
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Optical Flow
Determination with
Integrate & Fire
Neurons
MSc Thesis Control & Operations

Francesco Branca

Optical Flow Determination
with Integrate & Fire Neurons

MSc Thesis Control & Operations

by

Francesco Branca
Student Name Student Number

Francesco Branca 4884981

Supervisors: Dr G. C. H. E. de Croon
J. J. Hagenaars

Project Duration: May, 2023 - May, 2024
Faculty: Faculty of Aerospace Engineering, Delft

Preface

I would like to thank my supervisors for guiding me in this project. Thank you Jesse for being always
available to clear all my doubts. Thank you Guido for welcoming me with enthusiasm and for being so
inspiring. I am really glad to have worked under your supervision.

Thank you to my family for giving me the opportunity to study here at TU Delft. You motivated me to
do better every day and to stay on the right path. Regardless of what the future holds, I know that the
strong foundation you’ve provided will stay with me.

A special thanks to the friends that I made along the way in these six long years in Delft. Thank you
to Andrea, Roman, Martino, Aytek, Kevin, Alessandro, Elena, Giacomo, Antonio and Alejandro for
accompanying me in my music journey, for the late night jam sessions and for sharing your passion
with me. Finally thanks to everyone that I shared unforgettable memories with. Thank you Vincenzo,
Marco, Giorgio, Alex, Manos, Maurizio and Jenny.

i

Contents

Preface i

Nomenclature iv

Introduction 1

I Scientific Paper 2

II Literature Study 20
1 Frame-Based Optical Flow 21

1.1 General . 21
1.2 Conventional Methods . 21

1.2.1 Intensity-Based Differential Methods . 21
1.2.2 Frequency-Based Methods . 22
1.2.3 Correlation-Based Methods . 22

1.3 Deep Learning Methods . 22

2 Event-Based Cameras 23
2.1 Working Principle . 23
2.2 Advantages . 24
2.3 Applications . 24

3 Spiking Neural Networks 25
3.1 Working Principle . 25
3.2 Neuron Models . 26

3.2.1 Leak Integrate & Fire . 26
3.2.2 Integrate & Fire . 26

3.3 Hyperparameters & Training . 27
3.3.1 Surrogate Gradients . 27
3.3.2 Learnable Hyperparameters . 28

3.4 Recurrency in Spiking Neural Networks . 28

4 Event-Based Optical Flow 29
4.1 Supervised Learning . 29
4.2 Self-Supervised Learning . 29
4.3 Onboard Applications for MAV . 31

4.3.1 Intel Loihi . 32

5 Neuromorphic Hardware & Software 33
5.1 Hardware . 33
5.2 Software . 33

5.2.1 Editing & Uploading Devkit Configuration . 34
5.2.2 Synaptic Operations . 35

III Preliminary Evaluation of Integrate & Fire Neurons for Optical Flow 36
6 Methodology 37

6.1 Network Architecture . 37
6.2 Training & Testing Datasets . 38

ii

Contents iii

6.3 Software . 38
6.3.1 PyTorch Framework . 38
6.3.2 Sinabs & Samna . 39

6.4 Hardware . 40
6.5 Recurrency Types . 41

6.5.1 Recurrency type S . 41
6.5.2 Recurrency type C . 42

6.6 Network Naming Convention . 42

7 Network Design & Training Strategies 43
7.1 Leak Integrate & Fire Recurrent Network . 43
7.2 Integrate & Fire Recurrent Network with Biases . 43

7.2.1 Analysis and Assessment of Biases . 43
7.3 Recurrent Convolutional Neural Network . 44

7.3.1 Recurrency Types and Architecture . 45
7.4 Integrate & Fire Recurrent Network . 46

7.4.1 Weights Re-scaling . 46
7.5 Results on SR Dataset . 47

7.5.1 Signal-to-Noise Ratio . 48
7.5.2 Average End-point Error . 49
7.5.3 Ratio of the Squared Averaged Timestamps . 49

7.6 Results on Davis Dataset . 50
7.7 Results Discussion . 50

7.7.1 Neuron Model: LIF vs. RNN vs. IF . 50
7.7.2 Number of Encoders: 3 vs. 2 . 50
7.7.3 Recurrency Type: Sum vs. Concatenation . 51
7.7.4 Network Conversion . 51
7.7.5 Conclusion . 51

8 Hardware Implementation 52
8.1 Quantized Network . 52

8.1.1 Parameters Quantization . 52
8.2 Synaptic Operations Analysis . 52

8.2.1 Stride . 53
8.2.2 Number of Channels . 54
8.2.3 Early Stopping . 56
8.2.4 Synops Loss Term . 57
8.2.5 Final Network Configuration . 58

References 60

A Additional Results 64
A.1 Prediction vs. Ground Truth Optical Flow . 65

A.1.1 LIF-3 . 65
A.1.2 RNN-3-S . 66
A.1.3 RNN-2-S . 67
A.1.4 IF-2-S . 68
A.1.5 RNN-2-C . 69
A.1.6 IF-2-C . 70

A.2 Spike Activity on Speck2e . 71
A.3 Optical Flow Color Map . 74

Nomenclature

Abbreviations
Abbreviation Definition

ANN Artificial Neural Network
SNN Spiking Neural Network
RNN Recurrent Neural Network
LIF Leak Integrate & Fire
IF Integrate & Fire
EBC Event Based Cameras
SG Surrogate Gradient
MAV Micro Air Vehicle
DVS Dynamic Vision Sensor

iv

List of Tables

6.1 Speck2e requirements. 40

7.1 Network Architecture for RNN-3-S on SR dataset. 45
7.2 Network Architecture for RNN-2-S on SR dataset. 45
7.3 Network Architecture for RNN-2-C on SR dataset. 46
7.4 SNR, AEE and RSAT for the different network types on a SR dataset sequence. 49

8.1 Network Architecture for RNN-2-C-speck. 59

v

List of Figures

2.1 EBC compared to standard cameras [24]. 23

3.1 (a) Biological neuron. (b) Neuron schematic with input and output spikes. (c) Membrane
potential over time. [37] . 25

3.2 IF and LIF membrane potentials after input spikes. The neurons were simulated using
sinabs [39] . 27

3.3 Effect of time constant and reset function on membrane potential. This image was gen-
erated using sinabs [39]. 28

4.1 Overview of the self-supervised approach [21] . 30
4.2 Events trajectories (left), Image with warped events (right) [57]. 31
4.3 Contrast as a function of optic flow components (left). Warped events (right) [57]. 31

5.1 Speck Architecture [67] . 34
5.2 Neuron compute unit [67]. 34
5.3 Samna graph [68]. 34
5.4 Speck2e visualizer. Red pixels are negative changes in brightness and green are posi-

tive. The image was generated using the visualizer provided by Samna [68]. 34
5.5 Input spikes, membrane potential and output spikes of a neuron over time. 35

6.1 Network architecture with LIF neurons. The outputs are the u and v components of the
flow in the bottom right (BR), bottom left (BL), top right (TR) and top left (TL) sections. . 37

6.3 Contrast maximization computation scheme. 39
6.4 Recurrency type S scheme. 41
6.5 Code implementation of recurrency type S. 41
6.6 Recurrency type C scheme. 42
6.7 Code implementation of recurrency type C. 42

7.2 Feature number 1 of 32 of the first encoder over time. 44
7.3 Weight re-scaling diagram. 46
7.4 Activation functions and resulting spike rate output. 47
7.5 Ground truth compared to network prediction for RNN-2-S and IF-2-S. 47
7.6 Ground truth compared to network prediction for RNN-2-C and IF-2-C. 48
7.7 FFT of ground truth, RNN-3-S and LIF-3 output signals for top left horizontal component. 48
7.8 FFT of ground truth, RNN-2-S and IF-2-S output signals for top left horizontal component. 49
7.9 FFT of ground truth, RNN-2-C and IF-2-C output signals for top left horizontal component. 49
7.10 RNN-2-C optical flow vectors for the Davis dataset sequence. 50

8.1 Non-quantized network versus quantized network. 52
8.2 Number of synaptic operations for IF-2-C configuration. 53
8.3 Spike activity in RNN-2-C with stride 2 in first encoder. 54
8.4 Spike activity RNN-2-C with stride 4 in first encoder. 54
8.5 RNN-2-C with increased number of channels. 55
8.6 RNN-2-C with decreased number of channels. 55
8.7 RNN-2-C after 80 epochs. 56
8.8 RNN-2-C after 10 epochs. 56
8.9 Flow and synops loss during training with different weighting. 57
8.10 RNN-2-C without synops loss term. 58
8.11 RNN-2-C with synops loss weight of 0.01. 58

vi

List of Figures vii

A.1 LIF-3 optical flow prediction. 65
A.2 RNN-3-S optical flow prediction. 66
A.3 RNN-2-S optical flow prediction. 67
A.4 IF-2-S optical flow prediction. 68
A.5 RNN-2-C optical flow prediction. 69
A.6 IF-2-C optical flow prediction. 70
A.7 Spike activity of second forward layer of encoder 0. 71
A.8 Spike activity of recurrent layer of encoder 0. 72
A.9 Spike activity of first forward layer of encoder 1. 72
A.10 Spike activity of second forward layer of encoder 1. 73
A.11 Spike activity of recurrent layer of encoder 1. 73
A.12 Spike activity of pooling layer. 74
A.13 Optical flow color map. 74

Introduction

The field of robotics engineering often draws inspiration in nature, in order to design more efficient and
agile systems. Pushing the boundaries of Micro Air Vehicles (MAVs)

The topic is biology-inspired applications for Micro Air Vehicles (MAV), in particular optical flow esti-
mation with Event-Based Cameras (EBCs) and Spiking Neural Networks (SNNs). This research field
draws inspiration from flying insects to mimic their navigation techniques and perform more efficient
autonomous flight of MAVs. Event-based visual processing has the potential to achieve lower power
consumption and reduced latency for MAVs navigation.

The goal of this thesis is to develop an optical flow estimation method using SNNs and implement
it on the neuromorphic chip Speck2e from Synsense [1]. The project aims to assess capabilities and
limitations of the chip and prove or disprove that the flow ca be learned from device-compatible networks.
The official research question is:

Can Spiking Neural Networks be implemented on board of a small
neuromorphic device in order to estimate ego motion of a drone?

The difficulty of the project is constructing a network architecture that is both hardware-compatible and
able to learn optical flow. Since commonly used Leak-Integrate and Fire (LIF) neuron models are not
available on the Speck2e, Integrate-And-Fire models in combination with recurrent connections have
to be used instead. This poses the main challenge of the project. The question can be extended with
the following sub-questions:

• Can SNNs without Leak-Integrate and Fire Neurons be used to learn optical flow?
• What are the advantages and disadvantages of using the Speck2e to estimate optical flow?

The report is structured in three parts:

1. Part I contains the standalone scientific paper titled ”Optical Flow Determination using Neuromor-
phic Hardware with Integrate & Fire Neurons”. This article presents the main contributions of this
thesis.

2. Part II contains an in-depth literature study on the relevant topics for the thesis project. The
literature study will start with Chapter 1, which introduces conventional frame-based optical flow
techniques. Chapter 2 treats EBCs and common applications of this technology. In Chapter 3,
the functioning principles, applications, and training challenges of spiking neural networks are
explored. In Chapter 4, recent methods of event-based optical flow techniques are showcased.
Finally, Chapter 5 will show examples of previous similar on-board applications and expose the
neuromorphic device that will be used for the project.

3. Part III includes the preliminary evaluation of Integrate & Fire neurons for optical flow determi-
nation. This part starts with Chapter 6 which includes an introduction to the methodology of the
project and the tools used. Following, Chapter 7 documents the network design process and
the different training strategies implemented. In conclusion, Chapter 8 includes the preliminary
hardware implementation.

1

Part I

Scientific Paper

2

Optical Flow Determination using Neuromorphic
Hardware with Integrate & Fire Neurons
Francesco Branca∗

Micro Air Vehicle Laboratory
Delft University of Technology

Delft, Netherlands
F.Branca@student.tudelft.nl

Jesse Hagenaars†
Micro Air Vehicle Laboratory
Delft University of Technology

Delft, Netherlands
J.J.Hagenaars@tudelft.nl

Guido de Croon†
Micro Air Vehicle Laboratory
Delft University of Technology

Delft, Netherlands
G.C.H.E.deCroon@tudelft.nl

∗ MSc Student, † Supervisor
Abstract—Spiking neural networks implemented for sensing

and control of robots have the potential to achieve lower latency
and power consumption by processing information sparsely and
asynchronously. They have been used on neuromorphic devices to
estimate optical flow for micro air vehicles navigation, however
robotic implementations have been limited to hardware setups
with sensing and processing as separate systems. This article
investigates a new approach for training a spiking neural network
for optical flow to be deployed on the speck2e device from
Synsense. The method takes into account the restrictions of
the speck2e in terms of network architecture, neuron model,
and number of synaptic operations and it involves training a
recurrent neural network with ReLU activation functions, which
is subsequently converted into a spiking network. A system of
weight rescaling is applied after conversion, to ensure optimal
information flow between the layers. Our study shows that it is
possible to estimate optical flow with Integrate-and-Fire neurons.
However, currently, the optical flow estimation performance is
still hampered by the number of synaptic operations. As a result,
the network presented in this work is able to estimate optical flow
in a range of [-4, 1] pixel/s.

Index Terms—neuromorphic computing, spiking neural net-
works, integrate-and-fire, computer vision, optical flow, micro
air vehicles

I. INTRODUCTION

Neuromorphic computing has emerged as a promising
paradigm for biologically inspired robotics applications [1,
2, 3, 4]. In contrast to von-Neumann architectures, the in-
formation processing in neuromorphic devices occurs asyn-
chronously and sparsely. The networks hosted on these type
of processors are called spiking neural networks (SNNs) [5],
also known as the third generation of neural networks. SNNs
contain layers of neurons communicating with each other
through binary inputs called ”spikes” [6]. Similarly to the
structure and functionality of the human brain, SNNs are able
to perform parallel computations. When implemented on neu-
romorphic hardware, SNNs result in lower power consumption
and latency, which is preferable for efficient real-time systems.

Neuromorphic devices have been used for a variety of
applications in computer vision, ranging from object detection
[7], tracking [8, 9] and gesture recognition [10, 11]. Regarding
time-dependent tasks, one application is determining optical
flow for Micro Air Vehicles (MAVs) state estimation [12].
Optical flow is a concept in computer vision that quantifies the

apparent motion of points in an image [13]. It was discovered
that optical flow serves as an important visual cue for animals.
For instance, bees exploit optical flow to land by keeping the
image velocity constant [14]. Other studies also hypothesized
that it is also used to estimate distances and avoid obstacles
[15, 16].

Determining optical flow using SNNs can be done by
combining neuromorphic devices with event-based cameras
(EBCs) [17]. This type of vision sensors are composed by an
array of pixels, where each pixel detects changes in brightness
in the image and outputs a binary variable indicating a positive
or negative change. Since the static elements in the image are
not detected, event-based vision sensors avoid capturing re-
dundant data and result in extremely low power consumption.
EBCs consume on average 10 mW of power, while standard
cameras power consumption is in the scale of W [17]. This
makes them suitable for real-time sensing in robotics systems.

With faster and more energy efficient computations, MAVs
can be designed to be lighter, more agile and more similar to
real insects. This technology could be helpful in applications
such as search and rescue and flying in greenhouses to
monitor crop. Paredes-Vallés et al. [18] proposed the first
fully neuromorphic vision-to-control pipeline for controlling
a MAV. The system runs completely autonomously with the
help of Intel’s Loihi [19] processor and a DAVIS240C event-
based camera.

This article presents a novel approach to estimating optical
flow, suited for implementation on lighter and more simple
neuromorphic devices. The chip used for experiments is
Synsense’s speck2e [20, 21, 22], a dynamic vision system-
on-chip, integrating sensing and computing in one board.
The speck2e is equipped with Integrate-and-Fire neurons. To
achieve a performance comparable to the Intel’s Loihi, a new
method has to be developed to transmit information inside the
network, without relying on the leakage system. The prime
goal of this research is to design a speck2e-compatible network
that is able to estimate direction and magnitude of dense
optical flow from an event-based dataset. A Recurrent Neural
Network (RNN) with ReLU activation functions is trained in
self-supervised learning and converted to spiking for testing.
The converted network is then deployed on the speck2e to
assess the hardware performance.

(128, 23, 23)
(64, 45, 45)(32, 90, 90)

(2, 180, 180)

C
O

N
V

PO
O

LI
N

G

kernel = (3,3)

EN
C

O
D

ER
 1

(128, 1, 1)

C
O

N
V

EN
C

O
D

ER
 2

EN
C

O
D

ER
 3

u BR

v BR

u BL

v BL

u TR

v TR

u TL

v TL

(8, 1, 1)

kernel = (23,23) kernel = (1,1)kernel = (3,3)kernel = (3,3)

Fig. 1. LIF network diagram from Paredes-Vallés et al. [18].

II. RELATED WORK

A. Neuromorphic Robotics

Neuromorphic devices have been previously used for real-
time control of robotics systems. For instance, neuromorphic
systems have been sued for control of particular robotic joints
to achieve a certain motion [23, 24, 25]. In the field of com-
puter vision, there has been extensive research into developing
systems with autonomous navigation using obstacle avoidance
and edge tracking [26, 27, 28, 29].

B. Neuromorphic Control of Micro Air Vehicles

Regarding autonomous navigation of MAVs, previous works
have implemented neuromorphic computing for sensing and
controlling. Hagenaars et al. [30] used SNNs for the first
time to control a drone during landing, using optical flow
divergence. Following, Paredes-Vallés et al. [18] introduced
the first fully neuromorphic pipeline for drone control. A SNN
was used to process events from a camera and output low-level
control actions to perform autonomous vision-based flight.
Both of these works used neuromorphic hardware with fully
programmable LIF neuron models. The drone setup included a
DAVIS240C event-based camera, a Loihi neuromorphic chip
[19] and a a single-board computer UP Squared. The latter
component was used to pre-process the events (downsampling
and cropping), as well as process the output spikes from the
Loihi. A further improvement would be implementing a new
device that combines vision and processing in the same board,
without requiring an additional component in between.

The architecture proposed in Paredes-Vallés et al. [18]
(Figure 1), is denoted here as LIF-3 and it includes three
groups of layers (encoders) with recurrent connections and
LIF spiking activation functions, one pooling layer and one
prediction layer. In total, 4 networks were used, one for each
corner of the image and each corner was cropped to a smaller
region of interest, in order to reduce the number of input
events. Note that defining 4 different regions of interest is not
possible with the DVS on the speck2e. To fairly compare the
speck2e architectures to LIF-3, the same number of channels
per layer is used, however the network is applied to the full
180x180 picture instead of 4 different corners. Note that the

output of the LIF-3 is still 8 flow vector components, as shown
in Figure 1. In this article, this architecture is used as a starting
point for the development of a new network configuration.

C. Previous Speck2e Implementations

Other examples of computer vision tasks tested on the
speck2e are face detection from Caccavella et al. [7], binary
particle classification [31], CIFAR10, ImageNet and NMNIST
classification [32, 33]. This neuromorphic device has not
been used yet for time-dependent tasks, requiring recurrent
connections for integrating in time.

III. METHODOLOGY

A. Event Based Cameras

Event-based cameras react to changes in brightness in the
scene by providing as output a stream of independent and
sparse inputs. Each event is defined as ei = (xi, yi, ti, pi),
where xi, yi are the coordinates of the pixel, ti is the
timestamp in microseconds and pi ∈ [−1, 1] is the polarity
of the event (−1 for decrease and +1 for increase in bright-
ness). The asynchronous nature of EBCs is suitable for on
board processing on a neuromorphic device. For instance,
the speck2e has a processing frequency of 1 MHz, hence
a resolution in time of microseconds order. However, when
training the SNNs in simulation, the processing frequency has
to be decreased in order to speed up the training time, since
processing each event individually would take too long. For
this reason, the events are binned into event frames, which can
be more easily processed by deep learning frameworks [17].
In the following experiments, when training the network, the
events are accumulated in time windows of 5 ms.

B. Optical Flow Model

The network architecture proposed estimates dense (per
pixel) optical flow in horizontal and vertical direction (u, v) in
pixels per millisecond. The network takes the input from the
whole DVS array of pixels and predicts the flow for 4 sections
of the image, hence it outputs a total of 8 predictions. The
corners are denoted as top left (TL), top right (TR), bottom
left (BL) and bottom right (BR) (Figure 1). Note that the flow

2

is two-dimensional, hence it is assumed that the EBCs used to
record the camera of the dataset is looking at a planar surface.

C. Hardware Constraints

The speck2e circuit is able to support large-scale SNN for
various computer vision tasks, such as sign recognition, smart
tracking and obstacle detection. The final network configura-
tion shall be able to estimate optical flow from the datasets
accurately and the architecture shall be designed to fit the
hardware constraints. The speck2e specifications are [34]:

1) Maximum of 9 convolutional layers
2) Maximum number of neurons: 32k
3) Maximum input dimension: 128x128
4) Maximum feature output size: 64x64
5) Maximum feature number: 1024
6) Weight resolution: 8 bit
7) Neuron state resolution: 16 bit
8) Maximum kernel size: 16x16
9) Stride: {1, 2, 4, 8} independent in X/Y

10) Padding: [0...7] independent in X/Y
11) Pooling: 1:1, 1:2, 1:4
12) Fanout: 2
13) Frequency: 1 MHz
14) Synaptic Operations limit per core: 10 millions synops/s
15) Maximum number of channels in readout layer: 15

Importantly, the Speck2e features an Integrate-and-Fire (IF)
model. In comparison with a Leak-Integrate-and-Fire (LIF)
model, the IF model is simpler and it requires less energy.
However, it is also more limited, and at the onset of our study
it was unclear if an IF model SNN would be able to estimate
optical flow. In the next subsection, we explain the differences
between LIF and IF model in more detail.

D. Neuron Model Comparison

This section describes the differences between the LIF
model available on the Loihi chip and the IF model from
the speck2e. Each layer in a SNN can be visualized as a
convolutional layer plus a spiking activation function. The
layer contains weights and biases, which define how much
the input influences the potential of the neuron and therefore
its output. The spiking function outputs a 1 or a 0 at every step,
depending on whether the potential exceeded the threshold or
not. A schematic of the neurons is provided in Figure 2 for
LIF and Figure 3 for IF.

s(v[t]) =

{
0 if v[t] < vmem

1 if v[t] > vmem
(1)

i[t+ 1] = w · z[t] + θi · i[t] + b

v[t+ 1] = v[t] · θv · (1− s(v[t])) + i[t+ 1]
(2)

×

× ×

z[t]

i[t]

v[t]

w · z[t] + b + +
i[t+ 1] v[t+ 1] z[t+ 1]

s(v)

θi

θv
1−

Fig. 2. LIF neuron computational graph.

z(t) is the input spikes vector, i(t) and v(t) are the neurons’
current and potential values. Additionally, the potential is
multiplied by a reset term (1− z), so that if a neuron spiked
in the previous step (z = 1), the potential is reset to zero.
The spikes are fed in the convolutional layer, where they
are multiplied by the weights and summed with the biases.
The output of the convolutional layer represents the change in
current due to the spikes, which is added to the previous state
current. The new current i(t+1) is summed with the previous
potential to compute the new potential v(t + 1). Finally, the
spiking function z(v) checks if the potential is higher than the
threshold and transmits spikes to the following layer.

In the LIF model, θi and θv stand for the current and poten-
tial leak respectively and they are multiplied by the previous
state values. The leak represents how much information of
the previous state is preserved in the following step. A higher
leak value means that the current or potential decreases more
slowly and more information is maintained through time. In
the IF model the leak parameters are not present and the new
incoming current is directly summed to the previous one.

i[t+ 1] = w · z[t] + i[t] + b

v[t+ 1] = v[t] · (1− s(v)) + i[t+ 1]
(3)

×

z[t]

i[t]

v[t]

w · z[t] + b + +
i[t+ 1] v[t+ 1] z[t+ 1]

s(v)

1−

Fig. 3. IF neuron computational graph.

E. Sinabs Neuron Model

Sinabs [33] is a deep learning library based on PyTorch
provided by Synsense. It is suited to test SNNs to be imple-
mented on Synsense devices such as the speck2e. The sinabs
model of an IF spiking layer is denoted as IAFSqueeze and
it is characterized by the following parameters:

• spike_fn - Function defining the spiking output. If set
to MultiSpike, a neuron will be able to produce mul-

3

tiple spikes in given time step. If set to SingleSpike,
a neuron will produce at most one spike per time step.

• reset_fn - Function defining the reset phase of the
potential. If set to MembraneSubtract, the threshold
value is subtracted from the potential after spiking. If set
to MembraneReset, the potential returns to zero after
spiking.

For testing the network in simulation, the IAFSqueeze
functions are set to MultiSpike mode. If the neurons in
a certain binned frame are able to send multiple spikes,
they can encode more information in that specific time and
the flow can be better characterized. Regarding the reset
function, the MembraneReset option is chosen instead of
MembraneSubtract, in order to avoid membrane potential
accumulation.

F. Recurrent Connections

For time-dependent tasks, IF SNNs would require recurrent
connections in order to make predictions on the current state,
while considering the previous one. There are two possible
recurrent encoder configurations on the speck2e.
Sum Recurrency
In this type of encoder the first layer increases the number of
channels from n1 to n2. The second layer processes the new
input from the first layer, together with the previous state. The
output of the second forward layer is summed directly to the
new incoming state and then fed in the layer.

Fwd. 1 + Fwd. 2

Fig. 4. Sum Recurrency

Concatenation Recurrency
This type of encoder has two forward layers and one recurrent
layer. The first forward layer increases the number of channels
from n1 to n2. The second forward layer processes the output
of the first forward layer concatenated with the one of the
recurrent layer, hence it has 2 · n2 inputs and 2 · n2 output
channels. Finally, the recurrent convolutional layer decreases
the number of channels back from 2 · n2 to n2.

Fwd. 1 // Fwd. 2

Rec.

Fig. 5. Concatenation recurrency diagram.

G. Network Conversion & Weight rescaling

The Speck2e has been successfully used for recognition
tasks (Section II). However, determining optical flow requires
more extensive temporal processing of the events. This is
because the network has to integrate the information of the
previous states in time to determine the current state. With
IF neurons, all the valuable information among layers is
encoded in the spikes and the recurrent connections are the
only memory mechanism in every layer.

Fwd. 1 IF
scale=1.0

Fwd. 2

scale=0.1

Encoder 0

thr=0.1

Rec

scale=0.1

IF
thr=0.1

Fwd. 1 IF
scale=0.1

Fwd. 2

scale=0.01

Encoder 1

thr=0.01

Rec

scale=0.01

IF
thr=0.01

Fig. 6. Weight rescaling diagram.

A common strategy to train SNNs is to first train an ANN
for ReLU activation functions and then replace them with
spiking activation functions, as explained in Cao et al. [35].
This method works well for non time-dependent tasks such
as image classification and object detection [10, 7]. In sinabs,
when substituting ReLU functions with IAFSqueeze, the
thresholds are set to ± 1.0 by default. However, if the synaptic
weights have a different range of values, this thresholds might
not be suitable and the layer might result in too high or
too low activity. Rueckauer et al. [36] proposes a solution
to this problem, which consists in normalizing the activity in
every layer by scaling the weights to be in the appropriate
range. However, this method was only applied to an object
detection task, hence without recurrent connections and time
dependency. In this article we propose the same approach as
in Rueckauer et al.[36], but for a recurrent spiking network.
The main difference is that, while for recognition tasks the
weights are scaled to be in the right rang but still lower than
the thresholds, in our method the weights are required to be
higher than the thresholds.

Without weight rescaling, the information in every layer
tends to accumulate membrane potential, instead of transmit-
ting spikes to the following layers. If the information between

4

layers is not promptly transmitted as it arrives, the recurrent
connections are not going to be activated and therefore the
network will lose the previous states. Setting the threshold
too high with respect to the scale of the synaptic inputs will
result in losing relevant information over time, while setting
it too low will result in excessive information flow.

By observing the range of the output of the ReLU functions
in every layer, a common threshold can be defined for every
encoder. The threshold should be low enough to allow some
spikes to pass through at every binned frame of 5 ms. Note
that finding the optimal threshold value to allow the minimum
number of spikes to pass, while still encoding the relevant
information, is a complex optimization problem. There is not
one ideal scaling factor for the weights, as this will depend
on many parameters such as the spike rate in the dataset, the
network depth, the spike threshold and many more. For this
reason the thresholds will be selected empirically.

In the first layer of the first encoder, the ReLU outputs are
in the range 10−1, thus the upper and lower thresholds are
set to ± 0.1 for all layers of the first encoder. The weights of
the following layer are then re-scaled by 0.1. This pattern of
rescaling the weights by the threshold value of the previous
layer is repeated for all layers, as shown in Figure 6. In the
second encoder the synaptic output range is in the order of
10−2, thus the threshold is set to ± 0.01.

0.0 0.2 0.4 0.6 0.8 1.0
x [-]

0.0
0.2
0.4
0.6
0.8
1.0

Re
LU

(x
) [

-]

0.0 0.2 0.4 0.6 0.8 1.0
x [-]

0
2
4
6
8

10

IA
FS

qu
ee

ze
(x

) [
-]

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps [-]

0

1

Ev
en

ts
 [-

]

Fig. 7. Activation functions and resulting spike rate output.

Figure 7 shows the output of the ReLU function (contin-
uous) compared to the output of the IAFSqueeze function
(discrete) and the resulting spike rate. The idea of ANN-to-
SNN conversion is using only the spikes to transmit informa-
tion through layers and therefore reducing the resolution or
sampling the information. Equation 4 shows that the output of
the IF function zIF is equal to the integer part of the ReLU
output zReLU divided by the threshold vmem. For instance, if
the input of a neuron equal to 0.421 and the threshold of the
neuron is set to 0.1, 4 spikes will be transmitted to all the
neighboring neurons.

zIF =

⌊
zReLU

vmem

⌋
(4)

H. Self-Supervised Loss Function

The network is trained in self-supervised learning. The loss
function for is composed by two terms: contrast maximization
and flow smoothing.

1) Contrast Maximization: this function quantifies the flow
loss given a set of events. It was proposed by Gallego et
al. [37] and it solely relies on the events stream, without
any additional data required. Consider a set of positive and
negative events in a certain spatio-temporal neighborhood. The
events triggered by the same moving edges are expected to
follow the same trajectories. The translational displacement of
the pixels can be described by Equation 5, where (u, v) are
the flow components.(

x′
i

y′i

)
=

(
xi

yi

)
+ (t− t′i)

(
u(xi, yi)
v(xi, yi)

)
(5)

Calculating the correct flow can be interpreted as finding the
best fitting trajectory that passes through the events generated
by the same moving edge. Consider the scenario displayed
in Figure 8. During training the network performs 5 forward
passes before computing the loss. For each of the 5 frames,
the events are transposed in time using the last flow vectors
estimation. Essentially, the 5 frames are used to reconstruct
the events at a reference time. The 5 reconstructions are then
summed together and, if the flow estimation is correct, the
pixels should be aligning without any blur. In reality, the first
optical flow estimates will not be correct and will therefore
result in a blurred reconstructed image (Figure 8). In order
to measure this blur and minimize it, the density of events
per pixels is calculated. If the flow estimation is accurate, the
reconstructed events will be aligning on the same pixel.

image 1 image 2 image 3 image 4 image 5

sum of warped images
with flow prediction

(u, v)

tref tref tref tref tref

t5
t4

t3
t2t1

(u, v) (u, v) (u, v) (u, v)

sum of warped images
with correct flow

Fig. 8. Contrast maximization computation scheme.

To compute the contrast maximization loss function, first
the events are separated by polarity. Following, the average
timestamp image is generated at each pixel for each polarity,
as in Zhu et al. [38].

5

Tp′(x;u|tref) =

∑
j κ(x− x′

j)κ(y − y′j)tj∑
j κ(x− x′

j)κ(y − y′j) + ϵ

κ(a) = max(0, 1− |a|)
(6)

To make the loss function convex, in Paredes-Vallés et al.
[39] the contrast maximization function was scaled with the
number of pixels with at least one warped event (Equation 7).

ℓcontrast(tref) =

∑
x;u T+(x;u|tref)

2 + T−(x;u|tref)
2∑

x[n(x
′) > 0] + ϵ

(7)

2) Flow Smoothing: this term encourages smoothness in
the estimated optical flow field. It is based on the assumption
that neighboring pixels should have similar flow values. The
smoothness function is meant to regularize the output flow and
it is applied in the temporal domain to subsequent per-corner
optical flow estimates.

ℓsmooth =
∑
x,y

∑
i,j∈N (x,y)

ρ(u(x, y)−u(i, j))+ρ(v(x, y)−v(i, j))

(8)
The total loss function used during training to learn optical

flow is Equation 9, where λ is a scalar balancing the two
functions.

Ltotal = ℓcontrast + λℓsmooth (9)

I. Synops Loss Function

As specified in Section III-C, the limit on the number
of synaptic operations is 10 millions synops/s. By synaptic
operation, it is meant all the spikes sent from the neurons of
one layer to the neurons of another layer. In order to regularize
the activity of the layers during training and prevent excessive
spiking, Equation 10 is introduced as an additional term in the
loss function.

loss =
N∑

k=1

(total output)k
(threshold)k(# parameters)k

(10)

The total output of every layer at every step is the total
number of spikes that a layer produces. During training the
network is using ReLU functions and the output of every
neuron is a floating point. However the range of weights values
for every layer changes and, if it is not rescaled, the deeper
layers with lower weight values will have less importance in
the cost function. Moreover, layers with more parameters need
to have a higher spike rate to send more information, thus
the layer output is also scaled by the number of parameters.
The weight of the synops loss term on the total loss function
has to be tuned, in order to achieve a balance that allows to
learn optical flow properly and with the minimum number of
operations.

IV. SIMULATION RESULTS

A. Training and Testing Datasets

The network is trained on two main datasets. The first
one is addressed as CyberZoo dataset[18] and it includes 40
minutes of event data, which are split into 25 minutes for
training and 15 for testing. This dataset includes translational
and rotational motion in multiple directions and at different
speeds. The CyberZoo dataset will be used to quantify the
network’s accuracy with respect to ground truth data and
assess its performance.

The second dataset is provided by the University of Zurich
and it is denoted as Davis dataset [40]. This dataset includes
two main video sequences of 60 seconds each. It contains
translational and rotational motion, however due to its limited
size, it is not as complex and diversified as the CyberZoo
dataset. It was observed that networks trained on the Cyberzoo
dataset have a higher number of synops with respect to
networks trained on the Davis dataset. This is most likely due
to the higher complexity of the Cyberzoo sequences, which
require more spikes to identify the motion. Therefore, for the
hardware experiments, a sequence from the Davis dataset is
used as input in the speck2e, instead of the events coming from
the DVS. This is done primarily to avoid collecting another
dataset and to validate the network on more simple motions.

B. Network Configurations

A total of 5 networks is tested on the datasets and compared
to the peformance of the LIF network used in Paredes-Vallés
et al. [18].

1) RNN-2-S: recurrent neural network with 2 encoders,
sum recurrency and ReLU activation functions.

2) IF-2-S: spiking equivalent of RNN-2-S.
3) RNN-2-C: recurrent neural network with 2 encoders,

concatenation recurrency and ReLU activation functions.
4) IF-2-C: spiking equivalent of RNN-2-C.
Note that the number of encoders is decreased from 3 to 2,

because of the limit on number of convolutional cores on the
speck2e.

C. Results on CyberZoo dataset

The network architectures are tested on the CyberZoo
dataset and compared to the LIF network. The comparison
metrics are Signal-to-Noise Ratio (SNR), Average Endpoint
Error (AEE) and The Ratio of Squared Average Timestamps
(RSAT). Table I and Figure 9 shows the results for the different
network configurations compared to the LIF-3 [18]. All the
metrics are computed on a single sequence from the dataset.
Signal-to-Noise Ratio
To calculate the SNR, a sequence of 5.0 s from the testing
dataset is considered. The network outputs 8 optical flow
predictions, a horizontal and a vertical component for each

of the 4 corners of the image. To distinguish the power of
the signal from the noise, the predictions are transposed to the
frequency domain using Fast Fourier Transform (FFT).

6

250

0

250

BR
 u

 [p
x/

s]

RNN-2-S IF-2-S RNN-2-C IF-2-C

250

0

250

BR
 v

 [p
x/

s]

250

0

250

BL
 u

 [p
x/

s]

0 1 2 3 4 5
Time [s]

250

0

250

BL
 v

 [p
x/

s]

0 1 2 3 4 5
Time [s]

0 1 2 3 4 5
Time [s]

0 1 2 3 4 5
Time [s]

GT
Pred

Fig. 9. Ground truth compared to network prediction for RNN-2-S, IF-2-S, RNN-2-C, IF-2-C

In this way, the main signal frequency can be identified by
observing the peaks. The frequency range of the main signal is
defined by observing the FFT of the ground truth signal. Using
Equation 11 the average SNR can be calculated for each flow
vector signal and compared to the ground truth.

0.50 0.25 0.00 0.25 0.50
Frequency [Hz]

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
/m

s)
²]

GT

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

20

40

60

80
RNN-2-S

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

5

10

15 IF-2-S

Fig. 10. FFT of ground truth signal compared to RNN-2-S and IF-2-S.

0.50 0.25 0.00 0.25 0.50
Frequency [Hz]

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
/m

s)
²]

GT

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

20

40

60

80 RNN-2-C

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

10

20

30

40

50
IF-2-C

Fig. 11. FFT of ground truth signal compared to RNN-2-C and IF-2-C.

Figure 10 and 11 show the FFT of the ground truth signal
compared to the network predictions of the ReLU and IF

network. By zooming in the graph, it is found that the ground
truth has most of its power in the frequencies ±2.5 ·10−3 Hz,
hence this range is chosen to define the main signal. The FFT
shows that the IF prediction is weaker in that range and has
more power in other frequencies, hence the SNR is expected
to be lower.

SNR = 10 · log10
(
Psignal

Pnoise

)
(11)

Average Endpoint Error & Standard Deviation
The Average Endpoint Error (AEE) is a metric used to evaluate
the accuracy of optical flow algorithms. It is calculated by
taking the each prediction of the network per corner of the
image (D) and calculating the squared difference with ground
truth. Then the respective errors of u and v are summed and
the average of all corners is taken. This value represents the
endpoint error at a certain time step. For all the error values
the average and standard deviation can be calculated. The AEE
is the average of all endpoint errors at every time step (N)

ei =
1

D

D∑
j

[
(uj − ûj)

2 + (vj − v̂j)
2
]

(12)

AEE =
1

N

N∑
i

ei STD =

√√√√ 1

N

N∑
i

(ei − AEE)2 (13)

Ratio of Squared Average Timestamps
RSAT is the ratio of the squared sum of the per-pixel and

7

per-polarity average timestamp of the image of warped events
and that of the image of (non-warped) events. Essentially, the
RSAT measures the sharpness of the reconstructed image and
it is an indication of how well the flow is estimated. The lower
the value of this metric, the better the optical flow estimate.
Note that this metric is sensitive to the number of input events.

TABLE I
SNR, AEE AND RSAT FOR THE DIFFERENT NETWORKS ON A CYBERZOO

DATASET SEQUENCE.

Configuration SNR (dB) ↑ AEE ↓ STD ↓ RSAT ↓

LIF-3 [18] 9.09 0.199 0.0531 0.917
RNN-2-S 9.11 0.183 0.0585 0.913
IF-2-S -0.877 0.163 0.0637 0.987
RNN-2-C 12.2 0.211 0.0567 0.896
IF-2-C 6.98 0.171 0.0668 0.965

D. Network Configuration Trade-off
In this section, the results of the different network configu-

rations on the Cyberzoo dataset are discussed.
Recurrency Type
With the same number of encoders, RNN-2-S has a slightly
lower AEE than RNN-2-C and a more or less similar STD,
although this does not necessarily indicate a better perfor-
mance, since the RSAT is lower for concatenation networks.
By observing the predictions compared to ground truth in
Figure 9 it can be seen that both networks are able to follow
the motion fairly accurately. However, in terms of noisiness,
RNN-2-C and IF-2-C have a better SNR. In Figure 9 it can be
seen that RNN-2-S predictions are more subject to additional
fluctuations that are not present in the ground truth signal.
Moreover, when converted, IF-2-S does not work properly
with the weight rescaling method and most of the main signal
seems to be lost. Concatenation seems to work better in this
case, most likely because of its additional convolutional layer
in the recurrent connection. This layer processes the previous
state and it serves as a filter for non-relevant information.
With sum recurrency, the previous state is directly summed
with the new incoming state and then processed, therefore
the convolutional layer does not distinguish between past and
present information.
Network Conversion
Converting RNN to IF inevitably lowers the SNR and in-
troduces additional noisy frequencies. When the network is
converted, the resolution of the information between layers
is reduced and therefore output signal becomes less defined.
With sum recurrency (SNR = -0.877 dB), the conversion has
way more impact on the SNR than with concatenation (SNR
= 6.98 dB). Moreover, when converting, the AEE drops while
the RSAT and STD increase. As specified earlier, a lower AEE
does not indicate better performance. Indeed the STD increase
proves that the errors are more dispersed.
Neuron Models
From the previous discussion, it was established that IF-2-C
appears to be a more suitable option. Compared to LIF-3, IF-
2-C performance worse in most of the metrics. This is because

LIF-3 not only has more hyperparameters than IF-2-C, but also
a higher level of complexity of the neuron model. LIF neurons
are better at capturing temporal dynamics, since not all the
information has to be sent through the spikes and some of
the irrelevant one is filtered out by the leak system. Despite
the limitations, the IF-2-C is able to achieve a comparable
performance with respect to LIF-3.

E. Results on Davis Dataset

The Davis dataset does not include ground truth optical flow,
thus the performance of the network is evaluated by visual
inspection. The size of the dataset sequences is reduced from
128 pixels to 90, in order to further reduce the number of
synaptic operations for hardware implementation. Figure 12
shows the output of IF-2-C on a horizontal and a vertical
motion sequence. The pictures on top represent the color-
coded dense optical flow. Every pixel has a different color
depending on the flow at that point (check Figure 19 for color
map).

F. Synaptic Operations Analysis

Besides using the synops loss term, some of the network
hyperparameters can be altered to influence the number of
synops.
Stride
To minimize the synops, the stride of the first encoder can be
changed to 4, as in the second encoder. By halving the size of
the images in the first encoder, less information is forwarded,
hence the layers produce less synops (Figure 20 and 21).
Number of Channels
Increasing the number of channels can make the network’s
activity more sparse. Choosing a configuration with more
neurons means having more neurons doing less work, therefore
less operations per neuron overall (Figure 22 and 23).
Early Stop
During training, the network establishes the synaptic weights
to optimize for minimal loss. However, in this case the mini-
mum loss is often achieved in the first few epochs. By letting
the network train more, additional connections are formed,
which make the predictions more accurate. These redundant
weights are useful for making the network more precise,
however they increase the number of operations significantly.
If the training is stopped earlier and the model is still able to
estimate the flow accurately, a more operations efficient result
can be obtained (Figure 24 and 25).

Considering the influence of the hyperparameters, a new
network configuration is trained for implementation on the
speck2e (Table IV).

G. Synops Loss Term

Recurrent connections on the speck2e process at a frequency
of 1 MHz, thus the number of synops could change signifi-
cantly compared to IF-2-C in simulation. Nevertheless, the
total number of spikes produced by all the layers can still be
reduced by including the synops loss term explained in Section
III-I.

8

0 1 2 3 4 5
Time [s]

8

4

0

4

8

Op
tic

al
 F

lo
w

[p
x/

s]

u
v

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time [s]

u
v

Fig. 12. IF-2-C optical flow vectors for the Davis dataset sequences.

0.78

0.80

0.82

0.84

0.86

0.88

Fl
ow

 L
os

s [
-]

w = 0
w = 0.001
w = 0.01
w = 0.1
w = 1

0 2 4 6 8
Epochs [-]

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Sy
no

ps
 L

os
s [

-]

w = 0
w = 0.001
w = 0.01
w = 0.1
w = 1

Fig. 13. Flow and synops loss during training with different weighting.

Figure 13 shows the flow loss and synops loss over 10
epochs. By looking at the synops loss, it is clear that 0.01 is
an optimal value for the weight, as it allows the flow loss to
converge to a slightly higher value, while keeping the synops
lower. If the weight is increased to 0.1, the network minimizes
the synops to zero and it is prevented from learning flow. If it
is decreased to 0.001, its influence is almost unnoticeable and
the synops increase to more than necessary. Figure 14 shows
the influence of the loss function on the total number of spikes
of all the layers in the network.

V. HARDWARE IMPLEMENTATION

A. Hardware Setup Overview

The speck2e hosts the 2 encoders and the pooling layer,
while the prediction layer post-processes the spikes outside the
chip and translate them into optical flow vectors. The spikes
are binned in time windows of 5 ms before being fed into

0 1 2 3 4 5
Time [s]

0

1000

2000

3000

4000

5000

6000

7000
Nu

m
be

r o
f E

ve
nt

s [
-]

no synops loss
synops loss

Fig. 14. Total number of synops for network trained with synops loss
compared to network trained without synops loss.

the prediction layer. For the preliminary tests, the input is not
from the DVS, but instead a sequence from the Davis dataset is
used. A diagram of the hardware setup is shown in Figure 15.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [s]

0

200

400

600

800

1000

1200

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e
speck2e clamped

Fig. 16. Spike activity comparison

B. Spike Activity Comparison

Figure 16 shows the total number of spikes for every 5 ms
frame in the first layer of the first encoder. While in simulation
the layer follows a specific trend dictated by the input spikes,

9

(32, 6, 6)(12, 23, 23)(2, 90, 90)

C
O

N
V

PO
O

LI
N

G

EN
C

O
D

ER
 1

(15, 1, 1)

C
O

N
V

EN
C

O
D

ER
 2

u BR

v BR

u BL

v BL

u TR

v TR

u TL

v TL

(8, 1, 1)

kernel = (6,6)
stride = 1

kernel = (1,1)
stride = 1

kernel = (3,3)
stride = 4

kernel = (3,3)
stride = 4

On-chip Off-chip

Fig. 15. Overview of the network implementation on the speck2e

on the speck2e the layer appears to be reaching a saturation
point, after which it cannot produce more spikes. When the
input spikes increase, the output spikes of the layer increase
up to a certain point and then they start accumulating. When
the inputs decrease again around 1000 ms, the accumulated
outputs are released sequentially. Accumulation obviously
results in information loss, because the timestamp of the spikes
is delayed. Although it is still possible to retrieve the optical
flow prediction by entering a predefined sequence (Figure 18),
these settings are not ideal for real-time vision and control. If
the network circuit received inputs from the DVS directly and
the spikes between layers started to accumulate, this would
result in a backlog, since the DVS would not be able to
transmit more spikes to the network.

C. Weight Clamping

Although different methods to reduce the spikes were
implemented in Section IV-F, the convolutional cores still
cannot output as many spikes as necessary to predict the flow
properly. This gap in performance between simulation and
hardware is most likely due the weight values being larger
than the thresholds.

To prove this, the network is tested with the same input
sequence, but the weights are clamped to a maximum equal
to the threshold and a minimum equal to the negative of
the threshold. Figure 17 shows the effect of clamping on the
weight distribution. In the first layer of the first encoder the
quantized thresholds are approximately ± 30. Constraining
the weights to the threshold values results in a reduction
of information, because for every synaptic input, a neuron
can spike at most once. This restricts the range of possible
neuronal activity patterns, hence it reduces the accuracy of
the network. However, the spike activity does not get stuck at
the saturation point anymore (Figure 16 red line). With these
settings, the information flows more smoothly throughout the
network without accumulating.

100 50 0 50 1000
5

10
15
20

Fr
eq

ue
nc

y

30 20 10 0 10 20 30
Weight Value

0

10

20

30

40

Fr
eq

ue
nc

y

Fig. 17. Effect of clamping on weights distribution in first layer of first
encoder.

D. Optical Flow Prediction

The spikes of the pooling layer are binned into frames and
fed in the last off-chip layer. The resulting optical flow is
shown in Figure 18.
IF-2-C on speck2e
When the weights are not clamped, the network prediction
manages to follow the simulation result. However, especially
at the peaks, the prediction from the speck2e deteriorates. This
is because, for the network to be accurate at higher magnitudes
of optical flow, more spikes need to be transmitted between the
layers, which is not possible if the layers reach the saturation
point.
IF-2-C on speck2e with clamped weights
By clamping the weights, the layers are able to send spikes
without reaching the limit. However, the network parameters
are way more different from the trained solution, hence the
prediction loses accuracy. This proves that the limitations of
the speck2e are encountered when using weights values with
higher values than thresholds, as this results in a too high
demand for spikes processing.

10

6

4

2

0

2

4

u
[p

xl
/s

]

simulation
speck2e

0 1 2 3 4 5
Time [s]

6

4

2

0

2

4

u
[p

xl
/s

]

simulation
speck2e clamped

Fig. 18. Optical flow prediction for normal network and network with clamped
weights on the speck2e.

It is interesting to notice that for negative flow values, the
speck2e output is more accurate than for positive ones. This
is likely because during training, the network associated fewer
spikes with negative flow and more spikes with positive flow.
To predict higher values of positive flow, the layers will need
to spike more than allowed by the device limitations. However,
for negative flow values, less spikes are required and a better
flow estimate is obtained. Using clamped weights, the range of
possible optical flow values is roughly [-4,1] pixel/s. To further
improve the prediction, one could re-train the network by
constraining the activity to obtain a range of possible optical
flow that is symmetric in positive and negative direction.

VI. RESULTS DISCUSSION & CONCLUSION

In this paper, we presented a novel approach for optical flow
determination using neuromorphic computing. The speck2e
device from Synsense was used in the experiments and the
network configuration was inspired by Paredes-Vallés et al.
[18]. This device could result in lighter and more power
efficient MAVs, as it includes sensing and computing into one
board. It was shown that it is possible to estimate optical flow
from event-based datasets in simulation with a RNN trained
and converted to SNN. A mechanism of weight rescaling was
applied on the network parameters to avoid information loss
between the layers after the conversion. Although the simula-
tion results seem promising, they are based on the assumption
that neurons on board of the speck2e can have synaptic weight
values higher than the thresholds and output a spike rate
proportional to such weight. Uploading and testing a network
with this characteristics is possible, however the resulting

performance of the network on hardware is quite different
than in simulation. It was noticed that the convolutional cores
reach a limit on the number of synaptic operations, despite
the regularization term used during training. This saturation
point is reached if the weights are higher than the thresholds,
since the potential reaches its limit much faster. The result
is spikes accumulation which results a loss of information.
It is possible to alter the parameters to make the network run
without spikes accumulation. This is achieved by clamping the
weight values to the threshold limits. Note that this severely
reduces the range of possible weight values, hence it makes
the network more limited and the prediction less exact.

This paper served to explore the limitations and challenges
of training a speck2e-compatible IF network to estimate opti-
cal flow. With the help of this analysis it might be possible to
further improve the performance of the network, by re-training
it under the constraints of the device. A good improvement
would be re-training the network to have its range of possible
optical flow values to be symmetric in positive and negative
direction. One limitation that is still constraining the speck2e
is the limit on synaptic operations per second. This represent
a complex challenge, considering that all the information has
to be sent through the spikes between layers.

REFERENCES

[1] Carlo Michaelis, Andrew B. Lehr, and Christian Tet-
zlaff. “Robust Trajectory Generation for Robotic Con-
trol on the Neuromorphic Research Chip Loihi”. In:
Frontiers in Neurorobotics 14 (2020). ISSN: 1662-5218.
DOI: 10.3389/fnbot.2020.589532. URL: https://www.
frontiersin.org/articles/10.3389/fnbot.2020.589532.

[2] Raphaela Kreiser, Alpha Renner, and Yulia San-
damirskaya. “Error-driven learning for self-calibration
in a neuromorphic path integration system”. In: Aug.
2019.

[3] Raphaela Kreiser et al. “Error estimation and correction
in a spiking neural network for map formation in neu-
romorphic hardware”. In: May 2020, pp. 6134–6140.
DOI: 10.1109/ICRA40945.2020.9197498.

[4] Catherine D Schuman et al. “A survey of neuromorphic
computing and neural networks in hardware”. In: arXiv
preprint arXiv:1705.06963 (2017).

[5] Wolfgang Maass. “Networks of spiking neurons: The
third generation of neural network models”. In: Neural
Networks 10.9 (1997), pp. 1659–1671. ISSN: 0893-
6080. DOI: https: / /doi .org/10.1016/S0893- 6080(97)
00011-7. URL: https://www.sciencedirect.com/science/
article/pii/S0893608097000117.

[6] André Grüning and Sander M Bohte. “Spiking neu-
ral networks: Principles and challenges.” In: ESANN.
Bruges. 2014.

[7] Caterina Caccavella et al. Low-power event-based face
detection with asynchronous neuromorphic hardware.
2023. arXiv: 2312.14261 [cs.NE].

11

[8] David Drazen et al. “Toward real-time particle track-
ing using an event-based dynamic vision sensor”. In:
Experiments in Fluids 51 (Nov. 2011), pp. 1465–1469.
DOI: 10.1007/s00348-011-1207-y.

[9] Zhenjiang Ni et al. “Asynchronous event-based high
speed vision for microparticle tracking”. In: Journal of
microscopy 245 (Nov. 2011), pp. 236–44. DOI: 10.1111/
j.1365-2818.2011.03565.x.

[10] Arnon Amir et al. “A Low Power, Fully Event-Based
Gesture Recognition System”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). July 2017.

[11] Enea Ceolini et al. “Hand-Gesture Recognition Based
on EMG and Event-Based Camera Sensor Fusion: A
Benchmark in Neuromorphic Computing”. In: Frontiers
in Neuroscience 14 (2020). ISSN: 1662-453X. DOI: 10.
3389/fnins.2020.00637. URL: https://www.frontiersin.
org/articles/10.3389/fnins.2020.00637.

[12] Haiyang Chao, Yu Gu, and Marcello Napolitano. “A
Survey of Optical Flow Techniques for Robotics Nav-
igation Applications”. In: Journal of Intelligent I&
Robotic Systems 73 (May 2013). DOI: 10.1007/s10846-
013-9923-6.

[13] S. S. Beauchemin and J. L. Barron. “The Computation
of Optical Flow”. In: 27.3 (Sept. 1995), pp. 433–466.
ISSN: 0360-0300. DOI: 10.1145/212094.212141. URL:
https://doi.org/10.1145/212094.212141.

[14] Javaan Chahl, Mandyam Srinivasan, and Shaowu
Zhang. “Landing Strategies in Honeybees and Appli-
cations to Uninhabited Airborne Vehicles”. In: I. J.
Robotic Res. 23 (Feb. 2004), pp. 101–110. DOI: 10 .
1177/0278364904041320.

[15] Harald E. Esch and John E. Burns. “Distance Estimation
by Foraging Honeybees”. In: Journal of Experimental
Biology 199.1 (Jan. 1996), pp. 155–162. ISSN: 0022-
0949. DOI: 10 . 1242 / jeb . 199 . 1 . 155. eprint: https : / /
journals . biologists . com / jeb / article - pdf / 199 / 1 / 155 /
3107314/jexbio\ 199\ 1\ 155.pdf. URL: https://doi.
org/10.1242/jeb.199.1.155.

[16] Mandyam Srinivasan. “Honeybees as a Model for the
Study of Visually Guided Flight, Navigation, and Bio-
logically Inspired Robotics”. In: Physiological reviews
91 (Apr. 2011), pp. 413–60. DOI: 10 . 1152 / physrev.
00005.2010.

[17] Guillermo Gallego et al. “Event-based vision: A sur-
vey”. In: IEEE transactions on pattern analysis and
machine intelligence 44.1 (2020), pp. 154–180.

[18] Federico Paredes-Vallés et al. “Fully neuromorphic vi-
sion and control for autonomous drone flight”. In: arXiv
preprint arXiv:2303.08778 (2023).

[19] Loihi 2: A New Generation of Neuromorphic Comput-
ing. URL: https://www.intel.com/content/www/us/en/
research/neuromorphic-computing.html.

[20] Speck: Event-Driven Neuromorphic SoC — Synsense.
URL: https://www.synsense.ai/products/speck-2/.

[21] Neuromorphic Intelligence I& Application Solutions —
Synsense. URL: https://www.synsense.ai/.

[22] Ole Richter et al. Speck: A Smart event-based Vision
Sensor with a low latency 327K Neuron Convolutional
Neuronal Network Processing Pipeline. 2023. arXiv:
2304.06793 [cs.NE].

[23] Fernando Perez-Peña, Alejandro Linares-Barranco, and
Elisabetta Chicca. “An approach to motor control for
spike-based neuromorphic robotics”. In: 2014 IEEE
Biomedical Circuits and Systems Conference (BioCAS)
Proceedings. 2014. DOI: 10 . 1109 / BioCAS . 2014 .
6981779.

[24] J.C. Gallacher and J.M. Fiore. “Continuous time re-
current neural networks: a paradigm for evolvable
analog controller circuits”. In: Proceedings of the
IEEE 2000 National Aerospace and Electronics Con-
ference. NAECON 2000. Engineering Tomorrow (Cat.
No.00CH37093). 2000, pp. 299–304. DOI: 10 . 1109 /
NAECON.2000.894924.

[25] D. Roggen et al. “Hardware spiking neural network with
run-time reconfigurable connectivity in an autonomous
robot”. In: NASA/DoD Conference on Evolvable Hard-
ware, 2003. Proceedings. 2003, pp. 189–198. DOI: 10.
1109/EH.2003.1217666.

[26] Di Hu et al. “Digital implementation of a spiking neu-
ral network (SNN) capable of spike-timing-dependent
plasticity (STDP) learning”. In: 14th IEEE International
Conference on Nanotechnology. 2014, pp. 873–876.
DOI: 10.1109/NANO.2014.6968000.

[27] Patrick Rocke et al. “Reconfigurable Hardware Evolu-
tion Platform for a Spiking Neural Network Robotics
Controller”. In: Reconfigurable Computing: Architec-
tures, Tools and Applications. Ed. by Pedro C. Diniz
et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 373–378. ISBN: 978-3-540-71431-6.

[28] Giacomo Indiveri and Paul Verschure. “Autonomous
vehicle guidance using analog VLSI neuromorphic sen-
sors”. In: Artificial Neural Networks — ICANN’97.
Ed. by Wulfram Gerstner et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 811–816. ISBN:
978-3-540-69620-9.

[29] Scott Koziol, Stephen Brink, and Jennifer Hasler. “A
Neuromorphic Approach to Path Planning Using a Re-
configurable Neuron Array IC”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 22.12
(2014), pp. 2724–2737. DOI: 10 . 1109 / TVLSI . 2013 .
2297056.

[30] Jesse J. Hagenaars et al. “Evolved Neuromorphic Con-
trol for High Speed Divergence-based Landings of
MAVs”. In: CoRR abs/2003.03118 (2020). arXiv: 2003.
03118. URL: https://arxiv.org/abs/2003.03118.

[31] Steven Abreu et al. “Flow Cytometry With Event-Based
Vision and Spiking Neuromorphic Hardware”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.
June 2023, pp. 4139–4147.

12

[32] Kangrui Du et al. Temporal Flexibility in Spiking Neural
Networks: A Novel Training Method for Enhanced
Generalization Across Time Steps. 2024. URL: https :
//openreview.net/forum?id=RmQAKu1wCe.

[33] Sinabs (Sinabs Is Not A Brain Simulator). URL: https:
//sinabs.readthedocs.io/en/1.2.8/index.html.

[34] Samna. URL: https://pypi.org/project/samna/.
[35] Yongqiang Cao, Yang Chen, and Deepak Khosla. “Spik-

ing Deep Convolutional Neural Networks for Energy-
Efficient Object Recognition”. In: International Journal
of Computer Vision 113 (May 2015), pp. 54–66. DOI:
10.1007/s11263-014-0788-3.

[36] Bodo Rueckauer et al. “Conversion of Continuous-
Valued Deep Networks to Efficient Event-Driven Net-
works for Image Classification”. In: Frontiers in Neu-
roscience 11 (2017). ISSN: 1662-453X. DOI: 10.3389/
fnins.2017.00682. URL: https: / /www.frontiersin.org/
journals / neuroscience / articles / 10 . 3389 / fnins . 2017 .
00682.

[37] Guillermo Gallego, Henri Rebecq, and Davide Scara-
muzza. “A Unifying Contrast Maximization Framework
for Event Cameras, with Applications to Motion, Depth,
and Optical Flow Estimation”. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
2018, pp. 3867–3876. DOI: 10.1109/CVPR.2018.00407.

[38] Alex Zihao Zhu et al. “Unsupervised Event-based
Learning of Optical Flow, Depth, and Egomotion”. In:
CoRR abs/1812.08156 (2018). arXiv: 1812.08156. URL:
http://arxiv.org/abs/1812.08156.

[39] Federico Paredes-Vallés, Jesse J. Hagenaars, and Guido
de Croon. “Self-Supervised Learning of Event-Based
Optical Flow with Spiking Neural Networks”. In: CoRR
abs/2106.01862 (2021). arXiv: 2106.01862. URL: https:
//arxiv.org/abs/2106.01862.

[40] Elias Mueggler et al. “The Event-Camera Dataset and
Simulator: Event-based Data for Pose Estimation, Vi-
sual Odometry, and SLAM”. In: CoRR abs/1610.08336
(2016). arXiv: 1610.08336. URL: http://arxiv.org/abs/
1610.08336.

13

APPENDIX A
OPTICAL FLOW COLORMAP

Fig. 19. Optical flow color map.

APPENDIX B
NETWORK CONFIGURATION DETAILS

This section includes the network configuration details, meaning the channels number, size, kernel, stride and padding for
each convolutional layer.

TABLE II
NETWORK ARCHITECTURE FOR RNN-2-S ON CYBERZOO DATASET.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 2 4 180 90 3 2 1
Rec. 4 4 90 90 3 1 0

Encoder 1 Fwd. 4 8 90 23 3 4 1
Rec. 8 8 23 23 3 1 0

Pooling 8 8 23 1 23 1 0
Prediction 8 8 1 1 1 1 0

TABLE III
NETWORK ARCHITECTURE FOR RNN-2-C ON CYBERZOO DATASET.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 1 2 4 180 90 3 2 1
Fwd. 2 8 8 90 90 3 1 1

Rec. 8 4 90 90 3 1 0

Encoder 1 Fwd. 1 8 16 90 23 3 4 1
Fwd. 2 32 32 23 23 3 1 1

Rec. 32 16 23 23 3 1 0

Pooling 32 8 23 1 23 1 0
Prediction 8 8 1 1 1 1 0

TABLE IV
NETWORK ARCHITECTURE FOR RNN-2-C ON SPECK.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 1 2 6 90 23 3 4 1
Fwd. 2 12 12 23 23 3 1 1

Rec. 12 6 23 23 3 1 0

Encoder 1 Fwd. 1 12 16 23 6 3 4 1
Fwd. 2 32 32 6 6 3 1 1

Rec. 32 16 6 6 3 1 0

Pooling 32 15 6 1 6 1 0
Prediction 15 8 1 1 1 1 0

14

APPENDIX C
EFFECT OF HYPERPARAMETERS ON SYNOPS

This section includes the plots of number of synaptic operations and maximum number of operations per neuron over time,
for the first convolutional layer for different network configurations. In each pair of plots, a single hyperparameter was altered
to observe the effect on the synaptic operations.

0 1000 2000 3000 4000 5000
Time [ms]

0
1000
2000
3000
4000
5000
6000
7000

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

10

20

30

40

50

60

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

Fig. 20. Spike activity in RNN-2-C with stride 2 in first encoder.

0 1000 2000 3000 4000 5000
Time [ms]

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

0 1000 2000 3000 4000 5000
Time [ms]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

Fig. 21. Spike activity RNN-2-C with stride 4 in first encoder.

15

0 1000 2000 3000 4000 5000
Time [ms]

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

20

40

60

80

100

120

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Fig. 22. RNN-2-B with increased number of channels.

0 1000 2000 3000 4000 5000
Time [ms]

0

500

1000

1500

2000

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
25
50
75

100
125
150
175
200

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Fig. 23. RNN-2-C with decreased number of channels.

16

H

0 1000 2000 3000 4000 5000
Time [ms]

0

500

1000

1500

2000

2500
Nu

m
be

r o
f E

ve
nt

s [
-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
10
20
30
40
50
60
70

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Fig. 24. RNN-2-C after 80 epochs.

0 1000 2000 3000 4000 5000
Time [ms]

0
250
500
750

1000
1250
1500
1750

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

10

20

30

40

50

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Fig. 25. RNN-2-C after 10 epochs.

17

Part II

Literature Study

20

1
Frame-Based Optical Flow

In this chapter, Section 1.1 introduces the concept of optical flow, Section 1.2 discusses the conven-
tional methods for optical flow determination and Section 1.3 treats the deep learning methods.

1.1. General
Optical flow is a concept in computer vision that quantifies the apparent motion of points in an image.
It can be described as the vector field defining the motion of the individual pixels in the image. Optical
flow draws inspiration from biology and especially from insects and birds. It was discovered that bees
exploit optical flow to land by keeping the image velocity constant [2]. Other studies also hypothesized
that bees use image motion to estimate distances and avoid obstacles [3, 4].

In the field of robotics, optical flow is used to project the three-dimensional motion of objects, onto the
two-dimensional image plane of the visual sensor [5]. Applications of this concept are mainly in the
field of navigation and obstacle avoidance for both ground and aerial robots.

1.2. Conventional Methods
Conventional optical flow estimation techniques can be classified in three main categories: intensity-
based differential methods, frequency-based methods and correlation-based methods [5].

1.2.1. Intensity-Based Differential Methods
Differential methods use the spatio-temporal derivatives of the intensity function I(x, y, t) of each pixel.
Note that the intensity value is also influenced by lighting conditions and not only by the movement of
the visual sensor. However, most of the computation algorithms for optical flow assume that changes
due to light are negligible compared to changes due to motion [6]. After a time step dt every pixel
is displaced in the 2D plane by dx and dy. The velocity vectors describing the displacement are the
optical flow components u and v, as shown in Equation 1.1 [5].

I(x+ dx, y + dy, t+ dt) = I(x, y) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt (1.1)

Because Equation 1.1 does not provide enough information to calculate the flow components at every
pixel, algorithms such as the Lucas-Kanade [7] assume that the local flow within a certain region is
approximately constant, thus the pixels have the same u and v and the change in intensity is approx-
imately zero (Equation 1.2). In this way, the problem can be solved using least-squared regression
(Equation 1.3).

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (1.2)

21

1.3. Deep Learning Methods 22

Ix(1, 1) Iy(1, 1)
Ix(k, l) Iy(k, l)

...
...

Ix(n, n) Iy(n, n)

[

u
v

]
=

It(1, 1)
It(k, l)

...
It(n, n)

 (1.3)

Similarly, the Horn-Shunck algorithm [8] assumes that neighboring points have similar velocities and
the velocity field varies smoothly everywhere in the image. To measure the smoothness of the optical
flow, the Laplacians of u and v are computed and the squared sum is minimized. Despite being old,
the differential methods for optical flow are still being used for navigation tasks such as velocity and
height estimation [9, 10, 11, 12, 13].

1.2.2. Frequency-Based Methods
Frequency-based methods use the frequency domain representation of images to estimate motion. By
examining the phase shifts and frequency components between corresponding points of consecutive
frames, the optical flow vectors can be reconstructed. These methods have proved to be better at
extracting optical flow features from random dot patterns, since the resulting energy may be more
readily extracted in the frequency domain [5]. Examples of these methods are explained Adelson and
Bergen [14], Hegeers [15] and Fleet and Jepson [16]. Despite the efficiency, frequency-based methods
are less commonly used in on board applications because of the high computational demand.

1.2.3. Correlation-Based Methods
Correlation-based techniques are based on the idea that corresponding points in consecutive frames
of an image sequence will exhibit a high degree of similarity. By comparing a small window in one
frame to a region in the following frame using cross-correlation, the optical flow vectors can be de-
rived. The correct displacement will be the one that maximizes the similarities between the two regions.
Correlation-based techniques have been used for real-time applications by Kendoul, Fantoni and Non-
ami [17].

1.3. Deep Learning Methods
In recent years, advancements in deep learning have made Convolutional Neural Networks (CNNs) a
popular choice for learning optical flow. Dosovitskiy et al. [18] proposed a CNN trained in supervised
manner on ground truth flow data. The networks was able to predict the flow from 2 images with suf-
ficient accuracy. Ranjan et al. [19] introduced a coarse-to-fine approach. At every level of resolution,
one image is warped by the current flow estimate to compute the updated flow. A different neural net-
work is trained for every level. Because of the difficulty of acquiring labeled data, unsupervised learning
methods have been developed [20, 21, 22]. These involve using prior knowledge and including a loss
function to capture the flow features from the data. For instance, the loss functions are brightness con-
stancy loss, gradient constancy loss and spatial smoothness loss. Additional deep learning methods
involving SNNs will be later exposed in Chapter 4.

2
Event-Based Cameras

This section will treat Event Based Cameras (EBC), a state-of-the-art biologically-inspired technology
in the field of computer vision. Section 2.1 will explain the working principle, Section 2.2 will outline
the advantages of these sensors and the different applications in the world of robotics will be treated
in Section 2.3.

2.1. Working Principle
Standard vision sensors are limited by their acquisition method. Normal cameras output a sequence
of shots at discrete points in time, therefore they are constrained by the frame rate. Additionally, if
the scene is not changing significantly, most of the acquired information is redundant and it causes
latency and high power consumption. EBCs are dynamic sensors that only respond to brightness
changes in the image. Every pixel works individually and outputs a stream of variables called ”events”,
representing a positive or negative change in brightness in the image. EBCs working principle is much
closer to biological vision systems, where the neurons’ detect the changes in the scene and react
individually and asynchronously [23]. This acquisition method has the potential to reduce the latency
and power consumption significantly.

Figure 2.1: EBC compared to standard cameras [24].

When combining EBCs with SNNs, the events enter the network asynchronously and they are rep-
resented by the x and y coordinates in the image, the time and the polarity pk (positive or negative
change in brightness). Every time a pixel records an event, it memorizes the log intensity of the bright-
ness change ∆L (xk, tk). The pixel will only output another event if the next change in brightness is
higher than a threshold C with respect to the saved value. Equation 2.2 shows the condition to be
satisfied for an event to occur.

23

2.2. Advantages 24

∆L (xk, tk)
.
= L (xk, tk)− L (xk, tk −∆tk) (2.1)

∆L (xk, tk) = pkC (2.2)

The number of events produced by EBC is proportional to how fast the image is changing. If the bright-
ness changes due to light variations are not significant, the events can be used to describe the motion
of the objects in the scene and therefore the relative motion of the camera itself. The pixel sensors have
a bandwidth limit on how many events can be generated, hence some of the high frequency variations
is filtered out.

2.2. Advantages
EBC show numerous advantages compared to standard cameras [25]:

• Power consumption. When a pixel detects no changes in brightness, it does not produce outputs.
As a consequence, the output is minimized and only the relevant information in the image is
detected. This leads to a reduction in power consumption.

• Lower latency. Figure 2.1 shows the differences between a standard camera and an EBC. For
standard cameras, an entire frame is processed at a certain limited frequency. Meanwhile, the
individual pixel sensors in the EBC constantly output events asynchronously and independently.
As a result, the events are processed as they occur with minimal latency.

• High temporal resolution. The event-monitoring system in EBCs is an analog circuit and it reacts
extremely fast, even to small changes. In this way, EBC are capable of capturing fast movements
accurately without motion blur issues and with high temporal resolution.

• High dynamic range. EBCs have extremely high dynamic range, meaning that they can capture
small changes in brightness in daylight and moonlight. However, this also means that they are
quite sensitive to flickering lights from fluorescent or LED lights. Flickering light produces more
unwanted events that need to be filtered out [26].

2.3. Applications
EBCs have been used in combination with SNNs for different applications such as image recognition
and classification, image segmentation, object detection and tracking and optical flow estimation (the
latter is better explained in Chapter 4).

Because EBCs only work for moving scenery, the main challenge for classification consists in capturing
the key features of a moving object. For this reason, EBCs are mainly used to recognize objects
from their movement or gestures [27, 28]. Another popular application is the event-based version of
the MNIST dataset or N-MNIST [29]. This is mainly used as a benchmark problem to validate SNNs
architectures and/or neuromorphic hardware [30, 31].

Image segmentation is especially challenging for EBCs, because events carry very little information
about the objects. To overcome this issue, additional information is provided, for instance a known ob-
ject shape or motion. The difference between the expected features and the obtained ones is estimated
and used as a loss function [32, 33].

Regarding object detection and tracking, the main challenge is to identify correspondences between
events at different times and in different areas of the image, belonging to the same object. Some
examples have a stationary camera, capturing moving objects [34, 35]. Moreover, including additional
information about the object can reduce the computations [36].

3
Spiking Neural Networks

This chapter elaborates on SNN and their characteristics. Section 3.1 explains the bio-inspired working
principle. Section 3.2 treats the different neuron models. In Section 3.3, the different hyperparameters
of SNNs and the training challenges are exposed. Finally, Section 3.4 discusses on using SNNs in
combinations with recurrent connections.

3.1. Working Principle
The neurons’ mechanism in SNNs is inspired to the working principle of biological neurons. Real neu-
rons consist of multiple parts: dendrites (where the neuron receives information), cell body (where the
information travels) and axon (where the neuron transmits information). The connections between the
axons and dendrites of different neurons are called synapses and they allow signals to be transmitted
all over the nervous system. When a neuron accumulates a certain amount of charge received from
other neurons, it generates an action potential that is transmitted through the synaptic connection and
influences the charge of its neighboring neurons. This phenomenon is called firing and its occurrence
depends on the membrane potential threshold of the neuron.

Figure 3.1: (a) Biological neuron. (b) Neuron schematic with input and output spikes. (c) Membrane potential over time. [37]

In SNNs, neurons are treated as dynamical systems that receive discrete electrical pulses called
”spikes”. The spikes alter the membrane potential of the neuron, therefore modifying its state in time.
Each neuron spikes to its neighbours when the membrane potential exceeds a certain threshold. The
information inside the network is processed asynchronously and sparsely, thus each neuron in the
every layer receives inputs independently [37].

The main advantage of SNNs over ANNs lies in the way the inputs are processed. In SNNs, the
incoming spikes are processed asynchronously, as each neuron works independently. Moreover, when
used in combination with an EBCs, the information is mostly sparse, since only changes in brightness

25

3.2. Neuron Models 26

in the image are fed in the network. This allows for faster computations and therefore lower power
consumption and latency [38].

3.2. Neuron Models
Spiking neurons can be modelled in different ways, depending on the application. The most relevant
models are here introduced.

3.2.1. Leak Integrate & Fire
The most commonly used neuron model is the Leak Integrate and Fire (LIF). Similarly to real neurons,
LIF neurons also have a membrane potential that increases as the neuron receives more spikes. The
membrane potential ”leaks”, meaning that it decreases at a certain rate after receiving an input. If
the rate of spikes is high enough and the potential increases enough to exceed a certain threshold,
the neuron ”fires” a spike to its neighboring neurons. Figure 3.1 shows how the membrane potential
increases, when more spikes are received. Equation 3.1 shows the how LIF neurons are modelled in
sinabs [39], a SNN simulator. The membrane potential at step [t+1] is given as the sum of the potential
Vmem(t) and the sum of all input currents

∑
z(t). τmem is the membrane potential time constant and

Vmin is the lower bound for membrane potential. The leaking behaviour of the neuron is given by the
τmem factor, which represents how fast the membrane potential decays. A larger time constant means
a slower response. When Vmem(t) exceeds the threshold, the potential goes back to the reset value.

Vmem(t+ 1) = max
(
αVmem(t) + (1− α)

∑
z(t), Vmin

)
α = exp (−1/τmem)

if Vmem(t) >= Vth, then Vmem → Vreset

(3.1)

3.2.2. Integrate & Fire
Another diffused neuron model is Integrate and Fire (IF). The difference with LIF is that the membrane
potential does not decay after spiking. The IF behaviour can be described by setting the time constant
equal to infinity, so that the α term is cancelled out and Equation 3.2 [39] is obtained. Even without
time constant, a leaking behaviour can still be implemented by using biases. A bias is a constant term
that is subtracted from the output of a layer at a certain frequency. Bias terms can serve as linear leaks
for a certain layer, as they help decreasing the membrane potential and allow for short term memory in
the network. An example of how the membrane potential behaves for IF neurons with leaks is shown
in Figure 5.5.

Vmem(t+ 1) = Vmem(t) +
∑

z(t)− bias

if Vmem(t) >= Vth, then Vmem → Vreset
(3.2)

3.3. Hyperparameters & Training 27

Figure 3.2: IF and LIF membrane potentials after input spikes. The neurons were simulated using sinabs [39]

Figure 3.2 shows the simulated response of a LIF and a IF neuron to the same set of input spikes. As
seen from the membrane potential graphs, LIF neurons are able to capture more complex temporal
features of the inputs. Other neuron models have been implemented for different applications. Some
of the more biologically plausible models, such as the Hodgkin-Huxley model [40], have been used
to simulate accurately biological neurons behaviour [41]. However, LIF is commonly the most popular
choice for neuromorphic chips, as it presents a complex enough behaviour to be utilized for SNNs tasks
[42].

3.3. Hyperparameters & Training
Training SNN represents one of the main challenges in the field of neuromorphic computing. Traditional
training methods, such as backpropagation for ANN or backpropagation through time for RNN, cannot
be applied to SNN, because of the discontinuous nature of spikes. For simple non-time-dependent
problems such as image classification, an ANN can be trained and then converted to SNN. This method
is known as shadow training and it allows for efficient learning without significant loss of accuracy [43,
44]. However, training a SNN directly allows the network to iterate spiking hyperparameters, such as
thresholds, leaks and time constants. In order to do so, other techniques need to be used.

3.3.1. Surrogate Gradients
One of the main challenges of training SNNs is the non-linearity of the spiking inputs, which means
that classic backpropagation through time cannot be used directly. For supervised and self-supervised
learning problems, gradient-based optimization is required because it allows to adjust the weights and
learn according to a loss function. To implement backpropagation, Surrogate Gradients (SG) are intro-
duced as a substitute to the non-linear activation functions. SG are smooth functions that are substi-
tuted to the derivatives of a spiking function [45]. In this way, the network can be trained with gradient-
based optimization algorithms. Zenke et al. [46, 45] studied the robustness of surrogate gradient
learning and showed that SG can achieve performances comparable to ANNs.

The first algorithm to perform backpropagation on SNN is Spikeprop by Bohte et al. [47], which was
applied to the classic XOR problem. The aim of Spikeprop is to associate certain target firing times to
certain input patterns and then compare the actual firing time. Following, the Slayer network proposed
by Shrestha et al. [48] included a loss function based on both spiking times and the number of output
spikes for a given interval.

3.4. Recurrency in Spiking Neural Networks 28

3.3.2. Learnable Hyperparameters
Besides the different neuron models and surrogate functions, other hyperparameters can be chosen
to shape the response of the input received by the neuron and the output produced by it. Changing
parameters such as the threshold, the bias, the time constant and the reset function has an impact on
the learning of the network that shall be discussed.

By increasing the time constant, the response is stretched out in the time direction. Having a larger time
constant implies having a slower charge of the potential and a slower decay, as shown in Figure 3.3. In
biological brains the membrane parameters vary across different regions [49]. Incorporating variable
and learnable time constants, canmake the SNN robust to a wider range of inputs and temporal features
can be better captured. Wei Fang et al. [50] showed that incorporating learnable time constants makes
the network less sensitive to initial conditions and accelerates the training. In a similar way, SNN can
also benefit from learnable thresholds. Having a lower threshold leads to a more frequently spiking
neuron. Siqi Wang et al. [51] showed that varying the threshold makes the network converge faster.

Another parameter to be specified is the reset function for the neurons. It can be either hard or soft.
The first one brings the function back to zero after spiking, while the second one subtracts the threshold
value from the potential. Implementing a hard reset function can be helpful for cancelling the error from
surrogate gradients, since the potential is reset to zero and the error does not build up [45].

Figure 3.3: Effect of time constant and reset function on membrane potential. This image was generated using sinabs [39].

3.4. Recurrency in Spiking Neural Networks
One of the main characteristics of SNN is that the membrane potential serves as a short term memory,
which allows it to perform time integration. The input spikes to the network can either be fed directly or
accumulated over a time interval and fed in the network together. In either case, the network needs to
extract temporal features from the inputs to compute the outputs. Another family of neural networks with
an internal memory mechanism is Recurrent Neural Networks (RNN). Recurrent connections between
layers allow the information to be also fed back inside the network, creating a loop-like structure. These
architectures are especially suitable to process sequences of data.

In the work of F. Paredes-Vallés, J. J. Hagenaars and G. de Croon [52], both ANN and SNN with recur-
rent connections were developed and compared to the non-recurrent architectures of Zhu et al. [53]
and [54]. The recurrent networks were able to produce high quality event-based optical flow estimates.
This shows the advantage of including recurrent connections in SNN.

It is important to point out that SNN already have a form of intrinsic recurrence. This is because the
state of each neuron depends on both the spike inputs and the previous states [45]. However, when
dealing with IF neurons with only bias, having additional recurrent connections could potentially lead
to better performance.

4
Event-Based Optical Flow

This chapter treats event-based optical flow determination. Both supervised learning (Section 4.1)
and self-supervised learning methods (Section 4.2) are treated. Section 4.3 will treat previously used
devices for estimating optical flow.

4.1. Supervised Learning
Supervised learning algorithms require labelled data or targets for training. The difference between the
output of the network and the target is calculated and used to optimize the weights with backpropagation
[37]. Supervised learning of SNN has been widely used for classification tasks.

Regarding the field of ego-motion estimation, Gehrig et al. [55] trained a SNN in supervised manner
to perform temporal regression on angular velocity data in all three axis. The loss function used is
the time-integral over the euclidean distance between the predicted angular velocity and ground truth
angular velocity (Equation 4.1). This work proved that it is possible to train SNN on continuous-time
regression tasks.

L =
1

T1 − T0

∫ T1

T0

√
e(t)⊤e(t)dt (4.1)

In a similar way, SNN can be trained with ground truth optical flow as a target. Javier Cuadrado et
al. [10.3389/fnins.2023.1160034] used a loss function to calculate the error between ground truth
optical flow components and the output of the network. The first term of the loss function calculates the
magnitude error (Equation 4.2), while the second one calculates the direction error (Equation 4.3).

Lmod =

∑Npixels

√
(pred x − gtx)

2
+

(
pred y − gty

)2
Npixels

(4.2)

Lang =

∑Npixels a cos(cθ)

Npixels
cθ =

−→
gt ·

−−−→
pred + ϵ

|−→gt| · |
−−−→
pred |+ ϵ

(4.3)

4.2. Self-Supervised Learning
Supervised learning methods for SNN have developed significantly in the latest years. However, one
persisting issue is the acquiring labelled data. Self-supervised methods were introduced to overcome
this issue and retrieve information from the input data directly.

Yu et al. [21] proposed a self-supervised method to learn optic flow that uses a weighted average of
two loss functions, the photometric and the smoothness function. The method consists in taking two
temporarily adjacent images and an initial estimate of the flow (u, v). By applying optic flow vector to the

29

4.2. Self-Supervised Learning 30

second image, the inverse warped image can be computed. This warped image is then compared to the
first image to calculate the error and correct the flow. The photometric loss (Equation 4.4) is calculating
the difference between the image at time t and the warped image. Note that with this self-supervised
method, no labeling of the data is required.

Additionally, the second loss function (Equation 4.5) encourages smoothness in the estimated optical
flow field. It is based on the assumption that neighboring pixels should have similar flow values. The
smoothness function is meant to regularize the output flow. The total cost function is a weighted sum
of the two functions (Equation 4.6). Note that the function ρ(x) is the Charbonnier function, commonly
used in optic flow estimation because of its robustness to outliers. An overview of the method is shown
in Figure 4.1.

ℓphotometric (u, v; It, It+1) =
∑
x,y

ρ (It(x, y)− It+1 (x+ u(x, y), y + v(x, y))) (4.4)

ℓsmoothness(u, v) =
∑
x,y

∑
i,j∈N (x,y)

ρ(u(x, y)− u(i, j)) + ρ(v(x, y)− v(i, j)) (4.5)

Ltotal = ℓphotometric + λℓsmoothness ρ(x) =
(
x2 + ϵ2

)α (4.6)

Figure 4.1: Overview of the self-supervised approach [21]

Zhu et al. [56] used the loss function in Equation 4.6 in a self-supervised deep learning pipeline for
optic flow estimation. To train the network, the input events from an event based camera and the
corresponding grayscale images from the same camera were used. During training, the events are fed
into the network. The grayscale images before and after the event time window are used to calculate
the loss function.

A different approach was proposed by Gallego et al. [57], which solely relied on the events stream
and did not require grayscale images. Consider a set of positive and negative events in a certain
spatio-temporal neighborhood as in Figure 4.2. The events triggered by the same moving edges are
expected to follow the same trajectories. The translational displacement of the pixels can be described
by Equation 4.7, where (u, v) are the flow components.

(
x′
i

y′i

)
=

(
xi

yi

)
+ (t− t′i)

(
u(xi, yi)
v(xi, yi)

)
(4.7)

Calculating the correct flow can be interpreted as finding the best fitting trajectory that passes through
the events generated by the same moving edge. Figure 4.2 (left) shows events on a x-y plane over
time. The horizontal lines connect events from the same edges at different times.

4.3. Onboard Applications for MAV 31

Figure 4.2: Events trajectories (left), Image with warped events (right) [57].

By summing the polarities along a certain trajectory and computing the variances for each sum, the
distance of each point from the trajectory can be found. To sum the events, they first need to be warped,
meaning that they need to be transposed to a reference time using the flow components estimation.
The contrast maximization can also be seen as a function to minimize motion blur. The more correct
the flow is, the less blurry the image will be. Figure 6.3 (left) shows the contrast maximization function
plotted over the optic flow components θ.

Figure 4.3: Contrast as a function of optic flow components (left). Warped events (right) [57].

Zhu et al. [54], proposed a similar approach but based on the loss function of Mitrokhin et al. [58]. To
compute the contrast maximization loss function, first the events are separated by polarity. Following,
the average timestamp image is generated at each pixel for each polarity.

Tp′(x;u|tref) =
∑

j κ(x− x′
j)κ(y − y′j)tj∑

j κ(x− x′
j)κ(y − y′j) + ϵ

κ(a) = max(0, 1− |a|) (4.8)

The loss function proposed by Zhu et al. [54] has 2 components. The first one aims to minimize the
sum of squares of the average timestamp at each pixel for each polarity T+, T− (Equation 4.8). To
make the loss function convex, in Paredes-Vallés et al. [52] the contrast maximization function was
scaled with the number of pixels with at least one warped event (Equation 4.9). The second term of
the total loss function is a local smoothness regulator as in Equation 4.5.

ℓcontrast(tref) =

∑
x;u T+(x;u|tref)2 + T−(x;u|tref)2∑

x[n(x
′) > 0] + ϵ

(4.9)

4.3. Onboard Applications for MAV
SNN require specific hardware that can perform neuromorphic computing with artificial neurons and
synapses. Neuromorphic chips have been used for a variety of applications in the field of robotics [59,
60, 61].

4.3. Onboard Applications for MAV 32

4.3.1. Intel Loihi
Regarding micro-air vehicles applications, the Loihi chip produced by Intel [62], has been used on board
of drone by Stagsted et al. [63]. This work proposed a SNN based PID controller for a drone constrained
to a single degree of freedom. Dupeyroux et al. [64] used the same chip for vertical motion control and
autonomous landing. The proposed SNN calculates the thrust command based on the divergence of
the ventral optic flow field. Following, in the other work by Paredes-Vallés et al. [65], the Loihi chip was
used in a fully neuromorphic pipeline to control the drone motion using optical flow. The pipeline takes
EBC data and outputs low-level control commands to perform hovering, landing and lateral maneuvers.
To reduce the computational effort, the network is used on the four corners, instead of the full image.

5
Neuromorphic Hardware & Software

This chapter will treat neuromorphic hardware (Section 6.4) and software (Section 6.3) used for the
master thesis project.

5.1. Hardware
Synsense is another cutting-edge company in neuromorphic computing field [1]. Synsense devel-
ops both software and hardware tools for implementation of SNN. For this project, a speck2e from
Synsense will be used [66]. This chip combines an EBC with an event-processing chip into one board.
Other Synsense chips with similar interfaces have already been used for classification problems. To
our knowledge Synsense chips have not been used yet for ego-motion estimation. The main applica-
tions of speck2e include gesture control, smart tracking, fall detection, lane detection, sign recognition,
driver attention tracking, obstacle detection and object tracking [66]. The Speck2e chip architecture is
described by four different components (Figure 5.1, [67]):

• Convolutional Cores
The chip has a maximum of 9 convolutional processing layers and each one has a leak operation.
The maximum neuron capacity is 0.32 million. The neurons have a read-add-check spike-write
operation (Figure 5.2), so that the incoming stream of events is read and summed to the already
present potential.

• Dynamic Visual Sensor (DVS)
The DVS consists of 128x128 individually operating event-based vision pixels. The pixels encode
the incoming photon flux temporally on a logarithmic intensity scale.

• Pre-Processing Block
The pre-processing core after the DVS can be used to filter the polarities, mirror/rotate the image
or cutting the image to define a region of interest out of the 128x128 pixels. This core can be
connected to the DVS or also process events from an external source.

• Readout Core The readout core transforms the incoming stream of events into readable data. It
can output 16 different classes or moving averages, which can be calculated on different average
lengths.

5.2. Software
Sinabs [39] and Samna [68] are the 2 main Python packages developed to interact with Synsense
chips. The first one is a PyTorch-based library for designing and testing SNN architectures, while the
latter is a C++ tool with Python extension to interact with the Synsense devices.

Sinabs provides functions to simulate IF, LIF, Exponential Leak and Adaptive Leak neurons. The net-
works can be built with torch.nn.Sequential and uploaded together with the configuration. They can
be either SNNs or ANNs converted to spiking layers.

33

5.2. Software 34

Figure 5.1: Speck Architecture [67]

Figure 5.2: Neuron compute unit [67].

The Samna library provides all the necessary tools to interact and edit the configuration of the devices.
In order to connect to a device, there is 3 parts to set up:

• Devkit Configuration. It is an object containing the configuration for the CNN layer, the DVS
layer and the Readout layer. The configuration encloses all the details not only about network
architecture, but also about the DVS and pre-processing layer.

• Samna Graph. It defines the event stream flow inside the chip with a system of filter nodes
(Figure 5.3). Nodes can be sources (only outputting event streams) or sinks (only receiving event
streams). The input node can be used to write custom made events into the chip, instead of using
the DVS output. The output node is used to read data from the chip.

• Visualizer (optional). It can be used show the input signal, the output of the network or the real-
time power consumption. The output of the DVS is 128x128 pixels (Figure 5.4).

Figure 5.3: Samna graph [68].

Figure 5.4: Speck2e visualizer. Red pixels are negative
changes in brightness and green are positive. The image

was generated using the visualizer provided by Samna [68].

5.2.1. Editing & Uploading Devkit Configuration
Uploading a configuration on a Synsense device can be done by converting the network to a dynapcnn
object and then calling the method .to(device_name). In this way, a simple samna graph with input-
writing and output-reading is built. If a more complex configuration is required, the samna_config object
needs to be modified.

Inside the configuration there is a list of CNNLayerConfig objects, where each element contains all
the properties for a convolutional core of the chip. For each convolutional layer, one can specify the
high and low thresholds, padding, stride, kernel size and dimensions. In terms of neuron properties, the
object contains the initial neuron values, weights and biases. Additionally the return_to_zero boolean

5.2. Software 35

characterizes the reset function of the neuron, thus if it is set to true, the potential returns to zero after
spiking.

The chip also contains a slow clock with a certain frequency to be specified. By setting the leak_enable
to True, the bias terms are subtracted from the potential every slow clock cycle. For instance if the slow
clock frequency is set to 1, every second the bias will be subtracted from the potential. This mechanism
is what allows for a leaky behaviour of the neuron. In the documentation it is specified that including
bias might significantly increase the power consumption

Finally, each layer has 2 possible destinations that can be enabled. By default, each layer forwards
to the next in order, however one can specify the second destination to be different. If the second
destination is set to the same index of the layer, a recurrent connection is built. Note that this step
needs to be done manually, as it is not possible to build a spiking recurrent neural network with sinabs
and automatically convert it to a speck-compatible configuration. The recurrent connections have to
be redefined one by one before uploading the configuration with .apply_configuration().

To show an example, a simple SNN was built and uploaded to the speck2e. A set of input spikes
was written and the resulting potential of one of the neurons was read. Figure 5.5 shows the neuron
membrane potential, the input and the output spikes. The bias effect can be observed for instance
at approximately 3.5 sec, when the potential decreases linearly. When the neuron receives spikes
but does not exceeds the threshold and no more spikes arrive, a clock cycle passes and the bias is
subtracted. With the help of bias, a short-term memory effect can be obtained. As seen in Figure 5.5,
the potential increases after every spike, but it exceeds the threshold only when the rate of spikes is
sufficiently high.

Figure 5.5: Input spikes, membrane potential and output spikes of a neuron over time.

5.2.2. Synaptic Operations
In the Sinabs [39] documentation, it says that Synsense devices have a bandwidth limit on synaptic oper-
ations (synops). The number of synops shall not exceed a few millions of neurons per layer or the layer
reaches saturation and it is not able to output spikes. Using the sinabs.synopcounter.SNNAnalyzer
tool, the number of synops can be estimated for a network operation. Because of the saturation limit of
the layers, it might be useful to include the maximum number of synops in the loss function when train-
ing for a certain task. Althogh the model might work in software, if the number of synops is excessive,
the same network will perform poorly on hardware.

Part III

Preliminary Evaluation of Integrate &
Fire Neurons for Optical Flow

36

6
Methodology

This part of the report includes the design process of a speck2e-compatible network that is able to
determine optical flow from an event-based dataset. In this chapter, the methodology of the design
process is documented. section 6.1 will give an overview of the starting point for the network’s archi-
tecture. section 6.2 explains the two different datasets that will be used and their purpose. section 6.3
will explain the software framework used of the project, including the different training hyperparameters
and tools used to interact with Synsense devices. section 6.4 will outline the hardware implementation
part of the project and the network constraints provided by the speck2e.

6.1. Network Architecture
Designing a speck2e-compatible architecture for estimating optical flow requires an iterative process.
An initial network configuration will be used and then updated step by step, in order to be within the
hardware constraints. The initial network architecture is the one described in Paredes-Vallés et al.
[65] and it consists in three encoders, one pooling layer and one prediction layer. Each encoder has
a forward layer with kernel size (3,3), stride (2,2), padding (1,1) and an increasing number of output
channels (e.g. from 2 to 32 in the first encoder). Moreover, a recurrent layer with kernel size (3,3),
stride (1,1) and padding (0,0) is used to take into account the previous state. After the three encoders,
a convolutional pooling layer with kernel size (23,23) is used to reduce the output size from 23 to 1.
Finally, a non-spiking layer is used to predict the 8 components of optical flow, which represent the
vertical and horizontal components for each of the 4 sections of the image. A diagram of the network
can be seen in Figure 6.1.

(128, 23, 23)
(64, 45, 45)(32, 90, 90)

(2, 180, 180)

C
O

N
V

PO
O

LI
N

G

kernel = (3,3)

EN
C

O
D

ER
 1

(128, 1, 1)

C
O

N
V

EN
C

O
D

ER
 2

EN
C

O
D

ER
 3

u BR

v BR

u BL

v BL

u TR

v TR

u TL

v TL

(8, 1, 1)

kernel = (23,23) kernel = (1,1)kernel = (3,3)kernel = (3,3)

Figure 6.1: Network architecture with LIF neurons. The outputs are the u and v components of the flow in the bottom right
(BR), bottom left (BL), top right (TR) and top left (TL) sections.

The network configuration is described by high and low level hyperparameters. The first ones describe
the general structure, such as the number of layers, input and output channels and recurrency mech-
anisms, while the latter ones are related to individual neurons characteristics, for instance thresholds,

37

6.2. Training & Testing Datasets 38

leaks and/or biases. During the iterative process, the hyperparameters will be updated to design a new
architecture that is able to fulfill the task and can be hosted on the speck2e.

6.2. Training & Testing Datasets
The network will be trained on two main datasets. The first one will be addressed as SR dataset and it
includes 40 minutes of event data, which are split into 25 minutes for training and 15 for testing. This
dataset includes translational and rotational motion in multiple directions and at different speeds. The
SR dataset will be used to quantify the network’s accuracy with respect to ground truth data and assess
its performance. The second dataset is provided by the University of Zurich and it will be denoted as
Davis dataset [69]. This dataset includes two main video sequences of 55 seconds each. It contains
translational and rotational motion, however due to its limited size, it is not as complex and diversified
as the SR dataset. The Davis dataset will be used to train the network faster and check if it is learning
properly. This will allow to save computational time and make conclusions more promptly.

The data is stored in h5 files, where each event is saved with its timestamp, coordinates and polarity.
Before training the network, the data is split in sequences of 5 seconds. Each sequence is divided in
frames which contain events accumulated over time windows of 5 milliseconds. Asynchronous training
of SNN is commonly used to avoid running the network at too high frequencies and save computational
power and/or time. When uploaded on the neuromorphic device, the network on the chip will operate
at a much higher rate.

6.3. Software
The network will be trained in self-supervised manner using PyTorch built modules and neuron models.
These will be substituted later with sinabs modules, as they are more representative of the behaviour
of Synsense devices.

6.3.1. PyTorch Framework
For training the network a PyTorch framework is used. This includes neuron models, loss function
calculation and performance testing tools.

Neuron Models
Each layer in the SNN can be visualized as a convolutional layer plus a spiking activation function.
The layer contains weights and biases, which define how much the input influences the potential of the
neuron and therefore its output. The spiking function outputs a 1 or a 0 at every step, depending whether
the potential exceeded the threshold or not. A schematic of the neurons is provided in Figure 6.2a and
6.2b.

x

x x

z(t)

i(t)

v(t)

w.z(t) + b + +
i(t+ 1) v(t+ 1) z(t+ 1)

z(v)

θi

θv
1−

(a) LIF neuron diagram.

x

z(t)

i(t)

v(t)

w.z(t) + b + +
i(t+ 1) v(t+ 1) z(t+ 1)

z(v)

1−

(b) IF neuron diagram

z(t) is the input spikes vector, i(t) and v(t) are the neurons’ current and potential values. θi and θv
stand for the current and potential leak respectively and they are multiplied by the previous state values.
The leak represent how much information of the previous state is preserved in the following step. A
higher leak value means that the current or potential decreases more slowly and more information is
maintained through time. Additionally, the potential is multiplied by a reset term (1 − z), so that if a
neuron spiked in the previous step (z = 1), the potential is reset to zero.

The spikes are fed in the convolutional layer, where they are multiplied by the weights and summed with
the biases. The output of the convolutional layer represents the change in current due to the spikes,

6.3. Software 39

which is added to the previous state current. The new current i(t + 1) is summed with the previous
potential to compute the new potential v(t+1). Finally, the spiking function z(v) checks if the potential
is higher than the threshold and transmits spikes to the following layer.

Training Settings
The network is trained in backpropagation through time (BPTT). The event data is fed in the network
in batches of 16 sequences for the SR dataset and 8 for the Davis dataset. A single batch contains a
sequence of 5 seconds, which is fed in the network frame by frame and each frame contains the events
accumulated over 5 milliseconds. The network is trained over 100 epochs, with Adam optimizer and
learning rate of 0.001. Moreover, a data augmentation technique is used on the dataset. The individual
frames of events are flipped horizontally, vertically and the polarities are switched.

Self-Supervised Loss Function
As explained in chapter 4, the loss function for self-supervised learning is composed by two terms:
contrast maximization and flow smoothing. The first term is extracting information from the event data
to find the best fitting flow vectors, while the second one regularizes the smoothness of the flow.

After 5 forward passes, the loss term is computed and the gradients are backpropagated to update
the weights. For each of the 5 frames, the events are transposed in time using the last flow vectors
estimation. Essentially, the 5 frames are used to reconstruct the events at a reference time. The 5
reconstructions are then summed together and, if the flow estimation is correct, the pixels should be
aligning without any blur. In reality, the first optical flow estimates will not be correct and will therefore
result in a blurred reconstructed image (Figure 6.3). In order to measure this blur and minimize it, the
density of events per pixels is calculated. If the flow estimation is accurate, the reconstructed events
will be aligning on the same pixel.

image 1 image 2 image 3 image 4 image 5

sum of images

(u, v)

tref tref tref tref tref

t5
t4

t3
t2t1

(u, v) (u, v) (u, v) (u, v)

sum of images with correct flow

Figure 6.3: Contrast maximization computation scheme.

6.3.2. Sinabs & Samna
Sinabs and Samna are python packages provided by Synsense to train and test chip-compatible archi-
tectures. Sinabs is used to simulate and train SNN, while Samna is a C++ based package to interact
and upload configurations on the Synsense devices.

Spiking Activation Function
The IF spiking functions will be simulated using the IAFSqueeze sinabs module, which works as an
activation function for a convolutional layer. The internal state of the module is described only by the
potential value, since there are no leak terms and the current is summed directly to the previous state.
The following parameters can be defined:

• spike_threshold (Tensor) - Maximum allowed potential value (set to 1.0 by default).

6.4. Hardware 40

• spike_fn (Callable) - Function defining the spiking output. If set to MultiSpike, a neuron will be
able to produce multiple spikes in given time step. If set to SingleSpike, a neuron will produce
at most one spike per time step.

• reset_fn (Callable) - Function defining the reset phase of the potential. If set to MembraneSubtract(),
the threshold value is subtracted from the potential after spiking. If set to MembraneReset(), the
potential returns to zero after spiking.

• surrogate_grad_fn (Callable) - Function used to define the gradients during training. For SingleSpike,
it should be set to SingleExponential, while for MultiSpike, it should be set to PeriodicExponential.

• min_v_mem (Tensor) - Lower bound for membrane potential, clipped at every time step.

For direct training of IF networks, a multi-spike behaviour is preferable, as it describes better what
happens on the chip. Within a given time step, a neuron will output multiple spikes sequentially if the
synaptic input is an integer times higher than the threshold. During training it is important to monitor the
spiking activity, since convolutional core on the chip has a limit on the number of synaptic operations
per second (synops/s). The synops are calculated using the sinabs function SNNAnalyzer. To make
sure the limit is not exceeded, the number of synops/s per layer can be included in the loss function
during training.

Network Configuration
Before uploading the trained network to the device, the weights, biases and thresholds need to be
discretized using the DynapcnnNetwork function. This is done because the chip has a limited resolution
to represent the its parameters (R-speck-6, R-speck-7). Note that when the parameters are quantized,
the quantization range is unique per layer, because the relation between weights and threshold is
meaningful for the synaptic output of a layer.

Before uploading a trained model on the chip, a configuration object CnnLayerConfig is created. This
contains all the relevant information of the network including weights, biases, thresholds, initial neurons
state, reset mechanism type, layers dimensions and destinations.

6.4. Hardware
The device used for the experiments is the speck2e from Synsense, an event-driven neuromorphic
chip with fully asynchronous digital circuit and integrated Dynamic Vision Sensor (DVS). Moreover, it is
a low-power (< 5 mW) and low-latency (<50 ms) system. The speck2e circuit is able to support large-
scale SNN for various computer vision tasks, such as sign recognition, smart tracking and obstacle
detection. The network requirements for the speck2e are listed in Table 6.1.

Table 6.1: Speck2e requirements.

Requirement ID Description

R-speck-1 Maximum of 9 convolutional layers (including pooling).
R-speck-2 Maximum number of neurons: 32k.
R-speck-3 Maximum input dimension: 128x128
R-speck-4 Maximum feature output size: 64x64
R-speck-5 Maximum feature number: 1024
R-speck-6 Weight resolution: 8 bit
R-speck-7 Neuron state resolution: 16 bit
R-speck-8 Maximum kernel size: 16x16
R-speck-9 Stride: {1, 2, 4, 8} independent in X/Y
R-speck-10 Padding: [0..7] independent in X/Y
R-speck-11 Pooling: 1:1, 1:2, 1:4
R-speck-12 Fanout: 2
R-speck-13 Frequency: 1 GHz
R-speck-14 Synaptic Operations limit per core: 10 millions synops/s
R-speck-15 Maximum number of channels in readout layer: 15.

6.5. Recurrency Types 41

6.5. Recurrency Types
The initial architecture in Figure 6.1, has internal recurrency, which means that the membrane potential
is first summed with the synaptic input from the recurrent layer and then passed through the spiking
function. This is done so that the influence of the recurrent layer is included in the potential already and
the spikes are only used to communicate between the encoders. However, the recurrency available on
the speck2e is external, which means that every core consists in a convolutional layer and a spiking
layer. The cores are connected and send information to each other with spikes.

The network will be tested with different external recurrency mechanisms both in the PyTorch frame-
work and on the chip. Samna does not directly support recurrent architectures, which means that the
mapping of the layers’ destinations will be done manually. According to R-speck-1, each layer can be
connected to maximum 2 other layers. This allows for two main options for recurrency mechanisms.

6.5.1. Recurrency type S
The first recurrency type involves 2 layers. The first one increases the number of channels to double,
while the second one has equal number of input and output channels. The second layer output is fed
back and summed with the new incoming input. Note that the number of input and output channels is
the same in the recurrent layer.

Forward Gate Recurrent Gate

+
input channels =
output channels =

(n1, x, y) (n2, x, y) (n2, x, y)n1

n2

input channels =
output channels =

n2

n2

Figure 6.4: Recurrency type S scheme.

1 def forward(self, input_, prev_state):
2

3 # FIRST GATE
4 # rescale input if spiking
5 if self.spiking:
6 input_ = input_ * self.scale_ff
7

8 # forward pass
9 ff = self.ff(input_)
10 ff = self.activation_ff(ff)
11

12 # generate empty prev_state, if None is provided
13 if prev_state is None:
14 batch, _, height, width = ff.shape
15 state_shape = (batch, self.hidden_size, height, width)
16 prev_state = torch.zeros(*state_shape, dtype=ff.dtype, device=ff.device)
17

18 # SECOND GATE
19 input_rec = ff + prev_state
20 # rescale input if spiking
21 if self.spiking:
22 input_rec = input_rec * self.scale_rec
23

24 # forward pass
25 out = self.rec(input_rec)
26 out = self.activation_rec(out)
27

28 return out, out

Figure 6.5: Code implementation of recurrency type S.

6.6. Network Naming Convention 42

6.5.2. Recurrency type C
This other type of recurrency requires 3 layers. This system works with concatenation of outputs. The
output of the forward layer is concatenated with the output of the recurrent layer and then fed in the
second forward layer. Note that the second forward layer increases the number of channels to n3, while
the recurrent layer decreases it again to n2, in order to concatenate it with the new input. This means
that n3 shall always be twice as large as n2, so that half of the inputs to the second forward layer are
coming from the new input and the other half from the previous input.

Forward Gate Recurrent Gate

||input channels =
output channels =

(n1, x, y) (n3, x, y) (n3, x, y)n1

n2

input channels =
output channels =

n3

n3

input channels =
output channels =

n3

(n2, x, y)

n2

Figure 6.6: Recurrency type C scheme.

1 def forward(self, input_, prev_state):
2 # FIRST GATE
3 if self.spiking:
4 input_ = input_ * self.scale_ff1
5 ff1 = self.activation_ff1(self.ff1(input_))
6

7 # generate empty prev_state, if None is provided
8 if prev_state is None:
9 batch, _, height, width = ff1.shape
10 state_shape = (batch, self.hidden_size, height, width)
11 prev_state = torch.zeros(*state_shape, dtype=ff1.dtype, device=ff1.device)
12

13 concat = torch.cat([ff1, prev_state], dim=1)
14

15 # SECOND GATE
16 if self.spiking:
17 concat = concat * self.scale_ff2
18 out = self.activation_ff2(self.ff2(concat))
19

20 # RECURRENT GATE
21 rec_input = out.clone()
22 if self.spiking:
23 rec_input = out * self.scale_rec
24 state = self.activation_rec(self.rec(rec_input))
25

26 return out, state

Figure 6.7: Code implementation of recurrency type C.

6.6. Network Naming Convention
To address the different network types and state their main characteristics, the following naming con-
vention is used: network type - number of encoders - recurrency type. For instance a non-spiking
convolutional neural network with 2 encoders and recurrency type S will be addressed as RNN-2-A.
The networks will all be convolutional and the different tested types are the following:

• LIF = Leaky Integrate & Fire Spiking Convolutional Neural Network
• IF = Integrate and Fire Spiking Convolutional Neural Network
• RNN = Recurrent Convolutional Neural Network

7
Network Design & Training Strategies

In this chapter, different network configurations and training methods will be explored. This step serves
as a preliminary design of a speck2e-compatible network, that shall be able to determine optical flow
from both the SR and Davis datasets. This chapter explain LIF networks and why they are suitable for
learning flow in section 7.1. Following section 7.2 will introduce discuss the use of biases as a substitute
to leaks in the neuron model. section 7.3 and 7.4 will introduce the different network configurations
and the ANN-to-SNN conversion method. The performance of each configuration will be assessed in
section 7.5, 7.6 and 7.7.

7.1. Leak Integrate & Fire Recurrent Network
LIF neurons have two short term memory systems that allow for temporal feature extraction. The
first one is the leak inside the neurons, which actively reduces the membrane potential. The leak is a
measure of how much of the previous state is retained and how much is dispersed in absence of inputs.
The second system is the recurrent links in the network. When a neurons spikes, that information is also
sent backwards and taken into account in the following computations. These twomemory systems allow
LIF networks to be trainable on time-dependant tasks. The information transmitted between neurons
is not only in spikes that are sent in the recurrent connections, but it also resides in the membrane
potential. For instance, when a neuron’s potential increases but does not exceed the threshold, the
leak system filters out that useless accumulated information. Without a leak system in the neurons,
there is a need for a new short term memory mechanism.

7.2. Integrate & Fire Recurrent Network with Biases
The neurons available on the speck2e are only IF, however a bias term can be introduced. The bias is
a trainable parameter that is added to the output of a convolutional layer. On the chip itself, this term is
added periodically at a specified frequency, while for training, the term is added every time an image is
passed through the network. By clamping the biases to negative values during training, the potential
can be reduced in a similar way as with leaks. However, when a IF network with biases is trained, it is
not able to learn optical flow.

7.2.1. Analysis and Assessment of Biases
By comparing the neuron models, this phenomenon can be better understood (Figure 7.1a and 7.1b).
The new input coming from the synaptic connections is first passed through a convolutional layer
self.ff, where the weights and biases are applied. The current of the previous state decays with
the leak_i factor and together with the new current, it forms the new current i_out. Finally, the poten-
tial value is updated with the current and the previous potential state decreases with the leak_v factor.
The new potential value v_out is fed in the self.spike_fn, which outputs 0 or 1, depending whether
v_out is lower or higher than the threshold.

43

7.3. Recurrent Convolutional Neural Network 44

1 def forward(self, input_, prev_state):
2 # input current
3 ff = self.ff(input_)
4 i, v, z, _ = prev_state
5

6 # get leaks
7 leak_i = torch.sigmoid(self.leak_i)
8 leak_v = torch.sigmoid(self.leak_v)
9

10 # current update
11 i_out = i * leak_i + ff
12

13 # voltage update
14 v_out = v * leak_v * (1 - z) + i_out
15

16 # spike output
17 z_out = self.spike_fn(v_out, thresh)
18

19 return z_out, [i_out, v_out, z_out, ff]
20

(a) LIF neuron model code.

1 def forward(self, input_, prev_state):
2 # input current
3 ff = self.ff(input_)
4 v, z, _ = prev_state
5

6 # potential update
7 v_out = v + ff
8 v_out = torch.clamp_max(v_out, self.thresh)
9 v_out = torch.clamp_min(v_out, -self.thresh)
10

11 # spike output
12 z_out = self.spike_fn(v_out, thresh)
13

14 # reset voltage with new spike
15 v_out = v_out * (1 - z_out)
16

17 return z_out, [v_out, z_out, ff]
18

19

20

(b) IF neuron model code.

The leak terms essentially represent how much of the previous state needs to be taken into account in
the future and how much is ”forgotten”. During training, this quantity is only multiplied by the previous
state, therefore it impacts only the resetting phase of the neuron. In IF neurons, the bias is not multiplied
but subtracted from the potential, thus its reducing effect is not only applied on the previous state but
also on the new incoming current. Although the biases can be trained, they are not able to actively
reduce the potential as promptly as a leak, especially because they are not paired to the previous
state directly. As a result, in some scenarios the neurons end up spiking uncontrollably and the bias is
not able to restore the potential, while in other scenarios the bias might be too large and prevent the
neurons from spiking at all.

The effect of biases on learning can be better understood by looking at the channels of the encoders
over time. Each encoder in the network has a certain number of input and output channels. The
number of channels is representative of the number of features that each layer is capturing in the image.
Figure 7.2 shows a channel of the first encoder at 4 different time steps. An input sequence is fed in the
network and the channel is observed over time, while the events propagate through the network. The
channel is expected to change as the input sequence moves in different directions. However, because
the bias is not able to recover the potential, most of the neurons start spiking continuously until the end.
Asmore inputs are fed in, the already spiking neurons continue spiking andmore neurons start following
the same trend. Towards the end of the sequence, almost all the neurons are spiking continuously and
no meaningful pattern is detected. This proves the inadequacy of IF neurons with biases for training.

Figure 7.2: Feature number 1 of 32 of the first encoder over time.

7.3. Recurrent Convolutional Neural Network
ANN-to-SNN conversion is commonly used technique used for training IF SNN without dealing with
surrogate gradients. Instead of a SNN, an ANN with ReLU activation functions is trained and then
converted. The ReLU functions are then substituted with IF spiking functions. This method works for
simple tasks such as the MNIST, however it results in an inevitable drop in accuracy. Note that with

7.3. Recurrent Convolutional Neural Network 45

this training strategy, the only memory mechanism inside the network is provided by the recurrent con-
nections. Having ReLU activation in every layer, especially in the recurrent ones, can cause exploding
gradients. For instance if a layer returns a large output, that same output is fed back through the net-
work and causes an even larger output. This can be monitored by decreasing the learning rate, in order
to avoid excessive weight updates.

7.3.1. Recurrency Types and Architecture
Two different recurrency types were presented in section 6.5. type S requires two convolutional layers,
a forward and a recurrent one. The forward layer increases the number of channels and decreases
the shape of the images, therefore it encodes the relevant information of the new incoming inputs. The
recurrent layer maintains the same number of channels and image shape, however it feeds the output
back to itself, in order to save the relevant information of the previous inputs.

type C uses two forward layers and the output of the second one is first passed through the recurrent
layer and then concatenated with the output of the first forward layer. This entails that half of the inputs
to the second forward layer will be coming from the first forward layer and half from the recurrent one.
Because the output is fed into an additional layer before being fed back, this type of recurrency is
expected to be more stable and regularized in training and less prone to exploding gradients.

The previous information is then added to the new incoming one. The network will have two main
encoders. Table 7.1, 7.2 and 7.3 show the features of all layers for the three architectures that will be
presented in this chapter: RNN-3-S, RNN-2-S, RNN-2-C. The first two will be useful to observe the
impact on performance of reducing the number of encoders, which is expected to decrease redundant
connections and synaptic operations. The latter two are used to compare the recurrency types. type C
has more parameters than type S, thus it is expected to perform better. The performances of the net-
works will also be compared to their spiking equivalent. Note that when switching from 2 to 3 encoders,
the stride of the second encoder doubles. This is done to decrease the output size, so that the kernel
of the pooling layer does not exceed the limit of 16 (R-speck-8). Moreover, the number of channels in
every layer is decreased to the minimum, in order to limit the number of synaptic operations.

Table 7.1: Network Architecture for RNN-3-S on SR dataset.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding
Encoder 0 Fwd. 2 4 180 90 3 2 1

Rec. 4 4 90 90 3 1 0

Encoder 1 Fwd. 4 8 90 45 3 2 1
Rec. 8 8 45 45 3 1 0

Encoder 3 Fwd. 8 16 45 23 3 2 1
Rec. 16 16 23 23 3 1 0

Pooling 16 8 23 1 23 1 0
Prediction 8 8 1 1 1 1 0

Table 7.2: Network Architecture for RNN-2-S on SR dataset.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 2 4 180 90 3 2 1
Rec. 4 4 90 90 3 1 0

Encoder 1 Fwd. 4 8 90 23 3 4 1
Rec. 8 8 23 23 3 1 0

Pooling 8 8 23 1 23 1 0
Prediction 8 8 1 1 1 1 0

7.4. Integrate & Fire Recurrent Network 46

Table 7.3: Network Architecture for RNN-2-C on SR dataset.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 1 2 4 180 90 3 2 1
Fwd. 2 8 8 90 90 3 1 1
Rec. 8 4 90 90 3 1 0

Encoder 1 Fwd. 1 8 16 90 23 3 4 1
Fwd. 2 32 32 23 23 3 1 1
Rec. 32 16 23 23 3 1 0

Pooling 32 8 23 1 23 1 0
Prediction 8 8 1 1 1 1 0

7.4. Integrate & Fire Recurrent Network
As explained in section 7.1, LIF neurons extract temporal information with the help of both the leaks
and the recurrent connections. Now with IF neurons the potential activity does not behave as a short
term memory system, which means that all the valuable information among layers is encoded in the
spikes and the recurrent connections are used to remember previous states. Commonly, ANN are
converted to spiking networks by substituting the ReLU activation functions with a spiking activation
function. The thresholds of such function are usually set to ± 1.0. These conversion settings work well
for non time-dependant tasks such as image classification and pattern recognition, where recurrent
connections are usually not required, however, when applied to RNNs, the information in every layer
tends to accumulate, without transmitting spikes to the following layers. If the information between
layers is not promptly transmitted, the recurrent connections are not going to be activated and therefore
the network will not be able to produce correct predictions.

7.4.1. Weights Re-scaling
Recurrent connections only activate if the neuron spikes, thus setting the threshold too high with respect
to the scale of the synaptic inputs results in losing relevant information. For this reason, it is important
to re-scale thresholds and weights to be in the right range. By observing the range of the output of the
ReLU functions in every layer, a common threshold can be defined for every encoder. The threshold
should be low enough to allow some spikes to pass through at approximately every frame of 5 ms.
Setting the threshold to high will result in loss of information over time, while setting it too low will
make the layer produce more spikes than needed. Note that finding the exact threshold value to allow
the minimum number of spikes to pass, while still encoding the relevant information, would be a quite
challenging and difficult to test optimization problem. For this reason the thresholds will be selected
with an educated guess.

For instance, in the first layer of the first encoder, the outputs are in the range 10−1, thus the upper and
lower thresholds are set to ± 0.1 for all layers of the first encoder. The weights of the following layer
are then re-scaled by 0.1. This pattern of re-scaling the weights by the threshold value of the previous
layer is repeated for all layers, as shown in Figure 7.3. In the second encoder the synaptic output range
is in the order of 10−2, thus the threshold is set to ± 0.01.

Fwd Layer IF
scaling=1.0

Rec Layer
scaling=0.1

Fwd Layer
scaling=0.1

Rec Layer
scaling=0.01

Encoder 1 Encoder 2

thr=0.1

IF
thr=0.1

IF
thr=0.01

IF
thr=0.01

Figure 7.3: Weight re-scaling diagram.

Note that the spiking functions IAFSqueeze need to be in MultiSpike mode, which means that more
than one spike can be produced at every time step, if the synaptic input is large enough. Note that on

7.5. Results on SR Dataset 47

the speck, the neurons do not produce multiple spikes all at once but one after the other sequentially,
as all the computations occur asynchronously. Using MultiSpike allows to account for the fact that
within a given time window, a neuron can produce multiple spikes one after the other. The spiking
layer’s reset function is set to MembraneReset instead of MembranSubtract, in order to avoid potential
accumulation and unnecessary spikes.

Figure 7.4 shows the output of the ReLU function (continuous) compared to the output of the IAFSqueeze
function (discrete) and the resulting spike rate. The idea of ANN-to-SNN conversion is using only the
spikes to transmit information through layers and therefore reducing the resolution or sampling hte in-
formation. For instance, if the input of a neuron equal to 0.421 and the threshold of the neuron is set
to 0.1, 4 spikes will be transmitted to all the neighboring neurons.

0.00 0.25 0.50 0.75 1.00
x [-]

0.0

0.2

0.4

0.6

0.8

1.0

Re
LU

(x
) [

-]

0.00 0.25 0.50 0.75 1.00
x [-]

0

2

4

6

8

10

IA
FS

qu
ee

ze
(x

) [
-]

0.2 0.4 0.6 0.8 1.0
Time Steps [-]

0.5

0.0

0.5

1.0

1.5

Ev
en

ts
 [-

]

Figure 7.4: Activation functions and resulting spike rate output.

7.5. Results on SR Dataset
In order to compare the different networks, three metrics will be considered: Signal-to-Noise Ratio
(SNR), Average End-point Error (AEE) and Ratio of Squared Average Timestamps (RSAT). The predic-
tion of the network compared to the ground truth optical flow can be observed in Figure 7.5 for RNN-2-S
and IF-2-S and in Figure 7.6, for RNN-2-C and IF-2-C.

0 1000 2000 3000 4000 5000
Time [ms]

0.3

0.2

0.1

0.0

0.1

0.2

TL
 u

 [p
xl

/m
s]

ground truth
ReLU prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

TL
 u

 [p
xl

/m
s]

ground truth
IF prediction

Figure 7.5: Ground truth compared to network prediction for RNN-2-S and IF-2-S.

The converted network IF-2-S performs poorly compared to the ground truth and to its RNN counterpart.
This is probably due to the conversion and re-scaling system, which reduces the accuracy of the network

7.5. Results on SR Dataset 48

and increases the noisiness of the predictions.

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

TL
 u

 [p
xl

/m
s]

ground truth
ReLU prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

TL
 u

 [p
xl

/m
s]

ground truth
IF prediction

Figure 7.6: Ground truth compared to network prediction for RNN-2-C and IF-2-C.

RNN-2-C and IF-2-C seem to have a more comparable performance, although the differences can still
be seen. In some instances, IF-2-C appears to be closer to the ground truth than RNN-2-C. All the
other network predictions compared to ground truth can be seen in Appendix A. In order to properly
assess the networks, some performance metrics need to be introduced.

7.5.1. Signal-to-Noise Ratio
To calculate the SNR, a sequence of 5.0 s from the testing dataset is considered. The network outputs
8 optical flow predictions, a horizontal and a vertical component for each of the 4 corners of the image.
To distinguish the power of the signal from the noise, the predictions are transposed to the frequency
domain using Fast Fourier Transform (FFT). In this way, the main signal frequency can be identified by
observing the peaks. The frequency range of the main signal is defined by observing the FFT of the
ground truth signal and it is approximately 2.5 · 10−3 Hz. Using Equation 7.1 the average SNR can be
calculated for each flow vector signal and compared to the ground truth.

SNR = 10 · log10
(
Psignal

Pnoise

)
(7.1)

Figure 7.7, 7.8 and 7.9 show the FFT of the ground truth signal compared to LIF-3, RNN-3-S, RNN-2-S,
IF-2-S, RNN-2-C and IF-2-C predictions. On average the ground truth has a SNR of 12.8 dB. The noise
of the prediction signals is expected to increase when the network is converted to spiking, since the
resolution of the information between layers decreases and the output prediction deteriorates.

0.50 0.25 0.00 0.25 0.50
Frequency [Hz]

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

GT

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

10

20

30

40

50

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

RNN-3-A

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

10

20

30

40

50

60

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

LIF-3-A

Figure 7.7: FFT of ground truth, RNN-3-S and LIF-3 output signals for top left horizontal component.

7.5. Results on SR Dataset 49

0.50 0.25 0.00 0.25 0.50
Frequency [Hz]

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

GT

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

RNN-2-A

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

5

10

15

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

IF-2-A

Figure 7.8: FFT of ground truth, RNN-2-S and IF-2-S output signals for top left horizontal component.

0.50 0.25 0.00 0.25 0.50
Frequency [Hz]

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

GT

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

20

40

60

80

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

RNN-2-A

0.50 0.25 0.00 0.25 0.50
Frequency (Hz)

0

10

20

30

40

50

M
ag

ni
tu

de
 [(

px
l/m

s)
²]

IF-2-A

Figure 7.9: FFT of ground truth, RNN-2-C and IF-2-C output signals for top left horizontal component.

7.5.2. Average End-point Error
The Average Endpoint Error (AEE) is a metric used to evaluate the accuracy of optical flow algorithms.
Every pixel in the image is transposed in space using the ground truth vectors and the predicted vectors.
The euclidean distance between the two pixels’ locations is calculated and the average of all errors is
taken.

7.5.3. Ratio of the Squared Averaged Timestamps
The Ratio of Squared Average Timestamps (RSAT) is the is the ratio of the squared sum of the per-
pixel and per-polarity average timestamp of the image of warped events and that of the image of (non-
warped) events. The lower the value of this metric, the better the optical flow estimate. Note that this
metric is sensitive to the number of input events. Table 7.4 summarizes the results for all the trained
networks. The discussion of results will follow in section 7.7

Table 7.4: SNR, AEE and RSAT for the different network types on a SR dataset sequence.

Configuration SNR (dB) AEE RSAT

LIF-3 9.09 0.156 0.929
RNN-3-S 10.8 0.152 0.918
RNN-2-S 9.11 0.185 0.949
IF-2-S -0.877 0.165 0.971
RNN-2-C 12.2 0.166 0.925
IF-2-C 6.98 0.149 0.945

7.6. Results on Davis Dataset 50

7.6. Results on Davis Dataset
Results on the Davis dataset cannot be compared to ground truth, thus the performance of the network
is evaluated by visual inspection. The size of the dataset sequences is reduced from 128 pixels to 90,
in order to further reduce the number of synaptic operations for hardware implementation. Figure 7.10
shows the output of the network on a horizontal and a vertical motion sequence. The frames on top
show the color-coded optical flow representation, according to the color map in Figure A.13.

0 1000 2000 3000 4000 5000
Time [ms]

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

Op
tic

al
 F

lo
w

[p
xl

/m
s]

u
v

1500 2000 2500 3000 3500 4000 4500 5000
Time [ms]

0.010

0.005

0.000

0.005

0.010

0.015

Op
tic

al
 F

lo
w

[p
xl

/m
s]

u
v

Figure 7.10: RNN-2-C optical flow vectors for the Davis dataset sequence.

In order to quantify the increase in noise after conversion, the SNR can be calculated by defining the
main frequency of the signal from the RNN output and compare it to the IF network output.

SNR results

7.7. Results Discussion
The results obtained from the tested networks shall be discussed, in order to assess their performance
and decide which configuration will be used for the hardware implementation.

7.7.1. Neuron Model: LIF vs. RNN vs. IF
The new networks’ performance is comparable to the LIF network. As expected, RNN-3-S performs
better than LIF-3 in all metrics. This is due to the higher information resolution between layers. More-
over, LIF networks have a higher level of complexity with respect to RNNs, because of the the additional
hyperparameters, such as leaks and thresholds. When the RNN is reduced to 2 encoders only, the
performance inevitably drops and, similarly when the network is converted to IF-2-S.
With RNN-2-C, the network is able to produce less noisy signals, at the cost of a small drop in accuracy
compared to LIF. When converted, the IF-2-C becomes more noisy, but it shows a lower AEE value.

7.7.2. Number of Encoders: 3 vs. 2
Reducing the number of encoders from 3 to 2 undoubtedly influences performance, because less pa-
rameters are used. However the drop in performance in SNR, AEE and RSAT is not significant and
the network is still able to recognize fairly accurately the general direction of the flow. Having more en-
coders would also mean having more redundancy and more synaptic operations in the network, there-
fore choosing a less complex configuration is preferred. Additionally, 3 encoders with recurrency type
C means a total of 10 convolutional cores is needed, which is more than the speck2e has (R-speck-1).

7.7. Results Discussion 51

7.7.3. Recurrency Type: Sum vs. Concatenation
With the same number of encoders, recurrency type C is more accurate than type S in terms of AEE and
RSAT, because it has more parameters. Moreover, type C outputs less noisy predictions, which is most
likely due to the additional convolutional layer in the recurrent connection. This extra layer processes
the previous state and it serves as a filter for non-relevant information. With type S recurrency, the
previous state is directly summed with the new incoming state and then processed, therefore the con-
volutional layer does not distinguish between past and present information. type C behaves similarly
to GRU connections, where the reset and update gates distinguish decide how much of the previous
state information should be kept.

In terms of hardware compatibility, the both type S and B are suitable for the speck2e. However, one
aspect to consider is that the network on chip runs asynchronously at a much higher frequency, while
in simulation it is tested synchronously. With type S this represents a problem, because if the output
spikes of a layer are fed in the same layer immediately after and summed to the new incoming ones, the
layer will reach the limit of operations much faster and it might not be functional. The extra layer in the
type C configuration delays the output spikes before feeding them back and also it concatenates with
the new incoming input instead of being summed. This allows for better regularization of the network’s
activity and it prevents the risk of reaching the synaptic operations limit.

7.7.4. Network Conversion
Converting RNN to IF inevitably lowers the SNR and makes the prediction less defined. When the
network is converted, the resolution of the information between layers is reduced and therefore output
signal becomes less defined. In type S (SNR = -0.877 dB), the conversion has way more impact on the
SNR than in type C (SNR = 6.98 dB). This could be due to the extra layer in the recurrent connection,
as previously specified in subsection 7.7.3.

It is interesting to notice that when converting RNN-2-S to IF-2-S and RNN-2-C to IF-2-C, the AEE
becomes lower while the RSAT increases. The reason for the better AEE, could be that a more noisy
prediction is better at generalizing the motion. Even though a less noisy prediction could be more
defined, it might still be quite far from the ground truth. Figure 7.6 shows the RNN-2-C and IF-2-C
predictions compared to the ground truth. The gap between the RNN prediction and the ground truth
seems wider than for the IF network.

7.7.5. Conclusion
The network configuration that will be hosted on the speck2e will be IF-2-C. type C recurrency is consid-
ered more suitable for hardware applications because of the asynchronous nature of the neuromorphic
device and the higher level of complexity which results in better predictions.

8
Hardware Implementation

In this chapter the network implementation on the speck2 is treated. In section 8.1, the quantization of
the network’s parameters is explained. Section 8.2 treats different strategies to reduce the number of
synaptic operations in the layers.

8.1. Quantized Network
Quantization is the process of reducing the precision of a neural network model’s parameters for hosting
it on hardware. It involves converting floating-point representations to fixed-point or integers. This is
done to optimize memory usage and computational efficiency and it comes at the cost of a loss in
precision. In order to properly asses the on-chip network performance, the output of the speck2e is
compared to the model with quantized parameters.

8.1.1. Parameters Quantization
The quantization of weights in thresholds is done with the DynapcnnNetwork sinabs function. The synap-
tic weights can be represented by a maximum of 8 bits (R-speck-6), hence the range of weights in every
layer is [-127,127], while membrane potentials and thresholds have a 16 bits resolution, thus the range
is [-32767,32767]. The neurons are initiated at average potential value (1 in quantized parameters).
The effect of quantizing the parameters can be seen in Figure 8.1.

0 1000 2000 3000 4000 5000
Time [ms]

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

Op
tic

al
 F

lo
w

Ho
riz

on
ta

l [
px

l/m
s]

u non quantized
u quantized

0 1000 2000 3000 4000 5000
Time [ms]

0.004

0.002

0.000

0.002

0.004

Op
tic

al
 F

lo
w

Ve
rti

ca
l [

px
l/m

s]

v non quantized
v quantized

Figure 8.1: Non-quantized network versus quantized network.

8.2. Synaptic Operations Analysis
The speck2e device has a limit on synaptic operations (synops) per second per convolutional core
(R-speck-14). Every core runs at a frequency of 1 MHz, therefore it can process at most one spike
every microsecond. If two events share the same timestamp, the core will process them sequentially.

52

8.2. Synaptic Operations Analysis 53

When the number of synops exceeds the limit, the events accumulate and information is lost in time.
When the RNN-2-C configuration is uploaded on the speck2e, the activity of the individual cores can
be observed. Figure 8.2 shows the total number of spikes over time produced by the first encoder’s
layers. Layer 0 is the first forward layer, layer 1 is the second and layer 2 is the recurrent one. It is
clear that each layer reaches a saturation point when an overflow of input spikes arrives. To avoid this,
the network’s architecture and training has to be revisited.

Figure 8.2: Number of synaptic operations for IF-2-C configuration.

When minimizing the synops, two layer characteristics shall be considered: the total number of op-
erations and the maximum number of operations. Section 7.4.1 explained how the conversion and
re-scaling method relies on spike rate encoded information. This means that individual neurons need
to output multiple spikes in a time step, to better represent the information sent to neighboring neurons.
With the sinabs activation function IAFSqueeze, a neuron sends multiple spikes if the synaptic weight
is larger than the threshold. When the weights are significantly larger than the threshold, the model
performance starts deviating from the on-chip behaviour. This occurs because the spikes are received
and processed asynchronously on the chip, unlike in simulation. Without regularization, some neurons
can end up spiking hundreds of times per step. For these reasons, it is fundamental to monitor and
regularize both the total number of operations and the maximum number of spikes per neuron. This
can be achieved by modifying the network’s architecture and/or introducing an regularization term in
the loss function.

8.2.1. Stride
As seen in Table 7.3, the first encoder has stride 2 and the second has stride 4. This was done to
reduce the pooling layer’s kernel size from (23,23) to (12,12), given the limit of 16 (R-speck-8). To
minimize the synops, the stride of the first encoder can be changed to 4 as well. By halving the size of
the images in the second encoder, the total and maximum synops are reduced to approximately a third
(Figure 8.4). Obviously this affects the prediction of the network, since the information between layers
is down-sampled. Figure 8.3 shows on the top the total number of spikes per layer and on the bottom
the maximum number of spikes produced by a single neuron.

8.2. Synaptic Operations Analysis 54

0 1000 2000 3000 4000 5000
Time [ms]

0
1000
2000
3000
4000
5000
6000
7000

Nu
m

be
r o

f E
ve

nt
s [

-]
Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

10

20

30

40

50

60

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

Figure 8.3: Spike activity in RNN-2-C with stride 2 in first encoder.

0 1000 2000 3000 4000 5000
Time [ms]

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

0 1000 2000 3000 4000 5000
Time [ms]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 0 ff1
Encoder 0 ff2
Encoder 0 rec

Figure 8.4: Spike activity RNN-2-C with stride 4 in first encoder.

8.2.2. Number of Channels
Increasing the number of channels can make the network’s activity more sparse. Choosing a configu-
ration with more neurons means having more neurons doing less work, therefore less operations per
neuron overall. To prove this, two new network architectures are trained and tested. RNN-2-C has 4
output channels in the first layer of the first encoder. The new architectures will have 8 and 3 output
channels instead.

8.2. Synaptic Operations Analysis 55

0 1000 2000 3000 4000 5000
Time [ms]

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f E

ve
nt

s [
-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

20

40

60

80

100

120

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.5: RNN-2-C with increased number of channels.

From Figure 8.5 and 8.6 it is clear that increasing the number of channels results in more synops espe-
cially in the first layer of the second encoder. However the maximum number of spikes is decreased,
hence more neurons are doing less work. Although this change is not significant, if combined with
regularization term in the loss function, a more sparse activity could be achieved. Note that the number
of channels can be increased up to 1024 (R-speck-5), however the limit on the total number of neurons
is 32k (R-speck-2).

0 1000 2000 3000 4000 5000
Time [ms]

0

500

1000

1500

2000

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
25
50
75

100
125
150
175
200

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.6: RNN-2-C with decreased number of channels.

8.2. Synaptic Operations Analysis 56

8.2.3. Early Stopping
During training, the network establishes the synaptic weights to optimize for minimal loss. However,
in this case the minimum loss is often achieved in the first few epochs. By letting the network train
more, additional connections are formed, which make the predictions more accurate. These redun-
dant weights are useful for making the network more precise, however they increase the number of
operations significantly. If the training is stopped earlier and the model is still able to estimate the flow
accurately, a more operations efficient result can be obtained.

0 1000 2000 3000 4000 5000
Time [ms]

0

500

1000

1500

2000

2500

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
10
20
30
40
50
60
70

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.7: RNN-2-C after 80 epochs.

0 1000 2000 3000 4000 5000
Time [ms]

0
250
500
750

1000
1250
1500
1750

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0

10

20

30

40

50

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.8: RNN-2-C after 10 epochs.

8.2. Synaptic Operations Analysis 57

Figure 8.7 and 8.8 show that the layers’ activity is way lower in the earlier epochs. The second forward
layer of the second encoder is almost doubling its number of output spikes.

8.2.4. Synops Loss Term
The exact limit value is not uniquely determined for all cores, as it depends on the its size, the weights
and the number of incoming spikes. However, Figure 8.2 gives a rough indication of how many spikes
can be handled without accumulation. To minimize the total number of spikes, an additional term in the
loss function is included. The synops loss term is given in Equation 8.1.

loss =

N∑
k=1

(total output)k
(threshold)k(# parameters)k

(8.1)

The total output of every layer at every step is the total number of spikes that a layer produces. During
training the network is using ReLU functions and the output of every neuron is a floating point. However
the range of weights values for every layer changes and, if it is not rescaled, the deeper layers with lower
weight values will have less importance in the cost function. Moreover, layers with more parameters
need to have a higher spike rate to send more information, thus the layer output is also scaled by the
number of parameters. The weight of the synops loss term on the total loss function has to be tuned,
in order to achieve a balance that allows to learn optical flow properly and with the minimum number
of operations.

0 2 4 6 8
Epochs [-]

0.78

0.80

0.82

0.84

0.86

0.88

Fl
ow

 L
os

s [
-]

w = 0
w = 0.001
w = 0.01
w = 0.1
w = 1

0 2 4 6 8
Epochs [-]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Sy
no

ps
 L

os
s [

-]

w = 0
w = 0.001
w = 0.01
w = 0.1
w = 1

Figure 8.9: Flow and synops loss during training with different weighting.

Figure 8.9 shows the flow loss and synops loss over 10 epochs. By looking at the synops loss, it is
clear that 0.01 is an optimal value for the weight, as it allows the flow loss to converge to a slightly
higher value, while keeping the synops lower. If the weight is increased to 0.1 (pink line), the network
minimizes the synops to zero and it is prevented from learning flow. If it is decreased to 0.001 (blue
line), its influence is almost unnoticeable and the synops increase to more than necessary.

8.2. Synaptic Operations Analysis 58

0 1000 2000 3000 4000 5000
Time [ms]

0

500

1000

1500

2000

2500
Nu

m
be

r o
f E

ve
nt

s [
-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
20
40
60
80

100
120
140

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.10: RNN-2-C without synops loss term.

0 1000 2000 3000 4000 5000
Time [ms]

0
250
500
750

1000
1250
1500
1750
2000

Nu
m

be
r o

f E
ve

nt
s [

-]

Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

0 1000 2000 3000 4000 5000
Time [ms]

0
10
20
30
40
50
60

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] Input Events
Encoder 1 ff1
Encoder 1 ff2
Encoder 1 rec

Figure 8.11: RNN-2-C with synops loss weight of 0.01.

8.2.5. Final Network Configuration
In the previous sections, it was showed how different hyperparameters influence the number of synaptic
operations. Following these guidelines, a new architecture can be designed for the speck2e. The final
configuration is similar to RNN-2-C (Table 7.3), but with a few updates:

• The stride of first layer in Encoder 0 is increased from 2 to 4. As explained in subsection 8.2.1,
this forces the network to decrease the information sent between layers.

8.2. Synaptic Operations Analysis 59

• Kernel size of pooling layer is decreased from 12 to 6, as a result of the increase in stride.
• The number of output channels of first layer in Encoder 0 increased from 4 to 6. Having a more
sparse activity results in less spikes per neuron.

• Number of input channels of first layer in Encoder 1 increased from 8 to 12.
• Number of output channels of pooling layer is increased from 8 to 15. According to R-speck-15,
the maximum number of output channels in the readout layer is 15 and all of them shall be used
to maximize the number of features obtained from the chip.

An overview of all the configuration details is displayed in Table 8.1. This is the network configuration
to be used for the following experiments on the speck2e.

Table 8.1: Network Architecture for RNN-2-C-speck.

Layer In Channels Out Channels In Size Out Size Kernel Stride Padding

Encoder 0 Fwd. 1 2 6 90 23 3 4 1
Fwd. 2 12 12 23 23 3 1 1
Rec. 12 6 23 23 3 1 0

Encoder 1 Fwd. 1 12 16 23 6 3 4 1
Fwd. 2 32 32 6 6 3 1 1
Rec. 32 16 6 6 3 1 0

Pooling 32 15 6 1 6 1 0
Prediction 15 8 1 1 1 1 0

References

[1] Neuromorphic Intelligence I& Application Solutions | Synsense. URL: https://www.synsense.
ai/.

[2] Javaan Chahl, Mandyam Srinivasan, and Shaowu Zhang. “Landing Strategies in Honeybees and
Applications to Uninhabited Airborne Vehicles”. In: I. J. Robotic Res. 23 (Feb. 2004), pp. 101–110.
DOI: 10.1177/0278364904041320.

[3] Harald E. Esch and John E. Burns. “Distance Estimation by Foraging Honeybees”. In: Journal of
Experimental Biology 199.1 (Jan. 1996), pp. 155–162. ISSN: 0022-0949. DOI: 10.1242/jeb.199.
1.155. eprint: https://journals.biologists.com/jeb/article-pdf/199/1/155/3107314/
jexbio_199_1_155.pdf. URL: https://doi.org/10.1242/jeb.199.1.155.

[4] Mandyam Srinivasan. “Honeybees as a Model for the Study of Visually Guided Flight, Navigation,
and Biologically Inspired Robotics”. In: Physiological reviews 91 (Apr. 2011), pp. 413–60. DOI:
10.1152/physrev.00005.2010.

[5] S. S. Beauchemin and J. L. Barron. “The Computation of Optical Flow”. In: 27.3 (Sept. 1995),
pp. 433–466. ISSN: 0360-0300. DOI: 10.1145/212094.212141. URL: https://doi.org/10.
1145/212094.212141.

[6] HaiyangChao, YuGu, andMarcello Napolitano. “A Survey of Optical Flow Techniques for Robotics
Navigation Applications”. In: Journal of Intelligent I& Robotic Systems 73 (May 2013). DOI: 10.
1007/s10846-013-9923-6.

[7] Bruce Lucas and Takeo Kanade. “An Iterative Image Registration Technique with an Application
to Stereo Vision (IJCAI)”. In: vol. 81. Apr. 1981.

[8] Berthold K.P. Horn and Brian G. Schunck. “Determining optical flow”. In: Artificial Intelligence 17.1
(1981), pp. 185–203. ISSN: 0004-3702. DOI: https://doi.org/10.1016/0004-3702(81)90024-
2. URL: https://www.sciencedirect.com/science/article/pii/0004370281900242.

[9] Bruno Herissé et al. “Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using
Optical Flow”. In: IEEE Transactions on Robotics 28.1 (2012), pp. 77–89. DOI: 10.1109/TRO.
2011.2163435.

[10] Kevin Jones, T.C. Lund, and Max Platzer. “Fixed and flapping wing aerodynamics for micro air
vehicle applications”. In: Progress In Astronautics and Aeronautics (Jan. 2001).

[11] Robert Ross, J. Devlin, and Song Wang. “Toward Refocused Optical Mouse Sensors for Outdoor
Optical Flow Odometry”. In: IEEE Sensors Journal 12 (June 2012), pp. 1925–1932. DOI: 10.
1109/JSEN.2011.2180525.

[12] Stephen Griffiths et al. “Maximizing miniature aerial vehicles - Obstacle and terrain avoidance
for MAVs”. In: IEEE ROBOTICS AND AUTOMATION MAGAZINE. SUBMITTED FOR REVIEW
1 (Jan. 2007). DOI: 10.1007/978-1-4020-6114-1_7.

[13] Guido CHE de Croon. “Monocular distance estimation with optical flowmaneuvers and efference
copies: a stability-based strategy”. In: Bioinspiration I& Biomimetics 11.1 (Jan. 2016), p. 016004.
DOI: 10 . 1088 / 1748 - 3190 / 11 / 1 / 016004. URL: https : / / dx . doi . org / 10 . 1088 / 1748 -
3190/11/1/016004.

[14] Edward H. Adelson and James R. Bergen. “Spatiotemporal energy models for the perception of
motion”. In: J. Opt. Soc. Am. A 2.2 (Feb. 1985), pp. 284–299. DOI: 10.1364/JOSAA.2.000284.
URL: https://opg.optica.org/josaa/abstract.cfm?URI=josaa-2-2-284.

[15] David J. Heeger. “Optical flow using spatiotemporal filters”. In: International Journal of Computer
Vision 1.4 (Jan. 1988), pp. 279–302. ISSN: 1573-1405. DOI: 10.1007/BF00133568. URL: https:
//doi.org/10.1007/BF00133568.

60

https://www.synsense.ai/
https://www.synsense.ai/
https://doi.org/10.1177/0278364904041320
https://doi.org/10.1242/jeb.199.1.155
https://doi.org/10.1242/jeb.199.1.155
https://journals.biologists.com/jeb/article-pdf/199/1/155/3107314/jexbio_199_1_155.pdf
https://journals.biologists.com/jeb/article-pdf/199/1/155/3107314/jexbio_199_1_155.pdf
https://doi.org/10.1242/jeb.199.1.155
https://doi.org/10.1152/physrev.00005.2010
https://doi.org/10.1145/212094.212141
https://doi.org/10.1145/212094.212141
https://doi.org/10.1145/212094.212141
https://doi.org/10.1007/s10846-013-9923-6
https://doi.org/10.1007/s10846-013-9923-6
https://doi.org/https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/https://doi.org/10.1016/0004-3702(81)90024-2
https://www.sciencedirect.com/science/article/pii/0004370281900242
https://doi.org/10.1109/TRO.2011.2163435
https://doi.org/10.1109/TRO.2011.2163435
https://doi.org/10.1109/JSEN.2011.2180525
https://doi.org/10.1109/JSEN.2011.2180525
https://doi.org/10.1007/978-1-4020-6114-1_7
https://doi.org/10.1088/1748-3190/11/1/016004
https://dx.doi.org/10.1088/1748-3190/11/1/016004
https://dx.doi.org/10.1088/1748-3190/11/1/016004
https://doi.org/10.1364/JOSAA.2.000284
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-2-2-284
https://doi.org/10.1007/BF00133568
https://doi.org/10.1007/BF00133568
https://doi.org/10.1007/BF00133568

References 61

[16] David Fleet and Allan Jepson. “Computation of component image velocity from local phase infor-
mation”. In: International Journal of Computer Vision 5 (Aug. 1990), pp. 77–104. DOI: 10.1007/
BF00056772.

[17] Farid Kendoul, Isabelle Fantoni, and Kenzo Nonami. “Optic flow-based vision system for au-
tonomous 3D localization and control of small aerial vehicles”. In: Robotics and Autonomous
Systems 57.6 (2009), pp. 591–602. ISSN: 0921-8890. DOI: https : / / doi . org / 10 . 1016 /
j.robot.2009.02.001. URL: https://www.sciencedirect.com/science/article/pii/
S0921889009000396.

[18] Alexey Dosovitskiy et al. “FlowNet: Learning Optical Flow with Convolutional Networks”. In: 2015
IEEE International Conference on Computer Vision (ICCV). 2015, pp. 2758–2766. DOI: 10.1109/
ICCV.2015.316.

[19] Anurag Ranjan and Michael J. Black. “Optical Flow Estimation Using a Spatial Pyramid Network”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2720–
2729. DOI: 10.1109/CVPR.2017.291.

[20] Aria Ahmadi and Ioannis Patras. “Unsupervised convolutional neural networks for motion estima-
tion”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016, pp. 1629–1633.
DOI: 10.1109/ICIP.2016.7532634.

[21] Jason J. Yu, Adam W. Harley, and Konstantinos G. Derpanis. “Back to Basics: Unsupervised
Learning of Optical Flow via Brightness Constancy andMotion Smoothness”. In:CoRR abs/1608.05842
(2016). arXiv: 1608.05842. URL: http://arxiv.org/abs/1608.05842.

[22] Zhe Ren et al. “Unsupervised Deep Learning for Optical Flow Estimation”. In: Feb. 2017.
[23] Christoph Posch et al. “Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With

Spiking Output”. In: Proceedings of the IEEE 102.10 (2014), pp. 1470–1484. DOI: 10.1109/
JPROC.2014.2346153.

[24] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. “Real-Time 3D Reconstruction and
6-DoF Tracking with an Event Camera”. In: European Conference on Computer Vision. 2016.

[25] Guillermo Gallego et al. “Event-based vision: A survey”. In: IEEE transactions on pattern analysis
and machine intelligence 44.1 (2020), pp. 154–180.

[26] Ziwei Wang et al. A Linear Comb Filter for Event Flicker Removal. 2022. arXiv: 2205.08090
[cs.CV].

[27] Enea Ceolini et al. “Hand-Gesture Recognition Based on EMG and Event-Based Camera Sen-
sor Fusion: A Benchmark in Neuromorphic Computing”. In: Frontiers in Neuroscience 14 (2020).
ISSN: 1662-453X. DOI: 10.3389/fnins.2020.00637. URL: https://www.frontiersin.org/
articles/10.3389/fnins.2020.00637.

[28] Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition System”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

[29] Garrick Orchard et al. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Us-
ing Saccades”. In: Frontiers in Neuroscience 9 (2015). ISSN: 1662-453X. DOI: 10.3389/fnins.
2015.00437. URL: https://www.frontiersin.org/articles/10.3389/fnins.2015.00437.

[30] Amos Sironi et al. HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object
Classification. 2018. arXiv: 1803.07913 [cs.CV].

[31] Javier Cuadrado et al. “Optical flow estimation from event-based cameras and spiking neural
networks”. In: Frontiers in Neuroscience 17 (2023). ISSN: 1662-453X. DOI: 10.3389/fnins.2023.
1160034. URL: https://www.frontiersin.org/articles/10.3389/fnins.2023.1160034.

[32] Timo Stoffregen et al. “Event-Based Motion Segmentation by Motion Compensation”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2019.

[33] Timo Stoffregen and Lindsay Kleeman. Simultaneous Optical Flow and Segmentation (SOFAS)
using Dynamic Vision Sensor. 2018. arXiv: 1805.12326 [cs.CV].

[34] David Drazen et al. “Toward real-time particle tracking using an event-based dynamic vision sen-
sor”. In: Experiments in Fluids 51 (Nov. 2011), pp. 1465–1469. DOI: 10.1007/s00348-011-1207-
y.

https://doi.org/10.1007/BF00056772
https://doi.org/10.1007/BF00056772
https://doi.org/https://doi.org/10.1016/j.robot.2009.02.001
https://doi.org/https://doi.org/10.1016/j.robot.2009.02.001
https://www.sciencedirect.com/science/article/pii/S0921889009000396
https://www.sciencedirect.com/science/article/pii/S0921889009000396
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/CVPR.2017.291
https://doi.org/10.1109/ICIP.2016.7532634
https://arxiv.org/abs/1608.05842
http://arxiv.org/abs/1608.05842
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1109/JPROC.2014.2346153
https://arxiv.org/abs/2205.08090
https://arxiv.org/abs/2205.08090
https://doi.org/10.3389/fnins.2020.00637
https://www.frontiersin.org/articles/10.3389/fnins.2020.00637
https://www.frontiersin.org/articles/10.3389/fnins.2020.00637
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2015.00437
https://www.frontiersin.org/articles/10.3389/fnins.2015.00437
https://arxiv.org/abs/1803.07913
https://doi.org/10.3389/fnins.2023.1160034
https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/articles/10.3389/fnins.2023.1160034
https://arxiv.org/abs/1805.12326
https://doi.org/10.1007/s00348-011-1207-y
https://doi.org/10.1007/s00348-011-1207-y

References 62

[35] Zhenjiang Ni et al. “Asynchronous event-based high speed vision for microparticle tracking”. In:
Journal of microscopy 245 (Nov. 2011), pp. 236–44. DOI: 10.1111/j.1365-2818.2011.03565.x.

[36] Xavier Lagorce et al. “Asynchronous Event-Based Multikernel Algorithm for High-Speed Visual
Features Tracking”. In: IEEE Transactions onNeural Networks and Learning Systems 26.8 (2015),
pp. 1710–1720. DOI: 10.1109/TNNLS.2014.2352401.

[37] André Grüning and Sander M Bohte. “Spiking neural networks: Principles and challenges.” In:
ESANN. Bruges. 2014.

[38] Jason K. Eshraghian et al. Training Spiking Neural Networks Using Lessons FromDeep Learning.
2023. arXiv: 2109.12894 [cs.NE].

[39] Sinabs (Sinabs Is Not A Brain Simulator). URL: https://sinabs.readthedocs.io/en/1.2.8/
index.html.

[40] Lyle Long and Guoliang Fang. “A review of biologically plausible neuron models for spiking neural
networks”. In: AIAA Infotech@ Aerospace 2010 (2010), p. 3540.

[41] Arindam Basu, Csaba Petre, and Paul Hasler. “Bifurcations in a silicon neuron”. In: 2008 IEEE
International Symposium on Circuits and Systems. 2008, pp. 428–431. DOI: 10.1109/ISCAS.
2008.4541446.

[42] Catherine D Schuman et al. “A survey of neuromorphic computing and neural networks in hard-
ware”. In: arXiv preprint arXiv:1705.06963 (2017).

[43] Christoph Stöckl and Wolfgang Maass. “Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes”. In: Nature Machine Intelligence (2021). DOI:
10.1038/s42256-021-00311-4.

[44] Garrick Orchard et al. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Us-
ing Saccades”. In: Frontiers in Neuroscience 9 (2015). ISSN: 1662-453X. DOI: 10.3389/fnins.
2015.00437. URL: https://www.frontiersin.org/articles/10.3389/fnins.2015.00437.

[45] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradient Learning in Spik-
ing Neural Networks”. In:CoRR abs/1901.09948 (2019). arXiv: 1901.09948. URL: http://arxiv.
org/abs/1901.09948.

[46] Friedemann Zenke and Tim P. Vogels. “The Remarkable Robustness of Surrogate Gradient
Learning for Instilling Complex Function in Spiking Neural Networks”. In: Neural Computation
33.4 (Mar. 2021), pp. 899–925. ISSN: 0899-7667. DOI: 10.1162/neco_a_01367. eprint: https:
//direct.mit.edu/neco/article- pdf/33/4/899/1902294/neco_a_01367.pdf. URL:
https://doi.org/10.1162/neco%5C_a%5C_01367.

[47] Sander M. Bohte, Joost N. Kok, and Han La Poutré. “Error-backpropagation in temporally en-
coded networks of spiking neurons”. In: Neurocomputing 48.1 (2002), pp. 17–37. ISSN: 0925-
2312. DOI: https : / / doi . org / 10 . 1016 / S0925 - 2312(01) 00658 - 0. URL: https : / / www .
sciencedirect.com/science/article/pii/S0925231201006580.

[48] Sumit Bam Shrestha and Garrick Orchard. “SLAYER: Spike Layer Error Reassignment in Time”.
In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper_files/paper/2018/
file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf.

[49] Christof Koch, Moshe Rapp, and Idan Segev. “A Brief History of Time (Constants)”. In: Cerebral
Cortex 6.2 (Mar. 1996), pp. 93–101. ISSN: 1047-3211. DOI: 10.1093/cercor/6.2.93. eprint:
https://academic.oup.com/cercor/article- pdf/6/2/93/968752/6- 2- 93.pdf. URL:
https://doi.org/10.1093/cercor/6.2.93.

[50] Wei Fang et al. “Incorporating Learnable Membrane Time Constant to Enhance Learning of Spik-
ing Neural Networks”. In: (Nov. 2020).

[51] Siqi Wang, Tee Hiang Cheng, and Meng-Hiot Lim. “LTMD: Learning Improvement of Spiking
Neural Networks with Learnable Thresholding Neurons and Moderate Dropout”. In: Advances in
Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc.,
2022, pp. 28350–28362. URL: https://proceedings.neurips.cc/paper_files/paper/2022/
file/b5fd95d6b16d3172e307103a97f19e1b-Paper-Conference.pdf.

https://doi.org/10.1111/j.1365-2818.2011.03565.x
https://doi.org/10.1109/TNNLS.2014.2352401
https://arxiv.org/abs/2109.12894
https://sinabs.readthedocs.io/en/1.2.8/index.html
https://sinabs.readthedocs.io/en/1.2.8/index.html
https://doi.org/10.1109/ISCAS.2008.4541446
https://doi.org/10.1109/ISCAS.2008.4541446
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2015.00437
https://www.frontiersin.org/articles/10.3389/fnins.2015.00437
https://arxiv.org/abs/1901.09948
http://arxiv.org/abs/1901.09948
http://arxiv.org/abs/1901.09948
https://doi.org/10.1162/neco_a_01367
https://direct.mit.edu/neco/article-pdf/33/4/899/1902294/neco_a_01367.pdf
https://direct.mit.edu/neco/article-pdf/33/4/899/1902294/neco_a_01367.pdf
https://doi.org/10.1162/neco%5C_a%5C_01367
https://doi.org/https://doi.org/10.1016/S0925-2312(01)00658-0
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://proceedings.neurips.cc/paper_files/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://doi.org/10.1093/cercor/6.2.93
https://academic.oup.com/cercor/article-pdf/6/2/93/968752/6-2-93.pdf
https://doi.org/10.1093/cercor/6.2.93
https://proceedings.neurips.cc/paper_files/paper/2022/file/b5fd95d6b16d3172e307103a97f19e1b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b5fd95d6b16d3172e307103a97f19e1b-Paper-Conference.pdf

References 63

[52] Federico Paredes-Vallés, Jesse J. Hagenaars, and Guido de Croon. “Self-Supervised Learning
of Event-Based Optical Flow with Spiking Neural Networks”. In: CoRR abs/2106.01862 (2021).
arXiv: 2106.01862. URL: https://arxiv.org/abs/2106.01862.

[53] Alex Zihao Zhu et al. “EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based
Cameras”. In: CoRR abs/1802.06898 (2018). arXiv: 1802.06898. URL: http://arxiv.org/abs/
1802.06898.

[54] Alex Zihao Zhu et al. “Unsupervised Event-based Learning of Optical Flow, Depth, and Egomo-
tion”. In: CoRR abs/1812.08156 (2018). arXiv: 1812.08156. URL: http://arxiv.org/abs/1812.
08156.

[55] Mathias Gehrig et al. “Event-based angular velocity regression with spiking networks”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 4195–4202.

[56] Alex Zihao Zhu et al. “EV-FlowNet: Self-supervised optical flow estimation for event-based cam-
eras”. In: arXiv preprint arXiv:1802.06898 (2018).

[57] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. “A Unifying Contrast Maximization
Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow Estimation”.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, pp. 3867–
3876. DOI: 10.1109/CVPR.2018.00407.

[58] Anton Mitrokhin et al. “Event-Based Moving Object Detection and Tracking”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2018, pp. 1–9. DOI: 10 .
1109/IROS.2018.8593805.

[59] CarloMichaelis, AndrewB. Lehr, and Christian Tetzlaff. “Robust Trajectory Generation for Robotic
Control on the Neuromorphic Research Chip Loihi”. In: Frontiers in Neurorobotics 14 (2020).
ISSN: 1662-5218. DOI: 10.3389/fnbot.2020.589532. URL: https://www.frontiersin.org/
articles/10.3389/fnbot.2020.589532.

[60] Raphaela Kreiser, AlphaRenner, and Yulia Sandamirskaya. “Error-driven learning for self-calibration
in a neuromorphic path integration system”. In: Aug. 2019.

[61] Raphaela Kreiser et al. “Error estimation and correction in a spiking neural network for map
formation in neuromorphic hardware”. In: May 2020, pp. 6134–6140. DOI: 10.1109/ICRA40945.
2020.9197498.

[62] Loihi 2: A New Generation of Neuromorphic Computing. URL: https://www.intel.com/conten
t/www/us/en/research/neuromorphic-computing.html.

[63] Rasmus Stagsted et al. “Towards neuromorphic control: A spiking neural network based PID con-
troller for UAV”. In:Robotics: Science and Systems 2020. RSS, July 2020. ISBN: 9780992374761.
DOI: 10.15607/rss.2020.xvi.074. URL: https://doi.org/10.5167/uzh-200415.

[64] Julien Dupeyroux et al. “Neuromorphic control for optic-flow-based landing of MAVs using the
Loihi processor”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
2021, pp. 96–102. DOI: 10.1109/ICRA48506.2021.9560937.

[65] Federico Paredes-Vallés et al. “Fully neuromorphic vision and control for autonomous drone
flight”. In: arXiv preprint arXiv:2303.08778 (2023).

[66] Speck: Event-Driven Neuromorphic SoC | Synsense. URL: https://www.synsense.ai/produc
ts/speck-2/.

[67] Ole Richter et al. Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron
Convolutional Neuronal Network Processing Pipeline. 2023. arXiv: 2304.06793 [cs.NE].

[68] Samna. URL: https://pypi.org/project/samna/.
[69] Elias Mueggler et al. “The Event-Camera Dataset and Simulator: Event-based Data for Pose

Estimation, Visual Odometry, and SLAM”. In: CoRR abs/1610.08336 (2016). arXiv: 1610.08336.
URL: http://arxiv.org/abs/1610.08336.

https://arxiv.org/abs/2106.01862
https://arxiv.org/abs/2106.01862
https://arxiv.org/abs/1802.06898
http://arxiv.org/abs/1802.06898
http://arxiv.org/abs/1802.06898
https://arxiv.org/abs/1812.08156
http://arxiv.org/abs/1812.08156
http://arxiv.org/abs/1812.08156
https://doi.org/10.1109/CVPR.2018.00407
https://doi.org/10.1109/IROS.2018.8593805
https://doi.org/10.1109/IROS.2018.8593805
https://doi.org/10.3389/fnbot.2020.589532
https://www.frontiersin.org/articles/10.3389/fnbot.2020.589532
https://www.frontiersin.org/articles/10.3389/fnbot.2020.589532
https://doi.org/10.1109/ICRA40945.2020.9197498
https://doi.org/10.1109/ICRA40945.2020.9197498
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://doi.org/10.15607/rss.2020.xvi.074
https://doi.org/10.5167/uzh-200415
https://doi.org/10.1109/ICRA48506.2021.9560937
https://www.synsense.ai/products/speck-2/
https://www.synsense.ai/products/speck-2/
https://arxiv.org/abs/2304.06793
https://pypi.org/project/samna/
https://arxiv.org/abs/1610.08336
http://arxiv.org/abs/1610.08336

64

A.1. Prediction vs. Ground Truth Optical Flow 65

A
Additional Results

A.1. Prediction vs. Ground Truth Optical Flow
A.1.1. LIF-3

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

0.3
Op

tic
al

 F
lo

w
[p

x/
m

s]

TL v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

0.3

0.4

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.0

0.2

0.4

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.0

0.2

0.4

0.6

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.0

0.2

0.4

0.6

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.1: LIF-3 optical flow prediction.

A.1. Prediction vs. Ground Truth Optical Flow 66

A.1.2. RNN-3-S

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.2: RNN-3-S optical flow prediction.

A.1. Prediction vs. Ground Truth Optical Flow 67

A.1.3. RNN-2-S

0 1000 2000 3000 4000 5000
Time [ms]

0.3

0.2

0.1

0.0

0.1

0.2
Op

tic
al

 F
lo

w
[p

x/
m

s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.3: RNN-2-S optical flow prediction.

A.1. Prediction vs. Ground Truth Optical Flow 68

A.1.4. IF-2-S

0 1000 2000 3000 4000 5000
Time [ms]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.4: IF-2-S optical flow prediction.

A.1. Prediction vs. Ground Truth Optical Flow 69

A.1.5. RNN-2-C

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.3

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.3

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

0.3

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.5: RNN-2-C optical flow prediction.

A.1. Prediction vs. Ground Truth Optical Flow 70

A.1.6. IF-2-C

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Op
tic

al
 F

lo
w

[p
x/

m
s]

TL v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

TR v

ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BR v
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL u
ground truth
prediction

0 1000 2000 3000 4000 5000
Time [ms]

0.2

0.1

0.0

0.1

0.2

Op
tic

al
 F

lo
w

[p
x/

m
s]

BL v
ground truth
prediction

Figure A.6: IF-2-C optical flow prediction.

A.2. Spike Activity on Speck2e 71

A.2. Spike Activity on Speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0

200

400

600

800

1000
Nu

m
be

r o
f E

ve
nt

s [
-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0
1
2
3
4
5
6
7
8

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.7: Spike activity of second forward layer of encoder 0.

A.2. Spike Activity on Speck2e 72

0 200 400 600 800 1000 1200 1400
Time [ms]

0

200

400

600

800

1000

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0

2

4

6

8

10

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.8: Spike activity of recurrent layer of encoder 0.

0 200 400 600 800 1000 1200 1400
Time [ms]

0

100

200

300

400

500

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0

10

20

30

40

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.9: Spike activity of first forward layer of encoder 1.

A.2. Spike Activity on Speck2e 73

0 200 400 600 800 1000 1200 1400
Time [ms]

0
200
400
600
800

1000
1200
1400

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0

5

10

15

20

25

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.10: Spike activity of second forward layer of encoder 1.

0 200 400 600 800 1000 1200 1400
Time [ms]

0

100

200

300

400

500

600

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0
5

10
15
20
25
30
35

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.11: Spike activity of recurrent layer of encoder 1.

A.3. Optical Flow Color Map 74

0 200 400 600 800 1000 1200 1400
Time [ms]

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f E
ve

nt
s [

-]

simulation
speck2e

0 200 400 600 800 1000 1200 1400
Time [ms]

0

1

2

3

4

5

6

M
ax

 N
um

be
r o

f S
pi

ke
s [

-] simulation
speck2e

Figure A.12: Spike activity of pooling layer.

A.3. Optical Flow Color Map

Figure A.13: Optical flow color map.

	Preface
	Nomenclature
	Introduction
	I Scientific Paper
	II Literature Study
	Frame-Based Optical Flow
	General
	Conventional Methods
	Intensity-Based Differential Methods
	Frequency-Based Methods
	Correlation-Based Methods

	Deep Learning Methods

	Event-Based Cameras
	Working Principle
	Advantages
	Applications

	Spiking Neural Networks
	Working Principle
	Neuron Models
	Leak Integrate & Fire
	Integrate & Fire

	Hyperparameters & Training
	Surrogate Gradients
	Learnable Hyperparameters

	Recurrency in Spiking Neural Networks

	Event-Based Optical Flow
	Supervised Learning
	Self-Supervised Learning
	Onboard Applications for MAV
	Intel Loihi

	Neuromorphic Hardware & Software
	Hardware
	Software
	Editing & Uploading Devkit Configuration
	Synaptic Operations

	III Preliminary Evaluation of Integrate & Fire Neurons for Optical Flow
	Methodology
	Network Architecture
	Training & Testing Datasets
	Software
	PyTorch Framework
	Sinabs & Samna

	Hardware
	Recurrency Types
	Recurrency type S
	Recurrency type C

	Network Naming Convention

	Network Design & Training Strategies
	Leak Integrate & Fire Recurrent Network
	Integrate & Fire Recurrent Network with Biases
	Analysis and Assessment of Biases

	Recurrent Convolutional Neural Network
	Recurrency Types and Architecture

	Integrate & Fire Recurrent Network
	Weights Re-scaling

	Results on SR Dataset
	Signal-to-Noise Ratio
	Average End-point Error
	Ratio of the Squared Averaged Timestamps

	Results on Davis Dataset
	Results Discussion
	Neuron Model: LIF vs. RNN vs. IF
	Number of Encoders: 3 vs. 2
	Recurrency Type: Sum vs. Concatenation
	Network Conversion
	Conclusion

	Hardware Implementation
	Quantized Network
	Parameters Quantization

	Synaptic Operations Analysis
	Stride
	Number of Channels
	Early Stopping
	Synops Loss Term
	Final Network Configuration

	References
	Additional Results
	Prediction vs. Ground Truth Optical Flow
	LIF-3
	RNN-3-S
	RNN-2-S
	IF-2-S
	RNN-2-C
	IF-2-C

	Spike Activity on Speck2e
	Optical Flow Color Map

