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Abstract

The motion of liquid metals is described by the equations of magnetohydrodynamics (MHD), that com-
bine the Maxwell equations and the Navier-Stokes equations. In these type of flows, the magnetic field
interacting with the conductive metal induces large pressure losses and unconventional turbulence
states such as quasi 2D turbulence, turbulence suppression and flow anisotropy. Currently this turbu-
lence behaviour can be captured in higher fidelity Computational Fluid Dynamics (CFD) simulations
such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), but the high computa-
tional cost of these simulations make them impractical for industrial applications compared to Reynolds
Averaged Navier-Stokes (RANS). However, the eddy viscosity models which are typically used in RANS
are not able to capture anisotropic turbulence states occurring in MHD flows [11], which results in sig-
nificant discrepancies in the mean velocity field. Hence, this work presents a data-driven approach to
model MHD turbulence. To achieve this time-averaged LES data of annular pipe flow cases at differ-
ent Hartmann numbers are used to derive corrections for the k − ω SST model. Two correction fields
are obtained through a frozen RANS simulation in which the mean LES fields are inserted into the
RANS equations. The Reynolds stress anisotropy term is approximated with a modified Tensor Basis
Neural Network (TBNN) [30]. Moreover, for modelling the turbulence production correction a Scalar
Basis Neural Network (SBNN) is proposed and compared to a Sparse Algebraic Regression using the
SpaRTA approach [48]. The resulting data driven models are able to reduce the error of the Reynolds
stress anisotropy values and the mean flow velocity fields, and can generalise to annular flow cases
with different Hartmann numbers from those of the training cases.
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1
Introduction

Over the last decades the average global temperature has been rising consistently, increasing by ap-
proximately 1◦C between 1970 and 2016 [46]. Part of the reason for this is that the increasing demand
for energy is met by burning fossil fuels, thus emitting carbon that was previously stored underground
to the atmosphere. An alternative source of energy that does not emit greenhouse gases is thermonu-
clear fusion. Fusion is a process in which atomic nuclei, usually deuterium and tritium, merge together
into larger nuclei releasing energy and neutrons. A key component of fusion reactors is the Liquid
Metal Breeding Blanket (LMBB), usually of a lithium or lead-lithium alloy. Firstly, the reaction of the
lithium with the neutrons originating from fusion produces more tritium which can be used to continue
the fusion reaction [47]. Secondly, the low viscosity and high molecular conductivity of liquid metals
make them a promising candidate as a coolant that can disperse the large amounts of heat produced
by the fusion reaction [53]. A design of one of these systems is the Dual Cooling Lead Lithium (DCLL)
blanket, a simplified diagram is shown in Figure 1.1.

Figure 1.1: Diagram of a DCLL blanket [53].

The magnetic field that is used to confine the fusion plasma interacts with the liquid metal in the
blanket, inducing electric currents that combined with themagnetic field exert Lorentz forces in the liquid
metal flow [37]. The motion of liquid metals in this context is completely described by the equations of
magnetohydrodynamics (MHD), that combine the Maxwell equations and the Navier-Stokes equations.
As a result of this, the magnetic field induces large pressure losses on the blanket, and turbulence
in the liquid metal flow can show unconventional behaviours such as quasi-2D turbulence, turbulence
suppression and flow anisotropy [11].
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Currently this turbulence behaviour can be captured in higher fidelity Computational Fluid Dynam-
ics (CFD) simulations, such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Nonetheless, the high computational cost of these simulations make them impractical for industrial
applications compared to Reynolds Averaged Navier-Stokes (RANS). Some adaptations of traditional
turbulence models to incorporate MHD related effects such as turbulence suppression, have been pro-
posed. For instance, MHD turbulence models by Kenjeres et al. [25] and Zhang et al. [66] proposed
adding magnetic source terms to the k and ϵ transport equations on the low Re k− ϵ turbulence model,
while Smolentsev et al. [52] proposed a one equation model for quasi-2D steady flows. However, for
MHD flows a conventional Eddy Viscosity Model (EVM) could provide amore accurate approximation of
the turbulence kinetic energy values, but it cannot capture the anisotropic turbulence behaviour which
is characteristic of MHD flows. This is because the anisotropic component of the Reynolds stress can
only represent plane strain in EVMs [11]. Data driven techniques using Machine Learning (ML) have
shown promising results in predicting turbulence closure and anisotropy through the use of higher fi-
delity simulations as training data for non MHD flows [22, 24, 30, 42]. Therefore, it is of interest to
gain understanding on how ML techniques leveraging high fidelity CFD data could be used to improve
Reynolds stress tensor predictions in MHD flows, and how they can capture the specific characteristics
of MHD turbulence.

The first four Chapters of this document constitute the literature review. Chapter 2 aims to give
insights into the MHD side of the problem. A theoretical background on MHD is presented, focusing
on liquid metal flows, then an overview of the current understanding and physics behind the turbulence
states in MHD flows is given. After that, Chapter 3 provides an introduction to turbulence modeling for
RANS and the turbulence closure problem, ending with an overview of the RANS turbulence models
for MHD flows available in literature. Chapter 4 discusses the different data driven techniques which
have been developed recently, indicating the advantages and disadvantages of each approach. This
includes machine learning approaches, such as Neural Networks and Random Forests, as well as
Symbolic Based Regressions. Other aspects such as the selection of input features, label selection,
realizability corrections and testing procedures are also discussed. Then, Chapter 5 identifies the re-
search gap and states the objective of the research and the research question. After this, the literature
review part of the report is over, and Chapter 6 discusses the methodology for implementing the ML
turbulence modeling framework. The setup of the LES and baseline RANS simulations is discussed,
followed by the methodology for the propagation simulations. After that, the selected regression tech-
niques and feature selection are discussed, and the test matrix is presented. Then, Chapter 7 focuses
on the a priori testing of the turbulence models and Chapter 8 on the a posteriori testing. Finally, ac-
cording to the information presented in the preceding chapters, Chapter 9 states the conclusion of the
thesis work and answers the research questions.



2
Magnetohydrodynamics

The aim of this chapter is to provide an overview of the theory behind liquid metal MHD flows to gain a
better understanding of the challenges that it adds to turbulence modeling compared to more conven-
tional flows. Firstly, an overview of MHD and the assumptions that are made for the simulations that
are relevant for this thesis are discussed. Then MHD turbulence is discussed, followed by a discussion
of the results of MHD simulations for annular pipe flows.

2.1. MHD Flows
MHD refers to the study of electrically conductive fluids which are interacting with a magnetic field.
The magnetic field induces electric currents on a moving conductive fluid, as stated by Faraday’s law.
These electric currents cause a secondary magnetic field, and the interaction of the resultant magnetic
field with the electric currents produce Lorentz forces which directly affect the flow velocity [7].

Firstly, the electrodynamics aspect of MHD flows should be discussed. Consider a liquid metal
flow field, with velocity field u(x, y, z, t) and a magnetic field with strength B(x, y, z, t) which can be
divided into a steady external component and a self induced fluctuating componentB = B′(x, y, z, t)+
B0(x, y, z). The current density is given by Ohm’s law [38]:

J = σ(E + u×B), (2.1)

where σ is the electrical conductivity, E is the electric field, u is the fluid velocity and J is the electric
current, which has to follow the charge conservation law:

∇ · J = 0. (2.2)

Given that electric fields are irrotational, we can define it as the gradient of a scalar field φ, where
−∇φ = E, where φ is the electrostatic potential. Then Equation (2.1) can also be rewritten in terms of
the electrostatic potential:

J = σ(−∇φ+ u×B), (2.3)

Furthermore, the Lorentz force which the magnetic field exerts onto the liquid metal flow can then be
presented as [7]:

fL =
1

ρ
J ×B. (2.4)

For consistency with the rest of this work, it is already divided by the fluid density ρ. Given this, from
Ohm’s law and the conservation law, one can obtain the Poisson law for electrostatic potential:

∆φ = ∇ · (u×B). (2.5)

At this point, for the application which is the focus of this research, liquid metal flows in LMBBs, some
simplifications can be made for flows with low magnetic Reynolds number Rm [7]

3
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Rm =
UL

η
, (2.6)

where U is the characteristic speed of the flow, L is the characteristic length and η is the magnetic diffu-
sivity. This number represents the ratio of the strength of the induced magnetic field by the movement
of the conducting medium compared to the applied magnetic field [29]. Essentially this simplification
consists in assuming that the induced component of the magnetic field B′ associated with the current
induced by the motion of the fluid J = σ(u ×B) is small compared to the imposed magnetic field B0

and can therefore be neglected. This is also a very common assumption made in literature since it re-
duces the number of equations to be solved, and in most practical cases and experiments the velocity
of the metal fluids is quite low [60]. There is also another force which is neglected, the Coulomb force,
which for a particle with charge q in an electric field E is equal to qE. The reason why this external
force is not included is that its effect is negligible compared to the Lorentz force in this application [38].
Furthermore, it is also assumed that the imposed magnetic field is steady.

With these equations, the electrodynamics aspect of MHD for the application of interest is covered,
and the focus can shift to the other half of the problem, the fluid dynamics aspect. For this, the Navier-
Stokes equations are simplified by assuming incompressible flow with constant material properties,
which are

∇ · u = 0 (2.7)

ρ

[
∂

∂t
u+ (u · ∇)u

]
= −∇p+ ρν∇2u+ J ×B0, (2.8)

where ρ is the fluid density, p is the pressure and ν is the kinematic viscosity. Note that the difference
in the momentum equation, see Equation (2.8), compared to the usual incompressible version of the
equation is the addition of the volumetric Lorentz force term J ×B.

Finally, to complete the set of equations for applications which include heat transfer, a transport
equation for the temperature can be obtained from the energy equation. Note that due to the incom-
pressibility assumption, the energy equation follows from the momentum equation. Hence, this is a
separate transport equation to the system of equations for MHD, where the temperature is a result of
the flow field. A transport equation of the following form can be used for liquid metals [11, 60]:

∂T

∂t
+ u · ∇T = α∇2T + S′

thermal , (2.9)

where S′
thermal is a heat source term, which can be of different origin depending on the application, and

α is the thermal diffusivity of the liquid metal. Through the use of this transport equation an estimate
of the temperature profile of the flow can be obtained at a much cheaper computational cost, since
the incompressibility and constant properties assumptions do not have to be removed. Hence the full
set of equations to be solved for the incompressible MHD flow with constant material properties, low
magnetic Reynolds number and constant magnetic field would be comprised of Equations (2.5), (2.7),
(2.8) and for the temperature Equation (2.9).

A number of dimensionless parameters can be used to characterise MHD flows. The Reynolds
number definition is presented below:

Re =
ρUL

µ
. (2.10)

It represents the ratio of the inertial forces to the viscous forces, with U being the characteristic velocity
of the fluid, L the characteristic length and µ is the dynamic viscosity. The Hartmann number

Ha = B0L

√
σ

µ
, (2.11)

gives the ratio of electromagnetic forces to viscous forces. Another parameter which is of special
significance, especially for MHD turbulence is the Re/Ha ratio which represents the ratio of inertial
forces to electromagnetic forces, although often the magnetic interaction number N = Ha2/Re is used
instead to investigate the same phenomena. This is further expanded upon in Section 2.2. Furthermore,
regarding heat transfer, an important non dimensional parameter is the Prandtl number:
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Pr = cpµ

κ
, (2.12)

which is the ratio of momentum diffusivity over thermal diffusivity of the fluid, where κ is the thermal
conductivity [60], cp is the specific heat capacity at constant pressure and µ is the dynamic viscosity.
While for air, the Prandtl number is 0.71, for liquid metals this number is much lower due to their high
thermal conductivity. This entails that heat diffuses much quicker than momentum in liquid metal flows,
making the thermal boundary layer thicker relative to the velocity boundary layer.

2.2. MHD Turbulence
It is not possible to discuss MHD flows without discussing turbulence, since most engineering applica-
tions related to MHD are turbulent flows, including LMBBs for fusion reactors [7]. Based on his pipe
flow experiment in 1883, Reynolds was the first to define a difference between laminar flows and tur-
bulent flows, and he also identified the importance of the Reynolds number in this classification [7].
Flows with a Reynolds number below a critical value Recrit remain stable when a small disturbance
is introduced, as the flow tends to return to its steady state. These are laminar flows, where the flow
remains organised in clear separate layers with little mixing between them. Gradually, as the Re in-
creases above Recrit the flow becomes more unstable, and perturbations are not damped but instead
continue occurring in the form of eddies, thus no longer having clear separate layers in the flow but
instead having continuous mixing between them. These perturbations can be introduced by surfaces
which are not perfectly smooth, causing streamwise instabilities that eventually develop into turbulent
eddies. A graphical example is presented in Figure 2.1.

Figure 2.1: Diagram of the streamlines for a laminar channel flow and a fully turbulent channel flow.

Turbulent flows have the following set of characteristics [9, 17]:

• Chaotic: the instantaneous velocities of turbulent flows depend on the initial conditions and can
appear random but are deterministic since fluids are described by the Navier-Stokes equations.

• Three-Dimensional: turbulent flows break symmetries and have velocity fluctuations in three di-
mensions.

• Viscous: even though in turbulent flows inertial forces are dominant over the viscous forces,
viscosity is required for turbulence to occur, as it introduces shear forces in the flow.

• Formed by coherent structures: turbulent boundary layers show vortical structures which are able
to retain a similar form for many eddy turn over times( where the eddy turn over time is L/U , with
L and U representing the characteristic length and velocity of the flow case).

Turbulence energy is initially produced in the form of large eddies, known as the integral scales.
These large eddies also become unstable and break down into smaller eddies. This keeps repeating
until the smallest possible eddies are formed, which dissipate into heat. This process is called the
turbulent energy cascade. The size of the smallest fluctuations is dictated by the Kolmogorov length,
presented in Equation (2.13), where ν is the kinematic viscosity and ϵ is the turbulence dissipation rate
[7].

ηK =

(
ν3

ϵ

)1/4

(2.13)

The unconventional turbulence behaviour in MHD flows arises from the Lorentz force term in the
momentum equation (see Equation (2.8)). Qualitatively speaking there are three main aspects that
make MHD turbulence different from turbulence in a hydrodynamic incompressible flow [11].
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• 1. An anisotropic suppression of turbulence occurs, where the velocity fluctuations parallel to the
magnetic field lines are damped.

• 2. The coherent turbulent structures are elongated.
• 3. Different flow regimes depending on the Re/Ha ratio, with very small ratios leading to complete
laminarisation of the flow and very high ratios resulting in turbulence behaving as conventional
three dimensional turbulence. Figure 2.2 shows the different regions, which were initially classi-
fied by Smolentsev et al. [54].

Figure 2.2: Flow regimes for MHD flows depending on the ratio of Reynolds and Hartmann numbers [66].

Therefore, the extent to which differences 1 and 2 apply to MHD flows are dependent on the mag-
netic interaction numberN . Davidson [7, 8] showed that the decay of angular momentum perpendicular
to the magnetic field occurs exponentially with the time scale 4tmag, also known as the magnetic brak-
ing time, where tmag = ρ/σB2

0 . Therefore, the anisotropic states will only occur if turbulence lasts long
enough compared to this decay, which requires that the interaction parameter N = L/Utmag is 1 or
larger (in other words, the Lorentz force should be of the same order roughly as ρ(u · ∇)u) [7].

This has been confirmed by DNS investigations in multiple studies under different geometries [19,
29, 49, 69, 70], where it has been shown that for N << 1 the turbulence away from walls shows 3 di-
mensional fluctuations comparable to decaying homogeneous isotropic turbulence [69]. For very large
magnetic interaction numbers, N >> 1 the flow becomes quasi-2D, with 3D periodic box simulations
by Zikanov et al. [69] showing that after t = 80000tmag a 2D steady state solution exists. For inter-
mediate magnetic interaction parameters (N ≈ 1) some level of anisotropy can be generated without
reaching a fully quasi-2D state, with some studies showing alternating states of quasi-2D turbulence
and 3D turbulence [69].

2.3. MHD Annular Flow Characteristics
Fico et al. [11] investigated the turbulent structures in MHD flows at different Hartmann numbers for
a cyclic concentric annular pipe flow geometry with highly resolved LES simulations with Re = 8900.
To discuss this geometry it is convenient to define the radial and azimuthal components in cylindrical
coordinates based on Cartesian coordinates as shown below:

r =
√
z2 + y2 (2.14) ϕ = arctan

(
z

y

)
(2.15)

The resulting data has been provided by Fico et al. [11] for this thesis work. The results show that
both the mean flow and turbulence characteristics of the flow had a high level of dependency with the
azimuthal location. This is due to the path of the electrical currents being formed in the annulus, which
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makes the radial Lorentz force profile change significantly in the azimuthal direction. This in turn also
affects the mean velocity profile, see Figure 2.3.

As would be expected from the experimental results by Hartmann [15], the flow shows a thinning of
the boundary layer where the Lorentz forces are the most intense, while at ϕ = π/2 the profile is closer
to that of a conventional flow, since the Lorentz force has smaller magnitude, and therefore also a lower
magnitude of the gradient. As a result of this, for the annular flow case the turbulence characteristics
also vary depending on the azimuthal location, which Fico et al. [11] shows using the Lumley triangle.
The Lumley triangle is explained in Appendix A. Fico et al. [11] plotted the invariants of the anisotropy
Reynolds stress tensor bij from the viscous sublayer to the centerline at ϕ = 0 and ϕ = π/2, as shown
in Figure 2.4, for 4 different flow cases with different Re/Ha ratios. The definition of the anisotropy
Reynolds stress tensor is given in Equation (2.16), where k is the turbulence kinetic energy, τij is the
Reynolds stress tensor and δij is the Kronecker delta.

bij =
τij
2k

− 1

3
δij . (2.16)

(a) (b)

Figure 2.3: Mean flow field results from the LES MHD annular flow simulation by Fico et al [11]. a) Normalised Lorentz force
distribution on the MHD annular flow at Ha = 40. Positive values mean out of plane direction while negative values mean into
the plane direction. b) Mean flow velocity profile normalised by the bulk velocity in the MHD annular flow for Ha = 40. Note that

the azimuthal angle is represented as θ.

Figure 2.4: Lumley triangle for a MHD annular flow simulation at two different Hartmann numbers compared to a Ha = 0 case
[11].

For the standard hydrodynamic flow case, next to the wall, turbulence is in a 2 component state,
laying between the pure 1D and 2D states. Moving further from the wall, the flow moves closer to the
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1D state up to a certain wall distance. Moving further from the wall, turbulence starts moving closer
to the 3D isotropic state. This is the common pattern which has been observed in DNS simulations of
turbulent channel, pipe or duct flows [11].

When comparing this trajectory to those of MHD flows, it can be noticed that generally the turbulence
states move further away from isotropy. The differences become more accentuated in the higher Ha
case. Furthermore, the azimuthal location also has an effect, unlike the hydrodynamic case which is
axisymmetric. The turbulence states at ϕ = 0 are more anisotropic. For the Ha = 60 case, turbulence
is almost entirely quasi-2D independently of the wall distance. This is in agreement with the Re/Ha
regimes hypothesized by Smolentsev et al. [54], since the Re/Ha ratio decreased from 222.5 to 148
which entails that the first simulation is in the conventional turbulent flow regime while the second
simulation would be in the quasi-2D turbulence regime.

Based on these observations from higher fidelity simulations of annular MHD flows, it can be con-
cluded that there are complex trends that have to be captured by the RANS turbulence model if a high
level of accuracy is required. The model should ideally be able to predict the azimuthal dependency of
the turbulence anisotropy characteristics and its consequences on the turbulence production and dis-
sipation at different wall distances. Furthermore, the turbulence model should also be able to capture
the trend of increasing anisotropy with increasing Re/Ha, and to revert to a standard hydrodynamic
turbulence model when Ha = 0.



3
Introduction to Turbulence Modeling

For many industrial applications, DNS or LES are too computationally expensive; making Reynolds
Averaged Navier Stokes the next best option for CFD Simulations. While LES simulates part of the
turbulence scales and only models the smaller, less energetic scales, RANS simulations model all tur-
bulence scales. This chapter first introduces how Reynolds averaging of the Navier-Stokes equations
leads to the closure problem and introduces the two main methodologies which are used in traditional
turbulence models. Then the Galilean and frame invariance requirements for turbulence models are
discussed, followed by the general eddy hypothesis. Finally, the currently existing RANS turbulence
models for MHD flows are presented.

Before discussing this topic, the key differences between RANS, LES and DNS should be explained.
DNS captures all turbulence scales without any modeling, resolving precisely the time evolution of
the flow field without making any further assumptions apart from those made in the Navier Stokes
equations. This requires a fine grid that is equal to or smaller than the Kolmogorov length (see Equation
(2.13)) throughout the domain. This combined with the required number of time steps needed to obtain
converged statistics, entails that the computational cost of a DNS scales with Re3, thus making DNS not
viable for most engineering applications [9]. On the other hand, LES only resolves the larger scales of
turbulence, which contain most of the energy, and models the smaller scales. In these simulations the
grid can act as a low pass filter or a separate filtering operation can be applied. The motivation behind
LES is that DNS uses a lot of computational resources to resolve the smaller scales which in most flow
cases have a considerably lesser impact on the transfer of momentum [9]. However, the solution of
these simulations are still unsteady, and therefore their computational cost is still considerably higher
than RANS. RANS opts to resolve only the mean flow, therefore modeling all turbulence scales, which
creates a modeling problem that is discussed in more depth in the following section [17].

3.1. The Turbulence Closure Problem
The Reynolds Averaged Navier-Stokes equations are obtained by applying the Reynolds Averaging
operation to the standard Navier-Stokes equations. Reynolds averaging consists in obtaining the mean
steady solution over time, based on the fact that an unsteady solution can be separated into its mean
value and unsteady fluctuations [17]:

u = U + u′, (3.1)

where U is the mean value and u′ are the fluctuations, which have a mean value of 0. This operation
can be applied to the Navier Stokes equations for incompressible flow with constant properties:

∇ · u = 0 (3.2)

ρ

[
∂

∂t
u+ (u · ∇)u

]
= −∇p+ ρν∇2u+ f , (3.3)

where f is an external body force. After applying Reynolds averaging the result is the following:

9
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∇ ·U = 0 (3.4)

ρ

[
∂U

∂t
+ (U · ∇)U

]
= −∇p̄+ ρν∇2U + f̄ −∇ · ρu′u′. (3.5)

The terms which are overlined are Reynolds averaged. What can be observed is that the RANS equa-
tions are practically the same as the Navier-Stokes ones except for the final term on the right side
of Equation (3.5), which is the divergence of the Reynolds stress tensor, written in Einstein notation
as τij = u′iu

′
j . To solve for this component the Reynolds stress transport equation can be derived.

However, this equation contains further unknown correlations of fluctuating quantities, for which further
transport equations have to be derived. But the problem remains that there will always be more un-
knowns than equations. This issue is known as the closure problem. Therefore, to achieve closure,
turbulence models are required.

There are twomain families of RANS turbulencemodels, Reynolds Stress Models (RSMs) and Eddy
Viscosity Models (EVMs). The former are based on using the Reynolds stress transport equation and
modelling the terms that cannot be solved, with some models even adding more transport equations (at
least 6 transport equations are needed). EVMs are simpler and more popular among CFD solvers, due
to having generally faster and more stable convergence compared to RSMs [17]. These models are
based on the Boussinesq hypothesis which effectively assumes that the shear stresses of the turbulent
velocity components are proportional to those of the meanflow, see Equation (3.6). The second term
on the right hand side is the Eddy Viscosity representation of the anisotropy Reynolds stress tensor,
which in its non dimensional form is given by Equation (2.16).

τij = u′iu
′
j =

2k

3
δij − 2vtSij (3.6)

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(3.7)

k =
1

2
tr(τij), (3.8)

In the equations above, k is the turbulence kinetic energy, Sij is the mean rate of strain tensor, δij
is the Kronecker delta and νt is the eddy viscosity, which is the proportionality constant which has to
be modelled. Furthermore, the trace operator tr(), is the summation of the diagonal components of
a tensor. In the case of k, this tensor is τij . Through the eddy viscosity assumption, the 6 unknown
components of the Reynolds stress tensor, are all grouped under a single unknown, the eddy viscosity.

Based on these two different methodologies, many turbulence models have been created. An
overview of them is given in Figure 3.1.

Figure 3.1: Diagram of the different families of RANS turbulence models [17].

It has to be noted that these models, and any new turbulence closure model for RANS, need to
follow the criteria below [45].
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• The turbulence model should be explicit in terms of local mean flow quantities.
• The model should be Galilean invariant, since the Navier-Stokes equations are Galilean invariant.
• The model should be frame invariant, such that coordinate transformations do not change the
output of the model.

3.1.1. Galilean and Frame Invariance
Given that both Galilean and frame invariance are valuable properties for turbulence models, these
should be defined to improve the reader’s understanding. A Galilean invariant variable is a variable
which has the same value in any inertial frame of reference. Two inertial frames of reference can be
related by their relative velocity U and the universal time t which applies to both:

x∗(t) = x(t) + Ut (3.9)
For instance, velocity is not a Galilean invariant parameter, but acceleration or the gradient of veloc-

ity are. The value of keeping the model Galilean invariant is that it makes it valid in all inertial frames.
Frame invariance can be represented as shown below:

b = f(q) → QbQT = f(QqQT ). (3.10)
WhereQ is an unitary matrix, which is essentially a rotation operation, q is the vector of inputs and b is
the output, which is the anisotropy Reynolds stress tensor for this application, as defined in Equation
(2.16).

3.1.2. The General Eddy Hypothesis
Pope [45] presented the General Eddy Hypothesis, with the aim of improving the modeling accuracy of
turbulence by realistically modeling the Reynolds stress tensor and by including the effects of streamline
curvature into the modeling. For this Pope et al. [45] assumes homogeneous flow, and that as such,
the rates of strain contain all the information about the velocity field. To non-dimensionalise the rates
of strain, a non-dimensionalisation factor is required. For this the local time scale of turbulence tturb is
used:

tturb = k/ϵ. (3.11)
The velocity gradient can be used to compute the mean flow strain rate Sij and the mean flow rotation
rate Ωij :

Ωij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
(3.12)

The reason for using tturb is that Pope et al. [45] states that the scaling factor should be independent
of the mean velocity field. It is further stated that these two scaling parameters are enough if the
Reynolds number is high enough such that laminar viscosity can be excluded making all macroscales
proportional. Then the non dimensional versions of the strain and rotation rate tensors can be obtained:

Ŝij =
k

2ϵ

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(3.13)

Ω̂ij =
k

2ϵ

(
∂Ui

∂xj
− ∂Uj

∂xi

)
. (3.14)

Since they contain all the dimensional information from U , k and ϵ, then the anisotropy stress tensor
can be represented as a function of these two non dimensional tensors:

bij = bij(Ŝ, Ω̂). (3.15)
The general expression of this formulation would be an infinite tensor polynomial with an infinite number
of coefficients which are a function of an infinite number of invariants. However, using the Cayley-
Hamilton theorem it can be reasoned that the number of independent invariants and second order
tensors is finite which allows for a closed form expression:

b = ΣngnT
(n). (3.16)
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For the 3 dimensional flow case, there are a total of 10 basis tensors T and 5 invariants I, to approx-
imate the coefficients g. These basis tensors and invariants are listed below, with I being the identity
matrix [45]:

T (1) = Ŝ T (6) = Ω̂
2
Ŝ + S2 − 2

3I · Tr
(
ŜΩ̂

2
)

T (2) = ŜΩ̂− Ω̂Ŝ T (7) = Ω̂ŜΩ̂
2
− Ω̂

2
ŜΩ̂

T (3) = Ŝ
2
− 1

3I · Tr
(
Ŝ

2
)

T (8) = ŜΩ̂Ŝ
2
− Ŝ

2
Ω̂Ŝ

T (4) = Ω̂
2
− 1

3I · Tr
(
Ω̂

2
)

T (9) = Ω̂
2
Ŝ

2
+ Ŝ

2
Ω̂

2
− 2

3I · Tr
(
Ŝ

2
Ω̂

2
)

T (5) = Ω̂Ŝ
2
− Ŝ

2
Ω̂ T (10) = Ω̂Ŝ

2
Ω̂

2
− Ω̂

2
Ŝ

2
Ω̂


(3.17)

I1 = Tr
(
Ŝ

2
)
, I2 = Tr

(
Ω̂

2
)
, I3 = Tr

(
Ŝ

3
)
, I4 = Tr

(
Ω̂

2
Ŝ
)
, I5 = Tr

(
Ω̂

2
Ŝ

2
)

(3.18)

Equation (3.16) is a frequently used formulation in data driven turbulence modeling [24, 30, 33],
because it has embedded Galilean and frame invariance, which is achieved through the use of the
Galilean invariants of the tensors as the inputs for the model.

3.2. MHD Turbulence Modeling
The Lorentz force in MHD adds another layer of complexity to the turbulence closure of the RANS
equations. Like in conventional incompressible flows, when Reynolds averaging is applied to Equation
(3.3), a term which cannot be obtained from a steady simulation appears, the Reynolds stress tensor,
see the RANS momentum equation below for MHD flows in Einstein notation

∂Ui

∂t
+

∂

∂xj
(UiUj) = −1

ρ

∂p̄

∂xi
−
∂(u′iu

′
j)

∂xj
+ ν

∂2Ui

∂xj∂xj
+

1

ρ
(ϵijkJ̄jBk). (3.19)

where ϵijk is the permutation symbol. The velocity field is decomposed into an averaged component
and a fluctuating component ui = Ui+u

′
i. The Reynolds stress tensor is then defined as τij = u′iu

′
j . To

obtain the Reynolds stress transport equation the momentum equation for the i component is multiplied
by u′j and for the j component by u′i. The averaging operator is then applied to both equations and then
the arithmetic mean of the two equations is taken. The Reynolds stress transport is used in second
moment closure turbulence models:

∂u′iu
′
j

∂t
+Kij = Pij +Dp

ij +Dt
ij +Dv

ij +Φij + SMij − εij . (3.20)

where Kij is the advection term, Pij is the turbulence production term, Dp
ij , Dt

ij , Dv
ij are the diffusion

terms for pressure fluctuations, turbulence and viscosity. Φij is the term for stress redistribution by
pressure, εij is the stress dissipation rate. Finally, the term which is unique to MHD flows is SMij which
Kenjeres et al. [25] refers to as the net production of the stress tensor due to electromagnetic forces,
and is a direct effect of the Lorentz force. The exact expression for it can be found below:

SMij =
σ

ρ
(−ϵiklBlu′j

∂φ′

∂xk
− ϵjklBlu′i

∂φ′

∂xk
+BiBku′ju

′
k +BjBku′iu

′
k − 2B2

ku
′
iu

′
j). (3.21)

Hence, the equation above shows that in MHD flows the Reynolds stress tensor is influenced by
the oscillations in the Lorentz force and their interactions with the velocity fluctuations, which is a phe-
nomena that is not modelled in standard turbulence models. The first attempt to provide a turbulence
model for MHD flows was presented by Ji et al. [21]. The proposal is to modify the eddy viscosity k-ϵ
model by adding three correction terms, one in the k transport equation (SM

k in Equation (3.22)) and
another one in the ϵ transport equation (SM

ε in Equation (3.23)) [25].

Dk
Dt

= Pk +
∂

∂xj

[(
v +

vt
σk

)
∂k

∂xj

]
− ε+ SMk (3.22)

Dε
Dt

= C1ε
ε

k
Pk +

∂

∂xj

[(
v +

vt
σε

)
∂ε

∂xj

]
− C2ε

ε2

k
+ SMε . (3.23)
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One final corrective term, fM is applied in the definition of the eddy viscosity vt:

vt = Cµfµf
M k2

ϵ
, (3.24)

where fµ, σk, σϵ, C1ϵ and C2ϵ are model constants.Later, Kenjeres et al. [25] proposed a very similar
model which did not use the corrective term fM and modified the modelling of the SM

k and SM
ε terms.

Furthermore, Kenjeres et al. [25] also modified the model such that it could be used for modeling the
source term in the Reynolds stress transport equation SM

ij , thus making a Reynolds stress transport
model possible. However, this model was only tested a priori, although with positive results. More
recently, Zhang et al. [66], further iterated upon the k-ϵ MHD model with the objective of improving its
performance for higher Ha applications. The exact expression of the magnetic source terms for the k-ϵ
models discussed are presented in Equations (3.25) and (3.26) [25]:

SMk =
σ

ρ

(
ϵijkBku′i

∂φ′

∂xj
+BiBku′iu

′
k − 2kB2

k

)
(3.25)

SMε =− 2vσ

ρ
ϵijk

(
∂Bk

∂xl

∂u′i
∂xl

∂φ′

∂xj
+Bk

∂u′i
∂xl

∂2φ

∂xl∂xj

)

+
2vσ

ρ

(
Bk

∂Bi

∂xl
u′k
∂u′i
∂xl

+BiBk
∂u′i
∂xl

∂u′k
∂xl

+Bi
∂Bk

∂xl
u′k
∂u′i
∂xl

−B2
k

(
∂u′i
∂xl

)2

− 2Bk
∂Bk

∂xl
u′i
∂u′i
∂xl

)
.

(3.26)

These terms are modelled in a very similar manner in the three discussed models, as shown in
Figure 3.2. The models use an exponential turbulence damping term, which was initially derived by
analysing fluid motion under an uniform transverse magnetic field. Ji et al. [21] proposed the exponent
to be the ratio of the eddy turnover time tturb = k

ϵ to the magnetic braking time tmag = ρ
σB2

0
. However, a

further assumption is made such that the time scale for large high energy eddies such that the resulting
exponent is the magnetic interaction number.

Kenjeres et al. [25] pointed out that this limited the flexibility of the model to use local flow features
since it made use of a global parameter, and hence used the usual eddy turnover time. The number of
coefficients to be estimated from the model is also reduced from two to one. A priori tests using DNS
data for validation showed that the model by Kenjeres et al. could achieve more accurate estimates of
SM
k and SM

ε . The a posteriori implementation showed improved mean velocity predictions compared
to fully laminar or standard eddy viscosity model simulations.

Zhang et al. [66] argued that the turbulent decay rates from the previous two models were derived
based on unbounded MHD flows, and that due to the stronger currents in wall bounded MHD flows
a different decay rate formulation should be used, which is shown in Figure 3.2. The chosen term is
derived based on an analysis for square duct flows by Burr et al. [5]. However, the results shown by this
study disagree with high fidelity data, as the trends with changing Reynolds and Hartmann numbers
are captured but the magnitude of the results are far off the DNS reference data both in terms of the
mean flow velocity and the turbulence kinetic energy.

Smolentsev et al. [51, 52] also developed two different models for MHD turbulence. A one equation
model was developed for quasi-2D steady flow, which makes it only effective for low Re/Ha simulations
without boundary layers [52]. Hence this model does not provide the flexibility necessary to model duct
flows at different Ha numbers. Smolentsev et al. [51] also developed a k-ϵ based model which had
a very similar formulation to Ji et al.’s model [21], but the Stuart number was modified to use the
flow thickness h as the length scale, since the model was developed for free surface flows and the
coefficients are different because the sets of experimental data used to approximate them are different.
Furthermore, another peculiarity of this model is that the model changes depending on the direction of
the magnetic field as well as the geometry of the problem (duct flow against open channel).

The issue with these models is that despite showing some success in modelling the turbulence
damping due to the Lorentz forces, it is not possible for them to capture the anisotropic suppression of
turbulence and hence also the enlargement of the coherent structures that is a signature of MHD flows
in the quasi-2D regime. The reason for this is that they are based on the eddy viscosity hypothesis
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Figure 3.2: Table showing the different k-ϵ eddy viscosity models for MHD turbulence [66].

which assumes that the turbulent shear stresses are linearly proportional to the mean flow strain rate
tensor, with the proportionality constant being the eddy viscosity νt. Hence, the anisotropy stress tensor
is always aligned with the mean strain rate.

This entails that the 3rd invariant of the anisotropy stress tensor I3 is always zero, which means that
on the Lumley triangle in Figure 2.4 these models would only predict anisotropy values on the vertical
line crossing at I3 = 0, which is not close to reality. Moreover, as shown in Figure 3.3 the trend is also
the opposite, as EVMs predict isotropic behaviour at wall and then move towards the 2 component limit
when going away from the wall.

Figure 3.3: Barycentric Lumley triangle showing the Eddy Viscosity RANS anisotropy Reynolds stress tensor in a channel flow
against the equivalent DNS result [64].



4
Data Driven Turbulence Modeling

RANS simulations model all turbulence scales, which can lead to inaccurate results in flows with strong
adverse gradients and separation. Furthermore, for MHD flows the available models cannot capture
the anisotropic behaviour of turbulence. Data driven turbulence modeling consists in utilising existing
higher fidelity simulations (DNS ,LES and even Detached Eddy Simulation (DES) or RANS in some
cases) as training data to modify existing RANS turbulence models, or to create an entirely new model.
This chapter firstly introduces the different methods for setting the training objectives. After that, the
input feature selection process is discussed, followed by a discussion of the different regression tech-
niques that have been applied in literature to obtain data driven turbulence models. Finally, an overview
of the existing testing and validation methods is given in the last section.

4.1. Label Selection and Implementation Frameworks
Probably the most intuitive approach to data driven turbulence modelling would be to try to approximate
a function f which given a set of input features q would provide an approximation of the Reynolds stress
tensor or the anisotropy Reynolds stress tensor b:

b ≈ f(q). (4.1)

However, another possible approach is to apply a corrective term (or terms) to an existing RANS tur-
bulence model. Each method, and their implications for the training and implementation of the model
in a RANS solver are discussed in this section.

4.1.1. Direct Modeling of Anisotropy Reynolds Stress
The goal of this method is to create a model for the anisotropy Reynolds stress as a function of mean
flow quantities which is treated explicitly in the momentum equation. In this case setting the labels for
the regression consists in extracting the Reynolds Stress tensor from the DNS simulations. However,
using this method requires a precursor RANS simulation using a baseline turbulence model, which is
substituted afterwards in a field propagation procedure by the data driven model. The reason for this is
that most of these models use as part of the input for the model the turbulence kinetic energy k or the
dissipation rate ε or the specific dissipation rate ω. In a RANS simulation, these terms require transport
equations with modelled terms to be approximated.

In literature, the common way to resolve this complexity, is to use a traditional RANS model, often k-
ϵ or k-ω SST, to provide estimates for k and ϵ. The diagram in Figure 4.1 shows how this is implemented
in the training and evaluation of the model. For every DNS simulation that is used to obtain the labels
for training, a RANS simulation of the same case (same geometry, boundary conditions, etc) is required
to obtain the input features for the model. Based on this, a model is required that gives the anisotropy
tensor bij as a function of a set of RANS input features q, as in Equation (4.1). To use the resulting
model to predict a flow field, it is then required to run a precursor RANS simulation, with the same
turbulence model that was used to generate the input features during the training phase. Then the
anisotropy stress tensor can be computed by querying the model.

15
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Figure 4.1: Open loop framework for data driven turbulence modeling [58].

Simply setting the anisotropy stress tensor equal to the model output in the momentum equation will
affect the stability of the solver. One of the options that is used in literature is under relaxing the model
output bML against the eddy viscosity model bEVM = νt

k S [24, 30, 61, 67] using a blending parameter
γ which increases slowly from 0 up to an user defined maximum value:

τML =
2k

3
I + 2k [(1− γ)bEVM + γbML] (4.2)

To further improve the stability, Dwight et al. [24] also proposed modifying the production term in the
k transport equation to use the blended anisotropy Reynolds stress tensor instead of the eddy viscosity
result to obtain the turbulence kinetic energy which corresponds to the Reynolds stress tensor.

Taghizadeh et al. [58] noted that the open loop approach is inconsistent, because the transport
closure coefficients are not updated in this process. The k, ε and νt that are used to evaluate the model
are not consistent with the anisotropy Reynolds stress tensor that is given by the data driven model. As
an alternative to this, Taghizadeh et al. [58] proposes updating the transport closure coefficients and
the constitutive closure coefficients (b or τ ) iteratively until convergence both during training and during
the predictive computations. This involves propagating the resulting a in each iteration, and during
training, the model also has to be trained in each iteration. This closed loop method has not been used
frequently in literature so far to the writer’s knowledge, and instead, the frozen RANS approach method
tackles the same issues as the closed loop approach but does it in a simpler way that does not require
evaluating or training the model multiple times. This method is discussed in Subsection 4.1.4.

4.1.2. The Ill Conditioning of Explicit Data Driven Reynolds Stress Closure
Wu et al. [65] showed that the RANS equations can be ill conditioned when using explicit data driven
Reynolds Stress Closure, which is equivalent to using the open loop framework in Figure 4.1. In prac-
tice, this means that even if the a priori error of the model is small, the a posteriori error in the velocity
field when using it in a RANS solver can still be high. As an alternative, Wu et al. [65] proposed splitting
the model into a linear and a nonlinear component as shown below:

τ = τ ∥ + τ⊥ = 2νtS + τ⊥, (4.3)

where the linear part τ ∥ is an Eddy Viscosity model that can be solved implicitly with the momentum
equation while the nonlinear part τ⊥ can be explicit. Wu et al. [65] showed this using the DNS results
for a channel flow at different Reτ and two other more complex geometries.

From these, the true Reynolds Stress tensor can be obtained. In the explicit method, the true
Reynolds Stress is treated as a constant and the RANS equations are solved implicitly with the con-
stant τ . In the implicit method, the RANS equations are solved iteratively, where the linear part of
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the Reynolds Stress tensor is also solved explicitly with the equations, with only the nonlinear part
remaining as a constant. See the equation below,

τ (i) = vmt

(
∇U (i) +

(
∇U (i)

)T)
+ τ⊥

DNS . (4.4)

The optimal eddy viscosity is kept constant and is determined by minimising the error of the anisotropy
Reynolds stress tensor when using the Eddy Hypothesis.

vmt (x) = argmin
vt

∥∥∥τDNS − 2vt(x)S
DNS

∥∥∥ , (4.5)

As initial condition for the solution, the mean flow field of the DNS solutions were used.

Figure 4.2: Results of the RANS solution of a turbulent channel flow using τDNS with the explicit method a) and the implicit
method b) [65]. Ly denotes the channel half width.

As shown in Figure 4.2, the explicit method seems to produce poor mean flow field predictions when
Reτ increases. As Wu et al. [65] remark, this is against the common perception in the CFD community
that if the Reynolds Stress Tensor is the same or very similar, the velocity flow field should also be
very similar. However, as the Reynolds number increases, the sensitivity of the velocity flow field to
small differences increases. Using the implicit treatment of the Reynolds stress alleviates this issue
by reducing the sensitivity, due to which this method has been applied already in a few data driven
turbulence models [3, 22]. When using the model for computing a corrected solution, the process is
still the same as the open loop framework shown in Figure 4.1. The only difference occurs in the ”ML-
RANS” step, where the linear part of the model is treated implicitly and thus changes in each iteration.

It is worth noting that the ideal solution, as mentioned also by Wu et al. and Jiang et al. [22, 65], is
to use an optimal Reynolds Stress Tensor τop that yields UDNS :

L(UDNS) = u0
DNS · ∇UDNS − v∇2UDNS = ∇ · τop −∇p. (4.6)

However there are 6 unknown components of the Reynolds stress tensor but only 3 components of the
momentum equation, therefore this cannot be used. It is then clear that for certain flow cases trying
to model the Reynolds Stress Tensor may not result in improved velocity fields. Hence, other alterna-
tive options for setting the training labels have been developed which are discussed in the following
subsections.

4.1.3. Field Inversion
The field inversion method does not aim to model the Reynolds Stress tensor directly, but instead, it
calculates a corrective field term for an existingmodel. Parish andDuraisamy [42] applied field inversion
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for the first time in the context of data driven turbulence modeling, by modifying the eddy viscosity k-ω
model. The production term in the k transport equation is multiplied by a corrective field β(x):

νt = Cµ
k

ω
(4.7)

vt

(
∂ū

∂y

)2

β(y)− α∗kω +
∂

∂y

[(
v + σ∗ k

ω

)
∂k

∂y

]
= 0 (4.8)

γ

(
∂ū

∂y

)2

− αω2 +
∂

∂y

[(
ν + σ

k

ω

)
∂ω

∂y

]
= 0. (4.9)

Since this corrective term is not readily available from DNS data, field inversion is required as a pre-
processing step to obtain the labels for training the data driven model. To do this the only requirement
is creating a loss function that can be minimised to obtain the optimal value for the corrective field
β, which may depend on the regression technique used. Parish and Duraisamy [42] used Bayesian
Inversion [42] to find the optimal corrective field for their modified k-ω model:

βmap = argmin 1

2

[
(d− h(β))TCm

−1(d− h(β)) + (β − βprior )
T
C−1

β (β − βprior )
]
, (4.10)

where d = UDNS , Cm = σ2
absI is the observational covariance matrix, with σabs = 10−10, and Cβ is

the prior covariance matrix for which a Kernel function is required. This method is appropriate for the
regression technique applied by Parish and Duraisamy [42] which is Gaussian Process-based. A more
general formulation would be:

L =

M∑
i=1

|yi −U(xi)|2, (4.11)

where the RANS velocity and the corrective field must fulfill the momentum equation and the transport
equations. This type of optimisation is high dimensional and PDE-constrained, and therefore requires
the gradient of the loss function against the corrective field ∂L

∂β , which must be computed using an
adjoint solver.

This different label selection method changes the overall framework, which is no longer the same
as the open loop framework described in Figure 4.1. An equivalent diagram for the field inversion
framework is shown in Figure 4.3. Baseline RANS simulations are not needed for training, only the
high fidelity data, since both the training labels and input features are obtained though the field inver-
sion technique. Furthermore, since the data driven correction is integrated within an existing RANS
turbulence model, it is not necessary to do a precursor simulation when making a predictive compu-
tation. It must be noted though, that by making a correction of an existing model the resulting data
driven model may still be subject to some limitations of the original model. For instance, if the original
model is an Eddy viscosity model, the data driven model still has to obey the Boussinesq assumption.
Another drawback of this framework is that it requires an adjoint solver [42], which can be very difficult
to implement in a RANS solver.

On the other hand, Mandler andWeigand [33] used projections to find the optimal coefficients goptn for
the 10 basis tensors of Pope’s general Eddy Viscosity formulation. The projection are taken sequentially
and then the contribution is subtracted from the anisotropy stress tensor before the next projection,
hence giving more importance to the first tensors. This can be written as:

goptn =

(
2b−

∑n−1
m=1 g

opt
m T (m)

)
: T (n)∥∥∥T (n)

∥∥∥2 (4.12)

for 1 ≤ n ≤ 10. This is an alternative to the corrective field method which also uses field inversion but
allows for more complex relations to be captured by the model.
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Figure 4.3: Field inversion framework for data driven turbulence modeling [42].

4.1.4. Frozen Approach
Similarly to field inversion, the frozen approach method also extends an existing model instead of
creating an entirely new one. The model was first applied by Weatheritt and Sandberg [62] in the
context of data driven turbulence modeling. The frozen approach generally places a correction term
which is a residual of the anisotropy Reynolds stress tensor when using an Eddy viscosity model b∆ij ,
and another correction term which appears in the transport equations of the model, in this case P∆

k . As
an example the implementation on the k-ϵ model by Steiner et al. [57] is shown:

b̂ij =
νt
k
Sij + b∆ij (4.13)

Dk̂

Dt
= P̂k + P∆

k − ϵ+
∂

∂xj

[
(ν + σkνt) k̂

]
(4.14)

Dϵ

Dt
=
[
Cϵ1

(
P̂k + P∆

k

)
− Cϵ2ϵ

]
· ϵ
k̂
+

∂

∂xj
[(ν + σϵνt) ϵ] . (4.15)

where the frozen production term is defined as:

P̂k = 2k̂b̂ij
∂ûi
∂xj

. (4.16)

The second corrective term, P∆
k , is a correction for the turbulence kinetic energy production. The

terms with the hat symbol are frozen terms which are computed from the high fidelity data x̂ = xDNS .
Most importantly, these include k and U . Then the transport equation for ϵ (or ω if using a k-ω model)
is solved iteratively to obtain the dissipation rate ϵ, after which the eddy viscosity νt, the turbulence
production correction term P∆

k and the Reynolds stress anisotropy correction b∆ij can be computed until
convergence is reached. For the initial ϵ, a RANS simulation of the same case with the baseline model
can be used. After convergence, the anisotropy Reynolds tensor residual can be computed using
Equation (4.13).

Schmelzer et al. [48] introduced this form of the frozen approach named k- corrective RANS, which
includes a correction term for the production. The original frozen approach byWeatheritt and Sandberg
[62] used a very similar approach with the k-ω SST model as the baseline, but did not include the P∆

k

term. The anisotropy stress tensor does appear in the definition of the turbulence energy production,
thus it could appear that adding another term is redundant. However it is not assured that solving the
k transport equation with the data before and after frozen RANS should yield the same result. Hence
the k- corrective frozen RANS approach should return more appropriate labels for training which will
improve the performance of the turbulence model when implemented into a RANS solver.



4.2. Feature Selection 20

Regarding the overall workflow when applying frozen RANS, a diagram can be found in Figure 4.4.
The training phase is quite different from that of an open loop model, as the baseline RANS model
is only used to set the initial value of ϵ or ω for the frozen RANS. Then the labels used in training
are an outcome of the frozen RANS process, while the input features are a combination of both the
turbulence macroscale output from the frozen RANS and the strain rate and rotation rate from the DNS
data. In the predictive computation, no precursor RANS simulation is needed, as the data driven model
is integrated as a correction for the original RANS model.

Figure 4.4: Frozen RANS framework for data driven turbulence modeling [48, 62].

Mandler and Weigand [33] also applied k-corrective frozen RANS apart from field inversion. How-
ever, in this case it is not used to obtain the labels for the training data. Instead this method is used
to obtain the k and ϵ to define the turbulence timescale that is used to non dimensionalise the basis
tensors of Pope [45]. The reason for this is that these values will be different in a low fidelity RANS
solution compared to the high fidelity training data. Hence, the high fidelity turbulence timescale would
be a wrong factor to use for non-dimensionalising the training input features.

Altogether, the frozen RANS approach avoids the ill-conditioning problem of the open loop approach
which was remarked byWu et al. [65]. This is achieved by augmenting an existing eddy viscosity model
which is evaluated implicitly with an explicit data driven component. The training procedure in the frozen
RANS approach requires the implementation of an iterative solver for the ω or ϵ transport equation in
a RANS solver and RANS data of the same flow cases as the DNS/ LES training data, while the open
loop approach only needs the latter. Therefore, to limit the scope of the thesis, the open loop approach
is the preferred option as a starting point, with frozen RANS remaining an alternative in the case that the
ill-conditioning of the RANS equations severely affects the accuracy of the mean flow field in predictive
computations.

4.2. Feature Selection
Regarding the selection of input features, the options investigated in literature so far can be divided
into two groups:

• 1. Using the tensor basis and invariants proposed by Pope’s general eddy hypothesis, and then
possibly adding other inputs.

• 2. Not using Pope’s general eddy hypothesis and opting for a different set of input features.
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In literature the first option is by far the most popular method for input feature solution, as building
the model using the general eddy hypothesis ensures both Galilean and frame invariance, given that
any added extra input features also are Galilean and frame invariant. Usually the models that opt for
the second option do not achieve both Galilean and frame invariance in the resulting model because
the selected inputs are often not Galilean or frame invariant. However, most of these models usually
justify this by limiting the geometries to which the model is applied. For instance, generally these
models are only tested in turbulent channel flows to work as wall models, or in other simple geometries
[6, 10]. Then, the training data is composed of high fidelity simulations of this geometry at different
Reynolds numbers. In this case, the model not being frame invariant is not an issue, as the predictive
computations are performed on the same geometry. However, this limits the flexibility of the model.

4.2.1. Input Features Based on Pope's General Eddy hypothesis
One of the most common approaches in literature is to only use the tensor basis of the General Eddy
hypothesis by Pope with the invariants as inputs, or instead of the full 10 tensors and 5 invariants,
using only a subset of them. Examples of this are the work by Ling et al. [30], Schmelzer et al. [48],
Beetham and Capecelatro [3] among others. With only these input features these models have shown
that significant improvements can be made in the accuracy of the anisotropy Reynolds stress tensor
and the resulting velocity flow field.

Some papers which investigate only 2D flows apply the tensor basis and invariants for 2D flows,
which are only the first 3 tensors and the first 2 invariants shown in Equations (3.17) and (3.18). Haghiri
et al. [13] reduced the number of basis tensors by checking their alignment to the anisotropy Reynolds
stress tensor in the DNS data of the training cases. The alignment was computed as shown in Equation
(4.17):

α
(
b, T (n)

)
=

|b·T (n)|
|b||T (n)| , n = 1, . . . , 10. (4.17)

The heat maps in Figure 4.5 show how the alignment of each tensor changes depending on the location.

Figure 4.5: Alignment α of the first 4 basis tensors of Pope with the anisotropy Reynolds stress tensor at two different x
locations in the DNS training data simulations [13]. The simulation is a square cylinder on a plane and both planes are

perpendicular to the freestream flow direction, with the plane on the left being near the body and the second plane being further
downstream. The green line indicates the shear layer location.

For this figure the dimensional version of the tensor is used, aij = 2kbij , but this does not affect the
alignment. This exercise clearly shows how the eddy viscosity assumption can work well away from
boundary or shear layers as the first tensor T (1) = S shows the best alignment on average by far.
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However, the other basis tensors are required to obtain accurate predictions throughout the entire flow
field. Based on these results, they created 3 different tensor basis comprised of only 5 tensors which
complemented each other well by showing good alignment in different areas of the domain. Then a
separate data driven model was created with each tensor basis.

4.2.2. The Non-Unique Mapping Problem
Nonetheless, using only Pope’s invariants creates a non unique mapping (also known as one to many
mapping) even in flows with simple geometries such as channel flows. This arises from the assumption
that is made in Pope’s hypothesis that all turbulence macroscales are proportional, since this only
applies away from walls in nearly homogeneous flows. This problem was illustrated by Jiang et al.
[22] with the results shown in Figure 4.6. Jiang et al. [22] show that according to the general eddy
hypothesis the anisotropy stress tensor component a12 in a fully developed turbulent channel flow can
be presented as a function of sm = k

ϵ
∂Ux

∂y . However, as shown in the DNS data, at different non
dimensional wall distance( y+) locations on a boundary layer the same sm value is possible while the
a12 component is different. Hence, even for this simple flow, using only Pope’s invariants creates a one
to many mapping.

Figure 4.6: Shear stress component of the anisotropic reynolds stress in the left graph and in the right graph the a priori results
of training Tensor Basis Neural Networks with all data and only with data for y+ > 9. It can be observed that training with all

data causes the fit to shift between the 2 possible lines [22].

The effect this has on the training of a data driven model, in this case a Neural Network, can be
observed in Figure 4.6. The algorithm is forced to fit two different trends causing the prediction to
oscillate between the two possible states. This issue was noted also by Ling et al. [30] and Geneva
and Zabaras [12], but no solution was given for it. There are examples of models in literature which
use the non dimensional wall distance y+, but this is not a frame invariant feature, for this reason the
data driven models using this are wall models, such as those presented by Fang et al. [10], Cai et al.
[6] and Zhang et al. [66]. Jiang et al. [22] proposes using a varying turbulent timescale to account
for the more dominant viscous effects near the wall. The turbulent timescale k/ϵ approaches 0 near
the wall as the production of turbulence kinetic energy goes to 0. Nonetheless, this is not the case in
reality according to the work of Hanjalic and Launder [14] who performed expansions of a turbulent field
near a wall. Jiang et al. [22] expect the flow near the wall to follow the Kolgomorov timescale

√
ν/ϵ

hence the proposed solution is to blend the Kolgomorov timescale and the turbulent timescale using a
weighting parameter ct > 0:

τI ≡
√
(k/ε)2 + c2t (ν/ε) =

√
λ(k/ε), λ ≡ 1 + c2t/Ret, (4.18)

where Ret = k2/(νϵ) is the Reynolds number that is normally used in low Reynolds number models
[22]. Changing the weighting parameter will affect when the blending of the timescales starts to become
significant. Therefore, if there is no prior knowledge about the flow before training starts it is not possible
to know what the appropriate value would be. To overcome this, Jiang et al. [22] proposes to let
the model learn this blending parameter by including Ret as an extra input feature along with Pope’s
invariants. A common solution in literature is to use a wall distance based Reynolds number to achieve
the same effect [24, 61, 64]. Specifically Mandler and Weigand use [33]:
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Rew = 0.02min
(
k0.5ywallν

−1, 100
)
, (4.19)

where ywall is the wall distance.

4.2.3. Extending the Set of Invariants by Pope
Wang et al. [61] and Wu et al. [64] extended the tensor basis of Pope by including the effects of the
turbulence kinetic energy gradient and the pressure gradient to obtain a more complete model of the
Reynolds Stress Tensor with less physics aspects missing:

τ = g(S,Ω,∇p,∇k). (4.20)

Wu et al. [64] argue that the pressure gradient should be included, as turbulence tends to be suppressed
under a favourable pressure gradient, with the opposite effect occurring when under an adverse pres-
sure gradient. Regarding the turbulence energy gradient, Wu et al. [64] claim it is necessary to account
for the convection and diffusion effects which exist in many industrial applications. Since the gradients
are not frame invariant quantities, they can be transformed into their antisymmetric tensors as shown
below:

Âk = −I × ∇̂k (4.21)

Âp = −I × ∇̂p, (4.22)

where the hat sign indicates that the variables have been non-dimensionalised. Using these two addi-
tional tensors, the number of invariants increases from 5 up to 47, which are presented on Figure 4.7:

Figure 4.7: Set of RANS features chosen by Wu et al. [64] Âp and Âk are the antisymmetric tensors of the pressure and
turbulence kinetic energy gradients (The invariants are the traces of these tensors). Theˆsymbol indicates that the tensors are

non-dimensionalised.

It must be noted, that Wu et al. [64] use the invariants, but as direct input features for the model,
not to create the functions of the coefficients for the tensor basis. The same is true for Wang et al. [61],
who also do not include the invariants which include Âp. Instead, Kaandorp et al. [24] use the same
invariants as Wang et al. [61] but also use the tensor basis by Pope, although only including the 10
original tensors based on the strain rate and the rotation rate.

4.2.4. Other Possible Input Features
There are a lot of input features that have been tested in literature, apart from those alreadymentioned in
the previous subsections. Hence, in this subsection the focus will be on those which appear frequently
and that obtain promising results. These have been placed on the Table 4.1 below:



4.3. Regression Techniques 24

Table 4.1: Other input features for data driven models which are common in literature [18, 24, 61].

Description Input Feature Normalisation Factor
Q- Criterion 1

2 (||Ω||2 − ||S||2) ||S||2
Ratio of turbulent timescale to mean strain rate timescale k/ϵ 1/||S||2

Ratio of pressure normal stresses to shear stresses
√

∂p
∂xi

∂p
∂xi

1
2ρ

∂U2
k

∂xk

Pressure gradient along streamline Uk
∂p
∂xk

√
∂p
∂xj

∂p
∂xj

UiUi .

where:

||S|| =
√
tr(STS) (4.23)

||Ω|| =
√
tr(ΩTΩ). (4.24)

The first three input features are both frame and Galilean invariant. The Q-Criterion, which is the
excess rotation rate compared to the strain rate is often used in CFD post-processing to visualise
vortex structures. The pressure gradient along streamline is frame invariant because the dot product
of two vectors is taken, but it is not Galilean invariant. The reason for this is that velocity is used in the
definition, and hence the expression will not be equivalent in all inertial frames. Therefore, although
based on physical intuition this is a very significant variable in turbulence modeling, it can only be used
to predict cases with similar geometries to the training data.

The input features are discussed in this section that have been used for conventional flows which
are not under the effect of external body forces. Nonetheless, for MHD flows, the effects of the Lorentz
force in turbulence have to be included, and thus this should be reflected in the input features for
the data driven model. The inclusion of the Lorentz force adds two new variables to the momentum
equation : the electrostatic potential φ and the magnetic field strengthB( see Equations (2.1) and (2.8)).
Furthermore, it also adds one new physical dimension in the form of the Ampere, the unit for current.
Therefore, based on the Buckingham π theorem it is required to add at least one extra input feature in
a data driven model for MHD flows.

4.3. Regression Techniques
In literature a large variety of regression techniques have been used so far, as different researchers
have slightly different objectives. While some opt to produce the most accurate results possible at
any computational cost, others aim to use models which require less training time and data, and pro-
vide interpretable expressions, thus stopping the model from becoming a ”black box”. In this section,
firstly the normalisation options for input features are discussed, after which the most common different
regression techniques that have been used to generate data driven models are presented.

4.3.1. Normalisation of Input Features
The goal of normalising input features is to ensure all the variables have a similar magnitude. Usually
the data are cast to a specific range of values such as [-1,1] or [0,1] [23]. This is a popular practice in
machine learning applications as it improves the speed and stability of the training process, especially
when the original values of the variables are of very different magnitudes. The reason for this is that if
the data is not normalised, variables with higher absolute values will tend to have a higher weight in the
result, even if this is not really true [23]. A common method of normalisation is to use simple feature
scaling:

qi =
q̂i

max(|q̂|)
. (4.25)

Z-score normalisation makes the input data resemble a normal Gaussian distribution with standard
deviation equal to 1 and 0 mean [23]:

qi =
q̂i − µ

σ
. (4.26)
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Ling et al. [30] proposed the following normalisation method which has been used quite frequently
in other data driven turbulence models and limits the data to [-1,1], which makes it a good option for
Neural Network based models. This formulation also makes the input non-dimensional at the same
time as it normalises:

qi =
qDi

|qDi |+ q∗i
, (4.27)

where the usual method to non-dimensionalise data in other physics or engineering applications is:

q̂i =
qDi
q∗i
. (4.28)

With qDi as the dimensional version of the variable, q̂i is the non-dimensional form, qi is the variable in
its non-dimensional and normalised form and q∗i is the normalisation factor.

4.3.2. Neural Networks
Neural Networks (NN) are a method for creating mathematical models which imitate biological mecha-
nisms to store information [27]. The building block of neural networks are neurons, which are connected
by edges.

MLP and TBNN
In the most common type of NN, Multi Layer Perceptrons (MLP) the neurons are organized in layers,
with each neuron of one layer being connected to all the neurons of the next layer by edges, as shown
in Figure 4.9. Each connection has a weight w associated to it which is a trainable parameter of the
model. Moreover, a bias b can be associated to each neuron, hence the formula for a feed forward
layer of a MLP is essentially a vector matrix multiplication:

y =Wx+ b, (4.29)

where W is a matrix containing the weights of the edges, b is a vector containing the biases of the
neurons, x being the input vector of neurons and y the output neurons. Nonetheless, this is a linear
operation, therefore in order to be able to model non-linear functions, an activation function σ is required
such that:

y = σ(Wx+ b). (4.30)

The activation function is an element-wise operation. Some commonly used activation functions are
the Rectified Linear Unit (ReLU), the sigmoid, the Exponential Linear Unit (ELU), the Gaussian Error
Linear Unit( GeLU) [16], the Leaky ReLU and the hyperbolic tan. Their formulas are shown in Equation
(4.31) and Figure 4.8 shows them for reference. The main aspect which separates these functions is
whether they are bounded, like the sigmoid or the hyperbolic tan, or unbounded like the rest.

σReLU (x) = max(0, x) σSigmoid(x) =
1

1+e−x

σELU (x) =

{
α (ex − 1) for x < 0

x for x ≥ 0
σLReLU = max(0.1x, x)

σGeLU = 0.5x(1 + tanh[
√
s/π(x+ 0.044715x3)]) σtanh = tanh(x)

(4.31)

An important property of MLPs is that given enough layers are used, and non linear unbounded
activation functions are used on each layer, they are able to approximate any function f(x), which is
known as the Universal Approximation theorem [55].
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Figure 4.8: Plots of commonly used activation functions in Neural Networks.

(a) (b)

Figure 4.9: Schematics of the NNs tested by Ling et al. [30], in a) a MLP and in b) the TBNN.

Due to their capability of capturing complicated multivariate behaviours, MLPs have been used to
create data driven turbulence models for turbulent channel flows by directly targeting the anisotropy
Reynolds stress tensor. Both Fang et al. [10] and Cai et al. [6] produced similar architectures which
have a baseline version with only the velocity gradient as input, but is then expanded to also include
y+ and Reτ . Cai et al.[6] simply includes these as additional inputs, but Fang uses a less conventional
approach, injecting the Reynolds number in one of the hidden layers of the MLP, while the wall distance
is modelled separately outside of the MLP:

bij
(
∇U , y+

)
= A

(
y+
)
MLP (∇U) . (4.32)

Mandler et al. [33] also used MLPs, but instead of modeling the anisotropy stress tensor directly,
the MLP is used to model the coefficients of the 2 dimensional tensor basis derived by Pope [45],
see Equation (3.16). This concept is very similar to the TBNN proposed by Ling et al. [30] as an
alternative to the MLP for data driven turbulence modeling. Tracey et al. [59] were the first to apply
NN for data driven turbulence modeling, and building upon this work, Ling et al. [30] designed the
TBNN architecture shown in Figure 4.9b, which embeds frame and Galilean invariance in the model
through the NN architecture. The TBNN architecture satisfies Equation (3.16) by design. The goal
of the network is therefore to obtain a form for the gn functions in Equation (3.16) through the hidden
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layers of the NN.
Although MLP based models not bound to the tensor basis have been shown to surpass the accu-

racy of TBNN based models in turbulent channel flows by Cai et al. [6] and Fang et al. [10], Ling et
al. [30] stated that due to its embedded Galilean and frame invariance, the TBNN allows for the model
to be more accurate in simulations with more complex geometries and to extrapolate better than MLP
based models. An example of this is shown in Figure 4.10, where the prediction results in a periodic hill
test case clearly show how the MLP produces inaccurate predictions and struggles to capture patterns
that eddy viscosity models can predict while the TBNN produces the most similar results to the DNS
reference case.

Figure 4.10: Comparison of the predictions of anisotropy Reynolds stress tensor components( indicated as bij in this figure)
by 4 different turbulence models and the corresponding DNS result [30].

ResNet and PiResNET
An alternative to a MLP are Residual Neural Networks (ResNets). A ResNet is formed of a block of fully
connected layers, like in a MLP, with a skip connection applied across them meaning that the output of
the block can be represented as in the formula below:

yi = F (xi) + xi. (4.33)

Where F (xi) can be a MLP or any other kind of NN architecture. Jiang et al. [22] used this type of NN
as the building block for the PiResNet [22], as they argued that residual NNs have shown the capability
of improving the vanishing gradients problem and performance degradation. The architecture of the
PiResNet is shown in Figure 4.11. As can be observed, the basis tensors and the input features both
go through multiple residual blocks, after which the tensors have to be rescaled. Therefore, the basis
tensors used by the PiResNet are not the basis tensors of Pope, but instead are learned, which makes
it fundamentally different from the TBNN by Ling et al. [30].

The results obtained by this architecture presented by Jiang et al. [22] are very promising both
during training and when used in a predictive computation in turbulent channel flows and duct flows.
Nonetheless, unfortunately the paper in which the PiResNet and its results are published lacks repro-
ducibility. The process for performing the predictive computations is not presented and during training
the k and ϵ values are obtained directly from DNS data. However, it is not possible to obtain these
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Figure 4.11: Diagram of the PiResNet by Jiang et al., all operations are element wise [22].

parameters in RANS without some modeling and no baseline RANS turbulence model is discussed in
the paper. It is therefore unclear which of the 3 frameworks presented in Section 4.1 is used to produce
the presented results, which reduces their validity compared to those presented in more reproducible
papers.

Convolutional Neural Networks
Saez Ocariz de Borde et al. [40] proposed using Convolutional Neural Networks (CNN) for Reynolds
Stress Tensor modeling. The CNN architecture takes as an input an array of the velocity gradients of
all the data points in the domain and outputs the corresponding anisotropic Reynolds Stress values.
This differs from MLPs or TBNNs which aim to predict a single data point at a time. This allows the
CNN method to capture non local effects. Fang et al. [10] attempted to do this with MLP networks, but
obtained a worse predictive accuracy than the baseline model that did not account for non-local effects.

The architecture of the CNN network proposed by Saez Ocariz de Borde et al.[40] consists of mul-
tiple convolutional layers with batch normalisation and a final weighted sum operation of the different
activations to obtain the final bij prediction of the entire field. When including also y+ and Reτ as input
features the CNN based model achieves impressive accuracy in turbulent channel flows for both the
training and testing data. Nonetheless, the model was not implemented into a RANS solver and the
training process was a lot more computationally expensive than for a MLP network. Later Saez Ocariz
de Borde et al. [39] expanded on this work, and created another CNN based architecture called MTL-
CNN (Multi Task Learning Convolutional Neural Network) which also achieved an impressive accuracy
in 2D flow cases (turbulent square duct flow).

Regularisation Techniques
Zhang et al. [66] tried improving the turbulence model designed by Ling et al. [30] without changing the
TBNN architecture. Zhang et al. [66] proposed the use of the Leaky ReLU activation function instead of
the ReLU, a different optimiser, as well as changing the hyperparameters. Hyperparameters refers to
user defined parameters which define the NN such as the number of layers and the number of neurons
per layer. Despite these changes, Zhang et al.[66] noted that even for simple flow geometries the
TBNN based model showed indications of over fitting the training data. This is evidenced in the form
of oscillations occurring in the buffer layer due to a few nodes having too much weight. An example is
shown in Figure 4.12. To alleviate this issue, Zhang et al. [66] successfully used L2 regularisation in
the loss function to reduce the weights of the NN. The formula is shown in Equation (4.34). This type
of regularisation will generally reduce most weights, the extent to which this happens is determined by
the user defined parameter α.

L = RMSE+α
∑
w

w2, RMSE =

√√√√ 1

6N

N∑
m=1

3∑
i=1

i∑
j=1

(b
(m)
ij,out − b

(m)
ij,DNS)

2 (4.34)
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Figure 4.12: b11 Component of the anisotropy tensor for a duct flow with the proposed ML turbulence model by Zhang et al.
[66], where δ is the channel half width. As can be observed, introducing the regularisation makes the prediction smoother(

labeled as DNN-S-R).

Geneva and Zabaras [12] used the TBNN architecture to construct a Bayesian Neural Network
(BNN). The addition is that they use the Stein Variational Gradient Descent (SVGD) to also obtain
predictive statistics. The weights are assumed to have a probability distribution which is a zero mean
gaussian with a variance α which is gamma distributed. Some noise is also assumed to exist in the
anisotropy tensor labels, which is also assumed to be a zero mean gaussian with a gamma distributed
learnable precision β. SGVD then optimises the parameters by minimising the KL divergence between
the true parameter posterior for training data batch D p(w, β | D) and variational distribution q(w, β).

SGVD represents q as a set of N deterministic NNs. The optimal NN weights are then found by
introducing a perturbation, like in other gradient descent algorithms. The direction should aim to reduce
the KL divergence as much as possible, for which a closed form can be found as shown by Liu et al.
[31]. Then Monte Carlo simulations are applied to obtain the predictive mean and variance. The main
advantage of this method is that there is a measure for how confident the user can be in the predicted
flow field anywhere in the domain.

An option to achieve regularisation with a performance similar to BNNs are dropout layers. This
approach, proposed by Srivastava et al. [56] consists of temporarily removing neurons from the layers,
with the units being removed being chosen randomly with an user set probability p, which refers to the
fraction of neurons that are ”dropped”. This is shown graphically in Figure 4.13.

Figure 4.13: A standard MLP network on the left and two examples of the same network with some neurons being removed
through dropout layers [4].
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A different set of neurons is removed for each data point that is presented during the training of the
neural network [4], to compensate for the missing neurons, the outputs are multiplied by 1

1−p during
training. Hence, this results in the equivalent of training a large number of different neural networks
at the same time, with the result being an ensemble of all the different thinned networks, where each
one has the same weight in the final solution. With this approach, situations where single neurons and
nodes become over specialised leading to large weights are avoided, with the nodes now having to
adapt to different combinations of available neurons, allowing for better generalisation to unseen data
[56].

Batch Normalisation
Batch normalisation is an activation function that can be applied on the hidden layers of the network
which aims to accelerate the training of NNs by reducing the internal covariate shift. This method
was proposed by Ioffe et al. [20], where the internal covariate shift is defined as the ”change in the
distribution of network activations due to the change in network parameters during training”. Hence,
for each neuron in a layer the inputs from each batch of data during training are normalised following
Z-score normalisation as shown in Equation (4.26), by computing the mean and variance of the batch in
each neuron. Using this as the output of the neuron can reduce its representative capability too far [20].
Therefore, the outputs of each neuron are re-scaled by a learnable mean β and standard deviation φ,
Equation (4.35) represents this for the ith neuron in a layer:

xi = φix̂i + βi. (4.35)

For the inference step, there are no batches to extract the mean and variance from, therefore these
are computed during training using a moving average [4].

Interpreting NNs with SHapley Additive exPlanations (SHAP)
NNs are extremely descriptive regression techniques. However, they function as a black box model,
as due to their complexity and large number of model parameters, it is difficult to understand how the
model makes its predictions. Lundberg and Lee [32] proposed SHAP as a framework to alleviate this
weakness of NNs by using game theory. The meaning of SHAP values can be represented graphically
as shown in Figure 4.14.

Figure 4.14: Diagram showing how SHAP values ϕi for the model inputs xi add up to the model output f(x).

SHAP values assign each feature the change in the expected model prediction when that feature
is known. They explain the shift from the base prediction E[f(z)] with no feature information to the
current prediction f(x). Furthermore, as can be observed in the simplified example in Figure 4.14,
adding the SHAP values for all features for an specific data point x results in the difference between
the prediction of the model for that data point f(x) and the base predictionE[f(z)]. In non-linear models
or when input features are dependent, the order of adding features affects the results. SHAP values
are obtained by averaging the contributions (ϕi) across all possible feature orderings. The SHAP value
is computed separately for each data point. Hence, by computing them for a large set of data one can
better understand how the values of different inputs contribute to the final output [32].

The exact mathematical definition of SHAP values is given by Equation (4.36), where F is the set
of all input features, and S is a subset of these. The model has to be trained on all possible subsets



4.3. Regression Techniques 31

with and without the feature i, and their outputs are subtracted, and the average of this operation for
all subsets is the SHAP value.

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪{i}

(
xS∪{i}

)
− fS (xS)

]
(4.36)

Since training the model can be computationally expensive and the number of differences to be
computed is 2|F |, Shapley sampling values offer a simpler solution which does not require these two
steps by applying a sampling approximation to Equation (4.36) and by removing feature i from the
model by integrating over data points from the training feature set to estimate the effect [32].

4.3.3. Random Forest Approach
Another machine learning technique which has been applied in data driven turbulence modeling are
random forests (RF) [24, 61, 64]. RFs are groups of decision trees where each tree can use an user de-
fined number of inputs. In these decision trees the n-dimensional feature space is divided into different
branches and leaves of the tree, with each leaf corresponding to a certain region of the feature space.
The way the feature space is divided into leaves is asked on the training data. The most common
algorithm for building the regression is the ”greedy algorithm” which consists in splitting the leaves in a
way that minimises the variance of the data on each leaf [61].

When the decision tree algorithm is run the tree will find on which leaf the location q in the feature
space belongs, and then the response will be the average a12 (or whatever target the tree is aiming
to characterize) of the training data in that region of the feature space. Nonetheless, a single decision
tree is prone to overfitting the data. Thus, the RF approach creates a large set of trees, with as low
correlation between each other as possible. The RF regression also allows for the decision trees to
have an unlimited number of branches, with the minimum amount of data points being 1. Then, the
final output of the random forest will be the most popular of the results given the different trees. This
process is shown graphically in Figure 4.15.

Figure 4.15: Diagram of a simplified random forest example with 4 inputs and one output [36].

The random forest approach has been used mainly in open loop frameworks. Wang et al. [61] and
Wu et al. [64] used random forests to target the Reynolds Stress Tensor directly. On the other hand
Kaandorp et al. [24] inspired by the TBNN created the Tensor Basis Random Forest (TBRF) approach,
in which separate RF are trained to estimate the coefficients of the tensor basis proposed by Pope
et al. [45], which is shown in Equation (3.16). Similarly to the TBNN, the TBRF achieves embedded
Galilean and frame invariance through its architecture and choice of input features, which makes it a
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very flexible model that can adapt well to different geometries and flow conditions. Furthermore, RFs
have several advantages over NNs. Through their design they are less prone to overfitting, and have
less hyperparameters to tune. Thus, it is possible to obtain good models without much calibration of
the hyperparameters [24].

4.3.4. Symbolic Regressions
A common concern in literature regarding data driven turbulence modeling is the interpretability of the
models [48, 62]. Techniques such as NNs act as black box models, for which it is difficult to find a
physical interpretation. For this reason several studies opted to use symbolic regressions, which limit
the flexibility of the model but instead offer an interpretable expression which can give more insight into
physics behind the trends that the model is capturing.

There are several different methods to obtain the symbolic expression for the model. Weatheritt et
al.[62] used Gene Expression Programming GEP in a frozen RANS framework. The target was a non
linear component of the anisotropy Reynolds stress tensor, which is included also in the production
term of the k transport equation, see Equation (4.37). The algorithm then aims to find the coefficients
gn for the 2D version of the tensor basis from Pope et al. [45] as shown in Equation (4.38).

τij =
2

3
kδij − 2vtSij + 2kb∆ij (4.37)

b∆ij = g1 (I1, I2)T
(1)
ij + g2 (I1, I2)T

(2)
ij + g3 (I1, I2)T

(3)
ij . (4.38)

To obtain the functions for the coefficients gn Gene Expression Programming is used. The training
starts with a set of 200 randomly generated functions (chromosomes), a regression is conducted for
each of these expressions and then their ”fitness” is evaluated, which is defined as the averageRMSE of
the 6 components of the non linear anisotropy Reynolds stress tensor. The candidates with best values
of fitness are more likely to mate, and produce the expressions which will be part of the next generations.
Mutations are also included as random errors in the chromosomes of the previous generation. 1500
generations are created in the training process, with the final output of the training being the best
individual generated out of all the generations.

Schmelzer et al. [48] opted instead to find the symbolic expressions using sparse regressions
with dictionaries, in a framework called ”SpaRTA” (Sparse Regression of Turbulent Stress Anisotropy)
which also uses the frozen RANS approach to obtain the targets. Another difference with respect to the
approach by Weatheritt et al. [62] is that Schmelzer et al. [48] target not only b∆ij , but also a correction
term P∆

k for the turbulence energy production Pk in the k transport equation. A dictionary of candidate
functions is then generated, based on the tensor basis suggested by Pope [45] for 2D flows (only
3 tensor basis and 2 invariants). The set of candidate functions shown in Equation (4.39) is selected,
which consists of the invariants multiplied with each other with a maximum degree of 6, and a maximum
exponent of 4 for one invariant, giving a total of 16 possible functions. These are then multiplied by the
tensor basis to obtain the 48 tensorial candidate functions in Equation (4.40).
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Cb∆ij =
[
T
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ij , T
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ij , . . . , I21I

2
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ij

]T
(4.40)

For the P∆
k term the double dot product of the functions in the library for b∆ij is taken with the mean

velocity gradient. To keep the coefficient vector sparse a few measures are taken. For model selection
both Lasso and Ridge regression are used with a mixing parameter ρs, and a regularisation weight λ.
The Lasso regression promotes sparsity in Θ, while the ridge regression reduces its magnitude:

Θ =argmin
Θ̂

∥∥∥C∆Θ̂−∆
∥∥∥2
2
+ λρs∥Θ̂∥1

+ 0.5λ(1− ρs)∥Θ̂∥22,
(4.41)

where Θ is the vector of coefficients for the library of candidate functions for P∆
k or b∆ij C∆. From this, a

set of unique model forms is obtained, after which a Ridge regression is performed to obtain the value
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of the coefficients. The ridge regression once again reduces the magnitude of the coefficients, which
should improve the convergence of the CFD solver [48].

Θs,d
∆ = argmin

Θ̂
s,d
∆

∥∥∥Cs
∆Θ̂

s,d

∆ −∆
∥∥∥2
2
+ λr

∥∥∥Θ̂s,d

∆

∥∥∥2
2

(4.42)

Where the index s represents the subset of elements in C∆ which are included in the model form d.
The resulting models are then of the form:

Md
∆ = CT

∆Θ
d
∆. (4.43)

Both GEP and SpaRTA are cheaper algorithms to train than even simple NNs, and SpaRTA is also
a simpler algorithm to implement [33, 48]. On the other hand, GEP is more flexible, as it is not lim-
ited by the user defined library of functions, and thus can potentially find more complex trends in the
data. Both of these options have the advantage of interpretability, as the resulting model is a readable
mathematical expression.

4.3.5. Other Regression Techniques
There are other types of regressions which have been used in data driven turbulence modeling, such
as Gaussian Processes (GP) [18, 42, 68]. One of the main drawbacks of GP regressions is that they
require the inversion of a N by N matrix where N is the number of data points used in training, which
means that the computational costs scale with N3 [18]. To alleviate this issue Ho et al. [18] applied
the Gaussian Process Ensemble (GPE) approach, where a set of nm different GPE regressions are
trained on nm separate datasets, where the correlation across datasets should be minimised. When
querying the model, the output of the nm separate GP regressions are combined in a weighted sum,
where the weight of each model is determined by its variance at the query location, with the model with
the lower variance having a higher weight, as shown in Equation (4.44) [18]. This regression technique
results in faster training times, and has the advantage of giving a confidence interval to the output, but
it does not have the interpretability advantage of symbolic regressions.

wk =
1/σ2

k∑nm

j=1 1/σ
2
j

. (4.44)

Mandler and Weigand [33] instead opted to use an approach closer to ordinary curve fitting, using
the following rational function to obtain functions for the coefficients of the tensor basis of Pope’s general
eddy hypothesis [45]:

h(q) =
b0 +

∑p
j=1

∑n
i=1 bijq

j
i

1 +
∑p

j=1

∑n
i=1 cijq

j
i

, (4.45)

where q is the vector of input features and p = 2 and the tensors bij , cij and the scalar b0 are the
learnable coefficients. Mandler and Weigand [33] compared the training time of this regression, which
they named ”Pade Regression” to a GEP and a MLP based regression, with the Pade regression being
over 100 times faster than the MLP and over 50 times faster than the GEP regression. Furthermore, the
flow field results when using the model in predictive computations show that it clearly improves over the
baseline eddy viscosity model but the NN based model remains the most accurate [33]. This approach
yields interpretable expressions, but it has even less flexibility than symbolic regressions. Despite this,
the predictions obtained in periodic hills cases using this model show that simple techniques can be
enough to obtain significant improvements over conventional turbulence models, see Figure 4.16.

4.4. Realizability Constraints
The invariants of the anisotropy Reynolds stress tensor have a set of physically realizable values, which
are defined by Lumley’s triangle as explained in Section 2.3. Ensuring that the anisotropy Reynolds
stress predictions made by the data driven model remain within the realizable set of values should result
in a more accurate mean flow field and improved numerical stability [22]. There are a few different
methods presented in literature to enforce realizability. Ling et al. [30] ensure realizability by enforcing
constraints on the elements of bij and its eigenvalues following the equations below:
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Figure 4.16: Velocity profiles of a periodic hills RANS simulation run with different turbulence models [33].

− 1
3 ⩽ bii ⩽ 2

3 λ1 ⩾ (3 |λ2| − λ2) /2
− 1

2 ⩽ bij ⩽ 1
2 for j ̸= i λ1 ⩽ 1

3 − λ2.

}
(4.46)

Jiang et al. [22] showed that these conditions are under-constrained, and proposed another set
of equations to fulfill realizability. They implemented these constraints through the Progressive Itera-
tion realizability (PIR) scheme which was applied during both training and evaluation of the turbulence
model. Instead, Mandler and Weigand [33] opted to make use of the linearity of the barycentric re-
alizability map by Banerjee et al. [2] by projecting the physically impossible values of the anisotropy
Reynolds stress tensor onto the sides and vertices of the barycentric triangle. The resulting mapping
from this method is shown graphically in Figure 4.17

4.5. Testing and Validation Methods
There are two different methods for assessing the accuracy of the data driven turbulence model. The
simplest method is ”a priori” testing, which consists on evaluating the model on a different set of high
fidelity data to the one that was used to train the model. Then the bij from the high fidelity dataset is
compared to the model output fΘ(q).

The other method is ”a posteriori” testing. When evaluating the model ”a posteriori”, the turbulence
model fΘ has to be implemented into a RANS solver. Then a number of cases are run using the data
driven turbulence model and the resulting flow field is compared to the mean flow of a high fidelity
simulation of the same CFD case or to experimental results.

Generally, a model that performs well ”a priori” could also perform ”a posteriori”, but as shown by
Wu et al. [65] depending on the label selection approach and the flow conditions of the test flow case,
small errors in the Reynolds stress tensor prediction can result in large errors in the computed mean
flow field. Furthermore, an additional challenge of ”a posteriori” testing is ensuring that the RANS solver
remains numerically stable when using the data driven turbulence model. When using an explicit open
loop approach this requires tuning of the blending parameters which define the propagation process
which is used to update the flow field with the data driven turbulence model [24]. The frozen RANS
based model by Mandler and Weigand [33] makes use of two independent blending parameters in its
implementation, one for the linear part of the model and a separate one for the non-linear part.
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Figure 4.17: Mapping of unrealizable states to realizable states in the barycentric triangle [33].



5
Research Question

Due to the concerning global warming that the Earth has been experiencing over the last decades, the
demand for renewable energy alternatives to fossil fuels is higher than ever. Thermonuclear fusion
reactors are one of the options in development. One of the key components of these reactors, the
LMBB, is constantly under the effect of the magnetic field used to contain the fusion plasma. The
interaction of the liquid metal with the magnetic field gives rise to a MHD flow, with unconventional
turbulence behaviour which currently can only be predicted accurately using DNS or LES. To perform
cheaper RANS simulations of this type of flow, a reliable RANS turbulence model for MHD flows is
needed.

Firstly, the literature review gave a background on MHD flows, showing that for low magnetic
Reynolds number cases, the Lorentz force term in the momentum equation marks the difference be-
tween MHD and hydrodynamic flows, and adds the electrostatic potential φ as an additional variable.
This is shown to affect the Reynolds stress transport equation, and hence needs to be included in
the turbulence modeling for MHD. The existing modeling efforts in literature expand the eddy viscosity
k− ϵmodel by including magnetic source terms in the k and ϵ transport equations. These source terms
model the decay rate of turbulent kinetic energy with a characteristic turbulence damping time which
is the main difference between the models. Nonetheless, since these models are still eddy viscosity
models, they still follow the Boussinesq hypothesis, and thus the predicted anisotropy Reynolds stress
tensor is always aligned with the mean strain rate tensor. Hence, it is not possible for these models to
capture the quasi- 2D turbulence state that can occur on MHD flows and its relation to the magnetic
interaction parameter N .

A possible solution that could allow for a more complete modeling of MHD turbulence is data driven
turbulence modeling. The idea behind this method is to leverage high fidelity data from DNS and LES
simulations to generate more accurate turbulence modeling. There exist numerous data driven turbu-
lence models for more conventional flows in literature but none for MHD flows. Hence it would be of
interest to investigate to what extent data driven techniques can improve the accuracy of RANS turbu-
lence modeling in MHD. For this the open loop framework, in which the turbulence model is evaluated
explicitly, would be the preferred option due to its simplicity compared to other techniques. However,
the effects of the ill conditioning of the RANS equations when using this approach have to be tested.
Although there are some frequently used input features for data driven turbulence models, for MHD
flows additional input features which account for the effects of the magnetic field and the current need
to be included. Furthermore, to make the model as general as possible the input should be frame and
Galilean invariant and non dimensional. Additionally, a regression technique has to be chosen to con-
struct the model from the high fidelity data set. Neural Networks and Random Forests are commonly
used machine learning techniques for data driven turbulence modeling, but simpler approaches based
on symbolic regressions have also been applied. Ultimately, a decision has to be made on which tech-
nique offers the best trade off between accuracy and interpretability for the application at hand. Finally,
the ML turbulence model has to be tested both a priori and a posteriori, where the main challenge is
the validation of the model on cases that it has not been trained on. This is especially significant in
a posteriori testing, since this is when the model is used as part of a CFD solver, despite numerous
studies not performing this assessment [6, 39, 67].
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Therefore, the principal objective of this thesis work is to provide a turbulence modeling framework
for MHD flows which creates models that generalise over the available data of annular MHD flow cases,
such that they provide an improvement on the mean flow quantities relative to the baseline RANS result.
Based on this goal, the following is the main research question of this thesis research:

• How can higher fidelity LES data of MHD flows be used to generate RANS turbulence mod-
els for MHD?

Moreover, based on the main research question, the following sub research questions should also
be answered:

• What intuition based MHD turbulence model for RANS should be used as the baseline
for the data driven model? RANS simulations of the same flow cases as the provided LES
data have to be performed to extract the input features for training. Therefore a baseline RANS
turbulence model needs to be selected.

• How effective is the open loop framework for data driven turbulence modeling for MHD
flows in the fusion reactor cooling application? The open loop framework is the preferred
option over the frozen RANS and field inversion due to its simplicity. Given the time constraints
this is a significant advantage of this method.

• What frame and Galilean invariant features should be used as inputs for a data driven MHD
turbulence model? A set of input features that have been previously used for conventional flows
will have to be complemented by input features that allow the model to capture the effects of the
Lorentz forces.

• Howmany tensors from Pope et al.’s [45] tensor basis for the general eddy hypothesis are
needed to construct an accurate data driven model for MHD flows in the fusion reactor
cooling application? If a subset of the original 10 tensors can be used without a major impact
on accuracy this would reduce the computational cost of both training and evaluation of the data
driven model, and would therefore be beneficial.

• What regression technique can provide the best balance between model interpretability
and model accuracy for MHD flows? Despite the time constraints,it should be possible to test
and compare different options for the regression technique to observe if there are any clearly
superior techniques for this application.



6
Method

This chapter focuses on presenting and discussing the methodology used to produce the MHD turbu-
lence models for which the results are later shown in Chapters 7 and 8. Firstly, the high fidelity data
which was provided by Fico et al. [11] is showcased in Section 6.1, to provide a better understanding of
how the data used to generate the turbulence models was generated. After that, Section 6.2 presents
the setup used to produce the baseline RANS results, including the different options which have been
tested. Then, the field propagation procedure which is used for updating the baseline RANS results
with the output of the data driven turbulence models is discussed in Section 6.3. In Section 6.4, the
chosen inputs for the data driven models are discussed, including the non dimensionalisation for the
different variables. After that, in Section 6.5 the regression techniques chosen to model the correction
fields of the turbulence model are discussed, including the different hyperparameters used, and any
further modifications to the set of input features. Finally, Section 6.6 presents the test matrix for the a
priori and a posteriori testing of the data driven MHD turbulence models.

6.1. High Fidelity Data
Although not strictly part of this thesis project, generating high fidelity data is the first step to generating
a data driven RANS turbulence model. In this case a high resolution LES simulation performed with
the open source code OpenFOAM [63] using a modified solver by Fico et al. [11] was used. The
solver assumes constant density and constant viscosity, and uses the low magnetic Reynolds number
assumption. Hence compared to a standard hydrodynamic simulation only one additional equation
has to be solved, the Poisson equation for the electrostatic potential, see Equation (2.5). To solve for
pressure the standard approach for incompressible flows is used, which consists in solving the Poisson
equation for pressure.

The pipe flow has cyclic boundary conditions at the inlet and the outlet, in order to simulate the fully
developed boundary layer. The flow moves with a bulk velocity Ub = 0.177 [m/s], which is achieved
using a body force in the momentum equation which is updated to keep the specified bulk velocity, thus
acting as the equivalent of a pressure gradient ∂p

∂x . For the walls, no slip boundary conditions apply,
and they are electrically insulated. Since the boundary conditions for both pressure and electrostatic
potential are Neumann conditions, where their derivative normal to the walls is equal to zero, both
systems are underdetermined, which means that a reference value of zero is given to a cell at the
wall. A constant uniform magnetic field of strength B0 is exerted, parallel to the y axis. There is also
an uniform heat flux on the walls, but this only affects the temperature, which is not included in the
system of equations for velocity, pressure and electrostatic potential. The geometry is presented in
the diagrams shown in Figure 6.1, and the flow conditions and mesh parameters of the CFD cases
are shown in Table 6.1. Finally, for modeling the subgrid turbulence scales, the wall-adapting eddy
viscosity (WALE) model is applied.

6.2. RANS Simulation setup
To obtain as many data points as possible with the available high fidelity data, without resorting to
interpolation, an equivalent RANS simulation with the same mesh has to be performed, such that for
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Figure 6.1: Cyclic duct geometry with a concentric annulus cross section. The bulk velocity is in the positive x direction [11].

Table 6.1: On the left column, physical and geometrical parameters to describe the CFD case. On the right column mesh
parameters. The azimuthal width of the cells is constant.

Flow Conditions Mesh
Dh Ro Nx, Nr, Nϕ 260, 80, 520
ReDh

8900 ∆r+min 0.2
Ha 0,40,60,120 ∆r+max 5.3
Lx / Dh 6.25 ∆x+ 14

every LES data point, an equivalent RANS point exists. Therefore, the simplest approach is to use the
exact same mesh, with the exact same boundary conditions as the LES simulations. Even though this
results in a mesh that is likely to be unnecessarily fine for RANS, it maximises the amount of available
data for training without having to use interpolation. To perform these simulations, the incompressible
simpleFoam [63] solver was modified to include the electrostatic potential formulation and the Lorentz
force contribution in the momentum equation.

The attempts at using this mesh and boundary conditions failed as the residuals of the steady state
solver could not converge. This was due to the pressure, Uy andUz residuals not reaching theminimum
requirement of going below 10−4, with their values fluctuating at approximately 10−3. A possible solution
for this issue is to extend the domain further while changing the boundary conditions at the inlet and
outlet from cyclic, to fixed value conditions at the inlet with uniform fields, and zero gradient at the outlet.
This applies for all fields except pressure which uses zero gradient at the inlet and a fixed value at the
outlet. Although using this approach achieved convergence, with these CFD case settings the data
to be used as input for training the machine learning model would be the last cross section before the
outlet, since this is where the flow profile is fully developed and the gradient for all flow quantities except
pressure should be 0. The model trained on these simulations would only be effective near the outlet,
as it would probably not be able to predict bij accurately for the developing pipe flow, for which no high
fidelity data is available. Therefore, this method had to be discarded.

To make the cyclic simulations work, two main changes had to be made. Firstly, the domain was
halved, setting a symmetry plane BC on the plane of the z and x axis. This change does not only
reduce the computational cost of the simulation by halving the number of cells, but it also is necessary
for convergence of the y and z momentum equations, and therefore also for the convergence of the
pressure Poisson equation. Without the symmetry constraint, the flow is free to rotate inside the pipe
on the y-z plane, making the solver unable to converge to a steady state solution. An example of this
is shown in Figure 6.2. The second modification was to change the numerical schemes for divergence
calculations from linear to linear upwind finite difference. This is meant to improve the stability of the
solver, at the cost of a numerical error.

6.2.1. Baseline Turbulence Model Selection
TheMHD k-ϵmodel proposed by Kenjeres et al. [25] was implemented in OpenFOAM [63] by modifying
the low Re k-ε model by Launder and Sharma [28]. The standard k-ϵ eddy viscosity model which was
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Figure 6.2: Mean flow rotating in counter clockwise direction in a RANS simulation.

being used is not suitable for low Re flows, as it is meant to be used outside the viscous sublayer and
the buffer layer. Using this model resulted in unrealistically high turbulence kinetic energy values which
made the effect of the Lorentz force on the velocity field insignificant. Changing to the low Re k-ϵmodel
by Launder and Sharma [28] solved this issue. The transport equations for this model are presented
below, see Equations (6.1), (6.2), (6.3) [21, 28].
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Where Pk is the production of turbulence kinetic energy, and f1, f2 are corrective coefficients which
are functions of the low Reynolds number Rt =

k2

νϵ . The main difference that can be observed in the
transport equations are the two added terms on the right that are derivatives of ywall (the shortest
distance to the nearest wall) which makes it possible to resolve the viscous sublayer. The modification
made to obtain the MHD model by Kenjeres et al. [25] consists of adding the two MHD source terms
for the k and ϵ transport equations, presented in Figure 3.2.

Despite also being an eddy viscosity model, since it includes MHD based terms into the transport
equations, this turbulence model could provide a more accurate baseline mean velocity and k fields,
which means that the corrections to be made by the data driven model would be smaller, and possibly
easier to model. The MHD k-ϵmodel was compared to the Launder Sharma k-ϵmodel and the k-ω SST
model by Menter et al. [34]. The latter model instead solves an equation for the specific dissipation
rate ω. Although this model does not include the Lorentz force effects either, it is generally considered
to be one of the most effective RANS turbulence models, especially for internal flows and has been
used as the baseline turbulence model in multiple data driven closure models [24, 33]. The k-ω SST
closure model is an eddy viscosity model which blends the k-ϵ and k-ω models, using the first in the
free stream region, and the latter in the boundary layer, with a transition region where both models are
blended. The transport equations for k and ω are Equations (6.4) and (6.5) respectively:
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The eddy viscosity is obtained from Equation (6.6):

νt =
a1k

max(a1ω, SF2)
, (6.6)
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where F1 and F2 are blending parameters, S is the magnitude of the shear strain, Pk is the production
of turbulence kinetic energy, β∗ = 0.09 and σk, σω, α and β are model constants which are the blended
values of the constants for the Wilcox and Launder models [34]. These are blended using the function
in Equation (6.7):

ϕ = F1ϕ1 + (1− F1)ϕ2, (6.7)

where ϕ1 corresponds to the coefficients from the Wilcox k-ω model and ϕ2 corresponds to the coeffi-
cients from the Launder k-ϵ model. For the boundary conditions, no wall modelling is used, k is set to
zero at the wall, and ω is set as a fixed value which is a function of the distance from the wall to the
cell centroid, ywall. Using the solution in the viscous sublayer, shown in Equation (6.8), the boundary
condition is set by using the distance to the first cell. A factor of 10 can be applied, but has little effect
on the results according to Menter et al. [34].

ωvis =
6ν

βy2wall

(6.8)

Preliminary simulations on a coarser mesh, with approximately half of the cells, showed that the
effect of the MHD k-ϵmodel appeared to be far too strong at ϕ = 0 , and also far from the walls at other
azimuthal locations, with k being far too low compared to the LES values. These results compared
to the LES data and the other two candidate baseline turbulence models are shown for Ha = 40 in
Figure 6.3.

Figure 6.3: Comparison of the turbulence kinetic energy profiles in the lower resolution mesh for the different candidate
baseline turbulence models.

Part of the issue could be due to the model constants of the MHD model being tuned using a
turbulent channel flow [25], which is a simpler geometry than the annular flow, leading to the turbulence
suppression from the Lorentz force being overestimated. Nonetheless, since the model implementation
was not tested in the channel flow case used for validation by Kenjeres et al. [25], any conclusion made
based on these results can only refer to the implementation in this work, rather than the formulation
itself. Standing on these preliminary results it was decided to continue using the non MHD closure
model, and allow for the data driven model to account for the MHD effects in its entirety.

As a final test, the results of the k-ϵ and k-ω SST models were compared on the hydrodynamic (Ha
= 0) annular flow case. This test showed that the k-ω model provides a result significantly closer to the
LES profile, see Figure 6.4. Hence, based on the discussion presented in this section it was decided
to proceed using the k-ω SST model as the baseline RANS turbulence model.
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Figure 6.4: Resulting velocity profile for the Ha = 0 case for the RANS cases and the reference LES case.

6.3. Field Propagation
To use the data driven MHD turbulence model in a CFD simulation, it is necessary to perform a field
propagation of the model result. In the process of testing this procedure, several options were tested
until an approach that produced the expected results was found.

6.3.1. Standard Open Loop Approach
For this approach, the data driven turbulence model targets the anisotropy Reynolds stress tensor
directly. Therefore, the neural network only has to be evaluated one time, and the updated velocity
fields are not used again to query the network, making this an open loop method. For further details
on the different implementation frameworks for data driven closure models see Section 4.1. Once the
anisotropy Reynolds stress from the model is obtained, the simulation is restarted, using the converged
simulation with the k-ω SSTmodel as the initial condition. The output of the ML model is slowly blended
against the anisotropy Reynolds stress from the eddy viscosity model using the blending parameter γ
using a simple linear ramping, as shown in Equation (6.9) :

γi = γmax
ti − tStart

tEnd − tStart
. (6.9)

The Reynolds stress at a specific iteration is then given by Equation (4.2). Furthermore, the production
term of the k transport equation is also modified to be consistent with the updated Reynolds stress, as
shown in Equation (6.10):

Pk = −τ : ∇U . (6.10)

This approach still showed very poor results even in the hydrodynamic annular flow case. Firstly, as
a verification test, the bij from the converged RANS eddy viscosity model is propagated. This should
result in no significant changes in the flow field, since bML = bEVM . If this test is successful, then the
program is tested by propagating the anisotropy stress tensor from LES instead, bLES . For a method
to be considered for propagating the data driven model, it should be expected that using bLES brings
the mean flow quantities closer to that of the LES simulation. If this is not the case then it cannot be
expected that the data driven model which attempts to describe bLES achieves an improvement either.
For the hydrodynamic annular flow case this method showed poor results, with the mean flow quantities
moving further from the LES results than the baseline RANS simulation. The comparison of the U and
k profiles is presented in Figure 6.5.
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(a) (b)

Figure 6.5: Resulting profiles of a) longitudinal mean flow velocity, Ux and b) turbulence kinetic energy using the standard
open loop propagation method compared to LES and the baseline RANS.

(a) (b)

Figure 6.6: Resulting profiles of a) turbulence kinetic energy production, Pk and b) the longitudinal-radial component of the
Reynolds stress anisotropy, bxr , using the standard open loop propagation method compared to LES and the baseline RANS.

As can be observed the LES simulation has overall greater turbulence kinetic energy throughout
the domain than the baseline RANS as well as a lower maximum flow velocity, but propagating the LES
data with this method results in a considerable reduction of the turbulence kinetic energy and therefore
a higher maximum flow velocity in the duct, which resulted in a much lower pressure gradient. The
reason for this is that the modification of the production term shown in Equation (6.10) results in a
much lower turbulence kinetic energy production near the wall. This can be explained by comparing
the bxr components of the LES and RANS data, as shown in Figure 6.6b. The values for bxr are much
lower near the wall for the LES simulation. Hence the contribution of the deviatoric component of the
Reynolds stress to production is much lower since the only component of the velocity gradient which
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is non-zero is ∂Ux

∂r . Figure 6.6 compares these quantities for the baseline RANS and the propagated
LES bij .

6.3.2. Frozen RANS Approach
The previous propagation test described in Subsection 6.3.1 showed that simply obtaining a model for
bij based on the LES value does not give acceptable results for the annular flow case. To correct for this
the k-corrective frozen RANS approach can be used. This method is discussed in detail in Subsection
4.1.4. For the k-ω SST turbulence model this method consists on iteratively solving a modified ω
transport equation on a frozen velocity and kinetic energy field. The velocity and kinetic energy are set
equal to the LES values. Based on this the required deviation from the eddy viscosity approximation
b∆ij is computed. Then by solving the ω transport equation a corrective field for the production term P∆

k

is obtained, which is the residual of the k transport equation. Hence the new k-ω SST model transport
equations are as follows:

∂k̂

∂t
+ Ûj

∂k̂

∂xj
= P̂k + P∆

k − β∗k̂ω +
∂

∂xj

[
(ν + σkνT )

∂k̂

∂xj

]
(6.11)

∂ω

∂t
+ Ûj

∂ω

∂xj
=

γ

νt
(P̂k + P∆

k )− βω2 +
∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+ 2 (1− F1)σω2

1

ω

∂k̂

∂xi

∂ω

∂xi
(6.12)

b̂ij =
νt

k̂
Ŝij + b∆ij , (6.13)

where the terms with the hat symbol are frozen with their corresponding LES values.
A further advantage of this approach over directly targeting bij is that the eddy viscosity term νt

k Sij

adds stability to the steady state solver, which is not there when using the previous approach. Prop-
agating the resulting b∆ij and P∆

k from the frozen simulations gave flow fields very close to the mean
LES values for k, U and the Lorentz force, although not completely equal. For reference, the resulting
velocity profiles for the Ha = 60 case can be found in Figure 6.7. For the other cases these results can
be found in Chapter 8.

The results are close to LES, but do not match exactly. One of the reasons for this is that the values
used for k and τij in the frozen simulations do not include the subgrid scales. Hence, the modeled
component of the LES simulations is not accounted for, which means it is not possible to reproduce
the LES mean field exactly. Furthermore, the presented set of propagation results corresponds to a
modified version of the algorithm in which P∆

k is set to 0 in the ω transport equation. This modification
is included as a response to the first attempts to propagate a modelled b∆ij and P∆

k , which showed
that omega grew excessively due to the P∆

k contribution, resulting in very low k values, and very high
residuals for all flow variables. An example of this occurrence is shown in the plot below in Figure 6.8.

Including P∆
k in the ω transport equation resulted in marginally more accurate velocity and k profiles

when propagating the b∆ij and P∆
k values obtained from frozen RANS. However, small errors in modeling

are sufficient to cause instability in the investigated cases.

6.3.3. Selected Field Propagation Frameworks
Two different frameworks have been tested to propagate the data driven turbulence models for b∆ij and
P∆
k . The first approach, which can be referred to as the ”open loop frozen RANS Framework” consists

on training the models for both correction fields using the features from the baseline RANS. Therefore,
similarly to the originally chosen method, the data driven models are only evaluated one time during
the predictive computation. Both correction fields b∆ij and P∆

k are then propagated using the blending
procedure described by Equation (4.2). The blending starts at iteration t = 200 and finishes at t = 1200
for all cases. A flowchart of the framework is shown in Figure 6.9.
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Figure 6.7: Resulting Ux profiles when propagating the corrections obtained through frozen simulations for the Ha = 60 case.
The LES and k-ω results are also included for reference.

Figure 6.8: Examples of residuals for Ha = 40 case with P∆
k model being propagated and included in the ω transport equation.

The ramping starts at t = 200 and ends at t = 1200.

Figure 6.9: Open loop frozen RANS framework for data driven turbulence modeling.
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The second method which was tested during this thesis project can be referred to as the ”Hybrid
FrozenRANSFramework”. In this approach, themodel for b∆ij is trained using the input features from the
baseline RANS, while the model for P∆

k is trained using the LES fields. Because of this, the turbulence
model will be directly modeling the physics behind the correction term, while when using the baseline
RANS for input data, the model would be more accurately described as a map from the inaccurate
baseline RANS flow field to the P∆

k correction. Furthermore, this allows for the model of P∆
k to be

evaluated in each time step of the CFD simulation, instead of only being evaluated one time. The
flowchart of this framework is shown in Figure 6.10.

Figure 6.10: Hybrid Frozen RANS framework for data driven turbulence modeling.

6.4. Candidate Basis Tensors and Invariants
As explained in Chapter 3 the Reynolds Stress Anisotropy tensor predicted by the data driven tur-
bulence model needs to be both Galilean invariant and frame invariant. To achieve this, a common
approach is to use the tensor basis and invariants proposed by Pope in the general eddy hypothesis
[45]. Nonetheless, neither the rotation or strain rate tensors contain any information regarding the elec-
tromagnetic properties of the flow and the Lorentz force. Therefore, it is necessary to expand the set
of candidate tensors and invariants of the machine learning model. For this, it was decided to use the
same approach that Wang et al. [61] and Wu et al. [64] used to include the effects of the pressure and
turbulence kinetic energy gradients in their turbulence models. The method applied in these papers
is outlined in subsection 4.2.3. For our model to include the effects of the electromagnetic forces, the
main assumption of the model will be that the Reynolds stress is dependent on the variables listed
on Equation (6.14). The pressure gradient is not included because in the flows under investigation
the magnitude of this variable is not sufficient to justify the increase in complexity from adding another
variable to the model.

τ = g(S,Ω,FL,∇k, k, ϵ, ν), (6.14)

where the mean Lorentz force is defined as presented below:

FL =
1

ρ
J ×B0. (6.15)

Furthermore, both the Lorentz force and k gradient vectors are Galilean invariant features [41, 50].
However, to expand the tensor basis they have to be in tensor form. Therefore, the antisymmetric
tensors ˆAFL and Âk, defined as presented below, are used to construct the tensor basis, as suggested
by Wu et al. [64]:

AL = −I × FL (6.16) Ak = −I ×∇k. (6.17)
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The Lorentz force, strain rate, rotation rate and turbulence kinetic energy gradient tensors need to be
dimensionless, which can be achieved as shown in Equation (6.19), using some type of characteristic
timescale tc.

Ŝ = tcS (6.18) ÂL =
t
3/2
c√
ν
AL (6.19) Âk =

tc√
k
Ak. (6.20)

For MHD flows, three time scales were identified, the magnetic braking time, the local turbulence
timescale and the mean flow timescale, proposed by Miro et al. [35]:

tmag =
ρ

σ∥B0∥2
(6.21) tmean =

1

∥∇U∥
(6.22) tturb =

k

ϵ
. (6.23)

However, as can be reasoned from its formula, the magnetic braking time approaches infinity as B0

approaches zero. Hence it is discarded for this purpose.
With these two extra tensors, a total of 47 linearly independent invariants can be derived using the

same method as Wu et al. [64]. The complete list of these invariants can be found in Appendix B. On
top of this, 12 additional features based on physical considerations are added which are listed in Table
6.2.

Table 6.2: Additional features added as inputs to the turbulence models which are not invariants of the tensor basis.

Description Symbol Equation
Turbulence
Reynolds number Ret k2

νϵ

Ratio of characteristic turbulence
timescale to magnetic braking time

tturb

tmag

Scaled wall distance based
Reynolds number Rey 2−min(

√
kywall

50ν )

Scaled ratio of eddy viscosity to
laminar viscosity

νt

100ν

Ratio of characteristic turbulence
timescale to mean flow timescale qT

tturb

tmean

Ratio of mean flow timescale to
magnetic braking time

tmean

tmag

Ratio of the l2 norms of the
Lorentz force tensor and the strain
rate tensor times tturb

qASω
∥ t1.5turb√

ν
AL∥

∥tturbS∥

Ratio of the l2 norms of the
Lorentz force tensor and the strain
rate tensor times tmean

qASm
∥ t1.5turb√

ν
AL∥

∥tmeanS∥

l2 norm of the Lorentz force tensor qA ∥ t1.5turb√
ν
AL∥

Ratio of the square root l2 norm of the
Lorentz force gradient and the l2 norm
of the velocity gradient

qLS

√
∥∇FL

∇U

Alignment of the Lorentz force and
velocity gradients qαLS α(∇FL,∇U)

Alignment of the Lorentz force and
velocity gradients without normalisation qgLS tturb

∇FL:∇U
∥∇U∥2

The addition of ˆAFL and Âk implies also an increase in the number of basis tensors from the
10 derived by Pope based on the mean flow strain and rotation rates. Nonetheless, to avoid having
an excessive number of candidate tensors,only 5 additional tensors based on the Lorentz force are
included to the tensor basis, as shown in Equation (6.24):

T (11) = ŜÂL − ÂLŜ T (12) = ÂLŜ
2
− Ŝ

2
ÂL

T (13) = ÂL
2
− 1

3I · Tr
(
ÂL

2
)

T (14) = ÂL
2
Ŝ + ŜÂL

2

T (15) = ÂLŜÂL
2
− ÂL

2
ŜÂL

 (6.24)
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6.4.1. Basis Tensor Selection
One of the possible methods to simplify the turbulence model is to reduce the number of basis tensors
and invariants used. To achieve this, the technique proposed by Haghiri et al. [13] was applied. This
consists in checking the alignment of the Reynolds stress anisotropy tensor to the basis tensors. The
alignment α is plotted for each tensor for the Ha = 60 case in Figure 6.11.

Figure 6.11: Alignment α of the 15 candidate bass tensors and b∆ij on the Ha = 60 case.

Nonetheless, this methodology does not show whether the information provided by a tensor can
already be provided by a lower order tensor. Hence, the methodology by Mandler and Weigand [33] to
obtain the target coefficients for their general Eddy viscosity based model was applied( see Equation
(4.12)). This was done using the 10 tensors from the general Eddy viscosity by Pope [45], and the 5
additional MHD basis tensors. The magnitude of the residual of the Reynolds Stress anisotropy after
the projection of each matrix is subtracted are plotted in Figure 6.12. Another way of describing the
residuals shown on these graphs is that it is the minimum possible magnitude of the error when using
all the basis tensors up to the one labeled in the plot.

From these graphs it can be observed that Pope’s tensor basis cannot be used to fully describe
the anisotropy stress tensor in these flows. This is because the magnitude of the residual even after
the 10 basis tensors are projected is still significant. In all the three cases, the additional MHD basis
tensors lower the residual considerably, especially the first two basis tensors, which are of lower order.
A common pattern on all three cases is that from the original basis tensors, only the first three lower
the residual noticeably, which implies that they must be included in the model. The remaining seven
tensors seem to be superfluous for the annular flow geometry, although they could be useful for more
complex flow geometries. Regarding the 5 MHD tensors, again the lower order tensors appear to be
sufficient, as after projecting T (12), the residual is almost 0 across the entire domain for the three cases.
Notice that the remaining 3 MHD tensors also achieve small reductions in the residual, but in practice
they do not improve the accuracy of the turbulence models. Hence, the necessary basis tensors for
the b∆ij models are T

(1), T (2), T (3), T (11) and T (12).

6.4.2. Timescale Selection
The timescale used to perform the non dimensionalisation does not have an effect on the alignment
of the basis tensors and b∆ij , but it does affect the optimal basis coefficients gn that result from the
iterative projection of the basis tensors on the Reynolds Stress anisotropy. The most commonly used
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Figure 6.12: Magnitude of the residual of b∆ij in the Ha = 60 case after iteratively subtracting the projections of the candidate
basis tensors.

timescale, and the one that was proposed originally by Pope is the local turbulence timescale tturb [45].
The coefficients obtained using this timescale are shown in Figures 6.13 and 6.14.

Figure 6.13: Contour plots of the optimal basis coefficients using tturb for non dimensionalisation for the Ha = 60 case.

Figure 6.14: Distribution of the optimal basis coefficients using tturb for non dimensionalisation for the Ha = 60 case.
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From these it can be observed that generally the higher order tensors have much larger maximum
absolute values for the respective coefficient. Moreover, it can be noticed that these large values occur
where the Ux profile of the annular flow along the radial direction reaches its maximum, in other words
where ∂Ux

∂r = 0. The reason behind this is that the magnitude of the basis tensors, ∥T n∥ approaches
zero in these locations. Hence, this results in a very skewed data distribution for the target basis
coefficients when the Reynolds Stress anisotropy extracted from the high fidelity LES simulations is
non zero, as can be deduced from the definition of these target coefficients in Equation (4.12). This is
not ideal for the closuremodel, as amore uniform distribution of the data would be easier to approximate
without overfitting.

Furthermore, the same issue occurs for theMHD basis tensors, as themagnitude ofAL approaches
zero as the x component of the Lorentz force vector approaches zero. A possible solution could be intro-
ducing tensors which include the second derivatives of velocity. However, introducing a new methodol-
ogy for standard hydrodynamic flows is outside the scope of this study and is left as a recommendation
for future work. Instead, a simpler solution is to use non dimensionalisation factors which also approach
zero as the dimensional version of the tensor approaches zero. The mean flow timescale tmean can be
used for the strain and rotation rate tensors. For the Lorentz force tensor its l2 norm can be used, as
shown in Equation (6.25):

ÂL =
AL

∥AL∥
(6.25)

With these new tensors, the resulting optimal coefficients are bounded to much smaller values, and
have a smoother distribution as shown in Figures 6.15 and 6.16.

Figure 6.15: Contour plots of the optimal basis coefficients using tmean for non dimensionalisation for the Ha = 60 case.

Figure 6.16: Distribution of the optimal basis coefficients using tmean for non dimensionalisation for the Ha = 60 case.

6.4.3. Scalar Basis for P∆
k

A separate scalar basis has to be used for the P∆
k correction field, as this is a scalar and has dimensions

[m2s−3]. To construct this scalar basis, the same method as used in SpaRTA by Schmelzer et al. [48]
is applied. A scalar basis can be constructed from the tensor basis using the Equation (6.26).

G(n) = 2kT (n) : ∇U (6.26)
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An additional scalar variable that can be used in the basis is ϵ, which also has dimensions [m2s−3].
Since the correction is a scalar, a single one of these basis functions could be sufficient to model P∆

k .
However, by allowing the model to use more than a single basis function, instead of modelling a single
complex function, the regression can approximate a set of simpler functions. Furthermore, in this case
using the turbulence timescale does not present an issue as for the tensor basis. Hence, the tensors
are computed using both the turbulence and mean timescales for non dimensionalisation, thus yielding
a total of 21 basis scalars. The functions which use the turbulence timescale are instead labelled as
G

(n)
t . The basis tensors based on AL were not included since the resulting functions had a very small

magnitude below 1e−10.

6.5. Regression Techniques
In this section the different regression methods that have been used to construct the turbulence mod-
els are presented and discussed. For each of these methods, the selection of the input features is
discussed. For the b∆ij tensor field, only the TBNN has been used to create an explicit model. On the
other hand, for the P∆

k scalar field, two different methods have been tested. Firstly the Scalar basis
Neural Network (SBNN) is proposed as a solution for this problem. On the other hand, an interpretable
method in the form of SpaRTA has also been applied to regress this correction field.

6.5.1. TBNN
The chosen regression technique to regress b∆ij is the TBNN. It would be insightful to compare its perfor-
mance to other less expensive machine learning techniques, such as symbolic regression. However,
due to time and resource constraints of the project, it is decided to focus on obtaining results with one
technique before attempting to use others. based on this, the TBNN by Ling et al. [30] is chosen as the
regression technique, since NNs have the capacity to capture complicated behaviours and patterns on
the data, and therefore are more likely to obtain an accurate closure model. The architecture for the
TBNN is a fully connected NN, as for the original TBNN. The TBNN was implemented using the pytorch
library [43].

The four available cases have 20800 unique data points each, therefore giving a total of 83200
data points. To set a maximum number of parameters, a common rule-of-thumb for NNs is to use
approximately 10 times less training parameters, although some authors, such as Alwosheel et al. [1]
are more conservative and recommend a sample size of at least 50 times the NN size. This would
leave too few trainable parameters, hence an arbitrary limit of 8320 trainable parameters is set for the
neural network when using all the available data, and 6240 when using 3 out of the 4 available CFD
cases. This resulted in a neural network of 7 hidden layers with 34 nodes per layer for the model trained
on all data and 6 hidden layers with 31 nodes per layer for the models trained on 3 cases only.

Except for the output layer, all other layers have a non linear activation function, which necessary for
the NN to capture non linear behaviour. The hyperbolic tangent, tanh(), was chosen over other options
such as GeLU and ReLU due to being bounded[ -1, 1]. This property can help in making the output
of the neural network smoother compared to unbounded activation functions. It must be noted that
bounded activation function have the downside of worsening the issue of vanishing gradients. This is
an issue which arises in deep neural networks were during backpropagation the gradient of the output
with respect to the weights becomes small enough that the optimiser is compromised [22]. Nonetheless,
given that the number of hidden layers is relatively low, it is assumed that this does not represent an
issue.

A common problem in neural network models is overfitting. Therefore, dropout is included as a
regularisation method to alleviate this problem. Furthermore, including dropout also makes the output
of the neural network smoother, meaning that it is not needed to apply an smoothing post processing
step when the model is evaluated. The maximum recommended values of p = 0.5 for hidden layers
and p = 0.2 for the input layer were used for the final version of the TBNN model [4], but different levels
of dropout were tested as reported in Section 7.1. Furthermore, before the activation function, batch
normalisation is applied in each layer. Batch normalisation did not accelerate the training of the neural
network consistently when using dropout, but it provided a small improvement in accuracy when using
dropout layers, which would not be immediately expected as batch normalisation already has some
regularisation properties [20].

A final measure that is implemented to prevent overfitting is early stopping. This consists in splitting
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the data from the training CFD cases into a training dataset and a validation dataset, where each con-
tains 80% and 20% of the datapoints respectively. In each training epoch the model loss is computed
for each dataset separately. This allows for a clear view of when the model starts to overfit greatly
to the training dataset, as the error for the two datasets starts diverging. The error on the training
dataset continues reducing while for the validation dataset it stagnates or increases. Hence, the train-
ing process is stopped when the validation loss does not reduce compared to the values in the epoch
n − 40, where n is the number of the current epoch. The model weights used for inference are then
those corresponding to epoch n− 40. In each epoch, the data was split into batches of 32 datapoints,
and a starting learning rate of 1e-4, which halves after 10 epochs without a reduction in the training
loss. Moreover, as the loss function, Mean Squared Error (MSE) was used without an L2 penalty since
dropout is already in place for regularisation. For the optimiser, the Adam optimiser was used [26].

Feature Selection
Another way in which the model can be simplified is by reducing the number of features that are used
in the neural network. By eliminating any features that are redundant, do not have an appropriate
distribution of data or do not provide any useful information, the model can learn simpler relations more
rapidly. For the specific flows under investigation many of the invariants are practically zero all across
the domain. This is due to the y and z components of the velocity and Lorentz force vectors having
very low values, especially in the baseline simulations, which are the ones used to compute the input
features for the TBNN. The number of invariants can be further reduced by noticing that for this flow
case some of them are not linearly independent. For instance I1 = tr(S2) = −I2 = tr(Ω2). Examples of
both of these occurrences can be observed within the first 5 invariants, which are shown in Figure 6.17
for the Ha = 60 case. Using the criteria discussed leaves a total of 22 features out of the 56 candidate
features (47 invariants and 9 additional features), thus dramatically reducing the number of inputs to
the network. The full list of invariants, with their formulation, and the list of the selected features can
be found in Appendix B.

Figure 6.17: Invariants I1 to I5 computed based on the baseline RNS simulations.

It must be emphasized that this reduction in the number of inputs is only possible due to the similarity
of the flows of the training data, as it consists solely of cyclic pipe flow simulations. If the set of training
data contained a wider range of more complex flows, it would be recommended to use a wider range of
invariants, if not all of them, as there may not be as many of them which are zero in the entire domain or
that are redundant. Thus, erroneously removing inputs could lead to potentially useful data for training
being neglected.

6.5.2. SBNN
The SBNN architecture for modelling P∆

k is similar to the TBNN, with the necessary difference that
the final layer of the MLP is multiplied in a dot product to the scalar basis functions G(n) instead of
the tensor basis. Diagrams of the two architectures are shown in Figure 6.18. Another difference
across the two is that the SBNN uses the GeLU activation function. For reference a comparison of this
activation function and tanh() is presented in Figure 4.8. It was decided to keep GeLU because the
smoothness of the output was not an issue for P∆

k unlike for b∆ij . The SBNN also does not use dropout
layers, and therefore the only regularization mechanism it has is batch normalisation. Both dropout and
L2 regularisation were tested but these models performed worse in a priori testing. This is probably
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(a) (b)

Figure 6.18: Schematics of the TBNN a) and the SBNN b), where m is the number of input features, n is the number of basis
tensors or functions and p is the dropout fraction.

caused by the magnitude of the basis functions being of close to zero through most of the domain,
meaning that any numerical artifacts created by the MLP component of the neural network in these
regions becomes insignificant. Regarding batch normalisation, for the SBNN since it has no dropout
layers, the training procedure was sped up by a factor of 5 approximately when using all the cases, as
the number of epochs before stopping reduced from 700 to 160, although at the cost of a 15% higher
error on the validation dataset, possibly due to the regularisation effect of batch normalisation.

Nonetheless, an additional post processing step had to be added before propagating the output of
the SBNN, which consisted of passing the output through a ReLU function, see Equation (4.31). This
was included after training the models in response to an issue observed during the propagation step
of testing. Negative values for P∆

k resulted in the k field converging towards a solution with negative k
values in some cells, which meant the solver had to start bounding k. When this occurs the residuals
for all variables cannot reduce anymore. By eliminating any negative values of P∆

k it can be ensured
that this does not occur, although at the cost of some performance since the target values of P∆

k are
negative for some data points. A more elegant solution would be to include the ReLU function within the
model, thus allowing the model to be optimised accounting for it, which should result in more accurate
predictions. This could not be done during this thesis project due to time constraints.

Feature Selection
Since the SBNN is also evaluated one time when used in a simulation, it also used the features com-
puted from the baseline RANS, same as the TBNN. Therefore the number of invariants can be reduced
following the same procedure. However, one notable difference is that the P∆

k field is symmetric. There-
fore, intuitively it would be expected that the features that are not symmetric do not provide as much
useful information. This intuition was confirmed by using the mutual information function available in
the scikit-learn python library [44]. This eliminated a few additional features, therefore a number of
features which were considered redundant for the TBNN are included in the SBNN, leaving a total of
24 input features.

6.5.3. SpaRTA
The second method used to compute P∆

k is SpaRTA, which based on the results from the frozen
simulation constructs an interpretable algebraic expression model [48]. Hence, not only the regression
targets, but also the data that is used to compute the input features and the basis functions, correspond
to the mean flow LES, since they are extracted from the frozen RANS cases which have the U and
k fields from the time averaged LES. This, coupled with the much lower inference cost compared the
neural networks means that the SpaRTA based P∆

k model can be evaluated continuously using the
framework presented in Figure 6.10.

The theory behind the elastic-net regression of SpaRTA is explained in Section 4.3.4. For this work
the existing implementation by Dwight et al. [48], which includes a larger variety of candidate functions.
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These are presented in Table 6.3. The program has been modified to include the derived MHD tensors,
invariants and additional features.

Table 6.3: Available operators to construct the candidate functions for SpaRTA

Function Operator name Expression for Feature x
Constant Value const 1
Linear N.A. x
Square N.A. x2

Absolute value abs(x) |x|
Regularised Division rdiv(x) x

x2+1

Regularized Logarithm rlog(x) log(|x|+ 1)
Square Root of Absolute Value sqrt(x) (|x|)0.5
Natural Exponent exp(x) ex

SpaRTA constructs models with different levels of sparsity by performing regressions with different
values for the regularisation weight λ and mixing parameter ρs. For these, the default lists of values
were used, as shown below in Equations (6.27) and (6.28), which yields a total of 50 candidate models.

ρs = [0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 1] (6.27)

λ = [0.01, 0.1, 1, 10, 100]. (6.28)

Due to the time constraints of the project, a choice had to be made to limit the available options for
testing SpaRTA. Hence, to keep the scope of the project limited a maximum library degree of 1 was set.
This means that the final candidate library is composed of the functions listed on Table 6.3 evaluated for
the input features, multiplied by the basis functions G(n). A library degree 2 would allow two functions
to be multiplied together with the basis functions, degree 3 would allow three, etc. This choice limits
the capabilities of SpaRTA as a regression tool, and therefore it would have been appropriate to test
propagating models with a higher library degree if the project timeline allowed for it. Furthermore, the
lower computational cost of training SpaRTA with a library degree 1 compared to a neural network,
added to the sparsity induced by the elastic-net regression means that it is not needed to discard input
features before training the models.

Since it was observed that the magnitude of the production correction field is much larger close to
walls relative to the rest of the domain, a simple classifier was designed to limit the amount of training
data, and reduce the RMSE of the model. The model will only be activated for cells which fulfill the
criteria in Equation (6.29), and 0 otherwise.

Rey > 0.75 (6.29)

6.5.4. Summary of Regression Inputs
Many different input features have been presented in this chapter. Therefore, for clarity and repro-
ducibility the input features, basis tensors, and the non dimensionalisation factors used to compute
them are summarised for each regression method in Tables 6.4 and 6.5

Table 6.4: Non dimensionalisation factors of the tensors used for computing the tensor basis of the different data driven models.

Non Dimensionalisation
b∆ij Models S, Ω Ak AL Selected Tensors
TBNN tmean tturb/

√
k 1/∥AL∥ T (1), T (2), T (3), T (11), T (12)

P∆
k Models S, Ω Selected Functions

SBNN tmean, tturb G(1), G(6), G
(1)
t , G

(6)
t , ϵ

SpaRTA tmean, tturb G(n), G(n)
t , n = 1,...,10 and ϵ
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Table 6.5: Non dimensionalisation factors of the basis tensors for computing the invariant basis of the different data driven
models.

Non Dimensionalisation Number of Features
b∆ij Models S, Ω Ak AL Invariants Additional Used
TBNN tturb tturb/

√
k t1.5turb/

√
ν 47 12 22

SBNN tturb tturb/
√
k t1.5turb/

√
ν 47 12 24

SpaRTA tmean tmean/
√
k tmean/

√
k 47 3 50

6.6. Test Matrix
Due to the computational cost of LES simulations, the available data to construct the model is limited
to 83200 data points, where each data point corresponds to a cell in the CFD mesh. To maximise
the information obtained through both types of testing, instead of choosing a single case as the test
case, the model will be trained on the three different combinations possible of the MHD cases, with
the Ha = 0 case always being part of the training data. The motivation behind this is that for the
hydrodynamic case the Lorentz force based input features are zero. Hence, keeping this case always
in the training data can allow the model to separate phenomena which occur in usual hydrodynamic
flows, from those which occur due to the MHD effects. Furthermore, this model would not be used for
a standard hydrodynamic flow. Therefore, in practical terms testing how it extrapolates to Ha = 0 is
superfluous. The model trained on the four cases, is referred to in the following chapters as the ”All
Data” model, and is evaluated a posteriori on the 3 MHD cases, to provide the best possible result that
can be achieved using the presented methodology. The models trained on three of the four cases are
referred to as the ”test” models, and are evaluated a posteriori in their corresponding test case. The
final test matrix is presented in Table 6.6.

Table 6.6: Test matrix for the a priori and a posteriori testing of the model.

Model type Ha of training
cases

Ha of test
cases

P∆
k

Regression
Ha of Propagation
cases

All Data 0,40,60,120 N.A. SBNN 40,60,120
Ha = 40 Test 0,60,120 40 SBNN 40
Ha = 60 Test 0,40,120 60 SBNN 60
Ha = 120 Test 0,40,60 120 SBNN 120
All Data 0,40,60,120 N.A. SpaRTA 40,60,120
Ha = 40 Test 0,60,120 40 SpaRTA 40
Ha = 60 Test 0,40,120 60 SpaRTA 60
Ha = 120 Test 0,40,60 120 SpaRTA 120



7
A Priori Testing Results

In this chapter the ”a priori” performance of the data driven models for b∆ij and P∆
k fields is evaluated

and discussed. This consists of comparing the output of the models to the target correction fields for
the different cases and models. Firstly, the results for b∆ij are presented, followed by those for P∆

k .
The performance of the SBNN and symbolic regression models are discussed separately, and then
compared.

7.1. Reynolds Stress Anisotropy Correction Results
An overview of the b∆ij prediction for the 4 different cases is shown in Table 7.1. The results are computed
for 4 different models which are trained on different combinations of the available high fidelity CFD
simulations. This is done using Root Mean Squared Error (RMSE), defined for b∆ij as shown in Equation
(7.1), where N is the number of data points included in the operation.

RMSE(b∆ij) =

√√√√ 1

9N

N∑
m=1

3∑
i=1

3∑
j=1

(b
∆(m)
ij,out − b

∆(m)
ij,DNS)

2 (7.1)

Table 7.1: RMSE of b∆ij of the TBNN models for each CFD case. As reference, the Root Mean Square of the target correction
is given in the first row.

RMSE(b∆ij) [-]
b∆ij Model Ha = 0 Ha = 40 Ha = 60 Ha = 120
b∆ij = 0 (EVM) 0.161 0.202 0.192 0.195
All Data Model 0.0242 0.0497 0.0648 0.122
Ha = 40 Test Model 0.0297 0.0589 0.0648 0.117
Ha = 60 Test Model 0.0252 0.0500 0.0718 0.121
Ha = 120 Test Model 0.0165 0.0431 0.0668 0.155

Overall, the predictions worsen notably at higher Hartmann numbers, with a particularly large in-
crease from Ha = 60 to Ha = 120. This is expected partially because the differences between the mean
velocity field of the RANS baseline simulation and the LES simulation become much larger. However,
this entails that this approach is probably not suitable for flows with Hartmann numbers considerably
higher than 120. On the other hand, a positive aspect is that due to the regularisation of the TBNN ,
the error stays consistent for all models when analysing the error case by case, which indicates that
the trends that the neural network captures remain similar despite changing the training data. The
prediction of the models with all data and the test models for the MHD cases are presented in Figures
7.1, 7.2 and 7.3.

56



7.1. Reynolds Stress Anisotropy Correction Results 57

Figure 7.1: b∆ij prediction and error of the TBNN complete and test models on the Ha = 40 case.

Figure 7.2: b∆ij prediction and error of the TBNN complete and test models on the Ha = 60 case.
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Figure 7.3: b∆ij prediction and error of the TBNN complete and test models on the Ha = 120 case.

The case for which the results of the test model worsen the most is Ha = 120. Near y = 0 the TBNN
performs well for all cases, also when using the test models. However, the model struggles more to
approximate the area near z = 0, where the turbulence anisotropy effects due to the magnetic field
are stronger. Furthermore, as shown in figure 7.3, the model extrapolates poorly to higher Hartmann
number flows in this region, which can be especially noticed on the normal stress components xx, yy
and zz. There is a very abrupt transition in the magnitude of these components in this region, and
the models generally underestimate the magnitude of this difference, Furthermore, this is possibly the
region where the test models generalise the worst, with the reason for this being likely twofold. Firstly,
this is the area with the strongest MHD effects, and because of that the turbulence is almost entirely
between the 1D and 2D states for the Ha = 60 and Ha = 120 cases( see the Lumley triangle plots in
Section 8.6), hence any error due to missing necessary physics to mode MHD effects will be more
significant in this area. Secondly, this is also the region where the behaviour of the normal stress
components changes most between cases, therefore making it more difficult to interpolate their values
accurately.

The model is also unable to capture the higher magnitude of the bxy component near the inner
wall at ϕ = π/4, which increases with Hartmann number. Finally, the test models also show some
numerical artifacts on the normal components, see Figures 7.2 and 7.3. These are due to the basis
tensors having lower magnitude in some areas, where the coefficient functions cannot compensate for
it when the TBNN is regularised and interpolating to cases it is not trained on. Therefore, even though
the model is able to provide a substantial correction, someMHD effects are not yet captured, or are only
captured partially. On the positive side, the models do capture the general trends on most components,
and as shown in Table 7.1 achieve a considerable improvement relative to the EVM result.

Effect of Dropout
Dropout layers were chosen as the regularisation method for the TBNN. Without it, the same model
architecture with the same inputs could achieve a much lower training error. Nonetheless, this comes
at the cost of worse generalisation to unseen cases. In retrospective, a mistake was made to increase
the dropout rate to 0.5 for the hidden layers, since as shown in Table 7.2, the lowest error for the Ha
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= 60 case when using the test model is achieved when p = 0.2. This error is due to using the RMSE
formula in Equation (4.34) which does not give twice the weight to the shear components bxy, bxz, byz in
the calculation, and thus is not the same that is used for training. Therefore, without the time constraints
in the thesis project, the chosen dropout rate for the final models would be p = 0.2.

Table 7.2: RMSE of b∆ij of the TBNN models for each CFD case with different levels of dropout.

RMSE(b∆ij) [-]
b∆ij Model (Dropout rate) Ha = 0 Ha = 40 Ha = 60 Ha = 120
All Data Model (p = 0.0) 0.0183 0.0383 0.0405 0.0707
Ha = 60 Test Model (p = 0.0) 0.0129 0.0336 0.0747 0.0738
Ha = 60 Test Model (p = 0.1) 0.0163 0.0380 0.0728 0.0882
Ha = 60 Test Model (p = 0.2) 0.0193 0.0428 0.0699 0.101
Ha = 60 Test Model (p = 0.35) 0.0215 0.0473 0.0739 0.114
Ha = 60 Test Model (p = 0.5) 0.0252 0.0500 0.0718 0.121

Figure 7.4 shows the predictions for the Ha = 60 case without dropout. As expected from the RMSE
values the resulting field captures the trends of each component significantly better than the regularised
model. However, it is also noticeable that the error field is not smooth and also not symmetrical, which
is a strong indication of overfitting. The situation worsens when interpolating to Ha = 60 when using a
test model, as reflected in both the RMSE values in Table 7.2 and Figure 7.4. Apart from the higher
RMSE, the error field also shows some asymmetric fluctuations, which should not occur, and could
cause numerical instabilities in a RANS solver.

Figure 7.4: b∆ij prediction and error for the TBNN models without dropout layers on the Ha = 60 case.

Basis Tensors Contributions
The contributions of each pair of basis tensors and their corresponding coefficients can be computed
separately, thus giving insight into which tensors have the most weight into the final output of b∆ij and
for which components. An example of this is shown for the Ha = 60 case using the complete model
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in Figure 7.5. A conclusion that can be immediately extracted from this plot is the inaccuracy of the
eddy viscosity assumption for this type of flows, as T (1) cannot possibly account for the contributions
on any of the normal stress components. Another significant observation is that the two MHD tensors
do not have a noticeable impact on the output of the model on any of the 6 components. As shown
in Figure 6.12, with the right function for the basis coefficients, these tensors can reduce the error in
the b∆ij prediction, but given the available input features, the model does not have sufficient information
to regress this function without overfitting. Therefore, the three lowest order Tensors from Pope et al.
[45], are all that the model is using to produce its estimation. These three tensors are essential to
produce a reasonable prediction of b∆ij for MHD annular flows. The first tensor is the sole contributor
to the shear xy and xz components, while the second and third tensors compliment each other for
the normal components xx, yy and zz and the shear component yz. For the zz and yz components
their contributions are of opposite sign, therefore indicating that possibly the same effect could be
achieved with a single tensor and a more complicated coefficient function. Nonetheless, for the yy and
xx components, their contributions are mostly of the same sign.

Figure 7.5: b∆ij contribution from each basis tensor using the TBNN trained on the Ha = 0,40,60,120 cases on the Ha = 60 case.

SHAP Value Analysis
The shap python library by Lundberg and Lee [32], allows the computation of the SHAP sampling values
of the TBNN model. For visualisation the SHAP values of a random sample of 1000 data points have
been computed from the model trained on all available data, see Figure 7.6. Only the SHAP value for
bxx is presented because the SHAP values for the other components are proportional. The 10 values
with the highest average absolute value are shown separately from highest to lowest average impact.
For the final output, bij the three most important features are not MHD dependant. This shows that a
lot of the physics captured by the model are also relevant to non-MHD flows. Out of the 10 features
with the highest average absolute SHAP values, only two of them are ”MHD” features, qASm and I32.
Assessing the SHAP values for the basis coefficients gn shows mostly the same features. tturb/tmag

appears for all coefficients, suggesting that it is also a highly important feature.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: TBNN SHAP values for a) bxx, and the coefficients gn of the five selected basis tensors in b), c), d), e) and f).

7.2. Turbulence Production Correction Results
The overview of the results for the SBNN and SpaRTA models of P∆

k are presented in Tables 7.3 and
7.4. The RMSE value is divided by the total Root Mean Squared (RMS) of the correction field for non
dimensionalisation of the parameter.

Table 7.3: RMSE of P∆
k of the SBNN models divided by the RMS of the target correction field P∆

k for each CFD case.

RMSE(P∆
k ) / RMS(P∆

k ) [-]
P∆
k Model Ha = 0 Ha = 40 Ha = 60 Ha = 120

All Data Model 0.0871 0.282 0.328 0.828
Ha = 40 Test Model 0.0966 0.439 0.302 0.840
Ha = 60 Test Model 0.0952 0.287 0.421 0.831
Ha = 120 Test Model 0.0799 0.312 0.271 1.01
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Table 7.4: RMSE of P∆
k of the SpaRTA models divided by the RMS of the target correction field P∆

k for each CFD case.

RMSE(P∆
k ) / RMS(P∆

k ) [-]
P∆
k Model Ha = 0 Ha = 40 Ha = 60 Ha = 120

All Data Model 0.547 0.433 0.556 0.473
Ha = 40 Test Model 0.561 0.464 0.553 0.454
Ha = 60 Test Model 0.556 0.434 0.564 0.471
Ha = 120 Test Model 0.533 0.438 0.529 0.734

While the SBNN approach shows better overall performance in the Ha = 0, 40 and 60 cases, it
also shows a clear degradation towards higher Hartmann numbers, similarly to the TBNN models.
Furthermore, when extrapolating to the Ha = 120 case, the error of the model exceeds the RMS of the
P∆
k field, meaning that the RMSE of the model would be lower if it was just a constant 0. On the other

hand, the SpaRTA models show a very similar performance across the 4 cases, and surpasses the
accuracy of the SBNN for the Ha = 120 case. The reason for this difference in performance is probably
that the SpaRTA models use the U and k fields from LES while SBNN uses those from RANS. Since
the error in these fields increases at higher Hartmann numbers it can be expected that the inputs for
the SBNN become less representative of the LES field as the Hartmann number increases. Further
insight into the errors for the two methodologies are provided in Sections 7.2.1 and 7.2.2.

7.2.1. Scalar Basis Neural Network Model
When analysing the performance of the SBNN across different Hartmann numbers, what can be noticed
is that although the correction field changes noticeably from one case to the next, the predictions remain
quite similar. The results for the models including all data and test models are shown in Figures 7.7,
7.8 and 7.9.

Figure 7.7: P∆
k prediction and error of the SBNN complete and test models for the Ha = 40 case.

Figure 7.8: P∆
k prediction and error of the SBNN complete and test models for the Ha = 60 case.
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Figure 7.9: P∆
k prediction and error of the SBNN complete and test models for the Ha = 120.

The corrections mostly occur near the wall in the buffer layer and the viscous sublayer, meaning that
most of the correction field is almost 0. However, the correction also varies in the azimuthal direction.
Generally, the SBNN captures P∆

k quite effectively near y = 0 for all models, but the predictions drop in
quality near z = 0, especially for the test models. This becomes more problematic at higher Hartmann
numbers, since as shown in Figure 7.9, the magnitude of P∆

k becomes quite high in this region, but the
model is not able to capture this, resulting in a large error. This aligns with the observations made for
the b∆ij TBNN model, which also showed a degradation in the quality of the prediction near the z = 0
axis.

SHAP Value Analysis
The SHAP value analysis for the SBNN has been completed following the same procedure as for the
TBNN. The result is shown in Figure 7.10 below.

Figure 7.10: SHAP values for the input features of the SBNN with respect to P∆
k . The 10 features with the highest influence

are shown separately in order.

Instantly it can be observed that the features with the most influence are different from those of
the TBNN, despite both models sharing many common inputs. Both I1 and I5 remain as some of the
most influential features, which emphasizes the importance of the lower order invariants in data driven
models built upon the general eddy hypothesis. Instead of the turbulence Reynolds number, the wall
distance based Reynolds number appears to have a larger effect on the modeling P∆

k . However, these
two parameters show very similar trends for the investigated flows. Overall, it seems that including
either one of these two Reynolds number parameters is important for data driven turbulence modeling.
This is most likely due to how these parameters allow the data driven model to identify the different
layers of the boundary layer, as recognised by Jiang et al. [22] in what they presented as the ”Non-
Unique Mapping problem”, see Section 4.2.2.

7.2.2. SpaRTA Model
One of the advantages of SpaRTA is that it returns an interpretable expression. The formulas for the
model trained on all data and the test models are shown below:
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MAll =0.19(9.1(tr(ÂLÂkŜ)/0.41) + 0.0071eRey /0.41 + 0.66(tr(Âk
2
Ω̂Ŝ)/0.047)2

− 110 rdiv((tr(ÂL
2
)/32)) + 0.82 rdiv((Rey /0.41))− 1.4∥(tr(ÂLÂkŜ)/0.41)∥)G(1)

(7.2)

MHa=0,40,60 =0.18(0.13(Rey /0.42) + 0.85(tr(Âk
2
)/0.32)2 + 12 tanh((tr(ÂLÂkŜ)/0.19))

+ 7.5 rlog((tr(ÂLÂkŜ)/0.19)))G
(1)

(7.3)

MHa=0,40,120 =0.19(−1.7(tr(Âk
2
)/0.66)2(2.0G(6)/G(1)) + 9.8(tr(ÂLÂkŜ)/0.44)

+ 0.0069eRey /0.41 +−120 rdiv((tr(ÂL
2
)/32)) + 0.90 rdiv((Rey /0.41))

+−3.1∥(tr(ÂLÂkŜ)/0.44)∥)G(1)

(7.4)

MHa=0,60,120 =0.21(−1.0(tr(Âk
2
)/0.68) + 12(tr(ÂLÂkŜ)/0.50) + 0.0043eRey /0.41

+ 0.40(tr(Âk
2
Ω̂Ŝ)/0.050)2 +−120 rdiv((tr(ÂL

2
)/38)) + 0.70 rdiv((Rey /0.41))

+ 0.56∥(tr(ÂLÂkŜ)/0.50)∥)G(1)

(7.5)

As can be observed, all the models use a similar set of features, and functions, which can be
expected from their similar RMSE values. The resulting distribution of the corrective field and their
error for the MHD cases are presented in Figures 7.11, 7.12 and 7.13.

Figure 7.11: P∆
k prediction and error for SpaRTA complete and test models on the Ha = 40 case.

Figure 7.12: P∆
k prediction and error for SpaRTA complete and test models on the Ha = 40 case.
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Figure 7.13: P∆
k prediction and error for SpaRTA complete and test models on the Ha = 40 case.

Although the SpaRTA models have a higher RMSE for the Ha = 0,40 and 60 CFD cases, they are
able to capture the trend of increasing P∆

k with Hartmann number near the z = 0 axis to some extent.
A drawback is that there is a nonphysical increase in P∆

k at y = 0 which increases the overall error
significantly for the Ha = 120 case, but the extent of this patch is limited by the classifier of the SpaRTA
models.

Contributions From Key Features
By setting all coefficients of a SpaRTA model to zero except those including a selected feature, the
isolated effect of a single feature can be visualised. This has been done for the MAll model in Figure
7.14.

(a)

(b)

Figure 7.14: Contributions from the four different input features included in the MAll SpaRTA model for the a) Ha = 40 and b)
Ha = 120 annular flow cases.

For convenience, the invariants featured in Figure 7.14 are defined as follows: I15 = tr(Âk
2
Ω̂Ŝ),

I19 = tr(ÂL) and I32 = tr(ÂLÂkŜ). The two main contributors for the Ha = 120 case are the wall
distance Reynolds number and I19. The Rey terms appear to be responsible mostly for the added
production near the symmetry axis, but add production near the walls around the entire circumference.
On the other hand, the I19 terms add production mainly near z = 0, where the magnetic field effects are
strongest. The terms which depend on the I32 and I15 invariants, both of which are computed using Âk,
do not have a strong influence compared to the other terms, but cause the numerical artifact at the sym-
metry axis in the Ha = 120 case. For the Ha = 40 case both of the Lorentz force dependent features I32
and I19 become negligible comparing to their values for the Ha = 120 case. This is strong evidence that
ÂL can explain the increase in P∆

k with increasing Hartmann number, although the SpaRTA regression
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with the selected settings is not capable of capturing the behaviour with a remarkably high accuracy.
The non MHD features, Rey and I15 are the ones which cause most of the production predicted by the
model for the Ha = 40 case, showing an accentuated change in behaviour of the model based on the
Hartmann number, which correlates nicely with the expected values.

Symbolic Models Including ϵ
The final version of the SpaRTA models does not include ϵ or ω dependant features or basis functions.
However, models including these terms were tested both a priori and a posteriori. A priori, a model
using ϵ as a basis function achieved the RMSE values shown Table 7.5 without the need of a classifier.
Its expression is presented below:

M = (0.34(Rey /0.76)ϵ+ 0.15
√
qT /0.26ϵ+ 0.84

√
qASω/7.7ϵ)0.066 (7.6)

Table 7.5: RMSE of P∆
k of the SpaRTA models divided by the RMS of the target correction field P∆

k for each CFD case.

RMSE(P∆
k ) / RMS(P∆

k ) [-]
Training cases Ha = 0 Ha = 40 Ha = 60 Ha = 120
Ha = 0,40,60,120 0.125 0.190 0.120 0.203

The reason for this low RMSE despite only using 3 terms is that ϵ correlated extremely well with P∆
k

for the frozen RANS simulations. As a result the basis coefficient function becomes much simpler and
therefore easier to approximate. The prediction and error fields for Ha = 120 are shown in Figure 7.15.

Figure 7.15: P∆
k prediction and error for Ha = 120 case with the ϵ based SpaRTA model.

Nonetheless, when using this model in a propagation procedure, the resulting velocity field had a
higher error with respect to LES than the baseline RANS simulation, an example of this is shown in
Chapter 8. Although after this work it remains unclear what the mechanism behind this behaviour is, a
possibility is that the input features for models such as SpaRTA or other symbolic regressions which
are evaluated every iteration in the propagation step, need to be constant during the frozen RANS
simulation which is used to extract the P∆

k correction field.
The distributions of ω (and therefore also ϵ) and P∆

k are the product of the frozen simulation. There-
fore, rather than using ϵ to regress P∆

k , the correct approach could be to find how the fields which are
frozen, such as U , k and FL induce the ϵ distribution which correlates with P∆

k . For this reason, tturb is
not used to non dimensionalise features or basis functions in SpaRTA models as shown in Tables 6.4
and 6.5. Hence, neglecting ϵ in the symbolic models worsened their training performance significantly
but allowed for an improved velocity field with respect to baseline when propagating it. Furthermore,
the inability of the model to match the results obtained when using ϵ indicates that the model is missing
inputs which can aid in modeling the physics behind this correction field. Possible solutions for this are
discussed in Section 9.1.



8
A Posteriori Testing Results

This chapter focuses on the results of the predictive computations ran with the different models that
were trained based on the test matrix. First, a summary of the results is provided to give an overview.
After that, the convergence issues for some of the simulations are discussed. Then, the velocity and
kinetic energy profiles of each test case are analysed, as well as the friction factor along the walls.
The next section discusses the final turbulence anisotropy states for each MHD case using the Lumley
Triangle. Finally, the propagation results of the SpaRTA models based on ϵ are presented.

8.1. Summary of Propagation Results
The first parameter to analyse is the RMSE of the axial velocity Ux, as the main objective of the data
driven turbulence model is to reduce this error relative to the baseline value in the test model cases.

Table 8.1: Summary table of the propagation results of all the MHD cases.

RMSE(Ux)/Ub [-]
Turbulence Model Ha = 40 Ha = 60 Ha = 120
k-ω SST 0.0577 0.0809 0.0707
Frozen LES Propagation 0.0120 0.0143 0.00888
TBNN / SBNN All Data Model 0.0259 0.0254 0.0244
TBNN / SBNN Test Models 0.0340 0.0479 0.0577
TBNN / SpaRTA All Data Model 0.0266 0.0320 0.0280
TBNN / SpaRTA Test Models 0.0320 0.0602 0.0617

Overall, it can be observed that all models achieve an improvement over the baseline k-ω SST
simulation, even the models trained on Ha = 0, 40, 60 managed to improve baseline for the Ha = 120
case. As expected the models with all data managed to obtain better results than the test models.
This is especially noticeable for the higher Hartmann number cases. Comparing SpaRTA to the SBNN,
the SBNN obtains better results across all cases, except the test model for the Ha = 40 case. This is
different from what is observed in the a priori comparison of the models, as the SpaRTA model has a
lower a priori error for the Ha = 120 case, but this is not replicated in a posteriori testing as shown in
Tables 7.3 and 7.4.

Another quantity that can be compared are the pressure losses due to the Lorentz force, which can
be referred to as the MHD losses. This quantity can be described as shown below, where S is the cross
sectional area of the pipe [53]:

∂p

∂xMHD
= − ρ

S

∫∫
FL,xdydz. (8.1)

For a set of discrete measurements, the integral can be approximated as a weighted sum, where Ai is
the cross sectional area of the ith cell and N is the total number of cells in a cross section. The dynamic
pressure and hydraulic diameter can be used for non dimensionalisation:

67
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MHDloss = − 2Dh

SU2
b

N∑
i=1

FL,x,iAi. (8.2)

Table 8.2: Summary table of the losses due to Lorentz force on the MHD training case for the different turbulence models
tested.

MHD loss [-] ( Relative Error [%])
Turbulence Model Ha = 40 Ha = 60 Ha = 120
LES 3.46e-6 7.99e-6 3.33e-5
k-ω SST 3.51e-6 ( 1.33 %) 8.02e-6 ( 0.33%) 3.31e-5 ( -0.74%)
Frozen LES Propagation 3.49e-6 ( 0.75%) 8.01e-6 ( 0.28%) 3.33e-5 ( 0.01%)
TBNN / SBNN All Data Model 3.49e-6 ( 0.77%) 8.04e-6 ( 0.65%) 3.33e-5 (0.03%)
TBNN / SBNN Test Models 3.49e-6 ( 0.75%) 8.01e-6 ( 0.26%) 3.37e-5 ( 1.18%)
TBNN / SpaRTA All Data Model 3.48e-6 ( 0.48%) 8.03e-6 ( 0.46%) 3.34e-5 ( 0.08%)
TBNN / SpaRTA Test Models 3.48e-6 ( 0.42%) 7.98e-6 ( -0.01%) 3.31e-5 (-0.84%)

As could be expected, the losses increase approximately proportionally to the square of the Hart-
mann number. The differences in the simulations for the same Hartmann number have very similar
values, with the relative magnitude of the error with respect to LES being below 1% for most cases,
and never exceeding 2%. The Lorentz force profiles for the different test cases are not shown in the
main text, since there are no significant differences across the different turbulence models. The plots
can be found in Appendix C.

A note that has to be added is that the simulations which used SpaRTA converged to a solution with
a higher residual value than those which used the SBNN models for P∆

k . Furthermore, the simulation
for Ha = 120, showed a very odd residual evolution, with the residuals reaching values below 10−4

before increasing again. This is presented in more detail in Section 8.2.

8.2. Convergence of Propagation Simulations
An aspect that has to be highlighted from the a posteriori testing results is how the data driven models
affected the convergence of the RANS solver. Generally, the models using TBNN and SBNN reached
the rigid residual limit of 10−5 for the 7 equations that have to be solved in 3000 to 5000 iterations.
Generally, the cases with lower Hartmann numbers took slightly longer to reach the limit residual value.
On the other hand, the simulations using TBNN with SpaRTA did not reach the convergence criteria in
any of the test cases, the simulations instead converged to a solution with a residual higher than the
10−5 limit. The final residuals are summarised in Table 8.3 below for the 6 testing simulations that used
SpaRTA models, the 3 using test models and the 3 cases with the model trained on all data.

Table 8.3: Final Residuals of the simulations which used TBNN for b∆ij and SpaRTA for P∆
k accurate to 1 significant figure.

Residuals [-]
Case Model Ux Uy Uz p k ω φ
Ha = 40 All Data 2e-7 7e-6 1e-5 3e-5 7e-6 3e-10 3e-7
Ha = 40 Test 9e-7 3e-4 4e-4 1e-3 4e-4 8e-9 5e-6
Ha = 60 All Data 2e-7 1e-5 3e-5 1e-4 2e-5 2e-10 5e-7
Ha = 60 Test 3e-6 2e-4 1e-4 1e-3 5e-4 4e-9 7e-6
Ha = 120 All Data 4e-8 1e-5 5e-5 2e-4 1e-5 1e-10 4e-7
Ha = 120 Test 1e-3 2e-2 2e-2 2e-2 3e-3 1e-5 2e-3

The data in Table 8.3 shows that the final residuals worsened generally when using a test model as
opposed to the model which was trained on all cases. The simulation with the worst residuals is Ha =
120 when using the corresponding test model. For the other simulations Ux, k and ω reached a residual
below the limit of 10−5, but for this simulation the residual for Ux only reached 10−3. A comparison of
the residual against time step plots for the Ha = 120 case of the complete and test models is shown in
Figure 8.1:
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(a) (b)

Figure 8.1: Residual evolution of a) Ha = 120 simulation with the complete SpaRTA model b) Ha = 120 simulation with the test
SpaRTA model

The behaviour shown in Figure 8.1 a) is also representative of the other 4 simulations in Table
8.3. While the residuals for the other simulations may still be acceptable given that Ux did reach a low
residual and that due to the added complexity of these simulations a larger error can be expected, the
residual for the Ha = 120 simulation with the test model is too high and also has a much higher variance
among time steps. Another interesting aspect is that the simulation appears to be converging normally
up t = 4000. Then the residuals start diverging until they reach the values at which they remain for
the rest of the simulation. A possible explanation for this is the worsened a priori performance of the
models, when being evaluated in a case with higher Hartmann number than they have been trained
in. The TBNN, even though it is regularised with dropout, does not provide a fully symmetric field
for the Ha = 120 test model. This can be observed in Figure 7.3. This could possibly be introducing
some fluctuations into the velocity field which combined with the increased complexity of the k transport
equation due to SpaRTA might lead to numerical instability.

8.3. Ha = 40 Propagation Results
For visualising the differences caused by the different turbulence models, the velocity profiles can be
plotted at different azimuthal locations. The results using SBNN for P∆

k are shown in Figure 8.2 and
for SpaRTA in Figure 8.3.
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Figure 8.2: Velocity profiles of the Ha = 40 annular flow simulations with different turbulence models, including the TBNN and
SBNN complete and test models.

Figure 8.3: Velocity profiles of the Ha = 40 annular flow case, with the different turbulence models, including the TBNN and
SpaRTA complete and test models.

For the lowest Hartmann number MHD case, all the data driven models, including the test models,
perform notably better than k-ω SST. The most notable difference is the increased difference in velocity
from ϕ = 0 to ϕ = π/2. Furthermore, both SBNN and SpaRTA based models show very similar profiles,
with the biggest error occurring at the same locations across the different simulations. Regarding the
turbulence kinetic energy profiles, which are shown in Figures 8.4 and 8.5, the SBNN model seems to
produce a more accurate distribution. The test model for SpaRTA results in a notable over production
of k at ϕ = 0 and ϕ = π/4 although this does not seem to affect the overall velocity profile excessively.
This suggests that bij has a greater effect on the final velocity profile for these type of flows. Both
SBNN and SpaRTA have the least error at ϕ = π/2, which is the location where the MHD effects are
the weakest.
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Figure 8.4: k profiles of the Ha = 40 annular flow simulations with different turbulence models, including the TBNN and SBNN
complete and test models.

Figure 8.5: k profiles of the Ha = 40 annular flow case, with the different turbulence models, including the TBNN and SpaRTA
complete and test models.

Finally, Figures 8.6 and 8.7 show the friction coefficient Cf along the walls. The friction coefficient
is the non dimensional version of the wall shear stress τw, which can be simplified assuming that the
axial velocity is much larger than the other components to Equation (8.3), where r =

√
x2 + y2. Cf

can then be computed by dividing by the dynamic pressure as shown in Equation (8.4).

τw ≈ ν
∂Ux

∂r
(8.3) Cf =

2τw
U2
b

. (8.4)

The results show that the friction estimates for the Ha = 40 case improve for the complete and test
models substantially throughout the circumference of the duct on both walls when comparing to the
RANS baseline. The SBNN model performs better, as could be expected from the more accurate k
values in these simulations. A downside is that the variance of Cf along the inner wall is considerably
larger than the LES data shows. A possible explanation for this is that the NN based models can be
noisy near the wall, especially given the low y+ of these simulations.
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Figure 8.6: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 40 case, including the TBNN and
SBNN complete and test models.

Figure 8.7: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 40 case, including the TBNN and
SpaRTA complete and test models.

8.4. Ha = 60 Propagation Results
The velocity profiles for the Ha = 60 case using SBNN for P∆

k are shown in Figure 8.8 and for SpaRTA
in Figure 8.9.
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Figure 8.8: Velocity profiles of the Ha = 60 annular flow simulations with different turbulence models, including the TBNN and
SBNN complete and test models.

Figure 8.9: Velocity profiles of the Ha = 60 annular flow simulations with different turbulence models, including the TBNN and
SpaRTA complete and test models.

Compared to the results for the Ha = 40 case, the test models perform notably worse than the
complete models, as can be expected from the RMSE values presented in Table 8.1. For this case,
the error is quite evenly distributed through the domain, with the error not being especially large in any
of the three azimuthal locations. The only exception is the test model using SpaRTA, for which the
velocity profile at ϕ = 0 does not show any improvement relative to the baseline.

The profiles for k, presented in Figures 8.10 and 8.11 partly explain the behaviour observed in the
velocity plots. The SpaRTA test model produces too much kinetic energy at ϕ = 0 and ϕ = π/4,
which explains the larger error in the velocity profile at these locations. The SBNN model in this case
produces a considerable improvement from baseline at ϕ = 0, but also produces excessive turbulence
at ϕ = π/4.
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Figure 8.10: k profiles of the Ha = 60 annular flow simulations with different turbulence models, including the TBNN and SBNN
complete and test models.

Figure 8.11: k profiles of the Ha = 60 annular flow simulations with different turbulence models, including the TBNN and
SpaRTA complete and test models.

The bad propagation results regarding k for the SpaRTA test model has repercussions on the Cf

estimates, with a large error occurring on the inner wall and to a lesser extent on the outer wall at ϕ = 0,
see Figures 8.12 and 8.13. Apart from this occurrence, the Cf estimates for both models are closer to
LES than the baseline, and also show a variance along the walls closer to that of the LES simulation.



8.5. Ha = 120 Propagation Results 75

Figure 8.12: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 60 case.

Figure 8.13: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 60 case.

8.5. Ha = 120 Propagation Results
The velocity profiles for the Ha = 120 case using SBNN for P∆

k are shown in Figure 8.14 and for SpaRTA
in Figure 8.15.
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Figure 8.14: Velocity profiles of the Ha = 120 annular flow simulations with different turbulence models, including the TBNN
and SBNN complete and test models.

Figure 8.15: Velocity profiles of the Ha = 120 annular flow simulations with different turbulence models, including the TBNN
and SpaRTA complete and test models.

For the simulations with the highest Hartmann number, the velocity profiles at ϕ = 0 and ϕ = π/2 are
quite accurate for all models. Nonetheless, at ϕ = π/4 the test models for both the SBNN and SpaRTA
approaches show an error of a similar magnitude to the baseline, although of different characteristics,
with the data driven models overestimating Ux near the outer wall and underestimating it near the inner
wall.

Regarding k, the biggest difference with respect to the previous two cases is that the SpaRTA test
model is not over producing turbulence, but it is not improving upon the baseline values, except at
ϕ = π/2, see Figure 8.17. In this case the SBNN test model is producing excessive turbulence at
ϕ = π/2, which does not occur for either of the other cases, as shown in Figure 8.16. Overall, this is
probably the worst result for the SBNN, which could be expected since it is extrapolating to a higher
Hartmann number case.
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Figure 8.16: k profiles of the Ha = 120 annular flow simulations with different turbulence models, including the TBNN and
SBNN complete and test models.

Figure 8.17: k profiles of the Ha = 120 annular flow simulations with different turbulence models, including the TBNN and
SpaRTA complete and test models.

The Cf plots for the Ha = 120 case are presented in Figures 8.18 and 8.19. Overall, the data
driven models do not achieve as clear of an improvement in this parameter as in the lower Hartmann
cases, as the data driven models tend to have a higher error near ϕ = π/5 compared to the baseline.
Nonetheless, the data driven models consistently predict better the Cf near the outer wall at ϕ = π/2,
and are still overall more accurate than the baseline.
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Figure 8.18: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 120 case, with TBNN and SBNN
models.

Figure 8.19: Friction coefficient Cf along the outer and inner walls of the duct for the Ha = 120 case, with TBNN and SpaRTA
models.

8.6. Turbulence Anisotropy Visualisation
Finally, the turbulence states of the a posteriori simulations can be visualised using the Lumley triangle,
which plots the invariants of bij . A more detailed explanation can be found in Appendix A. Although
in Chapter 7, the components of the b∆ij correction field are plotted, to understand how the turbulence
deviates from isotropic turbulence, it is more useful to compute the complete bij tensor, for which a
velocity field is needed.

The resulting Lumley triangle plots are presented in Figures 8.20, 8.21 and 8.22 for the Ha = 40,
60 and 120 CFD cases respectively. In these figures, the LES, eddy viscosity and a posteriori results
using the TBNN and SBNNmodels trained on all available cases are shown. The eddy viscosity results
are computed based on the k-ω SST results. However, any other model using the eddy viscosity
assumption will show a very similar result since all the points have to be on the plane strain line. Since
the data driven model is not constrained to plane strain, it provides an improvement with respect to
the eddy viscosity reference, especially at ϕ = π/2. However, at ϕ = 0, the model does not predict
quasi-2D turbulence for the Ha = 60 case, or between 1D and 2D for the Ha = 120 case. Furthermore,
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it can be observed that the bij of the a posteriori propagation of the model is outside the realizable
states in some cells. This is due to realizability constraints not being applied as a post processing tool,
or during the training of the model. To check realizability the entire bij tensor is required, not just b∆ij ,
hence with the framework proposed in this work, it is not possible to ensure realizability is respected,
making it a possible improvement.

Figure 8.20: Lumley triangle plot for the Ha = 40 case. The invariant values at the cell centres are plotted from the inner wall to
the centerline. The triangle marker pointing upwards corresponds to the cell closest to the wall.

Figure 8.21: Lumley triangle plot for the Ha = 60 case. The invariant values at the cell centres are plotted from the inner wall to
the centerline. The triangle marker pointing upwards corresponds to the cell closest to the wall.
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Figure 8.22: Lumley triangle plot for the Ha = 120 case. The invariant values at the cell centres are plotted from the inner wall
to the centerline. The triangle marker pointing upwards corresponds to the cell closest to the wall.

8.7. Propagation Results of SpaRTA Models with ϵ
To close this chapter, it is important to present the results of the propagation simulations for the ϵ based
P∆
k models, since this motivated the methodology choices for SpaRTA which are discussed in Chapter

6. The final velocity profiles of the converged simulation using the SpaRTA ϵ based model, which can
be expressed with Equation (7.6) is shown in Figure 8.23:

Figure 8.23: Velocity profiles of the Ha = 40 annular flow simulations with different turbulence models, including the TBNN with
the SpaRTA ϵ based model for P∆

k

As can be observed, the velocity profiles become less dependant on the azimuthal location, effec-
tively resulting in a greater error than the baseline RANS result. The reason for this behaviour is that
there is an over production of turbulence on the wall which results in the electromagnetic effects on the
mean flow velocity being negligible compared to the turbulence effects. Other solutions were tested,
such as generating a model for the frozen RANS method which also includes the P∆

k term in the ω
transport equation, or using only ϵ based features but not ϵ based basis functions. However, both of
these showed a similar behaviour in the mean flow velocity field. Therefore, although ϵ based models
can very accurately approximate the P∆

k field of the frozen RANS simulation, they do not help the solver
converge to the LES velocity and k fields when used inside a solver for the tested CFD cases.
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Conclusion and Recommendations

The aim of this work was to present a turbulence modeling framework capable of training models that
can generalise over the available annular MHD flow cases with Ha = 0, 40, 60, 120 provided by Fico et
al. [11]. The liquid metal flows in the LMBBs of fusion reactors present unconventional turbulence be-
haviour such as quasi-2D turbulence, flow anisotropy and turbulence suppression. Although, this can
be effectively captured in higher fidelity DNS and LES simulations, it cannot be replicated by standard
EVMs for RANS simulations, thus leading to unreliable mean flow field predictions. This makes stan-
dard RANS simulations unsuitable to extract conclusions from LMBB designs, while LES and DNS are
too computationally expensive for simulating a more complex LMBB flow case than the cyclic annular
flow.

Although, the LES data had already been generated previous to the start of this thesis work, the
equivalent RANS cases and setup have been prepared as part of this project. Themesh, flow conditions
and boundary conditions were kept identical to the LES simulations, to maximise the amount of useful
data. Moreover, a turbulence model had to be selected, which involves answering the first sub research
question: What intuition based MHD turbulence model for RANS should be used as the baseline
for the data driven model? Three different candidates were considered, including the Launder and
Sharma k-ϵ [28], k-ω SST [34] and the MHD k-ϵ model by Kenjeres et al. [25]. The MHD model was
included as it showed promising results relative to other intuition based MHD turbulence models in a
posteriori results. However, it was found to have excessive dissipation on the Ha = 40 case, resulting
in the turbulence kinetic energy being 0 in some regions of the domain. This left the two standard
turbulence models as the remaining options, with k-ω being chosen for its better performance in the
hydrodynamic flow case.

Initially, it was planned to generate ML turbulence models using the simplest option in literature, the
open loop framework, in which bij is modelled directly, substituting the EVM equivalent in the system of
equations. Therefore, the following sub research question had to be answered: How effective is the
open loop framework for data driven turbulence modeling for MHD flows in the fusion reactor
cooling application? This framework was found to be ineffective for annular MHD flows. The modified
production due to the Reynolds stress anisotropy is too low, thus resulting in an underestimation of the
turbulence kinetic energy throughout the domain, making the mean velocity field more inaccurate than
the RANS baseline. This was solved by adopting the frozen RANS approach, which yields two correc-
tion fields b∆ij and P∆

k to the k-ω SST model, where the latter corrects for the deficiency in turbulence
production in the buffer layer and the viscous sublayer. Furthermore, since the bij from the EVM is
still part of the system of equations, it adds numerical stability to the solver relative to the open loop
approach.

The next sub research question is: What frame and Galilean invariant features should be used
as inputs for a data driven MHD turbulence model? Pope’s general eddy hypothesis was used
for the modeling of the correction fields b∆ij and P∆

k . To also include MHD effects it was suggested to
increase the set of symmetric and antisymmetric tensors from which the tensor and invariant basis is
created. Hence, it was proposed to include an antisymmetric tensor based on the Lorentz force, AL,
created by following the method presented by Wu et al. [64]. The antisymmetric tensor based on the
gradient of turbulence kinetic energy Ak is also included, thus yielding a total of 47 invariants. On
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top of this, 12 additional invariants are presented in Table 6.2, based on both MHD and hydrodynamic
quantities. Of these, Rey and Ret had a particularly high significance on the SpaRTA and NN based
models respectively, suggesting that adding a feature which represents a wall distance based Reynolds
number is essential.

Before training the ML models, their complexity could be reduced by discarding basis tensors from
the original 10 proposed by Pope which do not contribute to lowering the prediction error for b∆ij for
annular MHD flows. Hence, the following sub research question should be answered: How many
tensors from Pope et al.’s [45] tensor basis for the general eddy hypothesis are needed to con-
struct an accurate data driven model for MHD flows in the fusion reactor cooling application?
By iteratively subtracting the projections of the basis tensors onto the residual of b∆ij it was identified
that after the first three tensors, no further reduction in the residual was achieved with Pope’s Tensor
basis. To further reduce the residual, 5 more tensors based on AL and S, were proposed. Of these
5 new basis tensors, T (11) and T (12) were found to reduce the residual of b∆ij further, thus decreasing
the minimum possible error of the turbulence model. Hence, the b∆ij model for MHD annular flows only
required 5 basis tensors, rather than the 10 original basis tensors.

The last sub research question is: What regression technique can provide the best balance be-
tween model interpretability and model accuracy for MHD flows? It was not possible to compare
a symbolic regression approach and a NN approach for the b∆ij field, as only the TBNN was used to pro-
duce models. For P∆

k SpaRTA was compared to the SBNN, an adaptation of the TBNN to approximate
the turbulence production by changing the basis tensors with scalar basis functions derived from these
tensors. Although in terms of RMSE the SBNN outperformed SpaRTA, both in a priori and a posteriori
testing, the SpaRTA approach was able to capture trends that the SBNN could not capture, mainly the
increasing P∆

k with Hartmann number near z = 0, which is the area with the strongest MHD effects.
Furthermore, in the SpaRTA model this is a direct result of the increased Lorentz force intensity in the
Hartmann layer in this area. Part of this is a result of the classifier used for SpaRTA, which ensured
that the model was only trained and evaluated for data points close to the wall based on Rey > 0.75.
However, using LES based features rather than baseline RANS based features could have also helped
in better capturing these phenomena. Furthermore, SpaRTA produced a very accurate ϵ based model
which only required three terms, but when used in a CFD solver the a posteriori results were not as
expected, as the solver converged to a solution with higher RMSE than the baseline RANS.

Finally, the main research question has to be answered: How can higher fidelity LES data of
MHD flows be used to generate RANS turbulence models for annular MHD CFD cases? The
training and test results presented in this work show that a generalisable model for annular MHD flows
can be achieved by adding a b∆ij and P∆

k correction field to the k-ω SST turbulence model. Both of
these correction fields were extracted using frozen RANS simulations, where the velocity, and k fields
are kept constant with the LES values. To include MHD effects into the ML models for these fields
the antisymmetric Lorentz force tensor AL is proposed to extend the tensor and invariant basis by
Pope, alongside 12 additional features. The TBNN achieved good results in approximating b∆ij a priori,
although it showed a trend of decreasing accuracy with increasing Hartmann number, and difficulties
in capturing the trends near z = 0, where the Lorentz force is the most intense. This could also be
noticed in the Lumley triangle plots, as the model could not reproduce the quasi-2D turbulence state
in this region of the domain. Very similar observations apply to the SBNN used for P∆

k , which showed
limitations in the same regions and cases as the TBNN. On the other hand the SpaRTA models could
capture the excess production that occurs at the Ha = 120 case near z = 0, which the SBNN could not
predict, but due to its simplicity had overall worse RMSE values for the rest of the cases.

During a posteriori testing, the models trained on all data showed the capability of reducing the
RMSE values of the mean velocity field by a factors between 3.2 and 2.2, thus getting close to the
best possible result for a RANS simulation. Regarding the test models, both the TBNN / SBNN and
TBNN / SpaRTA models showed a trend of decreasing accuracy with increasing Hartmann number,
although for all cases the RMSE of the mean velocity field still represented an improvement over the
k-ω SST baseline. For the Ha = 120 test models the error increased significantly both in a priori and
a posteriori testing, thus indicating that the model is not recommendable for extrapolating to higher
Hartmann number cases than those it has been trained on. Overall, the results also show that there is
room for improvement in terms of the predicted flow fields, and the convergence of the RANS solver
when using the proposed framework. Hence, several suggestions to further improve the performance
of data driven MHD turbulence models are listed in the next section.
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9.1. Recommendations for Future Work
To conclude this report, this section presents suggestions for researchers wishing to build upon this
work.

Including the Modelled LES Turbulence Scales into b∆ij
In this work, the bij and k used in the frozen RANS simulations to extract the correction fields b∆ij
and P∆

k only included the resolved scales of the LES simulations, leaving the modeled scales out. In
retrospective, despite these scales being modelled and therefore containing a modeling error, it is a
more coherent choice to use the contribution from these scales. When not including these scales, the
momentum equation is not fully satisfied due to themissing component of k and bij , leading the solver to
have to compensate for this inequality using the other non-frozen variables, p or the electric potential φ.
Specifically for this flow case this did not result in significant errors, but it introduces another uncertainty
to the simulations.

Lorentz Force Gradient Tensor
The choice of mean flow Galilean and Frame invariant features to be used for expanding Pope’s tensor
and invariant basis is quite limited. Therefore, if more time had been available, it would have been
interesting to test other options for including Lorentz force effects into the tensor basis. The gradient
of the Lorentz force can be used to construct either a symmetric or antisymmetric traceless tensor to
expand the basis:

LS =
1

2

(
∇FL + (∇FL)

T
)
− tr(∇FL)

3
I (9.1) LA =

1

2

(
∇FL − (∇FL)

T
)
. (9.2)

The dimensional versions of these tensors have units [s−2], therefore they be non dimensionalised
using either tmean or tturb squared. Although these tensors have not been used in this work, the
gradient of the Lorentz force is used to create 3 of the additional features presented in Table 6.2, with
one of them having relatively high SHAP values for the SBNN trained on all data, see Figure 7.10.

Changes to Non Dimensionalisation Factors
In the results shown in this work, the non dimensionalisation factor of AL in the TBNN and SBNN
models is t3/2c√

ν
where tc can be either tmean or tmag. In retrospective, this factor is not the best choice,

and it would have been preferred to use also tc√
k
. This is because using material constants such

as kinematic viscosity should be avoided when possible, since this is a parameter which is constant
through all the training cases, and it has units [m2s−1], meaning that it does not contain dimensions
that cannot be provided by other variables such as k or tmean.

Modification to the Loss Function in Training NNs
One of the challenges that arise from using the frozen loop approach is that there are two separate
corrections that have to be modelled instead of one, b∆ij and P∆

k . Both of these contribute to the total Pk.
Hence, to reach the right values, both models have to be accurate. Pk is trained on the assumption that
the model for bij is 100% accurate, but as shown by the a priori results, this is not the case. Therefore, it
could be useful to include a penalty in the training of the models for b∆ij such that during training special
attention is paid to keeping the contribution of b∆ij to Pk as accurate as possible. Using an user defined
parameter αP the new loss function L would be as shown below:

L = RMSE+αP

N∑
m=1

w22k(b
(m)
ij,out − b

(m)
ij,DNS) : ∇ULES (9.3)

where N is the total number of data points used in the training set. It is significant to remark that the
velocity gradient in Equation (9.3) should be from LES, even if the input features for training the model
are extracted from the baseline RANS, since the goal is for the production to be correct when the RANS
solver has converged to a solution very close to the mean flow LES.

Another additional penalty term which could be beneficial is an asymmetry penalty. All fields except
φ are symmetric with respect to the z = 0 axis, with the same applying to bij , with the exception of
the bxz and byz components which are antisymmetric. However, as was noted in Chapter 7 the TBNN
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model made asymmetric predictions for b∆ij . This was probably a result of noise in either the velocity, k
or Lorentz force fields, and was noticeable mainly in the test model for the Ha = 120 case. As shown
in Table 7.2, the dropout level selected for the models was already higher than optimal, thus further
increasing regularisation could be quite detrimental to the accuracy of the model. As an alternative it
would be interesting to implement a penalty to the loss function which penalizes asymmetric predictions.
This would require modification to the pytorch library [43], since the symmetric data point pairs would
have to be included in the same batch in every epoch of training.

Testing the Standard Frozen RANS Framework
The final models presented in this work were constructed using the open loop frozen RANS framework
and the hybrid frozen RANS framework, both of which used the features extracted from a baseline
RANS simulation to train the b∆ij TBNN model. Evaluating the TBNN is too expensive for it to be done
in each time step in a RANS solver, but an alternative is to do it every n time steps. The main benefit
of using this framework is that the training uses features extracted from LES as inputs, which means
that the parameters regressed by the model more accurately represent the physics behind b∆ij . This
becomes more significant the more different the baseline RANS from the mean flow LES fields, since
the input features will also differ more.

Using a Classifier
A final comment that has to be made regarding the training and implementation of the models is the
inclusion of a classifier based on wall distance. The TBNN and SBNN models had to generalise to
both the inner and outer boundary layer, thus having to find a compromise to model very different flow
conditions from the viscous sublayer to the outer log layer. Hence it could be useful to split the modelling
data based on a wall distance based parameter such as Rey, while leaving an overlap between the
datasets to allow for a blending region for continuity. This is similar to what was done for SpaRTA,
except that only the near wall model was required, and it allowed SpaRTA to obtain better a priori
results than the SBNN on the Ha = 120 case despite having only 6 terms in its expression.

Testing Different Geometries
The cases used in this study are all very similar, with the only difference across them being the Hartmann
number. It would be very enriching for the model, especially when aiming for its implementation on
more complex RANS simulations, to train and validate the model in a wider variety of flow geometries.
Training cyclic pipe flows with circular or rectangular cross sections should allow the model to improve
its generalisability considerably. However, from an efficiency stand point it could be very interesting to
investigate non cyclic flows, or flows that show variations in all three dimensions when time averaged.
The reason for this is that cyclic pipe flows are inefficient in terms of the training data they provide. For
instance, the investigated LES cases have a total of 10816000 cells. However, since the averaged flow
in RANS should be averaged to be constant in x direction, and the flow is symmetric, this is reduced to
a total of 20800 unique data points for training from a single case. Therefore, for a simulation with the
same mesh size without constant mean flow quantities in x to be less efficient in terms of Computation
time per training data point, the simulation would have to be 260 times more costly.

In this sense, simulations that include changes in cross section or turns in the pipe / duct could be
interesting to consider for generating training data. However, it is also important that these simulations
remain relevant to the engineering application that the turbulence model is being trained for. For in-
stance, if developing boundary layers are not relevant to the application, then a developing LES pipe
flow simulation is not a recommendable choice, as the model will be sacrificing accuracy in the relevant
turbulence conditions to generalize to the conditions in the developing boundary layer.
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A
The Lumley Triangle

The Lumley triangle graph is an useful way of visualizing the anisotropy of turbulence. For the conve-
nience of the reader, an explanation of how this graph is constructed is given in this section. In this
graph the second and third invariants, I2 and I3, of the normalised anisotropy Reynolds Stress tensor
b are plotted:

I1 = tr(b) (A.1)

I2 =
1

2
(tr(b)2 − tr(b2)) (A.2)

I3 = det(b), (A.3)

where b is the normalised anisotropy Reynolds stress tensor with components bij . The area within
the Lumley triangle represents the domain of possible physically realizable values of the invariants.
The corners of the triangle represent purely 1D, 2D and 3D (isotropic) turbulence with the area within
representing intermediate states.

A different version of the Lumley triangle is to use the η − ζ coordinate system, which is given by
the formula below:

ζ3 = I3/2 (A.4)

η2 = −I2/2. (A.5)

However, the limits of the Lumley triangle are non linear when using these coordinate systems, see
Figure 2.4. Hence, Banerjee [2] proposed a barycentric formulation of the Lumley triangle, where the
limits of the realizable states are defined by linear functions. In this method the three special states
of the anisotropy tensor are used to define the vertices, by mapping the eigenvalues of the tensor to
barycentric coordinates as shown below:

C1c = λ1 − λ2 (A.6)

C2c = 2(λ2 − λ3) (A.7)

C3c = 1 + 3λ3, (A.8)

whereC1c+C2c+C3c = 1 and all are greater than 0. In each corner of the triangle one of the coordinates
is 1 while the rest are 0, representing the 1D,2D and 3D limiting states Then by placing the triangle in
a cartesian coordinate system, like ψ = (ψ, η) any point in the triangle is a convex combination of the
three vertices[2].

ξ = ξ1cC1 + ξ2cC2 + ξ3cC3 (A.9)

The resulting triangle is shown below:
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Figure A.1: The barycentric representation of the Lumley triangle [2].



B
Invariant Basis

This section presents the complete list of the 47 invariants that can be obtained from the following set
of non dimensional antisymmetric and symmetric tensors: Ŝ, Ω̂, ÂK and ÂL. The list was derived
based on the list of invaraints proposed by Wu et al. [64], who used a pressure gradient based tensor
in the place of ÂL. As mentioned in Section 6.5.4, the non dimensionalisation factors for the tensors
changed depending on the regression technique, see Table 6.5.
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3
) (B.3) I4 = tr(Ω̂

2
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2
Ŝ
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2
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ŜÂLŜ
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ÂLŜ

2
) (B.36)

I37 = tr(ÂL
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Finally, for the TBNN and SBNN models the full invariant basis was not used, but instead a subset
of the invariant basis combined with a subset of the additional features presented in Table 6.2. The
lists of used features are presented in Equations (B.48) and (B.49)
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qTBNN =[I1, I5, I6, I8, I9, I11, I12, I15, I18, I19, I21, I32, I35,

I36, I38, I43,Ret, tturb/tmag, νt/100ν, qT , tmean/tmag, qASm]
(B.48)

qSBNN =[I1, I5, I6, I8, I9, I11, I12, I15, I19, I20, I21, I32, I35,

I40, I43, I44,Ret, tturb/tmag,Rey, νt/100ν, qT , tmean/tmag, qASω, qASm, qA]
(B.49)



C
Additional Results

This final section of the appendix contains plots that were initially going to be included in Chapters 7 or
8 but were removed for conciseness.

C.1. Lorentz Force Profiles
Corresponding from the a posteriori testing simulations discussed in Chapter 8

Figure C.1: Longitudinal Lorentz force profiles of the Ha = 40 annular flow simulations with different turbulence models,
including the TBNN and SBNN validation and complete models.
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Figure C.2: Longitudinal Lorentz force profiles of the Ha = 40 annular flow simulations with different turbulence models,
including the TBNN and SpaRTA validation and complete models.

Figure C.3: Longitudinal Lorentz force profiles of the Ha = 60 annular flow simulations with different turbulence models,
including the TBNN and SBNN validation and complete models.
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Figure C.4: Longitudinal Lorentz force profiles of the Ha = 60 annular flow simulations with different turbulence models,
including the TBNN and SpaRTA validation and complete models.

Figure C.5: Longitudinal Lorentz force profiles of the Ha = 120 annular flow simulations with different turbulence models,
including the TBNN and SBNN validation and complete models.
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Figure C.6: Longitudinal Lorentz force profiles of the Ha = 120 annular flow simulations with different turbulence models,
including the TBNN and SpaRTA validation and complete models.


	Preface
	Abstract
	Nomenclature
	Introduction
	Magnetohydrodynamics
	MHD Flows
	MHD Turbulence
	MHD Annular Flow Characteristics

	Introduction to Turbulence Modeling
	The Turbulence Closure Problem
	Galilean and Frame Invariance
	The General Eddy Hypothesis

	MHD Turbulence Modeling

	Data Driven Turbulence Modeling
	Label Selection and Implementation Frameworks
	 Direct Modeling of Anisotropy Reynolds Stress
	The Ill Conditioning of Explicit Data Driven Reynolds Stress Closure
	Field Inversion
	Frozen Approach

	Feature Selection
	Input Features Based on Pope's General Eddy hypothesis
	The Non-Unique Mapping Problem
	Extending the Set of Invariants by Pope
	Other Possible Input Features

	Regression Techniques
	Normalisation of Input Features
	Neural Networks
	Random Forest Approach
	Symbolic Regressions
	 Other Regression Techniques

	Realizability Constraints
	Testing and Validation Methods

	Research Question
	Method
	High Fidelity Data
	RANS Simulation setup
	Baseline Turbulence Model Selection

	Field Propagation
	Standard Open Loop Approach
	Frozen RANS Approach
	Selected Field Propagation Frameworks

	Candidate Basis Tensors and Invariants
	Basis Tensor Selection
	Timescale Selection
	Scalar Basis for Pk

	Regression Techniques
	TBNN
	SBNN
	SpaRTA
	Summary of Regression Inputs

	Test Matrix

	A Priori Testing Results
	Reynolds Stress Anisotropy Correction Results
	Turbulence Production Correction Results
	Scalar Basis Neural Network Model
	SpaRTA Model


	A Posteriori Testing Results
	Summary of Propagation Results
	Convergence of Propagation Simulations
	Ha = 40 Propagation Results
	Ha = 60 Propagation Results
	Ha = 120 Propagation Results
	Turbulence Anisotropy Visualisation
	Propagation Results of SpaRTA Models with 

	Conclusion and Recommendations
	Recommendations for Future Work

	References
	The Lumley Triangle
	Invariant Basis
	Additional Results
	Lorentz Force Profiles


