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Abstract

Most TCP data transfers in the Internet are
short. This makes the startup algorithms an
important factor that impacts TCP perfor-
mance. Several startup algorithms have been
developed. However, not a lot of research
has been conducted into how these behave
and interact when used for short flows. This
paper aims to provide a thorough evaluation
of these algorithms and their interactions un-
der different network conditions, focusing
on short flows and using ns-3. We have ob-
served that JumpStart seems to outperform
the other algorithms used when it comes to
flow completion time for short flows. That
is likely because it starts to send data with
an aggressive initial congestion window and
the flow is finished after the first few RTTs.
However, JumpStart performs more poorly
when the flows are longer. We have shown
that JumpStart has a great potential to make
communication more efficient in the Internet
but further research has to be conducted into
its behavior in more adversarial conditions
that represent real life situations better.

1 Introduction
The Transmission Control Protocol or TCP [6] is the
primary transport protocol used in the Internet. It en-
sures reliable end-to-end communication between a
sender and a receiver. Since it is used in the Internet,
TCP is faced with a wide range of different network
conditions that impact its performance. It is essential
to understand how its performance is affected by dif-
ferent conditions such that improved versions can be
developed in the future.

Many congestion control algorithms (CCA) have
been developed over the years to try to improve TCP’s
performance such as CUBIC [9], Vegas [2] or the more
recent Google algorithm, BBR [3]. These were later
compared to each other, in order to understand their
behavior under different conditions and to be able to
improve them in the future [19, 22, 11].

Another important part of TCP literature is focused
on developing new startup algorithms and analyzing
them. Startup algorithms are used by TCP at the be-
ginning of the connection to increase the congestion
window (cwnd) until it reaches the optimal value and
it can properly use the available bandwidth. Several
startup algorithms have been developed over the years,
such as HyStart [8], JumpStart [13] or the BBR startup
[3].

In the Internet, the majority of flows are short, as it
was shown in several studies [12, 17]. That is because
many user activities correspond to short data trans-
fers such as GET requests, loading small web pages or
loading short form content from different social media
apps. The large number of small flows in the Internet
makes the impact of startup algorithms on TCP per-
formance an increasingly important issue. Since the
flows are so small, many would not even get to exit

the startup phase before they are done sending. How-
ever, there is not enough research conducted into ana-
lyzing the performance of different startup algorithms
on short flows.

Our research aims to answer the question of ”How
do flow startup mechanisms impact the performance
of TCP?”. We achieved this by providing a thorough
evaluation of a few of the important startup algorithms,
to understand their behavior and in which conditions
each algorithm performs better. To this extent, we fo-
cused on three algorithms for our experiments: HyS-
tart because it is currently the default startup algorithm
used in CUBIC, which is the most common TCP ver-
sion used in the Internet [14, 21, 15]; BBRv3 because
it is the latest algorithm developed by Google and they
have already started to use it for their public Internet
traffic [4]; and our custom implementation of Jump-
Start in ns-3 because its aggressive initial sending rate
shows potential when dealing with small flows. To
compare them thoroughly, we developed multiple ex-
periments that simulated different real world network
conditions. The main performance metric used was
flow completion time (FCT) because it is known to
best represent user experience [5]. Other metrics were
throughput over time, cwnd growth and Jain’s Fairness
Index (JFI) [10] for competing flows.

We discovered that JumpStart outperforms the other
two algorithms in FCT, when the flows are short. This
makes it a very valuable algorithm to be studied further
and potentially improved. This evaluation was impor-
tant to understand the potential of JumpStart in the In-
ternet and hopefully convince researchers that it is a
topic that deserves more attention. It is important that
future work will also explore a wider variety of condi-
tions in which JumpStart should be tested, that mimic
real world traffic more closely.

2 Background
In academic literature, there has been a lot of research
conducted on TCP. Many studies focus on evaluating
the performance of TCP under different conditions.
This is essential to understand its potential problems
and how it can be improved in future versions. There
are also several academic papers that introduce new
TCP versions or startup algorithms.

Many improvements of the protocol have been pro-
posed over the years, specifically targeting the conges-
tion control algorithms (CCA) used, such as CUBIC
[9], Vegas [2], or the latest Google algorithm, BBR
(Bottleneck Bandwidth and Round-trip time) [4, 3].
CUBIC is now the most common algorithm used in
the Internet and BBR is already used by Google on all
their public Internet traffic [4]. This makes the perfor-
mance of these algorithms and their interactions a very
important topic which has been studied extensively in
literature [19, 22, 11].

One of the main factors that impact the performance
of TCP is the flow startup mechanism used. The de-
fault TCP startup algorithm, Slow Start, doubles the
cwnd every RTT until it exceeds a certain threshold
or packets are lost. Several improvements to standard
TCP Slow Start were proposed in literature. HyStart
[8], is one of these solutions, and uses ACK trains



and RTT delay samples to combat Slow Start’s over-
shoot by finding an early exit point. It has also been
implemented as the default slow start for CUBIC in
the Linux kernel. Google’s CCA, BBR also slightly
modifies slow start such that it exits the startup phase
when the bottleneck bandwidth estimation plateaus or,
the loss or ECN thresholds are exceeded [22]. An-
other different approach observed in literature is that
of JumpStart [13], which completely skips over the
startup phase and paces as many packets as the adver-
tised window of the receiver over the first RTT. This
also has several drawbacks, but its performance hasn’t
been studied in depth. One of the latest proposed al-
gorithms, SUSS [1] shows a lot of potential for im-
proving slow start especially for short flows where the
small improvements are more relevant. It uses HyS-
tart to predict when the cwnd will be increased and it
quadruples it instead of doubling and paces extra pack-
ets to reduce congestion, speeding up slow start and
utilizing more of the available bandwidth [1]. Quick-
Start [18] has been classified as a network assisted ap-
proach to slow start [1] as it uses the network to set an
optimal initial cwnd size. During the handshake, the
sender sends its desired cwnd and this is then modi-
fied by routers along the path to fit each one of them.
Another network approach, P4air [20], uses P4 pro-
grammable routers in the network to calculate the fair
share of the bandwidth for each flow and forces them to
finish slow start with a good cwnd by actively dropping
packets. A different approach on startup algorithms
encountered in literature is a stateful approach such as
Stateful-TCP [7]. It makes use of previous information
about flows with the same destination to set the initial
sending rate, which is useful when several similar re-
quests are made one after another to the same website.
A similar approach can be observed in TCP-RL [16]
that uses reinforcement learning to set the initial win-
dow based on prior transmissions.

All of these algorithms were thoroughly evaluated
when introduced. However, not all of them were com-
pared to each other under different conditions. Since
HyStart and BBR are currently heavily used in the In-
ternet [14, 21, 15], their interactions with other algo-
rithms is an interesting topic of research. JumpStart is
also a promising approach for short flows, which are
very common in the Internet [12, 17]. Therefore, we
explore and compare the performance of each of these
algorithms as well as their interactions, because, to the
best of our knowledge, this was not previously done.

3 Methodology
This section will provide a detailed description of the
testbed we used for experiments as well as the im-
plementation of this setup and the specific algorithms
used. Each experiment will also be described in detail.

3.1 Experiment setup
The experiments evaluated in this paper were run us-
ing the ns-3 network simulator. The network topol-
ogy used for all of these experiments is visually de-
picted in Figure 1. It is a dumbbell topology with 2
senders (S1 and S2 in Figure 1) connected to the same
bottleneck router (BR1 in Figure 1) using high speed

point to point links with a bandwidth of 10 Gbps. The
router is connected to another router (BR2 in Figure 1)
through a slower point to point link creating a bottle-
neck whose bandwidth was set to 10 Mbps, 100 Mbps
or 1 Gbps depending on the experiment. The second
router is then also connected to 2 receivers (R1 and R2
in Figure 1) using high speed links (10 Gbps). The one
way delay of the bottleneck link was set to 5 ms, 25
ms or 125 ms depending on the experiment. This setup
allows to simulate a realistic Internet environment and
observe the different behaviors of each of the startup
algorithms used.

Figure 1: Dumbbell topology used for experiments

The experiments consisted of 1 or 2 TCP flows with
small sizes, either 50, 100. 200, 400 KB, as these rep-
resent the majority of flows in the Internet [12, 17] and
therefore accurately simulated real world scenarios.
The flows used either CUBIC with HyStart, BBRv3
or CUBIC with JumpStart as their TCP algorithms.

The experiments with one flow had most parame-
ters fixed except for one, which was either bottleneck
bandwidth or RTT. This was set to several different
values as mentioned above. One experiment focused
on different bottleneck bandwidth values and another
on different RTT values. The aim of this approach
was to test for each startup algorithm, in which con-
ditions it thrives and compare their performance with
all the other algorithms. Their performance was mea-
sured using different metrics such as flow completion
time (FCT), throughput and cwnd increase over time.

The other type of experiments was the one with 2
flows competing for resources. Three experiments of
this kind were performed. For these the main network
parameters remained the same, but the startup algo-
rithm used differed. The parameters used were 100
Mbps bottleneck bandwidth and 50 ms RTT. One ex-
periment featured a long lived flow (100 MB) and a
short lived flow (100 KB). The long flow was started
before the other one and continued after that was done
sending data. The long flow used CUBIC while the al-
gorithm of the short flow was varied from run to run.
The aim of this experiment was to observe the interac-
tion of these short flows with the already existing traf-
fic, in a situation that could be frequently encountered
in the Internet. The performance of the short lived flow
was measured with the metrics used before, but addi-
tionally also using the Jain’s fairness index (JFI). The
other two experiments of this kind featured 2 medium
sized flows (both 10 MB) started at the same time. One
experiment compared the interactions of flows having
different startup algorithms while the other focused on
flows with the same one. This aimed to analyze the
fairness of these algorithms when flows compete for



resources.

3.2 Implementation
As mentioned above, the experiments were run using
the ns-3 network simulator. To accomplish this, code
had to be written both for the experiment as well as
for extending the framework with implementations of
algorithms that were not present yet. This code can
be found in our repository1, a fork of the official ns-
3 repository2. In particular the code used for these
project can be found on the startup-algorithms branch.

For the framework extension part, we added two
algorithms to its internet model. One is our cus-
tom implementation of the JumpStart algorithm on
top of the CUBIC implementation already present.
This consisted in copying the code of the TcpCu-
bic class to other files, tcp-cubic-jumpstart.h and tcp-
cubic-jumpstart.cc, and adding the algorithm specific
logic. The implementation simply sets the initial cwnd
to the advertised window of the receiver and paces
these packets over the first RTT before reverting back
to the CUBIC algorithm. The other implemented al-
gorithm was BBRv3. This implementation was taken
from the open source community and can be found on
this repository3. The code was added, in our reposi-
tory, to tcp-bbrv3.h and tcp-bbrv3.cc, respectively.

The simulation script was built on top of a common
setup within our project group and we added project
specific features. The script sets up the dumbbell
topology using ns-3’s PointToPointDumbbellHelper.
All of the parameters of the network can be easily
changed using this setup. Furthermore, we imple-
mented logging for several important metrics men-
tioned above such as FCT, throughput, cwnd over time.
We aggregated the logs into plots using python scripts.

4 Evaluation
This section will provide a thorough analysis of the re-
sults obtained from the experiments described above
and their corresponding visual representations.

4.1 Varying bandwidth and size
This experiment tested each of the startup algorithms
mentioned above in the dumbbell topology presented
with an RTT of 50 ms with different bandwidth values
(10 Mbps, 100 Mbps, 1 Gbps) and different flow sizes
(50 KB, 100 KB, 200 KB, 400 KB).

An observation that can be made based on the ob-
served FCTs in Table 1 is that the JumpStart algo-
rithm always performs significantly better under the
given conditions than its counterparts. That is prob-
ably due to its aggressive initial cwnd that allows it to
occupy more bandwidth earlier. CUBIC outperforms
BBRv3 consistently because its startup algorithm is
more aggressive than BBR’s, however, the difference
in FCTs is considerably smaller than the difference be-
tween JumpStart and CUBIC. The differences between
FCTs of JumpStart and CUBIC are often around 100
or 150 ms, with the highest observed being 154 ms,

1https://github.com/AlexandruTabacaru/ns-3-dev-git-rp
2https://github.com/nsnam/ns-3-dev-git
3https://github.com/Aruuni/ns3-bbrv3

when the bandwidth is set to 10 Mbps and the flow has
400 KB. In the case of CUBIC and BBRv3 the differ-
ences are usually of 10 or 15 ms with some even below
10 ms, for example, in the case where the bandwidth is
10 Mbps and the flow has 400 KB.

In terms of throughput, it can be observed in Fig-
ure 3 that JumpStart again achieves much higher
throughput than its counterparts when flows are shorter
(50 KB and 100 KB). That is not always the case
when flows are bigger. For example, when the band-
width is 10 Mbps and the flow has 200 KB, JumpStart
reaches the same maximum throughput as the other al-
gorithms. When the flow has 400 KB, it achieves lower
throughput than the other algorithms. However, it can
be observed that JumpStart has a very different behav-
ior than the other 2 algorithms. This can be attributed
to its aggressive initial congestion window, as seen in
Figure 2. Thanks to this specific characteristic, the
algorithm manages in most cases with short flows to
achieve a higher throughput earlier, and therefore uti-
lizing more of the available bandwidth, compared to
the careful approach of CUBIC and BBRv3. In Fig-
ure 2 for flows of 50 KB, the JumpStart cwnd is not
present in the plots because the initial window is larger
than the size of the flow, so it is never increased.

4.2 Varying RTTs
The second experiment performed is similar to the pre-
vious one, but this tested the behavior of algorithms in
a setting with fixed bandwidth (100 Mbps) and flow
size (100 KB) but with varying RTTs (10 ms, 50 ms,
200 ms).

A similar trend in FCTs as in the previous experi-
ment can be observed here as well. Looking in Table 2,
it can be seen that JumpStart outperforms CUBIC and
BBRv3 under these conditions too. The same ranking
of performance as observed previously is apparent in
this experiment, as well with JumpStart being fastest,
followed by CUBIC and lastly BBrv3. The differences
in FCTs between JumpStart and CUBIC are approxi-
mately 40 ms, 140 ms, and 520 ms corresponding to
RTTs of 10 ms, 50 ms and 200 ms respectively. In the
case of CUBIC and BBRv3 smaller differences can be
observed, respectively, 5 ms, 25 ms, and 100 ms.

The throughput measurements in Figure 5 and of
cwnd increase in Figure 4 are very similar to the pat-
terns observed and explained above in experiment 1.
JumpStart achieves a higher throughput than its coun-
terparts and earlier, making it more efficient in the sit-
uations observed above, as also supported by the mea-
sured FCTs in Table 2.

Table 2: Flow Completion Time (FCT) in seconds for differ-
ent TCP algorithms and RTTs for 100 Mbps bandwidth and
100 KB flow size. The smallest FCT is shown in green, the
second smallest in orange and the last in red

Algorithm 10ms 50ms 200ms

JumpStart 0.055315 0.213019 0.804443
CUBIC 0.093626 0.353626 1.328107
BBRv3 0.099205 0.380374 1.437718



Table 1: Flow Completion Time (FCT) in seconds for different TCP algorithms, bandwidths, and flow sizes. The smallest FCT
is shown in green, the second smallest in orange and the last in red

10 Mbps 100 Mbps 1 Gbps
Algorithm 50KB 100KB 200KB 400KB 50KB 100KB 200KB 400KB 50KB 100KB 200KB 400KB

JumpStart 0.179327 0.223345 0.311423 0.487537 0.169267 0.213019 0.297924 0.442608 0.169232 0.212904 0.297751 0.441953
CUBIC 0.312668 0.377218 0.465296 0.641367 0.298570 0.353626 0.409689 0.467760 0.297160 0.351267 0.405474 0.459882
BBRv3 0.327032 0.384409 0.472487 0.648558 0.325015 0.380374 0.437622 0.492146 0.324813 0.380118 0.437340 0.491811
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Figure 2: Congestion window increase over time for different bandwidths and flow sizes
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Figure 3: Throughput over time for different bandwidths and flow sizes
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Figure 4: Congestion window increase for different RTTs
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Figure 5: Throughput over time for different RTTs

4.3 Interactions with existing flows

This experiment featured a simulation with 2 flows,
one long (100 MB) and one short (100 KB). The aim
of the experiment was to test the behavior of the al-
gorithms when the flow competes, during startup, with
an already existing flow that has reached its optimal
sending rate.

In terms of FCTs, the same pattern can be observed
again in Table 3, with JumpStart being the fastest, fol-
lowed by CUBIC and BBRv3. The FCT of the long
flow doesn’t seem to be impacted much by the dif-
ferent algorithms, it is the same for both CUBIC and
BBRv3 and only slightly faster when competing with
JumpStart. However, comparing the FCTs of the short
flows with those corresponding to the same conditions
but without competing flows in Table 1 and Table 2, a
significant increase can be observed. This is expected
because of sharing the bandwidth. For JumpStart this
difference is of approximately 100 ms while for CU-
BIC and BBRv3 200 ms.

Table 3: Flow Completion Time (FCT) in seconds for differ-
ent TCP algorithms and both flows for 100 Mbps bandwidth
and 50 ms RTT. The smallest FCT is shown in green, the sec-
ond smallest in orange and the last in red

Algorithm Long Flow Short Flow

JumpStart 9.375789 0.322366
CUBIC 9.375866 0.528677
BBRv3 9.375866 0.570119

For this experiment, the JFI was also measured in
Table 4. The fairness indices measured are very low
for all three algorithms. In the ideal case, which can
rarely be achieved in the real world, the JFI should be
1. In this experiment JFIs are 0.51, 0.53 and 0.51, for
CUBIC, JumpStart and BBRv3 respectively, which are
generally low values. However, a high JFI wouldn’t be
realistic in this case. The flows take time to ramp up
and for most of their lifetime the difference in through-
put is inevitably large, leading to a bad JFI value.

By analyzing the throughput measurements in Fig-
ure 6 it can also be observed that all the algorithms
have a similar impact on the long flow. They slightly
disturb its throughput when they start and cause a short
period of throughput variation while the long flow tries
again to converge to its optimal bandwidth utilization
at around 90 Mbps.

Table 4: Jain’s Fairness Index (FCT) for different TCP algo-
rithms for 100 Mbps bandwidth and 50 ms RTT. The highest
JFI is shown in green, the second highest in orange and the
last in red

Algorithm JFI

JumpStart 0.529104
CUBIC 0.517756
BBRv3 0.516466

4.4 Inter-Algorithm Fairness
This experiment aimed to test the interactions between
two flows started at the same time on the dumbbell
topology, but using different algorithms. The network
parameters were, as before, a bottleneck bandwidth of
100 Mbps and an RTT of 50 ms. However, for this
experiment we chose to use slightly bigger flows (10
MB) such that we can observe how they compete for
resources. We have ran this using smaller flows of 100
KB, but they end before reaching the available band-
width so they never really compete for resources.

Analyzing the FCTs in Table 5 it can be observed
that it is no longer the case that JumpStart is the fastest.
It appears that, when using larger flows, it is slower
than its counterparts by almost 2 seconds. That is
because after the aggressive initial cwnd, JumpStart
switches to normal CUBIC behavior, which is a slow
additive increase in cwnd. Therefore, its throughput in-
creases slowly after startup. On the other hand, CUBIC
and BBRv3 start with smaller cwnds but they increase
it more and after startup, they end up using more band-
width compared to JumpStart. This behavior can also
be seen in Figure 7

Table 5: Flow Completion Time (FCT) in seconds for differ-
ent TCP algorithm combinations for 100 Mbps bandwidth,
50 ms RTT and 10 MB flow size. The smallest FCT is shown
in green, the second smallest in orange and the lst in red

Algorithms Flow 1 Flow 2

CUBIC & JumpStart 1.468073 3.397860
CUBIC & BBRv3 2.215472 2.194623
JumpStart & BBRv3 2.972063 1.546323

When analyzing the JFI measurements in Table 6,
it can be observed that when CUBIC or BBRv3 com-
pete with JumpStart the JFI is lower than when the first
two compete with each other, 0.86 and 0.90 compared
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Figure 6: Throughput over time for different algorithms

to 0.99 respectively. This is a consequence of the ob-
servation from above. Since JumpStart takes longer
to ramp up to the available bandwidth, it has a lower
throughput for a long time and therefore the JFI is
lower.

Table 6: Jain’s Fairness Index (JFI) for different TCP algo-
rithm combinations. The highest JFI is shown in green, the
second highest in orange and the last in red

Algorithms JFI

CUBIC & JumpStart 0.863770
CUBIC & BBRv3 0.999980
JumpStart & BBRv3 0.909156

Looking at the throughput measurements in Fig-
ure 7, we have observed that as mentioned before,
JumpStart’s throughput increases slower than the other
algorithms’ throughput. Because of the additive in-
crease employed after the startup phase, the cwnd in-
creases slowly. That is why at the beginning of the
connection the other algorithm, CUBIC or BBrv3, has
more bandwidth available and finishes their transmis-
sion quicker. However, when CUBIC competes with
BBRv3, their throughput is very similar. They ramp
up their sending rate similarly and therefore follow the
same trend, with peaks and lows, eventually converg-
ing towards their fair share of 50 Mbps. Therefore we
can say that for longer flows, JumpStart is not aggres-
sive enough to achieve a fair share of the bandwidth or
a small FCT.

4.5 Intra-Algorithm Fairness
This experiment featured the same setup as the previ-
ous one, only this time the two flows will use the same
algorithm.

In Table 7 it can be seen that the FCTs are similar
to the one in the previous experiment. It can also be
observed that the difference between FCTs of compet-
ing flows with the same algorithm is very small, much
smaller than when the algorithms differ. When CU-
BIC flows compete, the FCT of both flows is higher
than that of CUBIC when it competed with JumpStart,
about 800 ms higher. However, they are smaller than
when CUBIC competed with BBRv3. The two com-
peting JumpStart flows have lower FCTs than in the
previous experiments. BBRv3 flows have larger FCTs.
The difference between these flows and when BBRv3
competed with JumpStart is much bigger than when it
competed with CUBIC. These results show that every
algorithm is more fair when it competes with the same

algorithm. This is probably because they have a similar
way of using the bandwidth. This has been observed
before in literature [19].

Table 7: Flow Completion Time (FCT) in seconds for differ-
ent TCP algorithm combinations. The smallest FCT is shown
in green, the second smallest in orange and the last in red

Algorithms Flow 1 Flow 2

CUBIC & CUBIC 2.207829 2.203184
JumpStart & JumpStart 2.878466 2.896766
BBRv3 & BBRv3 2.213762 2.213762

In the case of JFIs it can be observed in Table 8 that
all the pairs of flows share bandwidth in a fair way.
This can also be seen when looking at small differences
in FCTs Table 7 and at the throughput measurements
in Figure 8. It can also be observed that each of the
two flows has a similar throughput at any moment of
the simulation.

Table 8: Jain’s Fairness Index (JFI) for different TCP algo-
rithm combinations. The highest JFI is shown in green, the
second highest in orange and the last in red

Algorithms Flow 1

CUBIC & CUBIC 0.999999
JumpStart & JumpStart 0.999990
BBRv3 & BBRv3 0.999997

5 Responsible Research
This section aims to present the responsible research
aspects of this paper.

All of the experiments presented previously, have
been run using a publicly available, open source net-
work simulator called ns-34. The network setup for
each of the experiments has been thoroughly described
in the paper such that they can be easily reproduced.
Since the experiments are a simulation, anyone can
run them and get the same results without the need of
any physical hardware. Moreover, the code used for
the simulation and additions to the existing framework
has been made open source on GitHub5 as previously
stated in the methodology section. Using all of this

4https://www.nsnam.org/
5https://github.com/AlexandruTabacaru/ns-3-dev-git-

rp/tree/startup-algorithms
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information, anyone reading this paper can easily re-
produce the experiments and verify the validity of the
observed results.

LLMs were used for debugging purposes and under-
standing strange code behavior. The few lines of code
written by LLMs were carefully analyzed to make sure
they serve the purpose they were intended to.

Since these experiments do not rely on existing
datasets or any kind of data collection, the issues re-
garding data privacy are not relevant to this research.

6 Discussion and Future Work
This section will discuss the observed results and pro-
pose what future work can be done to build on top of
these discoveries.

Looking at the results from all of the performed
experiments, we observed that in all conditions with
short flows, the JumpStart algorithm has outperformed
the other two algorithms we have compared, namely
CUBIC, which uses HyStart and BBRv3 with its own
startup phase implementation. This does not come as
a surprise, given the conditions under which the al-
gorithms were tested. Short-lived flows are favorable
for JumpStart since it aggressively sends packets at
the beginning of the connection. Therefore, the algo-
rithm manages to utilize more bandwidth earlier in the
connection, being more efficient than its counterparts.
Also, due to the small size of the flows, the initial ag-
gressive sending rate does not get to cause congestion
on the network that would heavily impact its perfor-
mance and other present flows. It has been shown that
JumpStart may perform worse when dealing with a lot
of traffic on the network [13].

In the case of the experiments with 2 mid-length
flows competing, we have observed that JumpStart per-
forms more poorly than the other algorithms. This
is because after the initial cwnd is set to a relatively
high value, the standard CUBIC additive increase takes
over, which increases the cwnd slowly. While the other
algorithms start with a smaller cwnd, they increase it
more aggressively in the beginning and exit startup
with a bigger value than JumpStart does. This makes

CUBIC and BBRv3 take up more bandwidth at the be-
ginning and therefore finish the transmission faster in
the case of longer flows. However, as we have seen,
the majority of flows in the Internet are short, and this
makes a strong argument why the use of JumpStart in
the real world could still be beneficial.

Future work should be conducted into analyzing
the performance of JumpStart in more diverse and
real world environments, while still focusing on short
flows. While this research has shown that JumpStart
can have a lot of potential compared to the algorithms
already in use today in real Internet traffic, it is not
enough to be sure that it would perform as well in
real world conditions. Given the disadvantages pre-
viously observed in literature, it is necessary that im-
proved versions of JumpStart will be developed in the
future that can be deployed in the Internet. However,
we believe that this research has proven the importance
of further studying and improving this algorithm, to
achieve more efficient communication on the Internet.

Another possible approach that we recommend for
future research would be a thorough comparison of the
other startup algorithms mentioned in the Background
section under similar conditions as in this paper. This
will lead to a better understanding of their performance
especially in short flow situations. Such research may
prove essential for further improving them or develop-
ing new startup algorithms that would make Internet
communication more efficient.

7 Conclusion
The experiments we have performed have shown that
JumpStart often outperforms the other two startup al-
gorithms, CUBIC’s HyStart and BBRv3. It achieved
significantly better FCT than its counterparts in exper-
iments with short flows. This is likely because short
flows don’t get to occupy the whole bandwidth dur-
ing startup and they finish sending data before exit-
ing startup. However, when we tested with longer
flows, JumpStart did not perform as well. Looking at
JFI, when JumpStart competes with other algorithms
for bandwidth, it achieves lower fairness than when



the other two, CUBIC and BBRv3 compete. There-
fore, based on the behavior we observed, we believe
that JumpStart has potential to increase performance
of TCP in the Internet. Nevertheless, further research
should be conducted both into the behavior of Jump-
Start in different conditions, as well as into other
startup algorithms to find a good way of improving
them.

References
[1] Mahdi Arghavani et al. “SUSS: Improving TCP

Performance by Speeding Up Slow-Start”. en.
In: Proceedings of the ACM SIGCOMM 2024
Conference. Sydney NSW Australia: ACM,
Aug. 2024, pp. 151–165. ISBN: 979-8-4007-
0614-1. DOI: 10.1145/3651890.3672234. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 3651890 .
3672234 (visited on 04/24/2025).

[2] Lawrence S. Brakmo, Sean W. O’Malley, and
Larry L. Peterson. “TCP Vegas: new techniques
for congestion detection and avoidance”. en.
In: Proceedings of the conference on Commu-
nications architectures, protocols and applica-
tions - SIGCOMM ’94. London, United King-
dom: ACM Press, 1994, pp. 24–35. ISBN: 978-
0-89791-682-0. DOI: 10.1145/190314.190317.
URL: http://portal.acm.org/citation.cfm?doid=
190314.190317 (visited on 04/25/2025).

[3] Neal Cardwell et al. “BBR: congestion-based
congestion control”. In: Commun. ACM 60.2
(Jan. 2017), pp. 58–66. ISSN: 0001-0782. DOI:
10.1145/3009824. URL: https://dl.acm.org/doi/
10.1145/3009824 (visited on 05/02/2025).

[4] Neal Cardwell et al. “BBRv3: Algorithm Bug
Fizes and Public Internet Deployment”. In: July
2023. URL: https : / / datatracker . ietf . org / doc /
slides-117-ccwg-bbrv3-algorithm-bug-fixes-
and-public-internet-deployment/.

[5] Nandita Dukkipati and Nick McKeown. “Why
flow-completion time is the right metric for con-
gestion control”. In: SIGCOMM Comput. Com-
mun. Rev. 36.1 (Jan. 2006), pp. 59–62. ISSN:
0146-4833. DOI: 10 . 1145 / 1111322 . 1111336.
URL: https://dl.acm.org/doi/10.1145/1111322.
1111336 (visited on 05/02/2025).

[6] W. Eddy. RFC 9293: Transmission Control Pro-
tocol (TCP). USA: RFC Editor, July 2022.

[7] Lingfeng Guo and Jack Y. B. Lee. “Stateful-
TCP—A New Approach to Accelerate TCP
Slow-Start”. In: IEEE Access 8 (2020),
pp. 195955–195970. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2020.3034129. URL: https://
ieeexplore.ieee.org/abstract/document/9240937
(visited on 05/02/2025).

[8] Sangtae Ha and Injong Rhee. “Taming the
elephants: New TCP slow start”. In: Com-
puter Networks 55.9 (2011). Publisher: Else-
vier, pp. 2092–2110. URL: https : / / www .
sciencedirect . com / science / article / pii /
S1389128611000363 (visited on 04/22/2025).

[9] Sangtae Ha, Injong Rhee, and Lisong Xu. “CU-
BIC: a new TCP-friendly high-speed TCP vari-
ant”. en. In: ACM SIGOPS Operating Systems
Review 42.5 (July 2008), pp. 64–74. ISSN: 0163-
5980. DOI: 10 . 1145 / 1400097 . 1400105. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 1400097 .
1400105 (visited on 04/25/2025).

[10] Rajendra K. Jain, Dah-Ming W. Chiu, and
William R. Hawe. “A quantitative measure of
fairness and discrimination”. In: Eastern Re-
search Laboratory, Digital Equipment Corpora-
tion, Hudson, MA 21.1 (1984), pp. 2022–2023.
URL: https : / / www. academia . edu / download /
49798765/fairness.pdf (visited on 06/04/2025).

[11] Douglas J. Leith, Robert N. Shorten, and
Gavin McCullagh. “Experimental evaluation
of cubic-TCP”. In: (2008). URL: https : / /
mural . maynoothuniversity . ie / 1716 / 1 /
Hamiltonpfldnet2007 cubic final . pdf (visited
on 04/22/2025).

[12] Qingxi Li, Mo Dong, and P. Brighten God-
frey. “Halfback: running short flows quickly and
safely”. In: Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments
and Technologies. CoNEXT ’15. New York,
NY, USA: Association for Computing Machin-
ery, Dec. 2015, pp. 1–13. ISBN: 978-1-4503-
3412-9. DOI: 10.1145/2716281.2836107. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 2716281 .
2836107 (visited on 05/22/2025).

[13] Dan Liu et al. “Congestion control without
a startup phase”. In: Proc. PFLDnet. 2007,
pp. 61–66. URL: https : / / www . icir . org /
mallman/pubs/LAJW07/LAJW07.pdf (visited
on 04/24/2025).

[14] Ayush Mishra et al. “Keeping an Eye on Con-
gestion Control in the Wild with Nebby”. In:
Proceedings of the ACM SIGCOMM 2024 Con-
ference. ACM SIGCOMM ’24. New York, NY,
USA: Association for Computing Machinery,
Aug. 2024, pp. 136–150. ISBN: 979-8-4007-
0614-1. DOI: 10.1145/3651890.3672223. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 3651890 .
3672223 (visited on 06/05/2025).

[15] Ayush Mishra et al. “The Great Internet TCP
Congestion Control Census”. In: Proc. ACM
Meas. Anal. Comput. Syst. 3.3 (Dec. 2019),
45:1–45:24. DOI: 10.1145/3366693. URL: https:
//dl.acm.org/doi/10.1145/3366693 (visited on
06/05/2025).

[16] Xiaohui Nie et al. “Dynamic TCP Initial
Windows and Congestion Control Schemes
Through Reinforcement Learning”. In: IEEE
Journal on Selected Areas in Communications
37.6 (June 2019), pp. 1231–1247. ISSN: 1558-
0008. DOI: 10.1109/JSAC.2019.2904350. URL:
https://ieeexplore.ieee.org/abstract/document/
8668690 (visited on 06/04/2025).

[17] Feng Qian et al. “TCP revisited: a fresh look
at TCP in the wild”. In: Proceedings of the 9th
ACM SIGCOMM conference on Internet mea-
surement. IMC ’09. New York, NY, USA: As-

https://doi.org/10.1145/3651890.3672234
https://dl.acm.org/doi/10.1145/3651890.3672234
https://dl.acm.org/doi/10.1145/3651890.3672234
https://doi.org/10.1145/190314.190317
http://portal.acm.org/citation.cfm?doid=190314.190317
http://portal.acm.org/citation.cfm?doid=190314.190317
https://doi.org/10.1145/3009824
https://dl.acm.org/doi/10.1145/3009824
https://dl.acm.org/doi/10.1145/3009824
https://datatracker.ietf.org/doc/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment/
https://datatracker.ietf.org/doc/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment/
https://datatracker.ietf.org/doc/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment/
https://doi.org/10.1145/1111322.1111336
https://dl.acm.org/doi/10.1145/1111322.1111336
https://dl.acm.org/doi/10.1145/1111322.1111336
https://doi.org/10.1109/ACCESS.2020.3034129
https://ieeexplore.ieee.org/abstract/document/9240937
https://ieeexplore.ieee.org/abstract/document/9240937
https://www.sciencedirect.com/science/article/pii/S1389128611000363
https://www.sciencedirect.com/science/article/pii/S1389128611000363
https://www.sciencedirect.com/science/article/pii/S1389128611000363
https://doi.org/10.1145/1400097.1400105
https://dl.acm.org/doi/10.1145/1400097.1400105
https://dl.acm.org/doi/10.1145/1400097.1400105
https://www.academia.edu/download/49798765/fairness.pdf
https://www.academia.edu/download/49798765/fairness.pdf
https://mural.maynoothuniversity.ie/1716/1/Hamiltonpfldnet2007_cubic_final.pdf
https://mural.maynoothuniversity.ie/1716/1/Hamiltonpfldnet2007_cubic_final.pdf
https://mural.maynoothuniversity.ie/1716/1/Hamiltonpfldnet2007_cubic_final.pdf
https://doi.org/10.1145/2716281.2836107
https://dl.acm.org/doi/10.1145/2716281.2836107
https://dl.acm.org/doi/10.1145/2716281.2836107
https://www.icir.org/mallman/pubs/LAJW07/LAJW07.pdf
https://www.icir.org/mallman/pubs/LAJW07/LAJW07.pdf
https://doi.org/10.1145/3651890.3672223
https://dl.acm.org/doi/10.1145/3651890.3672223
https://dl.acm.org/doi/10.1145/3651890.3672223
https://doi.org/10.1145/3366693
https://dl.acm.org/doi/10.1145/3366693
https://dl.acm.org/doi/10.1145/3366693
https://doi.org/10.1109/JSAC.2019.2904350
https://ieeexplore.ieee.org/abstract/document/8668690
https://ieeexplore.ieee.org/abstract/document/8668690


sociation for Computing Machinery, Nov. 2009,
pp. 76–89. ISBN: 978-1-60558-771-4. DOI: 10.
1145/1644893.1644903. URL: https://dl.acm.
org/doi/10.1145/1644893.1644903 (visited on
05/22/2025).

[18] Pasi Sarolahti et al. Quick-Start for TCP and
IP. Request for Comments RFC 4782. Num
Pages: 82. Internet Engineering Task Force, Jan.
2007. DOI: 10 . 17487 / RFC4782. URL: https :
/ /datatracker. ietf .org /doc / rfc4782 (visited on
05/02/2025).

[19] B. Turkovic, F.A. Kuipers, and S. Uhlig. “Inter-
actions between congestion control algorithms”.
English. In: TMA - Proc. Netw. Traffic Meas.
Anal. Conf. Ed. by Secci S. et al. Journal Ab-
breviation: TMA - Proc. Netw. Traffic Meas.
Anal. Conf. Institute of Electrical and Electron-
ics Engineers Inc., 2019, pp. 161–168. ISBN:
978-390317617-1 (ISBN). DOI: 10 . 23919 /
TMA . 2019 . 8784674. URL: https : / / www .
scopus . com / inward / record . uri ? eid = 2 -
s2 . 0 - 85071160753 & doi = 10 . 23919 %
2fTMA.2019.8784674&partnerID=40&md5=
6ada6dba9deab372339baab945e38ff2.

[20] Belma Turkovic and Fernando Kuipers. “P4air:
Increasing Fairness among Competing Conges-
tion Control Algorithms”. In: 2020 IEEE 28th
International Conference on Network Protocols
(ICNP). ISSN: 2643-3303. Oct. 2020, pp. 1–12.
DOI: 10.1109/ICNP49622.2020.9259405. URL:
https://ieeexplore.ieee.org/abstract/document/
9259405 (visited on 05/02/2025).

[21] Ranysha Ware et al. “CCAnalyzer: An Efficient
and Nearly-Passive Congestion Control Clas-
sifier”. en. In: Proceedings of the ACM SIG-
COMM 2024 Conference. Sydney NSW Aus-
tralia: ACM, Aug. 2024, pp. 181–196. ISBN:
979-8-4007-0614-1. DOI: 10 . 1145 / 3651890 .
3672255. URL: https://dl.acm.org/doi/10.1145/
3651890.3672255 (visited on 06/05/2025).

[22] D. Zeynali et al. “Promises and Potential
of BBRv3”. English. In: Lect. Notes Com-
put. Sci. Ed. by Richter P., Bajpai V., and
Carisimo E. Vol. 14538 LNCS. Journal Abbre-
viation: Lect. Notes Comput. Sci. Springer Sci-
ence and Business Media Deutschland GmbH,
2024, pp. 249–272. ISBN: 03029743 (ISSN);
978-303156251-8 (ISBN). DOI: 10.1007/978-
3 - 031 - 56252 - 5 12. URL: https : / / www .
scopus . com / inward / record . uri ? eid = 2 - s2 .
0 - 85189368557 & doi = 10 . 1007 % 2f978 - 3 -
031 - 56252 - 5 12 & partnerID = 40 & md5 =
14c884b6ef75f8d4563a5956b024ddfb.

https://doi.org/10.1145/1644893.1644903
https://doi.org/10.1145/1644893.1644903
https://dl.acm.org/doi/10.1145/1644893.1644903
https://dl.acm.org/doi/10.1145/1644893.1644903
https://doi.org/10.17487/RFC4782
https://datatracker.ietf.org/doc/rfc4782
https://datatracker.ietf.org/doc/rfc4782
https://doi.org/10.23919/TMA.2019.8784674
https://doi.org/10.23919/TMA.2019.8784674
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071160753&doi=10.23919%2fTMA.2019.8784674&partnerID=40&md5=6ada6dba9deab372339baab945e38ff2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071160753&doi=10.23919%2fTMA.2019.8784674&partnerID=40&md5=6ada6dba9deab372339baab945e38ff2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071160753&doi=10.23919%2fTMA.2019.8784674&partnerID=40&md5=6ada6dba9deab372339baab945e38ff2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071160753&doi=10.23919%2fTMA.2019.8784674&partnerID=40&md5=6ada6dba9deab372339baab945e38ff2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071160753&doi=10.23919%2fTMA.2019.8784674&partnerID=40&md5=6ada6dba9deab372339baab945e38ff2
https://doi.org/10.1109/ICNP49622.2020.9259405
https://ieeexplore.ieee.org/abstract/document/9259405
https://ieeexplore.ieee.org/abstract/document/9259405
https://doi.org/10.1145/3651890.3672255
https://doi.org/10.1145/3651890.3672255
https://dl.acm.org/doi/10.1145/3651890.3672255
https://dl.acm.org/doi/10.1145/3651890.3672255
https://doi.org/10.1007/978-3-031-56252-5_12
https://doi.org/10.1007/978-3-031-56252-5_12
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189368557&doi=10.1007%2f978-3-031-56252-5_12&partnerID=40&md5=14c884b6ef75f8d4563a5956b024ddfb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189368557&doi=10.1007%2f978-3-031-56252-5_12&partnerID=40&md5=14c884b6ef75f8d4563a5956b024ddfb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189368557&doi=10.1007%2f978-3-031-56252-5_12&partnerID=40&md5=14c884b6ef75f8d4563a5956b024ddfb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189368557&doi=10.1007%2f978-3-031-56252-5_12&partnerID=40&md5=14c884b6ef75f8d4563a5956b024ddfb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189368557&doi=10.1007%2f978-3-031-56252-5_12&partnerID=40&md5=14c884b6ef75f8d4563a5956b024ddfb

	Introduction
	Background
	Methodology
	Experiment setup
	Implementation

	Evaluation
	Varying bandwidth and size
	Varying RTTs
	Interactions with existing flows
	Inter-Algorithm Fairness
	Intra-Algorithm Fairness

	Responsible Research
	Discussion and Future Work
	Conclusion

