

Escape-Master
Automation of the Game Master in Escape

Rooms
Final Report

Bachelor End ProjectComputer Science & Engineering
by

T. van AstenB.R.A. BotB.I.Y.L. HoJ.R.R. Lopez Kuchlin

Name Email
Timo van Asten t.vanasten@student.tudelft.nl
Bernard Bot b.r.a.bot@student.tudelft.nl
Björn Ho b.i.y.l.ho@student.tudelft.nl
Jael lopez Kuchlin j.r.r.lopezkuchlin@student.tudelft.nl

Project duration: April 23, 2018 – July 4, 2018

TU Coach: W.P. Brinkman
Client Advisor: J.W. Manenschijn
Bachelor Project Coordinators: O. Visser, H. Wang, M. de Weerdt

Contents

Foreword and Acknowledgements 1
Summary 2
1 Introduction and research 3

1.1 Introduction . 3
1.2 Problem definition and analysis. 3

1.2.1 Definition . 3
1.2.2 Analysis . 4
1.2.3 Gameplay . 6

1.3 Product goals . 6
1.3.1 Interaction Design . 6
1.3.2 Requirements . 8

1.4 Groundwork . 9
1.4.1 Automation of hints . 10
1.4.2 Modular Architecture . 11
1.4.3 Interaction with Creator . 12
1.4.4 Communication with Players . 13

2 Design 16
2.1 Initial designs . 16
2.2 Challenges . 17

2.2.1 Watson. 17
2.2.2 Messaging . 17
2.2.3 Game states . 18
2.2.4 Game events . 18

2.3 Final Design. 18

3 Implementation 20
3.1 Creator system . 20

3.1.1 Creating an escape room. 20
3.1.2 Starting an escape room . 21
3.1.3 Deployment . 22

3.2 Communication with players . 22
3.3 Automation of hints. 24
3.4 Persistence and modularization. 25

4 Testing 26
4.1 System testing. 26

4.1.1 IBM Watson API . 26
4.1.2 Creator system . 26
4.1.3 Unit testing . 26
4.1.4 Results . 26

4.2 Quality assurance . 27
4.2.1 Code quality . 27
4.2.2 Expert review . 27
4.2.3 Field studies . 27
4.2.4 Results . 30

4.3 Discussion . 33

i

Contents ii

5 Conclusion and discussion 34
5.1 Evaluation . 34
5.2 Limitations . 34
5.3 Ethical implications . 35
5.4 Contributions and recommendations. 35

Bibliography 37
Appendices 39
A Project description 40
B Info sheet 41
C Roadmap 43
D SIG Recommendations 45

D.1 First feedback . 45
D.2 Incorporation of feedback . 45
D.3 Second feedback . 46

E UML 47
F Questionnaire 49
G Questionnaire results 52

G.1 Field study 1 . 52
G.2 Field study 2 . 57

H Project Plan 62

Foreword and Acknowledgements

This report concludes the TI3806 Bachelorproject (2017/18 Q4) course and contains all relevant, related in-
formation. It describes the progress during the ten week period of the project spent working for the client,
Popup Escape. A product was developed that assisted the hosts of escape rooms with the automation of
hints. Furthermore, this document will elucidate the completed work and part of the accompanying process.
Finally, it shall provide recommendations for future work on this type of system.

A word of thanks goes out to all individuals that took part in the live tests. Moreover, we would like to es-
pecially thank Jan-Willem Manenschijn from Popup Escape for all his efforts and guidance during the project
and Willem-Paul Brinkman for his ample advice and insightful comments.

1

Summary

Escape rooms are an emerging market. In these physical and mostly group based games, players are locked
in a room with the goal to solve puzzles within a certain time limit in order to ’escape’ the room. To make sure
players have a pleasurable experience, they are monitored during the game by a so called game master. This
person helps players during the game. When players get stuck the game master gives players a hint. Another
possible task of the game master is to create an immersive story within the escape room. The game master
can do this by communicating with the players while taking on the role of certain characters that are part of
that story.

The goal of this project was to develop the Escape-Master system: a system that automates the role of
the game master. In the system the game master can define an arbitrary escape room by inputting puzzles,
characters and dialog for those characters. This dialog can include hints or storyline narrative. With this
information provided, the system can automatically interact with the players. The system keeps track of the
progress of the players and uses this information to interpret questions they provide to the system using
natural language processing. After this the system can provide a fitting response, which can be a hint or
narrative that progresses the story of the escape room. The system can also start interactions with players on
its own, based on time passed of their progress in the game.

The project consisted of two phases: research and development. During the research phase information
was gathered on player interaction, user engagement, and chatbots. During the development phase a system
was constructed that permits the game master automate the process of giving hints and create an immersive
story. Additionally, an interface was build to give the game master the ability to define an escape room and
start games while being notified of the actions the system takes. It was tested in a live setting on two occasions,
which yielded favorable results in terms of user engagement and immersion.

2

1
Introduction and research

1.1. Introduction
Popup-Escape is a company that creates and hosts escape rooms. Their escape rooms can be played on a
location indicated by the customer or in Delft. The escape rooms are highly customizable to deliver a person-
alized experience. The escape room called ’Social Hack’ is the main subject of this project. The Social Hack
involves competing with other teams to solve a number of interconnected puzzles. Most of the puzzles are
presented in a an online environment via a website. The story accompanying the puzzles is delivered via text
documents, emails, phone messages and theater. The use of multiple media creates an immersive narrative.
A game master from Popup-Escape monitors the progress of the teams and provides hints and information
when necessary. Currently, the game master needs to be trained in order to be able to host the escape room.
Also the number of teams that can compete needs to be limited in order to realize a satisfactory escape room
adventure.

The first goal of the project Escape-Master is to automate the role of the game master and tell an exciting
story using a chatbot. Chatbots can interact with players via multiple channels like SMS and email to give the
hints and information previously given by the game master. The online nature of the Social Hack provides
information about the progress of the players which complements the context sensitive responses of the
chatbot. Using not only the messages send by players, but also the data gathered from the puzzle websites,
the chatbot should be able to engross players in the story of the escape room.

The second goal is slightly more ambitious: the modularization of escape rooms similar to Social Hack. By
separating the system from the actual content of the escape room, it becomes possible to use the system for
every escape room that has a similar structure. An escape room like the Social Hack consists mostly of puzzles
and a small amount of story. It can be seen as a graph structure of puzzles. With an interface to construct this
graph, the development of new escape rooms becomes quite simple. Reusability and replayability are two
major positive consequences of modularizing.

1.2. Problem definition and analysis
As part of the research, the problem needs to be defined in more depth so there is a complete view of the
problem that needs to be solved. Furthermore the problem needs to be analyzed to break the problem into
smaller sub-problems and get an idea of the components the system needs to have to solve the problem.

1.2.1. Definition
Popup-Escape creates personalized escape rooms for companies to create the most fun and special experi-
ence for the client. The company has a new escape room concept where multiple teams of approximately
five people will all play the same escape room at the same time, competing against each other. The puzzles
of this escape room are mostly digital, which gives the possibility to digitally track the progress of the teams.
Each team tries to solve puzzles while inside an escape room, but teams often are not able to solve a specific
problem, which means they are not able to progress in the game. The game master is responsible to assist
teams whenever this occurs, however this becomes a difficult task when a lot of teams are playing at the same
time. This means the game master is limited to a small number of teams, hence Popup-Escape wants to have

3

1.2. Problem definition and analysis 4

an automated game master (AGM), which was implemented in this project as the Escape-Master system.
The Escape-Master sytem is a system that is able to automate the role of a game master in order to support a
larger amount of teams. This allows Popup-Escape to host more teams at once.

1.2.2. Analysis
The AGM can be analyzed better by using a structure that consists of initiatives, epics and stories. Initiatives
are a set of epics that all share a common goal and epics are tasks that can be broken down into smaller tasks,
and those smaller tasks are the stories. During the project the client discussed four major initiatives of AGM.
Those initiatives are: automation of hints, modular architecture, interaction with creator and communication
with players. All four initiatives need to be realized in order to realize AGM.

The first initiative is automation of hints. The AGM needs to automate hints when teams are stuck during
a puzzle. In order for hints automation to work, it is necessary to detect when players need a hint. Also, the
game state needs to be retrieved so that a hint is given related to the puzzle at which a team is stuck at.

The second initiative is modular architecture. This is another important initiative of AGM because every
escape room is different and AGM needs to be as generally applicable as possible. Modular architecture can
be broken down into dataset, model characters, model puzzles and model users. Dataset is about all data
that is related to an escape room that needs to be saved. Model characters are the characters that are part of
the story of the escape room. Model puzzles are the puzzles of the escape room. Model users is about specific
data from the users themselves (e.g. email, phone number etc.). These four epics need to be realized in order
to make a modular architecture.

Interaction with the creator is the third initiative. The creator of the escape room can interact with AGM
to define and adjust an escape room, as well as host the escape room during runtime. This can be broken
down into the Human Fallback System (HFS) and Creator Input System (CIS). The HFS is a system in which
the game master can be notified when the AGM is not able to generate a response during gameplay, which
allows the game master to intervene. The CIS is a system in which the creator can input new escape rooms.

The fourth and final initiative is communication with players. This is about AGM communicating with
players by using a chat bot. This initiative is broken down into the epics: natural language and engagement.
Each team can utilize the chat bot and start a text based chat with a chat bot that creates a natural conversa-
tion with a team. The chat bot also needs to provide an immersive experience for the teams in such way that
the teams are comfortable with the conversations and that the system plays an active role within the story of
the escape room.

From the mentioned initiatives and epics, a roadmap is constructed for the project. This roadmap is
a clear overview that breaks down the big problem into four initiatives, and from each initiative it is again
broken down into epics. For information on the project timeline, the Project Plan can be read in appendix H.

1.2. Problem definition and analysis 5

Figure 1.1: Roadmap of the project. Initiatives in green. Epics in yellow.

1.3. Product goals 6

1.2.3. Gameplay
The escape room that the end product was tested on is called The Social Hack. The gameplay of The Social
Hack is as follows. The game master starts with a short introduction about the goal of the escape room. The
game master does this while playing the role of a character within the story of the escape room, e.g. an agent
of the Dutch Intelligence Service. After the introduction, the game master will leave the room and start the
timer. The teams will then start with solving puzzles to reach the end goal.

Every puzzle is connected to another puzzle, and there are multiple ways to reach the end goal. Each puz-
zle may consist of a combination of physical and digital puzzles. An example of physical puzzle is a wooden
box with hidden compartments. An example of digital puzzle is a website where the user has to crack a pass-
word using social engineering.

Each team has at least one laptop with internet connection that is used to solve digital puzzles but it can
also be used to send emails with questions to characters within the story. The game ends when the timer has
elapsed or when the end goal has been reached.

1.3. Product goals
1.3.1. Interaction Design
To ensure that the product is well developed based on the needs of the target audience, user centered design
methods have been used. This will result in a more effective product designed specifically for user experience.

For this product there are two different users. The game master, which leads the escape room, and the
players that participate in the escape room. The target audience is defined in the next section.

Target audience
The product’s target audience is divided into two types. The players and the game master. The players are
people that participate in an escape room and solve the presented puzzles. These players usually work to-
gether in a group to accomplish this. These players are employed adults with higher than average affinity
with technology. Also these players are usually higher educated and analytic thinkers. The game master role
is taken on by employees of Popup-Escape, who are usually university students.

Conceptual phase
During the conceptual phase certain methods are used to create a clear idea of the users and usage of the
end product. Two different techniques used for this are personas and scenarios. This phase is an important
stage of the design process to customize the product to suit precise demands [7]. The personas can be seen
in figure 1.3 and 1.2 and the scenarios can be seen in figure 1.4.

1.3. Product goals 7

Personas Two types of personas have been created based on the target audience. By creating personas
based on the target user group, the goal to ensure a good user experience can be achieved [15].

Figure 1.2: Persona of the player.

Figure 1.3: Persona of the game master.

1.3. Product goals 8

Scenarios By creating a user scenario, the basic story of an action or goal that a user wants to accomplish is
described [8].

Figure 1.4: Scenarios of the game master and player.

1.3.2. Requirements
The functional and non-functional requirements are based on the Roadmap and the interaction design. By
defining Initiatives and corresponding Epics, certain tasks can be found per Epic. These epics and tasks lead
to functional requirements.

The most important functionalities of this project are the ones that allow escape rooms to be hosted easily.
In this case, the creator of the escape room should be able to construct the necessary puzzle and story ele-
ments and the state of the game should be recorded. These ’input’ functionalities should result in events that
trigger the sending of messages to the players. Of less importance are the extensions of this basic product:
communication via other media and special types of events.

1.4. Groundwork 9

Table 1.1: The project requirements defined with MosCow.

Functional Requirements

Must haves

Ability to support multiple teams at the same time
Detect when players need a hint, and communicate these hints using dialog by a fictional
character through a text based medium, like chat or email
Possibility for the creator to input an escape room (order of the puzzles, hints, story, etc)
into the system
Possibility for the creator to create fictional characters with unique dialog
Natural language interaction in English with fictional characters, by the chatbot
Retrieve and use game information (e.g. answers to puzzles, number of answer attempts)
from existing Popup-Escape system
Ability to reconstruct the current state of the game
Ability to know which messages are sent by which team

Should haves

Interaction with players via more than one medium (e.g. chat client, e-mail and social media)
Ability to hold basic user information (e.g. email, telephone number) to link back the different
forms of communication to the right team
Human fallback system that makes it possible for the game master to answer questions that the AGM
does not have an answer to
User friendly UI based on expert review
Pro-active events based on the storyline and game progression

Could haves

Interaction with players through other types of media, like speech and video
Data analysis and machine learning from previously collected data from escape room teams to
automatically improve performance
Automatic adjustment of escape rooms based on game progression (e.g. giving a team harder
puzzles if they solve easier ones really fast)
Different escape room story endings based on performance
Scoreboard that shows progression and score of teams
Model individual players (e.g. their knowledge base)

Won’t haves
Game master communication with the chatbot
Simulating games with multiple teams

Non-Functional requirements:
• The system will have a test coverage of 70%

• The system will be user tested by the target audience in at least two occasions

• The system is extendable by Popup-Escape

• The code quality is checked by SIG

• A code analysis tool is used throughout the project

• The system will make use of continuous integration, Travis CI

• The system will be ethically evaluated

• Interface should be accessible online from every computer

• The system should be scalable up to at least 100 groups of 5 people

• The application should run in a server environment

1.4. Groundwork
There are four different Initiatives in the Roadmap which are the main components or the system. Automa-
tion of hints, modular architecture, interaction with the creator and communication with players.

1.4. Groundwork 10

1.4.1. Automation of hints
One of the main tasks of the game master is to help out players that are stuck by giving hints. Players only
have a limited amount of time to play the escape room, and being stuck on one particular puzzle for too long
will have a negative impact on the player’s experience. On the other hand, giving out hints too soon will take
away the users enjoyment from solving the puzzles. The final product will have to find a way to detect the
right moment to give out a hint. This section will be devoted to research on how this automation of hints can
be achieved.

Game state retrieval In order to give a hint to the players it is important to know what puzzle the players
are working on. Certain information is available from the system that is currently in use to host the escape
rooms. This information includes:

• Answers given by the players

• Number of attempts for answering a puzzle

• Tracking the access to websites that are part of certain puzzles

If this information is combined with information about possible paths through the escape room, it is to know
what puzzles the players currently have access to. It is good to note that there are sometimes multiple paths
to the final solution, as well as physical puzzles. Therefore it is not always possible for the AGM to know which
specific puzzle the players are working on without extra input from the players. When needed, the AGM could
ask the player for this information in the form of a natural language interaction.

Detecting when players need hints One of the main questions that will need to be solved in order to au-
tomate hints, is the detecting when players need hints using the data that is available to the system. To do
this it is important to consider the way users play escape rooms. For example, there is data available about
the number of wrong answers given to a puzzle by the players. You could consider a large number of wrong
answers as a sign of the player needing a hint. However, by experience the Client told the team that there are
players that will just try to ’brute force’ their way through a puzzle by trying a lot of different answers, without
first searching for the right solution. Giving a hint after a large number of wrong answers is therefore not a
good indication of a player needing a hint.

This shows that it is especially important to test solutions on real players and implement their feedback
in an iterative process. This is the approach the team will take. The team will start out with an educated guess
that seems reasonable and has scheduled user tests to test the solution. At the end of these tests the players
will take a survey on the product, including questions about the timing of the hints. Did they get a hint while
they didn’t need one and vice versa? These surveys will be analyzed together with other game data to search
for improvements in the current use of the data.

Giving hints in the form of an assistant Lieberman [18] defines an agent ’as any program that can be con-
sidered by the user to be acting as an assistant or helper, rather than as a tool in the manner of a conventional
direct-manipulation interface.’ An important observation is that if users perceive the agent’s actions as ac-
tions that they could have done themselves, they are more willing to conceptualize the agent in the role of
an assistant. This fact could be used to give hints in a way that makes the fictional characters feel more like
assistants. If, for example, the system predicts that the users are stuck on a puzzle that involves opening a
box, fictional character could ask ’would you like my team to find out how to open the box?’ (an action that the
user could have done with his own team) instead of ’do you need a hint with the current puzzle?’.

Machine learning to improve timing of hints As seen in Section 1.3.2 the team is considering using ma-
chine learning to improve the timing of hints. There are multiple things to consider when choosing an al-
gorithm for this problem. First thing to note is that this is a classification problem with two classes: giving
a hint and not giving a hint. Secondly, it has to be noted that there would only be a small amount of data
available to train the classifiers. Thirdly, the feature vectors would only have a small amount of features in
them, which makes algorithms like SVM less applicable [5]. Finally, since this feature does not have high pri-
ority in the project, the classifier will have to be quick to implement and train. Using an overview on machine
learning provided by Microsoft [5], we can identify that the decision tree, the perceptron and two class logistic
regression are suitable algorithms to solve this problem.

1.4. Groundwork 11

1.4.2. Modular Architecture
Designing an escape room is a creative process. They are created, tested on real people and adjustments are
made where needed. The final product should be able to incorporate these changes quickly and generate a
new automated game master. The intent is to make the system as generally applicable as possible. It should
work for any arbitrary escape room, as long as the the creators provide content for it. This raises multiple
questions. What elements are needed to model an arbitrary escape room? What content should the creator
provide in order to create a pleasurable experience for the players? This section will contain research into
what escape rooms exactly are and how they are played and created in order to find a general model for an
escape room.

State and future of escape rooms The escape room concept appeals to a multiple of demographic groups.
To be able to customize the experience would enhance the players engagement. Players should be able to set
constraints, similar to in a video game. Some escape rooms, like Popup-Escape, focus on letting teams com-
pete. There is a central leader board which tracks the progress of all teams. This recording of advancement
tries to supplement the pressure from the time limit. Some groups will like this aspect of the escape room
experience, but others will opt for a more casual experience. Nicholson [21] identifies three principal group
types: casual, standard, and hardcore. For each group a disparate quantity of hints, solution, and assistance
should be provided to meet their desired experience.

An escape room is often played once and can not be replayed, because the answers to puzzles and im-
portant revelations are known from playing the previous time. This pay once business model also holds for
Popup-Escape. Players pay once and return only when a new escape room is introduced. The video game
industry can again be used as an example. Most contemporary escape rooms have many similarities with
point-and-click adventure games: locating items, combining items, and solving puzzles. The puzzles and
revelations in both cases static. To produce a replayable experience the focus should lie more on the adven-
ture than on solving the static puzzles. Players should be made part of a spectacle, feel heroic, and engage
with the presented challenge. To implement the replayable experience there are a few options; a different
experience is presented for every playthrough. These options include:

• Computer-generated puzzles

• Pick a random subset of a large set of puzzles

• Generate a random path through a graph of puzzles (=nodes)

• Group-based puzzles

• Set of good and bad endings

• Set of various good endings

Replayability makes it harder for players to cheat to obtain a better score. More important from a business
perspective is the amelioration of return costumers and consequentially of revenue. Viewing escape rooms
as live-action adventures where players are placed into a role could be the future. All puzzles in such an ad-
venture should contribute to the narrative, entertain and captivate, provide an a-ha moment, and encourage
group interaction.

Modularization Dividing a system into smaller parts is called ’modularization’. The practice of modulariza-
tion results in a codebase that is more manageable, flexible, and comprehensible [23]. This leads to a shorter
development, demonstrated by the following examples. When an error occurs the corresponding module
needs to be debugged, not the whole system. If new features have to be added a new module may be created
or an existing module may be extended. Each module has its own, predefined task, which causes a clear con-
nection between the code and its purpose. If one wants to quickly know what the function of a module is, one
only has to look at the interfaces of the modules. As the interfaces specify the input and output of a module,
it can be seen as a black box, abstracting away its inner workings.

Modularization can be applied to escape rooms. The modules and their relations form a hierarchical
structure graph. The modules on the first level don’t depend on any other modules. No cycles should exist in
the structure, as this would mean that modules should be combined into one bigger module. Drawing this
graph while discussing the design decisions helps optimize the modularization process.

1.4. Groundwork 12

Modularization maps all design decision and is created through discussion by the programmers involved
in the project. The decomposition can be done in various ways. One option is to make the ’major steps’ of
the process into modules. A flowchart can be constructed that describes the process, where each node would
represent a module. Another option is to make each module based on information hiding. The goal of this
decomposition is to hide the implementation of functionalities from other modules as much as possible. This
option makes the most use of interfaces. The parts of the system that are most likely to be modified in the
future should be put in a separate module. Thus, the rest of the system doesn’t suffer from regression. The
second option is most often the best choice, because during the development process design choices will
change. It becomes hard to maintain flexibility when employing the modules based on process steps.

Database Based on the modularization one can construct a database containing information of escape
room games. Four main entities are considered: Teams, Puzzles, Characters, Game.

• Teams represent the group of players participating in the escape room. They will have a number of
members, a name, and related channels (Whatsapp, Facebook, etc.).

• Puzzles are the challenge that the escape room represents. They will have question statements, descrip-
tions, answers, hints, and difficulties.

• Characters will represent fictional persona’s enacted by chatbots. They will have names, dialog options,
background information, and profile pictures.

• Game holds the general information of an escape room game. It will have a global time, time limit,
number of teams and other general relevant information.

The main decision when choosing a database is relational and non-relational. Since the chatbot will
receive data supplied from online channels, it will most likely receive JSON formatted objects. Non-relational
database, like MongoDB [6], use this format natively. Therefore it would be best to opt for the flexible and
complementary nature of the non-relational database.

Implementing a database can be made easy with an Object Relational Mapper (ORM) or Object Document
Mapper (ODM). No query language has to be used. The development can be performed in the programming
language of of the entire project. This comes at the price of slower queries. As this project only retrieves small
quantities of data for single games, the added query time is negligible.

1.4.3. Interaction with Creator
Besides the players of the escape rooms, another important user of our system are the creators of the escape
rooms. They will need a system where they can define the specifics of the escape room, identified in 1.4.2,
so the system can generate an automated game master. On top of that, a helpful feature would be a human
fallback system that gives the game master a way to monitor the state of the different escape rooms and
answer questions that the automated game master has trouble processing. This section will discuss how
such systems could be created.

Human fallback system Chatbot systems are typically adapted to handle simple requests of users and es-
calate to human support when the request get more difficult [24]. This system will be no exception. When
the chatbot fails to identify a proper response it should hand over the task of responding to a human by the
means of a fallback system. This system will relay the input to the game master. He or she will then respond
with an appropriate answer. It should eliminate non-sequiturs and disguise the fact that the player is now
talking to a human instead of a machine. The fallback system could also issue a message to the game master
when players are taking a long time to complete a puzzle and the hints given by the chatbot don’t seem to be
helping.

Escape room input system The escape room input system requires a more detailed description of the es-
cape room. Therefore it would not be feasible to implement this as a chat dialog. To keep the whole process
contained within the chat environment, the chatbot can redirect the creator of an escape room to an inter-
face located elsewhere. When all the information for the escape room is complete and submitted by the game
master the chatbot will confirm that the creation of the escape room has been successful.

1.4. Groundwork 13

User interface (UI) design is a field on its own. When designing an UI the principal problems that arise are:
"... getting users’ requirements, writing help text, achieving consistency, learning how to use the tools, getting
acceptable performance, and communicating among various parts of the program." [20].

The use of tools speeds up the implementation process significantly, these include: window systems,
toolkits, interface builders, and user interface management systems. It is important to note that for different
SDK’s different tools are available. For this project the SDK would depend on the chatbot framework, so
deciding which tools to use would have to be performed based on this decision.

1.4.4. Communication with Players
In order to supervise players of the escape room, it is needed to establish a line of communication with the
players. This line of communication will be used to provide the players with hints and new information they
need to solve puzzles. The other way around it will be used to give players the option to ask for hints and
talk to the fictional characters to advance the storyline of the escape room. The main requirements for the
communication is that it is natural and immersive. This section will be devoted to research on how to achieve
these goals.

Human-like behavior of chatbots Imitating human intelligence and behavior has been a challenge for
computers since the idea of the Imitation Game, or Turing Test was first proposed [25]. The Loebner Prize
Competition is the first formal instantiation of the Turing Test [14]. The chatbots in this competition use
technical and language approaches to fool the judge in believing they are human. Although none of the win-
ners were able to pass the Turing Test, they did epitomize the most human like behavior at that time.

Pattern matching is the most common approach from the technical approaches. Input is simply matched
with a pattern and the corresponding response is sent back to the user. Parsing is similar to pattern matching;
this method reduces input to a set of words. Modern chatbots can parse the complete grammar of natural
language sentences. Another method is that of the Markov Chain Model. The probability of the appearance
of a letter or word in a textual context is fixed. The Markov Chain Model uses this idea and predicts the
occurrence of a letter or word based on previous input. The order of a Markov Chain Model specifies the
amount of consecutive occurrences taken into account. A more convoluted approach is that of an ontology
or semantic network: a set of concepts that are connected in a hierarchical or relational fashion. Computers
can represent ontologies with graphs. Since there are various algorithms to determine characteristics of a
graph, a knowledge base can be created from an ontology. Recently relational databases together with SQL
have been employed to make chatbots ’remember’ previous conversations [12]. Combined with the parsing
this can be a powerful tool. An input from the user can be reduced to a simple query relating to a certain topic
present in the database. A more meaningful response can be created from older inputs.

Two chief languages were used in the competition: AIML and its successor ChatScript. AIML is a language
used to describe input rules and analogous responses with an XML-like syntax (see Figure 1.5). One of the
major strengths of this language is that it is recursive, so that input rules can be passed on to other input
rules. ChatScript, has an easier syntax and adds a number of functionalities that make ontologies an inherent
part of the language. When no input matches transpire from the AIML input rules, ChatScript tries to create
a reasonable default answer.

<category>
<pattern>HELLO</ pattern>
<template>Hi , how are you?</ template>
</ category>

Figure 1.5: Example of a simple AIML input rule

The language approaches use general understanding about conversations to make the chatbot more con-
vincing. An easy trick is to simulate typing errors or to make it appear as if the chatbot is typing, taking time
to formulate its answer. This will make the behavior of the chatbot seem increasingly human. Additionally,
the chatbot can be given a personal history. The responses include stories on childhood, parents, job, etc.
When no appropriate match from the technical approaches is found, a set of hard coded responses can be
employed. These so called ’canned response’ are the same as very specific patterns. A chatbot could be build
using only canned responses, but this would not be practical.

1.4. Groundwork 14

Player engagement User engagement is a term that is used to describe the experience of users that use
technology. User engagement plays an important role in the escape room, because users need to be engaged
in the story and the puzzles. The product that needs to be delivered needs to have basic functions for the
escape room but also need to provide user engagement. If users are not engaged, people will have a bad
experience and will not return to the escape room at another date. People might go elsewhere that does
provide user engagement. One way of keeping user engaged is to prevent players from getting stuck with a
puzzle. Questions that may arise are for example: how to determine that players are stuck with a puzzle by
using chat messages? Or how to determine that players are stuck with a puzzle by using the game state? In
order to get a better feel for these kind of problems, it is needed to understand and give a better definition
to the term ’user engagement’. The goal of this research is to look at key components of user engagement to
help with creating the right user engagement for the escape room. In order to achieve this, existing research
about user engagement was reviewed.

A model of user engagement consists of four stages of engagement: point of engagement, engagement,
disengagement and re-engagement [22]. The point of engagement is about aesthetics or motivation of the
user that might capture the interest of the user which starts the process. After the initial point of engagement,
actual engagement is started. At this point in time it is about maintaining the interest of the user and getting
responsive feedback from the application that is being used. After engagement is dis-engagement. When
users enter this stage there can be many reasons that can be either good or bad. Users might disengage
because a puzzle is successfully solved which creates a positive emotion or disengage when a user is stuck
with a puzzle which creates a negative emotion. After dis-engagement users may start re-engagement which
is to re-enter the point of engagement to start the process again. While playing the escape room, users might
restart this process multiple times during a single puzzle.

Also an important part of engagement is considering a users reaction to a certain interface. For example,
an interesting finding was that users with different cultural backgrounds have different responses to the same
interface [17].

Chatbot frameworks There exist a multitude of chatbot frameworks. When deciding what framework to
use it is most important to take into account what features are provided, but licensing, channels, language
support, documentation and technical details should not be disregarded. In 2017, Mindbowser conducted a
survey on chatbots with participants from nine different industries. In this section the most popular choices
will be enumerated and compared, listing the various aspects relevant to the development process [19].

The first choice of framework for building a chatbot was IBM Watson [16]. Watson Assistant, formerly
know as Conversation, embodies three components: intents, entities, and dialog [11]. An online workspace
is provided where the chatbot can be extended and data analytics on the conversations are available. The
correlating API supports the Node.js, Python, and Java SDK’s. There are three pricing plans: Lite, Standard,
and Premium. It is clear why IBM Watson is the first choice: the online workspace supplies an easy interface,
extending your chatbot can be made as hard as you want with simple intents or with extra middleware from
the SDK’s. The documentation of the framework is extensive and helps you set up a project quickly. The
largest flaw is the cost, if the chatbot receives a lot of traffic it will become increasingly expensive.

The second choice was Wit.ai [9]. It is a free framework and has a Node.js, Python, Ruby and HTTP API
client. Other unofficial clients are available on github. Around 50 languages are supported. Wit.ai uses enti-
ties, intents, and actions to respond to users. Natural language processing is used to understand the meaning
of all input and extract relevant information. The documentation of Wit.ai is especially useful, as it contains
recipes that let you implement the functionality that you want using a step by step guide [10]. Facebook inte-
gration is supported natively. To use the bot in an application one of the clients can be used, integration with
a website is now only possible via JSONP.

The third choice was the Microsoft Bot Framework [1]. Their Bot Builder SDK provides the tools needed to
develop a bot and their Bot Framework lets you connect bots to channels. An online environment is provided
to create and manage bots, which makes writing code optional. Although, there is support for the .NET en
Node.js SDK’s for fabricating more complicated functionality. What makes Microsoft Bot Service appealing is:
bot templates, multiple language support, and the flexible deployment of bots on different channels. Other
Microsoft services can be integrated for added functionality (speech, search, voice). Microsoft Bot Framework
is open source and available on GitHub. However, connecting your bot to your own website will cost money.

The TU Delft Supervisor for this project suggested Google DialogFlow [2]. DialogFlow comes in a Free and
Enterprise edition. The Free edition allows unlimited text queries, thus should be sufficient for the Popup-
Escape use case. An online environment gives developers the tools needed to create entities, intents, view

1.4. Groundwork 15

analytics, and train the chatbot. An inline editor and webhook can be used, but a Firebase subscription is
needed. Integration for an array of platforms is supported, to list a few: Slack, Facebook Messenger, Tele-
gram. DialogFlow has three API components, based on use cases: Fulfillment, Detect Intent API, Agent API.
Fulfillment integrates the natural language capabilities into your own website or services. Detect Intent inte-
grates the whole DialogFlow interface into a website. The agent allows you to dynamically change the agents
behavior. Fulfillment support only an Node.js SDK, but can be used by any platform that works with HTTP
requests. The other two components are supported by a large number of SDK’s. These client libraries can
simply be forked on GitHub. The documentation is simple, yet has all the necessary information.

2
Design

The design of the product is split into two canonical parts: front-end and back-end. The front-end includes
the interaction with players and creator. The back-end is made up of a model of an escape room and the
natural language processing functionality. The part of the front-end that interacts with players is simply
related to the channels used to communicate. The part that interacts with the creator should have an interface
that helps them in the design process of the escape room.

2.1. Initial designs
The chief influence on our design is the choice of chatbot framework. Frameworks support different lan-
guages and thus application programming interfaces (API). The IBM Watson framework was chosen for the
reason that it supports multiple languages (node.js, Java, Python), has sufficient documentation with exam-
ples, and was elected as the number one choice for creating chatbots in a large survey of developers.

Because the functionality of the Social Hack is hosted on a Meteor server, the use of node.js would inte-
grate easily with the software already present. Objects in JavaScript are analogue to their JSON representation.
Creating objects through requests is made trivial. However, the team’s knowledge base for the Java API was
greater. Java’s Spring Boot provides the same functionality as could be found in JavaScript. Processing JSON
objects proved no problem, because of libraries like Gson. The size of the project was a convincing factor
in choosing a language that was better known. Testing experience and the ability to use a familiar and an
easy-to-use IDE were the final elements that made Java the preferred alternative.

IBM Watson Assitant API was extensively scrutinized. How would the natural processing functionality be
integrated into the system? Can different media be used for communication? Watson has sufficient intelli-
gence to deliver the simple dialog needed for hints. By supplying only a limited number of example sentences
Watson was able to deduce the right intent. The focus was shifted from selecting a chatbot framework to the
creation of an environment for the creator of the escape room.

Spring was elected to create this interface since it makes it very easy to create web applications in Java.
The Model-view-controller (MVC) prototype is used to create a maintainable and readable code base.

The project was split into two parts analogous to front- and back-end: Spring and Watson. Using the MVC
model, the forms submitted in the Spring interface are stored into objects, which Watson then uses to create
a chatbot. This model is a vital part of the whole Escape-Master system, see figure 2.1.

16

2.2. Challenges 17

Figure 2.1: Abstract diagram of Initial Design

2.2. Challenges
When the Social Hack escape room is played, multiple events occur. Players answer and solve puzzles, access
websites, and get stuck (i.e. are unable to solve a puzzle and progress). These events need to be monitored
in order to get the right context for the chatbot. Fortunately, Popup-Escape already had a system in place.
There needed to be a way to process the information from the Popup-Escape system. Although this wasn’t
very complex, the proper interpretation of the data is quite difficult.

The product would consist of multiple components: the chatbot, the communication channels, the inter-
face for creating an escape room, and the interface for monitoring an escape room. Integrating these parts
requires precision and common practices. The relevant knowledge needs to be located in the right objects.

The short solutions to these challenges will also be presented here. In chapter 3 a more complete descrip-
tion and implementation of the solutions to the challenges can be found.

2.2.1. Watson
The challenge is combining the Watson API with other components of the product. One example is combin-
ing the component puzzles with Watson. An Escape-Room has a lot of puzzles, and people may have trouble
solving a specific puzzle. Thus, questions can be asked by people about their current puzzle. This means
that Watson needs to give hints about the right puzzle instead of giving a hint about a puzzle that is already
solved. So changes within a game state must change the behavior of the hints that Watson gives. This prob-
lem was solved by having regular meetings with every team member. In these meetings every component
was sketched on a whiteboard and also how each component interacts with each other.

2.2.2. Messaging
Interaction with players is done by using messages. Communication for this project incorporates two chan-
nels: SMS and email. SMS was fairly easy to use, however email was a challenge in this project. There were
two main challenges for email messaging. The first challenge is understanding how to perform actions for
email within Java. Many subjects play a role here, an example is user authentication. User authentication
seemed to differ depending on the email service that is being used. For example, Gmail from Google requires
developers to use OAuth 2.0 protocol, in order to gain access to Google’s email API. Moreover, an access token
is needed in order to use the API. This problem was solved by discussing the email messaging with the client.
Luckily, Popup-Escape is very flexible and is able to provide their own SMTP server so we did not have to deal
with this problem. The second and biggest challenge was reading email from within the inbox. The message
content could not be easily received. The content was often not stored as plain text and was instead stored
as variety of types. Each type needed a specific parser in order to read the content, furthermore some types
were "part" types and had to be combined in order to receive the full message. Sadly the parsers were not
provided within the API that was being used in this project. So this problem was solved by writing the parsers
manually and researching online where similar parsing was needed.

2.3. Final Design 18

2.2.3. Game states
When playing the Social Hack or any other escape room the state of the game changes constantly. The prin-
cipal change is caused by solving puzzles. Each game is timed and terminates after the time limit is reached.
Therefore, a time factor has to be taken into account as well. The Social Hack is played by multiple teams. It
is imperative that each team has a corresponding state. The information for each team is gathered by the sys-
tem created by Popup-Escape for the Social Hack. This makes it so that the Escape-Master system only has to
process the data. The principal issue was that not all puzzles of the Social Hack are digital, for these tracking
the state is not feasible. Conversely, for the digital puzzles, which consisted mostly of password submissions
and site accesses, the solving can be tracked quite easily. The state of the analog puzzles can be deduced from
that of the digital ones.

The data per team is sent to an endpoint of the Escape-Master system by means of a standard HTTP
POST request. The data is loaded into a Java object and the relevant data is extracted. The data is linked to an
username in order to have the proper context for each team. The context is essential for supplying hints at the
correct time. The publishing of hints is based on two types of events. Firstly, after a determined amount has
elapsed since the start of the game, a team will be given a suggestion of where to start looking next. Secondly,
if a determined amount of time has elapsed after solving a puzzle, i.e., a team is stuck, a hint relevant to the
current puzzle is stated. The graph-like nature of the Social Hack makes it uncomplicated to ascertain the
current puzzle.

2.2.4. Game events
An interesting functionality of the Escape-Master system are the game events. While creating an escape room
the client can decide to input certain events. An event is a type of message that is sent by a chosen fictional
character at a certain point during the game. For instance, the bad guy of the game can send an SMS to the
players after completing one or all of the puzzles.

There are two different types of events:

• GameTimeEvent is an event where a message is sent a certain period after the game has stared. For
instance, all teams receive an email after 5 minutes after the escaper room has started.

• PuzzleTimeEvent is an event where a message is sent after the completion of a puzzle or after a puzzle
has been completed for a duration of x amount of minutes. The latter can be used to give a team a hint
for example, when a team has been playing a puzzle for 10 minutes the team can receive an SMS with a
hint on how to solve the puzzle.

The implementation of these game events was an interesting challenge, as these events must be fired at
the correct time and for the correct player. The challenge here was the different amount of possible imple-
mentations of these events and its logic, as this can be decided in multiple ways but deciding the best way
was a process of trial and error. For example, the logic to decide the duration of an event can be done in
multiple ways; start counting after a puzzle has been solved or when a puzzle has become accessible. These
implementations all have different consequences on other aspects of the system.

Another challenge was the design of a suitable software pattern for the events. The events should be
able to be easily extensible for later use when adding other types of events. Also an implementation must be
designed to check whether an event should be fired for example, by using a timer or whenever there has been
a state change.

2.3. Final Design
The initial design with Watson and Spring was further developed during the starting period of the project. The
MVC-model fitted the design nicely. Despite that, an essential part of the system was overlooked in the ini-
tial design phase: the communication with players. When playing the Social Hack players get hints through
two channels: SMS and email. The channels are not part of the creator input system or the interaction with
Watson; it is the link between these two and the players. It was decided to implement this functionality in a
separate package from the MVC-model. The two event types discussed previously, puzzle events and game
events, are coupled with SMS and email. In this way the channels are abstracted away from the initial front-
and back-end. The creator input system provides interface for creating these events, which then automati-
cally trigger when a new Social Hack game is started and the game state is updated.

2.3. Final Design 19

The complete system consists of three parts: Watson, Spring, and the communication channels. The
creator only interacts with the input system created in Spring. The players don’t see any interface, other than
their own SMS and/or email client. Watson is not interacted with by anyone. The creation of the chatbot is
entirely automated, see figure 2.2.

Figure 2.2: User diagram of the complete system

3
Implementation

The system contains four modules, as explained in the Roadmap; the creator system, communication with
players, automation of hints and modular architecture. The implementation of the system is separated into
these four modules. A complete overview of the system can be seen in the UML, which can be found in
appendix E.

3.1. Creator system
In order for the whole system to function, the creator of the escape room needs a way to input, start and stop
the escape room. To do this, it was decided to use an online website with a graphical user interface. Since the
escape rooms created by the client are mobile and can be set up everywhere, it made sense to also make the
interface accessible from all computers with an internet browser. This way changes can be made on the go,
without the need for special software to be present on the machine used to access the interface. The choice
for a graphical user interface instead of a command line interface was made to make the application more
intuitive and usable without the needing technical knowledge about the system. The goal was to make the
GUI speak for itself, so everyone with knowledge about escape rooms could use it immediately.

3.1.1. Creating an escape room
Before we can play an escape room, it first needs to be defined in the system. Creating an escape room was
split into five parts:

• Name: The name used to refer to this escape room

• Characters: The characters that this escape room uses to communicate with the players and the chan-
nel the character will use to do so (for example SMS or email)

• Puzzles: The puzzles in the escape room. Creating a puzzle can in turn be split up in two parts:

– Name and puzzle id: The name of the puzzle and an identifier that is used to make sure any other
system an escape room is using can update the state of puzzle in our system;

– Dialog: For each puzzle, dialog for characters can be defined which consists of example sentences
of what players may ask a character when trying to solve this puzzle followed by what the character
should answer.

• Links: In this step the creator can define which puzzles are accessible after solving the puzzle, i.e. they
are linked. This step can be seen as defining edges in a graph

• Events: Here the user can define dialog that characters should initiate with the players after a certain
event happens in the game. There are two types of events that the user can define:

– Game time events: These are events that trigger for all teams simultaneously, regardless of their
progress in the game;

20

3.1. Creator system 21

– Puzzle time events: These are events that trigger differently for each team depending on their
progress in the game.

Since a lot of information is needed to define an escape room, the decision was made to split the process
into multiple steps that each have their own page. This ensures that the process is not overwhelming the
creator. All the screens shown during the creation process have a progress bar that indicates which steps are
completed, and what the steps are still remaining. This gives the creator a clear overview of the process. Once
all the steps have been completed the escape room can be saved to be started at a later time.

Figure 3.1: Creating an escape room in the editor

Figure 3.2: Fields for adding events

3.1.2. Starting an escape room
Once a escape room is created we can start it at any moment the creator wants. Starting an escape room is
split up into two parts:

• Creating a game: The first thing to do when starting a game is creating the game. This can be done
by selecting an escape room to play and inputting a CSV file containing the information of the players.
This includes their team number, phone numbers and email addresses. This information will be used
to contact the players during the game;

3.2. Communication with players 22

• Starting/stopping the game: After the game is created the only thing left to do is to start the game by
pressing the start button. After the game is started a timer appears to show the creator how much time
has elapsed since the game has been started. On this screen all relevant activity of the app is logged.
This includes activity like sending and receiving SMS messages, receiving and answering emails and the
status of the different teams. This helps the game master to verify that the automatic responses given
by the program are correct and gives the game master the possibility to intervene if this is needed.

Figure 3.3: GUI after starting the game

3.1.3. Deployment
The application was deployed using Heroku [3]. Heroku is a cloud application platform that has its own
command line tool. The Heroku command line tools includes support for deployment, logging, restarting
the application and much more. Heroku provides an environment that allows different types of apps to be
deployed with a couple basic commands. Our project is a Spring Boot application and thus supported by
Heroku. With a GitHub repository already in place, deployment is as simple as pushing to the heroku master
branch. Heroku then builds the application automatically and after building process is complete the appli-
cation can be accessed at a determined URL (https://escapemaster.herokuapp.com/). For more information
see the heroku reference: https://devcenter.heroku.com/categories/reference.

3.2. Communication with players
There are two communication channels implemented for the communication with players: SMS and email.
For SMS, the telephone number of each team member is stored and also the messages to be sent. These
messages are then coupled with an event to act as a trigger, so the messages are sent to players after a specific
time or after starting a specific puzzle. Email messaging is the second communication channel which is
implemented. There are two types of email communication. The first type is sending email messages after a
specific amount of time that a puzzle is started or elapsed total game time (see events in 3.1.1). The second
type is responding to messages that are sent by players. Players can ask questions by sending an email to
a specific email address, the content is then parsed and sent to IBM Watson. Afterwards, Watson returns a
response which contains an answer to the question asked. The answer is then put into a new message that
will be sent back to the player.

The messages that are sent to the players occur when an event has been inputted into the system by the
creator. For events there are two pieces of information required for the implementation of events, the last

3.2. Communication with players 23

solved puzzle of an individual player or team and the amount of time since that puzzle has been solved. The
system is required to fire an event when both of these pieces of information are currently equal to the inputted
event. And because the creator has the possibility to input an unlimited amount of events, the system must
continuously check whether one of the events needs to be fired. Therefore, it was chosen to implement an
observer pattern [13]. This design pattern can be seen in figure 3.4. Also it was decided to use a timer to check
the events continuously.

Figure 3.4: Observer design pattern

When a game is started the events are registered to all the teams. There are two different types of events
that can be created, a GameTimeEvent that sends a message after a certain duration of the game and a Puz-
zleTimeEvent that sends a message after certain puzzles have been solved. An abstract class was used for
this so that more events could later be implemented. The game also includes a timer that notifies events by
checking if the event should be fired. This is done by looking into the game state of every team or checking
the game time duration. Whenever an event has been fired and the team receives the message, the event is
unregistered from the teams events that still need to occur. Whenever an event is not necessary anymore for
instance, when an event should happen before a puzzle has been solved which functions as a hint, but the
puzzle has already been solved, the event should still be fired and should not be unregistered. The reason
for this is that the PuzzleTimeEvents are not only inputted to be hints, they can also be a message from ’the
bad guys’ saying for example, "Ha we have infected your computer!". And that kind of message should still
be received by the players. Therefore, it was decided not to unregister events unless they have already been
fired. Also, it is not likely that players unlock the next puzzle within the timeframe of receiving a hint. How-
ever, if the distinction should want to be made between a message and a hint after the project is completed,
the implementation of unregistering events could be done in the following way. When a hint event is set to
happen after x amount of minutes when puzzle i is solved, but the next puzzle, puzzle ii+1 is also already
solved, then the event is unregistered to prevent this event from firing. A diagram of the puzzles with events
of the Social Hack escape room (the game that has been used to test the system) can be found in figure 3.5.
To use this diagram as an example, after solving puzzle 0, an event is to occur after 3 min. But when puzzle 6
has already been solved before the 3 minutes have passed, the system should unregister the event to prevent
it from happening. However, in the current implementation the system does not distinct between messages
and hints and therefore, the system does not unregister events until occurrence.

Also a sequence diagram has been made to show how these events are checked and fired. This diagram
can be seen in figure 3.6.

3.3. Automation of hints 24

Figure 3.5: Puzzle diagram with events of the Social Hack escape room game. Example: Event1 must be fired after puzzle 0 has been
solved for 3 minutes.

Figure 3.6: The sequence diagram of how the system handles events when a puzzle is solved by a team.

3.3. Automation of hints
Hints are coupled to the two designated event types, to reiterate: puzzle events and game events. Game events
are triggered based on the elapsed game time. IBM Watson Assistant (Watson) is not used for this function-
ality, which does not need any language processing. Puzzle events have more logic. The Watson chatbot is
created after the escape room information has been submitted. The creator is requested to enter example
sentences and answers for each puzzle, called dialog bindings in the Escape-Master system. The example
sentences are used to recognize the user’s intent when sending an email. Knowledge of the exact internals
of Watson is not necessary, intent recognition works better the more example sentences are provided by the
user. It needs to be taken into account that there can be overlap between intents, and that example sentences
need to represent the user’s intent correctly.

A dialog tree is constructed based on these intents and the answers. A dialog tree is made up of ’nodes’,
that have specific conditions that trigger a context update and/or a reply. The structure of a dialog tree also
influences the flow of the conversation. The answers are locked by what is called a ’folder’, see figure 3.8.
Watson requires a context variable to unlock this folder and reply with the answer that is pertinent when
certain puzzles are solved. During runtime, when for example the Social Hack is being played, the context is
updated with the information transmitted by Popup-Escape per team. This gives Watson the right context to
give the correct answer that includes a hint.

3.4. Persistence and modularization 25

Figure 3.7: Diagram of the translation of a Dialog binding to the Watson context.

Figure 3.8: Part of the IBM Watson Assistant dialog tree with folders. The ’$’ indicates a context variable and the ’#’ an intent. The string
of numbers is the hashcode of a dialog binding.

3.4. Persistence and modularization
The architecture of the escape room was at first viewed as being centered around puzzles. During the de-
velopment process this view changed. It proved to be difficult to store the separate parts of an escape room
in a database. The main benefit of having a modular architecture is that parts of an escape room can be
recombined to create a new one, or an escape room can be updated or changed without effort.

A better technique was applied, namely the saving of the so called ’editor’ of the escape room. The editor
represents the state of the current input of the creator of the escape room through the user interface (UI),
represented by the Spring HTML form. Loading an editor gives the state back to the UI and allows the creator
to use the UI to manipulate the fields of the object. Since the editor is one object, it can also be stored as
such. The main model still remained modular in an independent package. Thus the editor could be seen as
a a collection of these modular parts. The consequence of this design change was that only one escape room
can be played at a time.

4
Testing

There were two approaches for testing the complete final product. First, system testing on the code level and
secondly, testing towards quality assurance. Different methods were applied and are explained in full, along
with the results for each type of method.

4.1. System testing
4.1.1. IBM Watson API
There are methods in the product that use the Watson API in order to create and manage the chatbot. These
methods are within classes inside the chatbot folder. Tests were not made for these methods because it was
not feasible nor reliable. Stubbing or mocking could be used, but its usefulness is very small in this case
because most work is done by using the Watson API. The method itself is mostly about calling the Watson API
code with the right parameters. The response from Watson could be tested but that would rely on the Watson
server up time and the availability of an internet connection, making the test not reliable. For this reason, the
decision was not to make tests for methods that use the Watson API. Instead, it was manually tested by using
the web user interface on IBM Watson. Running the code locally and double checking if the expected results
are seen on the website from Watson.

4.1.2. Creator system
The GUI of the creator system was mainly tested by using the GUI and see if the behaviour was as expected.
Also a expert review was conducted which is discussed in 4.2.2. The data transmission over HTTP was tested
using MockMvc.

4.1.3. Unit testing
The Model code base was tested using JUnit. Unit tests were applied to verify the logic for parsing and com-
munication events. Testing the parsing logic involved creating test input and comparing this to test output.
The parser should create the correct objects from the (JSON) formatted input and in the instance that the
input was faulty throw an exception. Communication events were tested by updating the state of a test game
and then checking if an event was triggered.

4.1.4. Results
For IBM Watson it was possible to verify that a method works by using the website, however this does not
provide any evidence in terms of numbers to show for the client. On top of that, the Watson API relies on the
service provided by IBM and if that service goes down, any tests that utilize that service will automatically fail.

For the creator system, testing the HTML data transmission prevented the introduction of several errors
when the underlying data model was changed. The failing tests indicated that a change to the HTML or
JavaScript code was needed to keep the GUI functioning. These changes were then implemented.

A coverage report was generated after running all tests. Certain packages were excluded from the test
coverage report, as these were not tested as explained before. Some classes were also excluded, because they
were simple Java beans without any testable logic. The non-trivial classes with important functionality do
have an overall coverage percentage of 72%, see figure 4.1.

26

4.2. Quality assurance 27

Figure 4.1: Test coverage report generated by IntelliJ IDEA [4].

4.2. Quality assurance
4.2.1. Code quality
The code was reviewed often to guarantee a high level of quality. The development process required scrutiny
from other team members before code was accepted into the main code base of the Escape-Master project.
When a new piece of code would be added, the continuous integration from Travis CI builds the project and
runs all tests in an isolated environment. This feedback would be automatically relayed back to where the
review of the code was executed. Using this setup our code should always pass all tests before it is accepted.
The assurance of style quality was implemented using Checkstyle. This tool guaranteed that certain style
requirements were met and otherwise gave a warning.

In collaboration with the TU Delft, the code was submitted to the Software Improvement Group (SIG), a
private software assessment company. Their review concluded that the code was above average (3.5/5 stars).
Code duplication and unit size were the main points of improvement. The number of tests could also be
ameliorated. The complete recommendations can be found in the appendix D. After this first review the code
base was updated accordingly and sent to SIG a second time to assure the improvements were implemented
correctly.

4.2.2. Expert review
During this use test an expert was asked to use and review the product. Specifically, creating and inputting a
new escape room is tested in this case.

Participants The participant of the expert review is solely the creator of the escape rooms. Which in this
case is the client.

Measures The expert performs his regular tasks. After the review the expert provides feedback on the prod-
uct. The feedback is analyzed by the development team and major problems are resolved.

Procedure During the review the expert inputted an entire escape room into the system such as, puzzles,
events and characters. After the review, the expert provided extensive feedback. The expert had a chance to
explain what problems had occurred and supplied feedback on the entire product.

4.2.3. Field studies
During the first field study 27 actual players have formed teams to play the full escape room, ’The Social Hack’
which was earlier created by the game master. During the second field study 4 players have formed two teams
to play ’The Social Hack’ game.

4.2. Quality assurance 28

Figure 4.2: The first field study is about to start.

Figure 4.3: A players received SMS messages during the second field study.

4.2. Quality assurance 29

Participants The participants of the field study were the players and the game master. This field study was
also at the same time an expert review as the game master has a lot of experience. Both the game master
and players need to evaluate the system to find problems with the usage of the product. The game master
will make use of the already available system provided by Popup-Escape. The players brought their own
telephones and each group has at least one laptop. During this field study there was a total of 27 participants
in 5 teams and during the second field study a total of 4 participants in 2 teams.

Figure 4.4: The first field study and its participants.

Figure 4.5: A participant checking his email during the second field study.

4.2. Quality assurance 30

Measures To analyze, evaluate and adjust the product where needed, all players were asked to fill in a ques-
tionnaire after the game. This questionnaire was made beforehand and created in a way that the biggest
problems with the product will be found. The questionnaire can be found in appendix F. The collected data
is presented in a graphical way, such as graphs to give a clear overview of the findings.

Another important measurement is the systems performance checklist. This list contains certain actions
the system must complete in order to be a successful product. During the field studies the system was ob-
served and it was validated that each item on this list was completed. These items can be found in table 4.1.
The entire system is evaluated by analyzing the completed and uncompleted items on the checklist. Based
on the completed items on the checklist the quality level of the end product can be demonstrated.

For the second field study data was collected for the measures shown in table 4.2 which were used for
statistical analysis. The data described in the descriptions column was used to decide how well the system
performed. To do this the recall was calculated by dividing the amount of correct responses by the amount
of received responses of the players. And the precision was calculated by dividing the amount of correct
responses by the amount of total responses.

Procedure All the participants met at the agreed upon location. The escape room was setup beforehand by
the game master. The game master took care of all aspects of hosting the game and its players. Beforehand
the players were asked to fill out a questionnaire as soon as the game was done.

Goals The most important goals of the field studies were the following:

• Check if the product requirements were met;

• Find bugs that were not discovered during unit testing;

• Test the system’s stability under actual load by having multiple teams play the game;

• Gather data from players that might improve the response from the AI system;

• Gather feedback from the players on which the product can improve on;

• The client can get familiar with the product and see it in action.

4.2.4. Results
As previously stated, the quality assurance tool Checkstyle was used for our code base. At the end of the
project no Checkstyle errors could be found in our code.

During the expert review, the client used the system to input an escape room and found that a few parts
of the UI needed improving. The feedback received and the actions taken were the following:

• When opening the editor, the user first had to click on the name field before they could start typing, which
was not intuitive.
This was solved by adding autofocus to the appropriate fields;

• It was not clear to the user how the step of adding links worked if the user had multiple puzzles that all
needed to be solved before the players can advance to the next puzzle.
At the time the system did not support this specific case. The system was changed to accommodate
this use case;

• The user found it more intuitive to add the puzzle time events during the step of adding puzzles to the
escape room.

• The user wanted to receive messages in the user interface to monitor the actions the system was taking.
A logger was added to the user interface that logs all actions that are relevant to the game master. The
logs can be seen in figure 4.6.

Furthermore, it was found that some of the inner workings of the system were not clear from the start. This
caused the user to define wrong behaviour in the system. Additional explanation was needed to prevent this
from occurring again.

4.2. Quality assurance 31

Figure 4.6: The logs were added after the review. These can be seen above the Stop Escape Room button.

As can be seen in the performance checklist in table 4.1, the first field study did not carry out to perform
all the required actions. The human fallback system was not yet implemented, the emailing responses was
not functioning and the SMS functionality was not working as intended. However, the second field study re-
sulted in all required items completed in full, which indicates a fully functioning system based on the product
requirements.

Table 4.1: The checklist.

First field study Second field study Description

Game Play
∼ 3

Send players a predefined message after a
certain amount of time has elapsed during
a game (GameTimeEvent/ PuzzleTimeEvent)

7 3
Respond to the players with a hint after
receiving an email from the players

3 3
Respond to the players with a message when
receiving an undefined email from the players

Creator System

3 3 Input an escape room and save it to the database
3 3 Input teams

3 3
Start a game with the inputted teams and the
selected escape room

3 3 Update the state of each team during game play
3 3 Display the logs of the game
7 3 Human Fallback system

Due to some bugs found during the first field study 57.9% of the participants did not receive any SMS
messages. It was also shown that 80% of the participants sent an email to the fictional AIVD character. An
interesting statistic was that of the interaction between players and the characters via SMS and email. The
participants were asked if they were interacting with a human or a bot. The answers were spread evenly
between bot, human, bot and human, and no clue (see figure 4.7). The second field study gave different
results. The improvements made from the first study clearly yielded refinement. All participants now received
SMS and email also performed much better, although sometimes human intervention was still necessary. The
statistics of the second field study can be seen in table 4.2. And the full results of the both field studies and

4.2. Quality assurance 32

the questionnaire can be found in appendix G.
In table 4.3, an example can be found of emails sent by players and corresponding responses of the sys-

tem.

Figure 4.7: A result from the first field study.

Table 4.2: The measures used for the second field study and the results.

Descriptions Measures
Statistics

Team 1 Team 2
By completion of the entire
Social Hack game, a certain
amount of SMS messages
must be sent to each team

5 SMS messages per team 5/5 3/3

When a team sends an email
for which the system has a
response, the system must
respond

Recall =
amount of correct responses /
amount of received messages

Recall = 4/5 = 0.8 Recall = 3/3 = 1

When the system responds
to an email, it must give
a correct response

Precision =
amount of correct responses /
amount of total responses

Precision = 4/4 = 1 Precision = 3/3 = 1

Table 4.3: Examples of user sent emails and system generated responses during the second field study.

User input Generated output Correct output
"What is the place of birth

of Gerard?"
"We think he is born in a

small town south of Zutphen."
Yes

"What is the name of Gerards
pet and where can we find it?"

"We called Faythe and she told
us he has a nice picture of their

pet in the background."
Yes

"msfhviratimnvoe
iytaeotileaojib"

(No answer generated.) Yes

"What is Gerards favourite movie?
AJ25ZK"

"We really don’t know, sorry.
Maybe you should check the

security codes."
Yes

"What does the safetycode for
recovery questions mean?"

"Try shuffling all letters." Yes

4.3. Discussion 33

4.3. Discussion
The final product was tested sufficiently. Some components were not unit tested, but were tested manually
and during an actual game with participants. The components that were unit tested had an overall test cover-
age of 72%. The product is of high quality because it kept a consistent coding style that helps with using good
practices in code, since there were no Checkstyle errors in the master version of the software throughout the
project. Besides, Travis CI also tested and built the software continuously, and only a passing build was on
the Master branch.

The expert review was also helpful for the quality assurance of the product. After the expert review, the
major problems were resolved and the client received additional explanation on how to input events as this
had previously given some problems during the field study. This extra information was also placed in the UI
where new events are inputted.

During the first field study 57.9% of the participants did not receive SMS messages. This was caused
by a bug in the system. However, before the second field study, major improvements were made for SMS
messages. SMS worked properly that time, and all players received SMS messages. During the first field
study, email responses did not work properly due to IBM Watson being down for maintenance therefore, no
data was collected. For the second field study, both SMS messaging and email messaging were improved.
When the system replied, the responses were a 100% correct for both teams. When a team sent an email for
which the system had a response, 80% of the messages were replied to for team 1, whilst for team 2, 100% of
messages were replied to. 20% of the messages that were not replied upon, because the question was asked
inside the subject field instead of the content field in the email. This was not implemented and could be
improved for future field studies. The results from the question whether the participants were interacting
with a human or a bot from the first field study is promising, because this shows that AI has the potential
to replace the game master in a majority of settings however, human intervention is still required in other
specific settings for instance, when no suitable response is available for a received message.

To conclude, the goals of the field studies have been fully achieved; The requirements have been checked
and were all met, a few bugs were found and fixed, the systems stability was tested with ten teams, data was
gathered to improve the response system, the system was improved based on feedback of the players, and the
client has seen the product in action.

5
Conclusion and discussion

5.1. Evaluation
The first goal of the project Escape-Master is to automate the role of the game master and create an engaging
experience using a chatbot. The communication between players and the email and SMS system provide an
adequate automation for the game master. Nevertheless, the game master must interfere in situations where
the chatbot (IBM Watson Assistant) is not able to infer the intent of the player. During the two field studies the
reactions of the participants surmised that the automated messages contributed to a rousing adventure. The
true level of excitement is hard to measure and inherently subjective. Thus it was deemed more important
that the client was satisfied with the use of the product. Consultation with the client concluded that the level
engagement was improved by the employment of the product.

The second goal, is the modularization of escape rooms similar to Social Hack. The front-end interface
and the accompanying back-end developed throughout the ten weeks that spanned this project gave the cre-
ator of escape rooms tools to make new ones by simple interaction with the system. The persistence of the
escape rooms allows for loading and saving.

The product requirements that were defined in chapter 1.3.2 and whether they have been met and how, can
be found in table 5.1. All Must and Should Haves were implemented, but none of the Could or Would Haves,
as was the aim of the project. However, with more time available the Could Haves could be implemented as
well. In the course of the project, prioritizing requirements was indispensable. The chief requirements were
met, thus can be deduced that the project was a success.

Based on the results of the first and second field study it can be concluded that the system is well tested,
as major issues were resolved before the second field study. This is shown in table 4.1, as all predefined
functionalities are implemented and contained within the end product. Also, analyzing the statistics of the
accumulated data during the second field study shows that the end product is a well functioning system that
meets all the requirements.

5.2. Limitations
The product has certain limitations when using this in practice. The system worked well for English speakers
but does not work yet for other languages. Although SMS works in the Netherlands, there was no research
done whether it also works for foreign countries. The system works for digital puzzles, but currently there is
no information tracked from non digital puzzles. IBM Watson was used as chatbot framework and relies on
it for email replies, but the framework is not easily interchangeable unless the implementation is modified.
The product works on the email server that Popup-Escape uses, however it is not easily adaptable for use for
other email servers. Another limitation is about multi game hosting. It is possible to host multiple games by
using multiple hosts, but it is limited to one game instance per host.

34

5.3. Ethical implications 35

5.3. Ethical implications
The escape master system uses email addresses and telephone numbers of the players participating in an
escape room game. This sensitive data is only used when the escape room is being played and provided by
Popup-Escape. It could be used to send phishing or spam messages. The implications are negligible, because
the same data was already collected and used by Popup-Escape. However, if the escape master system is not
secure the data could be extracted. A malicious attacker would have to know when a game is started and have
sufficient knowledge of the internals of the system to be successful. The effort for an attacker would be far
greater than the value of the data. Therefore it would seem highly unlikely that someone would mount an
attack. Moreover, the escape master system is hosted on Heroku, which guarantees security on every layer of
their platform.

The stakeholders (creator, players) of the escape master system have disparate benefits. The players do
not have a large increase in enjoyment of the game compared to how the escape room game was played
without the escape master system. In the previous scenario creators would send emails and other message
themselves. The creator has the chief advantage by using the escape master system. Now many more teams
can play the same escape room and all receive messages relevant to the state of the game.

The natural language processing of Watson is trained on one billion Wikipedia words. The authors of
these articles may not correctly represent the demographic of actual society. People with a more closely
related background and thus language usage of these authors will get a better product. This negative effect
can be negated by the creator. By inputting example sentence that have a mixed language usage, all players
will get the same level of recognition.

5.4. Contributions and recommendations
The full experience of the client’s escape room during the field study granted the client an acceptable attes-
tation of what the Escape-Master system could contribute. The level of engagement of the game is assuredly
increased by extra hints and messages sent via SMS and email. Also, currently the game master is responsible
for responding to all emails received from the different teams, which can be a lot of work especially when the
team sizes increase. Furthermore, another important aspect of the email messaging is the chatbot, as can be
seen in the results of the questionnaire, the participants where not sure whether they were communicating
with a bot or a human. This is an interesting result, which could be further explored and tested to find out
what kind of experience this stipulates for the players.

Some features could still be implemented: the type and conditions of events can be extended for example,
when a player visits a certain website a message could be sent.

5.4. Contributions and recommendations 36

Table 5.1: The completion of requirements and their description.

Requirements Implemented Description

Must Haves

Ability to support multiple teams at
the same time

Yes
Multiple teams can play the escape
room at the same time

Detect when players need a hint, and
communicate these hints using dialog
by a fictional character through a text
based medium, like chat or email

Yes

The players can ask for a hint by
emailing a certain character of the
game and the character responds
with an email, however this is done
at predefined moments of the game

Possibility for the creator to input an
escape room (order of the puzzles,
hints, story, etc) into the system

Yes

The creator can input an entire
escape room with multiple puzzles
and events that can work as hints
that is then saved in the database

Possibility for the creator to create
fictional characters with unique dialog

Yes

When inputting an escape room the
creator also defines characters, with
their channel (sms, email) and their
dialogues

Natural language interaction in English
with fictional characters, by the chatbot

Yes

Yes when receiving an email by a
player the chatbot responds to the
player by checking in what game
state that player is which unlocks
a certain dialogue

Retrieve and use game information
(e.g. answers to puzzles, number of
answer attempts) from existing
Popup-Escape system

Yes
The game state of each team is
updated whenever a change is made
such as, the team has solved a puzzle

Ability to reconstruct the current
state of the game

Yes
With the information of the clients
system all of the teams states can be
saved to the system

Ability to know which messages are
sent by which team

Yes

When a message is received, the
known email addresses are checked
for each team, when the address is
known the chatbot responds with the
predefined dialogue, if the address is
not known the system responds by
asking for the teamcode

Should haves

Interaction with players via more than
one medium (e.g. chat client, e-mail
and social media)

Yes SMS and email

Ability to hold basic user information
(e.g. email, telephone number) to link
back the different forms of
communication to the right team

Yes
The information is saved from all
teams at the start of the game

Human fallback system that makes it
possible for the game master to answer
questions that the AGM does not have
an answer to

Yes
The responses are tracked and the
can see in the logs what message
has been responded to or not

User friendly UI based on expert review Yes
An expert review has been done and
measures were take based on the
received feedback

Pro-active events based on the storyline
and game progression

Yes

The GameTimeEvent sends a message
when the duration of the game is at a
certain point. The PuzzleTimeEvent
sends a message when the players are
playing a certain puzzle for a certain
amount of time. The VisitedEvent
sends a message when a player has
arrived at a certain website

Bibliography

[1] Bot framework. URL https://dev.botframework.com/.

[2] Dialogflow. URL https://dialogflow.com/.

[3] Heroku: Cloud application platform. URL https://www.heroku.com/.

[4] Intellij idea. URL https://www.jetbrains.com/idea/.

[5] How to choose machine learning algorithms. URL https://docs.microsoft.com/azure/
machine-learning/studio/algorithm-choice.

[6] Mongodb. URL https://www.mongodb.com/what-is-mongodb.

[7] What is interaction design?, . URL https://www.interaction-design.org/literature/topics/
interaction-design.

[8] Design scenarios - communicating the small steps in the user experi-
ence, . URL https://www.interaction-design.org/literature/article/
design-scenarios-communicating-the-small-steps-in-the-user-experience.

[9] Wit.ai, . URL https://wit.ai/.

[10] Getting started with wit.ai, . URL https://wit.ai/docs.

[11] Watson assistant the ai assistant for your business, Apr 2018. URL https://www.ibm.com/watson/
ai-assistant/.

[12] Sameera A Abdul-Kader and John Woods. Survey on chatbot design techniques in speech conversation
systems. International Journal of Advanced Computer Science and Applications, 6(7):72–80, 2015.

[13] Justin Albano. The observer pattern using java 8 - dzone java, Jan 2016. URL https://dzone.com/
articles/the-observer-pattern-using-modern-java.

[14] Luka Bradeško and Dunja Mladenić. A survey of chatbot systems through a loebner prize competition.
In Proceedings of Slovenian Language Technologies Society Eighth Conference of Language Technologies,
pages 34–37, 2012.

[15] Rikke Dam and Teo Siang. Personas – a simple introduction. URL https://www.
interaction-design.org/literature/article/personas-why-and-how-you-should-use-them.

[16] IBM. Does your business think?, Oct 2017. URL https://www.ibm.com/watson/.

[17] Michael Kriegel, M Lim, Ruth Aylett, Karin Leichtenstern, Lynne Hall, and Paola Rizzo. A case study
in multimodal interaction design for autonomous game characters. In 3rd Workshop on Multimodal
Output Generation, pages 15–25. Citeseer, 2010.

[18] Henry Lieberman. Autonomous interface agents. In Proceedings of the ACM SIGCHI Conference on Hu-
man factors in computing systems, pages 67–74. ACM, 1997.

[19] Mindbowser. Chatbot market survey- 2017: Mindbowser info solutions, 2017. URL http://
mindbowser.com/chatbot-market-survey-2017/.

[20] Brad A Myers and Mary Beth Rosson. Survey on user interface programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 195–202. ACM, 1992.

[21] Scott Nicholson. Peeking behind the locked door: A survey of escape room facilities. White Paper avail-
able online at http://scottnicholson. com/pubs/erfacwhite. pdf, 2015.

37

https://dev.botframework.com/
https://dialogflow.com/
https://www.heroku.com/
https://www.jetbrains.com/idea/
https://docs.microsoft.com/azure/machine-learning/studio/algorithm-choice
https://docs.microsoft.com/azure/machine-learning/studio/algorithm-choice
https://www.mongodb.com/what-is-mongodb
https://www.interaction-design.org/literature/topics/interaction-design
https://www.interaction-design.org/literature/topics/interaction-design
https://www.interaction-design.org/literature/article/design-scenarios-communicating-the-small-steps-in-the-user-experience
https://www.interaction-design.org/literature/article/design-scenarios-communicating-the-small-steps-in-the-user-experience
https://wit.ai/
https://wit.ai/docs
https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://dzone.com/articles/the-observer-pattern-using-modern-java
https://dzone.com/articles/the-observer-pattern-using-modern-java
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
https://www.ibm.com/watson/
http://mindbowser.com/chatbot-market-survey-2017/
http://mindbowser.com/chatbot-market-survey-2017/

Bibliography 38

[22] Heather L O’Brien and Elaine G Toms. What is user engagement? a conceptual framework for defining
user engagement with technology. Journal of the Association for Information Science and Technology, 59
(6):938–955, 2008.

[23] David Lorge Parnas. On the criteria to be used in decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, 1972.

[24] Silvia Quarteroni. Natural language processing for industry. Informatik-Spektrum, 41(2):105–112,
Apr 2018. ISSN 1432-122X. doi: 10.1007/s00287-018-1094-1. URL https://doi.org/10.1007/
s00287-018-1094-1.

[25] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing Test, pages 23–65. Springer,
2009.

https://doi.org/10.1007/s00287-018-1094-1
https://doi.org/10.1007/s00287-018-1094-1

Appendices

39

A
Project description

Popup-escape is a young company/startup started by a Delft Computer Science student two years ago. It
started out as a hobby and it is now grown to a full-time job with multiple part-time employees. (Also some
Computer Science students). We have designed and made about 30+ escape rooms over the past two years
and at least 3000 people have played the different escape rooms.

Popup-Escape has created a social hack game, a game where the players have to hack a computer using
social engineering. They have to explore and find information on the internet using social media, (fake) web-
sites, calling phone numbers and more. This is combined with Physical puzzles and tasks the player have to
complete. The players play in groups of 3-5 against each other, and have a live scoreboard of the game up
whilst playing. The software system behind this game is pretty complex, following users across different web-
sites and systems, checking their actions (online and offline) whilst updating the live scoreboard. Whilst the
game is a lot of fun using real world actions in a game, we would like to add another dimension: Interacting
with AI characters to enhance the social engineering experience. That’s where you come in. We would like
you to research the possibilities for such an AI system which feels natural and real. Furthermore, we would
like you to implement such a system with an API so that we(or you, if you’d like) can integrate it with our
current working system. Popup-Escape offers:

• A lot of fun: You are going to play multiple escape rooms during the project for inspiration and research

• A informal (student-like) work environment and great lunch

• Flexibility: it is not required to work at the office all the time and the working hours are determined by
you

• Working with technologies you like and think are the best

• The possibility to work on games which are going to be played by real users. You can see your software
in action!

40

B
Info sheet

41

Info sheet
Title of the project: Real life social hacking game
Name of the client organization: Popup-Escape
Date of the final presentation: 4 July 2018
Description: The client of this project was Popup-Escape; a company that creates and hosts personalized
escape rooms. The client wanted a product that automates the role of a game master of an escape room. The
game master is responsible for supplying hints and parts of the narrative. Communication of the automated
host pertains two types of media: email and SMS. The product was designed to represent a modularization of
escape rooms. Consequently, similar escape rooms can be modeled and automated by the product. During
the research phase, the product was found to be unique. Therefore the team researched which components
of the system were needed to create a fully functional product. The Scrum methodology was employed for
the development of the product. An unexpected challenge of this project was the integration of the major
components in order to create an usable escape room model for the client and an engaging experience for
the players. The quality of the product was guaranteed by unit testing the product and field testing the es-
cape room game with a total of twenty-seven customers of the client. A possible improvement of the product
would be a more elaborate model of escape rooms. This would include extending the possible media with
which the product communicates with the players and the conditions on which messages are sent. Popup-
Escape will use this product when playing future escape rooms comparable to the Social Hack.

Members of the project team:
All members contributed to the final report and the final presentation.

Name: Timo van Asten
Interests: Psychology, programming
Role & contribution: Communication, Front-end developer

Name: Bernard Bot
Interests: Ethics, logic
Role & contribution: Lead programmer, Back-end developer

Name: Björn Ho
Interests: Programming, algorithms
Role & contribution: Editor, Back-end developer

Name: Jael Lopez Kuchlin
Interests: Biomedical engineering, reasoning and logic, problem solving
Role & contribution: Management and organization, Back-end developer

Client
Name: Jan-Willen Manenschijn
Affiliation: Owner Popup-Escape

Coach
Name: W.P. Brinkman
Affiliation: Interactive Intelligence Group TU Delft

Contact
Timo van Asten timovanasten@gmail.com
Bernard Bot bernardo.reinier@gmail.com
Björn Ho bjornho@outlook.com
Jael Lopez Kuchlin lopez.jael@gmail.com

The final report for this project can be found at: https://repository.tudelft.nl

C
Roadmap

43

44

D
SIG Recommendations

D.1. First feedback
De code van het systeem scoort 3.5 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Duplication en Unit Size vanwege de lagere deelscores als mo-
gelijke verbeterpunten.

Voor Duplicatie wordt er gekeken naar het percentage van de code welke redundant is, oftewel de code die
meerdere keren in het systeem voorkomt en in principe verwijderd zou kunnen worden. Vanuit het oogpunt
van onderhoudbaarheid is het wenselijk om een laag percentage redundantie te hebben omdat aanpassingen
aan deze stukken code doorgaans op meerdere plaatsen moet gebeuren.

In jullie project zit er bijvoorbeeld duplicatie tussen de verschillende event-classes, zoals PuzzleTimeEvent,
VisitedEvent, GameTimeEvent, en dergelijke. Die classes bestaan vooral uit data en minder uit gedrag, maar
desondanks zou je de hoeveelheid "boilerplate" code zoveel mogelijk willen beperken. Je zou er bijvoorbeeld
voor kunnen kiezen om alle parameters in eerste instantie op een defaultwaarde te zetten (door in de inter-
face GameEvent een default method te maken).

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het opsplitsen
van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen
en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals bijvoor-
beeld, zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte meth-
odes.

Een voorbeeld uit jullie systeem is GraphFactory.createGraph(). Deze methode is nog niet zo lang, maar
er is wel een risico dat de methode erg groot gaat worden op het moment dat de graph in de toekomst in-
gewikkelder wordt. Je wilt de verschillende delen van het opbouwen van de grapgh eigenlijk naar aparte
methodes uitsplitsen.

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid tests blijft nog wel wat
achter bij de hoeveelheid productiecode, hopelijk lukt het nog om dat tijdens het vervolg van het project te
laten stijgen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de
ontwikkelfase te realiseren.

D.2. Incorporation of feedback
The feedback from feedback noted two major points: unit size and duplication. In the initial release of our
project, that was uploaded to SIG, we still had a lot of code that was not really used or only partially. This
code was cleaned up: parts were removed and other parts were given full functionality. The amount of tests
also increased accompanying this development. The largest change was the separation of the parsing logic
and the actual escape room model. This resulted in multiple packages with disparate testing and logic. The
project as a whole became more maintainable and easier to understand.

45

D.3. Second feedback 46

D.3. Second feedback
In de tweede upload zien we dat het project ongeveer even groot is gebleven. De score voor onderhoud-
baarheid is in vergelijking met de eerste upload gestegen.

We zien bij Duplication een grote verbetering, niet alleen in de genoemde voorbeelden, maar ook elders
in de code. Hulde! Bij Unit Size zien we ook een verbetering, maar iets minder groot en structureel dan bij
Duplication.

Naast de toename in de hoeveelheid productiecode is het goed om te zien dat jullie ook nieuwe testcode
hebben toegevoegd. De hoeveelheid tests blijft nog wel wat achter bij wat je gezien het volume van de pro-
ductiecode zou verwachten, helaas is het niet helemaal gelukt om de achterstand in te lopen.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload
zijn meegenomen tijdens het ontwikkeltraject.

E
UML

47

48

F
Questionnaire

49

Popup-Escape questionnaire
Hello there! We hoped you enjoyed the escape room. While playing the escape room, we tested an
experimental system that sends you SMS messages when you solve puzzles and answers the
questions you send via mail automatically. We are curious if you experienced any problems with the
system so we can improve it. We would also love to hear your thoughts or feedback!

* Required

1. Did you or your team members receive any SMS messages? *
Mark only one oval.

 Yes

 No

2. Did you or your team members email any questions to the AIVD? *
Mark only one oval.

 Yes

 No

3. Did you encounter any of these problems? *
Check all that apply.

 The responses to the emails I sent where not helpful

 I did not receive a response after I sent an email

 I did not receive a hint when I asked for one

 I received a hint while I did not ask for one

 I received messages about puzzles that I was not yet trying to solve

 I received messages about puzzles that I already solved

 I did not encounter any of these problems problems

 Other:

4. Could you elaborate on the problems you encountered?

Powered by

5. If you interacted with the AIVD via email during the game, how would you rate your
experience interacting with the AIVD?
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

The
interaction
was not at

all useful

The
interaction
was
useful

6. Do you have any suggestions for improvement for us?

7. Were you interacting with a human or a bot?
Mark only one oval.

 Human

 Bot

 Both

 No clue

8. What was your teamcode?
(If you have this available)

G
Questionnaire results

G.1. Field study 1

52

Popup-Escape questionnaire
19 responses

Did you or your team members receive any SMS messages?
19 responses

Did you or your team members email any questions to the AIVD?
19 responses

Did you encounter any of these problems?
19 responses

Yes
No57.9%

42.1%

Yes
No

15.8%

84.2%

Could you elaborate on the problems you encountered?
9 responses

We send an e-mail to the AIVD but did not recieve a response

Suggestion that we needed to include the team reference, after including it no more response.. maybe that
was the plan?

Problem on BTC wallet

The content of the message we never reveived came too late

Foutmelding in mail. Deed het niet

See above

The code die the Bitcoin did not work

Didn't work when clicking submit on smartphone

SMS service did not work.

If you interacted with the AIVD via email during the game, how would
you rate your experience interacting with the AIVD?
12 responses

0 1 2 3 4 5 6 7

4 (21.1%)4 (21.1%)
6 (31.6%)6 (31.6%)

2 (10.5%)2 (10.5%)
0 (0%)0 (0%)
0 (0%)0 (0%)
0 (0%)0 (0%)

4 (21.1%)4 (21.1%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)
1 (5.3%)1 (5.3%)

Do you have any suggestions for improvement for us?
5 responses

Make sure everyone gets the text at the same moment!

Get the sms system working plz

Te lastig voor anderen?

Put some evidences in the answers of the e-mail

Didn't work when clicking submit on phone

Were you interacting with a human or a bot?
17 responses

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

1 (8.3%)1 (8.3%) 1 (8.3%)1 (8.3%)

0 (0%)0 (0%)

1 (8.3%)1 (8.3%)

0 (0%)0 (0%)

3 (25%)3 (25%)

4 (33.3%)4 (33.3%)

1 (8.3%)1 (8.3%)

0 (0%)0 (0%)

1 (8.3%)1 (8.3%)

Human
Bot
Both
No clue

23.5%
23.5%

23.5%
29.4%

What was your teamcode?
15 responses

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

2A2YKW 3 3VR5TT 4BQGKT 5CEN9M 5cen9m Jan
0

2

4

6
5 (33.3%)5 (33.3%)

1 (6.7%)1 (6.7%) 1 (6.7%)1 (6.7%)

3
(20%)

2 (13.3%)2 (13.3%)

1 (6.7%)1 (6.7%)

2 (13.3%)2 (13.3%)

 Forms

G.2. Field study 2 57

G.2. Field study 2

Popup-Escape questionnaire
4 responses

Did you or your team members receive any SMS messages?
4 responses

Did you or your team members email any questions to the AIVD?
4 responses

Did you encounter any of these problems?
4 responses

Yes
No

100%

Yes
No

100%

Could you elaborate on the problems you encountered?
3 responses

We asked a lot but did not get a lot):

I dont think receiving the same hint multiple times is very useful.

I only received a response on 1 mail, the other mails I sent were not answered

If you interacted with the AIVD via email during the game, how would
you rate your experience interacting with the AIVD?
4 responses

0 1 2 3

0 (0%)0 (0%)

2 (50%)2 (50%)

3 (75%)3 (75%)

0 (0%)0 (0%)

0 (0%)0 (0%)

1 (25%)1 (25%)

0 (0%)0 (0%)

1 (25%)1 (25%)

1 2 3 4 5 6 7 8 9 10
0.0

1.0

0 (0%)0 (0%) 0 (0%)0 (0%) 0 (0%)0 (0%) 0 (0%)0 (0%)

1 (25%)1 (25%) 1 (25%)1 (25%) 1 (25%)1 (25%) 1 (25%)1 (25%)

0 (0%)0 (0%) 0 (0%)0 (0%)

Do you have any suggestions for improvement for us?
2 responses

I did not receive a hint for the �nal part of the escape room, even though I sent an email about it

Better mail responses

Were you interacting with a human or a bot?
4 responses

What was your teamcode?
4 responses

PKL53Z

AJ25ZK

PKL nog iets

Jasper en Lisette

Human
Bot
Both
No clue

25%25%

50%

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

 Forms

H
Project Plan

62

Escape-Master
Project Plan

by

T. van AstenB.R.A. BotB.I.Y.L. HoJ.R.R. Lopez Kuchlin

Name Email
Timo van Asten t. vanasten@student.tudelft.nl
Bernard Bot b.r.a. bot@student.tudelft.nl
Björn Ho b.i.y.l. ho@student.tudelft.nl
Jael lopez Kuchlin j.r.r. lopezkuchlin@student.tudelft.nl

Project duration: April 23, 2018 – July 6, 2018

TU Coach: W.P. Brinkman
Client Advisor: J.W. Manenschijn
Bachelor Project Coordinator: O. Visser

Contents

1 Introduction 1
2 Project Scope 2

2.1 Project description . 2
2.2 Components . 2
2.3 Evaluation . 3

3 Project management 5
3.1 Numbers . 5
3.2 TU Coach . 5
3.3 Client advisor . 5
3.4 Team . 6
3.5 Communications . 6
3.6 Project team directory . 7

4 Project Timeline 8
4.1 Deliverables. 8
4.2 Schedule . 8

4.2.1 Tasks . 10

i

1
Introduction

This Project Plan will provide a definition of the project, including the project’s goals and objectives. Addi-
tionally, the Plan will serve as an agreement between the following parties: TU Coach, Client Adviser, Project
Team and BEP coordinator.

The Project Plan defines the following:

• Project scope

• Project management

• Roles and responsibilities

• Project timeline

Background information Escape rooms are an emerging market. Solving puzzles under time pressure with
friends or co-workers is fun to do. Popup-Escape provides this service primarily in Delft and around the
Netherlands. They currently have two main products and are developing more in the future.

One of these two products is the ‘Social Hack’, a simple escape room where teams compete to find the lo-
cation of a fictional character. The answer of one puzzle leads to another puzzle. Players become immersed
in the story by finding out more about the person they are tracking down.

The puzzles of the ‘Social Hack’ are mostly text based, many are presented in a online, digital environment.
This leads to a natural link to automation. Currently a human supervisor tries to guide the escape room chal-
lenge into the right direction. This task may be automated by using an AI coupled with a chat interface to
help people.

The AI/chatbot will be designed with the intent of reuse. The main components of an escape room will be
identified and represented in a object oriented manner. The objective will be to make the creation and design
of escape rooms be analogous to the creation of a chatbot corresponding to that escape room.

1

2
Project Scope

This chapter defines the project description and deadlines. Also the evaluation per subject are shown here.

2.1. Project description
Popup-escape is a young company/startup started by a Delft Computer Science student two years ago. It
started out as a hobby and it is now grown to a full-time job with multiple part-time employees. (Also some
Computer Science students). We have designed and made about 30+ escape rooms over the past two years
and at least 3000 people have played the different escape rooms.

Popup-Escape has created a social hack game, a game where the players have to hack a computer using
social engineering. They have to explore and find information on the internet using social media, (fake) web-
sites, calling phone numbers and more. This is combined with Physical puzzles and tasks the player have to
complete. The players play in groups of 3-5 against each other, and have a live scoreboard of the game up
whilst playing. The software system behind this game is pretty complex, following users across different web-
sites and systems, checking their actions (online and offline) whilst updating the live scoreboard. Whilst the
game is a lot of fun using real world actions in a game, we would like to add another dimension: Interacting
with AI characters to enhance the social engineering experience. That’s where you come in. We would like
you to research the possibilities for such an AI system which feels natural and real. Furthermore, we would
like you to implement such a system with an API so that we(or you, if you’d like) can integrate it with our
current working system. Popup-Escape offers:

• A lot of fun: You are going to play multiple escape rooms during the project for inspiration and research

• A informal (student-like) work environment and great lunch

• Flexibility: it is not required to work at the office all the time and the working hours are determined by
you

• Working with technologies you like and think are the best

• The possibility to work on games which are going to be played by real users. You can see your software
in action!

2.2. Components
The main components of the product:

• The product is delivered on 22 june 2018

• The product models a generic escape room

• The product can create a game host for an escape room

• The product is implemented using the Scrum methodology

2

2.3. Evaluation 3

• The product is tested with a minimum code coverage of 70%

• The code of the product is maintained with Github

• The product makes use of the SIG input to improve the quality

• The client can use this product with existing escape rooms and also future escape rooms

• The product can reply with messages when given questions by the player

• The product can give hints when a player is having problems with a puzzle

Tools that are used during the product:

• ShareLaTeX

• Google Drive

• Git

• GitHub

• Travis CI (preliminary, maybe another tool will be used)

2.3. Evaluation
• Research

– Were the references appropriate and complete?

– Did the research cover the possible alternatives for major decisions about approach, design, and
implementation?

– Were the project decisions grounded in a comparative analysis of the alternative solutions?

• Process

– Did the process run smoothly and on schedule? Did the communication between team members
support quick resolution of unexpected challenges?

– Did the team make good use of software development methodology?

– Did the team work independently? Was the team pro-active in seeking help when needed?

• Product

– Did the system fulfill the original system specifications? Was the product well tested?

– Was the code of high quality? Did the team take advantage of the SIG input?

– Will/can the Client use the product (has the Client’s goal been achieved)? Does it advance the
state of the art or bring a new application to market?

• Report

– Was the report well structured and clearly written?

– Did the report present a complete picture of the project (i.e., no important phases in the project
trajectory where omitted)?

– Did the report provide motivation that the project was successful?

• Presentation

– Was the presentation well structured and clear (including demo)?

– Did the presentation convince the audience that the project was substantial, well motivated, and
successful?

– Did the team demonstrate their mastery of the material during the Q&A?

2.3. Evaluation 4

The evaluation in each of the above five dimensions should take the difficulty into account, e.g:

• Do existing (e.g., off-the-shelf) solutions to the problem already exist?

• Does the project have multiple facets? Were many decisions required?

• Did the project require that the team make use of a diverse skill set?

3
Project management

This chapter explains the entire project management and all important numbers of the project. The team
roles are defined and also the client and coach. Also, how the communication between team members and
the client and coach will be managed is shown.

3.1. Numbers
Ten important numbers:

1. 3-4 students per team

2. 2 advisers (1 client adviser and 1 TU coach from EEMCS)

3. 1 project plan agreed upon between TU coach and team (“plan van aanpak”)

4. 2-week research phase with 10-page research report (from research phase)4

5. 2 submissions of code to the Software Improvement Group (SIG) for evaluation

6. 10-11 total weeks of work (420 hours)

7. 30-50 page final report (delivered to the committee 7 days before the presentation)

8. 1 A4 Info sheet that summarizes the project highlights (included as an appendix in the final report)

9. 3 Bachelor Project Committee members (1 TU Coach, 1 client, and 1 Bachelor Project Coordinator)

10. 30-minute final presentation (including demo)

3.2. TU Coach
The TU coach for this project is Willem-Paul Brinkman. His role is to represent the educational interests of
the TU Delft. He acts as a guardian of the learning objectives of the bachelor project. The primary function of
this role is guiding the bachelor students in applying their skills and knowledge within the bachelor project.
The TU Coach should support the team in choosing and making use of the appropriate software development
methodology. Practically, the TU Coach should offer support in keeping the bachelor project running along
its timeline and converging to a timely, finished project. Typical activities of the Coach are: Approving the
project plan, meeting regularly with the team, and giving any needed feedback during the preparation of the
final report and the final presentation.

3.3. Client advisor
The Client adviser for this project is Jan-Willem Manenschijn. He is the Founder of Popup-Escape: a com-
pany that creates personalized escape rooms for events. The Client is the real-world stakeholder, who com-
missions the team to develop a software solution that addresses a specific problem. The Client provides the
team with office space and gives the team the resources to user test the implemented product during its de-
velopment.

5

3.4. Team 6

3.4. Team
The team consists of 4 members: Timo van Asten, Jael Lopez Kuchlin, Bernard Bot and Björn Ho. The team
will implement a software solution for the problem posed by the client. The team will also create a report on
the whole project.

The team members have been assigned different roles within the team, as shown in table 3.1

Table 3.1: Team roles

Roles Member
Team Leader Bernard Bot
Lead Programmer Bernard Bot
Head of Communications Timo van Asten
Management Jael Lopez Kuchlin
Editor Björn Ho

Team Leader: The team leader is responsible for maintaining the proper course of the project. This team
member insures that all requirements are met and the other team members perform their tasks correctly.

Lead Programmer: This team member is responsible for everything that happens with the codebase. The
lead code makes sure that the code is of good quality: well documented, well tested and reviewed. The lead
programmer evaluates all pull request and decides if they need to be corrected or merged. The weekly sprint
retrospectives will be lead by this team member, especially the code review and the update of the sprint
backlog.

Head of Communications: This team member is responsible for all communication, most notably with
the TU Coach and the Client adviser. This person will also take the lead in creating the presentation and
presenting it. The use study will be lead by this team member.

Management: This team member prepares the weekly agendas, minutes and schedules the meetings with
the TU Coach and the Client Supervisor. The sprint retrospective meeting will be prepared together with
the Lead programmer. This team member is in charge of managing and keeping a complete overview of all
products and deliverables and their deadlines. User testing will be organized and evaluated primarily by this
team member.

Editor: This team member is responsible for checking if all the requirements that are specified in the gen-
eral guide is met in the report and also checking grammar, spelling and layout. All written documents that
are delivered should be analysed by this team member. In the weekly sprint retrospectives this member will
discuss the changes of the report.

3.5. Communications

Table 3.2: Communication between team and client or coach.

Communication type Description Frequency Format Participants Deliverable

Status report
Meetings
with supervisor

Bi-weekly In person Supervisor and team
Status report and
summary of work done

Status report
Meetings
with client

Weekly In person Client and team
Status report and
summary of work done

Meetings with supervisor Sprints Weekly In person All team members
Sprint retrospective
Sprint backlog

3.6. Project team directory 7

3.6. Project team directory

Table 3.3: Directory

Name Title Email Phone Studentnr.
Willem-Paul
Brinkman

TU Coach w.p.brinkman@tudelft.nl - -

Jan-Willem
Manenschijn

Client advisor jw@manenschijn.com - -

Bernard Bot Team leader b.r.a.bot@student.tudelft.nl - -
Jael Lopez Kuchlin Team member j.r.r.lopezkuchlin@student.tudelft.nl - -
Björn Ho Team member b.i.y.l.ho@student.tudelft.nl - -
Timo van Asten Team member t.vanasten@student.tudelft.nl - -

4
Project Timeline

4.1. Deliverables
These are the most important deliverables of the project:

• Project Plan

• Research Report

• Final Report

• Presentation

• SIG 2x

4.2. Schedule
The full schedule of the entire project can be found on the next page. This schedule shows all deadlines and
major tasks per week.

8

Schedule

Sprints Deadline Planning
Work days are from
09:30-17:00

Tasks

Week 1
23/04/18 -
27/04/18

25/04: Project plan 25/04: 10 AM meeting - Outline final & research report
- Find research papers
- Mail Bachelor coördinator concerning approval
- Deliver Project Plan
- Set up development environment (first git repo
push)
- Set up work space

Week 2
30/04/18 -
04/05/18

04/05: Research report - Review research report
- Write research report
- Deliver research report
- Create sprint backlog from research report
- Set up (weekly?) user test

Week 3
07/05/18 -
11/05/18

 - Deliver first prototype

Week 4
14/05/18 -
18/05/18

 16/05: Timo out of office
18: Jael out of office
18: Bernard out of office

- Implement at least half of must haves

Week 5
21/05/18 -
25/05/18

 - Implement all must haves

Week 6
28/05/18 -
01/06/18

01/06: SIG 1st submission

28/05: Minimal viable product

30/05: 1st field study and
expert review

- mail d.bijlsma@sig.eu for exact date
- Central code review before SIG submission
- Implement at least half of should haves

Week 7
04/06/18 -
08/06/18

 09/06: Large field study - Implement all should haves
- Implement feedback from SIG

Week 8
11/06/18 -
15/06/18

 11/06-16/06: Timo out of
office

- Implement part of could haves
- Write outline presentation

Week 9
18/06/18 -
22/06/18

22/06: SIG 2nd submission

22/06: 1st submission resolved

21/06: 2nd field study - Final code review
- Implement more could haves
- Bachelor Project Info sheet
- Final version final report
- Review final report

Week 10
25/06/18 -
29/06/18

25/06: Final report - Deliver final report
- Final version presentation
- Practice presenting (time, wording, etc.)

Week 11
02/07/18 -
06/07/18

2/07 - 06/07: Presentation (30
minutes, incl. demo)

 - Deliver presentation

4.2. Schedule 10

4.2.1. Tasks

Table 4.1: Weekly tasks of the team.

Weekly tasks Description
Individual retrospective Short evaluation (what went right/wrong?)
Communal retrospective Code review, report review, update sprint backlog
User testing Use research, surveys, expert reviews
Final report Update sections
Update planning Weekly tasks
Schedule meeting TU Coach (bi-weekly) Agenda
Schedule meeting Client Supervisor Agenda

