences in behavior between the different slopes. This confirms that a proper prediction
of ℑ(B( fpeak, fpeak)), according to the SPB formulation, requires a slope-dependent K factor.
This implies that K cannot be proportional to the local peak wave number only, as expressed
in Equation (22). Alternative approaches proposed in the literature to parameterize K as a
small constant value [29], as a function of the offshore peak wave number [30,33], or as a
function of the minimum of the three interacting wave numbers [32], for instance, do not
solve this issue, as none of them involve a slope dependence.

Furthermore, two local minima in RMSEHb were identified for the milder slopes (see
Figure 3). Taking the simulation with Tpeak = 8 s and slope = 1/200 as an example, Figure 8a
shows the prediction of Hb for both of the local minima. It shows that, depending on the
choice of a, Hb is either overestimated between d = 10 m and d = 4 m and underestimated
between d = 4 to d = 3 m, or the other way around. This suggests that, even for a given
slope, a spatially varying value of a and, thus, K should be used which is not linearly
proportional to the local kpeak.
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Figure 8. Spatial evolution of the bound wave height for Tpeak = 8 s and a slope of 1/200 (panel a)
and a slope of 1/50 (panel b) for reference model SWASH (black line) and SWAN with SPB triads for
the a-values corresponding to the two local error minima listed in Table 2 (colored lines).

6.2. Bound Wave Prediction in the Surf Zone

Where S is accurately predicted in the shoaling zone using SPB triads, an over-
prediction is found in the surf zone, even for the cases where the evolution of H and
Hb is accurately predicted in the surf zone (see, for example, Figure 4 with T = 8 s and a
slope of 1/50). This indicates that the over-prediction is caused by an over-prediction of Ψ
which, itself, depends on the prediction of the spectral shape. This is confirmed by calculat-
ing Ψ for the SWASH and the SWAN spectra for this case, showing that, between d = 4 and
d = 1 m, the Ψ from SWAN is, on average, 23% higher, with a maximum over estimation of
44%. The same simulation with the LTA triads also considerably overestimates Ψ (average
17% and maximum 24%).

The mismatch in Ψ using the SPB triads is examined next by looking in more detail
at the spectra in the surf zone for this case (see Figure 9). It is seen that, before breaking
(d = 4 m), there is a good agreement between the SWASH and SWAN spectral shape, as
the secondary super harmonics and the high frequency tail are properly resolved (compare
the magenta and black lines). When the water depth decreases the SWAN spectra maintain
their initial shape while the total energy reduces as a result of dissipation due to breaking.
In contrast, the SWASH spectrum gradually transforms into a saturated spectrum towards
shallower water. So, even though the bulk energy transfer and decay due to triads and
breaking is properly captured by SPB (see Figure 8b), the distribution over the frequencies
is not. As Ψ is based on the spectral shape (see Equation (10)), this leads to errors in the
estimated wave shape (Figures 4 and 5).

Figure 9. Variance density spectra for the simulation with Tpeak = 8 s and a slope of 1/50 at depths of
4, 3, 2, 1 m, in panels (a–d), respectively. Black lines represent the SWASH simulations, whereas the
blue and red lines represent SWAN using SPB triads with a-values of 0.12 and 0.90, respectively.
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Interestingly, the spectra predicted by SWAN using the a-value corresponding to the
secondary local minimum in RMSEHb (see Table 3), become more saturated with decreasing
depth (compare blue and black lines in Figure 9). From Equation (11), it can be seen that
in absence of breaking the spatial flux gradient and the triad source term should be equal.
Both the SWASH and SWAN simulations indicate that the influence of breaking is negligible
at the surfzone edge at 4 m water depth. Therefore, the differences in the spectral evolution
for the two a-values can be investigated by comparing the SWAN triad source terms with
the SWASH-inferred spatial gradient in flux dEcg/dx (see Figure 10). In cases of a larger
a-value, the source term is relatively narrow, with two distinct peaks moving energy from
the primary spectral peak to a well-defined secondary peak at twice the primary frequency.
As Snl3 is relatively weak, and dissipation by breaking in the current formulation is linearly
proportional to the energy density, the spectral shape is conserved throughout the surfzone.
For the smaller a-value, the non-linear transfer to the secondary super-harmonic spectrum
is wider and significantly stronger. This results in a broadening and subsequent saturation
of the high frequency part of the spectrum ( f > fpeak), which is more consistent with
the SWASH results (Figure 9). However, this is accompanied by a significant transfer of
energy to the lower frequencies ( f < fpeak), erroneously adding energy at half of the peak
frequency (compare the blue and black lines at f = 0.063 Hz in Figure 10). This effect is
exacerbated for milder slopes. Again, it is likely that the mismatch within the surfzone
between the SPB-SWAN and SWASH spectra can be reduced by using a locally optimized
a value.

Figure 10. SWAN Snl3 source term and SWASH flux gradient (dEcg/dx) for the simulation with
Tpeak = 8 s and a slope of 1/50 at a depth of 4 m. The cyan and magenta lines represent SWAN
simulations using SPB triads with a-values of 0.12 and 0.90, respectively.

6.3. Outlook

Since K is the only tunable parameter in the SPB method in this study, mismatches
in Hb and, thus, S are mainly associated with the choice for K. Currently, K is optimized
for the shoaling zone to limit the influence of the breaking parametrization on the results,
but also because this is the area where the wave shape plays a dominant role in the
sediment transport [7,11,58]. This approach leads to sub-optimal results for the surf zone
(see Figure 8). Ideally, a generic parameterization of K performs well in both. It should
be kept in mind, however, that the assumptions on the nonlinear interaction coefficients
(Equation (14)) and bispectral estimates also contribute to this mismatch.

The fact that spatially varying and slope-dependent calibration factors seem to be
required might indicate that the triad formulation itself should be improved. In the
benchmark model (SWASH), the bound wave height as a function of depth (so dEbcg/dd)
seems to be near-independent of the bed slope. The BWE SWAN models show a substantial
bed slope dependence (see Figure 1), which can be explained because the triad term
Snl3 = dEbcg/dx is slope-independent. In this study, this mismatch is reduced by using
the calibration parameters, where the optimal values might be outside of the physically
explainable range (e.g., a fully imaginary bispectrum for LTA and very low or high values
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for K in SPB for 1/200 slope). A potential future solution could be to directly include
the slope dd/dx in the triad formulation, and re-calibrate tuning factor αSPB. This would
reduce the triad strength for the milder slopes and increase the strength for the steeper
slopes. If we revisit Figure 1), this would improve the default solutions. Subsequently, K
can be re-calibrated to fine-tune the predictions, rather than using it to compensate for the
missing slope dependence.

A way forward for addressing all of these aspects is by creating ensemble averages
using multiple SWASH simulations with different random phases, from which the ac-
curate stochastic estimates can be retrieved for the variance spectrum, bispectrum and
even the trispectrum. From these (higher order) spectra, the assumptions on the closure
approximation can be validated per triad and location. These findings can subsequently be
used to obtain improved expressions for the triad formulations, the nonlinear interaction
coefficients, and the imaginary part of the bispectrum and, thereby, extend the domain for
which reliable predictions for the bound harmonics and the wave shape can be obtained.

Finally, it is noted that this study is restricted to simulations with a wave height of 1 m.
For higher incoming waves, the wave transformation will be different. The waves will start
breaking in deeper water, and the higher nonlinearity will result in a stronger evolution
of the higher harmonics, and thus higher bound wave height, skewness and asymmetry.
As all triad formulation are relatively straightforward related to the incoming energy, it is
expected that this will be well-predicted, provided that proper slope and period dependent
triad formulations are used. Nevertheless, this should still be verified in a future study.

7. Conclusions

In this paper, a new method is presented that allows for phase-averaged spectral wave
models to predict a nonlinear wave shape. The spatial evolution of the bound variance
density spectra is resolved using source term functions extracted from the spectral wave
model (SWAN) that account for the influence of nonlinear energy transfers and wave
breaking. By integrating the bound variance density spectra, the bound wave height is
obtained. Using the proportionality factor, derived in Equations (9) and (10), this bound
wave height can serve as a proxy for the nonlinear wave shape. As the BWE model’s skill
to predict the bound wave height and wave shape is predominantly determined by the
accuracy of the triad source term, the performance of the LTA and SPB triad formulations
are evaluated. This is performed by comparing the bound wave height predictions from
the integrated bound evolution equation to those obtained from a detailed phase-resolving
wave model (SWASH) using bispectral analysis. Although computationally more expensive,
the SPB method proved to be significantly more accurate in predicting the bound wave
height for all test simulations that cover a range of bed slopes and peak periods. The
performance of the SPB source term can be further improved by optimizing calibration
parameter K. This study already shows that different optimal K-values are found for
different bed slopes, but more research is required to find a generally applicable formulation
for K. Nevertheless, using the SPB method, the predicted wave shape agrees very well with
the wave shape directly obtained from the reference model (SWASH) in the shoaling zone
(R2 = 0.96 and RMSES = 0.07). In the surf zone, however, an over-prediction of the wave
shape is observed. This arises when the proportionality factor is computed in shallow water,
and because there is no source term accounting for the release of bound harmonics. Overall,
this paper shows the promising capability of a wave-averaged spectral wave model to
predict the nonlinear wave shape. Due to the limited additional computational effort used
by the added evolution equation, this could be used in large-scale morphological models
to improve the wave-shape-induced sediment transport formulations.

Author Contributions: All co-authors contributed to the developed methodology. F.d.W. performed
and post-processed the numerical simulations and wrote the manuscript. M.T. and A.R. contributed
to supervising, editing, and improving this paper. All authors have read and agreed to the published
version of the manuscript.



J. Mar. Sci. Eng. 2024, 12, 944 19 of 21

Funding: This work was part of the research program SEAWAD, a “Collaboration Program Water”
with project number 14489, which is financed by the Netherlands Organisation for Scientific Research
(NWO) Domain Applied and Engineering Sciences, and co-financed by Rijkswaterstaat (Ministry of
Infrastructure and Public Works in The Netherlands). The PhD project of FdW was financed by the
SEAWAD project.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Floris de Wit is employed by the company Svašek Hydraulics. However,
this study was conducted as part of his PhD project, while under contract of Delft University of
Technology. There is no conflict of interest by the company in any way. All authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BWE Bound Wave Evolution
LTA Lumped Triad Approximation
RMSE Root Mean Squared Error
SPB Stochastic Parametric Boussinesq
LD Linear dichroism

Appendix A. Energy Conservation SPB

The importance of applying the energy conservation correction while using SPB triads
(as described in Section 3.2.3) is outlined in this appendix. By applying this correction, the
evolution of H is in good agreement with reference model SWASH (compare the green and
black lines in Figure A1). Not accounting for it, however, can lead to a significant under-
or over-estimation of H in the shoaling zone, where Snl3,SPB starts to play a prominent
role (the red line in Figure A1). The RMSEH for default SPB settings (averaged over the
16 conditions) is decreased from 0.08 to 0.02 m by applying the correction. Furthermore,
the average absolute mismatch of H at the location of maximum H is decreased from
17% to 3%.

Figure A1. Spatial evolution of the wave height for an input spectrum with an incoming significant
wave height of 1 m and Tpeak = 8 s over a constantly sloping bathymetry with a slope of 1/50.
Different lines indicate the outcome of the phase-resolving model SWASH (black dashed), spectral
model SWAN with default SPB settings without energy conservation correction (red), and spectral
model SWAN with default SPB settings with energy conservation correction (green).
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