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Abstract

A new form of high-speed transportation, which involves a magnetically levitated vehicle
that travels through a vacuum tube, is currently under development. Those parts of the
trajectory along which the tube is supported by columns—which possess both axial and
bending stiffness—requires the use of a model that allows to study a form of instability
that is inherent to this type of support. Specifically, the stability is studied of a point
mass with a lateral and vertical degree-of-freedom that moves with constant velocity along
an infinite Euler-Bernoulli beam on coupled lateral-vertical periodically inhomogeneous
foundation. The beam model is able to deflect in both the lateral and vertical direction
and the concentrated mass is attached to this beam by a lateral and vertical contact
spring. With the help of a perturbation method it is shown that the system’s vibrations
can become unstable. As for the model that only exhibits degrees-of-freedom in the
vertical direction, the underlying physical phenomenon is parametric resonance, which
occurs because of the periodic variation of the foundation stiffnesses. For the lateral-
vertical model, this form of instability is referred to as combination parametric resonance,
which yields four instability domains in the velocity-mass parameter space as opposed to
the one domain for the vertical-only model. The center lines of these four domains depend
strongly on the period of inhomogeneity; the larger the period, the higher the velocity at
which instability occurs. Vehicle-structure interaction (i.e. the maglev system) also affects
the center lines considerably; including contact springs between the beam and the point
mass reduces the velocity at which instability occurs. To obtain the complete instability
domains and to be able to investigate the mitigating effect of foundation damping, the
method from another paper is recommended to be used for follow-up research.
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Chapter 1

Introduction

The backdrop of this thesis project is the Hyperloop transportation system; a mode of
transportation that involves a magnetically levitated vehicle [4, 19], or pod, travelling
through a sealed tube from which air is extracted. These two key characteristics remove
the two constraints to which most forms of transportation are subjected: rolling resistance
and air resistance. Eliminating both types of friction enables the pod to reach velocities
beyond those of a high-speed train (∼ 300 km/h) and even enables it to go faster than a
commercial passenger aircraft (∼ 900 km/h) while concurrently requiring less fuel. This
competitive edge in terms of speed and energy efficiency makes the Hyperloop system
a commercially viable alternative to the two aforementioned modes of transportation.
However, in terms of its trajectory towards a full-scale operable means of transport, the
development of the Hyperloop system is still in its infancy and requires to take on many
technical challenges. One of which is to ensure that the pod’s vibrations remain limited
along the entire route; both underground as well as above ground. It is therefore impor-
tant to determine under what conditions the vehicle becomes unstable and to establish
how these conditions can be mitigated if not completely eliminated.

According to the concept design [9], the steel tube above ground is placed on support
columns, which makes the Hyperloop system susceptible to a particular type of dynamic
instability known as parametric resonance; a form of instability caused by periodic vari-
ation of one of the system’s parameters. Besides setting an upper limit on the pod’s
cruising speed—which, once exceeded, would make the pod disperse waves in the guiding
structure that leads to exponential growth of its oscillations—the lower velocity range now
also becomes a concern due to this additional instability phenomenon. In fact, these two
forms of instability are already well described in existing literature; combinations of vehi-
cle mass and velocity that causes the vehicle’s vibration amplitude to grow exponentially
with time are designated in the velocity-mass parameter space by enclosed domains. It is
mentioned that throughout this report the instability associated with the higher velocity
range is referred to as wave-induced instability for brevity and ease of communication,
even though parametric instability can also be considered as instability caused by wave
formation. Because the support columns possess axial as well as bending stiffness, the
foundation model in both the vertical and lateral direction exhibits the same periodic
inhomogeneity; now two system parameters vary periodically instead of one, which neces-
sitates to investigate not just parametric resonance but combination parametric resonance
as well. Moreover, the maglev system makes the vehicle have its own degrees-of-freedom,
which requires to account for vehicle-structure interaction when investigating the system’s
stability.

1



2 CHAPTER 1. INTRODUCTION

The goal of this report is to present the center lines of the instability domains associated
with combination parametric resonance. In particular, Verichev & Metrikine (2003) of-
fer the possibility to derive these lines; in this article, parametric resonance of a beam
model that only exhibits vertical degrees-of-freedom is studied by means of a perturbation
method. Extending the model by including a lateral foundation, which is coupled to its
vertical counterpart, and following the same approach as is used by Verichev & Metrikine
(2003) allows to compute combinations of vehicle mass and velocity that constitute the
center lines of the instability domains. Additionally, to account for the magnetic levi-
tation of the vehicle (the maglev system), the model is augmented by including contact
springs between the vehicle and guiding structure, which enables to investigate the effect
of vehicle-structure interaction on the instability domains’ centers. Despite the notion of
a coupling between the magnetic suspension along the vertical direction and the magnetic
guidance along the lateral direction, this effect is not taken into account in the final model.

The model that is ultimately used to derive the center lines is built step by step. Starting
off in Chapter 2 with the introduction of the concept of the equivalent stiffness and
presenting the different types of beam motion, the third chapter is subsequently used to
derive the instability domain for an oscillator that moves with constant velocity along a
beam on a homogeneous base. After letting the reader get acquainted with the concept
of parametric resonance by means of Mathieu’s equation in Chapter 4, the characteristic
equations that are derived in Chapter 3 are used in Chapter 5 and 6. The fifth chapter
adds complexity to the model of Chapter 3 by replacing the homogeneous base by a
harmonically varying foundation. In an attempt to capture the effect of the maglev
system, a linear contact spring is included in the model of Chapter 6. This last model is
extended in the lateral direction in Chapter 7 by adding the same periodic support along
the y-axis; a coupling with its counterpart along the z -axis makes it possible to derive
the center lines for combination parametric resonance. Final thoughts on the preceded
material and recommendations for further research are included in Chapter 8.



Chapter 2

Wave-induced instability of a point
mass moving uniformly along an
axially compressed infinite
Timoshenko beam on homogeneous
foundation

Throughout this report the vehicle-structure model is reduced to an equivalent oscillator
in order to investigate its stability. The purpose of this chapter is to let the reader become
acquainted with the concept of the equivalent stiffness ; a function that emerges when de-
riving the equivalent oscillator’s characteristic equation and which enables plotting the
instability domain. Furthermore, the four types of beam motion are described and pre-
sented graphically, which will be used for explanatory purposes in the next chapters. All
this is done in the context of investigating the stability of a vehicle that moves with con-
stant velocity along an axially compressed Timoshenko beam on visco-elastic foundation.
This chapter builds on reference [22].

2.1 Equations of motion

The governing equations that describe a uniformly moving point mass along an axially
compressed infinite Euler-Bernoulli beam on homogeneous visco-elastic foundation are
given as [8]:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+N

∂2w

∂x2
+ νf

∂w

∂t
+ kfw = −δ (x− V t)md2w0

dt2

w0 = w|x=V t

(2.1)

and the governing equations that describe a uniformly moving point mass along an axially
compressed infinite Timoshenko beam on homogeneous visco-elastic foundation read [20]:

3



4 CHAPTER 2. WAVE-INDUCED INSTABILITY OF A POINT MASS

ρA
∂2w

∂t2
+GAβ

(
∂ϕ

∂x
− ∂2w

∂x2

)
+N

∂2w

∂x2
+ νf

∂w

∂t
+ kfw = −δ (x− V t)md2w0

dt2

ρI
∂2ϕ

∂t2
+GAβ

(
ϕ− ∂w

∂x

)
−
(
E − N

A

)
I
∂2ϕ

∂x2
= 0

w0 = w|x=V t

(2.2)

The following set of dimensionless parameters and variables is adopted:

κ =
c2A

ω2
0I
, γ =

c2
p

c2
, T =

N

ρAc2
, ν =

νf
ρAω0

, α =
V

c
, M =

mω0

ρAc
,

τ = ω0t, y = x
ω0

c
, W0 (τ) = w0 (t)

ω0

c
, W (y, τ) = w (x, t)

ω0

c

(2.3)

in which cp =
√
E/ρ and cs =

√
G/ρ are the compressional respectively shear wave

velocity in the beam, c = cs
√
β and ω0 =

√
kf/(ρA) is the cut-off frequency of the beam

on elastic foundation. Eq. (2.1) can then be rewritten as:

∂2W

∂τ 2
+
γ

κ

∂4W

∂y4
+ T

∂2W

∂y2
+ ν

∂W

∂τ
+W = −δ (y − ατ)M

d2W0

dτ 2

W0 = W |y=ατ

(2.4)

and Eq. (2.2) as:

∂2W

∂τ 2
+
∂ϕ

∂y
− ∂2W

∂y2
+ T

∂2W

∂y2
+ ν

∂W

∂τ
+W = −δ (y − ατ)M

d2W0

dτ 2

∂2ϕ

∂τ 2
+ κ

(
ϕ− ∂W

∂y

)
− (γ − T )

∂2ϕ

∂y2
= 0

W0 = W |y=ατ

(2.5)

2.2 Interpretation of the equivalent beam stiffness

This section merely discusses the equivalent stiffness χeq (q); its derivation from Eq. (2.4)
and Eq. (2.5) is omitted. The reader is referred to Chapter 3 for a detailed descrip-
tion of the derivation procedure. To be consistent with the dimensionless formulation of
Eq. (2.3), a dimensionless angular frequency and wavenumber, q respectively r, are em-
ployed throughout the remainder of this chapter. Let us start the discussion by addressing
the signage of the plots depicted in Fig. (2.1) and Fig. (2.2). Since the considered stiffness
function is derived by reducing the beam system to an equivalent one-mass oscillator, it is
only reasonable to compare it to the elementary SDoF system. Deriving the latter’s char-
acteristic equation by transforming its homogeneous equation of motion to the Laplace
domain and replacing s by iωn:

−ω2
nm+ iωnc+ k = 0 (2.6)

provides insight into the three components of the equivalent stiffness. From characteristic
Eq. (2.6) it can be readily observed that the negative real part is associated with inertia
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while the positive real part relates to the system’s elasticity. The second term, related to
damping, is imaginary and can be either positive or negative; implying the system to be
either stable respectively unstable. The sign of χeq (q) in Fig. (2.1) and Fig. (2.2) should
be likewise interpreted. See Tab. (2.1).

Table 2.1: Interpretation of the equivalent stiffness by means of the SDoF analogy [22].

A resemblance between the single-degree-of-freedom system’s characteristic equation and
that of the equivalent oscillator:

−Mq2 + χeq (q) = 0 (2.7)

seems evident, though it needs to be noted that Eq. (2.7) is derived from inhomogeneous
equations—Eq. (2.4) and Eq. (2.5)—and that the first term on the left-hand side of
Eq. (2.7) originates from the inhomogeneous right-hand side of these equations of motion
while the stiffness term stems completely from the EoM’s left-hand side; which explains
why χeq (q) expresses the equivalent oscillator’s mechanical components: inertia, damping
and stiffness.

Continuing the discussion on the interpretation of Fig. (2.1) and Fig. (2.2) is aided by
the dispersion curves presented in Fig. (2.3) and Fig. (2.4). For the stationary situation
(α = 0) the blue curves in Fig. (2.1) and Fig. (2.2) show one respectively two abrupt
changes in the gradient. According to reference [22] the corresponding frequencies are
associated with horizontal tangency between the kinematic invariant1 and the dispersion
curve. This is indeed confirmed when reading the valuations of these cut-off frequencies
from the vertical axis in Fig. (2.3) and Fig. (2.4); the blue curve in both the left and right
panel of Fig. (2.1) shows an abrupt change of the gradient around q1 = 1 while in Fig. (2.2)
an additional kink can be observed around q2 = 35. Staying with the stationary situation,
the Euler-Bernoulli respectively Timoshenko model distinguishes three respectively six
cases related to the energy content of the contact point. Whether or not energy dissipates
from this point depends on the formation of propagating waves that radiate away from
the contact point. In the dispersion plane this is indicated by intersections between
the dispersion curve and the kinematic invariant. See Tab. (2.2). No crossing between
these two lines implies that no propagating waves are generated, which means that no
energy is consumed by the beam at the contact point [22]. Tangency between the two

1The kinematic invariant dictates that the phase of the radiated waves should mirror the phase of the
excitation source at the contact point between this source and the beam. The resulting relation between
the angular frequency and wavenumber is pivotal to get insight into the beam’s motion.
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lines indicates the accumulation of energy at the point of contact between the beam and
excitation source.

q < q1 q = q1 q1 < q < q2 q = q2 q > q2

EB none rigid vibrations two waves

Timo none rigid vibrations two waves rigid vibrations and two waves four waves

Table 2.2: Wave formation in the beam for α = 0. The first and second cut-off frequencies
are denoted by q1 respectively q2.

The question now is: how do these observations from the dispersion planes translate to
the blue curves in Fig. (2.1) and Fig. (2.2)? Mapping the aforementioned distinctive cases
onto the blue curves in the two figures above, the cut-off frequencies bound qualitatively
different wave formations [22]. See Tab. (2.2). For the Euler-Bernoulli beam, as for the
Timoshenko beam, excitation below the first cut-off frequency q1 corresponds to a visco-
elastic response (Re(χeq) > 0 and Im(χeq) > 0). The imaginary part of the equivalent
stiffness lies slightly above zero, indicating that energy dissipates from the contact point,
even though it was concluded previously that no propagating waves are excited within
this frequency range. However, unlike the dispersion relation, the equivalent stiffness is
derived by including the foundation viscosity, which forms another energy sink.

Figure 2.1: The real and imaginary part of the equivalent stiffness of the Euler-Bernoulli
beam on visco-elastic foundation along which a point mass moves with constant velocity.
The stiffness is a function of the point mass’s vibratory frequency q and is plotted for a
range of velocity values α. The used parameter values are: N = 0 N, kf = 1× 108 N/m2

and νf = 1× 104 Ns/m2.
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Figure 2.2: The real and imaginary part of the equivalent stiffness of the Timoshenko
beam on visco-elastic foundation along which a point mass moves with constant velocity.
The stiffness is a function of the point mass’s vibratory frequency q and is plotted for a
range of velocity values α. The used parameter values are: N = 0 N, kf = 1× 108 N/m2

and νf = 1× 104 Ns/m2.

Once the first resonance frequency q1 is exceeded—the resonance amplitude is made finite
by the presence of foundation damping which also slightly decreases the associated fre-
quency; cf. the amplitude-frequency characteristic (also known as the frequency-response
function) of an undamped and damped SDoF system—the equivalent oscillator behaves
visco-inertial (Re(χeq) < 0 and Im(χeq) > 0); in addition to the foundation damping,
two propagating waves extract energy from the oscillating point mass. This explains the
increase in the imaginary part of the equivalent stiffness of both beam models. For the
Euler-Bernoulli beam though, no qualitative change of motion can be observed beyond
q1. In contrast, the Timoshenko model does show a change once its second resonance fre-
quency q2 is reached. The fact that around this frequency the real part vanishes—which
also holds for the first cut-off frequency—is no surprise; resonance causes a significant
amplification of the system’s response, which renders its stiffness virtually empty. Af-
ter all, fundamentally, stiffness is defined as the ratio between excitation and response:
lim
w→∞

k = F/w = 0. The real part remains zero beyond q2 due to the fact that within

this frequency band only propagating waves are excited; four in total—the horizontal
kinematic invariant intersects both the first and second branch of Timoshenko’s disper-
sion relation twice. See also the magenta colored panel in Fig. (2.6). Thus, for the
frequency range q > q2, the Timoshenko beam behaves purely viscous at the contact
point: Re(χeq) = 0 and Im(χeq) > 0.
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Figure 2.3: The positive and negative dispersion curves of the Euler-Bernoulli beam on
elastic foundation (solid lines) and the kinematic invariant indicating the minimum phase
velocity (dashed line) for N = 0 N and kf = 1× 108 N/m2.

Finally, the more relevant case of the moving point mass (α > 0) is considered. Once the
excitation source starts moving uniformly along the elastic guide, the kinematic invariant
in the dispersion plane rotates; the slope of which indicates the vehicle’s velocity. See the
dashed lines in Fig. (2.3) and Fig. (2.4). The kinematic invariant is then defined as:

q = Q+ rα (2.8)

in which q is the angular frequency of the excited wave, r is the wavenumber, α the
vehicle’s velocity and Q the excitation frequency. This latter quantity is indicated in the
dispersion plane by the intersection between the kinematic invariant and the vertical axis.
As for the stationary situation, propagating waves are generated once the invariant crosses
the dispersion curve while resonance occurs in case they are tangent to one another.

Returning to Fig. (2.1) and Fig. (2.2), for both beam models, the imaginary part of
the equivalent stiffness drops below zero between 0.3 < α < 0.4; see the inset plot in
the figures; the velocity starts at zero and increases with steps of 0.1. This negative
damping destabilizes the system and is caused by the excitation of anomalous Doppler
waves, which are generated once the vehicle’s velocity is greater than the minimum phase
velocity [13, 22]. See the dashed lines in Fig. (2.3) and Fig. (2.4). More specifically,
from reference [13] it is known that intersection between the kinematic invariant and the
dispersion curve in the lower half of the dispersion plane indicates the excitation of the
anomalous Doppler waves. This explains why negative damping (Im(χeq) < 0) occurs
in the lower range of q ; for an increasingly smaller α-value, Q ought to be reduced in
order to let the kinematic invariant cross the lower dispersion curve. Note that along the
horizontal axis of Fig. (2.1) and Fig. (2.2) the stationary case is implied: q = Q.
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Figure 2.4: The positive and negative dispersion curves of the Timoshenko beam on
elastic foundation (solid lines) and the kinematic invariant indicating the minimum phase
velocity (dashed line) for N = 0 N and kf = 1× 108 N/m2.

2.3 Types of beam motion

Instead of solving the relation that describes the curves in Fig. (2.3) and Fig. (2.4) with
respect to the angular frequency q, the dispersion relation is solved with respect to the
wavenumber r, which allows to graphically present this relation in a way that provides
more insight into the beam’s motion. For the Euler-Bernoulli model, three cases can be
distinguished, depending on the excitation frequency. See the colored panels in Fig. (2.5).
The red panel indicates the situation in which the excitation frequency is below the cut-
off frequency (the green panel), while the blue panel is positioned above this threshold
value. Note that these panels can be interpreted as two-dimensional representations of
the kinematic invariant for which the vehicle velocity is equated to zero. To gain insight
into the beam’s motion associated with each panel, the four types of wavenumbers are to
be substituted in the following waveform:

W (y, τ) = W̃ei(qτ−ry) (2.9)

The wavenumber r can be real, imaginary, complex or zero. Substituting each case in
Eq. (2.9) yields the following four types of beam motion.

r = 0:
W (τ) = W̃eiqτ (2.10)

This motion shows no variation with respect to the spatial coordinate y, it only
dependence on the time coordinate τ ; indicating rigid vibrations as those of an
SDoF system.
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r = ±r:

W (y, τ) = W̃ei(qτ−ry)

W (y, τ) = W̃ei(qτ+ry)
(2.11)

Harmonic waves with constant amplitude travel through the beam in the positive
and negative y-direction.

r = ±ir:

W (y, τ) = W̃eryeiqτ

W (y, τ) = W̃e−ryeiqτ
(2.12)

The beam exhibits vibrations that decay exponentially with increasing distance
from the excitation source. The first equation expresses the vibration of the left
beam domain while the second expresses the right beam domain’s deflection.

r = ±rRe ± irIm:

W (y, τ) = W̃erImyei(qτ−rRey)

W (y, τ) = W̃e−rImyei(qτ−rRey)

W (y, τ) = W̃erImyei(qτ+rRey)

W (y, τ) = W̃e−rImyei(qτ+rRey)

(2.13)

Harmonic waves of which the amplitude decays exponentially with increasing dis-
tance from the excitation source; commonly referred to as evanescent waves [8].
The first and third equation apply to the left beam domain while the second and
fourth apply to the right domain.

Returning to the dispersion curves presented in Fig. (2.5), we are now able to see which
motions are generated in the Euler-Bernoulli beam depending on the excitation frequency.
Below the cut-off frequency four propagating waves with attenuating amplitude are ex-
cited. At the level of the green panel, the stationary vehicle makes the system vibrate
rigidly. This complies with the observation made in the previous section: tangency be-
tween the kinematic invariant and the dispersion curve indicates the vehicle velocity to
be equal to the group velocity of the dispersed waves, which implies that energy does
not propagate away from the excitation source, but instead, accumulates at the contact
point, which in turn leads to resonance. The foundation damping then limits the lin-
early increasing amplitude. As a third possibility, excitation above the cut-off frequency
yields yet another motion picture: propagating waves with constant amplitude as well as
vibrations that decay exponentially with increasing distance from the excitation source.
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Figure 2.5: An alternative graphical depiction of the dispersion relation for the Euler-
Bernoulli beam on elastic foundation for N = 0 N and kf = 1× 108 N/m2. The colored
panels indicate qualitatively different beam motions depending on the angular frequency
of the excitation source.

Further elevation of the angular frequency q presents no qualitative change of the motion
of the Euler-Bernoulli beam. However, in Timoshenko’s case, two other combinations of
beam motions appear. At the level of the cyan colored panel at the right of Fig. (2.6), Tim-
oshenko’s beam will be subjected to rigid vibrations and simultaneously exhibit harmonic
waves with constant amplitude. Increasing q again leads to the dispersion of propagating
waves only; that is, harmonic waves with constant amplitude; cf. Eq. (2.11).

Figure 2.6: An alternative graphical depiction of the dispersion relation for the Timo-
shenko beam on elastic foundation for N = 0 N and kf = 1× 108 N/m2. The colored
panels indicate qualitatively different beam motions depending on the angular frequency
of the excitation source.
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q < q1 q = q1 q1 < q < q2 q = q2 q > q2

EB r = ±rRe ± irIm r = 0 r = ±r, ±ir

Timo r = ±rRe ± irIm r = 0 r = ±rRe, ±irIm r = 0, ±r r = ±r1, ±r2

Table 2.3: Types of beam motion dependent on the angular frequency of the excitation
source q. The first and second cut-off frequencies are denoted by q1 respectively q2.

2.4 Parameter study of the instability domain

In this last section the instability domains of both beam models are presented. How they
are derived is explained in the next chapter; the objective here is to simply point out how
they are to be interpreted and to see how they are affected by changing parameters that
can show significant variability in the field.

The areas enclosed at the right of the curves plotted in Fig. (2.7) to Fig. (2.9) designate
combinations of mass and velocity that lead to instability, while areas at the left of the
straight vertical lines express unconditional stability; no matter the magnitude of the point
mass, the system’s vibrations will not start growing exponentially with time. Once the
minimum phase velocity is exceeded, the value of the concentrated mass must be limited
in order to preserve stability; the greater the velocity, the more the mass’s valuation ought
to be restricted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

Figure 2.7: Instability domain of the Euler-Bernoulli model (grey curves) and Timo-
shenko model (black curves) for different axial forces and for kf = 1× 108 N m−2 and
νf = 1× 104 N s m−2. The minimum phase velocities are indicated by the corresponding
vertical lines.2
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T [-] Euler-Bernoulli Timoshenko

0 0.317 0.310

0.05 0.224 0.215

0.07 0.174 0.162

0.09 0.100 0.078

Table 2.4: Minimum phase velocity for different axial forces.2

Looking at the effect of axial forcing presented in Fig. (2.7), both the Euler-Bernoulli
and Timoshenko model return an instability domain that shifts leftward with increasing
compression force. This implies a more critical, a more dangerous situation that is prone to
instability. It also complies with physical intuition; after all, axial compression ultimately
leads to buckling (static instability). As to the difference between the beam models, it
appears Timoshenko retreats more rapidly towards the left with increasing T relative to
Euler-Bernoulli’s beam. The fact that the latter beam model presents a higher critical
velocity is caused by the infinite shear stiffness it exhibits; characteristic of Timoshenko’s
beam is that it accounts for the deformation associated with shear forcing and therefore
is by its very nature more flexible. See also Fig. (2.8).
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Figure 2.8: Instability domain of the Euler-Bernoulli model (grey curves) and Timo-
shenko model (black curves) for different foundation stiffnesses and for T = 0 and
νf = 1× 104 N s m−2. The minimum phase velocities are indicated by the corresponding
vertical lines.2

2The actual minimum phase velocities are greater, because their current valuation is based on an elastic
foundation model, which excludes damping.
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kf [N m−2] Euler-Bernoulli Timoshenko

1× 108 0.317 0.310

5× 108 0.474 0.453

7× 108 0.515 0.489

9× 108 0.549 0.517

Table 2.5: Minimum phase velocity for different stiffness values.2

Considering the effect of the foundation parameters, Fig. (2.8) and Fig. (2.9) reveal that
both the foundation’s elasticity and viscosity have an oppressive effect on the instability;
increasing either or both parameters leads to a rightward shift of the instability domain.
Here as well, Timoshenko’s model increasingly lags behind Euler-Bernoulli due to the
difference in shear stiffness. In an overall sense, it is thus fair to conclude that added
stiffness and/or viscosity—whether this is incorporated in the beam or foundation—leads
to a more favourable, a safer situation with a higher critical velocity that marks the onset
of conditional stability.
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Figure 2.9: Instability domain of the Euler-Bernoulli model (grey curves) and Tim-
oshenko model (black curves) for different foundation viscosities and for T = 0 and
kf = 1× 108 N m−2.

To conclude, even though for classical railway applications the height-length ratio of
the beam is sufficiently small such that the effect of shearing may be neglected, in the
Hyperloop case this assumption no longer applies given the large diameter of the tube
through which the pod moves. Regardless, throughout the continuation of this report
the Euler-Bernoulli beam is employed to model the guiding system. This simplification
is justified by the fact that this project has been research of an exploratory kind which
necessitates follow-up research that should be focused on obtaining more accurate results.



Chapter 3

Wave-induced instability of an
oscillator moving uniformly along an
infinite Euler-Bernoulli beam on
homogeneous foundation

The article of Metrikine & Dieterman [15] is revisited; the equivalent oscillator’s char-
acteristic equation is derived with more detail, but without the use of a dimensionless
formulation and excluding axial forcing. Furthermore, a spring between the point mass
and the beam is included, which allows to investigate the effect of vehicle-structure in-
teraction on the instability domain’s boundary; the characteristic equation is adapted
accordingly, after which the D-decomposition method is used to determine this boundary.

3.1 Derivation of the characteristic equation

The model that is used to derive the characteristic equation is presented in Fig. (3.1); a
point mass that moves with constant velocity along an infinite Euler-Bernoulli beam on
a homogeneous visco-elastic foundation.

z

x

m

x=Vt

VρA, EI

cfkf

P

Figure 3.1: The model for investigating wave-induced instability of a point mass that
moves along an elastic guide on homogeneous visco-elastic support.
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The equation of motion that describes the beam’s deflection is given as:

ρA
∂2w

∂t2
(x, t) + EI

∂4w

∂x4
(x, t) + cf

∂w

∂t
(x, t) + kfw (x, t) =

−
(
m
d2w0

dt2
(t) + P

)
δ (x− V t)

(3.1)

in which w(x, t) and w0(t) are the vertical deflections of the beam and mass respectively
[m], ρA and EI represent the beam’s distributed mass [kg m−1] respectively the beam’s
bending stiffness [N m2], the distributed foundation viscosity and distributed foundation
stiffness are denoted by cf [N s m−2] and kf [N m−2] respectively, m is the vehicle’s mass
[kg], V is the vehicle’s velocity [m s−1], P denotes constant vertical forcing exerted on the
vehicle [N] and δ(. . .) represents Dirac’s delta function [m−1]. The displacement of the
point mass is dictated by the continuity condition:

w0(t) = w (x = V t, t) (3.2)

Introducing the position coordinate that follows the moving mass along the beam:

ξ = x− V t (3.3)

and replacing x by ξ in the argument of the deflection function, gives:

w (x, t)⇒ w (ξ (x, t) , t) (3.4)

The time and space derivatives of this new deflection function are evaluated by applying
the chain rule for multivariable functions [21]:

∂w

∂t
=
∂w

∂ξ

∂ξ

∂t
+
∂w

∂t

dt

dt
= −∂w

∂ξ
V +

∂w

∂t
⇒ ∂nw

∂tn
=

(
− ∂

∂ξ
V +

∂

∂t

)n
w (3.5)

∂w

∂x
=
∂w

∂ξ

∂ξ

∂x
=
∂w

∂ξ
⇒ ∂nw

∂xn
=
∂nw

∂ξn
(3.6)

Substitution of Eq. (3.2), Eq. (3.5) and Eq. (3.6) in Eq. (3.1) gives:

ρA

(
− ∂

∂ξ
V +

∂

∂t

)2

w (ξ, t) + EI
∂4w

∂ξ4
(ξ, t) + cf

(
− ∂

∂ξ
V +

∂

∂t

)
w (ξ, t) +

kfw (ξ, t) = −
(
m
∂2w

∂t2
(0, t) + P

)
δ (ξ)

(3.7)

To be able to easily solve for w(ξ, t), the equation of motion defined in the moving reference
frame is being transformed to the Fourier-Laplace domain. The forward Fourier and
Laplace transformations are defined as follows:

F {w (ξ, t)} = wk (k, t) =

∞∫
−∞

w (ξ, t) e−ikξdξ ⇒ F
{
∂nw

∂ξn
(ξ, t)

}
= (ik)nwk (k, t) (3.8)

L{w (ξ, t)} = ws (ξ, s) =

∞∫
0

w (ξ, t) e−stdt⇒ L
{
∂nw

∂tn
(ξ, t)

}
= snws (ξ, s) (3.9)
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Applying Eq. (3.8) and Eq. (3.9) to Eq. (3.7) yields the following algebraic equation:1

ρA(s− ikV )2wk,s +EIk4wk,s + cf (s− ikV )wk,s + kfwk,s = −
(
ms2ws|ξ=0 +

P

s

)
(3.10)

In order to find the characteristic equation, Eq. (3.10) is solved for the deflection function:

wk,s = −

(
ms2ws|ξ=0 + P/s

)
D (k, s)

D (k, s) = ρA(s− ikV )2 + EIk4 + cf (s− ikV ) + kf

(3.11)

whereupon the obtained solution is transformed back to the Laplace domain2 by applying
the inverse Fourier transform:

ws (ξ, s) = F−1 {wk,s (k, s)} = −
(
ms2ws|ξ=0 + P/s

) 1

2π

∞∫
−∞

eikξ

D (k, s)
dk (3.12)

The Laplace image of the beam’s deflection at the contact point—L{w (0, t)} = ws(0, s)—
must be defined in order to have a completely determined expression for the beam’s
deflection in the Laplace domain. In finding an expression for ws (0, s), the characteristic
equation of the equivalent oscillator emerges; substitute ξ = 0 in Eq. (3.12) and collect
for ws (0, s):

ws (0, s) = −
(
ms2ws|ξ=0 + P/s

) 1

2π

∞∫
−∞

1

D (k, s)
dk ⇒

(
ms2 + χeq (s)

)
ws (0, s) = −P/s

(3.13)

in which:

χeq (s) =

 1

2π

∞∫
−∞

1

D (k, s)
dk

−1

(3.14)

It is now evident from the SDoF analogy2 that Eq. (3.13) governs the mass’s vertical
motion. And since the equivalent oscillator represents this point mass, which moves with
constant velocity along the beam on visco-elastic foundation, its characteristic equation
can be discerned from Eq. (3.13) once the excitation term is omitted (P = 0):

ms2 + χeq (s) = 0 (3.15)

1The Laplace transformation is applied over time to capture the beam’s transient motion, which results
from the concentrated mass and the point load being applied to the beam at t = 0. After all, using the
Fourier transform instead, would suggest that the point mass and constant forcing P have always been
in contact with the beam, which is false. See the second term of equation 7 in reference [15].

2Compare to the SDoF system. Assuming homogeneous initial conditions, the characteristic equa-
tion of the damped SDoF system can be conveniently derived by means of the Laplace transform:
L{mẍ (t) + cẋ (t) + kx (t) = 0} ⇒

(
ms2 + cs+ k

)
X (s) = 0 ⇒ s1,2 = −n ±

√
n2 − ω2

n, in which

n = c/ (2m) and ωn =
√
k/m. In linear models, the system’s stability is not affected by the initial

conditions. The expression for the vibration reads: x (t) =
∑2

j=1 Cje
sjt. Assuming sub-critical damping

(n < ωn): x (t) = e−nt (A cos (ω1t) +B sin (ω1t)), in which ω1 =
√
ω2
n − n2. Note how the amplitude

increases exponentially with time in case n < 0, or, stated differently, in case Re(s) > 0.
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in which χeq (s) expresses the equivalent stiffness of the foundation-beam system under-
neath the moving mass; see Chapter 2 on how to interpret this quantity.

The ultimate goal is to determine the equivalent oscillator’s natural frequency and
since this frequency is governed by the imaginary part of the characteristic exponent, s in
characteristic Eq. (3.15) is replaced by iωn. In addition, to be able to derive the instability
boundary, the D-decomposition method [5] also requires s to be replaced by iωn. The
updated characteristic equation reads:

−mω2
n + χeq (ωn) = 0 (3.16)

with:

χeq (ωn) =

 1

2π

∞∫
−∞

1

D (k, ωn)
dk

−1

D (k, ωn) = −ρA(ωn − kV )2 + EIk4 + icf (ωn − kV ) + kf

(3.17)

Eq. (3.17) exhibits an improper integral that can be evaluated by means of the contour
integration method [1]. The first step is to generalize the integrand function by replacing
its real argument k by the complex argument z such that k is recovered if z ∈ R. This
procedure is known as analytic continuation and it allows to evaluate the integral along
a closed contour Γ (a loop) in the complex z -plane:∮

Γ

1

D (z, ωn)
dz (3.18)

In [15] the choice is made to close the contour in the upper half-plane, counter-clockwise.
The loop integral then decomposes into:

∮
Γ

1

D (z, ωn)
dz =

∞∫
−∞

1

D (k, ωn)
dk +

∫
arc

1

D (z, ωn)
dz (3.19)

The left-hand side can be evaluated by making use of the residue theory [1]:∮
Γ

1

D (z, ωn)
dz = 2πi

2∑
j=1

Res

[
1

D (z, ωn)

]
z=zj

(3.20)

in which the residue of the generalized integrand can be computed as [1]:

Res

[
1

D (z, ωn)

]
=

(
∂D

∂z
(z, ωn)

)−1

(3.21)

The argument values for which the integrand function is non-analytic (singular) are de-
noted by zj and are referred to as the poles of the integrand. These poles are actually
the roots of the polynomial D(z, ωn) = 0 in z ; that is, the wavenumbers that satisfy the
dispersion relation in Eq. (3.17). Note that Eq. (3.20) should exhibit a minus sign on the
right-hand side in case the contour is closed clockwise instead of anticlockwise. As for the
second term on the right-hand side of Eq. (3.19), the integral evaluates to zero because of
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the arc’s radius going to infinity [1]. Consequently, the original integral can be expressed
as:

∞∫
−∞

1

D (k, ωn)
dk = 2πi

2∑
j=1

(
∂D

∂k
(k, ωn)

)−1

k=kj

(3.22)

and the equivalent stiffness as:

χeq (ωn) =

(
i

2∑
j=1

(
∂D

∂k
(k, ωn)

)−1

k=kj

)−1

(3.23)

Only poles kj that possess a positive imaginary part are of interest because of the choice
to close the contour in the upper half of the complex k -plane. And since the dispersion
relation D(k, ωn) is a polynomial of the fourth order in k, two of the four wavenumber roots
are mirrored in the real axis; they appear as each other’s complex conjugates. Therefore
the summation counter in Eq. (3.23) runs from 1 to 2.

3.2 Augmenting the characteristic equation

The model is extended by including a spring with constant stiffness kcon at the contact
point between the moving point mass and the beam. This updated equivalent oscillator
is depicted in Fig. (3.2). Note that Eq. (3.2) is now no longer valid.

χeq

wb
kmag = 2kll

m

wm

No inertia is present at the 

point of contact between the 

moving oscillator and beam.

m

kcon

χeq

w0

No concentrated inertia 

is present at the point of 

contact between the 

moving oscillator and 

the beam. Recall that 

the equivalent stiffness 

also expresses the 

beam’s inertia; see 

chapter 2.

m

kcon

χeq

w0

No concentrated 

inertia is present at 

the point of contact 

between the moving 

oscillator and the 

beam.

Figure 3.2: The equivalent oscillator with contact spring.

Newton’s second law of motion is transformed to the Laplace domain so as to be able to
find the characteristic equation associated with the new oscillator:

L{Fnet = mẅ0 (t)} ⇒ Fnet = ms2w0 (s) (3.24)

The displacement method is applied in the Laplace domain to find the net force acting at
each degree-of-freedom:

− kconw0 (s) + kconw (0, s) = ms2w0 (s)

kconw0 (s)− kconw (0, s)− χeq (s)w (0, s) = 0
(3.25)
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Note that no concentrated inertia is present at the contact point. Putting Eq. (3.25) in
vector-matrix format:[

ms2 + kcon −kcon
−kcon kcon + χeq (s)

][
w0 (s)

w (0, s)

]
=

[
0

0

]
(3.26)

and letting the determinant of the coefficient matrix vanish while replacing the Laplace
parameter s by iωn yields the augmented characteristic equation:

−mω2
n +

kconχeq (ωn)

kcon + χeq (ωn)
= 0 (3.27)

in which the equivalent spring stiffness χeq (ωn) is defined by Eq. (3.23). Note that the
second term on the left-hand side of Eq. (3.27) is in fact the expression for the equivalent
stiffness of two springs connected in series:

keq =

(
1

k1

+
1

k2

)−1

=

(
k1 + k2

k1k2

)−1

=
k1k2

k1 + k2

(3.28)

as expected when looking at Fig. (3.2).

3.3 The instability domain

The D-decomposition method [5] is employed to determine the instability domain and
investigate how its boundary is affected by the interaction between the vehicle and the
beam. To this end, the mapping rule with respect to the point mass is defined; solving
Eq. (3.27) for m gives:

m =
χ′ (ωn)

ω2
n

χ′ (ωn) =
kconχeq (ωn)

kcon + χeq (ωn)

(3.29)

Note how χeq (ωn) is recovered from χ′ (ωn) for kcon →∞. The adopted parameter values
are listed in Tab. (3.1), which are copied from reference [23] for comparison purposes.
Note that these parameters have a classical railway application and do not represent the
Hyperloop system.

ρ = 7849 kg m−3 A = 7.687× 10−3 m2 I = 3.055× 10−5 m4

E = 2× 1011 N m−2 kf = 1× 108 N m−2 cf = 10 N s m−2

Table 3.1: Parameter set for computing the instability domain’s boundary and calculating
the minimum phase velocity.

Because the instability domain for (combination) parametric resonance is computed for
cf = 0 N s m−2 in Chapter 5 to 7, one might wonder why in this chapter, for the case
of wave-induced instability, cf > 0 N s m−2 is considered. The reason is that one of the
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two poles kj in Eq. (3.23) becomes real when V > V min
ph , see Fig. (5.2); the adopted

contour does not account for this and Eq. (3.23) would return an incorrect valuation of
the equivalent stiffness. Adding a small amount of damping resolves this issue, since the
real root then becomes complex again with a small imaginary part; making the evaluated
integral, from a numerical point of view, an approximation of the actual integral that needs
to be calculated. Another explanation is that the absence of damping would render the
D-decomposition useless; the root s of the equivalent oscillator’s characteristic Eq. (3.15)
would no longer possess a real part,2 which is a problem when trying to determine the
critical mass by means of the D-decomposition method [15].

The instability domain is presented in Fig. (3.3). It is clearly shown that the criti-
cal mass—beyond which the motion is unstable—decreases with increasing velocity. The
physical explanation for this is that instability can only occur if anomalous Doppler waves
are radiated by the moving mass. As the moving mass on the beam has its natural fre-
quency, the real part of the latter should be small enough in order to excite the anomalous
waves; otherwise, the kinematic invariant line will not cross the negative-frequency branch
of the dispersion curve [13]. See Fig. (3.4). And the smaller the velocity, the smaller should
be this frequency. That is why one needs larger mass at smaller velocities and smaller
mass at larger velocities. It also explains why the critical mass decreases with decreasing
spring stiffness kcon.
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Figure 3.3: The effect of vehicle-structure interaction on the boundary of the instability
domain.

For cf → 0, the curves in Fig. (3.3) converge towards the vertical line, which indicates
the minimum phase velocity [15]. See Fig. (3.4). In reference [15] as well as Chapter 2
it is shown that the instability boundary shifts to lower velocity-mass values when the
foundation stiffness and foundation damping are decreased. A similar effect now seems
to be observed in Fig. (3.3) when the stiffness of the contact spring is reduced. However,
this is not the case. In fact, the vertical asymptot towards which the curve converges for
m → ∞ does not shift to the left with decreasing kcon; only the critical mass decreases.
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Note that the aforementioned asymptot does not refer to the vertical line in Fig. (3.3):
Vasymp > V min

ph if cf > 0.

Figure 3.4: Dispersion curves for flexural waves in the Euler-Bernoulli beam on homoge-
neous elastic foundation. The dashed line represents the kinematic invariant and its slope
designates the minimum phase velocity (V min

ph = 905 m/s). See section 5.2.

Characteristic Eq. (3.16) and Eq. (3.27) are employed in Chapter 5 respectively Chapter
6 to investigate parametric instability of the moving point mass respectively the moving
oscillator. For this form of instability as well, the oscillator model allows to study the
effect of vehicle-structure interaction on the instability domain.



Chapter 4

Mathieu’s equation and parametric
resonance

Before we build on the models from Chapter 3 to investigate the instability phenomenon
known as parametric resonance, this intermediate chapter offers an introduction to this
form of instability by means of two elementary SDoF models. Parametric resonance
is a form of instability that occurs in dynamic systems exhibiting time- and/or space-
dependent parameters. The two models considered below are an oscillator of which the
spring stiffness varies harmonically with time and a pendulum of which the distance be-
tween the fulcrum and concentrated mass is subjected to periodic shortening and length-
ening.

4.1 The first instability domain

The two considered parametric SDoF systems are depicted in Fig. (4.1).
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Figure 4.1: An oscillator with a time-dependent spring stiffness (l) and a pendulum with
a varying suspension length (r).

The motion of an SDoF system with a time-varying parameter that does not exhibit
damping and is without any source of external excitation can be described by a homoge-

23
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neous ODE with a time-dependent coefficient. For the oscillator, this differential equation
reads:

mẍ+ k (t)x = 0 (4.1)

The choice is made to let the spring stiffness vary harmonically with time, with small
amplitude µk0 around a non-zero equilibrium value k0 and with frequency ωp:

k (t) = k0 (1 + µ cos (ωpt)) (4.2)

Dividing Eq. (4.1) by the mass m makes the system’s natural or eigenfrequency follow
the same time signature as the spring stiffness. The resulting equation is referred to as
Mathieu’s equation:

ẍ+ ω2
0 (1 + µ cos (ωpt))x = 0 (4.3)

with ω0 =
√
k0/m being the natural frequency of the non-parametric system; that is, the

oscillator whose spring stiffness does not dependent on time. Mathieu’s equation can also
be derived for the pendulum. Starting from the equation that governs its motion (θ � 1):

l (t) θ̈ + gθ = 0 (4.4)

and assigning the same time function to the changing length:

l (t) = l0 (1 + µ cos (ωpt)) (4.5)

gives:
θ̈ + ω2

0(1 + µ cos (ωpt))
−1θ = 0 (4.6)

with ω0 =
√
g/l0. Since the amplitude of the varying length is small (µ � 1), the time-

dependent coefficient in front of the second term on the left-hand side of Eq. (4.6) can
be approximated by a first order Taylor polynomial with respect to µ cos(ωpt); yielding
Mathieu’s equation once more:

θ̈ + ω2
0 (1− µ cos (ωpt)) θ = 0 (4.7)

Eq. (4.3) and Eq. (4.7) can be solved numerically, but it is also possible to propose
an analytical solution that approximates the frequency interval that is associated with
unstable motion of the system; a type of instability that is able to occur in systems
that exhibit time- and/or space-dependent parameters and is referred to as parametric
resonance. The condition for parametric resonance according to references [11, 18] is:

ωp = 2ω0/n , n ∈ N1 (4.8)

As for classical resonance, the excitation frequency needs to coincide with the system’s
natural frequency by a certain ratio in order for the system’s oscillations to grow indef-
initely. This becomes clear when Eq. (4.3) is rewritten as: ẍ + ω2

0x = −ω2
0µ cos (ωpt)x;

note that the forcing term on the right-hand side is proportional to the system’s degree-
of-freedom. Also note that for classical resonance the ratio ωp/ω0 ought to be 1 while for
parametric resonance it is 2/n.

Aiming to find the first instability domain, n = 1, the natural frequency in Eq. (4.8)
is perturbed by a small amount µδ, after which the updated expression for the frequency
of inhomogeneity ωp is substituted in Mathieu’s equation for the oscillator:

ẍ+ ω2
0 (1 + µ cos (2 (ω0 + µδ) t))x = 0 (4.9)
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Assuming the motion of the parametric oscillator is periodic, the following solution is
proposed as a first order approximation:

x (t) = a (µt) cos ((ω0 + µδ) t) + b (µt) sin ((ω0 + µδ) t) (4.10)

in which the coefficients a(µt) and b(µt) are slowly varying time functions compared to
the trigonometric operators. Combining Eq. (4.9) and Eq. (4.10), assuming the functions
a(µt) and b(µt) are described by exponentials—making dna/dtn proportional to µna and
dnb/dtn to µnb—and collecting terms proportional to µ1, yields:

−2ȧω0 sin ((ω0 + µδ) t)− 2aω0µδ cos ((ω0 + µδ) t) +

2ḃω0 cos ((ω0 + µδ) t)− 2bω0µδ sin ((ω0 + µδ) t) +

aω2
0µ cos (2 (ω0 + µδ) t) cos ((ω0 + µδ) t) +

bω2
0µ cos (2 (ω0 + µδ) t) sin ((ω0 + µδ) t) = 0

(4.11)

Using the following trigonometric identities:

cos θ cosϕ =
cos (θ − ϕ) + cos (θ + ϕ)

2
(4.12)

cos θ sinϕ =
sin (θ + ϕ)− sin (θ − ϕ)

2
(4.13)

and omitting terms that exhibit the frequency ‘3 (ω0 + µδ)’, reduces Eq. (4.11) to:

−2 ( ȧ+ bµδ + bω0µ/4 )ω0 sin ((ω0 + µδ) t) +

2 ( ḃ− aµδ + aω0µ/4 )ω0 cos ((ω0 + µδ) t) = 0
(4.14)

In order to satisfy Eq. (4.14), expressions for the slowly varying functions a(µt) and b(µt)
that fulfill the following coupled ODEs need to be derived:

ȧ+ b (δ + ω0/4 )µ = 0

ḃ− a (δ − ω0/4 )µ = 0
(4.15)

Combining both gives:

ä+ a (δ − ω0/4 ) (δ + ω0/4 )µ2 = 0 (4.16)

which can be solved for a by searching for it in the following form:

a (t) =
2∑

n=1

Cne
snt (4.17)

Substitution in Eq. (4.16) and requiring the solution to be non-trivial (Cn 6= 0) gives the
following characteristic equation:

s2
n +

(
δ2 − ω2

0/16
)
µ2 = 0 (4.18)

Whatever the type of instability, the mathematical criterion for instability to occur—
including parametric resonance—is that one of the characteristic exponents sn must pos-
sess a positive real part; making the amplitude of the oscillations grow exponentially
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with time; cf. Eq. (4.10) and Eq. (4.17). However, since the second order polynomial of
Eq. (4.18) does not include a first order term with respect to sn—after all, the system is
without viscous damping—the criterion simplifies to:1

s2
n > 0 (4.19)

or, as follows from Eq. (4.18):
ω2

0/16 − δ2 > 0 (4.20)

The frequency interval that renders the parametric oscillator unstable can now be derived
by solving Eq. (4.20) for δ:

−ω0/4 < δ < ω0/4 (4.21)

and substituting this result into the first order perturbation of the first condition for
parametric resonance:

ωp = 2 (ω0 + µδ) (4.22)

The instability domain can then be presented as:

2ω0 (1− µ/4 ) < ωp < 2ω0 (1 + µ/4 ) (4.23)

To obtain a more accurate approximation of this interval, the proposed solution ought to
include terms with frequencies that differ from ω0 +µqδ by integer multiples of 2(ω0 +µqδ)
[11]:

x (t) =

q∑
p=1

ap (µqt) cos ((2p− 1) (ω0 + µqδ) t) + bp (µqt) sin ((2p− 1) (ω0 + µqδ) t) (4.24)

See Appendix A for the second order calculation.

4.2 Energy analysis

Before attempting to determine the coefficient functions a(µt) and b(µt), a qualitative
energy analysis of the pendulum is described. The total mechanical energy of the system
consists of a kinetic and potential contribution:

E = K + P =
1

2
ml2θ̇2 +mgl (1− cos θ) (4.25)

Idealized by considering there to be no non-conservative forces at work—friction at the
fulcrum is neglected—the total mechanical energy is time-invariant in the non-parametric
case2; the system’s energy content is constant and completely provided by the initial
conditions. However, the amount of energy can grow over time by periodically shortening
and extending the pendulum’s arm by an amount ∆l. According to reference [7], the
pendulum can be rendered unstable by shortening the arm when the mass is at its lowest
point (K = Kmax,P = 0) and extending the arm by the same amount once the mass
reaches its highest point (K = 0,P = Pmax); with every cycle more energy is added at
θ = 0 than is subtracted at θ = θmax. After all, at θ = θmax the maximum potential

1as2 + bs+ c = 0→ s1,2 =
(
−b±

√
b2 − 4ac

)
/ (2a)→ for a = 1 and b = 0: s1,2 = ±

√
−4c/2→ c < 0 for

s1,2 to be real. To express this condition in terms of the roots, sn is squared: s2n = −c→ s2n > 0.
2Refers to the pendulum with constant arm.
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energy reduces because of a decrease of the vertical distance between the mass and the
horizontal reference line while the kinetic energy remains zero at that instant. And while
the kinetic energy reduces at θ = 0 because of a decreasing moment of inertia—m(l–∆l)2—
the potential energy increases.

In order to obtain fully determined expressions for the slowly varying functions a(µt)
and b(µt), we need to return to Eq. (4.18) and solve it with respect to sn:

s1,2 = ±µ
√
ω2

0/16 − δ2 (4.26)

Substitution in Eq. (4.17) gives:

a (µt) = C1e
µt
√
ω2
0/16 −δ2 + C2e

−µt
√
ω2
0/16 −δ2 (4.27)

and by Eq. (4.15), b(µt) reads:

b (µt) = C3e
µt
√
ω2
0/16 −δ2 + C4e

−µt
√
ω2
0/16 −δ2 (4.28)

with:

C3 = −C1

√
ω2

0/16 − δ2

δ + ω0/4
, C4 = C2

√
ω2

0/16 − δ2

δ + ω0/4
(4.29)

The coefficients C1 and C2 are determined by the initial conditions x(t = 0) and dx/dt(t =
0). Looking at the format of Eq. (4.27) and Eq. (4.28), it was correct to assume in
the derivation of the frequency interval of Eq. (4.23) that the functions a(µt) and b(µt)
are described by exponentials. Interesting to note is that constant coefficients a(µt) =
A and b(µt) = B in Eq. (4.10) are associated with the boundaries of the instability
domain; substituting either the lower or upper boundary of δ from Eq. (4.21) in Eq. (4.27)
and Eq. (4.28), one can observe these coefficient functions transforming into constant
coefficients; making s1,2 = 0.3 This notion allows to derive the frequency interval more
rapidly; substitution of a = A and b = B in Eq. (4.15) yields the boundaries from
Eq. (4.21):

δ = ±ω0/4 (4.30)

To demonstrate the effect of the time-varying spring stiffness on the oscillator’s motion,
the constants C1 and C2 are solved for by substituting Eq. (4.27) and Eq. (4.28) in
Eq. (4.10) and making use of the following initial conditions:

x (t = 0) = x0, ẋ (t = 0) = v0 (4.31)

C1 and C2 are then found to be defined as:

C1 =
1

2
x0 +

8 (ω0/4 + δ)

ω0 (µ− 4)
√
ω2

0 − 16δ2
v0 (4.32)

C2 =
1

2
x0 −

8 (ω0/4 + δ)

ω0 (µ− 4)
√
ω2

0 − 16δ2
v0 (4.33)

Adopting the parameter set of Tab. (4.1)

3b(µt) = B = 0
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m = 100 kg k0 = 10 N m−1 µ = 0.3 x0 = 1 m v0 = 1 m s−1

Table 4.1: Parameter set for plotting the oscillator’s displacement and energy content as
functions of time.

the expression for the oscillator’s displacement from Eq. (4.10) is plotted in Fig. (4.2) for
two different δ’s; one that lies outside the interval of Eq. (4.21) and one that is at the
center of the instability domain.

Figure 4.2: Motion of the parametric oscillator for δ = ω0/2 (l) and δ = 0 (r).

Another way to demonstrate that the intervals of Eq. (4.21) and Eq. (4.23) are associated
with instability is by considering the time dependency of the total mechanical energy of
the parametric oscillator. Again, the energy content is composed of a kinetic and potential
part:

E = K + P =
1

2
mẋ2 +

1

2
k (t)x2 (4.34)

Substituting Eq. (4.2) and Eq. (4.10) in Eq. (4.34) and using the parameter set of
Tab. (4.1), the sum of the kinetic and potential energy can be plotted as is done in
Fig. (4.3) and Fig. (4.4) as functions of time for two different δ-values.
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Figure 4.3: Variation of the oscillator’s mechanical energy for δ = ω0/2 (ωp/ω0 = 2.3).

Figure 4.4: Variation of the oscillator’s mechanical energy for δ = 0 (ωp/ω0 = 2).

In accordance with Eq. (4.23), the system’s oscillations and energy content grow exponen-
tially with time in case 1.85 < ωp/ω0 < 2.15; outside this interval the energy fluctuates
around 140 N m and is bounded between 40 N m and 240 N m. This energy analysis
clearly demonstrates that the parametric oscillator is a non-conservative system. After
all, its non-parametric equivalent does not exhibit a time dependency. See Fig. (4.5).
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Figure 4.5: The mechanical energy of the non-parametric oscillator is time-invariant.

By setting µ equal to 0, the perturbation of the mean spring stiffness is removed and the
expression for the motion x(t) of the conservative mass-spring system is recovered from
Eq. (4.10):

x (t) = x0 cos (ω0t) +
v0

ω0

sin (ω0t) (4.35)

Inserting k(t) = k0 and Eq. (4.35) in Eq. (4.34) yields the conservative system’s energy
content:

E = K + P =
1

2
mv2

0 +
1

2
k0x

2
0 =

1

2
× 100× 12 +

1

2
× 10× 12 = 55 N m (4.36)

See Fig. (4.5). Comparing Eq. (4.10) to Eq. (4.35) suggests that Landau & Lifshitz [11]
took inspiration from the solution for the non-parametric system to propose an expression
for the motion of the parametric system; letting the coefficients slowly vary with time
while adding a minor perturbation to the frequency in the argument of the trigonometric
operators, makes it possible to capture the effect of the harmonically time-varying natural
frequency in Mathieu’s equation.4

4.3 The second instability domain

Eq. (4.8) already alluded to multiple frequency intervals. In fact, according to Eq. (4.8)
there are as many instability domains as there are positive integer numbers; that is, an
infinite amount. The second frequency interval, which precedes the first interval from
Eq. (4.23) reads:

ω0

(
1− 5µ2/24

)
< ωp < ω0

(
1 + µ2/24

)
(4.37)

The derivation of this second instability domain is presented in Appendix B. Note how
the width of the second frequency interval is of a second order of smallness with respect
to the perturbation parameter O(µ2) while the range of the first instability domain is of
a first order of smallness O(µ1); suggesting proportionality to µn, with n from Eq. (4.8)

4Eq. (4.24) suggests that Landau & Lifshitz used some form of the Fourier series to solve Mathieu’s
equation. This seems reasonable, since it is likely that the motion of the parametric SDoF system is
periodic.
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[2]. The effect of this increasing order on the instability domain is visualized in Fig. (4.6)
for µ = 0.3.

2

2-μ/2 2+μ/2

1

1-5μ2/24 1+μ2/24

0 2/31/2

2/5

1/3

2/7

Figure 4.6: The first seven frequency intervals associated with parametric resonance.

Note the rapid decrease of the interval width; the second interval already exhibits bound-
aries that almost completely coincide with the center. Also note how the interval centers
lie increasingly closer to one another with increasing interval order; the distance between
the sixth and seventh instability domain is smaller than the distance between the first
and second interval.

4.4 The effect of damping

One may wonder what happens to the instability domain in case damping is included in
the system. See Fig. (4.7). To find out, the damped Mathieu equation is solved in exactly
the same manner as is done in the previous sections.

ẍ+ 2µnẋ+ ω2
0 (1 + µ cos (ωpt))x = 0 (4.38)

The damping factor n (= c/(2m)) is made proportional to the amplitude coefficient µ
[10]. Restricting the analysis to a first order approximation of the first frequency interval,
Eq. (4.10) is substituted in Eq. (4.38) while ωp is replaced by 2(ω0 + µδ); assuming the
functions a(µt) and b(µt) are described by exponentials and collecting terms proportional
to µ1 yields:

−2ȧω0 sin ((ω0 + µδ) t)− 2aω0µδ cos ((ω0 + µδ) t) +

2ḃω0 cos ((ω0 + µδ) t)− 2bω0µδ sin ((ω0 + µδ) t)−

2aµnω0 sin ((ω0 + µδ) t) + 2bµnω0 cos ((ω0 + µδ) t) +

aω2
0µ cos (2 (ω0 + µδ) t) cos ((ω0 + µδ) t) +

bω2
0µ cos (2 (ω0 + µδ) t) sin ((ω0 + µδ) t) = 0

(4.39)

Using Eq. (4.12) and Eq. (4.13) and omitting terms that exhibit the frequency ‘3(ω0+µδ)’,
reduces Eq. (4.39) to:

−2 ( ȧ+ bµδ + aµn+ bω0µ/4 )ω0 sin ((ω0 + µδ) t) +

2 ( ḃ− aµδ + bµn+ aω0µ/4 )ω0 cos ((ω0 + µδ) t) = 0
(4.40)
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k(t)

m

x(t)

l(t)

m

θ(t)

μc

x(t)

m

k(t)μc

Figure 4.7: A visco-elastic oscillator with time-dependent spring stiffness.

The following system of two coupled homogeneous ODEs with constant coefficients needs
to be solved in order to fulfill Eq. (4.40):

ȧ+ aµn+ b ( δ + ω0/4 )µ = 0

ḃ+ bµn− a ( δ − ω0/4 )µ = 0
(4.41)

To solve Eq. (4.41) with respect to a and b, the following solutions are proposed:

a (t) = Cae
st, b (t) = Cbe

st (4.42)

Combining Eq. (4.41) and Eq. (4.42) yields a system of two algebraic equations:[
s+ µn (δ + ω0/4 )µ

− (δ − ω0/4 )µ s+ µn

][
Ca

Cb

]
=

[
0

0

]
(4.43)

Requiring the solution to be non-trivial—Ca 6= 0 and Cb 6= 0—the determinant of the
coefficient matrix of Eq. (4.43) needs to vanish, or, stated differently, the following char-
acteristic equation needs to be satisfied:

s2 + 2µns+ µ2
(
n2 + (δ + ω0/4 ) (δ − ω0/4 )

)
= 0 (4.44)

Solve for the characteristic exponent:

s1,2 = −µn± µ

4

√
ω2

0 − 16δ2 (4.45)

As mentioned above, s1,2 ought to possess a positive real part for instability to occur, and
since all parameters—with the exception of δ—are positive (and real), the first term of
Eq. (4.45) is real and negative while the second term is real for |δ| < ω0/4. So in order
to derive a range for δ that is associated with parametric resonance, one of the two roots
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of Eq. (4.44) needs to be positive with |δ| < ω0/4. Meeting this condition results in the
following interval for δ:

−1

4

√
ω2

0 − 16n2 < δ <
1

4

√
ω2

0 − 16n2 (4.46)

and in terms of ωp:

2ω0 −
µ

2

√
ω2

0 − 16n2 < ωp < 2ω0 +
µ

2

√
ω2

0 − 16n2 (4.47)

Both Eq. (4.46) and Eq. (4.47) show that the damping factor n needs to remain below the
threshold value of ω0/4 in order for the width of the instability domain to be greater than
zero. To see what happens in case the boundaries are zero or even complex, Eq. (4.10)
needs to be fully determined. Substituting Eq. (4.45) in Eq. (4.42) and defining the initial
conditions as x0 and v0, allows to derive the expressions for Ca and Cb:

Ca = x0 (4.48)

Cb =

(
n−

√
ω2

0/16 − δ2
)
µx0 + v0

µδ + ω0

(4.49)

The parameter set of Tab. (4.1) is used to plot Eq. (4.10) for three different damping
factors. See Fig. (4.8) to Fig. (4.10).

Figure 4.8: Motion of the damped parametric oscillator for δ = 0 and n = ω0/8.
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Figure 4.9: Motion of the damped parametric oscillator for δ = 0 and n = ω0/4.

Figure 4.10: Motion of the damped parametric oscillator for δ = 0 and n = ω0/2.

At the center of the instability zone (δ = 0) the oscillations grow exponentially with time
in case the zone has a non-zero width; that is, if n < ω0/4; making one of the characteristic
exponents positive. See Fig. (4.8). For n = ω0/4 one root of the characteristic equation
vanishes, leaving the other to be negative. As a result, the oscillations ultimately reach a
steady-state in which the effect of the harmonic component associated with the negative
root has completely subsided; cf. Fig. (4.9). The third and final scenario is presented by
Fig. (4.10) in which n > ω0/4 renders both roots negative; negating the effect of both
harmonic components as time progresses. It can thus be concluded that the inclusion
of (linear viscous) damping in a parametric system prevents this system from becoming
unstable as long as n ≥ ω0/4.

As an alternative to the solution procedure adopted above, one can also make use of
the perturbation method as described in references [10, 18]. It is this method that will be
employed to solve the problems of the next three chapters.



Chapter 5

Parametric resonance of a point
mass moving uniformly along an
infinite Euler-Bernoulli beam on
harmonically inhomogeneous
foundation

Building on the gained knowledge from the previous two chapters, we are now able to
study the phenomenon of parametric resonance in the beam model. This is done by
revisiting the article of Verichev & Metrikine [23]; intuitive reasoning is replaced by more
explicit explanations and certain concepts are clarified more elaborately. Furthermore,
the reader is provided with an outline of how the plotted data is computed.

5.1 Model and governing equations

The considered model is presented in Fig. (5.1); a point mass that moves with constant
velocity along an infinite Euler-Bernoulli beam on a harmonically inhomogeneous visco-
elastic foundation.

z

x

m

x=Vt

VρA, EI

μcfk(x)

d

Figure 5.1: The model for investigating vertical parametric resonance of a point mass
that moves along an elastic guide on harmonically inhomogeneous visco-elastic support.

35
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The equation of motion, which governs the beam’s (small) vertical vibrations, reads—
as follows from dynamic equilibrium of vertical forces acting on an infinitesimal beam
segment:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ µcf

∂w

∂t
+ k (x)w = 0 (5.1)

with:

k (x) = kf (1 + µ cos (χx)) , χ = 2π/d (5.2)

The interface conditions ensure continuity of the beam’s displacement, rotation and cur-
vature at the point of contact between the point mass and the beam:

[w]x=V t =

[
∂w

∂x

]
x=V t

=

[
∂2w

∂x2

]
x=V t

= 0 (5.3)

The square brackets indicate the difference between the bracketed quantity at the right
and left of the contact point; e.g., lim

ξ→0
(w (x = V t+ ξ, t)− w (x = V t− ξ, t)) = [w]x=V t.

Continuity of the beam’s shear force distribution is interrupted by the presence of the
point mass:

EI

[
∂3w

∂x3

]
x=V t

= −md2w0

dt2
−mg (5.4)

How Eq. (5.4) is derived, is presented in Appendix C. Note that the self-weight of the
point mass is not able to make the system unstable; it does not depend on any of the
system’s degrees-of-freedom.1 Because of this, the second term on the right-hand side of
Eq. (5.4) is omitted henceforth. Finally, the point mass and the beam are in continuous
contact with one another:

w (x = V t, t) = w0 (t) (5.5)

Compare the above formulation with the description of the model from Chapter 3; instead
of using the Dirac delta function to describe the interface between the left and right beam
domain, interface conditions are used to describe the model of Fig. (5.1). This is done
because the delta function does not lend itself for the perturbation method as is used in
reference [23]. In addition to the parameters and variables introduced in Chapter 3, the
following additional quantity symbols are employed:

• µ = amplitude coefficient [-]

• kf = mean foundation stiffness [N/m2]

• χ = wavenumber of inhomogeneity [rad/m]

• d = period of inhomogeneity [m]

• g = gravitational acceleration [m/s2]

1In general, for instability to occur in a dynamic system, it ought to include an external source that
continuously provides the system with energy—allowing its oscillations to grow unlimited with time.
Modelling such a system and writing up its governing equations, one can see excitation terms appearing
that exhibit proportionality to the system’s own degrees-of-freedom; cf. the first term on the right-hand
side of Eq. (5.4).
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Because the variation of the foundation stiffness is small compared to its mean value
(µ � 1), a perturbation method [17, 18] is used to solve Eq. (5.1) with respect to the
beam’s deflection w(x, t); it is assumed that the solution to the homogeneous system
w(0)(x, t) is not affected considerably by the inclusion of a small harmonic inhomogeneity.
The solution is searched for in the following form—of the first order with respect to the
perturbation parameter µ:

w (x, t) = w(0) (x, t) + µw(1) (x, t) (5.6)

w0 (t) = w
(0)
0 (t) + µw

(1)
0 (t) (5.7)

with µw(1) � w(0) and µw
(1)
0 � w

(0)
0 . Substituting Eq. (5.6) and Eq. (5.7) in the governing

equations and collecting terms proportional to µ0 yields the set of governing equations
for the unperturbed problem:

ρA
∂2w(0)

∂t2
+ EI

∂4w(0)

∂x4
+ kfw

(0) = 0

[
w(0)

]
x=V t

=

[
∂w(0)

∂x

]
x=V t

=

[
∂2w(0)

∂x2

]
x=V t

= 0

EI

[
∂3w(0)

∂x3

]
x=V t

= −md2w
(0)
0

dt2

w(0)
∣∣
x=V t

= w
(0)
0

(5.8)

Collecting terms proportional to µ1 yields the set of governing equations for the (first
order) perturbed problem:

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kfw

(1) = −cf
∂w(0)

∂t
− kfw(0) cos (χx)

[
w(1)

]
x=V t

=

[
∂w(1)

∂x

]
x=V t

=

[
∂2w(1)

∂x2

]
x=V t

= 0

EI

[
∂3w(1)

∂x3

]
x=V t

= −md2w
(1)
0

dt2

w(1)
∣∣
x=V t

= w
(1)
0

(5.9)

The equations of motion of (5.8) and (5.9) are solved consecutively; once the solution to
the unperturbed problem w(0) is derived from (5.8), it is substituted at the right-hand
side of the equation of motion of (5.9) where it, combined with the harmonic variation of
the foundation stiffness and the uniformly distributed foundation damping, composes the
forcing term.

5.2 Solution to the unperturbed problem

This problem is partly studied in Chapter 3; no expression for the beam’s vertical deflec-
tion was derived, only the characteristic equation of the equivalent oscillator—that is, the
single-degree-of-freedom system that allows to analyze the moving concentrated mass as
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such. Exploiting this analogy further, the general solution to the problem of the freely
vibrating oscillator reads:

w
(0)
0 (t) = WAe

iωnt +WBe
−iωnt (5.10)

which indeed is the adopted expression for the mass’s vertical displacement. Note that
the coefficients WA and WB are determined by the mass’s initial conditions. As for the
elementary SDoF system, the natural frequency ωn is inferred from the characteristic
equation; for the equivalent oscillator, this equation reads as:

−mω2
n +

(
i

2∑
j=1

(
∂D

∂k
(k, ωn)

)−1

k=kj

)−1

= 0 (5.11)

with:
D (k, ωn) = −ρA(ωn − kV )2 + EIk4 + icf (ωn − kV ) + kf (5.12)

The poles kj in Eq. (5.11) are obtained by equating the dispersion relation of Eq. (5.12)
to zero and solving it for k. Of the four ensuing roots, only those two that possess a
positive imaginary part are of interest; recall, the contour is closed in the upper half of
the complex k -plane; see Chapter 3. Eq. (5.11) is subsequently solved for ωn by means
of a numerical approach; letting ωn run along a range of real positive values, starting at
zero, while observing which two consecutive values make the left-hand side of Eq. (5.11)
switch sign, the natural frequency is then found by linear interpolating between these two
values. Performing this procedure for multiple valuations of the mass and its velocity, the
dependency of ωn on these two parameters can be presented graphically. See Fig. (5.2).
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Figure 5.2: The equivalent oscillator’s natural frequency ωn as a function of the point
mass m and the mass’s velocity V .

The solid curve separates three regimes, each in which the vehicle disperses a different
kind of wave into the beam. Dependent on the combination of its velocity and vibratory
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frequency—below, on or above the curve—the vehicle either generates evanescent waves,
rigid vibrations or harmonic waves respectively; cf. Chapter 2. The associated motion of
the vehicle is referred to as sub-critical, critical respectively super-critical.

ρ = 7849 kg m−3 A = 7.687× 10−3 m2 I = 3.055× 10−5 m4

E = 2× 1011 N m−2 kf = 1× 108 N m−2 cf = 0 N s m−2

Table 5.1: Parameter set for plotting the curves of Fig. (5.2) and Fig. (6.2).

How the bifurcation curve in Fig. (5.2) is constructed, is illustrated in Fig. (5.3); effectively
by tracing the tangency between the kinematic invariant and the dispersion curve for
wavenumbers between k0 and k1. For a non-vibrating excitation source (Ω1 = 0 rad/s)
that moves with constant velocity, the minimum phase velocity with which waves are
dispersed in the beam is obtained by equating the group velocity to the phase velocity
and solving this with respect to the wavenumber; back-substitution of the real positive
wavenumber in either one of the velocity definitions returns the minimum phase velocity
V1. In case the excitation source does vibrate (0 < Ω ≤ ω0), the aforementioned equation
needs to include one extra term: Vgr = Vph − Ω/k.

k

Ω0 = ω0

ω

ω1

k0 k k1

Ω

Ω1 = 0

V1

V

V0 = 0

1

1

Figure 5.3: Deriving the bifurcation curve.

The dispersion relation [8, 16] for bending waves in the Euler-Bernoulli beam on uniformly
distributed elastic foundation is derived by substituting an assumed waveform:

w (x, t) = Wei(ωt−kx) (5.13)

in the equation of motion for this beam model:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ kfw = 0 (5.14)
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The non-trivial solution (W 6= 0) then reads:

−ω2ρA+ k4EI + kf = 0 (5.15)

which constitutes the dispersion relation. Solving this relation with respect to the wave-
frequency ω provides us with two roots; the positive one describes the dispersion curve in
Fig. (5.3):

ω =

√
EI

ρA
k4 + ω2

0, ω0 =

√
kf
ρA

= 1287 rad/s (5.16)

In order to determine the angular frequency ω and wavenumber k with which waves—as
described by Eq. (5.13)—are dispersed in the beam due to a general excitation source:

F (t) = F0e
iΩt (5.17)

that moves with constant velocity V along the guide, the following relationship is inferred
[13]:

ω − kV = Ω⇒ ω = Ω + kV (5.18)

This relationship states that the phase of the induced wave ‘ωt − kx’ mirrors the phase
of the oscillating force ‘Ωt’ at x = V t and is referred to as the kinematic invariant [6].
A graphical representation of Eq. (5.18) is provided by the dashed lines in Fig. (5.3);
intersection with the dispersion curve indicates the excitation of propagating waves of
which the frequencies and wavenumbers are designated by the coordinates of the inter-
section points. However, in Fig. (5.3) the dashed lines do not cross the dispersion curve,
but are tangent to this curve; the horizontal kinematic invariant indicates a stationary
excitation source that vibrates at the cut-off frequency ω0 [16], while the tilted kinematic
invariant crossing the axes’ origin implies a non-vibrating excitation source that moves
with minimum phase velocity along the guide. The phase and group velocity of waves
that propagate through the beam, being defined respectively as:

Vph =
ω

k
=

√
EI

ρA
k2 +

(ω0

k

)2

(5.19)

Vgr =
dω

dk
=

2EIk3√
ρA (EIk4 + kf )

(5.20)

allow for the derivation of the minimum phase velocity; equating the right-hand sides of
Eq. (5.19) and Eq. (5.20) and solving for the wavenumber, provides four roots, one of
which is real and positive, i.e. k1 = 4

√
kf/EI. Back-substitution of this wavenumber in

either Eq. (5.19) or Eq. (5.20) yields the expression for the minimum phase velocity:

V1 = V min
ph = 4

√
4EIω2

0

ρA
= 905 m/s (5.21)

Note how the velocity-frequency pairs (V0,Ω0) = (0, 1287) and (V1,Ω1) = (905, 0) denote
the two outer points of the bifurcation curve in Fig. (5.2). In order to find an expression
for the points in between, the same procedure is repeated; except now, the definition of
the phase velocity needs to be extended by an extra term:

Vph −
Ω

k
(5.22)
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Equating this to the definition of the group velocity and solving it with respect to the
wavenumber k returns eight roots, two of which are real and positive but only one goes
from k1 to k0 when the forcing frequency Ω elevates from zero to the cut-off frequency ω0;
cf. Fig. (5.3). This wavenumber is defined as:

k (Ω) =

(
ρAΩ2 + 2kf −

√
ρAΩ2 (ρAΩ2 + 8kf )

2EI

)1/4

(5.23)

Note how k(Ω = 0) = k1 and k(Ω = ω0) = k0 = 0. Substituting Eq. (5.23) back in either
Eq. (5.20) or Eq. (5.22) yields the expression for the critical velocity:

V = Vcr (Ω) =

 8EI
(
ρAΩ2 + 2kf −

√
ρAΩ2 (ρAΩ2 + 8kf )

)3

ρ2A2
(
ρAΩ2 + 4kf −

√
ρAΩ2 (ρAΩ2 + 8kf )

)2


1/4

(5.24)

which describes the bifurcation curve in Fig. (5.2).
Returning to the problem of the moving mass, it needs to be noted that ‘free’ vibrations

are investigated; no external forcing with an inherent frequency is exerted on the beam.
Thus, for this problem, the natural frequency of the equivalent oscillator ωn is in fact
the excitation frequency Ω. Consequently, the bifurcation curve may be compared to the
dashed curves in Fig. (5.2). As is shown in reference [13], once the kinematic invariant
crosses the dispersion curve, anomalous Doppler waves are dispersed in the beam, which
render the system unstable. Also, tangency between the invariant and the curve implies
that the excitation source moves with a velocity equal to the waves’ group velocity; the
associated energy does not propagate away from the source, but accumulates at the loading
point, which leads to resonance. Neither wave-induced instability nor classical resonance
is the aim of this research and so, as to be able to investigate under what conditions
instability arises as a result of periodically varying foundation stiffness, it is required to
let the kinematic invariant remain below the dispersion curve. Given Tab. (5.1), Fig. (5.2)
shows that this requirement is met for three different mass valuations. In fact, as long as
m ≥ 0, the natural frequency function is bounded by the bifurcation curve.

The only remaining task to solve the unperturbed problem completely, is to come
up with an expression for the beam’s deflection. Given the general complex waveform
of Eq. (5.13), the expression for the vertical displacement of the mass by Eq. (5.10)
and adopting a local coordinate system that follows this moving mass (ξ = x − V t) the
following solution is proposed:2

w(0) (x, t) =



WA1e
i(Ωt−kA1 ξ) +WA2e

i(Ωt−kA2 ξ)+

WB1e
−i(Ωt+kB1 ξ) +WB2e

−i(Ωt+kB2 ξ), ξ ≥ 0

WA3e
i(Ωt−kA3 ξ) +WA4e

i(Ωt−kA4 ξ)+

WB3e
−i(Ωt+kB3 ξ) +WB4e

−i(Ωt+kB4 ξ), ξ ≤ 0

(5.25)

The wavenumbers kA,B1,2,3,4 are derived from Eq. (5.15) combined with Eq. (5.18). Note
the resemblance to dispersion Eq. (5.12); the same waveform of Eq. (5.13) is assumed,
except the phase exhibits different signage: ωt + kx instead of ωt − kx. Because we are

2A more rigorous derivation of the beam’s deflection field is presented in reference [15].
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solely interested in the mass’s sub-critical behaviour, accordingly, the kinematic invariant
ought to remain below the dispersion curve, which makes these wavenumbers complex:

Im
(
kA,B1,2

)
< 0 and Im

(
kA,B3,4

)
> 0. See Eq. (2.13) and Fig. (2.5). The W -coefficients are

determined by the interface and continuity conditions of Eq. (5.8) [13]. See Appendix D.

5.3 Analysis of the perturbed problem

In this section, the system of Eq. (5.9) is analyzed in order to determine under which con-
ditions parametric resonance occurs. Substituting Eq. (5.25) in the perturbed equation
of motion while setting cf = 0—according to Chapter 4, the first criterion for paramet-
ric resonance is not affected by the exclusion of damping—and employing the following
identity from Euler’s formula:

cos (χx) =
eiχx + e−iχx

2
(5.26)

the right-hand side of the perturbed equation of motion can then be written out as:

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kfw

(1) =

− kf
2



WA1e
i(kA1 V+Ω)tei(χ−k

A
1 )x +WA2e

i(kA2 V+Ω)tei(χ−k
A
2 )x+

WA1e
i(kA1 V+Ω)te−i(χ+kA1 )x +WA2e

i(kA2 V+Ω)te−i(χ+kA2 )x+

WB1e
i(kB1 V−Ω)tei(χ−k

B
1 )x +WB2e

i(kB2 V−Ω)tei(χ−k
B
2 )x+

WB1e
i(kB1 V−Ω)te−i(χ+kB1 )x +WB2e

i(kB2 V−Ω)te−i(χ+kB2 )x, x ≥ V t

WA3e
i(kA3 V+Ω)tei(χ−k

A
3 )x +WA4e

i(kA4 V+Ω)tei(χ−k
A
4 )x+

WA3e
i(kA3 V+Ω)te−i(χ+kA3 )x +WA4e

i(kA4 V+Ω)te−i(χ+kA4 )x+

WB3e
i(kB3 V−Ω)tei(χ−k

B
3 )x +WB4e

i(kB4 V−Ω)tei(χ−k
B
4 )x+

WB3e
i(kB3 V−Ω)te−i(χ+kB3 )x +WB4e

i(kB4 V−Ω)te−i(χ+kB4 )x, x ≤ V t

(5.27)

Adopting the solution procedure for ordinary inhomogeneous differential equations, the
total solution is composed of two parts; the homogeneous solution—in the context of
classical mechanics, this solution usually represents the free motion of the system—and
the particular solution, which signifies the forced motion:

w(1) = w
(1)
h + w(1)

p (5.28)

As for an inhomogeneous ordinary differential equation, the particular solution of partial
differential Eq. (5.27) is found by means of the so-called Method of Undetermined Co-
efficients—this method can be employed whenever the right-hand side terms belong to
a limited group of functions; them being: polynomials, exponentials and trigonometric
functions [3]. The forced solution reads:
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w(1)
p (x, t) =



C11e
i(kA1 V+Ω)tei(χ−k

A
1 )x + C12e

i(kA2 V+Ω)tei(χ−k
A
2 )x+

C21e
i(kA1 V+Ω)te−i(χ+kA1 )x + C22e

i(kA2 V+Ω)te−i(χ+kA2 )x+

C31e
i(kB1 V−Ω)tei(χ−k

B
1 )x + C32e

i(kB2 V−Ω)tei(χ−k
B
2 )x+

C41e
i(kB1 V−Ω)te−i(χ+kB1 )x + C42e

i(kB2 V−Ω)te−i(χ+kB2 )x, x ≥ V t

C13e
i(kA3 V+Ω)tei(χ−k

A
3 )x + C14e

i(kA4 V+Ω)tei(χ−k
A
4 )x+

C23e
i(kA3 V+Ω)te−i(χ+kA3 )x + C24e

i(kA4 V+Ω)te−i(χ+kA4 )x+

C33e
i(kB3 V−Ω)tei(χ−k

B
3 )x + C34e

i(kB4 V−Ω)tei(χ−k
B
4 )x+

C43e
i(kB3 V−Ω)te−i(χ+kB3 )x + C44e

i(kB4 V−Ω)te−i(χ+kB4 )x, x ≤ V t

(5.29)

The C -coefficients are determined by substituting Eq. (5.29) in Eq. (5.27) for w(1) and
solving for the unknown coefficient per time-space signature. See Appendix D. Now that
w

(1)
p is completely determined, the free deflection field w

(1)
h remains to be defined. To

this end, the corresponding set of governing equations needs to be formulated; insert-
ing Eq. (5.28) in Eq. (5.27)—taking into account that Eq. (5.29) forms the solution to
Eq. (5.27)—as well as in the interface and continuity conditions of Eq. (5.9), the following
system is obtained:

ρA
∂2w

(1)
h

∂t2
+ EI

∂4w
(1)
h

∂x4
+ kfw

(1)
h = 0[

w
(1)
h

]
x=V t

= D01e
it(V χ+Ω) +D02e

−it(V χ−Ω) +D03e
it(V χ−Ω) +D04e

−it(V χ+Ω)

[
∂w

(1)
h

∂x

]
x=V t

= D11e
it(V χ+Ω) +D12e

−it(V χ−Ω) +D13e
it(V χ−Ω) +D14e

−it(V χ+Ω)

[
∂2w

(1)
h

∂x2

]
x=V t

= D21e
it(V χ+Ω) +D22e

−it(V χ−Ω) +D23e
it(V χ−Ω) +D24e

−it(V χ+Ω)

[
∂3w

(1)
h

∂x3

]
x=V t

= − m

EI

d2w
(1)
0

dt2
+D31e

it(V χ+Ω) +D32e
−it(V χ−Ω)+

D33e
it(V χ−Ω) +D34e

−it(V χ+Ω)

w
(1)
h

∣∣∣
x=V t

= w
(1)
0 +D41e

it(V χ+Ω) +D42e
−it(V χ−Ω) +D43e

it(V χ−Ω) +D44e
−it(V χ+Ω)

(5.30)

The definitions of the D-coefficients are listed in Appendix D. At this point we are not
interested in a fully determined expression for the beam’s deflection; this would require
to solve Eq. (5.30) with respect to w

(1)
h . Fortunately, as such, the system of Eq. (5.30)

does already provide sufficient insight into the effect of the foundation’s harmonic inho-
mogeneity. This effect, which is expressed by the particular solution, presents itself at
the right-hand side of the interface conditions. In particular, the four additional terms
that appear on the right-hand side of the balance of vertical forces; each varying with a
different time signature. Classical resonance, as is well known, occurs once the excitation
frequency coincides with one of the system’s natural frequencies. Following the same
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reasoning here—given the frequencies of the four aforementioned forcing terms—there is
only one excitation frequency that allows for the derivation of a condition for parametric
resonance once it is equated to the natural frequency of the unperturbed system (ωn = Ω):

V χ− Ω = Ω⇒ V χ = 2Ω (5.31)

After all, the EoM denoted in Eq. (5.30) describes the motion of the unperturbed system;
cf. Eq. (5.8). The other three time signatures are not able to balance with the natural
frequency, because the mass’s velocity V , the wavenumber of inhomogeneity χ and the
excitation frequency Ω are all greater than zero. Note the resemblance of Eq. (5.31) to
the first condition for parametric resonance in systems described by Mathieu’s equation:
ωp = 2ω0. See Chapter 4.

5.4 The instability domain

Eq. (5.31) defines the instability domain’s center (Chapter 4), which is a curve in the
velocity-mass parameter space. See Fig. (5.4). Based on the data of Fig. (5.2), this curve
is plotted by checking numerically for each mass value which combination of velocity and
natural frequency Eq. (5.31) balances. Doing this for three different valuations of χ, one
can observe that an increase in the period of inhomogeneity leads to an elevation of the
critical mass; the velocity at which parametric instability occurs increases.
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Figure 5.4: Center line of the first instability domain for three different periods of inho-
mogeneity.

Though a resemblance may be noted between the curves of Fig. (5.4) and those that
represent the boundary of the wave-induced instability domain—see Chapter 2 and 3—it
is underlined that the area at the right of the curves in Fig. (5.4) does not indicate combi-
nations of V and m that lead to instability. In fact, the area that encloses unstable V -m
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coordinates is very limited compared to the area that corresponds to wave-induced insta-
bility. Repeating the procedure outlined in [23], the domain’s boundary associated with
parametric instability is plotted in Fig. (5.5) for three different periods of inhomogeneity;
an increase in d leads to a widening of the instability region.

0 0.01 0.02 0.03 0.04
0

500

1000

1500

2000

2500

3000

Figure 5.5: Deviation line of the first instability domain for three different periods of
inhomogeneity.

The fact that the parametric instability domain—which is centered around the curve of
Fig. (5.4) and bounded at the left and right by the curve of Fig. (5.5)—is a very narrow
strip, is a result of the model’s weak inhomogeneity (µ� 1).

To conclude, it is checked if there is a special relationship between parametric reso-
nance and the radiation of anomalous Doppler waves. That is, if combinations of V and
m that lie inside the instability domain associated with parametric resonance give rise
to the dispersion of anomalous Doppler waves exclusively outside the instability domain
associated with wave-induced instability; cf. Fig. (3.3), Fig. (5.4) and Fig. (5.5). To this
end, we return to the system of Eq. (5.30) and employ the four time signatures one by one
as excitation frequency Ω in the dispersion relation that is formed by combining Eq. (5.15)
and Eq. (5.18). Solving this relation with respect to the wavenumber k provides insight
into the type of wave that is radiated; normal Doppler or anomalous Doppler. According
to reference [13], wavenumbers that lie in the third quadrant of the dispersion plane are
anomalous Doppler. Doing this for a combination of V and m that lies on one of the
center lines of Fig. (5.4) shows that anomalous Doppler waves are indeed dispersed in the
beam under the condition for parametric resonance. See Fig. (5.6). However, this also
turns out to be true for a combination outside the instability domain—see Fig. (5.7)—
which suggests that there is no special relation. An energy analysis should be conducted
to see what is going on in more detail.
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Figure 5.6: Higher-order kinematic invariants inside the domain of parametric resonance.

Figure 5.7: Higher-order kinematic invariants outside the domain of parametric resonance
and outside the domain of wave-induced instability.



Chapter 6

Parametric resonance of an oscillator
moving uniformly along an infinite
Euler-Bernoulli beam on
harmonically inhomogeneous
foundation

The effect of vehicle-structure interaction on the instability domain’s center line is inves-
tigated. To this end, the method presented in reference [23] is used again, except now,
the governing equations account for the contact spring. Will it affect the critical mass in
a similar manner as is observed in the case of wave-induced instability? See Chapter 3.

6.1 Model and governing equations

The model is presented in Fig. (6.1); a one-mass oscillator that moves with constant
velocity along an infinite Euler-Bernoulli beam on a harmonically inhomogeneous visco-
elastic foundation.

z

x

m

x=Vt

V

ρA, EI

μcfk(x)

kcon

d

Figure 6.1: The model for investigating vertical parametric resonance of a one-mass os-
cillator that moves along an elastic guide on harmonically inhomogeneous visco-elastic
support.

Of the governing equations, only the balance of vertical forces at the interface and the

47
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continuity condition change due to the inclusion of the contact spring:

EI

[
∂3w

∂x3

]
x=V t

= Fs, m
d2w0

dt2
= −Fs −mg (6.1)

Fs = kcon (w0 − w|x=V t) (6.2)

The derivations of Eq. (6.1) and Eq. (6.2) are provided in Appendix E. Henceforth,
the dead weight mg is neglected. Following the exact same steps as in Chapter 5, the
perturbation method yields the following unperturbed system of equations:

ρA
∂2w(0)

∂t2
+ EI

∂4w(0)

∂x4
+ kfw

(0) = 0

[
w(0)

]
x=V t

=

[
∂w(0)

∂x

]
x=V t

=

[
∂2w(0)

∂x2

]
x=V t

= 0

F (0)
s = EI

[
∂3w(0)

∂x3

]
x=V t

, F (0)
s = −md2w

(0)
0

dt2

F (0)
s = kcon

(
w

(0)
0 − w(0)

∣∣
x=V t

)
(6.3)

and returns the following perturbed system:

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kfw

(1) = −cf
∂w(0)

∂t
− kfw(0) cos (χx)

[
w(1)

]
x=V t

=

[
∂w(1)

∂x

]
x=V t

=

[
∂2w(1)

∂x2

]
x=V t

= 0

F (1)
s = EI

[
∂3w(1)

∂x3

]
x=V t

, F (1)
s = −md2w

(1)
0

dt2

F (1)
s = kcon

(
w

(1)
0 − w(1)

∣∣
x=V t

)
(6.4)

6.2 Solution to the unperturbed problem

Including the contact spring in the model does not lead to a change of Eq. (5.10) and
Eq. (5.25). After all, the only change made to the equivalent oscillator is the insertion
of a spring with constant stiffness between the equivalent spring and the point mass; cf.
Chapter 3. This new spring system in series does require however to edit the equivalent
oscillator’s characteristic equation accordingly; as derived in Chapter 3, the augmented
equation reads:

−mω2
n + χ′ (ωn) = 0 (6.5)

with:

χ′ (ωn) =
kconχeq (ωn)

kcon + χeq (ωn)

χeq (ωn) =

(
i

2∑
j=1

(
∂D

∂k
(k, ωn)

)−1

k=kj

)−1

D (k, ωn) = −ρA(ωn − kV )2 + EIk4 + icf (ωn − kV ) + kf

(6.6)
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The dependency of the oscillator’s natural frequency ωn on the valuation of the point
mass m and the mass’s constant velocity V is shown in Fig. (6.2).
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Figure 6.2: The augmented equivalent oscillator’s natural frequency ωn as a function of
the point mass m and the mass’s velocity V. The parameter set from Tab. (5.1) is used
to plot these curves.

As it turns out, including the contact spring with finite stiffness demotes the natural
frequency for every mass valuation and for every velocity; compare the dashed grey curves
to their black counterparts. This change can be explained qualitatively by making a
comparison to the analytical expression for the natural frequency of the elementary SDoF
system: ωn =

√
k/m; decreasing the spring stiffness, which appears in the numerator

of the radicand, again, reduces the natural frequency. In turn, decreasing the mass also
results in an elevation of the natural frequency.

Before addressing the perturbed problem, it is pointed out that the W -coefficients in
the expression for the vertical deflection field of the unperturbed beam are now defined
by a different set of conditions. The four conditions that were used in the case without
the contact spring read:

w(0) +
∣∣
x=V t

= w
(0)
0 , w(0) −∣∣

x=V t
= w

(0)
0 ,

∂w(0) +

∂x

∣∣∣∣
x=V t

=
∂w(0) −

∂x

∣∣∣∣
x=V t

,

∂2w(0) +

∂x2

∣∣∣∣
x=V t

=
∂2w(0) −

∂x2

∣∣∣∣
x=V t

(6.7)

in which:

w(0) + = WA1e
i(Ωt−kA1 ξ) +WA2e

i(Ωt−kA2 ξ) +WB1e
−i(Ωt+kB1 ξ) +WB2e

−i(Ωt+kB2 ξ) (6.8)

w(0) − = WA3e
i(Ωt−kA3 ξ) +WA4e

i(Ωt−kA4 ξ) +WB3e
−i(Ωt+kB3 ξ) +WB4e

−i(Ωt+kB4 ξ) (6.9)
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Including the contact spring requires an additional term at the right-hand side of the first
two conditions of Eq. (6.7). From Eq. (6.3), combining the second equation of the pair
that constitutes the balance of forces with the continuity condition yields the following
four conditions:

w(0) +
∣∣
x=V t

= w
(0)
0 +

m

kcon

d2w
(0)
0

dt2
, w(0) −∣∣

x=V t
= w

(0)
0 +

m

kcon

d2w
(0)
0

dt2
,

∂w(0) +

∂x

∣∣∣∣
x=V t

=
∂w(0) −

∂x

∣∣∣∣
x=V t

,
∂2w(0) +

∂x2

∣∣∣∣
x=V t

=
∂2w(0) −

∂x2

∣∣∣∣
x=V t

(6.10)

The mass’s acceleration gives the beam an extra pull or push in the contact point via the
spring. Note that w

(0)
0 ≥ w(0) ±

∣∣
x=V t

, otherwise the girder and concentrated mass would
pass each other, which is not possible. Substitution of Eq. (6.8) and Eq. (6.9) in Eq. (6.10)
yields for each time signature n (= A,B) the following set of algebraic equations:

Wn1 +Wn2 = Wn

(
1−mΩ2/kcon

)
Wn3 +Wn4 = Wn

(
1−mΩ2/kcon

)
kn1Wn1 + kn2Wn2 = kn3Wn3 + kn4Wn4

(kn1 )2Wn1 + (kn2 )2Wn2 = (kn3 )2Wn3 + (kn4 )2Wn4

(6.11)

The solution to the system of Eq. (6.11) reads:

Wn1 = −Wn
(kn2 − kn3 ) (kn2 − kn4 )

(kn1 + kn2 − kn3 − kn4 ) (kn1 − kn2 )

(
1− mΩ2

kcon

)
Wn2 = +Wn

(kn1 − kn3 ) (kn1 − kn4 )

(kn1 + kn2 − kn3 − kn4 ) (kn1 − kn2 )

(
1− mΩ2

kcon

)
Wn3 = +Wn

(kn1 − kn4 ) (kn2 − kn4 )

(kn1 + kn2 − kn3 − kn4 ) (kn3 − kn4 )

(
1− mΩ2

kcon

)
Wn4 = −Wn

(kn1 − kn3 ) (kn2 − kn3 )

(kn1 + kn2 − kn3 − kn4 ) (kn3 − kn4 )

(
1− mΩ2

kcon

)
(6.12)

Note that the inclusion of the contact spring makes the W -coefficients a function of the
excitation frequency Ω. The W -coefficients from Appendix D are retrieved for kcon →∞.

6.3 Analysis of the perturbed problem

The condition for parametric resonance (V χ = 2Ω) does not change, because the balance
of forces at the interface exhibits the same forcing terms with the same time signatures
as for the case without the contact spring (cf. Eq. (5.30)):

F (1)
s = EI

[
∂3w

(1)
h

∂x3

]
x=V t

− EI

(
D31e

it(V χ+Ω) +D32e
−it(V χ−Ω)+

D33e
it(V χ−Ω) +D34e

−it(V χ+Ω)

)
(6.13)

F (1)
s = −md2w

(1)
0

dt2
(6.14)
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F (1)
s = kcon

(
w

(1)
0 − w

(1)
h

∣∣∣
x=V t

)
+ kcon

(
D41e

it(V χ+Ω) +D42e
−it(V χ−Ω)+

D43e
it(V χ−Ω) +D44e

−it(V χ+Ω)

)
(6.15)

The C - and D-coefficients are defined in Appendix D.

6.4 The instability domain’s center line

According to Fig. (6.3), the contact spring reduces the critical mass; the velocity at
which parametric instability occurs decreases. In Chapter 3 a similar effect is observed
for wave-induced instability; introducing a spring between the mass and beam lowers the
instability domain’s boundary. Unfortunately, at the moment of writing this, I am not
able to provide a physical explanation for this effect in the case of parametric instability.
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Figure 6.3: The effect of vehicle-structure interaction on the center line.
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Chapter 7

Combination parametric resonance
of a uniformly moving point mass
connected by springs to an infinite
Euler-Bernoulli beam on coupled
lateral-vertical harmonically
inhomogeneous foundation

Thus far, only the stability of the mass’s vertical oscillations has been investigated; both
wave-induced instability as well as parametric resonance were examined. But what about
the lateral oscillations and the interaction with its vertical counterpart? How does an
additional degree-of-freedom affect the instability zone for parametric resonance in the
velocity-mass parameter space and under what conditions is this combination resonance
possible? These questions are answered in this chapter by extending the method that is
presented in reference [23].

7.1 Model and governing equations

The model includes a concentrated mass that moves uniformly along an infinite Euler-
Bernoulli beam and is connected to this beam by a lateral and vertical contact spring.
The beam itself is in both directions supported by the same harmonically inhomogeneous
visco-elastic foundation in which only the elastic component varies harmonically along
the x -coordinate; the damping is uniformly distributed. A stiffness coupling is created in
the foundation: a displacement in one direction leads to a distributed forcing in the other
direction. The second moment of area around the y- and z -axis is the same: Iyy = Izz = I.
See Fig. (7.1).

53
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z

x

m

x=Vt

V

ρA, EIyy, EIzz

kzz(x), kzy(x), μcf

y

kcon,yy

kyy(x), kyz(x), μcf

kcon,zz

d

Figure 7.1: The model for investigating combination parametric resonance of a two-
degrees-of-freedom one-mass oscillator that moves along an elastic guide on coupled
lateral-vertical harmonically inhomogeneous visco-elastic support.

The equations that govern this model read as follows.

• The equations of motion (EoMs):

ρA
∂2v

∂t2
+ EI

∂4v

∂x4
+ µcf

∂v

∂t
+ kyy (x) v + kyz (x)w = 0 (7.1)

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ µcf

∂w

∂t
+ kzz (x)w + kzy (x) v = 0 (7.2)

in which:

kyy (x) = kf,y (1 + µ cos (χx)) (7.3)

kzz (x) = kf,z (1 + µ cos (χx)) (7.4)

kyz (x) = kzy (x) = kf,c (1 + µ cos (χx)) (7.5)

• The interface conditions (ICs):

[v]x=V t =

[
∂v

∂x

]
x=V t

=

[
∂2v

∂x2

]
x=V t

= 0 (7.6)

[w]x=V t =

[
∂w

∂x

]
x=V t

=

[
∂2w

∂x2

]
x=V t

= 0 (7.7)

• The relations that constitute the balance of forces at the interface (BoFs):

Fs,y = EI

[
∂3v

∂x3

]
x=V t

, Fs,y = −md2v0

dt2
(7.8)

Fs,z = EI

[
∂3w

∂x3

]
x=V t

, Fs,z = −md2w0

dt2
−mg (7.9)
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• And the spring forces/continuity conditions (CCs)1:

Fs,y = kcon,yy (v0 − v|x=V t) (7.10)

Fs,z = kcon,zz (w0 − w|x=V t) (7.11)

Note that v0 − v|x=V t in Eq. (7.10) is associated with the lateral contact spring being
positioned along the negative y-axis—after all, a displacement of the point mass in the
positive lateral direction leads to a tensile force in the lateral contact spring while positive
lateral beam deflection causes the spring to compress. The reason the spring is placed
along the positive y-axis in Fig. (7.1) is to maintain the figure’s clarity. As to the stiffness
coupling in the foundation, this is expressed by the last term on the left-hand side of
Eq. (7.1) and Eq. (7.2) and model the asymmetric nature of the guide’s support structure.

To come up with a solution for this system of equations and be able to investigate its
stability, the same procedure as used in reference [23] is employed.

v = v(0) + µv(1), v0 = v
(0)
0 + µv

(1)
0 (7.12)

w = w(0) + µw(1), w0 = w
(0)
0 + µw

(1)
0 (7.13)

Substitution of Eq. (7.12) and Eq. (7.13) in Eq. (7.1) to Eq. (7.11) while omitting the
mass’s dead weight mg and collecting terms proportional to µ0, yields the equations that
describe the unperturbed system:

ρA
∂2v(0)

∂t2
+ EI

∂4v(0)

∂x4
+ kf,yv

(0) + kf,cw
(0) = 0 (7.14)

ρA
∂2w(0)

∂t2
+ EI

∂4w(0)

∂x4
+ kf,zw

(0) + kf,cv
(0) = 0 (7.15)

[
v(0)
]
x=V t

=

[
∂v(0)

∂x

]
x=V t

=

[
∂2v(0)

∂x2

]
x=V t

= 0 (7.16)

[
w(0)

]
x=V t

=

[
∂w(0)

∂x

]
x=V t

=

[
∂2w(0)

∂x2

]
x=V t

= 0 (7.17)

F (0)
s,y = EI

[
∂3v(0)

∂x3

]
x=V t

, F (0)
s,y = −md2v

(0)
0

dt2
(7.18)

F (0)
s,z = EI

[
∂3w(0)

∂x3

]
x=V t

, F (0)
s,z = −md2w

(0)
0

dt2
(7.19)

F (0)
s,y = kcon,yy

(
v

(0)
0 − v(0)

∣∣
x=V t

)
(7.20)

F (0)
s,z = kcon,zz

(
w

(0)
0 − w(0)

∣∣
x=V t

)
(7.21)

The equations that govern the perturbed system are obtained by collecting terms propor-

1The motivation for why these two labels are interchangeable is provided in Appendix E.
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tional to µ1:

ρA
∂2v(1)

∂t2
+ EI

∂4v(1)

∂x4
+ kf,yv

(1) + kf,cw
(1) =

− cf
∂v(0)

∂t
− kf,yv(0) cos (χx)− kf,cw(0) cos (χx)

(7.22)

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kf,zw

(1) + kf,cv
(1) =

− cf
∂w(0)

∂t
− kf,zw(0) cos (χx)− kf,cv(0) cos (χx)

(7.23)

[
v(1)
]
x=V t

=

[
∂v(1)

∂x

]
x=V t

=

[
∂2v(1)

∂x2

]
x=V t

= 0 (7.24)

[
w(1)

]
x=V t

=

[
∂w(1)

∂x

]
x=V t

=

[
∂2w(1)

∂x2

]
x=V t

= 0 (7.25)

F (1)
s,y = EI

[
∂3v(1)

∂x3

]
x=V t

, F (1)
s,y = −md2v

(1)
0

dt2
(7.26)

F (1)
s,z = EI

[
∂3w(1)

∂x3

]
x=V t

, F (1)
s,z = −md2w

(1)
0

dt2
(7.27)

F (1)
s,y = kcon,yy

(
v

(1)
0 − v(1)

∣∣
x=V t

)
(7.28)

F (1)
s,z = kcon,zz

(
w

(1)
0 − w(1)

∣∣
x=V t

)
(7.29)

7.2 Solution to the unperturbed problem

This section is subdivided into four subsections. The first sets out how the 2DoF equiva-
lent system’s stiffnesses and characteristic equation are derived by applying the method of
Chapter 3 (reference [15]) to the coupled PDEs of Eq. (7.14) and Eq. (7.15). To account
for the effect of the contact springs, the second subsection explains how these springs are
incorporated in the definitions of the equivalent stiffnesses. The third subsection presents
the equivalent system’s natural frequencies as functions of the point mass and the veloc-
ity with which this mass moves. Finally, based on the equivalent system, solutions are
proposed for the vibrations of the point mass and the deflection fields of the beam.

7.2.1 Derivation of the characteristic equation

The equations of motion:

ρA
∂2v(0)

∂t2
+ EI

∂4v(0)

∂x4
+ kf,yv

(0) + kf,cw
(0) = −

(
m
d2v

(0)
0

dt2
+ Py

)
δ (x− V t) (7.30)

ρA
∂2w(0)

∂t2
+ EI

∂4w(0)

∂x4
+ kf,zw

(0) + kf,cv
(0) = −

(
m
d2w

(0)
0

dt2
+ Pz

)
δ (x− V t) (7.31)
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and continuity conditions:

v(0)
∣∣
x=V t

= v
(0)
0 (7.32)

w(0)
∣∣
x=V t

= w
(0)
0 (7.33)

Expressing the EoMs in the moving reference frame while using Eq. (7.32) and Eq. (7.33):

ρA

(
− ∂

∂ξ
V +

∂

∂t

)2

v(0) + EI
∂4v(0)

∂ξ4
+

kf,yv
(0) + kf,cw

(0) = −
(
m
∂2v(0)

∂t2
+ Py

)
δ (ξ)

(7.34)

ρA

(
− ∂

∂ξ
V +

∂

∂t

)2

w(0) + EI
∂4w(0)

∂ξ4
+

kf,zw
(0) + kf,cv

(0) = −
(
m
∂2w(0)

∂t2
+ Pz

)
δ (ξ)

(7.35)

and subsequently transforming them to the Fourier-Laplace domain:

ρA(s− ikV )2v
(0)
k,s + EIk4v

(0)
k,s + kf,yv

(0)
k,s + kf,cw

(0)
k,s = −

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
(7.36)

ρA(s− ikV )2w
(0)
k,s + EIk4w

(0)
k,s + kf,zw

(0)
k,s + kf,cv

(0)
k,s = −

(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
(7.37)

Combining Eq. (7.36) and Eq. (7.37) in vector-matrix format:

[
Dy (k, s) kf,c

kf,c Dz (k, s)

]v(0)
k,s

w
(0)
k,s

 = −

ms2v
(0)
s

∣∣∣
ξ=0

+ Py/s

ms2w
(0)
s

∣∣∣
ξ=0

+ Pz/s

 (7.38)

with:

Dy (k, s) = ρA(s− ikV )2 + EIk4 + kf,y (7.39)

Dz (k, s) = ρA(s− ikV )2 + EIk4 + kf,z (7.40)

The lateral and vertical displacement field of the unperturbed beam model in the Fourier-
Laplace domain are respectively defined as:

v
(0)
k,s =

−Dz

DyDz − k2
f,c

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
+

kf,c
DyDz − k2

f,c

(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
(7.41)

w
(0)
k,s =

kf,c
DyDz − k2

f,c

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
+

−Dy

DyDz − k2
f,c

(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
(7.42)
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Back-transformation to the Laplace domain:

v(0)
s (ξ, s) = F−1

{
v

(0)
k,s (k, s)

}
= −

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
1

2π

∞∫
−∞

Dze
ikξ

DyDz − k2
f,c

dk

+

(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
kf,c
2π

∞∫
−∞

eikξ

DyDz − k2
f,c

dk

(7.43)

w(0)
s (ξ, s) = F−1

{
w

(0)
k,s (k, s)

}
=

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
kf,c
2π

∞∫
−∞

eikξ

DyDz − k2
f,c

dk

−
(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
1

2π

∞∫
−∞

Dye
ikξ

DyDz − k2
f,c

dk

(7.44)

and setting ξ = 0 yields:

v(0)
s (0, s) = −

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
1

2π

∞∫
−∞

Dz

DyDz − k2
f,c

dk

+

(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
kf,c
2π

∞∫
−∞

1

DyDz − k2
f,c

dk

(7.45)

w(0)
s (0, s) =

(
ms2v(0)

s

∣∣
ξ=0

+
Py
s

)
kf,c
2π

∞∫
−∞

1

DyDz − k2
f,c

dk

−
(
ms2w(0)

s

∣∣
ξ=0

+
Pz
s

)
1

2π

∞∫
−∞

Dy

DyDz − k2
f,c

dk

(7.46)

Combining Eq. (7.45) and Eq. (7.46) in vector-matrix format:[
1 + ψ1ms

2 −kf,cψ2ms
2

−kf,cψ2ms
2 1 + ψ3ms

2

]v(0)
s

w
(0)
s


ξ=0

=
Py
s

[ −ψ1

kf,cψ2

]
+
Pz
s

[
kf,cψ2

−ψ3

]
(7.47)

with:

ψ1 (s) =
1

2π

∞∫
−∞

Dz

DyDz − k2
f,c

dk =

i

M∑
m=1

Res

[
Dz

DyDz − k2
f,c

]
k=km

+
i

2

N∑
n=1

Res

[
Dz

DyDz − k2
f,c

]
k=kn

(7.48)

ψ2 (s) =
1

2π

∞∫
−∞

1

DyDz − k2
f,c

dk =

i
M∑
m=1

Res

[
1

DyDz − k2
f,c

]
k=km

+
i

2

N∑
n=1

Res

[
1

DyDz − k2
f,c

]
k=kn

(7.49)
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ψ3 (s) =
1

2π

∞∫
−∞

Dy

DyDz − k2
f,c

dk =

i

M∑
m=1

Res

[
Dy

DyDz − k2
f,c

]
k=km

+
i

2

N∑
n=1

Res

[
Dy

DyDz − k2
f,c

]
k=kn

(7.50)

km are the complex poles of the integrand functions that possess a positive imaginary
part and kn are the integrands’ real poles; that is, the roots of:

Dy (k, s)Dz (k, s)− k2
f,c = 0 (7.51)

Considering the homogeneous equivalent of Eq. (7.47)—Py = Pz = 0—the following
system of algebraic equations emerges:(

I + χ−1
eq Ms2

)
v(0)
s

∣∣
ξ=0

= 0⇒
(
Ms2 + χeq

)
v(0)
s

∣∣
ξ=0

= 0 (7.52)

in which:

I =

[
1 0
0 1

]
, χ−1

eq =

[
ψ1 −kf,cψ2

−kf,cψ2 ψ3

]
, M =

[
m 0
0 m

]
,

v(0)
s =

[
v

(0)
s

w
(0)
s

]
, 0 =

[
0
0

] (7.53)

The equivalent stiffness matrix reads as:

χeq =

[
χyy χyz
χzy χzz

]
(7.54)

with:

χyy (s) =
ψ3

ψ1ψ3 − k2
f,cψ

2
2

(7.55)

χzz (s) =
ψ1

ψ1ψ3 − k2
f,cψ

2
2

(7.56)

χyz (s) = χzy (s) =
kf,cψ2

ψ1ψ3 − k2
f,cψ

2
2

(7.57)

Eq. (7.52) has a non-trivial solution if the determinant of its coefficient matrix vanishes;
the ensuing characteristic equation ultimately reads:

s4 + s2
(χyy
m

+
χzz
m

)
+
χyyχzz
m2

− χyzχzy
m2

= 0 (7.58)

Reducing the Laplace parameter s to iωn yields:

ω4
n − ω2

n

(
ω2
yy + ω2

zz

)
+ ω2

yyω
2
zz − ω4

yz = 0 (7.59)
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in which the partial frequencies are defined as:

ω2
yy (ωn) =

χyy (ωn)

m
, ω2

zz (ωn) =
χzz (ωn)

m
, ω2

yz (ωn) =

√
χyz (ωn)χzy (ωn)

m
(7.60)

Equating kf,c in Eq. (7.55) and Eq. (7.56) to zero returns the equivalent stiffness definition
from Chapter 3:

χyy (s) =
1

ψ1

=

 1

2π

∞∫
−∞

1

Dy (k, s)
dk

−1

(7.61)

χzz (s) =
1

ψ3

=

 1

2π

∞∫
−∞

1

Dz (k, s)
dk

−1

(7.62)

χyz (s) = χzy (s) = 0 (7.63)

Compare Eq. (7.61) and Eq. (7.62) to Eq. (3.14) with cf = 0. After all, removing the
coupling results in a beam model that is along the x -axis in both the lateral y- and vertical
z -direction identical to the model from Chapter 3.

7.2.2 Augmenting the characteristic equation

Now that the equivalent stiffnesses are defined, the contact springs are taken into account
by attaching them in series to the equivalent lateral and vertical spring; the augmented
equivalent stiffnesses are designated by a double prime: χ′′yy, χ

′′
zz, χ

′′
yz and χ′′zy. To define

these new equivalent stiffnesses, the displacement method is applied in the Laplace do-
main. After all, Eq. (7.55) to Eq. (7.57) are already defined in the Laplace domain. The
following system is searched for:

F(0)
s = χ′′v

(0)
0 (7.64)

in which:

F(0)
s =

[
F

(0)
s,y

F
(0)
s,z

]
, χ′′ =

[
χ′′yy χ′′yz

χ′′zy χ′′zz

]
, v

(0)
0 =

[
v

(0)
0

w
(0)
0

]
(7.65)

The superscript ‘(0)’ indicates that the unperturbed problem is addressed while the sub-
script ‘0’ relates to the degrees-of-freedom of the point mass; the subscript ‘s ’ indicates
to the spring force in the equivalent system. Making use of the spring model depicted in
Fig. (7.2)—representing the vertical part of the equivalent system—the series configura-
tion requires the spring forces to be equal to one another; this follows from vertical force
equilibrium.
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kcon,zz

χzz, χzy

Figure 7.2: The spring model by means of which an expression for the vertical spring
force Fs,z is derived.

The spring forces read:

F
(0)
s,z,1 = χzzw

(0)
∣∣
ξ=0

+ χzy v
(0)
∣∣
ξ=0

(7.66)

F
(0)
s,z,2 = kcon,zz

(
w

(0)
0 − w(0)

∣∣
ξ=0

)
(7.67)

An expression for the vertical beam deflection at the contact point is derived by equating
these forces:

w(0)
∣∣
ξ=0

=
kcon,zz

kcon,zz + χzz
w

(0)
0 −

χzy
kcon,zz + χzz

v(0)
∣∣
ξ=0

(7.68)

Back-substitution in Eq. (7.67) yields:

F (0)
s,z = F

(0)
s,z,1 = F

(0)
s,z,2 =

kcon,zzχzz
kcon,zz + χzz

w
(0)
0 +

kcon,zzχzy
kcon,zz + χzz

v(0)
∣∣
ξ=0

(7.69)

The same procedure yields a similar expression for the lateral spring force:

F (0)
s,y =

kcon,yyχyy
kcon,yy + χyy

v
(0)
0 +

kcon,yyχyz
kcon,yy + χyy

w(0)
∣∣
ξ=0

(7.70)

To attain the format of Eq. (7.64), the second term at the right-hand side of Eq. (7.69)
and Eq. (7.70) needs to be expressed in terms of the mass’s displacement instead of the
beam deflection at the contact point. To this end, the continuity conditions of Eq. (7.20)
and Eq. (7.21) are used:

F (0)
s,y = kcon,yy

(
v

(0)
0 − v(0)

∣∣
ξ=0

)
⇒ v(0)

∣∣
ξ=0

= v
(0)
0 − F (0)

s,y /kcon,yy (7.71)

F (0)
s,z = kcon,zz

(
w

(0)
0 − w(0)

∣∣
ξ=0

)
⇒ w(0)

∣∣
ξ=0

= w
(0)
0 − F (0)

s,z /kcon,zz (7.72)
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Substitution in Eq. (7.69) and Eq. (7.70) gives:

F (0)
s,y +

kcon,yyχyz
kcon,zz (kcon,yy + χyy)

F (0)
s,z =

kcon,yyχyy
kcon,yy + χyy

v
(0)
0 +

kcon,yyχyz
kcon,yy + χyy

w
(0)
0 (7.73)

F (0)
s,z +

kcon,zzχzy
kcon,yy (kcon,zz + χzz)

F (0)
s,y =

kcon,zzχzz
kcon,zz + χzz

w
(0)
0 +

kcon,zzχzy
kcon,zz + χzz

v
(0)
0 (7.74)

In vector-matrix format:[
1 χ′yz/kcon,zz

χ′zy/kcon,yy 1

][
F

(0)
s,y

F
(0)
s,z

]
=

[
χ′yy χ′yz

χ′zy χ′zz

][
v

(0)
0

w
(0)
0

]
(7.75)

with:

χ′yy =
kcon,yyχyy
kcon,yy + χyy

, χ′yz =
kcon,yyχyz
kcon,yy + χyy

,

χ′zy =
kcon,zzχzy
kcon,zz + χzz

, χ′zz =
kcon,zzχzz
kcon,zz + χzz

(7.76)

Looking at Eq. (7.64), the stiffness matrix’s entries can now readily be inferred from
Eq. (7.75); the effective stiffnesses are defined as:

χ′′yy =
kcon,yykcon,zzχ

′
yy − kcon,yyχ′yzχ′zy

kcon,yykcon,zz − χ′yzχ′zy
(7.77)

χ′′zz =
kcon,yykcon,zzχ

′
zz − kcon,zzχ′yzχ′zy

kcon,yykcon,zz − χ′yzχ′zy
(7.78)

χ′′yz =
kcon,yykcon,zzχ

′
yz − kcon,yyχ′yzχ′zz

kcon,yykcon,zz − χ′yzχ′zy
(7.79)

χ′′zy =
kcon,yykcon,zzχ

′
zy − kcon,zzχ′yyχ′zy

kcon,yykcon,zz − χ′yzχ′zy
(7.80)

Note how the original equivalent stiffnesses—Eq. (7.55) to Eq. (7.57)—are retrieved when
the stiffnesses of the contact springs go to infinity:

kcon,yy →∞, kcon,zz →∞⇒ χ′′yy = χyy, χ
′′
zz = χzz, χ

′′
yz = χyz, χ

′′
zy = χzy (7.81)

The augmented characteristic equation is now defined by Eq. (7.59) with the partial
frequencies from Eq. (7.60) exhibiting the effective stiffnesses defined by Eq. (7.77) to
Eq. (7.80).

7.2.3 The natural frequencies

Using the following parameter set:

ρ = 7849 kg m−3 A = 7.687× 10−3 m2 I = 3.055× 10−5 m4

E = 2× 1011 N m−2 kf,z = 1× 108 N m−2 kf,y = 1.2× kf,z

kf,c = 0.5× kf,z kcon,yy = 7.4× 107 N m−1 kcon,zz = 7.4× 107 N m−1

Table 7.1: Parameter set for computing the natural frequencies and center lines.
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characteristic Eq. (7.59) is solved numerically as outlined in Chapter 5. The result is
presented in Fig. (7.3).
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Figure 7.3: The first and second natural frequency of the equivalent 2DoF system as
functions of the point mass m and the mass’s velocity V.

To be able to trace the bifurcation curves, the beam’s dispersion relation needs to be
derived first. This relation dictates with which angular frequency and wavenumber waves
are dispersed in the beam. Substituting the following assumed waveforms:

v(0) (x, t) = V ei(ωt−kx), w(0) (x, t) = Wei(ωt−kx) (7.82)

in Eq. (7.14) and Eq. (7.15) and requiring the determinant of the ensuing coefficient
matrix to vanish yields the following dispersion relation:(

−ω2ρA+ k4EI + kf,y
) (
−ω2ρA+ k4EI + kf,z

)
− k2

f,c = 0 (7.83)

Solving Eq. (7.83) for the angular frequency, the dispersion curves are then described by:

ω1 = ±

√
k4
EI

ρA
+ ω2

0−, ω2 = ±

√
k4
EI

ρA
+ ω2

0+ (7.84)

in which the cut-off frequencies are defined as:

ω2
0± =

kf,y + kf,z ±
√

4k2
f,c + (kf,y − kf,z)2

2ρA
(7.85)

Eq. (7.84) is plotted in Fig. (7.4). Note how the dispersion curves converge to each other
for large wavenumbers k. That is because the bending (∝ k4) dominates at high k and
the influence of the foundation (∝ k0) is negligible. As the bending stiffness EI is the
same in both the lateral and vertical direction, the dispersion curves overlap at high k ;
cf. Eq. (7.84).
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Figure 7.4: Dispersion curves for flexural waves in the Euler-Bernoulli beam on lateral
and vertical homogeneous elastic foundation.

The bifurcation curves are now determined in exactly the same manner as described in
Chapter 5. Interestingly, as for the beam model from Chapter 5, the dispersion relation
is hidden within the characteristic equation that defines the natural frequencies of the
equivalent system; looking at Eq. (7.51)—in which s is replaced by iωn—one can see
the resemblance to Eq. (7.83) combined with Eq. (5.18), though in the former case the
assumed waveform exhibits a phase with different signage: ωt + kx instead of ωt − kx.
This observation hints to why the solid curves of Fig. (7.3) are referred to as ‘bifurcation’
curves; investigating how the wavenumber roots of Eq. (7.51) behave in the complex plane
as functions of the velocity and excitation (natural) frequency, two out of eight complex
k ’s transform into real numbers once the first bifurcation curve is exceeded. Two addi-
tional roots become real once the V -Ω pair goes beyond the second bifurcation curve.
Hence, in case the improper integrals of Eq. (7.48) to Eq. (7.50) are evaluated by means
of the contour integration method, a contour that is indented along the real axis needs to
be employed so as to be able to calculate the second natural frequency beyond the first
bifurcation curve [1].

Recall that we are only interested in the non-damped (or sub-critical) motion of the
point mass—motion that disperses evanescent waves in the beam and not harmonic ones;
the latter would extract energy from the oscillating point mass, effectively damping its
motion—which requires to make use of those second natural frequencies that are en-
closed by the first bifurcation curve when computing the instability domains’ center lines
associated with (combination) parametric resonance. After all, as for the vertical-only
beam model from Chapter 5, once the kinematic invariant passes the bifurcation curve,
anomalous Doppler waves (harmonic waves) are generated, which causes wave-induced
instability [13]; a form of instability that is not the focus of this chapter.
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7.2.4 The solution

The lateral and vertical displacements of the point mass are described by the general
expression for the motion of the undamped freely vibrating 2DoF system:

v
(0)
0 (t) = VAe

iωn1t + VBe
−iωn1t + VCe

iωn2t + VDe
−iωn2t (7.86)

w
(0)
0 (t) = WAe

iωn1t +WBe
−iωn1t +WCe

iωn2t +WDe
−iωn2t (7.87)

The natural frequencies are derived from Eq. (7.59)—see Fig. (7.3)—and the coefficients
are determined by the four initial conditions of the concentrated mass once the ratios
between these coefficients are known; see section 2.4.1 of reference [14]. The expression
for the lateral deflection of the right beam domain (ξ ≥ 0) reads:

v(0)+ (x, t) =

VA1e
i(ωn1t−kA1 ξ) + VA2e

i(ωn1t−kA2 ξ) + VA3e
i(ωn1t−kA3 ξ) + VA4e

i(ωn1t−kA4 ξ) +

VB1e
−i(ωn1t+kB1 ξ) + VB2e

−i(ωn1t+kB2 ξ) + VB3e
−i(ωn1t+kB3 ξ) + VB4e

−i(ωn1t+kB4 ξ) +

VC1e
i(ωn2t−kC1 ξ) + VC2e

i(ωn2t−kC2 ξ) + VC3e
i(ωn2t−kC3 ξ) + VC4e

i(ωn2t−kC4 ξ) +

VD1e
−i(ωn2t+kD1 ξ) + VD2e

−i(ωn2t+kD2 ξ) + VD3e
−i(ωn2t+kD3 ξ) + VD4e

−i(ωn2t+kD4 ξ)

(7.88)

and for the left domain (ξ ≤ 0):

v(0)− (x, t) =

VA5e
i(ωn1t−kA5 ξ) + VA6e

i(ωn1t−kA6 ξ) + VA7e
i(ωn1t−kA7 ξ) + VA8e

i(ωn1t−kA8 ξ) +

VB5e
−i(ωn1t+kB5 ξ) + VB6e

−i(ωn1t+kB6 ξ) + VB7e
−i(ωn1t+kB7 ξ) + VB8e

−i(ωn1t+kB8 ξ) +

VC5e
i(ωn2t−kC5 ξ) + VC6e

i(ωn2t−kC6 ξ) + VC7e
i(ωn2t−kC7 ξ) + VC8e

i(ωn2t−kC8 ξ) +

VD5e
−i(ωn2t+kD5 ξ) + VD6e

−i(ωn2t+kD6 ξ) + VD7e
−i(ωn2t+kD7 ξ) + VD8e

−i(ωn2t+kD8 ξ)

(7.89)

The expression for the vertical deflection of the right beam domain (ξ ≥ 0) reads:

w(0)+ (x, t) =

WA1e
i(ωn1t−kA1 ξ) +WA2e

i(ωn1t−kA2 ξ) +WA3e
i(ωn1t−kA3 ξ) +WA4e

i(ωn1t−kA4 ξ) +

WB1e
−i(ωn1t+kB1 ξ) +WB2e

−i(ωn1t+kB2 ξ) +WB3e
−i(ωn1t+kB3 ξ) +WB4e

−i(ωn1t+kB4 ξ) +

WC1e
i(ωn2t−kC1 ξ) +WC2e

i(ωn2t−kC2 ξ) +WC3e
i(ωn2t−kC3 ξ) +WC4e

i(ωn2t−kC4 ξ) +

WD1e
−i(ωn2t+kD1 ξ) +WD2e

−i(ωn2t+kD2 ξ) +WD3e
−i(ωn2t+kD3 ξ) +WD4e

−i(ωn2t+kD4 ξ)

(7.90)
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and for the left domain (ξ ≤ 0):

w(0)− (x, t) =

WA5e
i(ωn1t−kA5 ξ) +WA6e

i(ωn1t−kA6 ξ) +WA7e
i(ωn1t−kA7 ξ) +WA8e

i(ωn1t−kA8 ξ) +

WB5e
−i(ωn1t+kB5 ξ) +WB6e

−i(ωn1t+kB6 ξ) +WB7e
−i(ωn1t+kB7 ξ) +WB8e

−i(ωn1t+kB8 ξ) +

WC5e
i(ωn2t−kC5 ξ) +WC6e

i(ωn2t−kC6 ξ) +WC7e
i(ωn2t−kC7 ξ) +WC8e

i(ωn2t−kC8 ξ) +

WD5e
−i(ωn2t+kD5 ξ) +WD6e

−i(ωn2t+kD6 ξ) +WD7e
−i(ωn2t+kD7 ξ) +WD8e

−i(ωn2t+kD8 ξ)

(7.91)

How the V - and W -coefficients can be determined is outlined in Appendix F. The
wavenumbers kA,B,C,D1,2,3,4,5,6,7,8 are derived from Eq. (7.83) combined with Eq. (5.18). Dealing
with complex wavenumbers—the point mass’s sub-critical behavior is considered—their
imaginary part dictates which waves occupy the right beam domain and which ones the

left beam domain: Im
(
kA,B,C,D1,2,3,4

)
< 0 and Im

(
kA,B,C,D5,6,7,8

)
> 0. See Chapter 2.

7.3 Analysis of the perturbed problem

In this section, the system of Eq. (7.22) to Eq. (7.29) is analyzed in order to determine
under which conditions parametric resonance occurs. Substituting Eq. (7.88) to Eq. (7.91)
in Eq. (7.22) and Eq. (7.23) while setting cf = 0 and using Eq. (5.26), the right-hand side
of the perturbed equations of motion for x ≥ V t can be rewritten as:

ρA
∂2v(1)

∂t2
+ EI

∂4v(1)

∂x4
+ kf,yv

(1) + kf,cw
(1) =

− 1

2

D∑
a=A

4∑
b=1

2∑
c=1

(kf,yVab + kf,cWab) e
i(kabV+Ωa)tei((−1)cχ−kab )x

(7.92)

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kf,zw

(1) + kf,cv
(1) =

− 1

2

D∑
a=A

4∑
b=1

2∑
c=1

(kf,cVab + kf,zWab) e
i(kabV+Ωa)tei((−1)cχ−kab )x

(7.93)

and for x ≤ V t as:

ρA
∂2v(1)

∂t2
+ EI

∂4v(1)

∂x4
+ kf,yv

(1) + kf,cw
(1) =

− 1

2

D∑
a=A

8∑
b=5

2∑
c=1

(kf,yVab + kf,cWab) e
i(kabV+Ωa)tei((−1)cχ−kab )x

(7.94)

ρA
∂2w(1)

∂t2
+ EI

∂4w(1)

∂x4
+ kf,zw

(1) + kf,cv
(1) =

− 1

2

D∑
a=A

8∑
b=5

2∑
c=1

(kf,cVab + kf,zWab) e
i(kabV+Ωa)tei((−1)cχ−kab )x

(7.95)
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in which ΩA = −ΩB = ωn1 and ΩC = −ΩD = ωn2. The following solutions are proposed:

v(1) = v
(1)
h + v(1)

p , w(1) = w
(1)
h + w(1)

p (7.96)

The particular solutions for x ≥ V t are defined as:

v(1)
p (x, t) =

D∑
a=A

4∑
b=1

2∑
c=1

Cv
abce

i(kabV+Ωa)tei((−1)cχ−kab )x (7.97)

w(1)
p (x, t) =

D∑
a=A

4∑
b=1

2∑
c=1

Cw
abce

i(kabV+Ωa)tei((−1)cχ−kab )x (7.98)

and for x ≤ V t:

v(1)
p (x, t) =

D∑
a=A

8∑
b=5

2∑
c=1

Cv
abce

i(kabV+Ωa)tei((−1)cχ−kab )x (7.99)

w(1)
p (x, t) =

D∑
a=A

8∑
b=5

2∑
c=1

Cw
abce

i(kabV+Ωa)tei((−1)cχ−kab )x (7.100)

The C -coefficients are defined in Appendix F. The system of partial differential equations
that governs the homogeneous solutions v

(1)
h and w

(1)
h reads as follows—with Ω1 = ωn1

and Ω2 = ωn2.

• The equations of motion (EoMs):

ρA
∂2v

(1)
h

∂t2
+ EI

∂4v
(1)
h

∂x4
+ kf,yv

(1)
h + kf,cw

(1)
h = 0 (7.101)

ρA
∂2w

(1)
h

∂t2
+ EI

∂4w
(1)
h

∂x4
+ kf,zw

(1)
h + kf,cv

(1)
h = 0 (7.102)

• The interface conditions (ICs):

[
v

(1)
h

]
x=V t

= Dv
01e
−it(V χ−Ω1) +Dv

02e
it(V χ+Ω1) +Dv

03e
−it(V χ+Ω1) +Dv

04e
it(V χ−Ω1) +

Dv
05e
−it(V χ−Ω2) +Dv

06e
it(V χ+Ω2) +Dv

07e
−it(V χ+Ω2) +Dv

08e
it(V χ−Ω2)

(7.103)

[
w

(1)
h

]
x=V t

= Dw
01e
−it(V χ−Ω1) +Dw

02e
it(V χ+Ω1) +Dw

03e
−it(V χ+Ω1) +Dw

04e
it(V χ−Ω1) +

Dw
05e
−it(V χ−Ω2) +Dw

06e
it(V χ+Ω2) +Dw

07e
−it(V χ+Ω2) +Dw

08e
it(V χ−Ω2)

(7.104)
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∂v

(1)
h

∂x

]
x=V t

= Dv
11e
−it(V χ−Ω1) +Dv

12e
it(V χ+Ω1) +Dv

13e
−it(V χ+Ω1) +Dv

14e
it(V χ−Ω1) +

Dv
15e
−it(V χ−Ω2) +Dv

16e
it(V χ+Ω2) +Dv

17e
−it(V χ+Ω2) +Dv

18e
it(V χ−Ω2)

(7.105)

[
∂w

(1)
h

∂x

]
x=V t

= Dw
11e
−it(V χ−Ω1) +Dw

12e
it(V χ+Ω1) +Dw

13e
−it(V χ+Ω1) +Dw

14e
it(V χ−Ω1) +

Dw
15e
−it(V χ−Ω2) +Dw

16e
it(V χ+Ω2) +Dw

17e
−it(V χ+Ω2) +Dw

18e
it(V χ−Ω2)

(7.106)

[
∂2v

(1)
h

∂x2

]
x=V t

= Dv
21e
−it(V χ−Ω1) +Dv

22e
it(V χ+Ω1) +Dv

23e
−it(V χ+Ω1) +Dv

24e
it(V χ−Ω1) +

Dv
25e
−it(V χ−Ω2) +Dv

26e
it(V χ+Ω2) +Dv

27e
−it(V χ+Ω2) +Dv

28e
it(V χ−Ω2)

(7.107)

[
∂2w

(1)
h

∂x2

]
x=V t

= Dw
21e
−it(V χ−Ω1) +Dw

22e
it(V χ+Ω1) +Dw

23e
−it(V χ+Ω1) +Dw

24e
it(V χ−Ω1) +

Dw
25e
−it(V χ−Ω2) +Dw

26e
it(V χ+Ω2) +Dw

27e
−it(V χ+Ω2) +Dw

28e
it(V χ−Ω2)

(7.108)

• The relations that constitute the balance of forces at the interface (BoFs):

F (1)
s,y = EI

[
∂3v

(1)
h

∂x3

]
x=V t

− EI


Dv

31e
−it(V χ−Ω1) +Dv

32e
it(V χ+Ω1)+

Dv
33e
−it(V χ+Ω1) +Dv

34e
it(V χ−Ω1)+

Dv
35e
−it(V χ−Ω2) +Dv

36e
it(V χ+Ω2)+

Dv
37e
−it(V χ+Ω2) +Dv

38e
it(V χ−Ω2)

 (7.109)

F (1)
s,y = −md2v

(1)
0

dt2
(7.110)

F (1)
s,z = EI

[
∂3w

(1)
h

∂x3

]
x=V t

− EI


Dw

31e
−it(V χ−Ω1) +Dw

32e
it(V χ+Ω1)+

Dw
33e
−it(V χ+Ω1) +Dw

34e
it(V χ−Ω1)+

Dw
35e
−it(V χ−Ω2) +Dw

36e
it(V χ+Ω2)+

Dw
37e
−it(V χ+Ω2) +Dw

38e
it(V χ−Ω2)

 (7.111)

F (1)
s,z = −md2w

(1)
0

dt2
(7.112)
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• The continuity conditions (CCs):

F (1)
s,y = kcon,yy

(
v

(1)
0 − v

(1)
h

∣∣∣
x=V t

)
+ kcon,yy


Dv

41e
−it(V χ−Ω1) +Dv

42e
it(V χ+Ω1)+

Dv
43e
−it(V χ+Ω1) +Dv

44e
it(V χ−Ω1)+

Dv
45e
−it(V χ−Ω2) +Dv

46e
it(V χ+Ω2)+
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The definitions of the D-coefficients are listed in Appendix F. It can be readily seen by
looking at the BoFs that in case of combination parametric resonance, four conditions for
parametric instability emerge:

V χ = 2Ω1 (7.115)

V χ = 2Ω2 (7.116)

V χ = Ω2 ± Ω1 (7.117)

Note that V > 0, χ > 0 and Ω2(= ωn2) > Ω1(= ωn1) > 0; of the eight excitation frequen-
cies in Eq. (7.109) and Eq. (7.111), only four are physically admissible to balance with
the first and second natural frequency of the unperturbed system. Compare Eq. (7.101)
and Eq. (7.102) to Eq. (7.14) respectively Eq. (7.15).

7.4 The center lines of the instability domains

Eq. (7.115) to Eq. (7.117) define the instability domains’ centers, which are curves in the
velocity-mass parameter space. See Fig. (7.5). Based on the data of Fig. (7.3) that is
enclosed by bifurcation curve 1, these center lines are plotted by checking numerically
for each mass value which combination of velocity and natural frequency Eq. (7.115),
Eq. (7.116) and Eq. (7.117) balance. Fig. (7.3) clearly shows that Ω2 > Ω1, which explains
why the center lines are ordered with respect to V as they are in Fig. (7.5).
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Figure 7.5: Center lines of the instability domains for a period of inhomogeneity d = 0.6 m
without contact springs (kcon,yy →∞, kcon,zz →∞).

Repeating this procedure for three different valuations of χ, one can observe by looking
at Fig. (7.6) that an increase in the period of inhomogeneity leads to an elevation of the
critical mass; the velocity at which parametric instability occurs increases. The same
effect has been observed for the vertical-only model from Chapter 5. See Fig. (5.4).
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Figure 7.6: The effect of an increasing period of inhomogeneity on the instability domains’
center lines.
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The effect of vehicle-structure interaction is investigated by including the contact springs
(kcon,yy = kcon,zz = 7.4× 107 N m−1). See Fig. (7.7). As for the vertical-only model from
Chapter 6, the contact springs reduce the critical mass; the velocity at which parametric
instability occurs decreases. Compare to Fig. (6.3).
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Figure 7.7: The effect of vehicle-structure interaction.
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Chapter 8

Conclusions and recommendations

The aim of this thesis project was to investigate the stability of lateral and vertical
vibrations of a vehicle that moves uniformly along an infinite Euler-Bernoulli beam on a
coupled lateral-vertical periodically inhomogeneous foundation. It has been shown that
these vibrations can become unstable as a result of combination parametric resonance; a
form of instability that is caused by periodic variation of the coupled foundation stiffnesses.

The first-order instability domains have been derived by using a perturbation method
under the assumption that the amplitudes of the harmonically varying foundation stiff-
nesses are small compared to the mean stiffness values. It has been found that the
lateral-vertical beam model yields four instability domains, as opposed to the one for the
vertical-only model. The center lines of these four instability domains are defined by the
following conditions: V χ = 2Ω1, V χ = 2Ω2 and V χ = Ω2 ± Ω1, in which V χ is the
frequency of the stiffness variation and Ω1 and Ω2 is the first respectively second natural
frequency of the moving mass along the homogeneous lateral-vertical beam.

It has been shown that the period of inhomogeneity significantly affects the position of
the instability domains. As for the vertical-only model, the center lines shift towards the
right in the velocity-mass parameter space with increasing period of inhomogeneity. The
effect of vehicle-structure interaction has also been investigated; the inclusion of contact
springs makes the center lines reposition themselves towards the left in the parameter
space.

In order to obtain complete instability domains for combination parametric resonance,
the boundaries also have to be derived. To this end, reference [23] provides a method that
can be extended to the lateral-vertical case, though it is recommended to augment the
more efficient method presented in reference [12]. The reason for this is threefold. First
of all, the paper of Metrikine (2008) uses a more realistic foundation model; instead of
applying a harmonically varying support with small amplitude, actual discrete supports
with constant spacing are used. Secondly, the method enables to derive directly the
total instability domain as described by its boundary in the velocity-mass parameter
space—no distinction is made between center lines and deviation lines. Higher-order
domains will also emerge in the parameter space. Finally, foundation damping can be
taken into account more easily such that its effect on the instability domain’s boundary
can be studied. This is of practical importance, because it needs to be examined if the
instability domains will completely vanish once the damping exceeds a threshold value as
is shown for the parametric oscillator described by Mathieu’s equation.
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Appendix A

Second order approximation of
equation 4.23

To obtain a better approximation of the first instability domain for parametric resonance,
the expression for the SDoF’s motion x(t) is extended according to Eq. (4.24) with q = 2
while considering the coefficients ap and bp to be constant; the notion that the boundaries
of the instability domain are associated with constant coefficients is exploited in order to
speed up the derivation.

x (t) =A1 cos
((
ω0 + µ2δ

)
t
)

+B1 sin
((
ω0 + µ2δ

)
t
)

+

A2 cos
(
3
(
ω0 + µ2δ

)
t
)

+B2 sin
(
3
(
ω0 + µ2δ

)
t
) (A.1)

Substitution in Eq. (4.3), with ωp = 2 (ω0 + µ2δ), yields:
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(A.2)

Using the trigonometric identities from Eq. (4.12) and Eq. (4.13) and omitting terms that
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exhibit the frequency ‘5(ω0 + µ2δ)’ reduces Eq. (A.2) to:[
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2
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)
t
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(A.3)

In order to satisfy Eq. (A.3) the expressions enclosed by the square brackets must vanish.
To this end, for the first two terms of Eq. (A.3), only terms between the brackets that are
proportional to the perturbation parameter up to and including the second order O(µ2)
are considered while for the latter two terms only zero- and first-order bracketed terms
are taken into account:1

−8A2ω
2
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1

2
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2
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16
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Substitution in:

−2A1ω0µ
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1

2
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2
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1
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2
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−2B1ω0µ
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1

2
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gives:

δ =

(
± 1

4µ
+

1

64

)
ω0 (A.8)

Inserting Eq. (A.8) into the second order perturbation of the first condition for parametric
resonance:

ωp = 2
(
ω0 + µ2δ

)
(A.9)

yields the second order approximation of the first instability domain for parametric reso-
nance:

2ω0

(
1− 1

4
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1

64
µ2

)
< ωp < 2ω0

(
1 +

1

4
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1

64
µ2
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(A.10)

Compared to Eq. (4.23) the second order approximation adds ω0µ
2/32 to its first order

counterpart.

1Cf. Eq. (4.14); only terms of the order O
(
µ1
)

are included; terms proportional to µ0 are omitted.
Why do we include zero-order terms in the second order approximation, but not in the first order
approximation? See reference [11].



Appendix B

Derivation of equation 4.37

The following solution of the second order is used to derive the second instability domain:1
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Substitution in Eq. (4.3), with ωp = ω0 + µ2δ, yields:
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(B.2)

Using Eq. (4.12) and Eq. (4.13) and omitting terms that exhibit the frequency ‘3(ω0+µ2δ)’

1The first order solution ‘x (t) = A cos((ω0 + µδ)t) +B sin((ω0 + µδ)t) +C’ returns a zero-width interval
and is therefore not suitable to derive the second instability domain.
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reduces Eq. (B.2) to:[
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In order to satisfy Eq. (B.3) the expressions between the square brackets must vanish. To
this end, bracketed terms up to O(µ2) are considered for the first two terms of Eq. (B.3)
while for the latter two terms only zero- and first-order bracket terms are taken into
account. Note that the inclusion of the constant C in the proposed solution of Eq. (B.1)
is necessary to avoid a trivial solution in which A1 is required to be equal to zero.
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Substitution in:
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gives:
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Inserting Eq. (B.9) into ωp = ω0 +µ2δ yields the second order approximation of the second
instability domain for parametric resonance:
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(B.10)

In case the frequency of inhomogeneity ωp lies within this interval, it is assumed that the
oscillations as well as the energy content grow exponentially with time; in reference [23]
it is stated that this growth is linear, not exponential. This latter claim can be checked
by adopting slowly varying time functions as coefficients in Eq. (B.1) and redoing the
analysis of chapter 4.



Appendix C

Derivation of equation 5.4

Newton’s second law of motion is used to derive Eq. (5.4); displacing the beam segment
at the interface in the positive upward direction results in vertical shear forces acting on
this segment. See Fig. (C.1).

mg

ρA, EI

S(Vt – Δx/2, t) S(Vt + Δx/2, t)

kw + μcfẇ

Δx

Figure C.1: Forces acting on the displaced beam segment at the interface.

Scalar format of Newton’s second law of motion:

Fnet = ma (C.1)

Adapted to the problem of Fig. (C.1):

−S− + S+ −mg − (kw + µcf ẇ) ∆x = (m+ ρA∆x) ẅ (C.2)

With ∆x→ 0 and S = −EI∂3w/∂x3, Eq. (C.2) reduces to:

EI

[
∂3w

∂x3

]
x=V t

= −m∂2w

∂t2
−mg (C.3)

Finally, the first term on the right-hand side of Eq. (C.3) is rewritten by virtue of Eq. (5.5):

EI

[
∂3w

∂x3

]
x=V t

= −md2w0

dt2
−mg (C.4)
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Appendix D

Coefficient definitions for chapter 5

The W -coefficients of Eq. (5.25):
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The C -coefficients of Eq. (5.29):
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The D-coefficients of Eq. (5.30):
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(
+i
(
χ− kB3

))n
C33 +

(
+i
(
χ− kB4

))n
C34 −

(
+i
(
χ− kB1

))n
C31 −

(
+i
(
χ− kB2

))n
C32,

Dn4 =
(
−i
(
χ+ kB3

))n
C43 +

(
−i
(
χ+ kB4

))n
C44 −

(
−i
(
χ+ kB1

))n
C41 −

(
−i
(
χ+ kB2

))n
C42

n = 0, 1, 2, 3

D41 = −C11 − C12, D42 = −C21 − C22, D43 = −C31 − C32, D44 = −C41 − C42



Appendix E

Derivation of equations 6.1 and 6.2

The displacement method is used in order to derive Eq. (6.1) and Eq. (6.2). Now that
(linear) inertia is present at two separate points, these two bodies of mass are to be
displaced individually, so as to be able to see clearly the forces that are exerted on the
connecting spring. See Fig. (E.1).

ρA, EI

Δx

S− S+

kw + μcfẇ

mg

F1

F1

m
F1

F1

F2

F2

F2

F2

kcon

Figure E.1: Forces acting on the beam segment at the interface and the point mass as a
result of displacing both inertia elements in the positive upward direction.

Newton’s second law of motion applied to each inertia element:

−S− + S+ − F1 + F2 −
(
kw + µcf

∂w

∂t

)
∆x = ρA∆x

∂2w

∂t2
(E.1)

−mg + F1 − F2 = m
d2w0

dt2
(E.2)

in which the spring forces are defined as:

F1 = kconw|x=V t, F2 = kconw0 (E.3)
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By convention, compressive spring force is negative while tensile spring force is considered
positive. The total spring force then reads:

Fs = −F1 + F2 = kcon (w0 − w|x=V t) (E.4)

With ∆x→ 0 and S = −EI∂3w/∂x3, Eq. (E.1) and Eq. (E.2) reduce to:

EI

[
∂3w

∂x3

]
x=V t

= Fs (E.5)

m
d2w0

dt2
= −Fs −mg (E.6)

Combining Eq. (E.5) and Eq. (E.6) recovers the balance of vertical forces at the interface
for the model that excludes the contact spring. If the spring stiffness concurrently goes
to infinity in Eq. (E.4), the associated continuity condition is retrieved as well:

lim
kcon→∞

Fs/kcon = w0 − w|x=V t = 0⇒ w|x=V t = w0 (E.7)

This shows that the definition of the spring force—Eq. (E.4)—forms the new continuity
condition and that Eq. (E.5) together with Eq. (E.6) compose the new balance of vertical
forces at the interface.



Appendix F

Coefficient definitions for chapter 7

To define the V - and W -coefficients of Eq. (7.88) to Eq. (7.91), these latter four equations
are to be substituted in Eq. (7.14) and Eq. (7.15) from which a relationship between the
amplitudes V and W ensue. Being left with 32 instead of 64 unknowns, the remaining
equations that describe the unperturbed problem—Eq. (7.16) to Eq. (7.21)—allow to
define these unknowns; the eight relations that are used to this end, read (see also Chapter
6):

v(0) +
∣∣
x=V t

= v
(0)
0 +

m

kcon,yy

d2v
(0)
0

dt2
, v(0) −∣∣

x=V t
= v

(0)
0 +

m

kcon,yy

d2v
(0)
0

dt2
,

∂v(0) +

∂x

∣∣∣∣
x=V t

=
∂v(0) −

∂x

∣∣∣∣
x=V t

,
∂2v(0) +

∂x2

∣∣∣∣
x=V t

=
∂2v(0) −

∂x2

∣∣∣∣
x=V t

w(0) +
∣∣
x=V t

= w
(0)
0 +

m

kcon,zz

d2w
(0)
0

dt2
, w(0) −∣∣

x=V t
= w

(0)
0 +

m

kcon,zz

d2w
(0)
0

dt2
,

∂w(0) +

∂x

∣∣∣∣
x=V t

=
∂w(0) −

∂x

∣∣∣∣
x=V t

,
∂2w(0) +

∂x2

∣∣∣∣
x=V t

=
∂2w(0) −

∂x2

∣∣∣∣
x=V t

Substituting the expressions for the lateral and vertical deflections of the right (+) and left
(−) beam domain—with the W -coefficients now expressed in terms of V -coefficients—in
the above relations, yields for each time signature (A, B, C and D) a system of eight
algebraic equations, which can be solved.

The C -coefficients of Eq. (7.97) to Eq. (7.100):

Cv
abc = −

(
Qz
abckf,y − k2

f,c

)
Vab + (Qz

abc − kf,z) kf,cWab

2
(
Qy
abcQ

z
abc − k2

f,c

)
Cw
abc = −

(Qy
abc − kf,y) kf,cVab +

(
Qy
abckf,z − k2

f,c

)
Wab

2
(
Qy
abcQ

z
abc − k2

f,c

)
in which:

Qy
abc = −(kabV + Ωa)

2ρA+ ((−1)cχ− kab )
4
EI + kf,y

Qz
abc = −(kabV + Ωa)

2ρA+ ((−1)cχ− kab )
4
EI + kf,z
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and:

ΩA = −ΩB = ωn1

ΩC = −ΩD = ωn2

for x ≥ V t: b = 1, 2, 3, 4

for x ≤ V t: b = 5, 6, 7, 8

c = 1, 2

The D-coefficients of Eq. (7.103) to Eq. (7.109) and Eq. (7.111):

D
v/w
n1 =

(
−i
(
χ+ kA5

))n
C
v/w
A51 +

(
−i
(
χ+ kA6

))n
C
v/w
A61 +

(
−i
(
χ+ kA7

))n
C
v/w
A71 +

(
−i
(
χ+ kA8

))n
C
v/w
A81−(

−i
(
χ+ kA1

))n
C
v/w
A11 −

(
−i
(
χ+ kA2

))n
C
v/w
A21 −

(
−i
(
χ+ kA3

))n
C
v/w
A31 −

(
−i
(
χ+ kA4

))n
C
v/w
A41

D
v/w
n2 =

(
i
(
χ− kA5

))n
C
v/w
A52 +

(
i
(
χ− kA6

))n
C
v/w
A62 +

(
i
(
χ− kA7

))n
C
v/w
A72 +

(
i
(
χ− kA8

))n
C
v/w
A82−(

i
(
χ− kA1

))n
C
v/w
A12 −

(
i
(
χ− kA2

))n
C
v/w
A22 −

(
i
(
χ− kA3

))n
C
v/w
A32 −

(
i
(
χ− kA4

))n
C
v/w
A42

D
v/w
n3 =

(
−i
(
χ+ kB5

))n
C
v/w
B51 +

(
−i
(
χ+ kB6

))n
C
v/w
B61 +

(
−i
(
χ+ kB7

))n
C
v/w
B71 +

(
−i
(
χ+ kB8

))n
C
v/w
B81−(

−i
(
χ+ kB1

))n
C
v/w
B11 −

(
−i
(
χ+ kB2

))n
C
v/w
B21 −

(
−i
(
χ+ kB3

))n
C
v/w
B31 −

(
−i
(
χ+ kB4

))n
C
v/w
B41

D
v/w
n4 =

(
i
(
χ− kB5

))n
C
v/w
B52 +

(
i
(
χ− kB6

))n
C
v/w
B62 +

(
i
(
χ− kB7

))n
C
v/w
B72 +

(
i
(
χ− kB8

))n
C
v/w
B82−(

i
(
χ− kB1

))n
C
v/w
B12 −

(
i
(
χ− kB2

))n
C
v/w
B22 −

(
i
(
χ− kB3

))n
C
v/w
B32 −

(
i
(
χ− kB4

))n
C
v/w
B42

D
v/w
n5 =

(
−i
(
χ+ kC5

))n
C
v/w
C51 +

(
−i
(
χ+ kC6

))n
C
v/w
C61 +

(
−i
(
χ+ kC7

))n
C
v/w
C71 +

(
−i
(
χ+ kC8

))n
C
v/w
C81−(

−i
(
χ+ kC1

))n
C
v/w
C11 −

(
−i
(
χ+ kC2

))n
C
v/w
C21 −

(
−i
(
χ+ kC3

))n
C
v/w
C31 −

(
−i
(
χ+ kC4

))n
C
v/w
C41

D
v/w
n6 =

(
i
(
χ− kC5

))n
C
v/w
C52 +

(
i
(
χ− kC6

))n
C
v/w
C62 +

(
i
(
χ− kC7

))n
C
v/w
C72 +

(
i
(
χ− kC8

))n
C
v/w
C82−(

i
(
χ− kC1

))n
C
v/w
C12 −

(
i
(
χ− kC2

))n
C
v/w
C22 −

(
i
(
χ− kC3

))n
C
v/w
C32 −

(
i
(
χ− kC4

))n
C
v/w
C42

D
v/w
n7 =

(
−i
(
χ+ kD5

))n
C
v/w
D51 +

(
−i
(
χ+ kD6

))n
C
v/w
D61 +

(
−i
(
χ+ kD7

))n
C
v/w
D71 +

(
−i
(
χ+ kD8

))n
C
v/w
D81−(

−i
(
χ+ kD1

))n
C
v/w
D11 −

(
−i
(
χ+ kD2

))n
C
v/w
D21 −

(
−i
(
χ+ kD3

))n
C
v/w
D31 −

(
−i
(
χ+ kD4

))n
C
v/w
D41

D
v/w
n8 =

(
i
(
χ− kD5

))n
C
v/w
D52 +

(
i
(
χ− kD6

))n
C
v/w
D62 +

(
i
(
χ− kD7

))n
C
v/w
D72 +

(
i
(
χ− kD8

))n
C
v/w
D82−(

i
(
χ− kD1

))n
C
v/w
D12 −

(
i
(
χ− kD2

))n
C
v/w
D22 −

(
i
(
χ− kD3

))n
C
v/w
D32 −

(
i
(
χ− kD4

))n
C
v/w
D42

n = 0, 1, 2, 3
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The D-coefficients of Eq. (7.113) and Eq. (7.114):

D
v/w
41 = −Cv/w

A11 − C
v/w
A21 − C

v/w
A31 − C

v/w
A41 , D

v/w
42 = −Cv/w

A12 − C
v/w
A22 − C

v/w
A32 − C

v/w
A42 ,

D
v/w
43 = −Cv/w

B11 − C
v/w
B21 − C

v/w
B31 − C

v/w
B41 , D

v/w
44 = −Cv/w

B12 − C
v/w
B22 − C

v/w
B32 − C

v/w
B42 ,

D
v/w
45 = −Cv/w

C11 − C
v/w
C21 − C

v/w
C31 − C

v/w
C41 , D

v/w
46 = −Cv/w

C12 − C
v/w
C22 − C

v/w
C32 − C

v/w
C42 ,

D
v/w
47 = −Cv/w

D11 − C
v/w
D21 − C

v/w
D31 − C

v/w
D41, D

v/w
48 = −Cv/w

D12 − C
v/w
D22 − C

v/w
D32 − C

v/w
D42
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