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Summary 
 
 

Over the past centuries, a number of severe coastal floods due to storm surge have occurred 
and had destructive consequences in many places in the world. The physical mechanism 
leading to coastal floods is now well understood. The severity of the storm surge depends 
primarily on meteorological forces, such as air pressure difference, wind speed and 
direction. The meteorological conditions are affected by the path and the velocity of the 
depression systems moving across the sea. When winds push water towards the coast, they 
tend to accrue into what is commonly referred to as storm surge. If a particular high surge 
occurs together with high tides, both effects amplify and can result in increased sea water 
level and serious flood in coastal areas. 
 
Accurate predictions of storm surge are of importance in many coastal areas. Particularly in 
the Netherlands, reliable storm surge models are of great importance since the large areas of 
the land lie below sea level and the storm surge often occurs in the North Sea. Defenses 
against floods by the sea have been systematically improved, such as constructing storm 
surge barrier designed for 10,000 years return time period of extreme storm and building 
more sophisticated model for predicting storm surge. The storm surge predictions and 
warnings are made by the Dutch storm surge warning service (SVSD) in close cooperation 
with the Royal Dutch Meteorological Institute (KNMI). The model predictions for at least 6 
hours ahead are required for proper closure of the movable storm surge barriers. These 
predictions are based on a numerical hydrodynamic model, the Dutch Continental Shelf 
Model (DCSM) which receives the meteorological predictions from High-Resolution 
Limited Area Model (HiRLAM) as driving forces. A data assimilation technique based on 
Ensemble Kalman filtering has been added to this system to improve the prediction 
accuracy by assimilating the recent observations from tidal gauges. The other significant 
improvements that have been brought into the model, include: refining computational 
grids, calibrating the model, using a better numerical scheme and implementing data 
assimilation techniques (3D/4DVar and Kalman filter). Note that the prediction accuracy of 
a storm surge model based on Navier-Stokes equations, like DCSM mainly depends on the 
accuracy of meteorological predictions from the weather model (i.e. HiRLAM). 
 
The model mentioned belongs to the class of process models (also called physically-based or 
numerical models). The present study focuses on a quite different modeling paradigm, 
known as data-driven modeling (DDM), a modeling technique which primarily uses the 
analysis of the data characterizing the underlying system. The model is mainly defined on 
the basis of connections between system state variables (input, internal and output 



 

variables) with only a limited knowledge of the details about the physical behavior of the 
system. The approaches in data-driven modeling generally originate in statistical methods 
and artificial intelligence. Several popular models in DDM include: artificial neural network 
(ANN), instance based learning, model tree, Bayesian learning, committee machine, fuzzy 
rule based system and genetic programming.  
 
Yet another approach in data driven modeling is based on the use of the methods of 
nonlinear dynamics and chaos theory which are typically applied for modeling complex 
dynamical systems. These methods have been effectively enhanced with considerable 
emergent research since Edward Lorenz made a discovery in 1963 during his experiments 
with a simplified atmospheric model. He explored the sensitivity to initial conditions that 
leads to chaos theory. The meaning of it is that a dynamical system derived from differential 
equations can exhibit chaos, which has a characteristic of the exponential divergence of the 
model outputs if the initial conditions are slightly perturbed. Subsequently, a number of 
researchers and scientists investigated and modeled many kinds of natural phenomena and 
discovered that many have chaotic behavior, whereas previously these natural systems were 
believed to act randomly. The dynamical systems that are characterized by deterministic 
chaos are predictable. In this work, we have the luxury of having very large data sets 
characterizing the dynamical system, in this case storm surge, which gives us the possibility 
to show that it is chaotic (i.e. without direct us of differential equations describing this 
system), and that the predictive data-driven model can be built.  
 
The main objectives of this work to is to build a more accurate chaotic (data-driven) model 
that can serve as a complementary model to the existing operational storm surge models for 
the North Sea region. More specifically, the objectives are: to analyze deficiencies of the 
existing methods and enhance techniques for building predictive chaotic models, 
incorporate data assimilation methods into chaotic models, to develop and test multi-model 
ensemble approach to combining various predictive models. Main parts of the methodology 
are nonlinear dynamics and chaos theory, data-driven modeling, process based modeling, 
data assimilation, optimization and ensemble methods. In general, we can classify this study 
to be belonging to the area of hydroinformatics. The main case study for this work is surge 
prediction at Hoek van Holland tidal station in the North Sea. We also tested some 
approaches to optimization of chaotic models using the data on surge at San Juan tidal 
station (Puerto Rico) in the Carribbean Sea.  
 
The initial experiments of building a univariate chaotic model for predicting storm surges 
in the North Sea has been conducted by Solomatine et. al. (2000). In the PhD study of 
Velickov (2004) this approach was further developed and extended the predictive chaotic 
model (PCM) into a multivariate model, which can include other variables, such as wind 



and air pressure. The nonlinear time series analysis of the observed surge data indicates that 
the storm surge dynamics along the Dutch coast can be characterized as deterministic 
chaos. Chaotic behavior in the storm surge dynamics can be due to the fact that this 
dynamical system is the result of complex interactions between different forces or 
dynamical systems, such as atmospheric dynamics and wind-wave-tide interactions. The 
presence of deterministic chaos and positive largest Lyapunov exponent implies the 
possibility for prediction.  However, predictability of any model including predictive chaotic 
model has some limits. The properties of the sensitivity to initial condition and the 
existence of bifurcations can be some reasons associated with exponentially decreasing 
prediction accuracy of chaotic model after a certain time of prediction horizon. 
Nevertheless, the short and medium-term predictions of this model are generally quite 
accurate.  
 
In constructing a predictive chaotic model, the observed time series of a dynamical system 
needs to be reconstructed and embedded in a sufficient m-dimensional phase space with 
time-delayed coordinates/manifold. This reconstruction preserves the properties of the 
dynamical system which do not change under smooth coordinate adjustment, but it does 
not maintain the geometric shape of structures in phase space. The proper values of time 
delay and embedding dimension can be estimated by means of several nonlinear analysis 
tools (e.g. first minimum mutual information and correlation dimension, respectively), or 
optimization methods. Given the proper dimension and time-delay of a phase space, the 
attractor of a dynamical dynamics should be unfolded and subsequently the smoothed 
trajectories are obtained. Predictions in chaotic model can be made by two ways: using 
global or local modeling.  
 
In global modeling, the whole dynamical behavior of the system as described in phase space 
is characterized and predicted by single global model. In contrast, the local modeling allows 
for characterizing the dynamical behavior locally by a number of local models and the 
options on determining predictive local models are more flexible. The local models are 
constructed by the dynamical neighbors found in the phase space. Several available data-
driven techniques (i.e. linear or non-linear regression methods like ANN) can be utilized as 
local models. Nonetheless, the flexibility of local models presents a challenge of selecting the 
best searching technique for finding true dynamical neighbors and choosing the suitable 
number of dynamical neighbors used for building the predictive local models. The true 
neighbors here refer to neighbors that have the similar dynamical characteristics or 
properties (i.e. similar type of storm development) to the reference or actual points in phase 
space. In this research, Euclidean distance method is employed for searching dynamical 
neighbors. The searching algorithm used earlier was not very selective and was sometimes 
finding these dynamical neighbors that do not have similar dynamical characteristics, so 



 

that they were wrongly treated as neighbors by the algorithm. In this work this issue 
received special attention, and a new searching technique, so-called trajectory based 
method, is introduced for avoiding the false neighbors.  
 
The methods and some software components developed in earlier work have been 
integrated, tested on the new data and considerably improved in a number of directions. 
Innovation brought by this work is in the following.  
 
The new algorithm for identifying the true neighbors has been developed and tested. It is 
named the trajectory based method and arises from the main idea that finding true 
neighbors does not only depend on the distance between two points in the m-dimensional 
phase space, but also the distance of the two different trajectories (sequences of points in 
phase space) partly formed by these two points. The neighbors are obtained by searching for 
trajectories which are nearest distance and similar direction to the actual trajectory (a 
trajectory formed by the reference or actual point in phase space). Other methods for 
avoiding false neighbors, such as using multi-step prediction technique and neighbor 
distance cut-off method, are proposed in this work as well. 
 
Identification of suitable embedding dimension is the most discussed topic in the 
community of nonlinear dynamics and chaos theory. For example, a correlation dimension 
is a widely used method for estimating embedding dimension. This estimator requests for 
large-size of time series data to provide good embedding dimension estimation. In this 
research, the result of correlation dimension is compared with false nearest neighbors, Cao's 
method, Kaplan-Yorke or Lyapunov dimension and performance-based optimizations. The 
techniques in computational intelligence, such as grid search, genetic algorithm (GA) and 
adaptive cluster covering optimization (ACCO) are utilized in this work for performance-
based optimizations.  
 
Several other innovative developments of the predictive chaotic model have been made 
including phase space dimensionality reduction, building chaotic model from incomplete 
time series and correcting phase prediction errors. The nonlinear analysis of time series 
from a dynamical system may suggest the high-dimensional phase space reconstruction. A 
principal component analysis (PCA) technique is utilized for reducing the phase space 
dimension into a lower one by preserving important information (principal components) in 
high-dimensional phase space (i.e. distance information) into lower-dimensional phase 
space. Another benefit of applying PCA here is that it can remove the noises that may exist 
in the data. A procedure for building a predictive chaotic model from incomplete time 
series is crucially required in the view of the fact that measurement instruments and data 
transmission do not always work in real-operations. The possibility of missing some data 



should be addressed when building a model. Several imputing algorithms, such as weighted 
sum of linear interpolation, Bayesian PCA and cubic spline interpolation are proposed to 
resolve this issue. An approach of building a model for characterizing the phase error 
dynamics is proposed for correcting phase prediction error in the chaotic model. Two types 
of models are used as error predictors (predictive chaotic model and ANN), and they are 
able to identify and predict the dynamical behavior of the phase error generated by a 
standard chaotic model.  
 
A number of approaches have been tested in order to address the issues related to sensitivity 
to initial conditions and the limitation of predictability of any model, including a predictive 
chaotic model. Resolving the issue of sensitivity to initial condition by finding the precise 
and exact initial conditions is not an option. The possibility to resolve this issue is to 
introduce data assimilation scheme into the predictive chaotic model. A Nonlinear 
Autoregressive with Exogenous Inputs (NARX) neural network has been implemented as a 
nearly real-time data assimilation technique for assimilating the new observed data into the 
predictive chaotic model. This technique can effectively correct the low accuracy of 
predictions after a certain time of horizon, and subsequently extend the predictability of the 
chaotic model.  
 
Yet another innovation is using multi-model ensemble predictions: they have been viewed 
as an effective way to improve the prediction performance (based on bias-variance 
decomposition) over what the single models can provide. It is often worthwhile to seek a 
combination of several prediction models rather than to select only the best one among 
them, which might be only marginally the best. Multi-model ensemble predictions using 
dynamic averaging and dynamic neural network model are introduced for combining the 
heterogeneous types of predictive chaotic models. A dynamic averaging method is 
introduced – a combination of model selection and model combination approaches based 
on the model performances over certain time of predictions. The other technique uses one 
type of dynamic neural networks, so-called Focused Time-Delayed Neural Network 
(FTDNN). Several predictions from different types of predictive chaotic models are selected 
and further combined by these two techniques in order to obtain more accurate and reliable 
predictions. In terms of a high-dimensional chaotic system, it means the ensemble of all 
future trajectories in phase space, estimated by the heterogeneous individual models.  
 
A number of improved methods of building predictive chaotic models has been 
implemented and tested. The results showed the increased predictability and performance 
of the initial predictive chaotic model: PCM is 63% more accurate than ANN model; 
univariate-PCM with PCA can increase the accuracy by 118% compared to multivariate 
ANN; 94% performance increase is achieved by using PCM error corrector; reduced 



 

accuracy by as low as-8% is given by cubic spline interpolation in case of 30% missing 
values, trajectory based method can better find the true neighbors resulting in predictability 
improvement by 185%; adaptive cluster covering optimization method (ACCO) appeared to 
be the most efficient optimization technique for predictive chaotic model leading to an 
increase in accuracy by 67%; data assimilation using NARX network gives 553% 
improvement; and multi-model ensemble predictions using FTDNN with batch learning is 
the most effective method to improve the performance of predictive chaotic model by 967%. 
Nevertheless, additional case studies might be needed to test further the reliability of the 
improved methods and the possibilities of combining them.  
 
Overall, the presented research makes a contribution to developing more accurate methods 
of surge prediction. The modeling techniques based on the methods of nonlinear dynamics, 
chaos theory, statistics and neural networks with several enhancements and innovations 
have demonstrated that the predictive chaotic model can serve as an efficient tool for 
accurate and reliable short-term predictions of storm surges in order to support decision-
makers for flood prediction and ship navigation. We believe this approach has a very good 
potential to become a complementary method used by practitioners along with the 
traditional numerical ocean models.  
 
 

Delft, 6 December, 2011 
 

Michael Siek 
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CHAPTER 1: INTRODUCTION 
 

 
 

“The scientist does not study nature because it is useful to do so. He 
studies it because he takes pleasure in it, and he takes pleasure in it 

because it is beautiful. If nature were not beautiful it would not be worth 
knowing, and life would not be worth living.” 

H. Poincaré 
 
 
 
This chapter introduces the main problems, motivations and objectives of the research. 
Storm surges have become one of the most disastrous natural events. The mechanism of 
storm surge generation and possible model predictions using hydroinformatics tools, such 
as physically-based and data-driven modeling are discussed. Previous and recent 
developments of chaotic modeling in predicting aquatic phenomena are explored. Several 
improvements on building a chaotic model from time series, advances in solving some 
issues, data assimilation and multi-model ensembles are proposed.  
 

1.1 Motivation: Natural disasters 
Natural disasters have been occurring since the earth or universe was created by a big bang. 
Humans are mostly concerned with earthquakes, flooding, volcanic eruption and landslides. 
Naturally, a disaster has profound environmental effect, human loss and frequently incurs 
financial loss. One of most disastrous events is storm surge that can cause floods in the 
coastal areas. Storm surge is a meteorologically forced long wave motion which is pushed 
toward the shore. It is generated by a combination of meteorological forces of the wind 
friction and low air pressure due to a storm  and oscillates in the period range of a few 
minutes to a few days (Gonnert et al., 2001). In the ocean, local wind waves can add to the 
water level, and the storm surge can be amplified (or reduced) by interference with the 
strictly regular astronomical tides. Extreme coastal floods can be related to extreme storms, 
like cyclones or hurricanes which attack the open coast. In some coastal areas, such floods 
can be generated by unusual sequences of wind set-up and air pressure variations. In 
addition, wind driven waves can be superimposed on the storm tide. This rise in sea level 
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can cause severe flooding in coastal areas, particularly when the storm tide coincides with 
the high tides (Battjes & Gerritsen, 2002).  
 

  
Figure 1-1: The 1953 North Sea floods due to a heavy storm resulting in severe destruction in the 

coastal areas (source: deltawerken). 
 
Over the past centuries, a number of severe coastal floods have destructed many places in 
the world. For example, the 1953 North Sea flood is a major flood caused by a storm tide, a 
combination of a high spring tide and a severe European windstorm (Figure 1-1). In 
combination with a tidal surge of the North Sea the water level locally exceeded 5.6 meters 
above mean sea level. The flood and waves overwhelmed sea defenses and caused extensive 
flooding. The flood struck the Netherlands, Belgium, England and Scotland. Large part of 
Dutch area is located below mean sea level and relies heavily on sea defenses, effecting on 
1,835 deaths. Most of these casualties occurred in the southern province of Zeeland. In 
England, 307 people were killed whereas 28 people were killed in West Flanders, Belgium. 
Further loss of life exceeding 230 occurred on watercraft along Northern European coasts as 
well as in deeper waters of the North Sea; the ferry MV Princess Victoria was lost at sea in 
the North Channel east of Belfast with 133 fatalities, and many fishing trawlers sank. 
 

  
Figure 1-2: Maeslant and Oosterschelde storm surge barriers (source: deltawerken). 

 
In the Netherlands, after the storm surge flood of 1953, some actions were undertaken to 
increase the safety of the delta areas in the long run. Although most delta areas need to be 
closed for safety, several seaways should stay open because of the economic importance of 



1.2 Modeling Natural Phenomena: Hydroinformatics 3 

the Rotterdam and Antwerp harbours. Dikes and storm surge barriers in the delta areas and 
along the Dutch coast have been constructed or systematically improved with a return 
period of 1 in 10,000 years (Figure 1-2). The existence of these mega structures induces a 
challenge of how to operate these properly since they have to be open or closed on the right 
time to avoid the barrier breaking. An accurate and reliable predictive storm surge model is 
critically required for this purpose. 
 

1.2 Modeling Natural Phenomena: Hydroinformatics 
A model is defined as a simplified representation of real world with an objective of its 
explanation or prediction. Modeling includes studying the system, posing the problem, 
collecting data, preparing and building the model, testing it, using it, interpreting the results 
and possibly reiterating (Solomatine, 2002).   
 
One of the fundamental modeling technologies of modern science that can enhance our 
understanding of complex natural phenomena and its processes is mathematical modeling 
(often with numerical simulations). This kind of modeling technique is often called 
physically-based modeling. The construction of this model is primarily based on the 
conceptualizations of physical processes and behaviors of a particular natural phenomenon 
that are expressed in mathematical equations typically implemented as algorithms. Such 
equations describe the quantitative processes of the whole system based on fundamental 
principles, such as conservation of mass, momentum and energy. The solution of these 
equations requires the application of specific numerical techniques and the imposition of 
certain boundary condition analysis. This branch of science that focuses on the 
discretisation of the physical domain and the corresponding equations governing the 
natural processes is known as computational hydraulics. A number of contributions on 
identifying and solving water and environmental problems can be found, for instance: 
oceanic waves, flood forecasting, sediment transport and morphodynamics. A mathematical 
model based Navier-Stokes equation is often used for these applications. An accurate 
quantitative description of the causal relationships between processes, actions and 
consequences in the water systems can be obtained from studies of mathematical models. 
 
The developments of computational hydraulics techniques have reached to the uses of 
information and communication technologies (ICT) which comes from the other discipline 
of information or computer science. The merging of these different disciplines and 
technologies has lead to emergence of a new field of hydroinformatics (Abbott, 1991).  A 
hydroinformatics system is an electronic knowledge encapsulator that models part of the 
real world and can be used for the simulation and analysis of physical, chemical and 
biological processes in water, for a better management of the aquatic environment. Hence, 
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the development of mathematical models, which adequately represent our current image of 
reality is at the heart of hydroinformatics (Price, 2001).  
 
In the applications, hydroinformatics draws on and integrates hydraulics, hydrology, 
environmental engineering and many other disciplines. It considers application at all points 
in the water cycle from atmosphere to ocean, and in artificial interventions in that cycle 
such as urban drainage and water supply systems. It provides support for decision making 
at all levels from governance and policy through management to operations. This may 
involve many individual components and processes, interacting with each other in complex 
ways. Thus, it requires a successful collaboration of experts from many different disciplines. 
The result can lead to the convergence of different sciences and the notion of integrated 
modeling.  
 
In addition to computational hydraulics, hydroinformatics has a strong interest in the uses 
of other techniques based on the analysis of the data characterizing the underlying system. 
The model based on these approaches is primarily defined on the basis of connections 
between system state variables (input, internal and output variables) with only a limited 
knowledge of the details about the physical behavior of the system. Such models can be 
called data-driven models. During the recent decade, such models became quite popular 
due to the redundant availability of data. The approaches in data-driven modeling generally 
originate in statistical methods and artificial intelligence. Several popular techniques 
include: artificial neural network (ANN), instance based learning, model tree, Bayesian 
learning, committee machine, fuzzy rule based system and genetic programming. These 
techniques are used to build data-driven models based on the analysis of all the data 
characterizing the system under study.  
 
By the rapid developments and recent research, nowadays the field of hydroinformatics has 
been broaden into emerging socio-economic aspects. The inherently social-economic 
nature of the problems in water management and decision making processes and how to 
bring technologies into use are essential matters. This leads to not only about technologies 
but also the modeling of socio-economic issues, for example modeling socio-economic 
consequences of certain activities in the aquatic environment which involve different 
stakeholders and public participation in the decision making processes in the water 
resources management. Since the problems of water management are severe in most 
countries, while the resources to obtain and develop solutions are minor, the necessity to 
examine these social-economic processes is crucial. 
 
Besides the issues in socio-economic field, there are specific technical challenges and 
limitations on the use of computational models for describing natural dynamical systems in 
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which many elements are interacting each other in complex manners. For example, the 
derivation of the hydrodynamic equations has to make certain assumptions due to limited 
knowledge of the underlying processes, such as the bed resistance. Such assumptions are 
usually expressed in empirical forms that require the values of one or more parameters to be 
identified through calibration process. The model results of a computational model have to 
agree closely with the observed data. The physical integrity of the parameters should not be 
violated during calibration process. The mathematical model is an approximate 
representation of the real world system. The larger errors of model estimation or 
predictions are mostly expected as prediction horizon increases. Several sources of model 
errors include: missing processes and parameters in the model, governing laws of the 
physical processes due to limited knowledge, the error due to assumptions in equation 
discretization, errors in the measured data, imprecise estimation of initial and boundary 
conditions, computer round-up error and so forth. Therefore, uncertainty analysis is 
required to provide the confidence level of computational model predictions or results. 
 

1.3 Predicting Storm Surges 
The mechanism leading potentially to coastal floods is well understood, given the 
configuration of the coastline and the bathymetry, the severity of the storm surge depends 
primarily on wind speed, wind direction and duration. The meteorological conditions are 
affected by the path and the velocity of the depression systems, moving across the Sea. 
When winds push water towards the coast, it tends to accumulate into what is commonly 
referred to as storm surge. If a particular high surge occurs together with a tidal maximum, 
both effects accumulate and serious flooding can result, depending on the coastal structure 
and their protection. 
 
The analyzes of the risk of coastal floods due to storm surges are not straightforward, 
because an observed flood is not a single independent event in statistical terms. Rather, the 
flood is a consequence of a set of different determinants, like tides, wind and air pressure, or 
of a set of sequences of these factors. Both the mean sea level and the flood height will vary 
along the coast and the risk of coastal flood depends on emergency preparedness planning 
and the design of coastal facilities and structures, such as flood embankments. The ocean 
water level variations due to various determinants and their complex interactions show 
long-term persistence leading to the correlated extreme events (Alexandersson et al., 1998; 
Butler et al., 2007). 
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1.3.1 Physically-based modeling 
In general, astronomical tides have the large contribution to the ocean water level variations 
in open oceans and many well-exposed coasts. Traditionally, the analysis of water levels 
usually employs linear methods that decompose sea levels into tides and other (usually 
meteorological) components. The amplitudes and phases of the tidal constituents driven by 
the astronomical motion of the Earth, Moon and Sun (with known periods) can be 
estimated by using Fourier analysis, response analysis or linear regression methods. In 
particular, the weakly nonlinear shallow water waves like storm surge can be represented by 
the Korteweg-de Vries (KdV) equation (Korteweg & de Vries, 1895) which is an exact 
solvable partial differential equation. The KdV equation can be obtained in the continuum 
limit of the Fermi-Pasta-Ulam Experiment (Fermi et al., 1955). The solitary wave solutions 
have behavior similar to the superposition principle, despite the fact that the waves 
themselves are highly nonlinear (Zabusky & Kruskal, 1965). In real applications, however, 
the water level dynamics in coastal and estuarial swallow-water areas, such as the Dutch 
coast, may differ significantly from the astronomical estimated constituents (superposition 
principle) – due to the nonlinear effects that include meteorological forcing, tidal current 
interactions, tidal deformations due to the complex topography and river discharges 
(Prandle et al., 1978). 
 
Essentially, the coastal floods due to storm surges can be predicted with an accuracy that 
depends on the accuracy of the meteorological forecasts. An appropriate numerical weather 
model can predict the motion of atmospheric depression with a satisfactory accuracy in a 
range of several days. The wind and air surface pressure fields predicted by this model can 
be utilized as some driving forces of the sea motion in a shallow water model allowing for 
storm surge predictions. In the Netherlands, the storm surge predictions are made by a 
shallow water model so-called Dutch Continental Shelf Model (DCSM) which receives 
meteorological prediction as inputs from a numerical weather prediction (NWP) system so-
call High Resolution Limited Area Model (HIRLAM) (de Vries, 1991; Gerritsen et al., 1995; 
Unden et al., 2002). The storm surge predictions from DCSM and astronomical tidal 
predictions made by means of harmonic analysis are then added up to attain total sea water 
level predictions (see Figure 1-3). 
 
Over the past two decades, the operational numerical storm surge models have significantly 
been improved, which turns out to be very essential to anticipate the occurrence of coastal 
flooding. A number of advances on physically-based storm surge modeling have been 
reported by (Bode & Hardy, 1997; Heemink et al., 1997; Battjes & Gerritsen, 2002; Verlaan 
et al., 2005). These improvements include: refining computational grids, utilizing more 
accurate calibration of models with better data, using an improved numerical schemes and 
incorporating data assimilation technique into the model. 
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Figure 1-3: Sea water level forecasting system in the Netherlands. 

 

1.3.2 Data driven modeling: Nonlinear dynamics and chaos theory 
The ideas of dynamical chaos were firstly introduced by Poincaré when he entered a contest 
in 1887 and tried to solve a generalization of the famous three body problem, which was 
considered one of the most difficult problems in mathematical physics. His incomplete 
solution leads to a new era on chaos in the solar system. Some decades after, around 1960, 
Edward Lorenz made a discovery while working in his laboratory at MIT on studying the 
full equations describing atmospheric flow and weather phenomena. This experiment led 
him to conclude that a small perturbation of the initial conditions can lead to enormous 
differences over time. He coined the concepts of chaos theory as a new field in dynamical 
system. Several properties of chaos include: determinism, small number of variables, 
complex behavior, low dimensional in phase space, bifurcations, strange attractor and 
sensitivity to initial conditions. Some nonlinear differential equations can exhibit chaotic 
properties. 
 
After the discovery of chaos, the developments in the methods of nonlinear dynamics and 
chaos theory were progressing fast with numerous findings on chaotic behaviors in many 
dynamical systems which previously were believed to be random behaviors. Several 
nonlinear methods, such as: correlation dimension (Grassberger & Procaccia, 1983a), Cao's 
method (Cao, 1997), Lyapunov spectrum (Sano & Sawada, 1985), method of time delays 
(Takens, 1981), mutual information (Fraser & Swinney, 1986) have been introduced for 
identifying the existence of chaos and the properties of the dynamical systems which are 
mostly derived from differential equations. Such developments have provided a set of 
nonlinear chaos analysis tools. Using the same principles and methods, the nonlinear 
analysis can be used for a time series from real observations of natural phenomena (i.e. 
rainfall, weather) instead of from a set of differential equations. Recent developments allow 
for building a chaotic model from observed time series and making predictions in case of 
the presence of deterministic chaos in the dynamical system. The chaotic model from time 
series can be built by embedding the original time series in high-dimensional time-delayed 
phase space. The proper values of time delay and embedding dimension can be determined 
by means of the nonlinear chaos analysis. Predictions of a chaotic model are made by either 
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global approximating models or local models of dynamical neighbors obtained by k-nearest 
neighbors algorithm. On the perspectives of hydroinformatics, such kind of analysis and 
building a chaotic model from time series becomes part of data-driven modeling since the 
model is mainly constructed by the data. However, in fact the principles and methods used 
here originally come from physically-based numerical modeling (see Figure 1-4). 
 

Generate 
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(differential equations)

Nonlinear time 
series analysis

Time series from 
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Chaotic?Natural phenomena

Yes

No

Phase space 
reconstruction

Global/local 
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Figure 1-4: Different processes of chaotic model development between physically-based modeling 

and data-driven modeling. 
 

1.3.3 Main relations between the two modeling paradigms: chaotic modeling 
Complexity of the described phenomena prompts for adequate methods to describe them, 
and one of them is chaos theory. Primary links between the methods of nonlinear dynamics 
and chaos theory and the numerical storm surge model can be described as follows. The 
basis of the widely used physically-based numerical storm surge model is the Navier-Stokes 
shallow water equations, stating the physical laws of mass and momentum conservations 
(Dronkers, 1964). These equations are inherently nonlinear. The sensitive dependence on 
the initial and boundary conditions of the dynamical evolution of such systems, and the 
broadband and continuous power spectra are the indicators of deterministic chaos. A proof 
on the existence of chaotic behavior in Navier-Stokes equations and turbulence has been 
presented by Li (2007). The presence of bifurcations in ocean, atmospheric and climate 
models for understanding the variability of oceanic and atmospheric flows as well as the 
climate system has been investigated and analyzed by Simonnet et al. (2009). As models, 
chaos dynamical systems show rich and even surprising variety of dynamical structures and 
solutions. Most appealing for researchers and practitioners is the fact that the deterministic 
chaos provides a prominent explanation for irregular behavior and instabilities in 
dynamical systems (including storm surges), which are deterministic in nature. 
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The most direct link between the concept of deterministic chaos and the data-driven 
modeling is the analysis of data (time series) from observations using the well-developed 
methods of nonlinear dynamics and chaos theory. Important contributions in this area were 
made by (Tsonis, 1992; Abarbanel, 1996; Kantz & Schreiber, 2004; Donner & Barbosa, 
2008). Note that this approach is, in fact, data-driven, since it is based on the analysis of the 
observation data rather than the explicit mathematical analysis of the properties of the 
underlying equations. 
 

1.4 Chaotic Behaviors in Ocean Surge and Other Aquatic Phenomena 
The presence of chaotic behaviors in aquatic phenomena (i.e. ocean, weather, rainfall) have 
been studied and reported for more than a century. Chaos in water motions and waves was 
initiated by (Korteweg & de Vries, 1895) through modeling weakly nonlinear shallow water 
waves using an exact solvable partial differential equation. Edward Lorenz investigated the 
atmospheric model and found the principles of chaos theory and sensitivity to initial 
conditions (Lorenz, 1963). Floris Takens and David Ruelle investigated the fluid turbulence 
and introduced how to reconstruct a dynamical system from observed time series (Takens, 
1981). They coined the famous term "strange attractor". 
 
In the field of hydrology, the presence of chaotic behavior in rainfall has become main 
research interest in last two decades. A number of methods are available to identify the 
existence of chaos in hydrological time series. The possible chaotic behavior in the temporal 
rainfall of storm events and the limit of its predictability were studied by Rodriguez-Iturbe 
et al. (1989). Jayawardena & Lai (1994) explored the methods of chaos theory and nonlinear 
and linear (ARMA) prediction methods for streamflow and rainfall data series in Hong 
Kong. Storm term prediction of rainfall, estimation correlation dimension with sufficient 
data and the use of inverse method have been investigated by Sivakumar et al. (1999) for the 
case study in Singapore. Correlation dimension method has been the most widely used in 
rainfall and other hydrologic time series, either as a method of proof or as a method of 
preliminary evidence. However, due to the potential limitations of this method, criticisms 
on its application to hydrologic time series and the reported results have been reported by 
Ghilardi & Rosso (1990) and Schertzer et al. (2002). In addition to the problems of 
insufficient data size, sampling frequency and presence of noise, the analysis of rainfall (and 
other hydrologic) time series, finer-resolutions in particular, and the outcomes might be 
significantly influenced.  
 
In the area of oceanography, the early nonlinear analyzes of the ocean water levels at the 
Florida coast have been conducted by Frison et al. (1999); this work was for us an important 
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motivation. The use of chaotic model for predicting the errors of a deterministic numerical 
model for ocean water level at Venice Lagoon has been reported by Babovic et al. (2000). 
Several examples of using predictive chaotic model (CM) for storm surge predictions were 
reported by Solomatine et al. (2000) and Walton (2005) using univariate local models. The 
methods for building multivariate predictive chaotic models was extended in the PhD study 
by Velickov (2004) and the results showed that they can provide accurate short-term 
predictions. In addition, the applications of artificial neural networks to oceanography (i.e. 
predicting ocean waves) have also been explored by Deo (2010) and Zamani et al. (2008). 
Modeling of the impacts of storm surges to dunes has been investigated by Roelvink et al. 
(2009). Figure 1-5 illustrates the research developments by several authors on the uses of 
methods of nonlinear dynamics and chaos theory for aquatic applications. 
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Figure 1-5: Some of the research developments on chaotic modeling of aquatic phenomena. 
 

1.5 Main Objectives 
Previous studies and research on nonlinear dynamics and chaos theory and data-driven 
modeling for water-related applications have shown very promising results and this can also 
be open research for many other fields of applications, for instance: transportation, robotics, 
biomedical and electronics applications. However, several issues are unsolved or need for 
further research. The existing methods have a number of advantages and disadvantages and 
these provide some space for improvements. This research is a combination of earlier works 
with more data and have several improvements on building predictive chaotic model from 
observed time series. 
 
The main research objective related to the Ph.D. research project are to build more accurate 
chaotic (data-driven) model that can serve as a complementary model to the existing 
operational storm surge models, with the North Sea region being the main case study. Some 
experiments optimization of chaotic models were also conducted using the data on surge at 
San Juan tidal station (Puerto Rico) in the Carribbean Sea. The main objective can be 
further detailed as follows (see Figure 1-6): 
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Figure 1-6: Schematic diagram of several issues, methodologies and main objectives of the research. 

 
 
1.  Improved techniques on building predictive chaotic model  

A number of open issues in standard methods should be solved in order to improve 
the accuracy of predictive chaotic models, such as: determining embedding dimension 
and time delay, non-optimal selection of chaotic model parameters, false neighbors, 
data with missing values, high dimensionality of phase space, phase prediction error. 
For instance, the approaches using Cao's method and genetic algorithm and adaptive 
cluster covering optimization (ACCO) techniques are utilized to estimate the values of 
embedding dimension and time delay as well as number of neighbors. Removing false 
neighbors can be made by introducing multi-step prediction and trajectory based 
method. Several methods, like: weighted sum of linear interpolations, Bayesian 
principal component analysis (BPCA) and cubic spline interpolation are implemented 
for building predictive chaotic model from incomplete time series. Dimensionality 
reduction using principal component analysis (PCA) is proposed to bring the 
information (distance and neighbors) in high dimensional phase space into lower one 
and able to remove data noises. Performance-based optimization is used for choosing 
optimal variables and parameters in multivariate chaotic model. Models, such as: 
ANN and chaotic model, are utilized for correcting the phase errors. The performance 
of model results are compared with global ANN model performance. 

 
2.  Incorporating data assimilation methods 

The unsolved issues on imprecise determination of initial condition and round-up 
computer errors results in decreasing prediction performance after certain time of 
prediction horizon. Developing a real-time data assimilation technique for chaotic 
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storm surge model is required to solve these issues. Nonlinear Autoregressive with 
Exogenous Inputs (NARX) neural network is implemented and used for assimilating 
the chaotic model predictions with the new observations. 

 
3. Multi-model ensemble predictions 

This sub objective is to develop the ensemble model techniques for combining storm 
surge predictions from several heterogeneous individual models. The approach that is 
to be developed focuses on using the best features of these predictions coming at 
almost-real-time rate. For this purpose, several statistical and machine learning 
approaches, for instance, dynamic averaging and dynamic neural networks have been 
implemented and tested.  

 
Achieving these objectives would extend the predictability of chaotic model and improve 
the accuracy for short and medium-term predictions. Finally, the model can complement to 
the existing operational storm surge model in supporting decision makers for the purposes 
of flood forecasting and ship navigation. 
 
One other promising improvement on storm surge prediction could be achieved if the 
meteorological predictions coming from NWP model (i.e. HIRLAM) instead of using only 
meteorological observations are included as the inputs of predictive chaotic model (Figure 
1-3 and Figure 1-4). This technique can produce a hybrid model and extend the 
predictability of chaotic model. However, this idea could not have been further explored at 
this stage due to lack of time and unavailability of the high frequency meteorological 
prediction data. 
 

1.6 Thesis Outline 
This thesis is arranged along the following structure: 
 
Chapter 1 introduces the problems, motivations, objectives of the research with a brief 

description of the previous research and possible improvements and solutions of 
the existing methods. 

 
Chapter 2 describes the case study in North Sea covering the ocean dynamics, tides and sea 

level, storm surge condition, warning service, procedure issuing alarms and data 
description used for this research.  

 
Chapter 3 presents the basic principles of physical oceanography and storm surge modeling, 

the European operational storm surge models, North West Shelf Operational 
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Oceanographic System, ECMWF and the ways of linking predictive chaotic model 
with the existing European operational storm surge models. 

 
Chapter 4 describes the techniques of computational intelligence as the major tools for data-

driven modeling. Several topics, like: artificial neural network (ANN), instance-
based learning, hierarchical modular model and evolutionary and other 
randomized search algorithms. 

 
Chapter 5 explains the main methods of nonlinear dynamics and chaos theory which are 

used for building storm surge model. It also describes the discovery of chaos, basic 
of chaos and its properties, chaos in iterative maps, chaos in differential equation, 
phase space reconstruction, finding proper time delay and embedding dimension, 
Lyapunov exponents, chaotic model prediction and recurrence plots. 

 
Chapter 6 describes how to find the proper values of delay time and embedding dimension, 

how to build a predictive chaotic model for storm surges and make predictions. A 
number of nonlinear time series analysis are explored, like: power spectrum, 
Poincaré section, mutual information, correlation dimension, false nearest 
neighbors, Cao's method, Lyapunov spectrum and Kaplan-Yorke dimension. 
Global and local modeling, direct and multi-step prediction and the use of CI 
techniques for building predictive local and global models are discussed here. 

 
Chapter 7 explores several enhancements on building predictive chaotic model, include: 

phase space dimensionality reduction with principal component analysis (PCA); 
prediction error correction with predictive chaotic model (PCM) and artificial 
neural network (ANN); building predictive chaotic model from incomplete time 
series with weighted sum of linear interpolation, Bayesian PCA, cubic spline 
interpolation; and finding true neighbors using trajectory based method. 

 
Chapter 8 presents the optimization of predictive chaotic model parameters: delay time, 

embedding dimension and number of neighbors. Three optimization methods are 
utilized, include: grid search (GS), genetic algorithm (GA) and adaptive cluster 
covering optimization (ACCO). 

 
Chapter 9 describes a real-time data assimilation technique for chaotic storm surge model 

using NARX neural network. The modeling results are compared with several 
European operational storm surge models. 
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Chapter 10 presents the chaotic multi-model ensemble prediction methods in high 
dimensional space, include: dynamic averaging, MLP-ANN and FTDNN with batch 
and incremental learning. 

 
Chapter 11 summarizes the conclusions and recommendations. 
 
 
  



 

 

 

 

CHAPTER 2: CASE STUDY 
 

 
 

“Nordsee ist Mordsee” 
Film title, 1976 

 
 
 
The case study of this research concentrates on predicting the storm surges in the North 
Sea, specifically at Hoek van Holland as the entrance of Rotterdam Harbor. This research is 
executed by collaboration between UNESCO-IHE and Rijkswaterstaat/Deltares and partly 
funded by Delft Cluster Project on "Safety against floods". Rijkswaterstaat/Deltares with 
NOOS data exchange facility provides observation and prediction data, such as sea water 
level and surge along the coastlines of North Sea. This involves several meteorological 
institutions from European countries surrounding the North Sea, include: Netherlands, 
Germany, UK, Denmark, Norway and Belgium. 
 

2.1 Study Area: The North Sea 
The North Sea lies between Norway, Denmark, Germany, the Netherlands, Belgium, France 
and Great Britain. It links up with the Atlantic Ocean to the north and also the southwest, 
via the Channel. To the east it links up with the Baltic Sea. The total surface area is 
approximately 750,000 km² and the total volume 94,000 km³. The North Sea has a 
dynamically active regime dominated by strong tides and frequent passages of mid-latitude 
synoptic weather systems (Droppert, 2001). The waters are mostly shallow (depth < 150 m) 
in the region.  
 
In the Netherlands accurate prediction of storm surges is very importance against the 
possible coastal flooding since large areas (about 55%) of the land lie below sea level. These 
below sea level areas are most densely populated and important economy areas. Since the 
disastrous storm of 1953, the dikes and dams in the Delta area and along the rest of the 
coast have been systematically improved. The dikes and barriers are designed to withstand 
very severe storm surges that they will occur on average only once in every 4,000 to 10,000 
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years. Less extreme weather can also damage the dikes through the impact of breaking 
waves and strong tidal currents (Corkan & Council, 1948; Carter, 1985).  
 
The reliability of North Sea coastal defences is checked regularly and systematically by the 
National Department of Public Works (Rijkswaterstaat), the provincial public works 
authorities, the water boards and the municipalities. Supreme control is in the hands of 
Rijkswaterstaat, which is also responsible for high tide warnings. The provincial governors 
and the authorities in charge of the dikes and dams must be warned when the tidal rise is 
expected to reach dangerous levels due to a combination of tidal movements, high river 
discharges and winds (Verlaan et al., 2005).  
 

 
Figure 2-1 North Sea region and the position of the important meteorological stations. 

 
In the North Sea, high tides occur approximately every twelve hours. The main tidal stream 
enters the North Sea along the Scottish coast; a less important stream comes in through the 
Channel. As a result, the difference in level between high tide and low tide is not the same 
everywhere. Each point on the coast has its own tidal difference, i.e. 3.80m on average in 
Vlissingen. The actual tidal difference depends not only on the positions of the sun and the 
moon. It is also determined by the weather, and primarily by the wind. North- westerly 
storms are notorious in this respect. They can blow the full length of the North Sea without 
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interruption and sweep the water up against the Dutch coast. The rise on any particular 
occasion depends on the direction, the force and the duration of the storm (Langenberg et 
al., 1999; Howarth et al., 2001).  

 
There are seven important locations considered in the research include: Delfzijl, Euro 
platform, Haringvliet 10, Hoek van Holland, K13 platform, Vlissingen and Ijmuiden. The 
variables (observations) used in modeling are: astronomical water level, surge water level, 
wind speed & direction and air pressure. The observations are available with sampling time 
10 minutes and 1 hour from January 1990 till March 1996. However, the observation will be 
extended till December, 2006 in order to examine the resulting models in predicting 
extreme storm surges in November, 2006. 
 

2.2 North Sea Characteristics 

2.2.1 Ocean dynamics 
As tides from the deep Atlantic Ocean enter the North West European shelf, they propagate 
around the coast in the form of long gravity waves. Conservation of energy flux requires an 
increase in tidal height and current amplitude as water depths decrease. The increase in 
tidal currents gives rise to strong bottom friction and generation of intense turbulence, 
dissipating a large amount of energy. It has been estimated that the North West European 
shelf accounts for about 10% of the global shallow water tidal dissipation (Droppert, 2001). 
 

 
Figure 2-2: Bathymetry of the NE Atlantic, Norwegian Sean and NW European Shelf (Droppert, 

2001). 
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The North Sea has moderate fetch for easterly or westerly wind directions, and a long fetch 
for northerly winds. The highest recorded waves have been generated by northerly winds, 
for example significant wave heights up to 11m in the central North Sea in early January 
1995. Waves of return period 50 years have significant wave height 16 m in the Northern 
North Sea and 8 m in the South. Within the North Sea and North West European shelf 
waters, bottom friction is important in limiting growth of the longer period waves (e.g. 
waves of around 7 seconds over Dogger Bank), and this must be accounted for in numerical 
wave models (Carter, 1985; Bijl, 1997). 
 

2.2.2 Tides and sea level 
As tides from the deep Atlantic Ocean enter the NW European shelf, they propagate around 
the coast in the form of long gravity waves. Conservation of energy flux requires an increase 
in tidal height and current amplitude as water depths decrease. The increase in tidal 
currents gives rise to strong bottom friction and generation of intense turbulence, 
dissipating a large amount of energy and mixing the water column. It has been estimated 
that the NW European shelf accounts for about 10% of the global shallow water tidal 
dissipation (Carter, 1985; Droppert, 2001). 
 
The combined effects of Coriolis and frictional forces and the geometry of the NW 
European shelf result in complex tidal patterns in this region. In the semi-enclosed North 
Sea, for example, the tide originating from the North Atlantic enters from the north as a 
progressive Kelvin wave, travelling southward along the eastern side of the UK coast. Much 
of the tidal energy is dissipated in the Southern Bight, but a portion is reflected as a damped 
wave, propagating northward along the continental coast. When the incoming and reflected 
Kelvin waves are superimposed together, three amphidromic systems are established in the 
North Sea. The one in the Southern Bight lies about halfway between East Anglia and the 
Netherlands. The two further North are displaced progressively eastward from the mid-
distance as the reflected wave is damped gradually when travelling northward (Debernard et 
al., 2002; Butler et al., 2007).  
 
The actual observed tides are in fact more complex than this, when tidal constituents other 
than M2 are considered. Superposition of semidiurnal M2 and S2 tides for example gives 
rise to a spring/neap cycle that has a period of about 14 days. In addition, when water 
becomes shallower, higher harmonics of astronomical constituents are generated by bottom 
friction and non-linear effects. These higher harmonics are referred to as shallow water 
constituents (Dronkers, 1964; Prandle et al., 1978).  
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Figure 2-3: M2 co-tidal plot for North West European shelf seas (Droppert, 2001). 

 
The tidal range on the continental coast of the North Sea is much smaller, rendering the 
impact of a storm surge that much greater. Though changes in sea-level are predominately 
due to tides in the NW European shelf, winds and variations in the atmospheric pressure 
can raise or lower sea level by up to several meters, producing a storm surge. A wind-driven 
current can cause a rise in the sea level by piling up water against the coast. Changes in 
atmospheric pressure on the other hand give rise to an 'inverted barometer' effect: a fall in 
pressure by 1 mb resulting in a 1 cm rise in sea-level. Therefore, if a positive peak surge 
(higher water level) occurs at the time of high tide, flooding may result along the coastal 
areas. The much-publicized North Sea storm surge in 1953 occurred when the high spring 
tide interacted with a deep depression which first travelled eastward to the north of British 
Isles and then south-eastward into the North Sea. In this surge event, the east coast of 
British Isles and the Netherlands were severely flooded, and about 2000 people lost their 
lives (Bijl, 1997; Debernard et al., 2002; Beniston et al., 2007).  
 

2.3 Storm Surge Condition in the North Sea 
Since the great flood disaster of 1953, when a combination of a spring tide and storm force 
north-westerly winds led to the emersion of large parts of Zeeland and South Holland, the 
Dutch sea defences have always proved reliable. Even so, extreme weather conditions still 
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pose a danger. Dutch people realize well that they can trust their dikes, but not blindly, and 
vigilance will always be necessary (McInnes et al., 2003).  
 
The reliability of North Sea coastal defences is checked regularly and systematically. This is 
done by the national Department of Public Works (Rijkswaterstaat), the provincial public 
works authorities, the water boards and the municipalities. Supreme control is in the hands 
of Rijkswaterstaat, which is also responsible for high tide warnings. The provincial 
governors and the authorities in charge of the dikes and dams must be warned when the 
tidal rise is expected to reach dangerous levels due to a combination of tidal movements, 
high river discharges and wind. In the North Sea, high tides occur approximately every 
twelve hours. The main tidal stream enters the North Sea along the Scottish coast; a less 
important stream comes in through the Channel. As a result, the difference in level between 
high tide and low tide is not the same everywhere. Each point on the coast has its own tidal 
difference. In Vlissingen it averages 3.80 m, and moving northwards along the coast to Den 
Helder it diminishes to an average of 1.40 m. Thereafter, the tidal difference increases again: 
at Delfzijl it averages 3 m. The actual tidal difference depends not only on the positions of 
the sun and the moon. It is also determined by the weather, and primarily by the wind. 
North- westerly gales are notorious in this respect. They can blow the full length of the 
North Sea without interruption and sweep the water up against the Dutch coast. The rise on 
any particular occasion depends on the direction, the force and the duration of the gale 
(Verlaan et al., 2005).  
 
Since the disastrous storm of 1953, the dikes and dams in the Delta area and along the rest 
of the coast have been systematically improved. The recent completion of the storm surge 
barrier in the New Waterway was the last piece in the jigsaw of protective measures. Apart 
from the Western Scheldt, the entire delta can now be sealed off from the sea by huge storm 
surge barriers. The dikes and barriers are designed to withstand 'very severe storm surges': 
that is to say, storm conditions so rare that they will occur on average only once in every 
4,000 to 10,000 years. Even though such super storms are highly unlikely in our own 
lifetime, we cannot afford to relax our guard. Less extreme weather can also damage the 
dikes through the impact of breaking waves and strong tidal currents.  
 
Whenever dangerous high tide levels are anticipated, it is the duty of the Storm Surge 
Warning Service (SVSD) to notify the dike and dam authorities and other bodies 
responsible for public safety. The SVSD is always ready to spring into action, 24 hours a 
day. During gales, it keeps meticulous watch on developments in coastal tide conditions, 
particularly if the wind direction is between south- westerly and northerly. It also 
predictions critical high tide levels and issues advance warnings to the relevant authorities. 
The SVSD itself takes no measures to defend the dikes - that is up to the local dike boards.  
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There are three rise levels that prompt the SVSD to come into action: pre-warning, warning, 
and alarm. Because the timing of high tides varies from one place to another and because a 
gale will seldom affect the whole coastline with equal force, the coastal region is divided into 
sectors. In each sector there is a reference station (Battjes & Gerritsen, 2002).  
 

2.3.1 Storm Surge Warning Service 
The Storm Surge Warning Service (in Dutch abbreviated as SVSD) is responsible for the 
alert of the dike and dam authorities and other relevant bodies in the Dutch tidal region 
whenever a storm surge is expected. This will allow them to take appropriate measures. The 
SVSD is a service provided jointly by the Department of Public Works (Rijkswaterstaat) and 
the Royal Netherlands Meteorological Institute (KNMI). The management of the SVSD is in 
the hands of Rijkswaterstaat's National Institute for Coastal and Marine Management 
(RIKZ). Weather and the use of weather products like wind, pressure, temperature and 
model-results like wind- and pressure fields are very important for the Storm Surge 
Warning Service. The digital products are input for the hydro-dynamic models. With these 
models, the water level predictions are made. The graphical weather products are used for 
interpreting the model outcome. For the interpreting predictions and measurements have to 
be combined. Products on different prediction periods are used. A recent development has 
been the ensemble prediction for wind surge, where the 50 scenarios of the ECMWF 
ensemble prediction are used as input for a wind surge model. The probabilistic outcome of 
this model has proved very useful for planning purposes (Heemink et al., 1997; Verlaan et 
al., 2005). 
 

2.3.2 Procedure for issuing warnings and alarms  
Every day the Hydro Meteorological Centre in Hook of Holland (an auxiliary office of the 
KNMI) produces tidal rise predictions (Peeck et al., 1982; Verlaan et al., 2005). The SVSD is 
notified when the high tide at any reference station is expected to exceed the information 
level which is as much as 40 to 50 cm below the warning level. This message is generally 
issued about ten hours before the water is likely actually to reach that level. Based on the 
information supplied and on his own experience, the SVSD officer on duty a tidal 
hydrologist will decide whether or not it is expedient to staff the warning bureau, the SVSD 
action centre. This will normally be done whenever the warning or alarm level is expected to 
be reached or exceeded. The SVSD officer will issue warnings and/ or alarms. Wherever 
possible, this will be done at least 6 hours in advance of high tide, so that the dike and dam 
authorities have time to prepare. These warnings will be issued to a number of bodies 
concerned with the safety of the coastal provinces, including:  
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 water boards and dike and dam authorities  
 Rijkswaterstaat field services  
 the provincial public works authorities  
 the Ministry of the Interior (Fire Service and Disaster Response Department).  

As soon as an alarm is issued, announcements are broadcasted on radio and TV news 
bulletins.  
 

2.4 Data Description 
The sea water level, surge, atmospheric pressure and wind speed/direction time series data 
from seven coastal stations along the Dutch coast are monitored and provided by the 
Directie Noordzee (DNZ). Water levels are sampled at 0.0167 Hz and averaged over period 
of 10 minutes. Each time series that was made for us initially available begins January 1st, 
1990 and ends on March 31st, 1996, which results in 337249 continuous samples in total for 
the 10 min times series data and 54768 for the averaged hourly times series (Table 2-1). The 
surge time series data is obtained by subtracting the observed water level with tide 
(astronomical forces) based on harmonic analysis, formulated as: 

 Surge = Water level (observed) – Tides (2.1) 

 
TABLE 2-1: DATA DESCRIPTION FROM TIDAL STATIONS IN THE DUTCH COAST (1990-1996). 

Code Station Name 
Water levels Surges 

% diff Max range Avg. height Sig. height Var Max range Var 
[cm] [cm] [cm] [cm2 x103] [cm] [cm2 x103] 

EPF Euro platform 438 162.3 219.1 3.87 357 0.563 48.7 
HvH Hoek v. Holland 471 171.5 229.4 4.63 358 0.708 50.6 
K13 K13 platform 468 156.4 208.8 2.68 332 0.773 46.6 

 
TABLE 2-2: DATA SEPARATION FOR WATER LEVEL AND SURGE DATA INTO TRAINING, CROSS-VALIDATION AND 

TESTING DATA SETS FOR NON-STORMY AND STORMY CONDITIONS. 

Time 
Index 

Cross validation for optimizing model parameters Model testing 
Non-storm Storm Non-storm Storm 

Train CV Train CV Train Test Train Test 
Start 1 38200 1 35500 1 47473 1 43001 
End 38199 38600 35499 35900 47472 49656 43000 45160 

 
Figure 2-4 visualizes the relationship between air pressure, wind speed with direction of 120 
degrees from North, water level and surge at Hoek van Holland. This study concentrates on 
predicting the water level and surge at the Hoek van Holland (HvH) tidal station at where 
the entrance of Rotterdam Port is located. The additional data from neighboring tidal 
stations, like Euro platform and K13, were also utilized.  
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Table 2-1 lists data description from these tidal stations. In order to evaluate the model 
performance during various conditions, the water level and surge time series data are 
divided into training, cross-validation (CV) and testing data sets for non-stormy and 
stormy conditions as listed in Table 2-2. 
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Figure 2-4: Relationships between the long-shore winds, surge, water level, and air pressure 

difference at Hoek van Holland. 
 

2.5 Summary 
The main case study is to predict the storm surges during non-stormy and stormy 
conditions along Dutch coast, specifically at Hoek van Holland as the important location 
(entrance) of Rotterdam Harbour. Some variables with 10 minutes and 1 hour resolutions 
are available, include: air pressure, wind, surge and water level. Maximum surge level and 
significant water level height in the time series used is 358 cm and 229cm, respectively. 
 
 





 

 

 

 

CHAPTER 3: STORM SURGE MODELING 
 

 
 

“Storm Surges Could Wreak $300 Billion Damages in 10 U.S. Coastal Cities.” 
Laura Mazzuca Toops 

 
 
 
This chapter presents the fundamental principles of physical oceanography, tides, surge, 
spectrum-based wave model, several operational storm surge models for the North Sea. 
 

3.1 Introduction 
One of the most impressive natural phenomena is oceanic waves which have interesting 
behaviors from the chaotic motions due to a hurricane to a mild swell on a tropical beach. 
Many scientists are interested in the dynamics and kinematics of the waves: how they are 
generated by the wind, why they break and how they interact with currents and the sea 
bottom. Ocean and/or hydraulic engineers are involved in design, operation or 
management of structures or natural systems in the marine environment, such as dykes, 
storm surge barriers, beaches and ship navigation. One of the most important waves in 
ocean is storm surge that is generated due to a strong storm or hurricane. In shallow 
oceanic water, the structures and marine systems are much affected by storm surge. The 
knowledge on the physical behavior of this kind of waves is therefore required not only for 
designing dykes and storm surge barriers but also building a predictive storm surge model. 
 

3.2 Physical Oceanography 

3.2.1 Ocean waves and its classification 
Ocean waves are mechanical waves that propagate along the interface between water and 
air; the restoring force is provided by gravity, and so they are often referred to as surface 
gravity waves (WMO, 1998; Stewart, 2002; Holthuijsen, 2007). As the wind blows, pressure 
and friction forces perturb the equilibrium of the ocean surface. These forces transfer 
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energy from the air to the water, forming waves. In the case of monochromatic linear plane 
waves in deep water, particles near the surface move in circular paths, making ocean surface 
waves a combination of longitudinal (back and forth) and transverse (up and down) wave 
motions (Figure 3-1a).  
 
The ideal ocean surface wave is sinusoidal with celerity (c) crests and the troughs having 
identical shapes and the wave having one fixed wavelength and orbital progressive, with 
water particles under the wave moving in orbital paths that make one complete cycle with 
the passage of one complete wave. On a spatial scale, the horizontal distance between two 
adjacent crests or troughs is defined as the wave length (L) and the vertical distance from 
the top of the crest to the bottom of the adjacent trough is defined as the wave height (H). 
On a temporal scale, the time that it takes for two consecutive crests to pass a fixed point is 
defined as the wave period (T). The inverse of the period is the wave frequency (f), which is 
a measure of the number of times one complete wave will occur per unit time (in cycles per 
second or hertz). Finally, the speed with which a wave crest moves horizontally across the 
ocean surface is defined as wave celerity (c) or phase speed (m/s). 

 

 

 

Figure 3-1: (a) Sinusoidal ocean wave form; (b) Wind generating sea and swell (Holthuijsen, 2007). 
 
As the depth into the ocean increases, the radius of the circular motion decreases. By a 
depth equal to half the wavelength λ, the orbital movement has decayed nearly to zero. The 
speed of the surface wave is well approximated by: 

 





=

λ
π

π
λ dgc 2tanh

2
 (3.1) 

where c is phase speed, λ is wavelength, d is water depth and g is acceleration due to gravity 
at the Earth's surface. 
 
In fact, the real ocean waves do not, of course, have a sinusoidal shape and rarely are found 
with a single wavelength or wave period. The ocean surface is quite chaotic and made up of 
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many component waves of different periods and directions. The major driving force for 
ocean waves results from the wind forces on the ocean surface. Wind speed and wave 
activity are closely related. Besides the wind speed, there is the duration of storm and fetch. 
Fetch is the distance the wind blows over the water to generate waves. The wave speed is 
usually variable. Such variation produces waves of various sizes. The relationship between 
wind and waves is formalized in Beaufort scale.  
 
The waves still under the action of the winds that created them are called sea. Whereas, the 
waves that have moved out of the generating area are known as swell. After, waves travelled 
a distance from the generating area, they have lost some energy (due to air resistance, 
internal friction, etc.) leading to a decrease in energy density. Thus, waves become lower in 
height. Seas usually have shorter periods and lengths and their surface appears more 
disturbed than for swells. Swells, being no longer under influence of wind, appear more 
orderly with well defined long crests and relatively long periods than seas (Figure 3-1b). 
 
Ocean waves can be classified in at least into four classes based on the water depth, method 
of generation, wave period, and relationship to generating force) as described below. 

3.2.1.1 Water depth 
On the basis of water depth, the ocean waves can be categorized into: 
 Deep water waves. Water too deep for waves to be affected by the seabed, typically taken 

as half the wavelength, or greater. Wave celerity is directly proportional to either 
wavelength or wave period. This means that waves with longer wavelengths (wave 
periods) will travel faster across the ocean surface. 

 Shallow water waves. Typically this implies a water depth equivalent to less than one 
twentieth of wavelength. Wave celerity is directly proportional to depth.  This means 
that as water depth decreases, waves slow down. 

 Intermediate water waves. Transitional water waves between deep water waves and 
shallow water waves. 

 
The processes that can affect a wave as it propagates into shallow water include: refraction, 
shoaling, dissipation due to friction, dissipation due to percolation, breaking, additional 
growth due to the wind, wave-current interaction and wave-wave interaction. Other wave 
transformation can occur due the presence of structures which interrupts wave propagation, 
e.g. diffraction and reflection. When waves propagate in shallow water, (where the depth is 
less than half the wavelength) the particle trajectories are compressed into ellipses. As the 
wave amplitude (height) increases, the particle paths no longer form closed orbits; rather, 
after the passage of each crest, particles are displaced a little forward from their previous 
positions, a phenomenon known as Stokes drift (Figure 3-2).  
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Figure 3-2: Deep water and shallow water with their water particle movements. 

 

3.2.1.2 Method of waves generation 
Ocean waves also may be classified by the method of their generation.  
 Wind waves are generated when wind blows across the water surface and momentum is 

transferred from the wind to the water.  
 Impact waves (such as Tsunamis) may be generated on the water surface by earthquakes 

or any other forms of impact (even, on a small scale, by a rock thrown into a pond). 

3.2.1.3 Period of waves 
Ocean waves can be classified by wave period as follows (see Figure 3-3):  
 Ripples or capillary waves. The smallest waves have periods < 0.1 second and are 

generated by a small puff of wind and, because they are so small (are molecular waves), 
are restored by surface tension  

 Gravity waves. The most common waves have periods between 1 sec and 30 seconds 
(with the most energy centered around 10 seconds), are generated by the wind and 
storms, and are restored by gravity.  

 Long waves. Waves have periods greater than 5 min periods which are generated by 
intense storms (surges) and by earthquakes, and restored by gravity and the Coriolis 
force.  

 Very long waves. The longest waves are the 12 hr and 24 hr tides, generated by the sun 
and moon and restored by bottom friction and the Coriolis force. 

3.2.1.4 Relationship to the Generating Force 
Some wind waves being actively generated (in an intense storm, for instance), as one will 
find out later, may be classified as free/forced waves. 
 Free waves: ocean waves that run independent of their generating force (such as impact 

waves)  
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 Forced waved: waves that are dependent upon their generating force for their continued 
existence (such as the tides). 

 

 
Figure 3-3: Wave categories based on the period of waves (Holthuijsen, 2007). 

 

3.2.2 Tides 
Tides are the cyclic rising and falling of Earth's ocean surface caused by the tidal forces of 
the Moon and the Sun acting on the oceans. Tides cause changes in the depth of the marine 
and estuarine water bodies and produce tidal currents. Prediction of tides is important for 
coastal navigation. The strip of seashore that is submerged at high tide and exposed at low 
tide, the inter-tidal zone, is an important ecological product of ocean tides (WMO, 1998; 
Holthuijsen, 2007). 
 
The changing tide produced at a given location is the result of the changing positions of the 
Moon and Sun relative to the Earth coupled with the effects of Earth rotation and the local 
bathymetry. Sea level measured by coastal tide gauges may also be strongly affected by wind. 
More generally, tidal phenomena can occur in other systems besides the ocean, whenever a 
gravitational field that varies in time and space is present. 
 
Tides may be semidiurnal (two high tides and two low tides each day), or diurnal (one tidal 
cycle per day). The various frequencies of astronomical forcing which contribute to tidal 
variations are called constituents. In most locations, the largest is the "principal lunar 
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semidiurnal" constituent, also known as the M2 tidal constituent. Its period is about 12 
hours and 24 minutes, exactly half a tidal lunar day, the average time separating one lunar 
zenith from the next, and thus the time required for the Earth to rotate once relative to the 
Moon (Figure 3-4).  
 

 
(a) 

 
(b) 

 

 
(c) 

Figure 3-4: (a) Some types of tides: diurnal, semidiurnal and mixed; (b) and tidal harmonic 
constituents; (c) Moon and Sun forcing constituents creating tidal range variation: spring and neap 

tides (source: NOAA). 
 
Around new and full moon when the Sun, Moon and Earth form a line, the tidal forces due 
to the Sun reinforce those of the Moon. The tide's range is maximum. This is called the 
spring tide. When the Moon is at first quarter or third quarter, the Sun and Moon are 
separated by 90° when viewed from the earth, and the forces due to the Sun partially cancel 
those of the Moon. At these points in the lunar cycle, the tide's range is minimum. This is 
called the neap tide. Spring tides result in high waters that are higher than average, low 
waters that are lower than average, slack water time that is shorter than average and 
stronger tidal currents than average. Neaps result in less extreme tidal conditions. There is 
about a seven day interval between springs and neaps. 
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3.3 Surges 
Storm surge is simply water that is pushed toward the shore generated by combination 
forces of the wind friction and low air pressure around the storm (Figure 3-5). It is also 
defined as the oscillations of the water level in a coastal or inland water body in the period 
range of a few minutes to a few days, resulting from forcing from atmospheric weather 
systems (Gonnert et al., 2001).  
 

 
Figure 3-5: Storm surge driven by wind and air pressure. 

 
In ocean, local wind waves can add to the water level, and the storm surge can be amplified 
(or reduced) by interference with the strictly regular astronomical tide. Extreme floods can 
be related to extreme storms, like cyclones or hurricane, which attack the open coast. In 
areas that are otherwise more sheltered (like the Baltic Sea), extreme floods can be generated 
by unusual sequences of wind set-up and air pressure variations. In addition, wind driven 
waves can be superimposed on the storm tide. This rise in water level can cause severe 
flooding in coastal areas, particularly when the storm tide coincides with the normal high 
tides (see Figure 3-6).  
 
Irrespective of the weather, flood waves can be generated by distant, sub-sea earthquakes 
(such flood waves are called tsunamis), or, in arctic areas, by breaking glaciers. The effect 
also depends on the coastal profile. A gently sloping profile causes a high amplification of an 
approaching flood wave (and tidal wave) and a high set-up in response to local wind. A 
steep profile will tend to reflect the flood wave (and tidal wave), rather than amplifying it, 
and the locally generated set-up will be small if the water depth is large. Often, a shallow 
coastal profile occurs in places with low-lying lands. If so, the flood risk will be high.  
 

 
Figure 3-6 Storm surge flooding due to storm, tide, wave run-up and freshwater flooding (source: 

NOAA). 
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Coastal floods due to storm surges can be predicted with an accuracy that is largely 
determined by the accuracy of the meteorological predictions (which is within a couple of 
days). A major problem in this connection is that it is not possible to predict the route of a 
moving extreme depression like a cyclone. Analyzes of the general risk of coastal floods are 
made in connection with emergency preparedness planning, and also as a basis for design of 
coastal facilities and structures, such as flood embankments. The analyzes are difficult, 
because an 'observed flood' is not a single independent event in statistical terms. Rather, the 
flood is a consequence of a set of different determinants, like the tide, the wind and the air 
pressure, or of a set of sequences of these factors. Both the mean sea level and the flood 
height will vary along the coast, with a distinct slope relative to horizontal.  
 
The mechanism leading potentially to coastal floods is well understood. Given the 
configuration of the coastline and the bathymetry, the severity of the storm surge depends 
primarily on wind speed, wind direction and duration. The meteorological conditions are 
affected by the path and the velocity of the depression systems, moving across the sea.  
When winds push water towards the coast, it tends to accumulate into what is commonly 
referred to as storm surge. If a particular high surge occurs together with a tidal maximum, 
both effects accumulate and serious flooding can result, depending on the coastal structure 
and their protection. 
 

 
Figure 3-7: Wind-pressure variation induces wave (Holthuijsen, 2007). 

 
To understand the effect of winds and air pressure to water body, one refers to (Miles, 1957) 
finding that the ocean waves modify airflow and hence wind-induced pressure at the water 
surface, such that they enhance their own growth. The waves are therefore generated by 
wind-induced surface pressure (Figure 3-7). 
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3.3.1 Tide-Surge Interaction 
In North Sea region, it is well documented that the dominant semidiurnal M2 tide in some 
regions leads to a significant quarter-diurnal overtide (M4) due to nonlinear effects, namely, 
advection, wave drift, quadratic bottom friction, and time-dependent viscosity. The 
amplitude and phase of the M4 tide in the North Sea is mapped by models and compared 
with in situ sea-level measurements and also by satellite altimetry. The largest sea-level 
amplitudes, up to 25 cm, are found in the southern parts of the North Sea and in the English 
Channel. The M4 tide shows relatively rapid spatial variation in amplitude and phase and is 
localized to limited areas basically in shallow water. Possible transient generation of sea-
level oscillations in the M4 band is due to interaction between the M2 tide and wind-
generated current. 
 
The swallow-water dynamical processes, which cause interaction between different tidal 
constituents as already demonstrated, also cause tidal and surge components of the sea 
levels and currents to interact. Suppose, for example that, there is a process which depends 
on the square of the total sea-level (Velickov, 2004):  

 ( ) TSSTST 22222 ++=+=ξ  (3.2) 

then the TS term in this case represents the interaction between the tides and the surges. In 
practice this interaction is difficult to describe in terms of analytical models and some 
knowledge can be gained from the numerical models. An alternative method is to analyze 
the distribution of the positive and negative surges relative to the high and low waters from 
the time series of the observations. 
 
Tide-surge interaction on a local scale is very important because it is most apparent in 
shallow-water areas where large surges may be generated. The nonlinear interaction 
between the tides and surges may significantly change the design return period for coastal 
defences against flooding.  
 

3.4 SWAN Wave Spectrum Model 
Simulating Wave Nearshore (SWAN) model is a third-generation stand-alone (phase-
averaged) wave model for the simulation of waves in waters of deep, intermediate and finite 
depth. It is also suitable for use as a wave hindcast model (Holthuijsen, 2007). However, 
SWAN can be used on any scale relevant for wind-generated surface gravity waves. The 
model is based on the wave action balance equation with sources and sinks. It adopts 
various grids (resolution, orientation, etc.), including nesting (only for uniform recti-linear 
grid).  
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The SWAN is a wave hindcast model based on spectrum analysis that can be explained as 
follows. Wind generated waves have irregular wave heights and periods, caused by the 
irregular nature of wind. Due to this irregular nature, the sea surface is continually varying. 
On the other hand, statistical properties of the surface, like average wave height, wave 
periods and directions, appear to vary slowly in time and space, compared to typical wave 
periods and wave lengths. The surface elevation of waves in the ocean, at any location and 
any time, can be seen as the sum of a large number of harmonic waves, each of which has 
been generated by turbulent wind in different places and times. They are therefore 
statistically independent in their origin. According to linear wave theory, they remain 
independent during their journey across the ocean. Under these conditions, the sea surface 
elevation on a time scale of one hundred characterstic wave periods is sufficiently well 
described as a stationary, Gaussian process. The sea surface elevation in one point as a 
function of time can be described as: 

 ∑ +=
i

iii tat )cos()( αση  (3.3) 

where η is the sea surface elevation, ai is the amplitude of the i-th wave component, σi is the 
relative radian or circular frequency of the i-th wave component in the presence of the 
ambient current  and ai is the random phase of the i-th wave component.  
 

 
Figure 3-8: An interpretation of the wave spectrum of the Dutch coast adopted by SWAN model 

when a northerly swell, generated by a storm of the Norwegian coast meets a locally generated 
westerly wind sea (Holthuijsen, 2007). 
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Ocean waves are chaotic and a description in the time domain is rather limited. 
Alternatively, variance density spectrum is used, which is basically the Fourier transform of 
the auto-covariance function of the sea surface elevation. In SWAN, the energy density 
spectrum is generally used. On a larger scale the spectral energy density function becomes a 
function of space and time and wave dynamics should be considered to determine the 
evolution of the spectrum in space and time. An interpretation of the wave spectrum of the 
Dutch coast adopted by SWAN model is presented in Figure 3-8. 
 
The other modeling application so-called Delft3D has presently integrated the SWAN 
model inside its numerical computation in order to enable an efficient and a direct coupling 
between e.g. circulation models (wave driven currents) and sediment transport models 
(stirring by wave breaking). Delft3D is developed by Delft Hydraulics for simulating two 
(either in the horizontal or a vertical plane) and three-dimensional flow, waves, water 
quality, ecology, sediment transport and bottom morphology and is capable of handling the 
interactions between those processes (Deltares, 2010). 
 

3.5 Physcially-based Storm Surge Prediction Model 
The basis of deterministic storm surge models are the shallow water equations, stating the 
physical laws of mass and momentum conservations (Dronkers, 1964), as follows: 
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where 
t : time 
x, y : space dimensions 
h : water level elevation above reference level 
u, v : depth averaged velocities in the x and y directions 
C : Chezy coefficient 
Cd : wind stress coefficient 
D : depth below reference level 
g : gravitational acceleration 
pa : atmospheric preassure 
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Vx, Vy : wind velocities in the x and y directions 
ρa : density of the air 
ρw : density of the water 
ω : angular velocity of the earth 
The perpendicular velocity component at closed boundaries is set equal to zero and the 
water level is given as a known time function at open boundaries. Due to the nonlinearity of 
the dynamics, the parallel velocity component vanishes at the boundaries in case of inflow.  
 

 
Figure 3-9: The computational grid of storm surge model. 

 
In order to discretize these partial differential equations of the storm surge model, a space 
staggered grid is defined and finite difference scheme is employed, as depicted in Figure 3-9.  

 

3.6 European Meteorological Offices and Storm Surge Models  

3.6.1 North West Shelf Operational Oceanographic System (NOOS) 
The operational storm surge prediction model has been used in different areas worldwide 
for many years. In the Netherlands, an automatic production line at the Royal Netherlands 
Meteorological Institute is used for that purpose. It contains a limited-area atmospheric 
model (called HIRLAM), the output of which drives a surge prediction model for which the 
above-mentioned Dutch Continental Shelf Model (DCSM) is used (Gerritsen et al., 1995; 
Bode & Hardy, 1997; Verlaan et al., 2005).  
 
One of the large operational oceanography in Europe is North West Shelf Operational 
Oceanographic System (NOOS) which is developed by the EuroGOOS North West Shelf 
Task Team (NWSTT) in 2002 and operated by participating partners from the 9 countries 
bordering the extended North Sea and European North West Shelf (Belgium, Denmark, 
France, Germany, Ireland, Netherlands, Norway, Sweden, and UK), collaborating to 
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develop and implement ocean observing systems for the North West Shelf area, with 
delivery of real time operational data products and services (Droppert, 2001). The role of 
NOOS is to create a design for a fully integrated observing and prediction system for the 
North Western part of the EuroGOOS area. This system has to meet the needs of a large 
number of groups in an effective way. Moreover it should be designed in such a way that all 
countries bordering the North West Shelf area are involved in the development and 
implementation of NOOS. The exchange of information through Internet has opened new 
opportunities for virtual networks where national networks, research vessels, cruises etc are 
being connected. Several institutions from European countries contribute on NOOS for 
providing North Sea storm surge predictions as listed below: 
1. Koninklijk Nederlands Meteorologisch Instituut (KNMI)/ Rijksinstituut voor Kust en 

Zee (RIKZ) from Netherlands 
2. Bundesamt für Seeschifffahrt und Hydrographie (BSH) from Germany 
3. UK Meteorological Office (UKMO) from UK 
4. Danish Meteorological Institute (DMI) from Danmark 
5. Norwegian Meteorological Institute (DNMI) from Norwegia 
6. Management Unit of the North Sea Mathematical Models (MUMM) from Belgium 
 
The specifications of storm surge and circulation models of the European storm surge 
models within NOOS are described in Table 3-1. 
 

3.6.2 KNMI and RIKZ 
The Dutch institutions which are responsible on providing the North Sea storm surge 
predictions are Koninklijk Nederlands Meteorologisch Instituut (KNMI) and Rijksinstituut 
voor Kust en Zee (RIKZ). One storm surge model is so-called the WAQUA-in-
Simona/DCSM98 storm surge model, which is developed by the National Institute for 
Coastal and Marine Management RIKZ, WL | Delft Hydraulics, the former Data Processing 
Division of Rijkswaterstaat and KNMI, is being used for day-to-day sea level predictions by 
KNMI's Maritime Meteorological Services since 1990. 
 
The Dutch Continental Shelf Model (DCSM) is a large-scale water level prediction and 
storm surge prediction model that encloses the North West European shelf, including the 
British Isles. It has been developed by the National Institute of Coastal and Marine 
Management (RIKZ). In this model the shallow water equations with water quality and 
meteorological influences are described. The model is suitable for large scale transport 
calculations and for generating boundary conditions for nested models.  
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The model calculates the sea level and the depth averaged current on the Northwest 
European Continental Shelf on a grid with cells of approximately 8km x 8km (until 
September 1999 16km x 16km), using wind and pressure predictions from KNMI's limited 
area model HIRLAM. Kalman filter is used for real-time data assimilation of sea level 
observations. Sea level predictions are produced by the model 4 times per day for 48 hours 
ahead, closely following the available meteorological input. The structured curvilinear C 
grid type of Waqua and Triwaq used in the Dutch Continental Shelf Model (DCSM) is 
depicted in Figure 3-10. 
 

 
Figure 3-10: The structured curvilinear C grid type of Waqua and Triwaq used in the Dutch 
Continental Shelf Model (DCSM). The mesh resolution is approximately 8km (Ham, 2006). 

 
Real-time assimilation of observed sea levels along the British and Dutch coasts gives a 
significant contribution to the high accuracy which is especially required for the 
management of the storm surge barriers in the Oosterschelde and the Rotterdam Waterway 
(Maeslantkering). Unlike in atmospheric modeling, however, it is not a vital part of sea level 
prediction.  
 
Generally the model produces sea level predictions with a standard deviation of less than 15 
cm along big parts of the Dutch and British coasts. For predictions less than 12 h ahead, the 
Kalman filter brings this even down to less than 10 cm.  
 
It is difficult to quantify the performance of the model for extreme surges accurately, due to 
the fact that they are relatively rare. Every (severe) storm presents a new challenge for the 
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models (and the meteorologists). Nevertheless, experience over the past few years has given 
confidence in the model results. 
 
The Dutch Continental Shelf Model (DCSM) is run at KNMI. The schedules and processes 
of model execution until releasing a decision can be described as follows (see Figure 3-11): 
 Prediction and observation data are stored in FTP server (NOOS) every time the 

model run is finished. A script runs collecting data and checking prediction data 
available every half an hour. 

 Every half an hour the available prediction data are used to issue warning 6 hours or 
12 hours ahead or even longer. The final decision should be made before that time. 

 The way is to look at the clock, what time is the last prediction we are going to get 
before reaching 6 hours ahead. For example, there will be high water at 12:00PM 
noon (GMT time). A decision should be made at 06:00AM by looking at the final 
predictions available at 06:00AM, which is the midnight prediction. The midnight 
predictions approximately come out at 04:00AM. The four hours time is required for 
model run (about 2,5 hours) and reviewing the results. In general, the final 
predictions should be available at 06:00, 12:00, 18:00, 00:00 every day. 

 There are several intermediate model runs at 03:00, 09:00, 15:00, 21:00 every day. At 
these times, new meteorological data are obtained and DCSM with data assimilation 
(EnKf) also runs.  

 Dissemination of a warning takes about 30 minutes. 

 DCSM (coarse scale) runs just a few minutes for 2 days ahead. A refined model for 
Rotterdam (detailed scale) takes about 4 hours. They depend on the number of 
points and time steps. 

 For storing the data, the timeline is available in the database in which each value has 
analysis time (anal_time). The analyze time is used by meteorological agency. For 
example, if the data collected at midnight for a certain point may take 10 minutes 
and running the model takes 2,5 hours then anal_time for this case is at midnight 
since anal_time is the starting point of the model run regardless delays 
(computation, transmission). It is not the end of the model run. 

 The analysis time depends on the data source (location) and have much different 
between data sources. 

 Institutes of each country that have operational storm surge model predictions for 
the North Sea does not always provide all predictions to be stored in FTP server. 
Prediction data could be available once a day since they need time for re-evaluating 
the predictions and making a decision. 
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Figure 3-11: An example of operation schedule of the Dutch Continental Shelf Model. 

 

3.6.3 European Centre for Medium-Range Weather Predictions (ECMWF) 
The European Centre for Medium-Range Weather Predictions (ECMWF) was established 
by nineteen European States including the Netherlands in 1971 with the aim to produce 
weather predictions ten days ahead with the five-day predictions. The main objective of the 
ECMWF was to provide medium-range weather predictions and to carry out scientific and 
technical research directed towards the improvement of these predictions. Since then 
ECMWF has made operational prediction at least one ten-day prediction per day, and 
distributed it from its computer system to the systems of the national meteorological 
services of its Member States via a dedicated telecommunication network (ECMWF, 2007). 
 
The ECMWF prediction system consists of five components: a general circulation model, an 
ocean wave model, a data assimilation system an ensemble prediction system (EPS). In 1998 
a seasonal prediction system started to operate and in 2002 a monthly prediction system 
was introduced. A physical processes formulation in ECMWF is depicted in Figure 3-12. 
 
The general circulation model is the first ECMWF numerical model which is a grid-point 
model with 15 levels up to 10 hPa, and horizontal resolution of 1.875 degrees of latitude and 
longitude, corresponding to a grid length of 200 km on a great circle. In April 1983 this 
grid-point model was replaced by a model with a spectral representation in the horizontal 
with a triangular truncation at wave-number 63. At a time when the spectral technique was 
introduced it was more accurate than the grid point model for the same computational cost. 
With increased resolution and the introduction of the semi-lagrangian technique, there is 
no longer any significant difference in accuracy between the two representations. After 
1983, there are several evolutions of ECMWF model resolution. The last model resolution 
changes in 2006 with 799 spectral resolution and 91 vertical levels. In 1995 an explicit cloud 
scheme was introduced with clouds as prognostic parameters. It not only improved the 
cloud and precipitation predictions, but it had also a significant impact on the model 
dynamics, not only in the 10-day integration, but also on the preliminary fields for the 
analysis (Figure 3-12).  
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Figure 3-12: A physical processes formulation in ECMWF. 

 
The ECMWF uses a global wave model plus a limited area model for the North Atlantic and 
the European waters. Currently, this wave model has been integrated into the atmospheric 
model allowing two-way interaction of wind and waves. It is now also incorporated in the 
monthly, seasonal and ensemble systems.  
 
More advanced data assimilation techniques, like the variational data assimilation where the 
concept of a continuous feedback between observations and model are utilized in the view 
of increasing availability of synoptic data over the oceans. A four-dimensional system 
(4DVAR) has been implemented since 1997. The development of variational techniques has 
progressively allowed for a direct assimilation of satellite data, such as infrared and 
microwave sounder radiances, which impact on analyzed temperature and humidity fields. 
 
The EPS simulates possible initial uncertainties by adding, to the original analysis, small 
perturbations within the limits of uncertainty of the analysis. From these alternative 
analyzes, a number of alternative predictions are produced. A wave model was included 
together with a crude allowance for the uncertainty of physical processes. In connection 
with tropical cyclones specially designed perturbations are created in the tropics. 
 

3.7 Linking Predictive Chaotic Model with European Operational 
Storm Surge Models 
One new contribution on predicting storm surges for the North Sea is to use a predictive 
chaotic model which is built based on the methods of nonlinear dynamics and chaos theory. 
A schematic diagram of the European storm surge models, their connections and predictive 
chaotic model – data-driven model (future component) are illustrated in Figure 3-14. The 
predictive chaotic model here is used in complementary with the existing European 
operational storm surge models and provide a fast-processing predictions for supporting 
decision-makers. A combiner or ensemble model is utilized to combine predictions from 
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several operational storm surge models and predictive chaotic model in order to obtain 
more accurate and reliable predictions. 
 

MySQL 5.0
database

Matlab/Other Environment
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and other 
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Database
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Figure 3-13: A schematic diagram of a connection between Matroos  and other data-driven 

modeling environments. 
 

Observation data from tidal stations in the North Sea and prediction data from European 
storm surge models are shared via FTP NOOS and stored in a database so-called Matroos. 
The processes of building a predictive chaotic model can be done automatically by accessing 
Matroos database (Figure 3-13). The predictions from predictive chaotic model can also be 
shared through this facility. 
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Figure 3-14: A schematic diagram of the European storm surge models, their connection and the 

future modeling components: the prediction combiner and chaotic model predictions. 
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3.8 Summary  
The fundamentals of physical oceanography and coastal modeling have been discussed. 
Several physically-based numerical storm surge models for the North Sea have been 
operationally used. However, yet another technique of building predictive storm surge 
model based on data-driven techniques (computational intelligence and chaos theory) is 
introduced and presented in the following sections.  
 





 

 

 

 

CHAPTER 4: COMPUTATIONAL INTELLIGENCE 

 
 
 

“A computer would deserve to be called intelligent if it could 
deceive a human into believing that it was human.” 

Alan Turing 
 
 
 
This chapter presents main instruments of the computational intelligence paradigm: 
artificial neural network, fuzzy system and evolutionary computation. They are the main 
tools in developing data-driven models and used in this work for building and optimizing 
the predictive storm surge model. 
 

4.1 Introduction 
For years sophisticated designs and beauty and of natural systems have been inspiration for 
scientists and engineers when they were thinking of the new approaches in building new 
artificial man-made systems. One of the lines of this thinking relates to the self-organising 
character of natural systems and the intellectual ability of some of them which is so 
tempting to mimic in artificial creations or at least in algorithms. Since 1940s this area of 
thinking is generally termed as Artificial Intelligence (AI). However, in the last two decades 
there was a certain shift, and a narrower “school of thought” has emerged – computational 
intelligence (CI) that is typically seen of consisting of: the three main approaches with the 
corresponding models: artificial neural networks (ANN), fuzzy systems (FS) and 
evolutionary computation (EC). AI can be seen as a more general multi-disciplinary 
research fields which include computer science, physiology, philosophy, sociology, physics 
and biology; its instruments relate to logic, deductive reasoning, expert systems, case-based 
reasoning and symbolic machine learning systems. CI is very closely to machine learning 
(ML), but also to soft computing (SC), data mining (DM), knowledge discovery in databases 
(KDD), intelligent data analysis (IDA). Of course, there are overlaps between all these areas, 
and other classifications and groupings of these areas and methods are possible.  
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For understanding the fundamentals of CI, one need to know what intelligence is. 
Intelligence has been defined as the abilities to think, understanding, comprehend, 
communicate, interpret, solve the problem and learn from experience. The extension of 
intelligence include: creativity, skill, consciousness, emotion and intuition. In the last 
century, scientists were attracted by a question "Can computer (machine) have intelligence?" 
This question caused more debate than the definitions of intelligence. In the middle of the 
last century, English scientist Alan Turing gave much thought to this question. He believed 
that machines could be created that would mimic the processes of the human brain. Turing 
strongly believed that there was nothing the brain could do that a well-designed computer 
could not. However, his statements are still visionary until now. Turing published his test of 
computer intelligence, referred to as the Turing test (Turing, 1950). The test consisted of a 
person asking questions via a keyboard to both a person and a computer. If the interrogator 
could not tell the computer apart from the human, the computer could be perceived as 
being intelligent.  
 

TABLE 4-1: OVERLAPPING AREAS RELATED TO AI AND THEIR MAIN METHODS. 
AI Sub Areas Main Methods 

Machine learning  Decision trees 
 Model and regression trees 
 Artificial neural networks (ANN) 
 Bayesian learning, including belief networks 
 Reinforcement learning (Q-learning) 
 Statistical learning theory and support vector machines 

(SVM) 
Soft computing  
(Methods tolerant for 
imprecision and 
uncertainty of data) 

 Fuzzy logic 
 Artificial neural networks 
 Evolutionary computing 
 Probabilistic computing (including belief networks) 
 Chaotic systems 
 Parts of machine learning theory 

Data mining  
(Preparation, 
reduction, finding new 
knowledge) 

 Automatic classification 
 Pattern recognition (also called data analysis) 
 Identification of trends (including statistical methods like 

ARIMA) 
 Data normalisation, smoothing, data restoration 
 Association rules and decision trees 
 Neural networks 
 Fuzzy systems 
 Evolutionary and other global optimisation methods 

Methods of non-linear 
dynamics 

 Chaos theory 
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In relation to the field of CI, data-driven modeling (DDM) can be seen as an approach to 
modeling that focuses on the use of CI methods in building models (often of natural 
systems) that would complement or even replace the “knowledge-driven” models describing 
behavior of physical systems (Solomatine, 2002). DDM uses methods developed in CI 
(Table 4-1) and tunes them for a particular application (Jang et al., 1997). 
 
The CI and machine learning techniques are the main source of methods for data-driven 
modeling, which are algorithms that estimate hitherto unknown mapping (or dependency) 
between a system’s inputs and its outputs based on the available data (Mitchell, 1997). 
When such a dependency is discovered, it can be used to predict (or effectively deduce) the 
future system’s outputs from the known input values (Figure 4-1). There are four main 
objectives of building DDM based on CI (machine learning) techniques, as follows 
(Mitchell, 1997): 
 
 Classification –to find a way of classifying unseen examples on the basis of classified 

examples; 
 Association – to identify association between features (which combinations of values are 

most frequent); 
 Clustering – to discover groups of objects (examples) that are similar; 
 Numeric prediction (regression) – to estimate the future state as a numeric (real) value 

based on training data. 
 

Modelled (real)
system

Data-driven
model

Input data X

Actual (observed) output Y

Predicted output Y’

Learning is aimed
at minimizing this

difference

 
Figure 4-1: Learning process in data-driven modeling. 

 
The CI techniques have been applied successfully to solve a number of real-world problems 
(Mitchell, 1997; Bishop, 2006; Engelbrecht, 2007; Haykin et al., 2007; Hsieh, 2009). The 
development of hybrid model comprising several CI techniques currently becomes a trend, 
since none CI technique is superior to the others in all situations. By combining several CI 
techniques, one can take advantages on the respective strengths of the components of the 
hybrid CI system, and eliminate weaknesses of individual components (Figure 4-2).  
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Figure 4-2: Main components of computational intelligence and their capability. Hybrid CI system 

combines the strength and eliminate the weaknesses of the individual CI component. 
 

4.2 Artificial Neural Networks 
Originally studied in the framework of AI, Artificial Neural Network (ANN) has become 
now one of the primary technologies in machine learning and data-driven modeling. ANN 
is a computational model that is inspired by the structure and functions of biological neural 
networks. Biological brain as the center of nervous system can be viewed as a complex, 
nonlinear and parallel computer. It has the ability to perform tasks such as pattern 
recognition, perception and motor control much faster than any computer. The ANN 
loosely imitates functioning of neurons in a human’s brain, and it is possible to combine 
these interconnected neurons in such a way that the network can reproduce any multi-
variable multi-valued function, given enough points and values of this function via the 
connectionist computational approach of the information processes. ANN can be treated as 
an adaptive system that changes its structure based on external or internal information that 
flows through the network during the learning phase and store the knowledge (from 
learning process) within inter-neuron connection strength known as synaptic weights 
(Haykin, 1999) (however, most ANN architectures do not change adaptively during 
operation). It has capabilities to learn, memorize and generalize the given information 
(data), and is characterized by distributed processing, adaptation and non-linearity. 
Therefore, it is commonly used to model complex relationships between inputs and outputs 
and to find patterns in data.  
 
The ANN is increasingly being used in computing mimicking processes found in the 
nervous systems of vertebrates. The main characteristic of a biological neural network, 
(Figure 4-3, left), is that each neuron, or nerve cell, receives signals from many other 
neurons through its branching dendrites. The neuron produces an output signal that 
depends on the values of all the input signals and passes this output on to many other 
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neurons along a branching fibre called an axon. In an ANN (Figure 4-3, right), input 
signals, such as signals from a television camera’s image, fall on a layer of input nodes or 
computing units. Each of these nodes is linked to several other hidden nodes between the 
input and output nodes of the network. There may be several layers of hidden nodes, 
though for simplicity only one is shown here. Each hidden node performs a calculation on 
the signals reaching it and sends a corresponding output signal to other nodes. The final 
output is a highly processed version of the input. 
 
The simplest neural networks relate an input signal to an output signal  by means of a series 
of weighting functions that may involve a number of layers of interconnected nodes, 
including intermediate ‘hidden layers’. Some applications have used additional filtering 
functions (essentially simply transfer functions) for each node in a hidden layer, so that the 
output will also depend on the form and parameterisation of these functions. A variety of 
techniques are available for determining the appropriate model structures and weights given 
a learning set of input and output data. 
 
The architecture of a neural network is the specific arrangement and connections of the 
neurons that make up the network. One of the most common neural network architectures 
has three layers. The first layer is called the input layer and is the only layer exposed to 
external signals. The input layer transmits signals to the neurons in the next layer, which is 
called a hidden layer. The hidden layer extracts relevant features or patterns from the 
received signals. Those features or patterns that are considered important are then directed 
to the output layer, the final layer of the network. Sophisticated neural networks may have 
several hidden layers, feedback loops, and time-delay elements, which are designed to make 
the network as efficient as possible in discriminating relevant features or patterns from the 
input layer. 
 

Artificial Neural NetworkBiological Neural Network

 
Figure 4-3: Schematic representation of ANN architecture and nervous system - modified (Rhode, 

2011). 
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To mimic the way in which biological neurons reinforce certain axon-dendrite pathways, 
the connections between artificial neurons in a neural network are given adjustable 
connection weights, or measures of importance. When signals are received and processed 
by a node, they are multiplied by a weight, added up, and then transformed by a nonlinear 
function. The effect of the nonlinear function is to cause the sum of the input signals to 
approach some value, usually +1 or 0. If the signals entering the node add up to a positive 
number, the node sends an output signal that approaches +1 out along all of its connections, 
while if the signals add up to a negative value, the node sends a signal that approaches 0. 
This is similar to a simplified model of a how a biological neuron functions - the larger the 
input signal, the larger the output signal. 
 

4.2.1 Mathematical model of artificial neuron  
An artificial neuron (AN) is a model of a biological neuron which was firstly introduced by 
(McCulloch & Pitts, 1943). Since that, there have been developed hundreds of different 
models considered as ANNs. The differences are in the activation functions, topology and 
learning algorithms. Research on the applications of ANN has received great attention since 
the publication on back-propagating error learning algorithm by (Rumelhart et al., 1986). 
This learning algorithm was firstly introduced by (Bryson & Ho, 1969) and further reported 
by (Werbos, 1974).  
 
In principle, each AN receives signals from the environment, or other ANs, gathers these 
signals, and when fired, transmits a signal to all connected ANs. Figure 4-4 is a model of an 
artificial neuron. Input signals are inhibited or excited through negative and positive 
numerical weights associated with each connection to the AN. The firing of an AN and the 
strength of the exiting signal are controlled by an activation function. The AN collects all 
incoming signals, and computes a net input signal as a function of the respective weights. 
The net input signal serves as input to the activation function which calculates the output 
signal of the AN (Haykin, 1999). 
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Figure 4-4: An artificial neuron model. 
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The inputs to such a AN may come from system causal variables or outputs of other ANs, 
depending on the layer that the AN is located in (Figure 4-4). These inputs form an input 
vector x=(x1, ..., xi, ..., xn). The sequences of weights leading to the AN form a weight vector 
wj=(w1, ..., wi, ..., wn), where wij represents the connection weight from the i-th AN in this 
preceding layer to this AN j. The output of j or yj is obtained by computing the value of 
function f with respect to the inner product of vector x and wj minus bj, where bj is the 
threshold value or called bias associated with this AN. The bias of the AN must be exceeded 
before it can be activated. The following equation defines the operation: 

 yj = f(xi.wj - bj) (4.1) 

The function f is called an activation function. Its functional form determines the response 
of a AN to the total input signal. Several commonly used activation functions are as follows: 
• Identity function: f(xi, wi) = xi  
• Bias(Threshold) function: f(xi, wi) = xi + wi  
• Linear function: f(xi, wi) = βxi + wi, where β is steepness parameter 
• Sigmoid function: f(xi, wi) = 1/[1+exp(-βxi)]  
• Hyperbolic tangent: f(xi, wi) = tan(-βxi)  
  
An artificial neural network (ANN) is a layered network of ANs. An ANN may consist of an 
input layer, hidden layers and an output layer. ANs in one layer are connected, fully or 
partially, to the ANs in the next layer. Feedback connections to previous layers are also 
possible. Several different ANN types have been developed, for example: 
• Single-layer ANNs, such as the Hopfield network; 
• Multilayer feedforward NNs, including, for example, standard backpropagation, 

functional link and product unit networks; 
• Temporal ANNs, such as the Elman and Jordan simple recurrent networks as well as 

time-delay neural networks; 
• Self-organizing ANNs, such as the Kohonen self-organizing feature maps and the 

learning vector quantization; 
• Combined supervised and unsupervised ANNs, e.g. some radial basis function networks. 
These ANN types have been used for a wide range of applications, including diagnosis of 
diseases, speech recognition, data mining, composing music, image processing, prediction, 
robot control, credit approval, classification, pattern recognition, planning game strategies, 
compression, and many others. 
 

4.2.2 Learning methods 
An automated approach is required for determining the values of the weights wi and the 
threshold θ. These values might be easy to calculate for simple problems. But suppose that 
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no prior knowledge exists about the function. Only data is available. How can the wi and θ 
values be computed? The answer is through learning. The ANN learns the best values for 
the wi and θ from the given data. Learning process consists of adjusting weight and 
threshold values until a certain criterion (or several criteria) is (are) satisfied (Engelbrecht, 
2007).  
 
In order for an ANN to generate an output vector yj=(y1, ..., yi, ..., yn) that is as close as 
possible to the target vector tj=(t1, ..., ti, ..., tn), a training process, also called learning is 
employed to find optimal weight matrices wi and bias vector bj, that minimize a 
predetermined error function that usually has the form: 

 ∑∑ −=
P p

jj tyE 2)(  (4.2) 

where  ti is a component of the desired output t, 
 yj is corresponding ANN output, 
 p is number of nodes, 
 P is number of training patterns. 
 
Training a network is a procedure during which an ANN processes training set (input-
output data pairs) repeatedly, changing the values of its weights, according to a 
predetermined algorithm, to improve its performance. Each pass through the training data 
is called epoch and the ANN learns through the overall change in weights accumulated over 
many epochs. 
 
There are three main types of learning based on the presence or absence of the "teacher" and 
the information provided for the system to learn (Figure 4-5): 
• Supervised learning, where the neuron (or ANN) is provided with a data set consisting 

of input vectors and a target (desired output) associated with each input vector. This 
data set is referred to as the training set. The aim of supervised training is then to adjust 
the weight values such that the error between the real output, y = f(net−θ), of the neuron 
and the target output t, is minimized. 

• Unsupervised learning, where the aim is to discover patterns or features in the input 
data with no assistance from an external source. Many unsupervised learning algorithms 
basically perform clustering of the training patterns. 

• Reinforcement learning, where the aim is to reward the neuron (or parts of an ANN) for 
good performance, and to penalize the neuron for bad performance. 

On the basis of the applied rules of learning, the learning techniques can be further 
classified into (Figure 4-5): 
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• Instance-based learning or lazy learning, where the generalization procedure is executed 
only when the new instance/pattern is presented, by searching similar or nearest 
distance to the training instances.  

• Gradient descent learning, where the aim is to minimize the output error defined in 
terms of the weights and activation functions of the network. 

• Stochastic learning, where the weights are adjusted in a probabilistic manner, for 
instance, simulated annealing with learning mechanism using Boltzmann machine.  

• Hebbian learning, where the input-output pattern are characterized by adjusting a 
correlative weight matrix. 

• Competitive learning, where the input pattern is presented, all neurons in the layer 
compete and the winning neuron undergoes weight adjustment. This strategy is called 
"winner-takes-all". 

 
Learning Algorithms

Artificial Neural Networks

Supervised Learning
Error based

Reinforcement Learning
Output based

Unsupervised Learning
Input based

Instance-based Gradient descent

Least mean square Backpropagation

Hebbian CompetitiveStochastic

 
Figure 4-5: Classification of learning algorithms. 

 

4.2.3 Multi-layer perceptron and back-propagation algorithm 
The most common ANN model is the feed-forward multilayer perceptron (MLP). In feed-
forward ANN, all signals flow in one direction from lower layers (input) to output layers 
(output). The MLP consists of a number of perceptrons which are arranged as a network 
structure. A perceptron is a basic model of ANNs which consists of a single layer ANN 
which its weights and biases can be trained to produce a correct target vector when 
presented with the corresponding input vector. Although a perceptron consists of input and 
output layers, it is essentially not a two layer network (Figure 4-6) because the output layer 
is the only real layer which consists of neurons performing the summation and non-linear 
activation transfer. The output computed by perceptron is +1 if the output is above a certain 
threshold and –1 otherwise.  
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 Figure 4-6: A single perceptron. 

 

The learning algorithms for a perceptron can be of hill climbing or gradient descent search 
algorithms through weight space. The gradient descent search algorithm seeks the weight 
vector that minimizes the error by starting with an arbitrary initial weight vector, then 
repeatedly modifying it in small steps. At each step, the weight vector is altered in the 
direction that produces the steepest descent along the error surface. This process continues 
until the global minimum error is reached. The steps of the algorithm are presented as 
below:   

i. Set initial weights randomly, usually in small range near to zero, e.g. [-0.5,0.5] 
ii. For each example in training set 

- Apply input, Ij to calculate output O. 
- Compare predicted output O to correct output T. 
- Calculate error: e = T -O 
- Use error to revise weights: 

wj←wj+ηIje, where η is the learning rate. 
iii. Repeat step (ii) until convergence (no error changes). 
 
A number of perceptrons arranged into several layers (input, hidden and output) creates an 
MLP network architecture. The MLP is known as a supervised network because it requires a 
desired output in order to learn. The goal of this type of network is to create a model that 
correctly maps the input to the output using historical data so that the model can then be 
used to produce the output when the desired output is unknown. A graphical 
representation of an MLP is shown below. 
 
The MLP and many other neural networks learn using an algorithm called back-
propagation which is essentially a gradient descent technique that minimizes the network 
error function. With back-propagation, the input data is repeatedly presented to the neural 
network. With each presentation the output of the neural network is compared to the 
desired output and an error is computed. This error is then fed back (back-propagated) to 
the neural network and used to adjust the weights such that the error decreases with each 
iteration and the neural model gets closer and closer to producing the desired output. This 
process is known as "training". 
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Figure 4-7: A feedfoward multi-layer perceptron. 

 
Back Propagation involves minimization of an error function which is accomplished by 
performing gradient descent search on the error surface. With the conventional mean 
squared error function and with an additional term to dampen oscillations, the BP weight 
update rule can be shown to be: 

 
where ∆wji is the change in the weight connecting unit i to unit j, η is the learning rate a 
small positive constant, oi is the output of unit i, α is the momentum term and the n 
indicates the epoch of the pattern presentation sequence. δj is the error associated with unit j 
commonly known as the instantaneous gradient and is calculated as: 

   (4.3) 

In this equation o'j stands for the derivative of the output also called sigmoid prime and tj is 
the target output of unit j. Assuming a sigmoid activation function for the units the 
derivative evaluates to: 

  (4.4) 

In practice, three aspects need to be considered during learning process of an ANN, include: 
choice of the training set and its size, selection of learning constants and stopping criteria.  
 

4.2.4 Dynamic neural network 
One type of neural network architectures is a dynamic neural network (Haykin, 1999; 
Bishop, 2006). For a neural network to be dynamic, it must be given memory that can be 
short-term and long-term memory depending on the retention time. Long-term memory is 
built into a neural network through supervised learning. However, if the problem has a 
temporal dimension, the short-term memory is needed to make the network dynamic. One 



58  COMPUTATIONAL INTELLIGENCE 

 

simple way of building short-term memory into the structure of ANN is through the use of 
time delays, which can be implemented at the synaptic level inside the network or at the 
input layer of the network.  
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Figure 4-8: An architecture of dynamic neural network with time-delay inputs 

 

4.3 Instance-Based Learning 
Instance-based learning (IBL) (also called lazy learning) simply stores the presented training 
data and waits until a new query instance is given. Classifying the new query instance is 
performed by retrieving a set of similar related instances in the training data. In contrast, 
eager learning, the model or abstraction is built based on training data before receiving a 
new query instance. Nearest neighbor and locally weighted regression are two common 
approaches in the instance-based learning to approximating real-valued or discrete-valued 
target functions. The nearest neighbor approach represents instances as a point in Euclidean 
space whereas locally weighted regression constructs local approximation model (Aha et al., 
1991; Mitchell, 1997). 
 
IBL requires less computational time for training but more time for predicting. The 
significant advantage is the capability to deal with very complex target function since the 
algorithm divides it into less complex local approximating functions. One disadvantage of 
instance-based approaches is the high computational cost on classifying new instances. An 
efficient indexing method for training data is a main solution in reducing the computation 
required at query time. The second disadvantage is that IBL typically considers all attributes 
of the instances when attempting to retrieve similar training examples. In case of the target 
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depends on only a few of the many available attributes, the instances that are truly most 
similar may be a large distance apart.  
 

4.3.1 k-nearest neighbors learning 
The most common IBL algorithm is the k-nearest neighbors (k-NN) algorithm (Fix & 
Hodges, 1951). This algorithm assumes all instances correspond to points in the n-
dimensional space ℜn. The nearest neighbors of an instance are measured by an Euclidean 
distance. Let an arbitrary instance x be a feature vector [ x1, x2, ..., xn], where xs denotes the 
value of the s-th attribute of instance x. Then the distance between two instances xi and xj is 
defined by: 
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The k-NN algorithm can be used for either classification or regression problems. In 
classification task, Let a discrete-valued target function of the form f: ℜm→V, where V is the 
finite set [vl, ..., vs]. The value f(xq) is assigned by this algorithm as its estimate of f(xq) is the 
most common value of f among the k training examples nearest to xq. If we choose k=1, then 
the 1-NN algorithm assigns to f(xq) the value f(xi) where xi is the training instance nearest to 
xq. For larger values of k, the algorithm assigns the most common value among the k nearest 
training examples. 
 
Training algorithm: 

Store all training examples [x, f(x)] 
Classification algorithm: 

Given a query instance xq to be classified, 
Let x1, ..., xk denote the k instances from the list of training 
examples 
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where δ(a,b)=1 if a=b and where δ(a,b)=0 otherwise. 

 
This algorithm can be used for regression by calculating the mean value of the k nearest 
training examples rather than calculate their most common value. For approximating a 
real-valued target function f : ℜn→ℜ, the last statement of the above algorithm is replaced 
with: 
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4.3.2 Distance weighted nearest neighbors algorithm  
A useful enhancement of k-NN algorithm is to weight the contribution of each neighbor, so 
that the nearer neighbors to the query point xq contribute more to the average than the more 
distant ones. A common weighting (interpolation) scheme is to give each neighbor a weight 
of 1/d, where d is the distance to the neighbor, written as: 
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For real-valued target function, this formulation is replaced by: 
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4.3.3 Locally weighted regression 
The nearest-neighbor approaches described in the previous section can be thought of as 
approximating the target function f(x) at the single query point x= xq. Locally weighted 
regression is a generalization of this approach of k-NN algorithm in which it constructs an 
explicit approximation to f over a local region surrounding xq instead of approximate the 
target function f at single query point x=xq (Cleveland, 1979). It uses nearby or distance-
weighted training examples to form a local approximation to f. A linear function, a 
quadratic function, a multilayer neural network or some other functional form can be 
utilized for the approximating the target function in the neighborhood surrounding xq. Let a 
linear function be the approximation for target function f , defined as: 

 )(...)()(ˆ
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where ai(x) denotes the value of the i-th attribute of the instance x. 
 
A gradient descent method can be used to find the coefficient w0...wn so that the error of 
fitting linear function to a given training data is minimized. For global approximation to the 
target function, the weights that minimizes the squared error summed over the training 
data D, formulated as: 

 ∑
∈

−≡
Dx

xfxfE 2))(ˆ)((
2
1  (4.11) 



4.4 Hierarchical Modular Models 61                
 

 

with gradient descent rule: 
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where η is a constant learning rate.  
 
For a local approximation, the error criterion E must be reformulated to emphasize fitting 
the local training examples nearby query point xq. Three error criteria to be minimized can 
be reformulated, as follows: 

• The squared error over k-nearest neighbors 
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• The squared error over whole training data set D, but weighting the error of each 
training example by a decreasing function K of its distance to xq 
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• A combination 1 and 2: 
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There exists a broad range of alternative methods for distance weighting the training 
examples, and a range of methods for locally approximating the target function. In 
most cases, the target function is approximated by a constant, linear, quadratic or 
polynomial function. 
 

4.4 Hierarchical Modular Models 
A data-driven model may consist of several models, and one way of building it is to apply a 
hierarchical (tree-like) modular approach, leading to a decision tree or model tree. In 
classification, the so-called decision tree is an efficient, robust, and relatively simple model 
that is widely used (Breiman, 1984). In engineering most problems are regression 
(numerical prediciton) problems, and some researchers have attempted to use decision tree 
methods for numerical value prediction by dividing the range of values into small categories 
such as 0-3%, 4-6% etc, then using systems that build classification models. These methods 
often fail, because algorithms for building the decision trees cannot make use of the implicit 
ordering of such classes.  
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In the 1980-90s several learning algorithms were developed following the ideology of a 
decision tree. CART builds regression trees that differ from decision trees only in having 
values rather than classes at the leaves (Breiman, 1984) (in this respect this is a set of zero-
order regression functions). MARS model constructs models which have splines basis 
functions (Friedman, 1991). We turned to the method developed by (Quinlan, 1992) and 
termed as the “model tree”. The model tree is analogous to a set of piecewise linear 
functions, and in this sense can be seen as an extension of the CART method.  
 
A typical example of model tree can be seen in Figure 4-9. One algorithm for inducing a 
model tree is M5 algorithm. This algorithm can learn efficiently and tackle tasks with very 
high dimensionality – up to hundreds of variables. Moreover, M5 model trees are generally 
much smaller than regression trees and have proven more accurate in the tasks investigated 
(Solomatine & Siek, 2006). Some advantages of M5 model trees (Wang & Witten, 1997; 
Witten & Frank, 2002) are that they are non black-box model, understandable, easy to use 
and to learn, fast on training and robust dealing with missing data. 
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Figure 4-9: An example of M5 model tree and its hierarchically splitting of input-output space. Each 

local regions or data sets are approximated by local linear regression model (models 1 to 6 in the 
leaves) 

The M5 model tree algorithm consists of three main procedures, as follows: 
• Building the initial tree – an initial tree is constructed by a divide-and-conquer method 

with standard deviation reduction (SDR) splitting rule; 
• Pruning the tree – a sub-tree is replaced with a leaf for avoiding over-fitting; 
• Smoothing – it is used to compensate the sharp discontinuity between adjacent linear 

models at the leaves. 
 
A model tree (MT), as mentioned previously, belongs to a class of committee machine 
which uses the ‘hard’ (i.e. yes-no) splits of input space into regions progressively narrowing 
the regions of the input space. Thus model tree is a or tree-like modular model which has 
splitting rules in non-terminal nodes and the expert models at the leaves of the tree. In M5 
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model trees the expert models are linear regression equation derived by fitting to the non-
intersecting data subsets. Once the expert models are formed recursively in the leaves of the 
hierarchical tree, then prediction with the new input vector consists of the two steps: (i) 
classifying the input vector to one of the subspace by following the tree; and (ii) running the 
corresponding expert model. Brief description of model tree algorithm is presented below. 
 
Assume we are given a set of N data pairs [xi, yi], i = 1,…., n, denoted by D. Here x is p 
dimensional input vector (i.e. x1, x1, …,xp) and y is target. Thus, a pair of input vector and 
target value constitutes the example, and the aim of the building model tree is to map the 
input vector to the corresponding target by generating linear regression equations at the 
leaves of the trees. The first step in building a model tree is to determine which input 
variable (often called attribute) is the best to split the training D. The splitting criterion (i.e. 
selection of the input variable and splitting value of the input variable) is based on treating 
the standard deviation of the target values that reach a node as a measure of the error at that 
node, and calculating the expected reduction in error as a result of testing each input 
variable at that node. The expected error reduction, which is called standard deviation 
reduction, SDR, is calculated by: 
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where, T  represents set of examples that reach the splitting node, T1, T2,…, represents the 
subset of T that results from splitting the node according to the chosen input variable, sd  
represents standard deviation, |Ti|/|T| is the weight that represents the fraction of the 
examples belonging to subset Ti.   
 
After all possible splits are examined, M5 chooses the one that maximizes SDR. Splitting of 
the training examples is done recursively to the subsets. The splitting process terminates 
when the target values of all the examples that reach a node vary only slightly, or only a few 
instances remain. This division may produce models that overfit so that the tree must be 
pruned back, for instance by replacing a subtree (several models) with a leaf (one model). In 
the final stage, ‘smoothing’ is performed to compensate for the sharp discontinuities that 
will inevitably occur between the adjacent linear models at the leaves of the pruned tree. In 
smoothing, the outputs from adjacent linear equations are updated in such a way that their 
difference for the neighboring input vectors belonging to the different leaf models will be 
smaller. Details of the pruning and smoothing process can be found in (Wang & Witten, 
1997; Witten & Frank, 2002).  
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4.5 Evolutionary and Other Randomized Search Algorithms 
Evolutionary computation (EC) has as its objective mimicking processes from natural 
evolution, where the main concept is survival of the fittest: the weak must die. In natural 
evolution, survival is achieved through reproduction (Fraser, 1958). Offspring, reproduced 
from two parents (sometimes more than two), contain genetic material of both (or all) 
parents – hopefully the best characteristics of each parent. Those individuals that inherit 
bad characteristics are weak and lose the battle to survive. This is illustrated in some bird 
species where one hatchling manages to get more food, gets stronger, and at the end kicks 
out all its siblings from the nest to die. Evolutionary algorithms use a population of 
individuals, where an individual is referred to as a chromosome. A chromosome defines the 
characteristics of individuals in the population. Each characteristic is referred to as a gene. 
The value of a gene is referred to as an allele. For each generation, individuals compete to 
reproduce offspring (Holland, 1975). 
 
Those individuals with the best survival capabilities have the best chance to reproduce. 
Offspring are generated by combining parts of the parents, a process referred to as 
crossover. Each individual in the population can also undergo mutation which alters some 
of the allele of the chromosome. The survival strength of an individual is measured using a 
fitness function which reflects the objectives and constraints of the problem to be solved. 
After each generation, individuals may undergo culling, or individuals may survive to the 
next generation (referred to as elitism). Additionally, behavioral characteristics (as 
encapsulated in phenotypes) can be used to influence the evolutionary process in two ways: 
phenotypes may influence genetic changes, and/or behavioral characteristics evolve 
separately. 
 
Different classes of evolutionary algorithms (EA) have been developed (Crutchfield et al., 
2003; Engelbrecht, 2007; Dercole & Rinaldi, 2008):   
• Genetic algorithms which model genetic-inspired evolution; 
• Genetic programming which is based on genetic algorithms, but individuals are 

represented as trees; 
• Evolutionary programming which is derived from the simulation of adaptive phenotypic 

evolution; 
• Evolution strategies which are driven by modeling the strategy parameters that control 

variation in evolution; 
• Differential evolution, which is similar to genetic algorithms, differing in the 

reproduction mechanism used; 
• Cultural evolution which models the evolution of culture of a population and how the 

culture influences the genetic and phenotypic evolution of individuals; 
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• Co-evolution where individuals evolve through cooperation and competition to attain 
the necessary capability to survive. 

 
Evolution via natural selection of a randomly chosen population of individuals can be 
thought of as a search through the space of possible chromosome values. In that sense, an 
evolutionary algorithm (EA) is a stochastic search for an optimal solution to a given 
problem. The evolutionary search process is influenced by the following main components 
of an EA: 
• An encoding of solutions to the problem as a chromosome; 
• A function to evaluate the fitness, or survival strength of individuals; 
• Initialization of the initial population; 
• Selection operators; and 
• Reproduction operators. 
Evolutionary computation has been used successfully in real-world applications, for 
example, data mining, combinatorial optimization, fault diagnosis, classification, clustering, 
scheduling, and time series approximation (Ashlock, 2006). 
 

4.6 Summary 
The main techniques in the computational intelligence paradigm: artificial neural network, 
fuzzy system and evolutionary computation have been utilized as the key instruments in 
developing data-driven models.  and used in this work for building and optimizing the 
predictive storm surge model. 
 
Nonlinear dynamical systems are common in real world though difficult to handle and 
understand. A number of examples of nonlinear systems which often exhibit complex 
chaotic behavior include: climate, hydrometeorology, economy, physics, physiology and 
socio-economy. Recent research in chaotic systems investigate fundamental properties of 
chaotic systems while computational intelligence technique is one of the examples and it 
becomes a general framework for modeling highly nonlinear dynamical systems. 
 





 

 

 
 

CHAPTER 5: NONLINEAR DYNAMICS AND CHAOS THEORY 

 
 
 

“No one welcomes chaos, but why crave stability and predictability?” 
Hugh Mackay 

 
 
 
This chapter describes the discovery of chaotic phenomena, methods of nonlinear dynamics 
and chaos theory, chaos in iterative maps and differential equations, properties of chaos, 
phase space reconstruction, and the ways to find the proper values of delay time and 
embedding dimension, stability of dynamics, prediction in chaotic system and recurrence 
plots. 
 

5.1 Introduction  
The idea of dynamical chaos was firstly introduced by Poincaré when he participated in a 
mathematical contest to model dynamically stable solar system (three body problem) by 
means of Newton's equations (Ivars, 1993). The three body problem consists of nine 
simultaneous differential equations which a solution in terms of invariants converges of 
these equations were to be found. Poincaré did not succeed in giving a complete solution, 
however his work was remarkable – it presented the key idea of chaos in the solar system - 
leading to the new development in the field of celestial mechanics. The idea of chaos with 
the principle of sensitive dependence on initial conditions was initiated by Poincaré in 1903 
through his own words (Poincaré & Halsted, 1913; Poincaré, 1952): 
  

"If we knew exactly the laws of nature and the situation of the universe at the initial 
moment, we could predict exactly the situation of that same universe at a succeeding 
moment. but even if it were the case that the natural laws had no longer any secret for 
us, we could still only know the initial situation approximately. If that enabled us to 
predict the succeeding situation with the same approximation, that is all we require, 
and we should say that the phenomenon had been predicted, that it is governed by 
laws. But it is not always so; it may happen that small differences in the initial 
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conditions produce very great ones in the final phenomena. A small error in the former 
will produce an enormous error in the latter. Prediction becomes impossible, and we 
have the fortuitous phenomenon."  

 
The concept of chaos was not deeply developed until 1960 when Edward Lorenz made a 
strange discovery. Lorenz worked on the issue of weather prediction at his MIT laboratory 
through focusing on a simplified set of equations that still retained some essential elements 
of the atmospheric system rather than studying the full equations describing  atmospheric 
flow and  weather  phenomena. By means of the existing computer at that time, he tried to 
integrate the equations numerically in time and started a new simulation from the halfway 
result of a running calculation in order to obtain long-term predictions. When he plotted 
such a continued calculation together with the original calculation in one graph, he found 
that after a short period of time the two curves started to diverge rapidly, ending with 
completely different behavior. Subsequently, he figured out the reason of round-off effects 
resulting from the stored values that he used as initial conditions for the second calculations 
differed slightly from the original values. This led him to conclude that a tiny perturbation 
of the initial conditions can lead to enormous differences over time (Lorenz, 1963). The 
perspective of weather prediction provides an interesting metaphor to express the effect that 
small causes can have big impacts, well-known as Butterfly Effect (Glieck, 1987):  
 

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? 
 
With a modern PC today, one can easily retrace Lorenz’ footsteps and understand the 
remarkably rich behavior of his simple system as well as the sensitive dependence on initial 
conditions. 
 

5.2 Basics of Chaos  

5.2.1 Dynamical system 
Theory of dynamical systems tries to understand and describe the changes over time of the  
physical or artificial systems. Some examples of such systems are: the solar system, weather, 
motion of billiard balls, stock market, and so forth. Many areas of hydrometeorology, 
geophysics, economics and physiology involve a comprehensive analysis of the dynamical 
systems based on the particular laws governing their change. These laws are derived from a 
suitable theory such as Newtonian mechanics, fluid dynamics, mathematical economics 
(Tsonis, 1992; Strogatz, 2001).  
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All these models can be unified conceptually in the mathematical notion of a dynamical 
system, which consists of two parts: phase space and dynamics. The phase space is the 
collection of all possible states of a dynamical system. Each state represents a complete 
condition of the system at a certain moment in time. The dynamics is a rule that transforms 
one point in the phase space representing the current state of the system into another point 
representing the state of the system one time unit.  
 
For example in planetary motion, a state can be the location and velocities of all planets and 
stars in the solar system and the dynamics is the laws of gravity which provide the position 
and masses of the planets and determine the forces acting on them. Once an initial state is 
chosen, the dynamics determines the state at all future times. If one want to know what the 
state will be two time steps ahead just apply the rule twice: one application gives us the state 
one unit time from now, and the second application gives the state one unit time after that, 
which is two units time from now (Hochman, 2011). 
 

5.2.2 Phase space  
A state of the system is defined as the value of the smallest vector such that at time t0 it 
completely determines the behavior of a dynamical system for any time t>t0. The 
components of the state vector are called state variables (Packard et al., 1980; Tsonis, 1992; 
Abarbanel et al., 1993). The evolution of a system can be visualized as a path in state space. 
A state space could be finite-dimensional consisting of an infinite number of points forming 
a smooth manifold, such as in ordinary differential equations and mappings. A set of 
differential equations can be used for describing a dynamical system. The collection of all 
possible states is called the phase space. Thus, the phase space is a subset of the state space. 
The dimension of phase space is the number of degrees of freedom of a dynamical system. 
In modeling perspective, it is a number of variables that completely describe the system. In 
the context of Hamiltonian systems, it is the number of pairs of state variables. 
 

5.2.3 Various behaviors of dynamical system 
The asymptotic behavior of a dynamical system can be classified into four types: 
equilibrium points, periodic solutions, quasi-periodic solutions or chaos (Ott et al., 1994; 
Strogatz, 2001). An equilibrium point can be either stable (called sink) or unstable (called 
source). In stable equilibrium, all trajectories near sink (attractor) are moving towards it as 
time increases. A dynamical system has a periodic solution with a fixed period T if the 
trajectories of the dynamical system precisely return to itself. A certain period of T is the 
time needed to reach the same point in state space again, for example a limit cycle. In a 
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quasi-periodic system, the period is not fixed and can be irrational, for instance a torus 
(settling down with repeated oscillation). 
 
The last type of behavior is chaotic that was discovered by Lorenz (1963). A chaotic system 
is very sensitive to initial conditions and deterministic. The tiny distance between two 
points in state space can diverge exponentially as the system evolves. An attracting limit set 
is a set of stable asymptotic motions. An attractor is called strange attractor if the attracting 
limit set is chaotic. All chaotic attractors is strange, but not all strange attractor is chaotic. 
 

5.2.4 Dynamical invariants 
An invariant set S of a dynamical system has the property that every trajectory or orbit that 
begins in S remains in S (Abarbanel et al., 1993; Scott, 2005). The trajectory and attractor 
are two examples of invariant set. An invariant set that is also a manifold is called an 
invariant manifold. Invariant manifolds provide a natural description of the dynamics close 
to an equilibrium or periodic orbit and can make it possible to work in lower dimensions 
than the phase space of the underlying system, since a smooth dynamical system restricted 
to an invariant manifold is itself a dynamical system. This reduction in dimension is at the 
central of manifold techniques. The sudden appearance or disappearance of attractors as 
parameters are varied can be investigated to understand the stability change of an invariant 
set that exists throughout the parameter region. Many invariant sets and manifolds have 
persistence properties under perturbations of the dynamical system. 
 

5.2.5 Chaos in Iterative Maps 
The essential aspects of chaos can be found in systems that are even more elementary. These 
are the so-called discrete  maps or iterative maps (Verhulst, 1845; Strogatz, 2001; Jonker & 
van Reeuwijk, 2010). A one dimensional iterative map has the form: 

 )(1 nn xfx =+  (5.1) 

where n is non-negative integer number. Starting with an initial value x0, one obtains a 
series by repeatedly applying the equation, i.e. x1= f(x0), x2=f(x1). As an example, consider 
the map f(x)=rx that is sometimes used as a simple model for bacterial  growth: 

 xn+1= rx (5.2) 

In this equation x then represents the (normalized) number of bacteria at generation n and r 
represents the growth rate. The evolution of the time series for any r and x0 can be predicted 
without problem. The value of xn depends on r and x0 via: 

 xn=rx0 (5.3) 
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The long term behavior depends critically on r; for n→∞, xn→0 if |r|<1,  xn/x0→∞ for |r|>1; 
only for r=1 nothing  happens, xn=x0. 
 
The behavior of this linear mapping is not very exciting. As a model for bacterial growth it 
is also rather unrealistic to the extent that unbounded growth cannot persist owing to an 
inevitable shortage of food and mutual competition. These effects can be taken into account 
by adding an extra factor (1-x) to the growth model. As soon as the (normalized) 
population x nears 1, this factor then  reduces the effective growth rate. Thus taking 
f(x)=rx(1-x) one obtains the so-called Verhulst-model (Nasell, 2001), also referred to as the 
logistic map: 

 xn+l=rx(1- x), r∈[0,4], x0∈ [0,1] (5.4) 

The crucial aspect that makes the behavior so interesting resides in the nonlinearity of f(x); 
the map has a quadratic term in x. Due to this nonlinearity it is very hard to find an 
analytical solution for x, in terms of r and x0, as could be done for the linear mapping. For 
example, one can take different values of r and 0<x0 <1. Figure 5-1 depicts the series for four 
different values of r. Stationary, periodic and chaotic behaviors are observed. 
 
 

 
(a) r=1.6, convergence to fixed point 

 
(b) r=3.3, convergence to a period-2 

solution 

 
(c) r=3.5, convergence to a period-4 

solution 

 
(d) r=3.9, chaos 

Figure 5-1: A variety of behaviors of the logistic map for different values of parameter r. 
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5.3 Geometrical analysis of maps 

5.3.1 Cobweb method 
One of the interesting geometrical way to see how discrete maps is to use so-called cobweb 
plot (Figure 5-2).  The principle of cobweb plot is as follows:  
 Plot  the  mapping  function  y=f(x) together  with the line y=x; 
 Use the graph y=f(x) starting at xo to find the value of x by following the solid line; 
 Utilize the line y=x, i.e. follow the horizontal line to the diagonal, then  follow the 

vertical dotted  line giving you the point  x1 on the x-axis; 
 Repeat the previous steps and find graphically x2 =f(xi), then x3=f(x2) and so on, until a 

fixed point is found.  
 

 
Figure 5-2: Cobweb plot of a logistic map. 

 

5.3.2 Return plot 
Another useful method to study the outcome of discrete maps is to use a so-called return-
plot which are a plot of the value of xn+1 versus the previous value x for consecutive n 
(Figure 5-3). The number of n is typically set larger than some number in order to disregard 
the transient behavior, i.e. the initial part of the time series in which the system is still 
evolving to its equilibrium state (which could be periodic or chaotic). The information 
conveyed by the return-plots may seem slightly trivial when one knows the expression  of 
the  mapping  that was used to generate the data, as is the case of logistic map it is easy to 
plot the gray line representing the mapping f(x).  However, in a practical  situation where 
one analyses the results of some experiment one usually does not know exactly which 
mapping describes  the  datasets. In such a situation it is useful to make a return-plot since it 
gives an impression  what  kind of mapping  hidden behind. For example, one has a hard 
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time figuring out which data-set is uncorrelated noise, chaotic data from a one-dimensional 
mapping, or chaotic data from a higher-dimensional mapping (Strogatz, 2001).   
 

 
Figure 5-3: Return plot of a logistic map. 

5.3.3 Fixed points and  stability analysis 
Some understanding of chaotic behavior is of importance. Figure 5-1(a) illustrates the 
stationary behavior and one notice in the system for r<3 and the series converges to a fixed 
point xn→x*. A fixed point  solution of the map xn→x* can be found  analytically by: 

 nnn
xx =+→ 10

lim  (5.5) 

and hence the fixed point solution x must satisfy: 

 *)(* xfx =  (5.6) 

For the logistic map, one can find two possibilities: 

 x*=rx*(1-x*) → x*=0 or x*=1-1/r (5.7) 

Indeed, the series for r=8/5 depicted in Figure 5-1(a) converges to x=3/8.  For any initial 
value x∈<0, 1>, the deviation will inevitably lead to x*=3/8. Hence, one can say that for 
r=8/5 there is a fixed point x*=3/8 which is stable and a fixed point  x*=0 which is unstable. 
 
Stability of fixed points can be more precise understood as follows. If one start the sequence 
at a fixed point x0=x*, the system will remain in the fixed point.  
 

5.4 Bifurcations 
The possible asymptotic values (equilibria/fixed points or periodic orbits) as a function of a 
parameter in the dynamical system can be plotted in so-called bifurcation diagram. A fixed 
point or invariant point is a point that does not change or is mapped to itself by a function – 
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f(x0)=x0. For small values of the parameter, the dynamical system will be linear and a unique 
fixed point will exist. As the parameter is changed to ranges, where nonlinearity becomes 
important, instabilities in the form of new fixed points or solutions with qualitatively 
different dynamical behavior may arise at bifurcations (Ott et al., 1994; Strogatz, 2001; 
Jonker & van Reeuwijk, 2010). 
 
Figure 5-4 shows the bifurcation diagram of a logistic map. The fixed point solution, the 
period-2 solution, the period-4 solution and so forth can be found as the increased value of 
parameter r. The fixed point may lose its stability and split or bifurcate into two branches. 
Subsequently, for larger r, the  period-2  solution  becomes  unstable  itself and  bifurcates  
into  a period-4 solution and so on. This process of subsequent bifurcations is called period-
doubling. With careful inspection, one can find that this behavior is no longer periodic after 
r=3.56, but becomes chaotic. The transition to/from chaos is often called intermittency. 

 

 
Figure 5-4: Bifurcation diagram of a logistic map. 

 

5.5 Nonlinear Dynamics in Differential Equations 
A dynamic system is a set of rules (mathematical formulae) that describes the time 
evolution of the system given some initial conditions and the time evolution is defined in 
some phase space Γ∈ℜd.  Such nonlinear systems can exhibit deterministic chaos (Hirsch et 
al., 2004; Li, 2004), this is a natural starting point when irregularity is present in a signal or 
time series. Deterministic chaos comprises a class of signal intermediate between regular 
sinusoidal or quasi-periodic motions and unpredictable, truly stochastic behavior. Chaotic 
systems are treated as slightly predictable. These deterministic dynamical systems can be 
expressed by ordinary differential equations: 
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dt
d x(t)=f(x(t)) (5.8) 

 (for example Lorenz attractor, Figure 5-5b) or in discrete time t=n∆t by maps of the form: 

 xn+1=f(xn) (5.9) 

A time series can be considered as a sequence of observations sn=s(xn) performed with some 
measurement function s(.). Since the sequence sn in itself does not properly represent the 
phase space of the dynamical system, one has to employ some technique to unfold the 
multidimensional structure using the available data (Hegger et al., 1999). 
 
A sequence of points x(t) in the phase space, which represents a solution of the dynamic 
system is called a trajectory. If the trajectories in the phase space move to a single sub-space 
regardless of the initial conditions, but never cross each another, then they form a certain 
geometrical figure, which is called an attractor (see Figure 5-5b). Such dynamic systems are 
dissipative implying that the energy is not conserved. An attractor can be multi-dimensional 
and lie (is bounded) in an m-dimensional phase-space, but has a dimension less than m. For 
deterministic systems for which long-term predictability is feasible, and further exhibit 
periodic trajectories, the attractors are of integer dimension, for instance limit cycle. When 
the dynamic system is very sensitive to initial conditions, trajectories are quasi-periodic, but 
bounded in a m-dimensional phase space, the attractors have non-integer dimension or 
fractal dimension. Such attractors are called strange attractors. Those systems are usually 
characterized by a broadband power spectrum (no dominating periodic frequencies) and 
long-term predictability is not guaranteed. 
 
The main reason for applying chaos theory for practical problems like surge prediction is 
the existence of methods permitting to predict the future positions of a chaotic system in 
the state space. 
 

5.5.1 Sensitivity to initial conditions  
The Lorenz equations (Lorenz, 1963) for describing atmospheric flow and weather 
phenomena are: 
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where r, b and σ are parameters and x  denotes dx/dt. The sensitivity to initial conditions 
can be nowadays easily shown by using a modern computer. A small perturbation to the 
initial conditions leads to enormous different in the outputs over time. For example, the 
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initial condition is perturbed by x(0)=2+ε, where ε=0.0001. Figure 5-5(a) illustrates the 
small perturbed initial condition in Lorenz model creates a huge difference in the outputs 
starting at t=[15,20]. In phase space, the initial perturbation can results in completely 
different and distant trajectories and flow directions Figure 5-5(b).  
 

 
(a) 

 
(b) 

Figure 5-5: (a) The original Lorenz equation output in time-domain series x(t) (blue) and the one 
with perturbed initial condition (red); (b) Phase space reconstruction in three dimensional space. 
This shows that a very small perturbation in the initial conditions leads to enormous difference in 

the output over time. 
 
The trajectories in phase-space appear irregular, with no convergence to some sort of 
systematic, repetitive, pat tern.  In addition, the computed solutions depend strongly on the 
initial conditions.  A slight perturbation of the initial conditions, however small, gave rise to 
trajectories that sooner or later had nothing to do with the trajectories of the unperturbed 
system. This is the essence of chaotic systems.  Because in any physical system one cannot 
know exactly the initial conditions, chaotic systems are in essence unpredictable in the long 
run. How long it takes for the system to reach this so-called ‘prediction-horizon’ depends: 
(a) on the accuracy with which one knows the initial conditions,  (b) on the accuracy of the 
computer on which the calculation is performed and (c) on the intrinsic dynamics of the 
system itself.  
 

5.5.2 Properties of chaos  
The followings are some properties of the chaos dynamical systems: 
 Determinism: The future dynamics are well defined by their initial conditions and 

predictable, and there are no random elements involved. 
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 Small number of variables: The dynamical systems can be represented by small number 
of variables, e.g. x(n+1)=f(x(n), x(n-1), x(n-2)). 

 Complex behavior: The outputs of dynamical systems are complex and mimics random 
behavior. 

 Low dimensional in phase space: The smooth trajectories and attractor of the dynamical 
systems can be appeared using a low dimensional phase space. 

 Sensitivity to initial condition: Nearly identical initial values give very different final 
values, resulting it is not predictable in long run. 

 Bifurcations: A small change in a parameter of chaotic system will generate a sudden 
change of the output pattern (see Figure 5-4). 

 Strange attractor: The attractor of a chaos dynamical system is in low dimensional phase 
space and fractal (Figure 5-5b). 
 

5.6 Phase Space Reconstruction – Method of Time Delay 
When finding the structure of a dynamical system, one must reconstruct or embed time 
series in higher dimensional phase space. The most important phase space reconstruction 
technique is the method of delays. The method is known as Taken’s embedding theorem 
(Takens, 1981) states that an embedding of a realization of the manifold M to space Γ exists 
if the dimension d of M is such that d≥2m+1. A manifold is any smooth (non-intersecting 
trajectory) geometrical space, for instance line or surface of a sphere. This reconstruction 
preserves the properties of the dynamical system which do not change under smooth 
coordinate/manifold adjustment, but it does not maintain the geometric shape of structures 
in phase space.  
 
In principle, vectors in a new space, the embedding space are formed from time-delayed 
values of the scalar measurements. According to Taken’s theorem, the dynamics of a time 
series (x1, x2, …, xN) are fully captured or embedded in the m-dimensional phase space 
(m>d, where d is the dimension of the attractor) defined by the delay vectors: 

 { }τττ )1(2 ,...,,, −−−−= mttttt xxxxY  (5.11) 

where τ is the delay time. A sequence of points in phase space is so-called trajectory. The 
time evolution of trajectories in most dynamical systems in nature tends to be dissipative 
and settled down to attracting points, so-called attractors. In practical applications, the 
delay time τ needs to be appropriately chosen in order to fully capture the structure of the 
attractor. This can be achieved by embedding the attractor in a smooth manifold. The 
lowest possible dimension of such manifold is called an embedding dimension.  
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5.7 Finding appropriate time delay 
In real applications, the delay time τ needs to be appropriately chosen in order to fully 
capture the structure of the attractor. If τ is too small then the delay vectors are not 
independent, such that all points are accumulated around the bisector of the embedding 
space, resulting in loss of characteristics on the attractor structure. If τ is very large (i.e. 
much larger than the decorrelation time of the system), the different coordinates (delay 
vectors) may be almost dynamically uncorrelated. The straightforward choice of τ is usually 
made with the help of the zero-crossing autocorrelation function. The data are no longer 
correlated when the autocorrelation drops to zero. Further positive fluctuations can be 
interpreted as noise. 
 
Tsonis & Elsner (1988) suggested that the time delay may be chosen as the lag time at which 
autocorrelation function falls below a threshold value which is commonly defined as 1/e, 
especially if the autocorrelation function exhibit exponential decay. If data are suspected to 
be very noisy, τ has to be larger than the time when the normalized autocorrelation function 
decays to 221 signalnoise σσ− . However, it must be pointed out that the autocorrelation function 
exploits the linear structures in the data. 
 
Fraser & Swinney (1986) suggested to use mutual information and to choose τ such that it 
would correspond to the first minimum of the time delayed mutual information, and this 
approach demonstrated good performance in practical applications. The delayed mutual 
information is based on the Shanon's entropy and can be computed as follows: Given a time 
series of observable s, one can calculate the transitional probabilities Ps(si) that a 
measurement s yields si. The information entropy is thus defined as: 

 ∑
=

−=
N

i
isis sPsPsH

1
)(log)()(  (5.12) 

The Shanon’s entropy is a measure of the uncertainty associated with the measurement s. In 
other words, one can think of the degree of surprise when one reads the value of the 
measurement s. Low-probability (unexpected) measurements carry greater entropy than the 
high-probability (expected) measurements. The question now is how the value of the 
measurement x(t+τ) depends on x(t) as a function of the time delay τ. If one denotes s=x(t) 
and q= x(t+τ), then the conditional entropy can be written as: 
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where Psq(si,qj) is the probability that measurements of s and q yields si and qj. In this case 
one could define H(q,si) as the uncertainty of q, given si. The mutual information is then 
defined as the amount that a measurement of s= si reduces the uncertainty of q: 
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If the time delay is chosen to coincide with the first minimum of the mutual information, 
than the reconstructed state vector Yt will consist of delay components that possess minimal 
mutual information between them. The mutual information method is probably the most 
comprehensive method of determining proper time delays when reconstructing the 
dynamics of the systems from time observables. The only drawback of this method is that 
requires a large amount of data and it is computationally expensive. 
 

5.8 Estimating embedding dimension  

5.8.1 Self-similarity: Dimension  
A dynamical system is considered to be fractal if it contains similar structures at all length 
scales, known as self-similarity. The attractor of deterministic chaotic systems can exhibit an 
unusual kind of self-similarity and show structure on all length scales. A proper embedding 
dimension has to be searched such that the structure of the attractor becomes invariant. 
Invariant means not sensitive to the small perturbation of initial conditions. According to 
Whitney (1936), any smooth manifold of dimension d can be smoothly embedded in 
m=2d+1 dimension. According to the embedding theorem of Takens, a d-dimensional 
attractor can be embedded into a (m=2d+1)-dimensional phase space to estimate and 
describe the characteristics of the dynamic system. Sauer et al. (1991) further discussed the 
generalization of the embedding theorem, emphasizing the importance of the fractal 
dimension of the attractor for estimation of the minimal dimension of the embedding 
space, i.e. m>2d. Some authors (see, for example, Abrabanel et al., 1991) suggest that, in 
practice, m>d would be sufficient. 
 
The most widely used fractal dimension quantifier is the correlation dimension dc, which is 
based on the correlation integral or function analysis (Grassberger & Procaccia, 1983b). 
This algorithm uses the phase space reconstruction from a scalar time series using the 
method of delays, where the reconstruction procedure involves the choice of time delay τ. 
Obtaining a non-integer, finite dc for a time series demonstrates fractal scaling and indicates 
possible chaotic dynamics. The correlation sum for a collection of points Yt in some vector 
space is the fraction of all possible pairs of points which are closer than a given distance r in 
a particular norm, Figure 5-6(a). 
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where H is the Heaviside step function, H(y)=1 for y>0 and H(y)=0 for 0≤y , r is the radius 
of the sphere centered on Yi, N is the number of points in Yt, and Nref is a calibrated number 
of reference points taken from Yt  that are needed to yield consistent statistics. Theiler’s 
window can be utilized to exclude the points which are temporally correlated (Theiler, 
1990). The norm |Yi -Yt|is the standard Euclidean norm. The sum just counts the pairs 
(Yi,Yj) whose distance is smaller than r, or put in other words the relative frequency with 
which a typical trajectory enters the i-th volume element (sphere). Correlation function C(r) 
is estimated for the range of r available from the time series and for several embedding 
dimensions m. Then C(m,r) is inspected for the signatures of self-similarity, usually by 
estimating the slope of Log C(r) versus Log r plot. If the time series is characterized by an 
attractor, then for positive values of r, the correlation integral C(r) is scales to the radius r by 
the power low: 

 να≅ rrC  )(  (5.16) 

where ν is called correlation exponent (slope of the Log C(r) versus Log r plot) and α is a 
constant. The slope can be generally estimated by the least-squares fit of a straight line over 
a certain range (length scales) of r, known as the scaling region (Figure 5-6).  
 

xt
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phase space
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observations dynamically correlated
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B

 
 

Figure 5-6: (a) Evolution of dynamic system in phase space showing the time-sampled data points 
and the neighborhood of the sphere in the correlation integral analysis (b) Influence of the 

temporal correlation on correlation integral analysis. While for point A there are some dynamically 
uncorrected neighboring points (lying on different trajectories), all neighboring points for point B 
are temporally correlated and thus stimulate a correlation dimension close to 1 (Velickov, 2004). 

 
For a random process, ν varies linearly with increase of m, without reaching a saturation 
value, whereas for deterministic process, the value of the correlation exponent ν saturates 
and becomes independent of m for increasing embedded dimension. The saturation value dc 
is defined as the correlation dimension of the attractor of the time series. If the correlation 
dimension dc leads to a finite integer value, the underlying dynamics of the system is 
considered to be dominated by a strong periodic determinism. If the value of dc is fractal 
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and usually small then the systems is thought to be dominated by a low-dimensional 
deterministic chaotic dynamics governed by the geometrical and dynamical properties of an 
attractor. 
 

5.8.2 False nearest neighbors  
Another way to estimate the optimal value of m is to search for false nearest neighbors 
(FNN) in phase space at a given value of m (Kennel et al., 1992). Consider a situation that 
m-dimensional delay reconstruction is the embedding, but an (m-1)-dimensional is not. 
The question is what happens when passing from m to m-1. This simply delineates along 
one coordinate and thus maps different parts of the attractor onto each other. When 
selecting a number of close points from such a region of the ℜm-1, the images of the points 
will form different groups, depending on which part of the attractor the points are sampled. 
This lack of a unique location of all the images in m-1 dimensions is reflected by finding 
false neighbors, meaning that the determinism is violated. When increasing m, starting 
from small values of the embedding, one can thus detect the minimal (optimal) embedding 
dimension by finding no more false neighbors. The idea of the FNN algorithm is the 
following. For each point si in the time series look for its nearest neighbors sj in a m-
dimensional space, calculate the distance ||si–sj||, iterate both points and compute: 
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If Ri exceeds a given heuristic threshold Rt, this point is marked as having a false nearest 
neighbor. The criterion that the embedding dimension is high enough is that the fraction of 
points for which Ri>Rt is zero, or at least sufficiently small. In a presence of noise, one 
should not expect drop of the percentage of false neighbors to zero in any dimension. 
Furthermore, if time series in question is stochastic, there will not be a substantial drop of 
the false neighbors with the increase of the embedding dimension.  
 

5.8.3 Cao's method 
The FNN algorithm has a drawback associated with the subjective choice of the threshold in 
order to ensure a correct distinction between low-dimensional chaotic data and noise. 
Different time series data may have different threshold values. These imply that it is very 
difficult and even impossible to give an appropriate and reasonable threshold value which is 
independent of the dimension m and each trajectory point, as well as the considered time 
series data. To avoid this, Cao proposed a modified algorithm, sometimes called the 
averaged false neighbors (AFN) method (Cao, 1997). Cao’s approach is based on the 
estimation of two parameters E1 and E* which are basically derived from the quantities 
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defined by the FNN method. Based on the construction of the time delay vectors from the 
time series x1, x2, ..., xN an m-dimensional vector is defined by yi(m)=(xi, xi+τ, xi+2τ, ..., xi+(m-

1)τ), where i =1,2,...,N-(m-1)τ and τ is the time delay. Similarly to the FNN method, the AFN 
approach defines the quantity: 
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where ||.|| is the maximum norm, yi(m+1) is the i-th reconstructed vector for embedding 
dimension m and n(i,m) is an integer such that the m-dimensional time-delay vector 
yn(i,m)(m) is the nearest neighbor of yi(m). Subsequently, the quantity of E1 is formulated as 
the mean value of all FNN distance a(i,m): 
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The E(m) depends only on the dimension m and the time delay τ. The variation from m to 
m+1 can be investigated by E1(m)=E(m+1)/E(m). The E1(m) stops changing when m is 
greater than some value m0 if the time series comes from an attractor. Then m0+1 is the 
minimum embedding dimension to be obtained. It is necessary to define another quantity 
E* which is useful to distinguish deterministic from stochastic time series, formulated as: 
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These quantities are computed for different, progressively increasing values of the 
embedding dimension m. Subsequently, the global behaviors of E1 and E* as functions of 
dimension m are respectively used for estimating the minimum embedding dimension and 
determining the nature (stochastic vs. deterministic) of the underlying dynamical process 
that generating the time series.  
 

5.8.4 Kolmogorov-Sinai Entropy 
The other commonly used entropy estimation in nonlinear time series analysis is the 
Kolmogorov-Sinai entropy hKS, which can be obtained from the set of correlation functions 
Cm(r) (Kolmogorov, 1958; Sinai, 1959). For practical applications, it can be approximated as 
the limit as the embedding dimension m→∞ of the distance (in log-log coordinates) 
between successive correlation curves Cm(r) and Cm+1(r): 
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and further  
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One of the main difficulties of extracting the entropies from time series data is mainly 
because their computation requires far more data than dimensions and Lyapunov 
exponents, since the limit m→∞ constitutes the crucial problem (high embeddings are 
needed). However, as discussed above the h2 can be approximated using the correlation 
sum, which is anyway computed for the estimation of the correlation dimension. 
Furthermore, the upper bound of the Kolmogorov-Sinai entropy can be estimated by the 
Pesins' identity ∑ >λ

λ=
0: ii iKSh (Eckmann & Ruelle, 1985; Gaspard, 1998).  

 

5.9 Analysis of Stability: Lyapunov Exponents  
One of the properties for deterministic chaotic systems is the limited predictability or 
unpredictability of the future evolution of the system, despite the determinism of the 
system. The Lyapunov exponents characterize the exponential instability or the average 
rates of divergence or convergence of nearby trajectories in phase space and therefore 
measure how predictable or unpredictable the dynamical system is. In other words, they 
express the loss of information in time and are usually express in units of an inverse of time. 
 
One can estimate as many different Lyapunov exponents for a dynamical system as there 
are phase space coordinates, i.e. principal axes, which give the average exponential rates of 
expansion and contraction of the attractor along these axes. Usually in practice, one is 
interested in the maximal Layapunov exponent that can be used to categorise the type of the 
motion of the system as presented in Table 5-1. 
 
From the stability analysis we have seen that a positive maximum Lyapunov exponent 
indicates expansion and exponential divergence of the nearby trajectories. Therefore what 
distinguishes strange attractors from non-chaotic attractors is the existence of a maximal 
positive Lyapunov exponent.  
 

TABLE 5-1: POSSIBLE TYPES OF MOTION OF DYNAMICAL SYSTEMS AND THE CORRESPONDING MAXIMAL 

LYAPUNOV EXPONENTS. 
Type of motion Maximum Lyapunov exponent 

Stable fixed point λ<0 
Stable limit cycle λ=0 
Deterministic chaos 0<λ<∞ 
Noise (random motion) λ=∞ 

 
A formal definition of Lyapunov exponents and their determination for a dynamical system 
can be described by mathematical equations. Given a continuous dynamical system in d-
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dimensional phase space one can monitor the evolution of a set of infinitesimal 
perturbations of the initial conditions in an attractor that are confined within an d-
dimensional sphere (hypersphere), see Figure 5-7. Due to the locally deforming nature of 
the flow (effects of stretching and folding), this d-sphere will become d-ellipsoid in time. If 
one orders the principal axes of this sphere (ellipsoid) from the most rapidly to the least 
rapidly growing, one can compute the average growth (expansion or contraction) rates λi 
(i=1…d) of any given principal axis pi as follows: 
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where pi(0) is the radius of the principal axis pi at time t=0 (i.e. in the initial hypersphere), 
and pi(T) is its radius after some time T.  
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Figure 5-7: A schematic representation of the evolution of a set of initial conditions in the phase 

space (Velickov, 2004). 
 

When at least one Lyapunov exponent is positive, then the dynamical system is 
characterized by deterministic chaos, and the initial sphere will evolve to some complex 
ellipsoid structure reflecting the exponential divergence of nearby trajectories (starting from 
very similar initial conditions) along at least one direction on the attractor. This sensitivity 
to small disturbances results in an inability to predict the evolution of the trajectory beyond 
a certain time horizon, which is approximately the inverse of the divergence rate. However, 
short-time predictability exists. When no positive Lyapunov exponent exists, then there is 
no exponential divergence, and thus the long-time predictability of the dynamical system is 
guaranteed. A set of Lyapunov exponents λi is called Lyapunov spectrum. Sano & Sawada 
(1985) firstly introduced how to calculate Lyapunov spectrum from a time series.  
 
Furthermore, (Kaplan & Yorke, 1979) have conjectured that the dimension of a strange 
attractor can be approximated from the spectrum of Lyapunov exponents.  Such a 
dimension is called the Kaplan-Yorke (or Lyapunov) dimension and it has been shown that 
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this dimension is close to other dimensions such as the box-counting, information and 
correlation dimensions for typical strange attractors. The Kaplan-Yorke information 
dimension is formulated as:    
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where j is the maximum integer such that the sum of the j largest exponents is still non-
negative. 
 

5.10  Building Chaotic Model  
Once a dynamical system is reconstructed and characterized from the time series of 
observables, the next general step is to explore the possibilities for constructing models from 
the data that would realistically model the underlying attractor of the dynamical system. 
The ultimate goal of constructing such models is prediction, which in the terms of the phase 
space representation of the dynamics means the extrapolation of the trajectory, thus, 
modeling the dynamical evolution of the system in time which is yet to be observed. 
Therefore, in this context, the concept of learning models from data is usually a nonlinear 
regression estimation of the reconstructed trajectory of the dynamical system from time 
series data in phase space. 
 
To model nonlinear deterministic dynamics, or a dominant deterministic part of some 
mixed system, one has to accurately reconstruct the phase space from time series of 
observables. In this case, an m-dimensional time-delayed embedding based on univariate 
(scalar) time series of observables is considered; it can be extended latter to vector valued 
(multivariate) time series embedding. Since the time series data are discretely sampled over 
time, the underlying dynamics is described by a deterministic model in phase space, which 
is always a map of the form: 

 ( )nnn f YY =+1  (5.25) 

 
where nY are delayed vectors (states) { }τ−−τ−τ−= )1(2 ,...,,, mnnnnt ssssY , formed by the embedding 
of the time series of observable }{ nnn xs η+=  in m-dimensional phase space with an 
appropriate time delay t∆ν=τ ( ν  is an integer time index). In order to prediction the next 
state of the dynamical system, one needs find the estimator of the regression function f̂ , 
and thus, one can estimate the prediction of 1+ns ,  

 ( )nnn fs Yˆˆ 1 =+  (5.26) 
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After these more general considerations, the next step is to find the proper approximation 
of the model, expressed through its structure and capacity, and a criterion for the quality of 
the model which is to be learned from the data in the reconstructed phase space. Generally 
speaking, there are two possibilities for choosing the structure of the model in order to 
approximate the mapping function (Casdagli, 1989), namely global and local model 
approximations. Figure 5-8 illustrates the phase space reconstruction (m=3 and τ=3) and 
the description of the searching dynamical neighbors and their dynamical trajectories in the 
past allowing for predicting the future evolution of the dynamical systems in phase space. 
This example utilizes the real sea level time series data reconstructed in the three-
dimensional phase space with time delay τ=3 hours. Three time series samples/points (i.e. 
‘star’ marking) with 3 hours lag in the time domain are represented as a single point in the 
phase space. Prediction is made by searching the dynamical neighbors (triangle and box 
markings) of the current point (black circle marking) in phase space and extrapolating the 
future state by using a local predictive model constructed based on dynamical neighbors. 
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Figure 5-8: (a) The search of dynamic neighbors and their dynamical evolution in the past predicts 
the future evolution of the dynamical systems in phase space using local approximation methods. In 
this example, the real water level time series data at Hoek van Holland tidal station is reconstructed 

in the three-dimensional phase space (above: in time domain, below: in phase space) (b) The 
building process of local models approximating the line projections of neighbors into the future 

states is zoomed in. 
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The basic idea of the local approximation methods is to use only the states close to present 
state in phase space in order to make predictions (Farmer & Sidorowich, 1987). Thus, they 
learn neighborhood relations from the data and map them forward in time. In order to 
predict the value of the observable xn+T, which is part of the state vector Yn+T where T is 
some time horizon in the future, based on the state vectors Yn and past history embedded in 
the reconstructed phase space, k-nearest neighbors of Yn are found on the basis of some 
norm ||Yn-Yn*||, with n*<n (n is a discrete time step). Depending on the number of the 
neighbors considered and the type of the local mapping chosen, several variations of the 
local approximation method are possible.  
 
In addition, a multi-step iterative prediction method has been developed and utilized in this 
work. The multi-step prediction technique consists of making repeated one-step predictions 
up to the desired horizon. It predicts only one-step ahead using the estimate of the output of 
the current prediction as the input to the prediction of the next time step until the 
prediction k-steps ahead is made. The multistep prediction technique demonstrates better 
prediction performance than the direct prediction method (Box et al., 1994; Kugiumtzis et 
al., 1998). One of the benefits of using the multi-step prediction is that the dynamical 
neighbors can be selected iteratively for each one-step prediction. Thus, in most cases, this 
procedure is able to avoid taking the false neighbors which may produce larger deviations of 
the neighbor trajectory projections into the future states. 
 
Figure 5-9 illustrates a comparison between direct and multi-step predictions for the surge 
dynamics in m-dimensional phase space. In this example, we notice beforehand from the 
observed data that the surge in the next 2 hours would rise up. Suppose trajectory b is the 
one to be predicted for 2-steps ahead and trajectories a, c and d are the neighbor candidates 
of trajectory b. The k-nearest neighbors (k-NN) procedure used for finding the neighbors is 
executed once in direct prediction and h-times (h is the prediction horizon) in multi-step 
prediction techniques. The trajectory a is a true neighbor and being chosen by both k-NN 
procedures. On other hand, the trajectory c is a false neighbor which is actually close to 
trajectory b and selected in the first k-NN procedure, but not in the second k-NN 
procedure. The trajectory d is the reverse case of trajectory c. Hence, the projection of 
trajectory b into 2-steps (hours) ahead using direct prediction method produces incorrect 
prediction (predicting the decreasing surge). This happens due to the inclusion of false 
neighbor c which subsequently results in building a “false” local model. In contrast, the 
multi-step prediction is able to predict the increasing surge correctly because the false 
neighbor c can be avoided (not selected) in the second k-NN procedure. 
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Figure 5-9: A descriptive comparison between (a) direct prediction and (b) multi-step prediction in 
m-dimensional phase space. This illustrates that the multi-step prediction can avoid from taking the 

false neighbor (trajectory c) which may result in wrong projection of the trajectory b to the future 
states (prediction). 

 

5.11  Recurrence Plots  
Recurrence is fundamental feature of many nonlinear dynamical systems. Such a system 
recurs infinitely many times as close as one wish to its initial state (Poincaré, 1890). The 
study of recurrences is used to understand the dynamics of nonlinear systems (Marwan et 
al., 2007). One tool of such purpose is recurrence plot (RP) and its quantifications 
(Eckmann et al., 1987). RP visualizes the recurrence of states in multi-dimensional phase 
space into two-dimensional plots. The recurrence of a state at time i at a different time j is 
pictured within a two-dimensional squared matrix with black and white dots (black dots 
mark a recurrence, and both axes are time axes). It reveals all the times when the phase 
space trajectory visits roughly the same area in the phase space. An RP can be 
mathematically expressed as: 

 NjiixjxixjiR m ,...,1,,)(),)()((),( =ℜ∈−−Θ= ε  (5.27) 

where N is the number of considered states, ε is a threshold distance, ||.|| a norm (e.g. 
Euclidean norm) and Θ is the Heaviside step function (see Figure 5-10). An extension of 
recurrence plots, so-called the recurrence quantification analysis (RQA), is a powerful 
analytical method developed over the last decade for the study of nonlinear dynamical 
systems. RQA quantifies the number and duration of recurrences of a dynamical system 
presented by its phase space trajectory, e.g. recurrence rate, determinism, entropy, 
laminarity of a dynamical system. 
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Figure 5-10: An illustration of the phase space trajectory of the Lorenz system (A) and its 

corresponding recurrence plot (B). A point of the trajectory at j which falls into the neighborhood 
(circle in (A)) of a given point at i is considered as a recurrence point (black point on the trajectory 
in (A)). This is marked with a black point in the RP (B) at the location (i, j) (Marwan et al., 2007).  

 
Recently, the recurrence plot has given much intention to researchers in the area of 
nonlinear dynamics and has been developed into multivariate recurrence plots, e.g. cross 
recurrence plot (CRP) and joint recurrence plot (JRP) (Marwan et al., 2007). A cross 
recurrence plot (CRP) is a bivariate extension of the RPs and was introduced to analyze the 
dependencies between two different systems by comparing their states. CRP shows all those 
times at which a state in one dynamical system occurs simultaneously in a second 
dynamical system. In other words, the CRP reveals all the times when the phase space 
trajectory of the first system visits roughly the same area in the phase space where the phase 
space trajectory of the second system is. Analogously to the RPs, the cross recurrence matrix 
is defined by: 

 MjNiyxCR ji
yx

ji ,...,1,,...,1),()(,
, ==−−Θ=



εε  (5.28) 

where N and M is the number of considered states of system x and y, respectively, ε is a 
threshold distance, ||.|| a norm (e.g. Euclidean norm) and Θ is the Heaviside step function.  
 
For the analysis of two physically different dynamical systems, a joint recurrence plot (JRP) 
was introduced to analyze the recurrences of their trajectories in their respective pahase 
spaces separately and look for the times when both of them recur simultaneously. In other 
words, the JRP is the Hadamard product of the recurrence plot of the first system and the 
recurrence plot of the second system. By means of this approach, the individual phase 



90  NONLINEAR DYNAMICS AND CHAOS THEORY 

 

spaces of both systems are preserved. JRP can be computed from more than two systems. 
The joint recurrence matrix for two recurrence matrix for two systems is 

 NjiyyxxJR ji
y

ji
xyxyx

ji ,...,1,),()(),(,
, =−−Θ−−Θ=

 

εεεε  (5.29) 

where N and M is the number of considered states of system x and y, respectively, ε is a 
threshold distance, ||.|| a norm (e.g. Euclidean norm) and  Θ is the Heaviside step function.  
 
This research uses the recurrence plot technique, aiming at calculating the return period of 
extreme storm surges based on their dynamics and identifying the interaction between tides 
and surges as well as meteorological forces (winds and air pressure) by means of CRP and 
JRP as well as their quantifications.  
 

5.12  Summary 
This chapter has shown the fundamental theory of nonlinear dynamics and chaos theory. A 
simple iterative map can exhibit chaos, similarly in differential equations. A number of tools 
for the nonlinear analysis of the observed time series have been discussed and can be used 
for various fields of applications. Many kinds of models representing natural phenomena 
exhibit chaos. In general sense, it is due to the fact that these natural phenomena behave in 
chaotic manners. This shows that the methods of nonlinear dynamics and chaos theory are 
tools for better understanding the complex natural phenomena. 
 
 
 
 



 

 

 

 

CHAPTER 6: BUILDING PREDICTIVE CHAOTIC MODEL 

 
 
 

“Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?” 
Edward Lorenz 

 
 
 
This chapter explains the construction of predictive chaotic model based on the methods of 
nonlinear dynamics and chaos theory for predicting storm surges in the North Sea. Several 
nonlinear time series analysis techniques, such as power spectral density, correlation 
dimension, mutual information, false nearest neighbors, Lyapunov spectrum are employed 
to identify the presence of deterministic chaos in the storm surge dynamics and to estimate 
the proper values of time delays and embedding dimension. Phase space reconstruction and 
global and local modeling are done for storm surge predictions.  
 

6.1 Introduction 
Astronomical tides generally have the large contribution to the ocean  water level  variations  
in  open  oceans  and many well-exposed coasts. Traditionally, the analysis of water levels 
usually employs linear methods that decompose sea levels into tides and other (usually 
meteorological) components. The amplitudes and phases of the tidal constituents driven by 
the astronomical motion of the Earth, Moon and Sun (with known periods) can be 
estimated by using Fourier analysis, response analysis or linear regression methods.  
 
Another component contributing to coastal water level is storm surge. This component can 
be predicted with an accuracy that depends on the accuracy of the meteorological 
predictions. An appropriate numerical weather model can predict the motion of 
atmospheric depression with a satisfactory accuracy in a range of several days. The wind 
and air surface pressure fields predicted by this model can be utilized as some driving forces 
of the sea motion in a shallow water model allowing for storm surge predictions.   
 
A lot of research has been conducted on understanding and modeling oceanic water level 
have been made for more than a century (see also Chapters 2 and 3). Korteweg & de Vries 
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(1895) characterized the weakly nonlinear shallow water waves by the Korteweg-de Vries 
(KdV) equation  which is an exact solvable partial differential equation.  Zabusky & Kruskal 
(1965) found that the solitary wave solutions from KdV equation can be obtained in the 
continuum limit of the Fermi-Pasta-Ulam Experiment (Fermi et al., 1955) and have similar 
behavior to the superposition principle, despite the fact that the waves themselves were 
highly nonlinear. However, the  water  level  dynamics in coastal and estuarial swallow-
water areas, such as the Dutch coast, may differ significantly from the astronomical 
estimated constituents (superposition principle) – due to the nonlinear effects that include 
meteorological forcing, tidal- current interactions, tidal deformations due to the complex 
topography and river discharges (Prandle & Wolf, 1978; Otto et al., 1990; Horsburgh & 
Wilson, 2007). A number of models have been built (some of them are characterized in 
Chapter 3) but a lot of research in this area is still in progress.  
 
The ocean water level variations due to various determinants and their complex interactions 
show long-term persistence leading to the correlated extreme events (Alexandersson et al., 
1998; Butler et al., 2007). Complexity of the described phenomena prompts for adequate 
methods to describe them, and one of them is chaos theory (Dijkstra, 2005). The most direct 
link between the concept of deterministic chaos and the real world is the analysis of data 
(time series) from real systems in terms of the theory of nonlinear dynamics (Tsonis, 1992; 
Abarbanel, 1996; Donner & Barbosa, 2008). Note that this approach is, in fact, data-driven, 
since it is mainly based on the analysis of the observation data. The initial nonlinear 
analyzes of the ocean water levels at the Florida coast have been conducted by Frison et al. 
(1999).  The early experiments of the use of predictive chaotic model (CM) for storm surge 
predictions were done by (Solomatine et al., 2000) and (Walton, 2005) using univariate 
local models. Velickov (2004) extended the method using multivariate predictive chaotic 
models and showed that it has reliable and accurate short-term predictions. Nonlinear and 
exploratory analysis, predictability, entropy, complexity of storm surge dynamics in the 
North Sea have been also explored in the UNESCO-IHE Master studies by Pupo (2000), 
Hasan (2001), and subsequent papers by Solomatine et al. (2001) and Velickov et al. (2003). 
 
This chapter presents the use and implementation of the methods described in the previous 
chapter – nonlinear dynamics and chaos theory – for predicting storm surges.  If compared 
to earlier works (Solomatine et al., 2000; Solomatine et al., 2001; Velickov et al., 2003; 
Velickov, 2004), we advanced the procedure of building predictive chaotic model by 
incorporating several new features: using Cao’s method (Cao, 1997) for better estimation on 
dynamical invariants; implementing multi-step iterative predictions, applying the Euclidean 
distance threshold to avoid inclusion of the false  dynamical neighbors, adding water level 
variable into multivariate predictive chaotic models, finding the proper number of 
neighbors using performance-based technique for stormy and non-stormy conditions, and 
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optimizing the predictive chaotic model parameters (time delay and embedding 
dimension). Furthermore, we compare the prediction performances of the proposed 
predictive chaotic model with other models, including artificial neural network (ANN) 
models. For chaotic analysis of non-linear time series we used TISEAN software (Hegger et 
al., 1999; Kantz & Schreiber, 2004), other statistical analysis software and some specially 
written MATLAB scripts, and for building predictive models – dedicated software 
components developed in MATLAB.  
 

6.2 Power Spectral Density: Periodicity and Stochasticity 
Power spectral density function (PSD) shows the strength of the variations (energy) as a 
function of frequency. It describes how the power (or variance) of a time series is 
distributed with frequency (Emery & Thomson, 2001; Broersen, 2006). Intuitively, the 
spectral density captures the frequency content of a stochastic process or time series (e.g. 
wind wave data) and helps identify periodicities. The unit of PSD is energy per frequency 
(width) and you can obtain energy within a specific frequency range by integrating PSD 
within that frequency range. Computation of PSD is done directly by the method called Fast 
Fourier Transform (FFT) or computing autocorrelation function and then transforming it. 
Figure 6-1 shows the periodogram power spectral densities of the water level (left) and surge 
(right) time series data at Hoek van Holland tidal station. Both power spectral densities 
display a broadband spectral distribution with some sub-harmonic components observed. 
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Figure 6-1: Power spectral density of the water level (left) and surge (right) time series data at Hoek 
van Holland tidal station. Both periodograms display a broadband spectral distribution with some 

sub-harmonic components observed. 
 

6.3 Phase Space Reconstruction: Finding Time Delay 
As described in Chapter 5, the most important phase space reconstruction technique is the 
method of delays, which is associated with the Taken’s embedding theorem (Packard et al., 
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1980; Takens, 1981). Vectors in a new space, the embedding space are formed from time 
delayed values of the scalar measurements. According to Taken’s theorem, the dynamics of 
a time series { }Nxxx ,...,, 21  are fully captured or 'embedded' in the m-dimensional phase 
space defined by the delay vectors  { }τττ )1(2 ,...,,, −−−−= mttttt xxxxY  where τ is the delay time.  
 
We have tested several values of delay and plot the phase portrait for embedding dimension 
m=3 (this is the maximum dimension that is possible to visualize). For illustration, Figure 
6-2 depicts the results water level and surge time series. 
 

In real applications, the delay time τ needs to be appropriately chosen in order to fully 
capture the structure of the attractor. If τ is too small then the delay vectors are not 
independent, such that all points are accumulated around the bisector of the embedding 
space, resulting in loss of characteristics on the attractor structure. If τ is very large, the 
different coordinates (delay vectors) may be almost dynamically uncorrelated. The 
straightforward choice of τ is usually made with the help of the zero-crossing 
autocorrelation function. However, in terms of nonlinear methods, the choice of τ 
corresponding at the first minimum of the time delayed mutual information demonstrates 
good performance in reconstructing the system dynamics from time observables. This 
mutual information is based on the Shanon's entropy (Fraser & Swinney, 1986) and can be 
computed as follows: Given a time series of observable s, one can calculate the transitional 
probabilities )( is sP  that a measurement s yields is . The information entropy is thus defined 
as:  

 ∑
=

−=
N

i
isis sPsPsH

1
)(log)()(  (6.1) 

   

  
Figure 6-2: The three-dimensional phase space reconstruction for the 1000 data points of the hourly 
water level (left, τ=4, m=3) and surge (right, τ=10, m=3) time series data at Hoek van Holland tidal 

station. 
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Figure 6-3 shows the autocorrelation and mutual information the water level and surge time 
series data at Hoek of Holland (1990-1996). The first minimum of the mutual information 
which characterizes the nonlinear relationships between time-lag variables is found to be a 
better criterion than the zero crossing autocorrelation (only measures linear dependency) 
for the choice of optimal time delay in the phase space reconstruction of time series data. 
The first minimum values of mutual information suggesting for the optimal time delay τ are 
4 and 10 hours for water level and surge time series data, respectively. 
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Figure 6-3: The autocorrelation function (dotted line with circles) and the mutual information 

(solid line with triangles) as a function of time lags for the hourly water level (left) and surge time 
series at Hoek van Holland tidal station. The nonlinear correlation illustrated by mutual 

information indicates the optimal time delays are 4 and 10 hours for water level and surge time 
series data, respectively. 

Note that the described methods is not the only one: in Chapter 8 we employ more 
“pragmatic” optimization methods to find delay τ and embedding dimension m, such that 
they would maximize the performance of the predictive model. 
  

6.4 Correlation Dimension 
Figure 6-4 shows that the correlation exponent increases with an increase of the embedded 
dimension up to a certain value and further saturates. The saturation values of the 
correlation exponents/dimensions using the optimal time delays of 4 and 10 hours are 6.5 
and 8.5 for the water level and surge time series data, respectively. This indicates the 
presence of an attractor in the water level and surge dynamics. Taking into account the 
previous discussion about the estimation of the embedding dimension m, if one uses the 
Taken's embedding theorem, the embedding dimensions (m=2dc+1) of the manifold which 
contains the attractor are 15 and 18 for the water level and surge dynamics. Kennel et al. 
(1992) suggests the minimum embedding dimension of m≥dc. This specifies that the 
embedding dimensions of 6(7) and 8(9) are enough to unfold the water level and surge 
attractors, respectively. These results, however, need to be verified by other embedding 
dimension estimators as described in the following sections. 
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Figure 6-4: Relationship between the correlation exponent ν and embedding dimension m for the 

hourly water level (left) and surge (right) time series data at Hoek van Holland tidal station. 
Correlation exponent increases with an increase of the embedded dimension up to a certain value 

and further saturates. The saturation value of the correlation exponent, that is the correlation 
dimension, is 6.5 and 8.5 for the water level and surge time series data, respectively. 

 
A large size of data set is commonly needed to compute the correlation dimension dc. 
However, there is no consistent agreement on how many data can sufficiently provide the 
accurate estimation of the correlation dimension. Some authors like (Smith, 1988), (Theiler, 
1990) and (Ruelle, 1990) suggest differently on the minimum size of data set required for 
estimating correlation dimension. For correlation dimension 8.5, the size of data set used 
here is sufficient to estimate the correlation dimension (Ruelle, 1990). The size of 54768 
data points of the hourly surge time series from 1 January 1990 till 31 March 1996 is larger 
than the minimum data set size 10dc/2 suggested by Ruelle (1990) which is about 17783 data 
points. Please also note that the data set in this work was obtained from the real 
observations representing the physical processes in nature, and not merely on the basis of a 
uniform-random model. Nonetheless, we consent that the larger size of data sets might be 
needed for better estimation of correlation dimension. 

 

6.5 False Nearest Neighbors 
The false nearest neighbor (FNN) method can determine the minimal sufficient embedding 
dimension m (Kennel et al., 1992). The false neighbors are the points projected into 
neighborhoods of other points to which they do not belong as neighbors in higher 
dimensions. Figure 6-5 shows that the percentage of the FNN drops to about 1% with the 
embedding dimensions of m=6 and 8 for water level and surge time series and remains 
unchanged for a further increase in the embedding dimension. This result is consistent with 
the estimation using correlation dimension based on the rule of (Kennel et al., 1992) 
suggesting that the minimum embedding dimension is m>dc. 
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Figure 6-5: The percentage of the false nearest neighbors (FNN) as a function of the embedding 

dimension for the water level (left) and surge (right) hourly time series data at Hoek van Holland 
tidal station. The FNN suggests the optimal embedding dimensions for water level and surge time 

series data are 6 and 8, respectively. 
 

6.6 Cao's Embedding Dimension 
The FNN algorithm has a drawback associated with the subjective choice of the threshold in 
order to ensure a correct distinction between low-dimensional chaotic data and noise. To 
avoid this issue, Cao's method or the averaged false neighbors (AFN) method (Cao, 1997) 
was utilized to find the proper embedding dimension for water level and surge dynamics at 
HvH. Cao’s approach is based on the estimation of two parameters E1 and E* which are 
basically derived from quantities that are defined by the FNN method. These parameters are 
computed for different increased values of the embedding dimension m. Then the global 
behaviors of E1 and E* as functions of dimension m are respectively used to estimate the 
minimum embedding dimension and to determine the nature stochastic vs deterministic of 
the underlying dynamical process generating the time series. This method has many 
advantages: it does not need too long time series, it is computationally efficient, and some of 
its features are not very sensitive to noise. Moreover, it is not based on any arbitrary choice 
of a threshold. Figure 6-6 shows the saturated lines of E1(m) can be obtained starting from 
dimensions m of 6 and 8 for water level and surge time series data at HvH. Number of 
neighbor (k) was set to 1. There is no existence of the straight lines of E*(d) indicating that 
water level and surge dynamics are not purely driven by random behaviors. 
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Figure 6-6: Minimum embedding dimension estimated by Cao’s method for water level (left) and 

surge (right) data at Hoek van Holland tidal station. The Cao’s method also suggest the embedding 
dimensions of 6 and 8 for water level and surge time series data, respectively. 

 

6.7 Space-Time Separation 
Another technique for identifying temporal correlations inside the time series or 
determining a reasonable time delay is space-time separation plot (Provanzale et al., 1992). 
This method integrates along parallels to the diagonal and thus only shows relative times. 
One usually draws lines of constant probability per time unit of a point to be a neighbor of 
the current point, when its time distance is δt. In other words, it shows how large the 
temporal distance between points should be so that we can assume that they form 
independent samples according to the invariant measure. This plot is also useful to detect 
stationary and give a warning when the data points are too few. Figure 6-7 depicts the 
space-time separation plot of water level (left) and surge (right) using τ=4, m=6 and τ=10, 
m=8, respectively. It is clearly seen that the M2 semi-diurnal tidal constituent with period 
12.42 hours plays an important role in water level dynamics. 
 

  
Figure 6-7: Space-time separation plots for water level (left, τ=4, m=6) and surge (right, τ=10, m=8) 

time series data at Hoek van Holland tidal station. 
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6.8 Lyapunov Exponents 
The Lyapunov spectrum (Sano & Sawada, 1985) estimated from the water level and surge 
time series at Hoek van Holland tidal station is presented in Figure 6-8. The largest 
Lyapunov exponent is estimated as λ1=0.08 for both water level and surge time series which 
indicates a loss of information of 0.08 bits/hour during the dynamical evolution of the 
system, and thus loss of predictive capabilities. The Lyapunov spectrum contains a large 
negative exponent λ6=-0.4 and -0.75 for water level and surge time series, respectively, 
which indicates presence of strong dissipation mechanisms in the dynamics of the system. 
The presence of positive Lyapunov exponents and the fact that sums of Lyapunov 
exponents are negative (-1.48 for both time series), provide strong evidence that water level 
and surge dynamical systems in the North Sea are driven by deterministic chaos. 
Furthermore, the Kaplan-Yorke information dimensions for water level and surge time 
series were estimated to be 2.77 and 4.1, respectively. The existence of a fractal Kaplan-
Yorke information dimension indicates deterministic chaos in the dynamical system.  
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Figure 6-8: The Lyapunov spectrum for the water level (left, m=6) and surge (right, m=8) time 
series data at Hoek van Holland tidal station. The spectrum are consistent showing the largest 

Lyapunov exponents (lines with circles) are positive and the sum of global Lyapunov exponents 
(lines with triangle) are negative, for both time series. 

 

6.9 Poincaré Sections 
A very convenient way to delineate the dynamical system is given by Poincaré sections. A 
Poincaré section is a slice obtained from the intersections of trajectories in m-dimensional 
attractor with an (m-1)-dimensional surface in the phase space. The usefulness of the 
Poncaré section lies in the reduction of order of the dynamical system and it bridges the gap 
between continuous and discrete-time systems. If one deals with periodic evolution of 
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period n, then this sequence consists of n dots repeating in the same order. If the evolution 
of the system is quasi-periodic the sequence of points defines a closed limit cycle. Finally, if 
the evolution is deterministic chaos, then the Poincaré section is a collection of points that 
show an interesting pattern, often revealing the fractal nature of the underlying attractor. 
Figure 6-9 depicts the Poincaré section of the first 10000 data points hourly water level and 
surge at Hoek van Holland tidal station with m=6, τ=4 and m=8, τ=10, respectively, as 
estimated by nonlinear chaotic analysis. 
 
  

 

 

 
Figure 6-9: Poincaré sections of hourly water level (left, m=6, τ=4) and surge (right, m=8, τ=10) 

time series data using the first 10000 data points at Hoek van Holland station. 

6.10  Recurrence Plot  
One of powerful tools for visualizing the recurrences of a dynamical system is a recurrence 
plot (RP). It exploits the dynamical system’s behavior in phase space (such as detecting 
transition, dynamical invariant, unstable periodic orbit) by means of 2-dimensional 
visualization/plot (Eckmann et al., 1987; Marwan et al., 2007). Figure 6-10 depicts the 
recurrence plots for water levels and surges at Hoek van Holland location. It is seen similar 
extreme storms in the dynamics occurred as indicated by white bands.  
 
Further development of this technique is to apply the recurrence plot for identifying the 
return period of extreme storm surges. A new technique combining recurrence plot and 
peak over threshold (POT) (Castillo et al., 2005) is proposed. The main procedure of this 
technique consists of (see Figure 6-11):  
(a) Set a threshold for the Euclidean distance in unthresholded RP (ε>t); 
(b) Cluster extreme values from RP with size depending on the values of embedding 

dimension and time delay; 
(c) Find the relevant index of extreme values of each cluster in real data; 
(d) Locate the maximum values in each cluster; 
(e) Feed these maximum values into POT analysis.  
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(b) Surge  

Figure 6-10: Recurrence plots of water levels and surges at Hoek van Holland location. 
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Figure 6-11: A schematic diagram of the main procedure for identifying return period of extreme 

storm surges using recurrence plot (RP) and peak over threshold (POT). 
 
For experiments, the water level and surge data at Hoek van Holand location was used. The 
recurrence plot was computed with parameters (ε>10.5; max clustering; m=6; τ=11). Figure 
6-12 shows the identification of extreme storm surges using recurrence plot.  
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Figure 6-12: Extreme storm surges identified by using recurrence plot. 

 
More processes (as seen in Figure 6-11) were made to estimate the return period of extreme 
storm surges. A number of extreme value distributions were utilized and tested, include: 
generalized pareto distribution; Gumbel, Frechet Weibull distributions; and normal, 
lognormal, Poisson-like distributions. The histogram of extreme storm surges and return 
period estimation using Gumbel distributions can be seen in Figure 6-13. The performances 
of methods of recurrence plot and extreme value analysis in estimating the return periods of 
water level and surge are listed in Table 6-1. The best distribution fitting is achieved by 
using Poisson-like distribution for the method of extreme value statistics (EVS) whereas 
Gumbel distribution is for recurrence plot. The recurrence plot techniques can improve the 
estimation of return period of extreme storm surges (CoE=0.99) compared with the method 
of extreme value statistics; however it is not the case for water level. 
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Figure 6-13: (a) Histogram of extreme storm surges and (b) return period estimation using Gembel 

distributions. 
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TABLE 6-1: PERFORMANCE OF METHODS OF RECURRENCE PLOT AND EXTREME VALUE STATISTICS FOR 

ESTIMATING RETURN PERIODS OF EXTREME WATER LEVELS AND SURGES. 

Met. Data  
Dim., 
delay 
m,τ  

Thres. 
t,ε  

N  
EV dist. 
fitting  

Return Periods 
(days, cm)  MAE 

of 
CDF  

CoE  
7  30  60  100  365  

EVS  
Sur  NaN  80  107  Poisson-like  166  212  234  249  289  0.017  0.94  

WL  NaN  150  227  Poisson-like  238  280  300  314  350  0.015  0.98  

RP  
Sur  11,6  10.5  38 Gumbel  134  176  196  210  247  0.019  0.99  

WL  11,23  9.5  45  Gumbel  202  241  260  274  309  0.036  0.94  

 

6.11  Predictive Chaotic Model: Global and Local Modeling 
Section 5.10 has described the process of building of predictive chaotic model based on the 
identified and reconstructed dynamical system. Two possibilities of local and global 
modeling can be utilized. With respect to data-driven modeling techniques, the global and 
local models can be built from any type of computational intelligence (CI) predictive 
models, like ANN or radial-basis functions (Haykin, 1999). The main different concepts on 
global and local modeling in the view of machine learning perspective (Mitchell, 1997) is 
that global modeling tends to be eager learning whereas local modeling is lazy or instance-
based learning (Aha et al., 1991). Hence, in global modeling, the model or abstraction is 
firstly constructed based on the available data (in this case it is the reconstructed phase 
space matrix) before prediction. In contrast, the local modeling keeps the presented training 
data (the reconstructed phase space) and waits until prediction is requested and the query 
instance is the last point in the reconstructed phase space. The k-nearest neighbor method 
are a common approach in the instance-based learning to approximating real-valued or 
discrete-valued target functions. The neighbors found by k-NN algorithm are then used for 
building the local models which can be any types of predictive models. In this work, the 
zeroth (constant), linear, quadratic and 3rd-order polynomial models are used as local 
models for predicting storm surge dynamics at Hoek van Holland station. 
  
Figure 6-14 depicts the chaotic model predictions for predicting storm surge at Hoek van 
Holland station during stormy period, where the dynamical neighbors found by k-NN 
algorithm are projected into 3-steps ahead (right). The number of neighbors is different for 
each step of prediction depending on the presence of similar behavior of storm surges in the 
past (dynamical neighbors). Subsequently, these neighbors are used for constructing the 
local models to approximate the future surge condition. 
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Figure 6-14: Chaotic model predictions with dynamical neighbors projected into 3-steps ahead. 

 

6.12 Model Setup  

6.12.1  Univariate predictive chaotic model 
The nonlinear chaos analysis (correlation dimension, FNN and Cao's method) of water level 
and surge time series recommends the appropriate values of time delay and embedding 
dimension are τ=4, m=6 for water level and τ=10, m=8 for surge. Yet, these estimations do 
not consider the effect of the time delay and embedding dimension selections to the chaotic 
model prediction performance. Therefore, the exhaustive search optimization was used for 
finding the optimal values of the embedding dimension (m), the time delay (τ) and the 
number of neighbors (k). In view of the fact that the exhaustive search optimization for the 
predictive chaotic model requires very intensive computation, we utilized sensitivity 
analysis to search for the appropriate number of neighbors (k) for each non-storm and 
storm conditions of water level and surge. After these values are obtained, we execute the 
exhaustive search for finding the optimal values of time delay and embedding dimension. 
 
The sensitivity analysis was done by setting up the predictive chaotic model parameters for 
the water level (with τ=4 and m=6) and surge (with τ=10 and m=6) and the number of 
neighbors (k) run from 1 to 2000. We use 3rd-order polynomial local models which are built 
based on the dynamical neighbors. In the internal procedure for finding the neighbors, 
some neighbors which have distance further than twice (adjustable by the user) of the 
nearest neighbors obtained should be cut out for removing the possible false neighbors. The 
procedure is as follows: 
(1) Define the number of neigbhours (k), 
(2) Find the k-nearest neigbhours in the phase space, 
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(3) Cut the discovered nearest neighbors that have distance more than twice of the nearest 
neighbors. 
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Figure 6-15: The six-hours prediction error of the predictive chaotic models as a function of the 

number of neighbors (k) for non-stormy and stormy water level (left, τ=4, m=6) and surge (right, 
τ=10, m=6), respectively, at Hoek van Holland tidal station. 

 
Figure 6-15 depicts the six-hours prediction RMS errors of the predictive chaotic models as 
a function of the number of neighbors (k) for non-stormy and stormy water level and surge 
time series data. It is clearly shown that the suitable number of neighbors for predicting 
surges during storm condition is small (13 neighbors) and it should be smaller than the one 
(80 neighbors) during non-storm condition for surges. One of the reasons is that less true 
dynamical neighbors (similar surge behavior in the past) can be found especially during 
extreme storms. If we take more neighbors, the model performance will be worse due to the 
inclusion of false neighbors in constructing local models. Consequently, the whole 
predictive chaotic model performance will decrease. For the water level, however, the model 
error decreases as the number of neighbor increases. This indicates that the use of global 
approximation model for predicting water level would be better than the use of local model. 
The reason is that the large part of water level components comes from tides which are 
quasi periodic and well predicted by harmonic analysis. 
 
The exhaustive search optimization was done with the following settings: time delay 
range=[1∼24], embedding dimension range=[2∼30], 3rd order polynomial local model and 
the number of neighbors k=13 and k=80 for surges during stormy and non-storm 
conditions, respectively, and k=300 for water level. The prediction horizons are 1, 3, 6, 10 
and 12 hours. Each prediction horizon can have different values of time delay and 
embedding dimension. The optimization outcome is the most accurate predictive chaotic 
model which has the lowest RMS error on cross validation data set. The cross validation 
data sets have small size of 400 data points: time indices of 35500-35900 for storm condition 
and 38200-38600 for non-storm condition. This small size of cross validation data sets was 
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employed with considerations of the necessity of intensive computation for exhaustive 
search. 
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Figure 6-16: The 3D surface of the univariate predictive chaotic model RMS errors for 1 and 10 
hours prediction horizons during stormy period (time index: 35500-35900) as a function of time 

delay and embedding dimension for water level (left, τ=4, m=6) and surge (right, τ=10, m=8) time 
series data at Hoek van Holland tidal station. 

 
Figure 6-16 illustrates the 3D surface of the univariate predictive chaotic model RMS errors 
for 1 and 10 hours prediction horizons during stormy period (time index: 35500-35900) as a 
function of time delay and embedding dimension for water level (left, τ=4, m=6) and surge 
(right, τ=10, m=8) time series data at Hoek van Holland tidal station. The 3D surfaces are 
unlike for each prediction horizon and storm/non-storm condition. This denotes that the 
choice of time delay and embedding dimension for phase space reconstruction should 
consider these variables. For example, the optimal time delay and embedding dimension for 
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univariate predictive chaotic model for predicting 6 hours ahead surges during storm 
condition was obtained: 
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The complete optimal univariate predictive chaotic model structures are listed in Table 6-2. 
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 Figure 6-17: The cross correlation and mutual information between surges at Hoek van Holland 

and neighboring stations (EPF and K13). Both techniques show that the EPF surges precedes surges 
at HvH about 1 hour and the K13 surges has less relationship with HvH surges and the HvH surges 

would reach to K13 around 1-1.5 hours later. 
 

6.12.2  Multivariate predictive chaotic model 
Multivariate predictive chaotic models incorporating information on water level and surge 
at Hoek van Holland and neighboring stations (EPF and K13), air pressure (difference) and 
wind components were employed with the main objective to improve the prediction 
accuracy for longer prediction horizons. The relationship between water level and surge at 
Hoek van Holland and EPF/K13 are measured by cross correlation and mutual information 
as shown in Figure 6-17. Both methods specify that the EPF surge precedes the surge at 
HvH about 1 hour and the K13 surge has less relationship with HvH surge and the HvH 
surge would reach to K13 around 1-1.5 hours later. Thus, we include the information from 
EPF as inputs of predictive chaotic model. 
 
The other variables which require more analysis are wind speed and direction. Cross 
correlation and mutual information were applied for acquiring the principal wind 
component which has largest influence to the surge at Hoek van Holland. The various wind 
directions from 0 to 180 degrees from North were investigated. The strongest influence of 
the winds on the surge (correlation coefficient=-0.65) is generated by wind component 120 
degree from North (Figure 6-18). Likewise, it is indicated by mutual information. 
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The multivariate phase space reconstruction of the surge dynamics using hourly time series 
data was solved technically using the multivariate embedding. The exhaustive search 
optimization was also utilized to all possible combinations of time delay and embedding 
dimension for each observable. The phase space structures for water level and surge are as 
follows: 
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Figure 6-18: The cross correlation and mutual information between wind components and surge at 
Hoek van Holland with various wind direction (0-180 degrees from North). The strongest influence 

of the winds on the surge (correlation coefficient=-0.65) is generated by wind component 120 
degree from North (left). Similarly, it is indicated by mutual information (right). 

 
The difference between these two structures is located at the inclusion of the information 
from neighboring station. In this case, we utilized the water level and surge from EPF tidal 
station. The water level phase space uses the water level from EPF, while the surge phase 
space requires the surge from EPF. The next task is to optimize the values of the τ and m of 
each variable for using exhaustive search.  The exhaustive search optimization was done 
with the following settings. The time delay and embedding dimension for hvh

ms ,τ  and hvh
mwl ,τ  are 

fixed with the values as obtained from nonlinear chaos analysis, hvh
ms ,τ  has τ=10 and m=8, 

while hvh
mwl ,τ  has τ=4 and m=6. The time delay and embedding dimension for other variables 

( hvh
m

hvh
m

epf
m

epf
m dpwindswl ,

120,
,,, ,,, ττττ ) are: τ range=[1∼5] and m range=[2∼5]. We employed the 3rd 

order polynomial local model and the number of neighbors of k=13 and k=80 for surges 
during stormy and non-storm conditions, respectively, and k=300 for water level. The 
prediction horizons are 1, 3, 6, 10 and 12 hours. The optimization outcome is the most 
accurate predictive chaotic model which has the lowest RMS error on cross validation data 
set. 
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The optimal multivariate predictive chaotic model structure can be seen in Table 6-4 for 
storm surge and Table 6-5 for water level. For example, the optimal multivariate phase 
space reconstruction for predicting surges with 3 hours prediction horizon during storm 
condition was obtained: 
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(6.5) 

For predicting surges during storm condition, the optimization results indicate that the 
most appropriate time delay for epf

ms ,τ  is 1 hour for all prediction horizons. This coincides 
with the analysis as depicted in Figure 6-17 viewing that the EPF surges precedes surges at 
HvH about 1 hour. 
 

6.12.3  Global model: Neural networks  
Backpropagation multi-layer perceptrons (MLPs) with Levenberg-Marquardt training rule 
(Haykin, 1999) was utilized and trained using the same input structure as the predictive 
chaotic model inputs. The number of hidden neurons of ANN was selected using the 
exhaustive search with range of [1∼10]. The optimal MLPs structures are listed in Table 6-3 
for univariate NN, and Table 6-4 and Table 6-5 for multivariate NN.  
 

6.13  Model Results and Discussion 
Table 6-2 and Table 6-3 summarize the univariate predictive chaotic model and neural 
network model prediction performances. The optimal parameters for predictive chaotic 
models (m, τ, k) and neural network models (the number of hidden neurons) were obtained 
based on the model performance (RMS error) on cross validation data sets for non-stormy 
and stormy  periods and we tested these models on testing data set with various optimal 
values of m, τ, k and number of hidden neurons based on the prediction horizons and storm 
and non-storm condition. These comparison results (up to 12 hours prediction) showed, in 
general, the predictive chaotic model and neural network model have similar prediction 
accuracy either during stormy or non-stormy periods. However, the predictive chaotic 
model is able to reach the extreme surges better than the neural network model in 
predicting surges. This is depicted in Figure 6-19. The predictive chaotic model errors are 
more dampened and stable (including during the surge peaks) than the neural network 
errors.  
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TABLE 6-2: PERFORMANCE OF UNIVARIATE PREDICTIVE CHAOTIC MODEL WITH PARAMETERS OPTIMIZED BY 

EXHAUSTIVE SEARCH. 

Predictive chaotic models 
Prediction horizons 

1 hrs 3 hrs 6 hrs 10 hrs 12 hrs 
Surges 

Stormy 
(k=13) 

τ 1     1     3 1     2     
m 5     7     6 10 6     
RMSE(CV) 12.35     12.91     24.38 38.51     45.15 
RMSE(Test) 11.11 11.94 21.69 30.44 34.42 

Non-stormy 
(k=80) 

τ 1 1 1 4 12 
m 9 5 7 6 9 
RMSE(CV) 5.09 5.35 7.56 9.04 9.94 
RMSE(Test) 5.87 6.00 8.46 10.81 11.86 

Water levels 

Stormy 
(k=300) 

τ 2 6 6 6 11 
m 3 3 4 5 3 
RMSE(CV) 27.25 37.54 90.61 97.45 74.59 
RMSE(Test) 26.66 39.20 91.30 96.37 66.72 

Non-stormy 
(k=300) 

τ 3 6 8 8 11 
m 4 3 9 4 3 
RMSE(CV) 23.93 36.17 89.20 91.00 60.16 
RMSE(Test) 23.39 36.10 86.85 90.32 59.15 

 
However, the predictive chaotic models performed worse than the neural network models 
for predicting water levels. In fact, their predictions are generally not quite good. The main 
reasons of not accurate predictions in predictive chaotic model are that the water level 
contains sharp oscillations which are difficult for the 3rd order polynomial local model to 
approximate with. Moreover, the building of this local model may include many false 
neighbors due to the fact that the trajectories are very close each other and the nearest 
neighbors found most possibly have different or reverse directions of trajectories. The other 
cause is due to the inherent issues with nonlinear discrete time series which we can build the 
phase space with integer (not fractal) values of time delay and embedding dimension. As we 
obtained from the space-time separation plot, the period of water level is 12.42 hours (non 
integer) which is not similar with the nonlinear analysis (mutual information) outcome 
suggesting time delay of 4 hours (integer). This issue results in the amplification of shift 
errors as the prediction horizon increases. It is clearly seen in Figure 6-19 where the 
predictive chaotic model errors oscillate sharply due to the existence of phase errors. The 
possible solutions for these are: to use smaller sampling time of water level data (e.g. 10 
minute) for reducing the sharp oscillations and giving enough points for producing better 
local models to handle these oscillations; to implement a mixture of various local models 
(e.g. ANN) in the phase space which perform the best for predicting future trajectories of a 
particular condition or regime; to reconstruct the phase space from time series using non-
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equidistance time delay method which can unfold the attractor better; and to select longer 
size of cross validation data set. 

 
TABLE 6-3: PERFORMANCE OF UNIVARIATE GLOBAL NEURAL NETWORK MODEL WITH PARAMETER OPTIMIZED 

BY EXHAUSTIVE SEARCH. 

Neural Networks 
Prediction horizons 

1 hrs 3 hrs 6 hrs 10 hrs 12 hrs 
Surges 

Stormy 
No.hidden 10 7 5 10 9 
RMSE(CV) 10.93 21.30 28.47 35.09 39.43 
RMSE(Test) 10.72 19.46 22.34 30.00 31.50 

Non-stormy 
No.hidden 6 10 10 7 6 
RMSE(CV) 4.55 6.15 7.09 8.47 8.32 
RMSE(Test) 5.22 7.18 8.09 9.46 9.45 

Water levels 

Stormy 
No.hidden 7 9 1 10 10 
RMSE(CV) 15.07 26.35 39.78 45.81 47.74 
RMSE(Test) 14.11 24.52 32.30 35.99 34.95 

Non-stormy 
No.hidden 10 8 8 7 2 
RMSE(CV) 7.51 12.16 14.72 14.76 12.02 
RMSE(Test) 8.03 11.89 16.07 17.27 13.45 

 
TABLE 6-4: PERFORMANCES OF MULTIVARIATE PREDICTIVE CHAOTIC MODEL AND GLOBAL NEURAL NETWORK 

FOR STORM SURGE PREDICTION WITH PARAMETERS OPTIMIZED BY EXHAUSTIVE SEARCH. 
Surge Prediction 

PHor 
(hrs) 

SurgeHvH WLHvH SurgeEPF WindHvH PressHvH 
Multivariate Predictive 

chaotic model 
Multivariate Neural 

Networks 

 τ m τ m τ m τ m τ m k 
RMSE 
(CV) 

RMSE 
(test) 

No. 
hdn 

RMSE 
(CV) 

RMSE 
(test) 

Storm Condition 
1 10 8 4 6 1 5 5 5 4 5 13 15.52 8.809 5 6.48 6.53 
3 10 8 4 6 3 4 2 2 1 4 13 22.21 11.99 7 15.87 16.78 
6 10 8 4 6 3 5 4 5 5 2 13 37.96 21.12 8 22.24 20.45 

10 10 8 4 6 3 5 5 5 5 3 13 43.45 31.32 8 28.054 30.37 
12 10 8 4 6 4 4 3 2 1 2 13 47.28 34.80 8 28.74 28.09 

Non-storm Condition 
1 10 8 4 6 1 4 2 4 1 5 80 3.40 4.79 5 4.20 4.76 
3 10 8 4 6 1 2 2 4 2 5 80 2.94 6.59 6 7.75 8.69 
6 10 8 4 6 1 5 4 2 5 5 80 6.69 8.05 2 9.75 11.02 

10 10 8 4 6 1 5 5 2 1 2 80 8.02 10.52 7 9.96 10.84 
12 10 8 4 6 1 4 5 2 5 3 80 6.59 10.73 4 10.96 12.37 
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TABLE 6-5: PERFORMANCES OF MULTIVARIATE PREDICTIVE CHAOTIC MODEL AND GLOBAL NEURAL NETWORK 

FOR WATER LEVEL PREDICTION WITH PARAMETERS OPTIMIZED BY EXHAUSTIVE SEARCH. 
Water Level Prediction 

PHor 
(hrs) 

SurgeHvH WLHvH WLEPF WindHvH PressHvH 
Multivariate Predictive 

chaotic model 
Multivariate Neural 

Networks 

 τ m τ m τ m τ m τ m k 
RMSE 
(CV) 

RMSE 
(test) 

No. 
hdn 

RMSE 
(CV) 

RMSE 
(test) 

Storm Condition 
1 10 8 4 6 5 4 1 5 3 5 300 13.97 12.44 4 7.94 8.68 
3 10 8 4 6 5 2 2 5 2 5 300 44.45 56.99 4 15.42 15.66 
6 10 8 4 6 5 2 2 5 3 2 300 100.12 113.25 6 25.93 27.32 

10 10 8 4 6 5 3 3 2 1 5 300 79.79 92.25 9 32.17 29.11 
12 10 8 4 6 1 4 4 2 3 4 300 61.37 60.05 2 33.89 31.84 

Non-storm Condition 
1 10 8 4 6 2 4 3 2 3 2 300 5.98 7.29 1 3.27 4.04 
3 10 8 4 6 5 2 4 5 1 4 300 63.43 57.86 6 6.10 7.28 
6 10 8 4 6 4 4 4 5 4 3 300 112.75 113.89 5 10.77 11.86 

10 10 8 4 6 5 2 2 2 4 3 300 98.60 87.73 4 12.04 12.72 
12 10 8 4 6 5 4 1 2 4 2 300 53.03 48.53 8 9.95 12.78 

 

6.14 K-fold Cross Validation 
Cross-validation is a technique for assessing how a predictive model will generalize or 
perform to an independent data set (Mosteller, 1948). This technique is useful as protection 
against testing hypotheses suggested by the data (type III errors). The cross-validation 
involves partitioning a dataset into several complementary sub datasets, performing the 
analysis on one subset (called the training set), and validating the analysis or prediction on 
the other subset (called the validation set or testing set). If k-sub datasets are obtained by 
randomly partitioning the original data set, this process is so-called k-fold cross validation. 
For reducing the variability, multiple rounds of cross-validation are often performed using 
different partitions, and the validation results are averaged or combined over the rounds. 
 
In the application for storm surge predictions, it is seen that different size of the validation 
sub dataset influencing the model evaluation results. Figure 6-21 depicts the chaotic model 
predictions (3 hours ahead) and observations for storm surges at Hoek van Holland station 
during stormy period (2160 data points). These 2160 data points can be divided into two 
groups 1-200 data points (less fluctuated surges) and 750-900 data points (highly fluctuated 
surges). The model evaluation measures are different depending on the size and the 
condition of validation data sets used. Table 6-6 shows the 6-folds cross validation errors 
are obtained for surge data (1990-1995) with one-year validation data set (RMSE). All 
model errors for 6 sub-datasets of validation are averaged in order to demonstrate the 
general accuracy of predictive chaotic model for different prediction horizons.   
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Figure 6-19: (a) The comparison of storm surge predictions between univariate and multivariate 
predictive chaotic models and neural networks at Hoek van Holland during the stormy period (1-

Jan-1995 till 31-Mar-1995) based on hourly time series.  The prediction horizon is 3 hours. The 
overall RMSE (b) for univariate CM, univariate Global NN, multivariate CM and multivariate 

Global NN are 12.91, 19.46, 11.99 and 16.78 cm, respectively. 
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Figure 6-20: (a) The comparison of water level predictions between univariate and multivariate 
predictive chaotic models and neural networks at Hoek van Holland during the stormy period (1-

Jan-1995 till 31-Mar-1995) based on hourly time series.  The prediction horizon is 3 hours. The 
overall RMSE (b) for univariate CM, univariate NN, multivariate CM and multivariate NN are 

39.20, 24.52, 56.99 and 16.78 cm, respectively. 
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Figure 6-21: Chaotic model predictions (3 hours ahead) for storm surges at Hoek van Holland 

station during stormy period (2160 data points). 
 

TABLE 6-6: RESULTS OF SEVERAL EVALUATION MEASURES OVER DIFFERENT SIZE OF VALIDATION DATASETS. 
Data points MAE MSE RMSE NRMSE MAPE 

All 8.96 142.57 11.94 0.31 1.60 
1-200 7.13 80.42 8.97 0.43 2.16 
750-900 11.62 206.24 14.36 0.29 1.16 

 
TABLE 6-7: THE 6-FOLDS CROSS VALIDATION FOR SURGE DATA (1990-1995) WITH ONE-YEAR VALIDATION 

DATA SET (RMSE). 
Validation 

data set 
Prediction horizons 

1hrs 3hrs 6hrs 10hrs 12hrs 
1990 8.32 9.15 16.63 22.69 24.55 
1991 7.84 9.02 15.16 20.01 21.41 
1992 7.90 8.79 15.51 20.92 22.40 
1993 7.65 8.37 15.00 21.33 23.61 
1994 7.29 7.72 13.37 18.80 20.93 
1995 7.65 8.10 13.92 19.77 22.20 
Average 7.78 8.53 14.93 20.59 22.52 

 

6.15 Summary 
Based on the nonlinear chaos analysis, the dynamics of both water levels and surges along 
the Dutch coast can be characterized as deterministic chaos. The presence of the chaotic 
dynamics together with the positive Lyapunov exponents implies that there are limits of 
predictability for any model. However, short-term reliable predictions are possible. The 
chaotic behavior occurs because water levels and surges, including astronomical 
contributions and the contributions from the meteorological forcing, are the result of a 
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complex, coupled nonlinear dynamical system. Taking into account the presence of 
deterministic chaos in the water level and surge dynamics, a mixture of multivariate 
predictive local models in the reconstructed phase-space of the dynamical system, which 
uses information from the real dynamical neighbors, has demonstrated good capability for 
reliable short-term predictions. For the Hoek van Holland location, the overall 3 hours 
ahead surge prediction errors (RMSE) during storm condition for univariate CM, univariate 
NN, multvariate CM and multivariate NN are 12.91, 19.46, 11.99 and 16.78 cm, respectively. 
In this respect, the multivariate predictive chaotic model generally outperforms the other 
models since it uses the multivariate local models built based on the past development 
similarity of storm surges for approximating the future development of storm surges. This is 
also due to the inclusion of other variables and spatial information into the multivariate 
models resulting in the increase of accuracy.  
 
With respect to the model for predicting water levels, it can be seen that it is less accurate 
than the model for surge since the water level is mainly driven by periodic behavior and this 
is well predicted by linear system such as Fourier analysis. For improvements, it is 
recommended to implement a mixture of various local models (like radial basis function), 
to employ smaller data sampling time and to construct non-equidistance phase space.  
 
It is indicated that the size and condition of data sets chosen as testing or validation are 
sensitive to the evaluations of model errors.  The k-fold cross validation is used for avoiding 
the type III hypothesis errors by partitioning the surge data (1990-1995) into 6 parts (one-
year validation data set). The general errors of predictive chaotic models for different 
prediction horizons were obtained, for instance 8.53cm errors for 3 hours predictions of 
one-year validation. 



 

 

 

 

CHAPTER 7: ENHANCEMENTS: RESOLVING ISSUES OF 
HIGH DIMENSIONALITY, PHASE ERRORS, 
INCOMPLETENESS AND FALSE NEIGHBORS 

 

 
 

“Because of recent improvements in the accuracy of theoretical predictions based on 
large scale ab initio quantum mechanical calculations, meaningful comparisons 

between theoretical and experimental findings have become possible.” 
Yuan T. Lee 

 
 
 
This chapter presents several important enhancements for resolving a number of issues 
associated with high dimensionality of phase space, phase shift prediction errors and 
presents ways of building a chaotic model from incomplete time series.  
 

7.1 Phase Space Dimensionality Reduction 

7.1.1 Introduction 
In many cases, not all the measured variables are important for understanding the 
underlying phenomena. Some measured variables might be irrelevant and the original 
representation of the data might have redundancies due to the existence of high correlations 
among the measured variables. Dimensionality reduction techniques can be utilized to 
remove such redundancies and generate a compact and yet meaningful representation of 
the original data. Dimensionality reduction can be defined as the process of transforming 
data residing in a high dimensional space to a low dimensional subspace in such a way that 
the transformation ensures the maximum possible preservation of information.  
 
This chapter discusses a dimensionality reduction method applied to reduce the dimension 
of univariate and multivariate time-delayed phase space in order to improve the 
performance of chaotic model predictions. The reconstructed phase space of a dynamical 
system normally has a high m-dimensional phase space with τ time delayed coordinates. 
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This structure may consist of a number of irrelevant and redundant variables even though a 
suitable pair of embedding dimension m and time delay τ are appropriately selected when 
performing the phase space reconstruction. The fact of equidistance time-delayed variables 
in the phase space reconstruction might also induce some redundancies. We propose the 
phase space dimensionality reduction based on principal component analysis (PCA) to 
solve these issues by creating a compact and lower dimensional phase space of a dynamical 
system which can improve the accuracy of chaotic model predictions. Similar researches 
have been done, such as an attractor reconstruction from univariate time series with a 
distortion functional comparison of singular system and redundancy criteria studied by 
Fraser (1989). While Han et al. (2006) extracted the feature components of noisy 
multivariate time series based on singular value decomposition (SVD) and applied ANN for 
predicting a dynamical system. Yet, to the best of our knowledge, none of papers 
concentrated on the phase space dimensionality reduction on improving univariate and 
multivariate chaotic model predictions. 
 
For testing how phase space dimensionality reduction may improve predictive chaotic 
model performance, both the sea water level and surge time series data along the Dutch 
coast were considered.  
 

7.1.2 Problems of dimensionality 
One of the uses of dimensionality reduction technique is to overcome the curse of 
dimensionality. The curse of dimensionality describes the problems associated with the 
rapid (exponential) increase in volume caused by adding extra dimensions to a space. In 
many cases, not all the measured variables are important for understanding the underlying 
phenomena. There may be variables whose variance is lesser that the measurement noise, 
hence these variables are irrelevant. Also, the original representation of the data might have 
redundancies due to the existence of correlations between the variables. Removing such 
redundancies can generate a compact and yet meaningful representation of the original 
data. 
 
Dimensionality reduction can be seen as the process of transforming data residing in a high 
dimensional space to a low dimensional subspace in such a way that the transformation 
ensures the maximum possible preservation of information. Dimensionality reduction 
problems can be formulated as follows: Let X =[x1, x2, x3, ..., xn] be a set of n data points in a 
d-dimensional space, i.e. x∈ℜd, then a dimensionality reduction  method tries  to find  a 
corresponding  output  set  of patterns Y=[y1, y2, y3, ..,yn]  such  that yi∈ℜm, where m<<d 
and Y provides the most faithful representation of X in the lower dimensional space. 
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7.1.3 Principal component analysis 
Principal component analysis (PCA) is one of the most popular and widely used techniques 
for dimensionality reduction that is mathematically defined as an orthogonal linear 
transformation (Lee & Verleysen, 2007). It transforms the data to a new coordinate system 
such that the greatest variance by any projection of the data comes to lie on the first 
coordinate (called the first principal component), the second greatest variance on the 
second coordinate, and so on. PCA is often presented using the eigenvalue/eigenvector 
approach of the covariance matrices. For efficient computation, the singular value 
decomposition (SVD) of the data matrix that is used. Let Y be a time series data with m 
records of dimension d. Assume the dataset is mean-centered by making E[Y]=0. An 
efficient PCA method is calculated based on finding the singular values and orthonormal 
singular vectors of the Y matrix, as follows: 

 Y = U∑VT (7.1) 

where U and V are the left and the right singular vectors of Y, and ∑ is a diagonal matrix 
with positive singular values. Using covariance matrix to calculate the eigenvectors, let 
C=E[YTY] represent the covariance matrix of Y. Then the right singular vectors contained 
in V of Eq.(5) are the same as those normalized eigenvectors of the covariance matrix C in 
Eq.(6). In addition, if the nonzero eigenvalues of C are arranged in a descending order, then 
the k-th singular value of Y is equal to the square root of the k-th eigenvalue of C. 
 
The main procedure of PCA consists of: obtaining some data, subtracting the mean, 
calculating the covariance matrix, computing the eigenvectors and eigen values of the 
covariance matrix, choosing components and forming a feature vector and deriving the new 
data set. 
 

7.1.4 Reducing the phase space dimension 
The dimension of the data is the number of variables that are measured on each 
observation. In predictive chaotic modeling, the dimension refers to phase space dimension 
constructed from univariate or multivariate time-delayed variables. One of the problems 
with high-dimensional datasets or space is that, in many cases, not all the measured 
variables are “important” for understanding the underlying phenomena of interest. Often 
reducing the dimension of the original data leads to the increased accuracy of the resulting 
model.  
 
Phase space dimensionality reduction using PCA was implemented in such a way only those 
characteristics of the time-delayed coordinate variables that contribute most to its variance 
(the lower-order principal components) were retained. Such low-order components often 

http://www.answers.com/topic/inner-product-space
http://www.answers.com/topic/linear-map-1
http://www.answers.com/topic/linear-map-1
http://www.answers.com/topic/coordinate-system
http://en.wikipedia.org/wiki/Variance
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contain the "most important" aspects of the dynamical system. The phase space dimensional 
reduction is not only effectively reducing the complexity of dynamical system, but also 
removing data noises. Furthermore, machine learning methods can also provide a mapping 
from the high dimensional space to the embedded (reduced) space. 
 
We propose the time-delayed phase space dimensionality reduction using principal 
component analysis (PCA) in the process of phase space reconstruction. The phase space of 
a dynamical system is normally reconstructed with a high dimensional space. Let X with 
size of (m,τ) be a trajectory matrix produced by method of delays with appropriate choice of 
embedding dimension m and time delayτ. Then, PCA is applied to reduce the phase space 
dimension of m into lower dimension n. This produces a compact and yet meaningful data 
representation of the dynamical system. Based on the reduced univariate or multivariate 
phase space reconstruction, the chaotic model predictions can be developed using the 
adaptive predictive local models produced based on the dynamical neighbors. 
 

7.1.5 Model results and discussion 
Figure 7-1 shows an Eigen values against principle components plot presenting information 
loss due to 19-dimensional multivariate phase space reduction of Hoek van Holland (HvH) 
surges time series data consisting of four variables: surges, wind, air pressure at HvH and 
surges at Euro platform (EPF).  

 

 
Figure 7-1: Eigen values against principal components plot indicating information loss due to 

reduction for HvH surges time series data. For this case, 19-dimensional multivariate phase space 
Y=(HvH(6,6),Wind(1,4),DP(6,3),EPF(1,6)) is reduced to 6 dimensions. 

 
Table 7-1 summarizes the performances of univariate and multivariate predictive chaotic 
models with and without dimensionality reduction and artificial neural network (ANN) 
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model for non-stormy and stormy conditions. These results show slightly better 
performance of univariate predictive chaotic models with dimensional reduction for stormy 
condition compared to the other models including ANN (up to 12 hours ahead).  
 

TABLE 7-1: THE PERFORMANCE COMPARISON OF UNIVARIATE AND MULTIVARIATE ANN AND PREDICTIVE 

CHAOTIC MODELS WITH AND WITHOUT PHASE SPACE DIMENSIONAL REDUCTION FOR THE SURGE PREDICTION 

(M=VARIABLE, τ=VARIABLE, K=50-100 FOR NON-STORMY PERIOD AND K=9-100 FOR STORMY PERIOD). 
 RMS Error (cm) for different prediction 

horizons (1 sample=1 hour) 
1 hrs 6 hrs 8 hrs 10 hrs 12 hrs 

Non-storm condition 
Univariate ANN 2.10     4.45     5.27     5.54     5.05     
Univariate predictive chaotic models 2.28     4.73     5.64     6.11     5.18     
Univariate predictive chaotic models with PCA 2.28     4.76     5.62     6.09     5.15     
      Multivariate ANN 6.00     8.61     9.79     11.99     10.38     
Multivariate predictive chaotic models 0.92     3.55     4.34     5.27 5.44     
Multivariate predictive chaotic models with PCA 3.82     5.63     6.33     6.42     6.30     
Storm condition 
Univariate ANN 5.07     13.09     15.39     17.88     18.37     
Univariate predictive chaotic models 2.62     9.21 11.80     14.06     14.62     
Univariate predictive chaotic models with PCA 2.61     9.18     11.76     14.01     14.61     
      Multivariate ANN 9.04     20.05     27.89 30.37     30.57     
Multivariate predictive chaotic models 2.03     12.16     16.55     20.21     22.82     
Multivariate predictive chaotic models with PCA 7.07     13.69     17.00     19.72     22.01     

 
Results for  multivariate predictive chaotic models (incorporating information on the 
meteorological forcing and using additional rules to select dynamical neighbors in the phase 
space), are mixed. For prediction horizon from 1 to 8 hours PCA does not bring 
improvement, but for 10 and 12 hours there is some improvement, however also not large.  
 
The main advantage of using PCA is the complexity reduction of the dynamical system 
especially during storm conditions, and reduction of noise, with no deterioration (and even 
some gain) in accuracy. It should be mentioned that the experiments with dimensionality 
reduction should be considered as initial, and we would recommend continuing them, for 
example in direction of identifying the optimal number of PCA components leading to 
maximum performance gains.  
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Figure 7-2: (a) Storm surge prediction comparison of multivariate ANN model and univariate 
predictive chaotic model with phase space dimensionality reduction at Hoek van Holland for the 

stormy period (1-Jan-1995 till 31-Mar-1995) based on hourly time series.  The prediction horizon is 
6 hours. The overall RMSE for (b) multivariate ANN is 20.05 cm and (b) for univariate predictive 

chaotic model with PCA is 9.18 cm. 
 

7.2 Phase Error Correction 

7.2.1 Introduction 
In chaotic dynamical system, accurate predictions require accurate initial conditions. 
Although we may have a perfect model and an infinitely long time series of observations, it 
may be impossible to precisely determine the initial state of a system. The small errors in the 
initial conditions can be amplified exponentially and this limits on the ability to accurately 
predict the future states. One of dominant errors is a systematic phase error between model 
prediction and actual observations. Advanced data assimilation techniques can reduce the 
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predictive chaotic model error by combining the prediction with observations ((Kalnay, 
2003; Dercole & Rinaldi, 2008)).  
 
The phase prediction error of a predictive chaotic model can be characterized as phase 
synchronization (Pikovsky et al., 2002). Phase synchronization is usually applied to two 
waveforms of the same frequency with identical phase angles with each cycle. However it 
can be applied if there is an integer relationship of frequency, such that the cyclic signals 
share a repeating sequence of phase angles over consecutive cycles. The observations as the 
natural phenomena and the predictive chaotic model built from observables can be 
described as two chaotic systems or oscillators. They oscillate with a repeating sequence of 
relative phase angles. Phase synchronization can be performed to eliminate the phase error.  
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Figure 7-3: A schematic description of the (2nd) predictive chaotic model or ANN model used for 

correcting the phase error of the (1st) standard chaotic model predictions. 
 

In this work, however, we do not improve the initial conditions, model parameters or model 
physics, but utilize a specialized model to estimate and correct the prediction errors of 
predictive chaotic model directly. Two models, ANN model and predictive chaotic model 
are utilized and trained on the historical phase error data generated by the standard chaotic 
model predictions. Figure 7-3 schematizes the automated correction of phase error resulted 
from the chaotic model predictions. The phase error is estimated and corrected by the 2nd 
model predictive chaotic model or ANN model which is trained based on the 1st standard 
chaotic model prediction error on cross validation data set. The final prediction on (out-of-
sample) testing dataset is performed by these two models by summing up the 1st chaotic 
model predictions and the error correction estimated by the 2nd model.  
 

7.2.2 Data description 
The data set used in previous experiments is used here as well: sea water level, surge, 
atmospheric pressure and wind speed/direction time series data from seven coastal stations 
along the Dutch coast; each time series begins January 1st, 1990 and is available until March 
31st, 1996, which results in 337249 continuous samples in total for the 10 min time (54768 
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for the hourly averaged time series). Predictions are made for the Hoek van Holland (HvH). 
The surge data are split into training, cross-validation (CV) and testing data sets for the 1st 
and 2nd models (see Table 7-2).  
 
TABLE 7-2: DATA SEPARATION OF HOURLY SURGE DATA FOR TRAINING, VALIDATION AND TESTING DATA SETS. 

Time Index 
First Model 

(Standard Predictive chaotic model) 
Second Model 

(Predictive chaotic model or ANN model) 
Train CV Test Train Test 

Start 1 20001 43001 20001 43001 
End 20000 43000 45160 43000 45160 

 

7.2.3 Setting up the 1st standard predictive chaotic model 
The 1st standard predictive chaotic model was built based on the training data set (time 
index=1-20000) and predicted the cross-validation data set (20001-43000). The prediction 
error of standard predictive chaotic model on cross-validation data set was then used as a 
training data set for the 2nd predictive chaotic model or ANN model. The 2nd model 
performs the estimation of possible errors by characterizing the dynamics of model errors. 
After being trained, these two models can be utilized to predict the testing (unknown) data 
set (43001-45160). Once the 1st standard predictive chaotic model predicts the surges on 
testing data set, the 2nd model can estimate and correct the phase error created by the 1st 
predictive chaotic model. The correction is made by simply summing up these two model 
predictions. The prediction horizons are 1, 3, 6, 10 and 12 hours for surges at HvH. The 
following sections describe the nonlinear analysis of surge time series to find the proper 
values of τ and m (please refer to (Sivakumar, 2004) for more detailed explanation). 
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Figure 7-4: (a) Autocorrelation function and mutual information as a function of time lags; (b) 
Relationship between the correlation exponent τ and embedding dimension m. 

 



7.2 Phase Error Correction 125                
 

 

7.2.3.1 Finding the proper time delay 
The straightforward choice of τ is usually made with the help of the zero-crossing 
autocorrelation function. Figure 7-4 (a) shows the autocorrelation and mutual information 
of the surges at HvH. The first minimum value of mutual information is 10 hours for 
surges. 

 

7.2.3.2 Estimating the appropriate embedding dimension 
A proper embedding dimension has to be identified, such that the structure of the attractor 
becomes invariant. The most widely used fractal dimension quantifier is the correlation 
dimension dc (see (Grassberger & Procaccia, 1983b)). Figure 7-5 (b) illustrates that the 
correlation exponent increases with an increase of the embedded dimension up to a certain 
value and further saturates. The saturation value of the correlation exponents/dimensions 
using the optimal time delay of 10 hours is 8.5.  
 
In conclusion, the nonlinear analysis of surge time series recommends the appropriate 
values of τ and m are 10 and 8, respectively, so the optimal phase space structure for 
predicting surges during storm condition is: 
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Figure 7-5: (a) Percentage of false nearest neighbors; (b) Six-hours ahead prediction error of the 
predictive chaotic models as a function of the number of neighbors (k) with τ=10 and m=8. 

 

7.2.3.3 Using the proper number of neighbors 
Performance based optimization is utilized to find an appropriate number of neighbors (k) 
by setting up the predictive chaotic model parameters for the surges with τ=10 and m=8 and 
the number of neighbors (k) run from 1 to 2000. The 3rd-order polynomial local model is 
used as a reference. Figure 7-5(b) depicts six-hours prediction RMS errors of the predictive 
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chaotic models as a function of the number of neighbors (k). It is seen that the suitable 
number of neighbors for predicting surges during storm condition is 13.  

 

7.2.4 Setting up the 2nd model (predictive chaotic model and ANN model 

7.2.4.1 Predictive chaotic model 
Figure 7-6 (a) shows the autocorrelation function and mutual information of the predictive 
chaotic model errors. It is seen that the mutual information decreases rapidly at time lag 1 
hour and does not much change for further time lags. Thus, the optimal value of τ is set to 
be 1 hour. Figure 7-6(b) draws the correlation exponents as a function of m. The saturation 
point (correlation dimension) cannot be determined by this plot. Consequently, we 
executed the exhaustive search to find better estimation of m and obtained the optimal 
value of m=12. This means that the 2nd predictive chaotic model can be built using the phase 
space structure:  

 1 11{ , ,..., }hvh hvh hvh
T t t ts s s+ − −=tY  (7.3) 

The prediction horizon of this model is 1 hour ahead. The (one hour ahead) future state is 
determined by local model based on the dynamical neighbors whose behavior is similar to 
the last 12 observations. This result could be associated with the most dominant tidal 
component M2 whose tidal cycle about 12 hours. 
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Figure 7-6: (a) Autocorrelation and mutual information and (b) the relationship between the 
correlation exponent ν and embedding dimension m of the predictive chaotic model errors. 

 

7.2.4.2 ANN model 
Backpropagation multi-layer perceptron (MLP) with Levenberg-Marquardt training rule 
(Haykin, 1999) was utilized and trained using the same input structure as the 2nd predictive 
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chaotic model inputs (Eq.2). The number of hidden neurons of ANN was selected using the 
exhaustive search in the range [1∼10] and we found that three is the optimal number of 
hidden nodes.  
 

7.2.5 Model results and discussion 
The model prediction performance (RMS errors) is summarized in Table 7-3. The use of the 
2nd model is able to reduce significantly the presence of phase errors. The 2nd predictive 
chaotic model outperforms for short-term predictions, whereas the ANN model 
outperforms for long-term predictions. This is due to the fact that the predictive chaotic 
model is very sensitivity to initial conditions. In contrast, ANN model is less sensitive to 
initial condition allowing for more accurate long-term predictions. 
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Figure 7-7: The observed and predicted surges by standard predictive chaotic model, with error 
correction by predictive chaotic model and ANN model, and the model prediction errors. 
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Figure 7-7 shows the observed and predicted surges of the 1st standard predictive chaotic 
model, with error correction by predictive chaotic model and ANN model during stormy 
condition at HvH and their model prediction errors. It is seen that the phase errors can be 
well corrected by predictive chaotic model or ANN model. The approach of using two 
models enhances the predictability of predictive chaotic model for longer-time prediction 
horizon. 
 

Table 7-3: Performances (RMS errors) of standard predictive chaotic model with and 
without error correction using ANN model for stormy condition. 

Pred. 
horiz. 

Standard 
predictive 

chaotic model 

With error correction 
Predictive 

chaotic model 
ANN model 

1 
3 
6 

10 
12 

21.33 
24.69 
29.10 
37.02 
39.46 

11.42 
12.74 
13.77 
14.43 
14.81 

18.33 
16.06 
14.75 
12.56 
12.90 

 

7.3 Building Predictive Chaotic Model from Incomplete Time Series 
Several methods are explored for building a predictive chaotic model from incomplete time 
series comprising of: weighted sum of linear interpolations, Bayesian principle component 
analysis, cubic spline interpolation. Since the data might have different time scale, 
interpolating and averaging are required. 
 

7.3.1 Introduction 
Traditional approaches for working with missing values can lead to biased estimates and 
may either reduce or exaggerate statistical power. Each of these distortions can lead to 
invalid conclusions. In practice, many multivariate data sets contain missing values. The 
traditional way of dealing with these missing data values is to use list wise deletion to 
generate a data set that only contains the complete data cases. However, list wise deletion 
may result in a very small data set, whereas most multivariate statistical methods require a 
large sample size, especially if the number of observed variables is large. Consequently, 
alternative statistical methods for dealing with data with missing values are of interest. 
Multiple Imputation (MI) and Full Information Maximum Likelihood (FIML) estimation 
are two popular statistical methods for dealing with data with missing values. Both these 
methods are implemented for example in LISREL for Windows (Jöreskog & Sörbom 2005). 
The Multiple Imputation module of LISREL implements the Expected Maximization (EM) 
algorithm and the Markov Chain Monte Carlo (MCMC) method for imputing missing 
values in multivariate data sets. Technical details of these methods are available in Schafer 
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(1997) and Du Toit & Du Toit (2001). Supplementary notes on these methods are also 
provided by Du Toit & Mels (2002).  
 
Some techniques on how to build predictive chaotic model from incomplete time series 
were introduced due to the facts that the observed data (including prediction data) are not 
the same in some aspects, like: time step, prediction horizon, prediction data resolution, 
time availability of data. Some operational storm surge models do not provide predictions 
for some locations or some units (i.e. water level but no surge). Missing data is also major 
issue due to measurement or transmission failures while building predictive chaotic model 
requires a sequential complete data. Several imputing techniques to solve these issues are 
described in the following sections. 
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Figure 7-8: Missing observed data and predictions from operational storm surge model with some 

missing values for Hoek van Holland station 
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Figure 7-9: Some techniques for building predictive chaotic models from incomplete time series 
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7.3.2 Weighted sum of linear interpolations 
Weighted sum of linear interpolations make several low-order estimates of the missing 
values from available nearest points from both rows and columns (Pankratov, 1995). The 
procedure is as follows: 
a) Use 10 estimates - 5 from rows and 5 from columns (3 two-point (linear) interpolations 

left-left, left-right, right-right) and 2 one-point nearest neighbor values 
b) Combine these estimates with different weights 
c) These weights will reflect availability of these basis points and distance from them  
d) They can be tuned so that for the best case (isolated missing points away from the edges) 

the result will be equivalent to average of 4-point (cubic) interpolations from rows and 
columns 

e) For the worst case (only 1 point is available) the whole matrix will be filled with this 
value 

Such a method will combine both accuracy of higher order interpolation when few points 
are missing and robustness of low-order one when there are many missing points. 
 

7.3.3 Bayesian PCA 
Bayesian PCA (BPCA) can estimate the parameters and measurements by incorporating 
prior knowledge about the data and model (Bishop, 1999; Oba et al., 2003). Probabilistic 
model and latent variables are estimated simultaneously using Bayes inference. There are 
several processes in BPCA: 
a) Principle component (PC) regression 
b) Bayesian estimation 
c) Expectation-maximization (EM)-like repetitive algorithm 

 

7.3.4 Cubic spline interpolation 
A form of interpolation where the interpolant is a special type of piecewise polynomial 
called a spline. For a data set xi of n+1 points, one can construct a cubic spline with n 
piecewise cubic polynomials between the data points, as follows: 
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where S represents the spline function interpolating the function f, one require: 
a) the interpolating property, S(xi)=f(xi) 
b) the splines to join up, Si-1(xi) = Si(xi), i=1,...,n-1 
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c) twice continuous differentiable, S'i-1(xi) = S'i(xi) and S''i-1(xi) = S''i(xi), i=1,...,n-1. 
 

7.3.5 Model results and discussion 
Building chaotic model from observed time series with missing values has been introduced 
by some imputing techniques (weighed sum of linear interpolation, Bayesian PCA, cubic 
spline interpolation) in phase space. We tested these techniques for predicting storm surges 
at HVH with 1, 5, 10 and 30% missing values. Chaotic model built from incomplete time 
series with several imputation techniques has comparable prediction accuracy to the one 
built from complete time series (see Table 7-4, Table 7-5 and Table 7-6). This demonstrates 
that the imputing techniques used can be incorporated into the chaotic model for handling 
the missing values in real operation. 
 
Figure 7-10, Figure 7-11 and Figure 7-12 depict the estimations of missing values by 
imputing techniques: weighted sum of linear interpolation, Bayesian PCA and cubic spline 
interpolation, respectively. The blue line denotes the positions of missing values in the time 
series and these are estimated by imputing techniques. The visualization inspection shows 
that the cubic spline interpolation provides better estimations of missing values than 
weighted sum of linear interpolation and Bayesian PCA. Their performances are clearly 
distinguishable for water level time series, but they have comparable performance for surge 
time series. 
 

TABLE 7-4: PERFORMANCES (RMS ERRORS) OF CHAOTIC MODEL WITH VARIOUS PERCENTAGES OF MISSING 

VALUES IMPUTED BY WEIGHTED SUM OF LINEAR INTERPOLATION. 

PHoriz. 
Missing values 

0% 1% 5% 10% 30% 

1 10.7 10.7 10.8 11.8 15.3 
3 11.0 11.1 11.3 12.2 15.3 
6 21.0 21.0 21.0 20.9 21.0 

 
TABLE 7-5: PERFORMANCES (RMS ERRORS) OF CHAOTIC MODEL WITH VARIOUS PERCENTAGES OF MISSING 

VALUES IMPUTED BY BAYESIAN PCA. 

PHoriz. 
Missing values 

0% 1% 5% 10% 30% 

1 10.7 10.8 12.2 11.1 12.2 
3 11.0 11.1 12.9 11.2 12.9 
6 21.0 21.0 21.1 21.1 21.0 
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TABLE 7-6: PERFORMANCES (RMS ERRORS) OF CHAOTIC MODEL WITH VARIOUS PERCENTAGES OF MISSING 

VALUES IMPUTED BY CUBIC SPLINE INTERPOLATION. 

PHoriz. 
Missing values 

0% 1% 5% 10% 30% 

1 10.7 10.7 11.5 11.6 11.8 
3 11.0 11.0 11.6 11.7 12.0 
6 21.0 21.1 21.2 20.8 22.0 
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Figure 7-10: Estimation of missing water level and surge in phase space using weighted sum of 

linear interpolation from nearest neighbors in comparison with the actual observation. 
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Figure 7-11: Estimation of missing water level and surge in phase space using Bayesian PCA in 

comparison with the actual observation. 
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Figure 7-12: Estimation of missing water level and surge using cubic spline interpolation in 

comparison with the actual observation. 
 

7.4 Finding True Neighbors 
The true neighbors here means that these neighbors have the similar dynamical 
characteristics or properties (i.e. similar type of storm development) to the reference or 
actual points in data sets. A searching algorithm may find false neighbors that do not have 
similar dynamical characteristics; however they are selected as neighbors by the algorithm.  
 
In this research, two different methods are used to find true neighbors in the phase space 
aiming to build local models for predicting storm surges. The first method employs the 
standard method based on Euclidean distance to find neighbors. The second one utilizes the 
new searching method by employing the principles of vectors (scalar and its direction) to 
find neighbors along the approximated trajectory in the reconstructed phase space. Finding 
true neighbors can be improved by means of this new searching method. 
 

7.4.1 Euclidean distance method 
The first method used to find the neighbors in phase space is based on the Euclidean 
distance between two points in m-dimensional space. The distance is measured from the 
actual point to all other points in the phase space. The actual point refers to the last data 
point in training data set before prediction. The neighbors are chosen if the distances of 
neighboring points are less than the threshold value. The criteria of distance threshold can 
also be replaced with the number of neighbors. The number of neighbors technique seeks 
the nearest neighbors as many as the pre-defined number of neighbors (Figure 7-13).  Let 
p=(p1, p2, ..., pm) and q=(q1,q2, ..., qm) be two points in m-dimensional space, the Euclidean 
distance (d) between them can be calculated as: 
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Other Euclidean distance measures can also be utilized, such as minimum or maximum 
Euclidean distance and squared root of the Euclidean distance. 

 

 
Figure 7-13: The searching of neighbors using Euclidean distance method in 2-dimensional phase 

space.  
 
It is possible to introduce clustering strategy in the neighbor searching processes. The 
clustering procedure is performed by grouping the points along the trajectory in m-
dimensional phase space according into a pre-defined number of clusters. Technically, this 
is done by sorting the phase space matrix, taking a reference vector xt from the phase space 
matrix and estimating the centre of each cluster. Using the established clusters, the 
neighbors of an actual point are searched by finding the nearest cluster (center) to the actual 
point within a certain distance threshold value and searching the neighboring points inside 
the selected clusters.  
 

7.4.2 The new trajectory based method  
The trajectory based method arises from the main idea that finding true neighbors does not 
only depend on the distance between two points in the m-dimensional phase space, but also 
the distance and direction of two different trajectories (sequences of points in phase space) 
partly formed by these two points. Technically, a point in phase space is an m-dimensional 
vector. A trajectory for measuring distance here consists of a connection of at least two 
points in phase space, which has scalar value and its direction. The trajectory matrix can be 
created from a phase space matrix depending on how many points to create a trajectory. 
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The trajectory neighbors are obtained by searching for trajectories which are nearest 
distance and similar direction to the actual trajectory (a trajectory formed by the last point). 
These trajectory neighbors contain points that can used to build the predictive local models. 
The principle of trajectory based method for finding true neighbors is illustrated in Figure 
7-15.   
 

 
Figure 7-14: The searching of neighbors using Euclidean distance method and clustering strategy in 

2-dimensional phase space.  
 
 
Let v1 and v2 be two trajectories lines represented as vectors with particular directions in a 
m-dimensional phase (Euclidean) space Γ. The angle (α) between these two trajectories is 
given by inverse cosine of the dot product between two (normalized) vectors (v1 and v2), 
expressed as: 
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where the angle α is in the range of [0°, 180°]. 
 
Suppose the vector v1 be a trajectory that contains the actual point and is formed by two 
points in m-dimensional phase space, the searching for the trajectory neighbors is 
performed by calculating the angles and distances between trajectory v1 and the other 
trajectories given by a set of (n-1) angles Ψ=(αv1v2, α v1v3, ..., α v1vn) and (n-1) distances 
Ω=(dv1v2, dv1v3, ..., dv1vn), where n is the total number of trajectory sections in phase space. 
The trajectories are selected as good neighbor candidates if they are near distance and 
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similar angle (direction) to the actual trajectory v1. Mathematically, the trajectory neighbors 
(TN) can be formulated as: 
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where v1 and v2 are any two trajectories formed by two points in m-dimensional phase space 
Γ2, d is Euclidean distance function, α* and d* are the maximum thresholds for angle and 
distance, respectively. Definitely, this formulation can be extended into larger size of 
trajectory length that includes more than two points in phase space. In the example of 
Figure 7-15, the trajectories v4, v5 and v6 can be good candidates as neighbors for trajectory 
v1. 
 

 
Figure 7-15: The searching of neighbors using trajectory based method in 2-dimensional phase 

space. Trajectories v4, v5 and v6 can be good candidates as true neighbors for trajectory v1.  
 

7.4.3 Model results and discussion 
The values of time delay, embedding dimension and maximum number of neighbors were 
set to 19 hours, 20 dimension and 300 neighbors, respectively. Six experiments (Y1 till Y6) 
were defined with different configurations of parameter settings for building predictive 
chaotic model (1 hour ahead). The first experiment (Y1) utilizes the clustering strategy with 
3000 maximum points in each cluster, cubic function as local model, Euclidean distance 
method with descending sorting, and finally the number of maximum neighbors to 
construct the local model is 300. The second configuration (Y2) of parameters differs from 
the previous one in the way the program order the selected neighbors, in this case is 
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ascending Euclidean distance method. The third one is similar than Y2 except clustering is 
not used. The fourth and fifth experiments (Y4 and Y5) differ from the Y3 in the way the 
neighbors are found using trajectory based method with a selection criterion that the angle 
was set in a range between the maximum value and 70% of the maximum value (not an 
ideal parameter setting). The Y5 experiment used 300 neighbors whereas Y4 experiment 
utilized variable number of neighbors. The last experiment (Y6) differs from the Y5 in the 
criteria of neighbor selection at which the angle should be in between zero and 90°.  
 

TABLE 7-7 PERFORMANCE COMPARISON OF PREDICTIVE CHAOTIC MODELS WITH DIFFERENT PARAMETER 

SETTINGS (TRAJECTORY BASED METHOD AND CLUSTERING STRATEGY). 
Parameters Y1 Y2 Y3 Y4 Y5 Y6 

τ 19 19 19 19 19 19 
m   20 20 20 20 20 20 
kmin  50 50 50 50 variable variable 
kmax 300 300 300 300 variable variable 
Clustering cluster cluster no cluster no cluster no cluster no cluster 
Max points in a cluster 3000 3000 3000 3000 3000 3000 
Local model cubic cubic cubic Cubic cubic cubic 
Searching method Euclidean Euclidean Euclidean trajectory trajectory trajectory 
Prediction horizon 6 hours 6 hours 6 hours 6 hours 6 hours 6 hours 
Theiler's window 19 steps 19 steps 19 steps 19 steps 19 steps 19 steps 
Sorting method descending ascending ascending descending descending descending 
MAE 2.1 2.7 2.8 3.6 4.1 1.1 
MSE 6.6 12.9 13.5 20.8 30.8 1.8 
RMSE 2.6 3.6 3.7 4.6 5.6 1.3 
NRMSE 0.1 0.1 0.1 0.1 0.1 0.0 
MAPE 0.5 0.4 0.3 0.8 0.5 0.5 

 
The model errors of Y1 till Y6 are listed in Table 7-7. There is a significant improvement in 
the accuracy of predictive chaotic model if the trajectory based method is used. In case of Y4 
experiment, the high accuracy of predictive chaotic model is not expected if the trajectory 
based method with angle restriction (less than the maximum angle and greater than 70% of 
this value) is used. However, a considerable improvement was obtained when trajectory 
based method was utilized with angle setting in a range between 0 and 90°.  The experiment 
Y6 with the trajectory based method has improved prediction accuracy with 1.3cm RMS 
error whereas the Y1 with Euclidean based method and clustering strategy has 2.6cm RMS 
error. A plot comparing the predictive performance of the Y1 and Y6 models is depicted in 
Figure 7-16. This plot illustrates that the model predictions agree with the observations for 
descending Euclidean distance method with clustering and trajectory based method with 
angle between 0 and 90°.  
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Figure 7-16: Relationships between observed (Yobs)and predicted values of the Y1 model (Euclidean 

based method with clustering) and Y6 model (trajectory based method).  
 

7.5 Summary 
Several enhancements are considered. First, the method of phase space reconstruction of a 
dynamical system incorporating dimensionality reduction is presented. Based on this 
reduced phase space, multivariate predictive local models are built from the real dynamical 
neighbors. Both water levels and surges time series along the Dutch coast which can be 
characterized as deterministic chaos were taken for testing our models. The results have 
shown that the use of dimensionality reduction method in the phase space reconstruction 
can improve the performance of univariate and multivariate predictive chaotic models 
outperforming ANN. For the Hoek van Holland location, the overall prediction error for 
surges 10 hours ahead is about 5 cm and 14.5 cm for non-storm and storm conditions 
respectively, which are well comparable with the physically-based numerical model 
WAQUA/DCSM currently being used in practice. This demonstrates that the proposed 
model can serve as an efficient tool for accurate and reliable short-term predictions of water 
levels and surges to support decision-makers in ship navigation and flood prediction. 
 
Second, an approach of correcting phase error in the chaotic model predictions is presented. 
In the considered application to storm surge modeling, the predictive chaotic model and 
ANN model can identify the dynamical behavior of the phase error of a standard predictive 
chaotic model and is able to estimate and correct it. This demonstrates that the proposed 
technique can enhance the predictability of a predictive chaotic model for longer-term 
predictions.  
 
Third, chaotic model built from incomplete time series with imputation has comparable 
prediction accuracy to the one built from complete time series. This demonstrates that the 



7.5 Summary 139                
 

 

imputing techniques used can be incorporated into the chaotic model for handling the 
missing values in the real operation. 
 
Fourth, a novel approach for solving the issue on false neighbors, so-called trajectory based 
method is introduced. The main idea of this method arises from the fact that finding true 
neighbors does not only depend on the distance between two points in the m-dimensional 
phase space, but also the distance and direction of two different trajectories partly formed 
by these two points. This technique allows for improving the accuracy of predictive chaotic 
model – due the fact that the predictive local models are constructed using more true 
neighbors and less false neighbors. 





 

 

 

 

CHAPTER 8: COMPUTATIONAL INTELLIGENCE IN 
IDENTIFYING OPTIMAL PREDICTIVE 
CHAOTIC MODEL 

 

 
“As natural selection works solely by and for the good of each being, all 

corporeal and mental endowments will tend to progress toward perfection.” 
Charles Darwin 

 
 
 
This chapter describes the ways of optimizing predictive chaotic model parameters leading 
to more accurate predictions. Three methods, grid search, genetic algorithms and adaptive 
cluster covering, are discussed and implemented for optimizing predictive chaotic model. 
 

8.1 Introduction 
The characteristics of the strange attractors of a chaotic system can be analyzed by sampling 
a part of the output chaotic time series of a system. The method that is commonly used is 
the state space reconstruction in delay coordinate proposed by Packard et al. (1980). 
Further, Floris Takens introduced his famous Taken's theorem stating that the unstable 
periodic obits (strange attractor) could be recovered properly in an embedding space 
whenever a suitable embedding dimension m≥2d+1 (d is the dimension of chaotic system) 
is detected; that is, the orbits in the reconstructed space Rm keeps a differential 
homeomorphism with the original system (Takens, 1981). 
 
It is very important to select a suitable pair of embedding dimension m and time delay τ 
when performing the phase space reconstruction. The precision of τ and m is directly 
related with the accuracy of the invariables of the described characteristics of the strange 
attractors in phase space reconstruction. There exist two different points of view for doing 
this.  
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The first one is that m and τ are not correlated with each other; that is, m and τ can be 
selected independently (Takens has proved that m and τ are independent in a chaotic time 
series with infinite length and no noise). Under this rule, a commonly used approach, 
GrassbergerProcaccia algorithm, for calculating the embedding dimension m was proposed 
by Albano et al. (1988). For the time delay τ, there are three criteria for its selection: (1) time 
series correlation approaches: autocorrelation, mutual information (Fraser, 1989), high-
order correlations  (Albano et al., 1991) (2) approaches of phase space extension: wavering 
technique (Buzug & Pfister, 1992) and average displacement (Rosenstein et al., 1994), and 
(3) multiple autocorrelation and non-bias multiple autocorrelation (Jiayu et al., 2006). 
 
The second viewpoint is that m and τ are closely related because the time series in the real 
world could not be infinitely long and could hardly avoid being noised. A great deal of 
experiments indicate that m and τ tie tightly up with the time window tw=(m−1)τ for the 
reconstruction of the phase space. For a given chaotic time series, tw is relatively steadfast. 
An irrelevant partnership between m and τ will directly impact the equivalence between the 
original system and the reconstructed phase space. Therefore, the combination approaches 
for computing m and τ accordingly come into being, e.g., small-window solution 
(Kugiumtzis, 1996), C–C method (Kim et al., 1999), and automated embedding (Otani and 
Jones, 2000). Most researchers consider that the second viewpoint is more practical and 
reasonable in the engineering practice than the first one. 
 
The research on combination algorithm for optimal embedding dimension and delay time 
is of interest in improving the predictive chaotic model performance. Moreover, an 
automated embedding algorithm which estimates a near optimum embedding dimension 
and delay time can be developed. 
 
In addition to optimizing the time delay (τ) and embedding dimension (m), the non-fixed 
number of neighbors k [min,max] of a dynamical chaos is essential for chaotic model 
prediction. The optimization of τ and m can be done using an exhaustive search method, 
but with addition of optimizing parameter k, which is a flexible number of neighbors within 
the range [min,max], then the optimization problem becomes more complex and needs 
more powerful techniques. Several optimization methods like particle swarm optimization, 
hierarchical GA, NSGA-II, ant colony optimization can be used to solve this problem 
(Figure 8-1). This research is extended to the optimization of the phase space structure 
using dimensional reduction methods with a certain optimality measure. This task also 
applies to multivariate phase space reconstruction (Murcia, 2009). 
 
The problem of optimization of a predictive chaotic model can be formulated as: 
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Let, the optimization problem turns out to be: 

Minimize  :  error [ Mc(τ,m, k) ] over training/cross-validation data set           
Subject to  :  mmin ≤ m ≤ mmax,  

   τmin ≤ τ ≤ τmax,  
   kmin ≤ k ≤ kmax   
  m, τ, k ∈ ℕ1 

(8.1) 

where Mc is a predictive chaotic model; τ, m, k are time delay, embedding dimension and 
number of neighbors, respectively; and τmin τmin mmin mmin are the searching space for time 
delay and embedding dimension. The objective function is to minimize the predictive 
chaotic model errors over cross-validation data set. A number of error measures can be 
used, however in this work, the root mean squared error (RMSE) is applied. 
 

8.2 Randomized Search Algorithms  

8.2.1 Grid search 
In discrete problems in which no efficient solution method is known, it might be necessary 
to test a set of possibilities sequentially in order to find the optimal solution, for instance the 
optimal model parameters. In case of predictive chaotic model, three important parameters 
(τ, m, k) as decision variables are required to be estimated properly. One of optimization 
techniques used for this purpose is simply search on a grid, and can be called Grid Search 
(GS). This technique performs exhaustive search through a subset of parameter space or 
combinations of decision variables in a certain range by evaluating the objective function 
and choosing the optimal solution corresponding to the minimum or maximum of the 
objective function.  
 

8.2.2 Genetic algorithm (GA) 
Genetic algorithm (GA) is a method for solving both constrained and unconstrained 
optimization problems that is based on natural selection, the process that drives biological 
evolution (Holland, 1975). The genetic algorithm repeatedly modifies a population of 
individual solutions (e.g. τ, m and k). In the each iteration, the genetic algorithm selects 
individuals at random from the current population to be parents and uses them to produce 
new children for the next generation (see Figure 8-1). Over successive generations, the 
population evolves toward a better solution. It can be applied to solve problems in which 
the objective function is not continuous, stochastic, or highly nonlinear. 
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The genetic algorithm uses three main types of processes with specific rules at each step to 
create the next generation from the current population. Selection rules select the 
individuals, called parents that contribute to the population at the next generation. 
Crossover rules combine two parents according with certain rule to form better children for 
the next generation. Mutation rules apply random changes to individual parents to form 
new children. 
 
Application of GA to optimize time delay and embedding dimension for a sinusoidal time 
series was carried out by Vitrano & Povinelli (2001). A binary-string genetic algorithm 
(GA) was used to reach for the dimensionality and individual delay values for an 
embedding that better fits a given criterion – in this case, the minimum standard deviation 
of estimates of the radius of the attractor compared to the mean of those values. The results 
showed that the GA appears to be a viable method for identifying appropriate time-delay 
and embedding dimension for certain types of attractors. The technique worked well if the 
attractor has a relatively uniform radius in phase space. 

 
Figure 8-1: Genetic algorithm used for optimizing predictive chaotic model parameters: time delay, 

embedding dimension and number of neighbors. 
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8.2.3  Adaptive cluster covering algorithm (ACCO) 
The other capable optimization technique, so-called Adaptive Cluster COvering (ACCO) 
algorithm was introduced by Solomatine (1999). The ACCO algorithm consists of four 
main principles: clustering, covering shrinking sub domains, adaptation and periodic 
randomization. Clustering is used in multistart algorithms to identify regions of attraction 
and to launch procedures of single-extremum search in each region. The idea of covering is 
used in set covering algorithms, and in pure direct random search. Adaptability update the 
algorithmic behavior depending on new information revealed about the problem under 
consideration. The last feature is periodic randomization. Due to the probabilistic nature of 
point generation, any strategy of randomized search may simply miss a promising region 
for search. In order to reduce this danger it is reasonable to re-randomize the initial 
population. 
 
The ACCO algorithm is implemented based on the strategy of adaptive cluster covering that 
involves nine steps, as follows: 
Step 1 (initial sampling) – Sample uniformly an initial population of N  points in feasible 

domain X . 
Step 2 (initial reduction) – Compute the function value if at each point and reduce the 

population by choosing p  best points (with lowest if , objective function). 
Step 3 (initial clustering) – Identify Nk  clusters, such that the points inside a cluster are 

“close” to each other, and the clusters are “far” from each other. For each cluster, 
identify the smallest region (n-dimensional interval or a hull) for the subsequent 
search containing all points from the cluster. Set current region number 1=k . Set 
regional iteration number 1=e . 

Step 4 (start of subsequent regional iteration e) – Sample kr   points inside region k , evaluate 
f  at each of them, and choose ks best points creating the set kR . Reduce the region so 

that it includes the best points only. 
Step 5 (shifting to the center of attraction) – Identify the ‘center of attraction’ of the region. 

This could be the best point or the centroid of the best subset. Shift the region so that 
its center coincides with the center of attraction. 

Step 6 (shrinking). Reduce the size of the region so that its linear size would be vk% of the 
previous one. 

Step 7 (stopping criteria for the current regional iteration). Check criteria: 
- C1 is achieved when a fixed number e1 of regional iterations is reached; 
- C2 is achieved if average function value for the best %u  points in kR  does not differ 

(fractionally) more than w  from the same value computed at the previous 
iteration k-1 ; 
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- C3 is achieved if during the last e2 regional iterations; there was no improvement of 
the minimum estimate. 

if (C1 or C2) and C3, then begin 
if k = km, then go to 8; 

prepare processing of the next cluster (region): set k = k + 1; e = 1; 
end 
else begin 

prepare the subsequent regional iteration: Check criterion C2B (the average 
function value in the regional set Rk is larger than the average of all points 
evaluated so far, that is, the region seems to be ‘non-interesting’) 

if C2B then 
(‘non-interesting’ region) considerably decrease the sample size rk for the next 
iteration by rdk % (e.g., 30%) 

else 
(‘interesting’ region) slightly decrease rk by rik % (e.g., 5%); 
set e = e + 1. 

end; 
Go to 4. 

Step 8 (final accurate search) – Construct the region with the linear size of %q  of the 
domain interval around the best point found so far. Perform shifting and shrinking 
(steps 5 and 6) in a repetitive fashion until the stopping criterion C1 or C2 is satisfied. 

Step 9  Check whether l= T. If yes, then STOP, otherwise set l=l+1 and go back to step 1. 
 

8.3 Case Study 
The research case study was concentrated on predicting the sea surges levels in two tidal 
stations located in the North Sea and in the Caribbean Sea.  
 
The data used are located in the transition between December of 1994 and January of 1995. 
This period shows an important fluctuation of the surge level. Due to this characteristic this 
period is taken as testing data set when applying the predictive chaotic model.  The data was 
split in training, testing and validation data set as described in Table 8-1. According with 
data-driven models it is possible to define three important data sets: training and cross-
validation (testing). The training data set is defined as the predicted values in which the CM 
finds neighbors in the reconstructed phase space.  Moreover, the cross-validation data set in 
this case is defined to apply the optimization methods in order to find an appropriate set of 
chaotic parameters. Finally the verification data set is defined to test the optimal parameter 
found in the optimization process. 
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TABLE 8-1: STATISTICAL DESCRIPTIONS OF TRAINING, TESTING AND VERIFICATION DATA SETS OF SURGES AT 

HOEK VAN HOLLAND TIDAL STATION. 

Name Data Set 
Surges 

Mean 
(cm) 

Max. 
(cm) 

Min. 
(cm) 

Standard 
deviation 

Hoek van 
Holland 
(HvH) 

Training 
# points 43699 
Rage for the Time indices: [1 – 43699]     
Range for the Date  
[1/1/1990 00:00:00 – 12/25/1994 19:00:00] 

-0.96 220.33 -108.83 26.01 

Testing 
# points 300 
Range for the Time indices: [43700 – 44000] 
Range for the Date  
[12/25/1994 20:00:00 – 1/13/1995 08:00:00]    

19.37 157 -119 57.51 

Verification 
# points 300 
Range for the time indices: [52420 – 52720]   
Range for the Date  
[12/25/1995 20:00:00 – 1/13/1996 08:00:00]   

-7.81 82 -57 22.04 

 

8.4 Model Setup  
The predictive chaotic model (CM) to be optimized has the following characteristics. The 
CM uses a local cubic model in the reconstructed phase space. The number of neighbors is 
variable between 1 and kmax. There are two rules to filter the neighbors: the first one select 
the kmax closes neighbors from the current state and the second, from the last data set, select 
the neighbors which are between the minimum distance of the last set of point and twice 
this value. The method used to find neighbors in the phase space is Euclidean distance. The 
Taken’s theorem is used to reconstruct the phase space. The prediction horizon is six hours.  
 

8.4.1 Main experiment: predictive model for Hoek van Holland  

8.4.1.1 Grid search 
The values taken as reference to define the ranges for the time delay (τ ) and embedding 
dimension (m) are taken from the nonlinear time series analysis. This analysis suggest a 
value of τ =11 (value obtained using mutual information) and m=6 (value obtained using 
false nearest neighbors). The typical parameters of a predictive chaotic model were defined: 
the local model used is cubic, the prediction horizon is 6hr and the neighbors are selected 
using the Euclidean distance. The data set was split as showed in Table 8-1. Finally different 
combinations of τ, m and number of maximum neighbors (kmax) were defined in order to 
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explore the solution space by using a grid search. The values from 2 to 28 and from 2 to 28 
were selected for τ and m, respectively. In addition, the values for the number of neighbors 
explored were: 5, 10, 15, 25, 50, 60, 80 and 100 (5832 combinations, time of simulation 24 
days, one combination takes approximately 15min). 

8.4.1.2 Randomized search 
 The grid search explored in the last section shows the general trend of the objective 
functions but does not cover the whole solution space. The main reason is due to the fact 
that it requires very intensive computation. The solution is done by means of randomized 
search techniques to explore the solution space.  The algorithms used are: Genetic 
Algorithm (GA) and Adaptive Cluster Covering Optimization (ACCO). 
 
The constant parameters used in the experiment are equal to the ones defined in the 
previous section for the grid search. We used the GA Tool Box in MATLAB. The 
configuration of the experiment can be divided in fourth important steps: 

1) To formulate the fitness function which in this case is a function containing the 
predictive chaotic model (CM).  

2) To define the function to perform the mutation (this function returns only integer 
values).  

3) To determine the ranges for the chaotic parameters which are the decision variables 
(τ: time delay, m: embedding dimensions and kmax: number of maximum neighbors) 
in this particular case for the Hoek van Holland tidal station the ranges are: τ = 
[4~48], m = [3~48] and kmax =[1~100].  

4) To define the parameters for the GA and those are: the number of generations (10) 
and population size (10). Finally the cross over fraction was defined as a high value in 
order to have diversity in each generation. 

 
For ACCO we used the GLOBE software. The configuration of the problem in ACCO has 
three basic steps. The first one is to define the objective function that contains the CM. The 
second one defines the ranges for the decision variables as: τ = [4~48], m = [3~48] and kmax 
=[1~100]. The third is to define the parameters of the ACCO algorithm (Solomatine 1999), 
including the number of clusters, number of iterations (all set to default values offered by 
software), and the initial population size (set to 10). 
 

8.4.2 Additional experiment:  predictive model for the San Juan station  
For this experiment we also used an additional data set (water level at San Juan station) that 
became available at the time of this particular phase of work. The San Juan station is located 
in Puerto Rico. This station was taken in order to simulate the surge levels in a region 



8.4 Model Setup 149                
 

 

affected by Hurricanes like the one presented in 2007 called Hurricane Felix. It was a 
destructive Category 5 hurricane on the Saffir-Simpson hurricane scale. In addition, it was 
the sixth named storm, second hurricane, and second Category 5 hurricane of the 2007 
Atlantic hurricane season. The observed water level and predicted tide data were available 
and used for calculating the storm surge. The data has hourly continuous values from 2003 
to 2008 (52608 hourly values).  The water level was obtained from University of Hawaii Sea 
Level Center. The tides were predicted using a program called "wxtide32” (WXTide32, 
2009). The water level is subtracted by tides for obtaining the surge levels (Table 8-2).  
 
Furthermore, nonlinear time series analysis was carried out to find the proper values of time 
delay and embedding dimension by using mutual information and false nearest neighbors. 
The values found using this techniques are: τ =4 and m=12. 
 

TABLE 8-2: STATISTICAL DESCRIPTIONS OF TRAINING, TESTING AND VERIFICATION DATA SETS OF SURGES AT 

SAN JUAN TIDAL STATION. 

Name Data Set 
Surges 

Mean 
(cm) 

Max. 
(cm) 

Min. 
(cm) 

Standard 
deviation 

San Juan 
(SJ) 

Training 
# points 33599 
Rage for the Time indices: [1 – 33599]   
Range for the Date  
[1/1/2003 00:00:00 – 10/31/2006 11:00:00]   

105.22 132.7 78.9 7.67 

Testing 
# points 300 
Rage for the Time indices: [33600-33900]   
Range for the Date  
[10/31/2006 12:00:00 – 11/13/2006 12:00:00]   

112.72 130.50 98.90 6.67 

Verification 
# points 300 
Rage for the Time indices: [42360-42660]   
Range for the Date  
[10/31/2007 12:00:00 – 11/13/2006 12:00:00]   

109.38 125.20 94.90 6.63 

 

8.4.2.1 Grid search 
The estimation results from nonlinear time series analysis were used as a reference to define 
the ranges for the time delay (τ) and embedding dimension (m) for grid search 
optimization. The optimization suggested a value of τ =4 and m=24.  The typical parameters 
of a predictive chaotic model were defined as in the previous case study. The data set was 
split as showed in Table 2. Finally different combinations of τ, m and number of maximum 
neighbors (kmax) were defined in order to explore the solution space by using a grid search. 

http://en.wikipedia.org/wiki/Saffir-Simpson_hurricane_scale
http://en.wikipedia.org/wiki/Storm
http://en.wikipedia.org/wiki/Tropical_cyclone
http://en.wikipedia.org/wiki/List_of_Category_5_Atlantic_hurricanes
http://en.wikipedia.org/wiki/2007_Atlantic_hurricane_season
http://en.wikipedia.org/wiki/2007_Atlantic_hurricane_season
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Values from 2 to 28 and from 2 to 28 were selected for τ and m, respectively. Finally the 
values for the number of neighbors explored are: 5, 10, 15, 25, 50, 60, 80 and 100 (5832 
combinations, time of simulation 24 days, one combination takes approximately 15min). 

8.4.2.2 Randomized search 
The configuration of GA and ACCO optimization was made the same as the one for the 
case study of Hoek van Holland tidal station.  
 

 
Figure 8-2: Surge time series for the San Juan tidal station between 2003 and 2008. 

 

8.5 Model Results and Discussion 
The comparison results of the predictive chaotic model optimization for Hoek van Holland 
and San Juan tidal stations are presented in Table 8-3 and Table 8-4, respectively.  The 
comparison between observed an predicted values for the set of chaotic parameter found 
using optimization methods are presented in Figure 8-3, Figure 8-4, Figure 8-5 and Figure 
8-6. 
 

TABLE 8-3: OPTIMAL PARAMETER SETTING OF CHAOTIC MODEL FOR HOEK VAN HOLLAND OBTAINED FROM 

ACCO, GA AND GRID SEARCH (GS). 
Method τ m kmax RMSE (cm) 

GS 16 29 25 13.25 
GA 24 20 26 13.75 
ACCO 16 28 22 12.98 
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TABLE 8-4: OPTIMAL PARAMETER SETTING OF CHAOTIC MODEL FOR SAN JUAN OBTAINED FROM ACCO, GA 

AND GRID SEARCH (GS). 
Method τ m kmax RMSE (cm) 

GS 8 12 65 3.006 
GA 8 12 55 3.007 
ACCO 8 12 65 3.006 

 
The results for the Hoek van Holland tidal station (Figures 5 and 6) shows that the optimal 
set of parameter reproduce the general tendency of the surge level for this location when 
using six hours for the prediction horizon. Moreover, the optimization results for San Juan 
tidal station (Figures 7 and 8) showed the same values of time delay and embedding 
dimension. This means that the time series under study have a sinusoidal tendency so when 
reconstructing the phase space the trajectories are smoother.  
 
Based on these examples one may conclude that the randomized search and the grid search 
appear to be viable methods for identifying the appropriate embedding dimensions and 
time delay when predicting surge water levels.  These methods can be combined to find 
appropriate values: first using a randomize algorithm to find local optimal points and then 
the search can be refined by using the grid search around those points. This solution is 
based, of course, on the ranges assigned to time delay (τ), embedding dimensions (m) and 
number of maximum neighbors (kmax), and these ranges for the time delay and embedding 
dimensions have to be obtained by chaotic analysis.  
 

 
Figure 8-3: Univariate model. Prediction of the surges at Hoek van Holland based on hourly time 

series, testing data set (solid line) and observed data (wider line). Also the errors between observed 
and predicted values are shown τ=16, m=28, k=[1,22], RMSE=12.98 cm 
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Figure 8-4: Univariate model. Prediction of the surges at Hoek van Holland based on hourly time 
series, validation data set (solid line) and observed data (wider line. The errors between observed 

and predicted values are shown with τ=16, m=28, k=[1,22], RMSE=7.08 cm. 
 
The optimal values found using the randomized search are shown in Figure 5. It is possible 
to notice that the chaotic parameters found improve the performance of the predictive 
chaotic model. The predicted values near the peak are close to the measure ones. In Figure 6 
the validation of the model under high surge and normal surge levels presents a 
considerably improvement in the prediction of the model. Also in the peak there is shift in 
the predicted values. This could be explain due the selection of the neighbors in the phase 
space is not totally accurate when building the local models.  
 

 
Figure 8-5: Univariate model. Prediction of the surges at San Juan based on hourly time series, 

testing data set (solid line) and observed data (wider line). The errors between observed and 
predicted values are shown (τ=8 m=12 k=[1,65]) with RMSE=3.01 cm. 

 
The application of the optimization of predictive chaotic models in the Caribbean Ocean is 
presented. The results are shown in Figure 7 and 8. Figure 7 present the results for the 
prediction data set. The error presented is low in this case due the periodic values measure 
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of surge levels. This sinusoidal behavior improves the performance of the predictive chaotic 
model. Furthermore, the error in the validation data set is also low an reflects that the 
optimization process find an appropriate set of chaotic parameters to prediction the surge 
levels. 
 

 
Figure 8-6: Univariate model. Prediction of the surges at San Juan based on hourly time series, 
validation data set (solid line) and observed data (wider line). The errors between observed and 

predicted values are shown (τ=8, m=12, k=[1,65]) with RMSE=3.01 cm. 
 
Finally this to examples shows that it is possible to improve the selection of the chaotic 
parameter by using optimization methods. This method can be used as a complementary to 
the well-known estimators in nonlinear time series analysis, such as correlation dimension 
and mutual information. 
 

8.6 Summary 
Chaotic analysis methods presented in Chapters 5 and 6 allow for finding the ranges of time 
delay and embedding dimension. In this Chapter we present the ways of finding the values 
of these parameters ensuring optmal performance of the predictive model. In application to 
storm surge prediction, exhaustive and randomized search algorithms appear to be viable 
methods for identifying the appropriate embedding dimension and time delay for the storm 
surge predictive model.  These methods can be also combined: first using a randomize 
algorithm to find local optimal points and then the search can be refined by using the 
exhaustive search around those points. The combination of methods reduces the 
computational effort when trying to find an optimal set of chaotic parameters. 
 
The results show that the application of optimization methods improves the performance of 
predictive chaotic models for predicting storm surges. For the case study the optimal set of 
parameters when using randomized search are: τ=16, m=28, kmax =22 and RMSE=12.98cm 
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for the Hoek van Holland tidal station and τ=8, m=12, kmax =65 and RMSE=3cm for the San 
Juan tidal station. These results are improved compared with the standard predictive 
chaotic model without optimization (τ =3, m=6, k=13, no clustering) with RMSE=21.69. 
Overall the presented approach leads to more accurate chaotic predictive models.  

 



 

 

  

 

CHAPTER 9:  REAL-TIME DATA ASSIMILATION USING 
NARX NEURAL NETWORK 

 

 
 

“We are the Borg. You will be assimilated. Your biological and 
technological distinctiveness will be added to our own.” 

Star trek: Voyager 
 
 
 
This chapter presents a real-time data assimilation technique for storm surge predictive 
chaotic model using NARX neural network. 
 

9.1 Introduction  
Complexity of natural dynamical systems and sensitivity of corresponding models to initial 
conditions are the two major reasons of model prediction errors. The accuracy on defining 
initial condition is very crucial since the small error of the initial condition results in loss 
prediction ability of the model. Even if we had a perfect predictive model, all predictions 
start to diverge from the truth after certain time. However, these prediction errors can be 
corrected or reanalyzed once new observations available using data assimilation techniques. 
Data assimilation allows for making the best estimate of the necessary updates to the 
current model states or outputs so that the model can provide more reliable and accurate 
predictions. 
 
A predictive model can be process-based or data-driven model which is seen to be 
composed of a set of equations (algorithms) that involve state variables and parameters. The 
model parameters typically remain constant while the state variables vary in time. Predictive 
model in real-time operation may take into consideration the new observation at the time of 
preparing for prediction. The feedback process of assimilating the new observation into the 
prediction procedure is so-called updating. The updating procedure can be classified into 
four different updating strategies based on the variables modified during the feedback 
process, as follows: 
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a) Updating input variables  
Input uncertainties are often being the dominant source in prediction error. This 
method is often based on iterative procedures and the updating of input variables 
results in changing state variables.  
 

b) Updating state variables 
State variables can be adjusted for instance by updating state variable through simply 
substituting simulated variables by observed data from satellites.  More 
comprehensive methodology using Kalman filtering theory can be used and/or 
integrated either with purely statistical transfer function models such as ARIMA.  
 

c) Updating of model parameters 
Adaptation of model parameters can be assessed through calibration using historical 
data. For a complex model, this adaption is extremely difficult because of a large 
number of parameters involved. In practice the use of this method is mostly confined 
to statistical black box models where it may be argued that no clear distinction exists 
between state variables and model parameters.  

 
d) Updating  of output  variables (error  prediction) 

The difference error between model predictions and observation (model error) are 
usually found to be serially correlated. This allows for predicting the future values of 
these errors by means of time series models such as ARMA model. The model 
predictions can be improved by adding the error predictions from the ARMA error 
model. This method which is often referred to as error prediction is the most widely 
used in practice (WMO, 1992). Earlier studies on model error prediction have been 
conducted by Jamieson et al. (1972), Lundberg (1982) and Szöllösy-Nagy et al. 
(1983). 
 

Predictive Model

State 
variables Parameters

Data Assimilation 
Procedure

Input 
variables Predictions

New 
observation

Corrected predictions 
using data assimilation

1 2 3 4  
 

Figure 9-1: Schematic diagram of predictive model with data assimilation on different updating 
strategies (modified WMO, 1992).  
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The data assimilation techniques have been broadly studied for more than a decade. A 
number of different data assimilation techniques have been developed (Heemink et al., 
1997; Bouttier & Courtier, 1999; El Serafy et al., 2007; Evensen, 2007). Heemink et al. 
(1997), Verlaan & Heemink (1997) and Robaczewska et al. (1997) have developed the data 
assimilation techniques for storm surge numerical models particularly in the Netherlands.  
 
For improving the accuracy and predictability of chaotic storm surge models, this research 
focuses on the use of artificial neural networks (ANNs) for the task of data assimilation. 
ANNs have been successfully applied to a number of time series prediction and modeling 
tasks in various fields of sciences and engineering (Haykin, 1999; Bishop, 2006)(Haykin, 
2008). In particular, when the time series is noisy and the underlying dynamical system is 
nonlinear, ANN models frequently outperform standard linear techniques, such as the Box–
Jenkins models (Box et al., 1994). Some experiments and research on the applications of 
ANNs for the task of data assimilation have been explored. Härter and de Campos Velho 
(2008) employed radial-basis function neural network for data assimilation of 1D shallow 
water model by emulating Ensemble Kalman filter. Furthermore, a multi-layered 
perceptron neural network was utilized to imitate particle filter for data-assimilation of 
Lorenz system (Furtado et al., 2008).  
 
In this work, the Nonlinear AutoRegressive eXogenous inputs (NARX) neural network is 
used for data-assimilating a chaotic storm surge model with new observations. The NARX 
neural network is a recurrent neural network model with the limited feedback - only from 
the output neurons and not from the hidden ones and has exogenous and endogenous time-
delayed inputs. In practice, NARX neural network has several advantages. It has been 
reported that the NARX neural network is more powerful than conventional recurrent 
networks (Horne & Giles, 1995). The gradient-descent learning can be more effective in 
NARX neural network due to its embedded memory which provides a shorter path for 
propagating gradient information when the network is unfolded in time to back-propagate 
the error signal. Thus, it can reduce the network’s sensitivity to the problem of the long-
term dependencies (Menezes & Barreto, 2008). The application of self-organizing NARX 
neural network in the role of predictor for a chaotic time series was reported by Barreto and 
Araujo (2001). They verified that NARX neural network is more powerful than 
conventional recurrent networks and can reduce the network’s sensitivity to the problem of 
the long-term dependencies. However, we could not find references to research specifically 
where NARX neural network is used as the data-assimilation device with a predictive 
chaotic model is employed.  
 
For the purpose of data assimilation, a NARX neural network is trained using the historical 
prediction errors and observations. Subsequently, the trained NARX neural network can 
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correct the model predictions with the newly available observations fed as the exogenous 
inputs. The NARX data assimilation is performed in nearly real-time process since it does 
not require a lot of computation in comparison to variational or sequential methods. This 
proposed method was implemented to data-assimilate chaotic storm surge models for the 
North Sea.  
 

9.2 NARX Neural Network 

9.2.1 Network Architecture 
The Nonlinear AutoRegressive eXogenious inputs (NARX) neural network is a class of 
discrete-time recurrent neural networks that can be mathematically represented as: 

 y(n+1) = f [y(n), ... , y(n-dy+1); x(n-k), x(n-k+1), ... , x(n-dx-k+1)] (9.1) 

where x(n)∈ℜ and y(n)∈ℜ denote, respectively,  the input and output of the model at 
discrete time step n, while dx≥1 and dy≥1, dy≥dx, are the input-memory and output-memory 
orders, respectively. The parameter k is a delay term, known as the process dead-time 
(Haykin, 1999). In general, we assume k=0, thus obtaining the following NARX model: 

 y(n+1) = f [y(n), ... , y(n-dy+1);  x(n), x(n-1), ... , x(n-dx+1)]  (9.2) 

which may be written in vector form as: 

 y(n+1) = f [y(n); x(n)] (9.3) 

where the vectors y(n) and x(n) denote the output and input regressors, respectively. The 
nonlinear mapping f(.) is generally unknown and can be approximated, for example, by a 
standard MLP network. The resulting connectionist architecture is then called a NARX 
neural network, a powerful class of dynamical models which has been shown to be 
computationally equivalent to Turing machines (Siegelmann et al., 1997). Figure 9-2 shows 
the architecture of NARX neural network with three hidden neurons, dx delayed inputs and 
dy delayed outputs. 
 

9.2.2 Learning Algorithm 
Error surfaces of dynamic networks can be more complex than those of static networks.  
Learning of such dynamic network like NARX is more likely to be trapped in local minima. 
A dynamic back-propagation (BP) algorithm is required to compute the gradients, which is 
computationally more intensive than that for a static BP.  
 
One of the intensively used learning algorithms is Levenberg-Marquardt optimization 
algorithm. It combines the advantages of the simple gradient descent and the Newton’s 
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method algorithm, and has rapid convergence and robust performance In this paper, we use 
a modified Levenberg-Marquardt optimization algorithm with the inclusion of Bayesian 
regularization technique (Lin et al., 1997) for training the NARX neural network. It 
minimizes a combination of squared errors and weights to produce a NARX model which 
generalizes well.  
 
Regularization is a way of dealing with the negative effect of large weights which cause 
excessive variance of outputs. The idea of regularization is to make the network response 
smoother through the modification in the objective function by adding penalty term 
consisting of the squares of all network weights. This additional term favors small values of 
weights and decreases the tendency of a model to overfit noise in training data set. Mackay 
(2003) introduced a technique, so-called Bayesian regularization which automatically sets 
the optimal function to get the best generalization based on Bayesian inference method. The 
Bayesian optimization of the regularization parameters requires the computation of Hessian 
matrix at the minimum point. This can be done using Gauss-Newton approximation to 
Hessian matrix if Levenberg-Marquardt optimization algorithm is used to locate the 
minimum point.   
 

9.3 NARX Data Assimilation  
A process of approximating the true state of a physical system at a given time is called 
analysis. The information on which the analysis is based includes the observational data and 
the model of the physical system, together with some background information on initial and 
boundary conditions and, possibly, the additional constraints on the analysis. An analysis 
can be very simple, for example a spatial interpolation of observations. However, much 
better results can be obtained by involving the dynamic evolution of the physical system 
into the analysis. Data assimilation combines time distributed observations and a dynamic 
model. It aims at accurate re-analysis, estimation and prediction of an unknown, true state 
by merging observed information into a model (Evensen, 2007). 
A particular challenge in predicting the time-evolution of a dynamical system is the 
nonlinearity of such system and the corresponding sensitivity to initial conditions. It is well 
known that even if we had a perfect prediction model, all predictions start to diverge from 
the truth after a finite time. These diverged or error predictions can be corrected or re-
analyzed once new observations available via data assimilation. Variational analysis 
(3D/4DVar) and sequential method (i.e. Ensemble Kalman filter) are two data assimilation 
methods which are commonly used in physically-based (numerical) models (Heemink & 
Metzelaar, 1995; Kalnay, 2003). The variational data assimilation consists of minimizing a 
predefined cost function that measures the difference between model predictions and 
observations over a certain time interval. In the sequential data assimilation, a recursive 
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updating of the model solution is made during a forward integration where model 
predictions and observations are weighted according to the associated uncertainties. 
In general, data assimilation process can be mathematically represented by: 

 xa = xf – W[yobs-H(xf)] (9.4) 

where xa is the values of the analysis, xf is the model prediction (also known as beckgound 
field), W is the weight (covariance) matrix as a distance function between predictions and 
observations, yobs is the observations, H is the observation system and [yobs-H(xf)] is the 
innovation. Many data assimilation methods are based on this equation (Eq.8), but differ by 
the approach to combine the model predictions and observations to produce the analysis, 
numerical cost function and optimality. 
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Figure 9-2: Predictive chaotic model with data assimilation using NARX neural network. The 
predictive chaotic model predictions (using phase space reconstruction and local modeling) and 

new observations are fed into endogenous and exogenous inputs of NARX neural network 
networks, respectively. 

 
A data assimilation technique using NARX neural network is introduced for combining 
predictive chaotic model predictions and observations (as schematized in Figure 9-2) for 
improving the accuracy of predictive chaotic model predictions. The predictions (output) of 
predictive chaotic model with time-delayed inputs (TDI) and new observations are fed as 
endogenous and exogenous tapped delay inputs (TDL), respectively, in the NARX neural 
network. Parallel NARX architecture is employed here since only one-step prediction or 
assimilation process is required. The following sections describe the case study and the 
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implementation and experimental results of this data assimilation technique for assimilating 
the predictive chaotic models of storm surge dynamics in the North Sea. 
 

9.4 Data Description 
The data used comes from the same location (Hoek van Holland) as described in the 
previous experiments, but it was measured at different periods of time; one of the reasons 
for this was to be able to include a particularly interesting extreme storm surge in the North 
Sea on November 9th, 2007. The physically-based models of several European institutions 
provide the predictions of storm surges. Each time series begins at 00:00 January 1st, 2003 
and is available until 23:50 December 31st, 2007 with some missing values.  This results in 
262944 continuous samples in total for the 10 min data, and 43824 for the hourly data. Due 
to different resolutions of European storm surge model time steps, the hourly time series 
data used for further analysis and model prediction were made by an averaging technique. 
 
TABLE 9-1: DATA SEPARATION OF HOURLY SURGE TIME SERIES FOR TRAINING, VALIDATION AND VERIFICATION 

DATA SETS (AT HOEK VAN HOLLAND). 

Date 
Surge Data Sets (hourly) 

Training 
Validation Verification 

Non-stormy Stormy Non-stormy Stormy 

Start  11Sep05 01Jun04 08Oct04 1Sep07 15Oct07 

End  31Aug07 31Aug04 31Dec04 14Oct07 20Nov07 

 
Table 9-1 shows the data separation of hourly surge time series at HvH for training, 
validation and testing data sets. The validation and testing data sets are split into non-
stormy and stormy periods with the objective to investigate the model performances during 
normal and extreme storm surge conditions. 
 

9.5 Model Results and Discussion 

9.5.1 Estimating delay time and embedding dimension 
Some methods based on the theory of nonlinear dynamics and deterministic chaos (Hegger 
et al., 1999; Siek & Solomatine, 2010a) were used to analyze surge time series for HvH tidal 
station and to estimate the proper values of m and τ. The appropriate delay time τ for the 
reconstruction of the surge dynamics at HvH was assessed using the methods of 
autocorrelation function and the first minimum average mutual information (Fraser & 
Swinney, 1986), as presented in Figure 9-3.The first minimum mutual information is τ=10 
hours. 
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Figure 9-3: The autocorrelation function (solid line) and mutual information (dashed line) as a 

function of time lags for the hourly surge time series at Hoek van Holland location. 
 

For estimating embedding dimension m, the correlation dimension dc, which is based on 
the correlation integral or function analysis (Grassberger & Procaccia, 1983a) was utilized. 
Obtaining a non-integer, finite dc for a time series demonstrates fractal scaling and indicates 
possible chaotic behavior. Figure 9-4 shows that the correlation exponent increases with an 
increase of the embedded dimension up to a certain value and further saturates. A nonlinear 
Gaussian noise reduction was applied to obtain a better estimation of correlation 
dimension. The saturation value of the correlation exponent is 7.8, which indicates the 
presence of an attractor in the surge dynamics. Taking into account the estimation of the 
embedding dimension m, if one uses the Taken's embedding theorem the embedded 
dimension (integer number) of the manifold which contains the attractor is m=2dc+1 ≈17. 
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Figure 9-4: Relationship between the correlation exponent ν and embedding dimension m.  

 

Another method for estimating the proper values of m is false nearest neighbors (FNN) 
method, which measures the percentages of false nearest neighbors between successive 
embedding dimensions. The FNN result also gives an estimation of m=17. Figure 9-5 shows 
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that the percentage of the FNN drops to about 30% with m=17, and remains unchanged for 
further increase of m. However, we investigated further on the optimal choice of m using an 
exhaustive search optimization with respect to the model performance over cross-validation 
data sets during non-stormy and stormy periods. The result showed the optimal value of m 
is 18 and this value was used for building the predictive chaotic model and prediction. 
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Figure 9-5: Percentage of the false nearest neighbors as function of the embedding dimension m.  
 

In addition, the stability and predictability of the surge dynamics was investigated by the use 
of Lyapunov exponents (Sano and Sawada, 1985). Figure 9-6 depicts the Lyapunov 
spectrum with the largest Lyapunov exponent estimated as λ1=0.07. This indicates a loss of 
information of 0.07 bits/hour during the dynamical evolution of the system, and thus loss of 
predictive capabilities. The Lyapunov spectrum contains a large negative exponent λ18=-0.7 
which indicates presence of strong dissipation mechanisms in the surge dynamics. The 
presence of positive Lyapunov exponents and the fact that  Σλi=-1.56<0, provide strong 
evidence that such system is driven by deterministic chaos.  
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Figure 9-6: Lyapunov spectrum for the hourly surge time series at Hoek van Holland tidal station 

for m=18 dimension. The largest Lyapunov exponent (bold black line) is positive and a sum of 
global Lyapunov exponents (dashed line) is negative. 
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9.5.2 European operational storm surge models  
Table 9-2 lists the performances of the operational physically-based numerical storm surge 
models from European institutions, namely: BSH Germany, DMI Denmark, DNMI 
Norway, KNMI Netherlands and MUMM Belgium. These models have diversity on 
prediction horizons, time steps, data availability and data assimilation frequencies. For 
comparison, these data were transformed into the same data resolution (hourly) by 
interpolating and averaging. The performance comparison shows that BSH storm surge 
model from Germany outperforms the other models and is slightly better than KNMI 
model from Netherlands (such differences can be explained by the difference in periodicity 
of data assimilation). 
 
TABLE 9-2: PERFORMANCE COMPARISON BETWEEN SEVERAL EUROPEAN OPERATIONAL STORM SURGE MODELS. 

Models 
Forecast horizon and 

data assimilation (hours) 
Time step 
(minutes) 

RMS Error (in cm) 
Non-stormy 

Period 
Stormy 
Period 

BSH 12 10 7.96 10.92 
DMI 6 10 9.97 12.58 
DNMI 12 60 10.82 12.35 
KNMI  48(6)* 10 8.95 11.62 
MUMM 6 10 15.42 19.15 
*Data assimilation done every 6 hours, for other models unknown 

 

9.5.3 Chaotic storm surge models 
Adaptive local models (constant, linear, quadratic and 3rd- order polynomial) based on 
dynamical neighbors were implemented and used in the reconstructed phase space of the 
surge at HvH to map the dynamics of the attractor. In this experiment only the information 
from the surge hourly time series was used to build the local models. The sensitivity of the 
choice of the local approximation, the embedding dimension (m), the time delay (τ) and the 
number of neighbors (k) were investigated, and these values were optimized. The results 
showed that the use of 3rd-order polynomial function provides the best predictive chaotic 
model performance. The surge predictions were further compared with neural network 
(MLP) models. The same reconstructed phase space (input data) was used to train different 
MLP NNs, using different structures (number of hidden layer/nodes and transfer 
functions). The proper phase reconstruction is as follows: 

 },...,,,{ 1802010
hvh
t

hvh
t

hvh
t

hvh
t ssss −−−=tY  (9.5) 

Table 9-3 summarizes the performance of the predictive chaotic models for the surge 
predictions and the results of the best performing NN for prediction horizons of 1, 6, 12, 24 
and 48 hours. The results indicate that predictive chaotic models outperform MLPs 
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significantly for both non-stormy and stormy periods. In Figure 9-7, the amplitudes of the 
extreme positive surges which is actually the storm surge on November 9th, 2007 are not 
correctly predicted by NN. The predictive chaotic model is able to predict this extreme 
storm surge better, but still cannot reach the surge peak. This is due to the fact that for the 
rare peaks the predictive chaotic model does not have ‘true’ neighbors (no such high surges 
in the past) and lack of extrapolation ability of the built local models corresponding to this 
extreme surge.  
 
TABLE 9-3: PERFORMANCE COMPARISON OF ARTIFICIAL NEURAL NETWORK AND PREDICTIVE CHAOTIC MODEL 

(WITHOUT METEOROLOGICAL PREDICTIONS). 

Models 
RMS Errors (in cm) for Different Prediction Horizons 

1hr 6hr 12hr 24hr 48hr 
Non-stormy Period - m=18, τ=10, k=[50 100] 
No. hidden nodes 6 11 9 1 3 
Neural networks 6.16 11.65 15.96 20.44 19.61 
Predictive chaotic model 6.56 12.46 16.63 22.50 21.77 

Stormy Period - m=18, τ=12, k=[9 100] 
No. hidden nodes 9 14 8 11 14 
Neural networks 8.24 16.98 27.32 33.66 33.74 
Predictive chaotic model 7.80 19.60 30.31 37.11 36.35 

 

9.5.4 Data assimilation using NARX neural network 
The numbers of tapped input delays and hidden nodes of NARX were optimized by an 
exhaustive search procedure. The frequencies of data assimilation for the built predictive 
chaotic models were set to be 6, 12 and 24 hours. This data assimilation frequency was made 
with considerations to tidal cycle and the operational data assimilation of the European 
storm surge model, like KNMI (Dutch meteo service), is done for every 6 hours. The data 
assimilation process was performed in nearly real-time since the process is one-step 
prediction of the trained NARX neural network given some new observations and recent 
chaotic model predictions.  
 
Table 9-4 lists 48-hours ahead predictive chaotic model prediction errors with data 
assimilation for non-stormy and stormy periods. It is shown that the predictive chaotic 
model with data assimilation has a significant increase of prediction accuracy than the one 
without data assimilation and the European physically-based models. In 48-hours 
prediction during stormy period, the predictive chaotic models with (6 hours) and without 
data assimilation and KNMI model (with EnKf data assimilation) have RMS errors of 
5.54cm, 36.35cm and 11.62cm, respectively (see bold numbers in Table 9-2, Table 9-3 and 
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Table 9-4). This demonstrates that the incorporation of data assimilation method in 
predictive chaotic model can increase the accuracy of predictions and extend the 
predictability of such model which is typically only reliable for short-term prediction. 
 

TABLE 9-4: PERFORMANCES OF 48 HOURS CHAOTIC MODEL PREDICTIONS WITH DIFFERENT FREQUENCIES OF 

NARX NETWORK DATA ASSIMILATION. 
Predictive chaotic model with Different Frequency of 
Data Assimilation Using NARX (RMS errors in cm) 

 6hr 12hr 24hr 
Non-stormy period 
No. tapped input delays 20 20 20 
No. hidden nodes 20 20 20 
RMSE 2.05 1.93 2.08 
Stormy period 
No. tapped input delays 20 20 19 
No. hidden nodes 17 20 14 
RMSE 5.57 15.87 20.09 

 
 

9.6 Summary 
A real-time data assimilation technique using NARX neural network is introduced and 
implemented to re-analyze and improve the predictive chaotic model predictions of storm 
surge in the North Sea. The predictive chaotic model with data assimilation has 
demonstrated a pronounced capability for reliable and accurate prediction outperforming 
standard predictive chaotic model, ANN (MLP) model and the European numerical storm 
surge models. For 48-hours ahead prediction at Hoek van Holland station during stormy 
period, the predictive chaotic models with NARX data assimilation (every 6 hours) 
outperforms the standard predictive chaotic model by 553% and the KNMI numerical 
model with EnKf data assimilation by 109%. This demonstrates the effectiveness of the 
proposed method.  
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Figure 9-7: Storm surge predictions of the artificial neural network (RMSE=33.74cm), predictive 

chaotic model (RMSE=36.35cm), operational KNMI model with EnKf data assimilation 
(RMSE=11.62cm) and predictive chaotic model with NARX data assimilation in every 6 hours 
(RMSE=5.57cm) at Hoek van Holland station for the stormy period (15-Oct-2007 till 20-Nov-

2007). The prediction horizon is 48 hours. The four bottom figures show the errors.  





 

 

 

 

CHAPTER 10:  ENSEMBLE MODEL PREDICTION 

 
 
 

“United we stand, divided we fall.” 
Aesop 

 
 
 
This chapter introduces novel ensemble techniques, dynamic averaging and dynamic neural 
networks, and their use to build ensembles of chaotic storm surge models in high 
dimensional space.  
 

10.1  Introduction 
Ensemble model predictions have been viewed for some decades as an effective way to 
improve the prediction performance over what the individual models can provide. It is 
often worthwhile to seek a combination of several prediction models rather than to select 
only the best one among them, which might be only marginally the best. Therefore, 
ensemble models now become the main topic in widespread use of model prediction in 
many fields, (e.g., in hydrometeorology and geosciences). Some recent researches on the use 
of prediction combination model for meteorological prediction and time series prediction 
have been conducted by Palmer et al. (2005), Wichard & Ogorzalek (2004) and Zhu (2005). 
Research efforts are now aimed at determining what kind of predictions benefit most from 
such combinations, and what combination techniques are optimal in a various situations.  
 

10.2  Principles of Ensemble Model Prediction 
There are various models for storm surge prediction for the North Sea nowadays. However, 
when building a prediction model, it is not an easy task to choose a reliable model, since on 
one hand, no model is powerful and general enough to outperform the others for all types of 
circumstances; on the other hand, every model has some degree of uncertainty. Instead of 
using a single model, alternatively the predictions from various models are combined in 
such a way that a more reliable and accurate prediction can be obtained. 
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Numerical models and data assimilation systems have improved enormously over recent 
years so that today's 3-day prediction can be as good as a 1-day prediction 20 years ago. 
Despite this, a prediction system looking a few days ahead can frequently be quite wrong, 
and even 1-day predictions can occasionally have large errors. The reason for this lays in the 
chaotic nature of the system, which means that very small errors in the initial conditions 
can lead to large errors in the prediction, the so-called butterfly effect. This means that a 
perfect prediction system cannot be found because every detail of the initial state of the 
system is never well observed. Tiny errors in the initial state will be amplified such that after 
a period of time the prediction becomes useless. This sensitivity varies from time to time. 
The uncertainties in the predictions can become large as the prediction horizon is larger 
(Lorenz, 1963; Kalnay, 2003). 
 
To cope with this uncertainty, an ensemble prediction is used. Instead of running just a 
single prediction, the model is run a number of times from slightly different starting 
conditions. The complete set of predictions is referred to as the ensemble and individual 
predictions within it as ensemble members. The initial differences between ensemble 
members are very small so that if we compared members with observations it would be 
impossible to say which members fitted the observations better. All members are therefore 
equally likely to be correct, but when we look longer time ahead the predictions can be quite 
different. On longer term the members can differ radically and then more caution is 
required. 
 
There are two categories of approaches in combining predictions. The first one is the 
ensemble approach, by which a set of predictions are produced on the same task with 
different models (or one model with different inputs), and then the predictions are 
combined. The second one is the modular approach, under which a task or problem is 
divided into a number of subtasks (regimes), and the complete task solution requires the 
contribution of all of the individual regimes. 
 

10.2.1   Information-theoretic model selection 
Most of information scientists do not believe in the notion of true models. Models, by 
definition, are only approximations to unknown reality or truth; there are no true models 
that perfectly reflect full reality. Furthermore, the best model for analysis of data depends on 
sample size; smaller effects can often only be revealed as sample size increases. Hence, a 
given set of data has only a finite amount of information. The unachievable objective of 
model selection is to find a perfect translation such that no information is lost in going from 
the data to a model of the information in the data. However, one can attempt to find a 
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model of the data that is best in the sense that the model loses as little information as 
possible (Burnham & Anderson, 2002). This leads to Kullback-Leibler (K-L) information 
I(f,g) that was formulated based on Boltzmann’s concept of entropy. It measures the 
information loss when model g is used to approximate full reality f. The K-L distance 
between conceptual truth f and model g is defined for continuous functions as the integral 
of: 
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where I(f,g) is the information loss when model g is used to approximate truth f, log denotes 
the natural logarithm and f and g are n-dimensional probability distributions. The main 
goal is to seek an approximating model that loses as little information as possible; this is 
equivalent to minimizing I(f,g) over the models in the set. The other information criteria for 
finding the best model are Akaike’s information criterion (AIC) and Takeuchi’s 
information criterion (TIC) (Akaike, 1974; Takeuchi, 1976). 
 
Another possibility is to combine the entire set of models by using model averaging. Model 
averaging computes a weighted estimate of the predicted value. Akaike weights can be used 
for weighting predictions. Thus, if a parameter θ is in common over all models (as θi in 
model gi), then the weighting average is: 
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where θ̂ denotes a model averaged estimate of θ. This approach has practical advantage that 
has better precision and reduced bias compared to the approach of selecting one best model. 
 

10.2.2   Bayesian model averaging 
Bayesian approach to statistics considers the problem of estimating some probability (such 
as a future outcome or a noisy measurement), based on measurements of our data, a model 
for these measurements, and some model for our prior beliefs about the system. Let us 
consider a standard two-stage model, where we write our data measurements as a vector 
y=[y1, y2,...,yn], and our prior beliefs as some vector of random unknowns θ. The model of 
measurements can be written as a conditional probability distribution (or likelihood ) 
p(y|θ), and also the prior as p(θ|η), where η is some hyper-parameter. 
 
Typical statistical analysis, such as regression analysis, typically proceeds conditionally on 
one assumed statistical model. Often this model has been selected from among several 
possible competing models for the data, and the data analyst is not sure that it is the best 
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one. Other plausible models could give different answers to the scientific question at hand. 
This is a source of uncertainty in drawing conclusions, and the typical approach, that of 
conditioning on a single model deemed to be “best", ignores this source of uncertainty, thus 
underestimating uncertainty.  
 

 
Figure 10-1: BMA predictive PDF (thick curve) and its five components (thin curves), the ensemble 
member predictions and range (solid horizontal line and bullets), the BMA 90% prediction interval 

(dotted lines), and the verifying observation (solid vertical line) (Raftery et al., 2005). 
Bayesian model averaging overcomes this problem by conditioning, not on a single “best" 
model, but on the entire ensemble of statistical models first considered (Raftery et al., 2005). 
In the case of a quantity y to be prediction on the basis of training data yT using K statistical 
models [M1,...,MK], the law of total probability tells us that the prediction PDF, p(y), is given 
by: 
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where p(y|Mk) is the prediction PDF based on model Mk alone, and p(Mk|yT) is the posterior 
probability of model Mk being correct given the training data, and reflects how well model 
Mk fits the training data (Figure 10-1). The posterior model probabilities add up to one, so 
that ∑ =

K

k
T

k yMp
1

)|( =1, and they can thus be viewed as weights. The BMA PDF is a 
weighted average of the PDFs given the individual models, weighted by their posterior 
model probabilities. BMA possesses a range of theoretical optimality properties and has 
shown good performance in a variety of simulated and real data situations.  
 
We now extend BMA from statistical models to dynamical models. The basic idea is that for 
any given prediction there is a “best" model, but we do not know what it is, and our 
uncertainty about the best model is quantified by BMA. Once again, we denote by y the 
quantity to be predicted. Each deterministic prediction, fk, can be bias-corrected, yielding a 
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bias-corrected prediction kf
~ . The prediction fk is then associated with a conditional PDF, 

)~|( kk fyg , which can be interpreted as the conditional PDF of y conditional on kf
~ , given 

that fk is the best prediction in the ensemble. The BMA predictive model is then: 
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where wk is the posterior probability of prediction k being the best one, and is based on 
prediction k's skill in the training period. The wk's are probabilities and so they add up to 1, 
i.e. ∑ =

K

k kw
1

= 1. How to estimate wk is described as the following.  
 
When predicting sea level and surge, it often seems reasonable to approximate the 
conditional PDF by a normal distribution centered at kf

~ , so that )~|( kk fyg  is a normal PDF 
with mean kf

~  and an ensemble-member-specific standard deviation, kσ . We denote this 
situation by: 

 ),~(~~| 2
kkk fNfy σ  (10.5) 

and we will describe how to estimate 2
kσ  in the next subsection. In that case, the BMA 

predictive mean is just the conditional expectation of y given the predictions, namely: 
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This can be viewed as a deterministic prediction in its own right, and can be compared with 
the individual predictions in the ensemble or the ensemble mean. Subsequently, maximum 
likelihood of model parameters, wk and 2

kσ , are estimated by the EM (expectation-
maximization) algorithm. Figure 10-2 shows an example of relative frequency of the 
ensemble prediction members before (under dispersive) and after calibration (equally 
probable) using BMA. 
 

 
Figure 10-2: An example of relative frequency of the ensemble prediction members before (under 

dispersive) and after calibration (equally probable) using BMA. 
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10.2.3   Ensembles with spatial information 
Kriging is a spatial estimation of the local continuous function using linear models. The 
term “kriging” was introduced by G. Matheron in 1963 after the name of D.G. Krige, who 
was a mining engineer in South Africa. The method interpolates the value Z(x0) of a random 
field Z(x) at an unobserved location x0 from observations of the random field at nearby 
locations. Kriging computes the best linear unbiased estimator of Z(x0) based on a stochastic 
model of the spatial dependence quantified either by the variogram γ(x,y) or by expectation 
µ(x)=E[Z(x)] and the covariance function c(x,y) of the random field. The kriging estimator 
is given by a linear combination: 
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of the observed values zi = Z(xi) with weights wi(x0), i=1,..., n chosen such that the kriging 
variance or error minimized subject to the unbiasness condition. Several types of kriging 
are: simple kriging, ordinary kriging (with trend), universal kriging (using general linear 
trend model), IRFk-kriging (using polynomial function), indicator kriging (using indicator 
functions to estimate transition probabilities, multiple indicator kriging (working with a 
family of indicators), disjunctive kriging (a nonlinear generalisation of kriging), lognormal 
kriging (interpolates by means of logarithms, Bayesian kriging and so forth. Further 
information about kriging techniques can be found in Kanevski & Maignan (2004). The 
kriging family methods can be used for ensemble model predictions with inclusion of 
spatial information.  
 
Moreover, the use of machine learning techniques, like ANNs, Fuzzy rule based system, 
predictive chaotic models, Bayesian model averaging can be explored and investigated for 
combining model predictions with inclusion of spatial information. The inclusion of spatial 
information into modeling can be done by inserting the spatial information as inputs of the 
machine learning models. The spatial information in this case can be the geospatial 
information of a location being predicted as well as the predictions from neighboring 
locations. As an example, the following is an input structure of ANNs or others by including 
the spatial information: 

 Yt+n = f(longitude, latitude, Xt+n, Xt+n (neighbors), Wt+n, Wt+n (neighbors), ...) (10.8) 

 

10.2.4   Machine learning: modular model 
When the input space is divided into a number of subspaces or regions for each of which a 
separate specialized model is built, these models are called local or expert models. The 
resulting model is called a modular model (MM). A model consisting of multiple models 
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whose outputs are combined is often called a committee machine (CM) (Haykin, 1999). The 
CM can be classified into (Solomatine & Siek, 2006): 
 Hard splits (modular local models): input data is split and outputs are combined 
 Soft splits (mixture of experts, boosting, bagging) 
 No splits (ensembles): models are trained on whole input data set and the outputs are 

combined using a weighting scheme 
 

 
 

 

 
A: distribute data between the machines  
B: pass the statistically sampled data (each using different distribution) to the subsequent machines  

Figure 10-3: Modular models: input data is split and fed into multiple models whose outputs are 
combined (Shrestha & Solomatine, 2006; Solomatine & Siek, 2006). 

 

10.3  Linear Prediction Combination  
Essentially, the model combination method is a weighted average of the outputs of 
combination members. The combination prediction technique is normally used to provide 
probabilistic predictions. There are two main issues about this approach. First, how to select 
a set of models and generate an combination of predictions to be combined, and second, 
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how to estimate the combining weights so as to minimize the out-of-sample prediction 
errors. 
 
As for the estimation of combining weights, some studies show that equally weighted 
combination, namely, the simple average method (SAM), can produce predictions that are 
better than those of the individual models, and its accuracy depends mainly on the number 
of the models involved and on the actual prediction ability of the specific models included 
in the simple average (Makridakis and Winkler, 1983). However, when some of the 
individual models selected for combination appear to be consistently more accurate than 
others, in which case the use of the simple average model for combining predictions can be 
quite inefficient, the use of weighted average method would be considered. One of the most 
common procedures used to estimate the combining weights is to perform the ordinary 
least squares regression (Granger and Ramanathan, 1984): 
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where ft,j is the one step ahead prediction mad at time t of yt+1 with model i; a0 is a constant 
term, and aj is the regression coefficient. 
 

10.4  Nonlinear Prediction Combination 
Building a multi-model combination is a common way to improve the performance of the 
resulting model for classification and regression tasks. The combination model consists of a 
number of individual predictive models, such as: neural networks, support vector machines 
or regression trees. This introduces model diversity which is the central feature of the 
combination approach. The combination model often performs better than a single model 
based on the bias-variance decomposition of combination models (Krogh & Sollich, 1997).  
In our earlier work (Siek & Solomatine, 2010b) for combining models we used dynamic 
averaging and it is briefly described below. In this work, we propose to use a more 
sophisticated method, dynamic neural network, for the same purpose.  
 

10.4.1   Dynamic averaging 
Each individual predictive chaotic model predicts the future trajectory projection in phase 
space. Two linear prediction combination methods are utilized in this work: simple 
averaging and dynamic averaging. Simple averaging technique averages the predictions 
from all individual models with the same weights. On other hands, a dynamic averaging 
method incorporates the model selection and model combination procedures at once with 
some weights. The selection is measured by the dynamical performance (prediction 
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accuracy) of each model. A penalty factor is used to remove low performing models 
(relatively compared to the best one) from the poll.  
Let ei,j be the prediction error at time j generated by an combination model member i, the 
combination model member i is selected into the combination if the following both 
inequalities are satisfied: 
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where n is the number of combination model members, t is the current time, s is the length 
of previous prediction errors to be moving averaged (i.e. s=12), std is the standard deviation, 
pf is a penalty factor (i.e. 2) and ts is a threshold value (i.e. 10 cm). Hence, using this 
technique, the number of the selected models is different for each time step of prediction. 
 

10.4.2   Dynamic neural networks 
ANNs can be classified into dynamic and static categories. Static networks (e.g. MLP) have 
no feedback elements and contain no delays and the output is calculated directly from the 
input through feedforward connections. Its response at any given time depends not only on 
the current input, but on the history of the input sequence. Therefore, the dynamic network 
has memory (Haykin, 1999).  
 
Dynamic networks are generally more powerful but more difficult to train than static 
networks. They can be trained to learn sequential or time-varying patterns. A more complex 
gradient-based algorithm for static networks can be used for training a dynamical network. 
The error surfaces for dynamic networks can be more complex than those for static 
networks and training is more likely to be trapped in local minima. There are two training 
types: batch and incremental training. In batch training, the weights and biases are updated 
after the entire training set has been applied to the network. Whereas in incremental 
training the weights and biases are updated each time an input is presented to the network. 
The batch training algorithm is generally much faster than the incremental (Fu et al., 2002; 
Vo, 2002). 
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Figure 10-4: The architecture of a focused time delay neural network with tapped delay inputs fed 

from several predictive chaotic model predictions. 
 
In this work, we use one type of dynamical networks, so-called Focused Time Delay Neural 
Network (FTDNN). The FTDNN consists of a feed-forward network with a tapped delay 
line at the input. Thus, the dynamics appear only at the input layer of a static multilayer 
feed-forward network. Figure 10-4 illustrates FTDNN architecture. 
 

10.5  Model Results and Discussion 

10.5.1   Global model 
Back-propagation multi-layer perceptron (MLP) with Levenberg-Marquardt training rule 
(Haykin, 1999) was utilized and trained using the same input structure as the predictive 
chaotic model inputs (phase space reconstruction structure). The number of hidden 
neurons of ANN was selected using the exhaustive search in the range [1∼10] and we found 
that four is the optimal number of hidden nodes.  
 

10.5.2   Local model 
Nonlinear analysis of surge time series recommends the appropriate values of time delay 
and embedding dimension are τ=10 and m=8. We utilized sensitivity analysis to search for 
the appropriate number of neighbors (k) for non-stormy and stormy periods. The 
sensitivity analysis was conducted by setting up the predictive chaotic model parameters for 



10.5 Model Results and Discussion 179                
 

 

the surges with τ=10 and m=8 and the number of neighbors (k) run from 1 to 2000. We 
used 3rd-order polynomial local model as a reference.  
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Figure 10-5: The six-hours ahead prediction error of the predictive chaotic models as a function of 

the number of neighbors (k) for surges during non-stormy and stormy periods (τ=10, m=8). 
 
Figure 10-5 depicts the six-hours prediction RMS errors of the predictive chaotic models as 
a function of the number of neighbors (k) for non-stormy and stormy surges. It is clearly 
shown that the suitable number of neighbors for predicting surges during storm condition 
is small (13 neighbors) and it should be smaller than the one (80 neighbors) during non-
storm condition. One of the reasons is that less true dynamical neighbors (similar surge 
behavior in the past) can be found especially during extreme storms. If more neighbors are 
considered, the model performance will be worse due to the inclusion of false neighbors in 
constructing local models. Consequently, the whole predictive chaotic model performance 
will decrease. For MLP-NN local model, we set the number of neighbors to 300 for giving 
enough training dataset into the MLP-NN. The prediction horizons are 1, 3, 6, 10 and 12 
hours. Each prediction horizon can have different values of time delay and embedding 
dimension. The result of optimization is the most accurate predictive chaotic model which 
has the lowest RMS error on cross validation data set. The cross validation data sets have 
small size of 400 data points: time indices of 35500-35900 for storm condition and 38200-
38600 for non-storm condition.  
 
The optimal time delay and embedding dimension for predictive chaotic model for 
predicting surges during storm condition was obtained (8 time-delayed input variables): 
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The performance of the local models is listed in Table 10-1. The RMS errors of 123-
polynomials (linear, quadratic and cubic) are the same. This is due to the fact that the 
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dynamical neighbors found for each prediction step are the same resulting in the same 
polynomial regressions.  
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Figure 10-6: Schematic description of predictive chaotic models and prediction combination 

models in high dimensional chaotic system. 
 

10.5.3   Dynamic averaging  
A schematic description of the prediction combination models in high dimensional space is 
depicted in Figure 10-6. In the combination model, we have seven combination members: 
global MLP-NN, local models (zeroth, 123-Polynomials, MLP-NN) with direct and m-step 
predictions. For simple averaging technique, we average the predictions from all 
combination members with the same weights. In dynamic averaging technique, the moving 
average of the performances of the previous twelve predictions made by each combination 
members and a penalty factor (s=12; pf=2; ts=10) are used for model selection and 
combination. These twelve predictions are chosen because the tides has a significant 
influence to the surge level variations and the dominant tidal constituent is M2 (principal 
lunar semidiurnal), which has about 12 hours tidal period/cycle. 
 

10.5.4   Dynamic neural networks  
The inputs of FTDNN are the time delay predictions from various types of predictive 
chaotic models, defined as: 
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Figure 10-7: Performance comparison between several prediction combination techniques during 

stormy periods at Hoek van Holland station. 
 
The prediction accuracy of multi-model ensembles is much higher compared to the ones of 
the global and local individual models (see Table 10-1 and Figure 10-7). The best 
performance is generally achieved by the dynamic neural network FTDNN with batch 
learning (in comparison to dynamic averaging and MLP-NN). This is due to the fact that 
this combination method allows for taking the best predictions at each step from a number 
of individual models which are selected by measuring the performance dynamics of each 
individual model. However, FTDNN does not perform well for short-term prediction (1 
hour ahead). This might be due to fact that each individual model has already performed 
very well and these predictions are close to each other so that FTDNN has difficulty in 
identifying the behavior of prediction dynamics from each model member. Nevertheless, 
this combination technique performs well for long-term predictions. In spite of relatively 
lower performance, the incremental learning is advantageous for real-time operation and 
one of the ideas to explore here would be the “second-level” dynamic combination of 
incremental and batch learning. 
 

10.6 Summary 
Several combination techniques for a high dimensional chaotic system has been introduced 
and tested on a real-life case study. It can be concluded that combining different algorithms 
used in predictive chaotic models leads to improvements in accuracy. In the considered 
application to storm surge modeling, the Focused Time Delay Neural Network (FTDNN) 
has demonstrated the best capability for accurate prediction outperforming specialized 
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(local) and global machine learning models. FTDNN with incremental learning can be 
recommended in real-time operation; however in our experiments it was less accurate than 
FTDNN with batch learning.  
 
TABLE 10-1: PERFORMANCES OF THE GLOBAL, LOCAL MODELS AND ENSEMBLES IN STORM SURGE PREDICTIONS 

AT HOEK VAN HOLLAND STATION. 
 Prediction horizons (in hours) 

1 3 6 10 12 
Global model 
   MLP-NN 6.8 11.9 14.7 27.6 23.1 
Local models 

   Zeroth 
direct 19.5 25.9 28.8 35.4 35.9 
m-step 19.5 31.2 35.9 37.8 38.0 

   123-Poly* 
direct 11.6 21.8 25.4 35.0 36.0 
m-step 11.6 11.9 23.2 33.7 38.0 

   MLP-NN 
direct 15.6 21.0 27.2 36.2 37.8 
m-step 15.6 21.0 27.2 36.2 37.8 

Combination models 
   Simple averaging 11.8  15.3 19.1 27.4 28.9 
   Dynamic avg.  6.7 11.0 16.3 30.0 28.7 
   Batch-MLP 5.2 9.0 10.1 23.2 19.4 
   Incremental-MLP 21.3 30.1 30.9 28.2 25.0 
   Batch-FTDNN 10.3 2.6 2.7 2.7 2.9 
   Incremental-FTDNN 47.3 27.0 26.9 24.7 26.9 

    *123-poly: linear, quadratic, cubic polynomial approximation functions 
 

 
 



 

 

 

 

CHAPTER 11:  CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

“We have the duty of formulating, of summarizing, and of communicating 
our conclusions, in intelligible form, in recognition of the right of other free 

minds to utilize them in making their own decisions.” 
Ronald Fisher 

 
 
 

11.1 Main Conclusions 
The methods of nonlinear dynamics, chaos theory and machine learning have been 
established as a set of tools for modeling complex systems. Many of complex natural 
phenomena have been studied and investigated by means of these techniques for better 
understanding on how the nature works and to predict the future condition of nature. A 
number of research shows that most of these natural phenomena can exhibit deterministic 
chaos. The initial study on building a univariate chaotic model for predicting storm surges 
in the North Sea has been conducted in 1999-2000 (reported by Solomatine et. al. (2000). 
This chaotic model has been extended into a multivariate model (PhD study by Velickov 
(2004), which can include other variables, such as wind and air pressure. The nonlinear 
analysis of the observed time series indicates at the storm surge dynamics along the Dutch 
coast can be characterized as deterministic chaos. Chaotic behavior in the storm surge 
dynamics can be due to the fact that this system is the result of complex interactions 
between various forces or dynamical systems, such as atmospheric dynamics, wind-wave-
tide interactions. The presence of deterministic chaos and positive Lyapunov exponent 
implies the possibility for predictions.  However, predictability of any model including 
predictive chaotic model has some limits. Properties of the sensitivity to initial condition 
and the existence of bifurcations can be the reasons of exponentially decreasing prediction 
accuracy of chaotic model or any model, especially for long-term prediction. Yet, short and 
medium term predictions are generally reliable and accurate.  
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In building a predictive chaotic model, the observed time series is reconstructed and 
embedded in sufficiently higher dimensional phase space with the time-delayed coordinates 
to unfold the attractor of surge dynamics. The predictive models can be constructed based 
on available data-driven techniques (i.e. ANN). Global and local models can be built. In 
global modeling, the whole dynamical behavior of the systems in phase space is described 
and predicted by one model. In contrast, the local modeling at each time step allows for 
characterizing the dynamical behavior locally and more flexible options of predictive local 
models can be utilized. However, this flexibility introduces a concern on selecting the good 
searching techniques for finding true dynamical neighbors and choosing the suitable 
number of dynamical neighbors used for building predictive local models. 
 
If compared to the earlier studies by Solomatine et al. (2000) and Velickov (2003; 2004) (see 
in Chapter 1), this research has introduced several improved techniques and innovations, 
including using recent techniques for nonlinear time series analysis (i.e. Cao’s method), 
considerable improvements in the algorithms for building predictive chaotic models 
(schemes to avoid false neighbors: utilizing multi-step prediction and trajectory based 
method, using ANN as a local model), possibility to build the chaotic model in case of 
incompleteness in the time series, reducing phase space dimension (an important issue for 
multivariate chaos), solving phase shift prediction error, optimizing predictive chaotic 
model using GA and ACCO, incorporating data assimilation using NARX neural network, 
and combining predictions from different types of chaotic models using dynamic averaging 
and dynamic neural network. Furthermore, the additional new data set is used in this work 
and the prediction performances of the predictive chaotic models are compared with other 
models, including ANN models. 
 
A number of enhancements in building a predictive chaotic model outlined in the objectives 
of this research have been implemented and tested. The main conclusions can be 
summarized as follows: 
 
 Taking into account the presence of deterministic chaos in surge dynamics, a mixture of 

multivariate predictive local models in the reconstructed phase-space of the dynamical 
system, which uses information from the real dynamical neighbors, has demonstrated a 
good capability for reliable short-term predictions. For the Hoek van Holland location, 
the overall 3 hours ahead surge prediction errors (RMSE) during storm condition for 
univariate CM, univariate ANN, multvariate CM and multivariate ANN are 12.91, 19.46, 
11.99 and 16.78 cm, respectively.  

 
 High dimensionality of multi-variable phase space prompts for employing 

dimensionality reduction methods. Method of phase space reconstruction of a 
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dynamical system incorporating dimensionality reduction using principal component 
analysis (PCA) is presented. In the reduced dimensional phase space, multivariate 
predictive local models are built from the real dynamical neighbors. Surge data along the 
Dutch coast which can be characterized as deterministic chaos were obtained for testing 
our models. The results show that the use of dimensionality reduction method in the 
phase space reconstruction can improve the performance of univariate and multivariate 
predictive chaotic models outperforming ANN models. For the Hoek van Holland 
location, the overall prediction error for surges 10 hours ahead is about 5 cm and 14.5 
cm for non-storm and storm conditions, respectively.  
 

 Building a predictive chaotic model from incomplete time series is proposed in the view 
of possible failures of measurement instrument or data transmission in the real 
operation. Several imputing algorithms, such weighted sum of linear interpolation, 
Bayesian PCA and cubic spline interpolation are utilized. The resulting models are 
compared with the ones built from complete time series. The results indicate that the 
imputing techniques used can be incorporated into the predictive chaotic model for 
handling the missing values and the resulting models with imputation have still 
comparable performance with the models without missing values. The imputing 
technique of cubic spline interpolation generally outperforms the other techniques. 

 
 An approach of correcting phase error in the chaotic model predictions is presented. 

Building a separate model for characterizing the phase error dynamics, such as 
predictive chaotic model and ANN is proposed. In the application of storm surge 
prediction, the predictive chaotic model and ANN model can identify and predict the 
dynamical behavior of the phase error generated by a standard chaotic model. In 
addition, they are able to automatically estimate and correct these phase prediction 
errors. This demonstrates that the proposed techniques can be used to enhance the 
predictability of a predictive chaotic model, e.g. for longer-term predictions.  

 
 Identification and selection of proper dynamical neighbors in the reconstructed phase 

space are the major aspects in the local modeling approach. The presence of different 
regimes or similar behaviors in the dynamics can be an indicator for selecting different 
type of local models and number of neighbors used. The performance improvement of a 
predictive chaotic model is expected if the good searching algorithm is used for finding 
true neighbors. Besides the standard Euclidean distance method, a new method – the so-
called trajectory based method – is proposed. The trajectory based method arises from 
an idea that finding true neighbors does not only depend on the distance between two 
points in the m-dimensional phase space, but also the distance and direction of two 
different trajectories (sequences of points in phase space) partly formed by these two 
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points. The modeling results indicate that the trajectory based method is able to find 
true neighbors and the performance of predictive chaotic model using this technique is 
improved. 

 
• Randomized search and and grid search appears to be viable methods for optimizing 

predictive chaotic model. Searching for the optimal values of embedding dimensions 
and time delay are important for unfolding the attractor of the surge dynamics and 
obtaining the smooth trajectories in phase space. Subsequently, it is crucial for building 
a reliable predictive chaotic model. Two optimization algorithm originated in the field of 
computational intelligence, the genetic algorithm (GA) and adaptive cluster covering 
(ACCO), are utilized for this purpose. The results shows that the application of 
optimization methods, grid search and randomized search can provide the better 
selection of the chaotic parameters in order to increase the performance of predictive 
chaotic models for storm surges. For the two case studies, the optimal sets of parameters 
found by using randomized search are: τ=16, m=28, kmax =22 and RMSE=12.98 cm for 
the Hoek van Holland tidal station and τ=8, m=12, kmax =65 and RMSE=3 cm for the San 
Juan tidal station (this data set was additionally used in the optimization experiments). 
The optimized models outperform the original model with parameters defined by 
nonlinear time series analysis in terms of prediction accuracy. The smoothness of the 
trajectories and unfolded attractor in phase space are improved as well, and this is 
indicated by the model performance.  
 

• A real-time data assimilation technique using NARX neural network is introduced and 
implemented to re-analyze and improve predictive chaotic model predictions for storm 
surges in the North Sea. The predictive chaotic model with data assimilation has 
demonstrated a pronounced capability for reliable and accurate prediction 
outperforming standard predictive chaotic model, ANN model and the European 
numerical storm surge models. Our experiments show that for 48-hours ahead 
prediction at Hoek van Holland station during stormy period, the predictive chaotic 
models with NARX data assimilation with the frequency of every 6 hours (5.6cm RMS 
error) outperforms the standard predictive chaotic model (36.35cm RMS error) and the 
KNMI numerical model with EnKf data assimilation (11.62cm RMS error). 

 
• Multi-model ensemble prediction using dynamic averaging and dynamic neural 

network model is introduced. The dynamic averaging technique allows for combining 
the individual model predictions on the basis of model performances in certain periods 
of prediction time. One type of dynamic neural network, so-called focused time-delayed 
neural network (FTDNN) is used. Several predictions from different types of predictive 
chaotic models are selected and further combined by these two techniques in order to 
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obtain more accurate and reliable predictions. For a high-dimensional chaotic system, it 
means building an ensemble of all future trajectories in phase space, estimated by the 
heterogeneous individual models. In application to storm surge prediction, the FTDNN 
model has demonstrated higher capability for accurate prediction outperforming 
dynamic averaging and individual models (local and global models). The FTDNN with 
incremental learning is more recommended in real-time operation; however in our 
experiments it was less accurate than that with batch learning.  

 
These modeling techniques based on the methods of nonlinear dynamics and chaos theory 
with several enhancements and innovations have demonstrated improved performance of 
predictive chaotic model and it can serve as an efficient tool for accurate and reliable short-
term predictions (especially for predicting storm surges) in order to support decision-
makers for flood prediction and ship navigation. Table 11-1 summarizes comparative 
performances of various models and their combinations (please note however that it is not 
always possible to make direct comparisons between different methods due to different 
model setups, ways of performing assimilation and data sets used).  
 

11.2 Limitations and Recommendations 
Several limitations and recommendations on using chaotic models for prediction with 
several proposed enhancements were identified and summarized, as follows: 
 
 The first recommendation is to further explore the possibilities of combining the new 

approaches and enhancements presented in this work, for example, to use data 
assimilation for multi-variate models, with the ensemble models, etc. We have the 
possibility of testing only some of such combinations. The suggested enhancements 
cannot be course randomly combined: each of them has different purpose, theoretical 
background, advantages and disadvantages in particular conditions. 
 

 The use of a chaotic model for prediction is generally reliable and accurate only for the 
dynamical systems which behaviors can be characterized as deterministic chaos. 
Nonlinear time series analysis needs to be used before building a predictive chaotic 
model. If there is an indication of chaos (which can be stronger or weaker), then it is 
sensible to build and apply the local prediction models in phase space described in this 
work. It should be noted that for many dynamical systems (like tides) which is 
characterized by strongly periodic sinusoidal components there may be no need to apply 
sophisticated chaos theory analysis as they can be very well predicted by linear models 
based on fast Fourier transform. 
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TABLE 11-1: PERFORMANCE IMPROVEMENTS BY USING SEVERAL IMPROVED METHODS. 
Improved 
Methods 

Models 
RMSE 
(cm) 

% Descriptions 

Building PCM 

U-ANN* 19.46 0% Stormy period 
3 hours prediction 
(τ =1, m=7, k=13) 
  

M-ANN 16.78 16% 
U-PCM 11.94 63% 
M-PCM 11.99 62% 

  
  
  

  
Phase space 

dimensionality 
reduction 

U-ANN 13.09 53% Stormy period 
6 hours prediction 
(τ =var, m=var, k=9-100) 
  
  
  

M-ANN* 20.05 0% 
U-PCM 9.21 118% 
M-PCM 12.16 65% 
U-PCM with PCA 9.18 118% 
M-PCM with PCA 13.69 46% 

  
  
  

  

Prediction 
error correction 

 

U-PCM* 24.69 0% Stormy period 
3 hours prediction 
(τ =10, m=8, k=13) 

U-PCM with PCM error corr. 12.74 94% 
U-PCM with ANN error corr. 16.06 54% 

  
  
  

  
Incompleteness 

U-PCM* 11 0% Stormy period, 3 hours pred. 
30% missing values 
(τ =10, m=8, k=13) 
(τ =1, m=12, k=13) for 2nd model  

U-PCM with weighted sum linear interp. 15.3 -28% 
U-PCM with Bayesian PCA 12.9 -15% 
U-PCM with cubic spline interp. 12 -8% 

  
  
  

  

Trajectory 
based method 

U-PCM without cluster, Euclidean (Y3)* 3.7 0% Stormy period, 6 hours pred. 
(τ =19, m=20, k=50-100,  
k=var for Y6) 

U-PCM with cluster, Euclidean (Y1) 2.6 42% 
U-PCM with trajectory based method (Y6) 1.3 185% 

  
  
  

  
Optimization 

U-PCM (τ =3, m=6, k=13), no cluster* 21.69 0% Stormy period 
6 hours prediction 
  
  

U-PCM with SES (τ =16, m=29, k=25) 13.25 64% 
U-PCM with GA (τ =24, m=20, k=26)  13.75 58% 
U-PCM with ACCO (τ =16, m=28, k=22)  12.98 67% 

  
  
  

  

Data 
assimilation 

U-PCM* 36.35 0% Stormy period, 48 hours pred. 
New data (2003-2007) 
Data assimilation every 6 hours  
(τ =12, m=18, k=9-100) 

U-ANN 33.74 8% 
DCSM/WAQUA with EnKf 11.62 213% 
U-PCM with NARX network 
 

5.57 553% 
  

  
  

  

Multi-model 
ensembles 

Global U-ANN 14.7 96% 
Stormy period 
6 hours prediction 
(τ=10, m=8, k=13) 
  
  
  
  
  
  
  

Local U-ANN 27.2 6% 
U-PCM Zeroth* 28.8 0% 
U-PCM 123-Poly 23.2 24% 
Ens-Simple Avg 19.1 51% 
Ens-Dynamic Avg 16.3 77% 
Ens-MLP with batch learning 10.1 185% 
Ens-MLP with incremental learning 30.9 -7% 
Ens-FTDNN with batch learning 2.7 967% 
Ens-FTDNN with incremental learning 26.9 7% 

#PCM=Predictive chaotic model; U=univariate; M=multivariate; Ens=ensemble; *=reference model for calculating 
percentage 
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 Predictive chaotic model inevitably becomes less accurate for long-term prediction. 
However enhancements to increase the model predictability are possible, and several of 
them have been suggested, for example: using data assimilation scheme or combining 
different models. 

 
 Finding the best chaotic model parameters (delay and embedding dimension) is 

computationally intensive task, and efficiency (speed) of the employed randomized 
search algorithms is of great importance. ACCO has been shown to be an efficient 
algorithm but it is recommended to investigate multi-algorithm schemes leading also to 
higher effectiveness (accuracy), combining for example, the employed GA and ACCO 
optimization algorithms with exhaustive search. A possibility is also to first using 
randomized search algorithm to find local optimal points and then refining the 
searching process using the exhaustive search around these local optimal points.  

 
 A widely used data assimilation scheme, Ensemble Kalman Filter can be implemented 

for predictive chaotic model and compared its performance with data assimilation 
technique using NARX network.  

 
 A major improvement in the accuracy of predictive chaotic model is expected if the 

meteorological predictions from numerical weather prediction model are directly used. 
For instance, the wind/pressure prediction fields (e.g. 48-hours predictions) can be 
utilized as additional inputs for predictive chaotic model. This technique can extend the 
predictability of chaotic model.  

 
 More sophisticated methods to identify the adequate neighbors for building local models 

should be investigated further. It is also recommended to implement a mixture of 
various local models (like radial basis function), to employ smaller data sampling time or 
to construct non-equidistance phase space. 

 
 The uncertainty analysis of chaotic model predictions (as of any predictive model) is an 

area for further research as well. 
 

 The use of predictive chaotic model as a complementary model to the European 
operational storm surge models is highly recommended and would be the next step of 
this research. 

 
 Other improvement can be achieved in the development of multi-model ensemble 

prediction techniques. The storm surge predictions from the European physically-based 
storm surge models for the North Sea from several meteorological institutions in the 
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Netherlands, Denmark, UK, Norway, Belgium and Germany and predictive chaotic 
model are combined by reliable multi-model ensemble techniques in order to obtain 
superior accuracy of predictions. In addition, the expert judgments can be included in 
the process of multi-model ensemble.  

 
 The presented methodology ought to be tested on other cases studies, as more and more 

oceanographic data become available. We have already performed initial experiments 
for the San Juan case, and the results are encouraging.  

 
 It is worth mentioning yet another observation about the limitation of using chaotic 

model for surge predictions – and it does not stem from the technical deficiencies of this 
approach. It relates to a long tradition of successful use of hydrodynamic models, the 
expertise and training of the specialists involved in such predictions, and their extremely 
busy schedules. It has been observed during this study, that in spite of the clear interest 
to the new techniques, making them really tested in operational environment and 
adopted requires much more than publications and presentations. It is quite natural and 
this is the case with many new technologies introduced in the public sector, especially in 
critical areas where human lives are at stake. It is therefore recommended not only to 
continue this research but also to continue undertaking efforts of making the advantages 
of the proposed methodology known to experts and decision makers.  
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Samenvatting 
 
 
Gedurende de afgelopen eeuwen hebben wereldwijd zeer ernstige kustoverstromingen 
plaatsgevonden vanwege stormvloeden met vaak verwoestende gevolgen. De fysische 
processen die leiden tot kustoverstromingen zijn inmiddels goed bekend. De ernst van een 
stormvloed hangt vooral af van meteorologische krachten, zoals luchtdruk verschil, 
windsnelheid en windrichting. De meteorologische omstandigheden worden beïnvloed 
door de snelheid van de depressiesystemen die zich over zee verplaatsen. Wanneer de wind 
het water richting de kust stuwt, kan deze uitgroeien tot wat wordt aangeduid als een 
stormvloed. Als een bepaalde hoge opstuwing optreedt in combinatie met hoog water ten 
gevolge van het getij, versterken beide effecten elkaar wat kan resulteren in een verhoogde 
zeespiegel met veelal ernstige overstromingen in de kustgebieden. 
 
Nauwkeurige voorspellingen van stormvloeden zijn daarom van groot belang voor veel 
kustgebieden. Met name in Nederland, omdat grote delen van het land onder de zeespiegel 
liggen en stormvloeden vaak voorkomen op de Noordzee. De verdediging tegen 
overstromingen vanuit zee zijn voortdurend verbeterd, zoals door de bouw van 
stormvloedkeringen ontworpen voor extreme condities met een verwachtingswaarde van 
1/10.000 jaar, maar ook door het bouwen van geavanceerde waarschuwingsmodellen voor 
het voorspellen van stormvloeden. Deze voorspellingen en waarschuwingen worden 
opgesteld door de Nederlandse Stormvloedwaarschuwingsdienst (SVSD) van 
Rijkswaterstaat, in nauwe samenwerking met het Koninklijk Nederlands Meteorologisch 
Instituut (KNMI). Voor een goede afsluiting van de beweegbare stormvloedkeringen dienen 
modelvoorspellingen tenminste 6 uur van tevoren bekend te zijn. Deze voorspellingen zijn 
gebaseerd op een numeriek hydrodynamisch model: het Nederlands Continentaal Plat 
Model (DCSM) die meteorologische voorspellingen ontvangt van het hoge resolutie model 
voor een beperkt gebied (HiRLAM)  als aandrijvende kracht. Data assimilatie technieken 
gebaseerd op Ensemble Kalman filtering worden toegevoegd aan dit system om de 
nauwkeurigheid van de voorspellingen te verbeteren door assimilatie van recente 
observaties van meetstations. Andere belangrijke verbeteringen die toegevoegd zijn aan het 
model zijn: het verfijnen van de rekenroosters, het calibreren van het model door gebruik te 
maken van betere numerieke rekenschema’s, en het implementeren van data assimilatie 
technieken (3D/4D Var en Kalman filtering). Hierbij dient te worden opgemerkt dat de 
nauwkeurigheid van de voorspelling van een stormvloed model gebaseerd op de Navier-
Stokes vergelijkingen, zoals DCSM, voornamelijk afhankelijk is van de nauwkeurigheid van 
de meteorologische voorspelling van het weer model (i.c. HiRLAM). 
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Het genoemde model behoort tot de (klasse van) proces modellen (ook wel genoemd 
fysisch-gebaseerd, of numerieke modellen). Het huidige onderzoek richt zich op een heel 
ander model paradigma, bekend als op gegevens gebaseerd (data-driven) modellen (DDM). 
DDM is een modelleringtechniek die vooral gebruik maakt van de analyse van 
kenmerkende gegevens van het onderliggende systeem. Dit model wordt voornamelijk 
bepaald op basis van verbanden tussen de toestanden van de systeem variabelen (input, 
interne variabelen en output grootheden) met slechts beperkte kennis over details van het 
fysieke gedrag van het systeem. De benaderingen in data-gedreven modellen zijn over het 
algemeen afkomstig uit statistische methoden en kunstmatige intelligentie. Verschillende 
populaire modellen in DDM zijn onder andere: neurale netwerken (ANNs), leren van 
voorbeelden, modellen op basis van beslissingsbomen, Bayesiaans leren, commissie 
machines, fuzzy rule based systeem en genetisch programmeren.  
 
Nog een andere benadering bij op data gebaseerde modellen betreft het gebruik van niet-
lineaire dynamica methoden en chaos theorie, welke veel toegepast worden op het 
modelleren van complexe dynamische systemen. Deze methoden worden effectief toegepast 
en uitgebreid onderzocht, sinds Edward Lorenz in 1963 een ontdekking deed tijdens een 
experiment met een eenvoudig atmosferisch model. Hij onderzocht de gevoeligheid van een 
systeem voor de beginvoorwaarden wat leidde tot de ontwikkelling van de zogenaamde 
chaos theorie. Dit betekent dat een dynamisch system, afgeleid van differentiaalvergelijking, 
chaotisch gedrag kan vertonen, wat gekenmerkt wordt door een exponentiële divergentie 
van de output van het model terwijl de oorspronkelijke waarden slechts heel weinig zijn 
verstoord. Inmiddels heeft een groot aantal onderzoekers en wetenschappers verschillende 
soorten natuurlijke fenomenen onderzocht en gemodelleerd waarbij ze tot de ontdekking 
kwamen dat ze met specifiek chaotisch gedrag te maken hadden, terwijl eerder 
verondersteld werd dat deze natuurlijke systemen zich volkomen willekeurig gedroegen. 
Dynamische systemen die een specifiek kenmerkend gedrag vertonen, ook wel genaamd 
deterministische chaos, zijn voorspelbaar. In dit onderzoek hadden we de luxe te 
beschikken over erg grote data sets die het dynamische system kenmerken, in dit geval 
stormvloeden, wat ons de mogelijkheid geeft aan te tonen dat het systeem chaotisch gedrag 
vertoont zonder direct gebruik te hoeven maken van de differentiaalvergelijkingen die dit 
systeem beschrijven, en waarmee een voorspellend model gebouwd kan worden, uitsluitend 
op data gebaseerd (data driven). 
 
De belangrijkste doelstelling van dit onderzoek is om een nauwkeuriger chaotisch (op data 
gebaseerd) model te bouwen dat kan dienen als een aanvulling op de bestaande operationele 
stormvloed modellen voor de Noordzee regio. Meer specifieke doelstellingen zijn (i) het 
analyseren van de tekortkomingen van het bestaande model, (ii) het verbeteren van 
technieken om een voorspellend chaotisch model te bouwen, (iii) data assimilatie methoden 
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op te nemen in de chaotische modellen, (iv) het ontwikkelen en testen van een multi-model 
ensemble aanpak om diverse voorspellende modellen te combineren.Belangrijkste 
onderdelen van de methodiek zijn niet-lineaire systeemdynamica en chaostheorie, op data 
gebaseerde modellen, proces gebaseerd modelleren, data-assimilatie, optimalisatie en 
ensemble methoden. In algemene zin valt deze studie onder het vakgebied van de 
hydroinformatica. De belangrijkste case study in dit onderzoek betreft het voorspellen van 
de waterstanden bij het getijdestation van Hoek van Holland voor de Noord Zee. Ook 
hebben we aantal benaderingen getest voor de optimalisatie van chaotische modellen die 
gebruik maken van de data van de waterstanden bij San Juan getijde station (Puerto Rico) in 
de Caribische Zee.  
 
De eerste experimenten om een uni-variabel chaotisch model te bouwen om stormvloeden 
te voorspellen op de Noord Zee is gedaan door Solomatine et. al. (2000). In de PhD 
dissertatie van Velickov (2004) werd deze benadering verder uitgewerkt en werd het 
voorspellende chaotische model (PCM) een multi-variabel model, waar ook andere 
variabelen zoals wind en luchtdruk werden opgenomen. Bij de niet-lineaire tijdreeksanalyse 
van de waargenomen stijging op basis van gegevens blijkt dat de stormvloed dynamiek langs 
de Nederlandse kust kan worden gekarakteriseerd als deterministische chaos. Chaotisch 
gedrag in de storm surge dynamiek kan te wijten zijn aan het feit dat dit dynamisch systeem 
het resultaat is van complexe interacties tussen verschillende krachten of dynamische 
systemen, zoals: atmosferische dynamica, wind-golf-getijde interacties, etc. De 
aanwezigheid van deterministische chaos met een grote positieve Lyapunov exponent 
impliceert de mogelijkheid om te voorspellen. Echter, de voorspelbaarheid van elk 
voorspellend chaotisch model heeft een aantal beperkingen. Eigenschappen als gevoeligheid 
voor de initiële conditie en het bestaan van bifurcaties in de oplossing kunnen redenen zijn 
die in verband gebracht kunnen worden met de exponentieel afnemende juistheid van de 
voorspelling van het chaotische model afhankelijk van de voorspellingshorizon. Toch zijn 
de korte en middellange termijn voorspellingen van zo’n model over het algemeen vrij 
nauwkeurig.  
 
Voor het opstellen van een voorspellend chaotisch model is het noodzakelijk de 
waargenomen tijdsreeks van een dynamisch systeem te reconstrueren en op te nemen in een 
adequate m-dimensionale fase-ruimte met tijdvertragende coördinaten. Deze reconstructie 
behoudt de eigenschappen van het dynamische system, dat niet verandert bij een soepele 
aanpassing van de coördinaten, maar het behoudt niet de geometrische structuurvorm in de 
fase-ruimte. De juiste tijdvertragingswaarde en ingesloten dimensie kunnen geschat worden 
door middel van verschillende niet-lineaire analytische modellen (bijv. de eerste minimale 
wederzijdse informatie en correlatie dimensie,), of optimalisatie methoden. Gezien de juiste 
dimensie en tijdvertraging van een fase ruimte, zal de attractor van een dynamisch systeem 
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moeten worden bepaald om vervolgens een glad overgangstraject te kunnen verkrijgen. 
Voorspellingen in een chaotisch model kunnen op twee manier gedaan worden: door het 
gebruik van globale en lokale modellen. 
 
Bij globale modellen wordt het gehele dynamische gedrag van het system, zoals beschreven 
in de fase-ruimte, gekarakteriseerd en voorspeld door één globaal model. Daarentegen 
worden lokale modeller gekenmerkt door het dynamische gedrag ter plaatse door middel 
van een aantal locale modellen te bepalen, wat meer flexibiliteit biedt.De lokale modellen 
worden gebouwd op basis van de dynamische buren, gevonden in de fase-ruimte. Een 
aantal beschikbare op data gebaseerde technieken (dat wil zeggen: lineaire of niet-lineaire 
regressie methoden zoals (ANN) kunnen worden gebruikt als lokale modellen. Niettemin 
vormt de flexibiliteit van de lokale modellen een uitdaging om de beste zoektechniek te 
selecteren die de juiste dynamische buren en het geschikte aantal dynamische buren kan 
selecteren dat gebruikt kan worden voor de bouw van de voorspellende lokale modellen. De 
juiste buren verwijst hier naar de buren die soortgelijke dynamische kenmerken of 
eigenschappen (d.w.z. de zelfde soort stormontwikkeling) hebben m.b.t. concrete punten in 
de fase-ruimte. In dit onderzoek wordt gebruikt gemaakt van de Euclidische afstand 
methode om deze dynamische buren te vinden. Het eerdere gebruikte zoekalgoritme bleek 
niet erg selectief en vond soms dynamische buren die niet gelijkwaardige dynamische 
kernmerken hadden, waardoor zij ten onrechte gebruikt werden als buren bij het algoritme. 
In dit onderzoek werd hier speciale aandacht aan besteed, en een nieuwe zoektechniek, de 
zgn. traject gebaseerde methode, geïntroduceerd om onechte buren te vermijden. 
 
De methoden en ook een aantal software componenten uit eerder onderzoek zijn 
geïntegreerd, getest op nieuwe data en op sommige gebieden aanzienlijk verbeterd. Dit 
onderzoek heft de volgende innovaties teweeg heeft gebracht. 
 
Er is een nieuw algoritme ontwikkeld en getest om de juiste buren te kunnen identificeren. 
Deze zgn. traject gebaseerde methode komt voort uit het idee dat het vinden van juiste 
buren niet alleen afhankelijk is van de afstand tussen twee punten in de m-dimensionale 
fase-ruimte, maar ook van de afstand tussen de twee verschillende trajecten (sequenties van 
punten in de faseruimte), die deels gevormd zijn door deze twee punten. De buren worden 
verkregen door te zoeken naar het traject dat het dichts in de buurt is en in dezelfde richting 
gaat als het werkelijke traject (een traject gevormd door referentie- of het werkelijke punt in 
de fase-ruimte). Andere manieren om onjuiste buren te vermijden worden ook in dit 
onderzoek voorgesteld, zoals het gebruik van multi-step voorspellingstechniek en de afstand 
cut-off methode. 
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Het identificeren van de juiste embedding dimensies is één van de meest besproken 
onderwerpen binnen de gemeenschap van de niet-lineaire dynamica en chaostheorie. Zo is 
bijvoorbeeld een correlatie dimensie een veel gebruikte methode voor het schatten van de 
embedding dimensie. Deze schatting vraagt om een grote hoeveelheid tijdreeksen om een 
goede embedding dimensie te kunnen vaststellen. In dit onderzoek wordt het resultaat van 
de correlatie dimensie vergeleken met de (on)juiste naaste buren, met Cao’s methode, 
Kaplan-Yorke of Lyapunov dimensies en met de prestaties van de optimalisatie. 
Computationele intelligentie, zoals raster zoeken, genetische algoritme (GA) en adaptieve 
cluster dekkende optimalisatie (ACCO) worden in dit onderzoek gebruikt voor het 
optimaal functioneren. 
 
Ook zijn verschillende andere innovatieve ontwikkelingen gebruikt in het voorspellende 
chaotische model, inclusief fase-ruimte dimensionaliteit reductie, het bouwen van een 
chaotisch model van onvolledige tijdreeksen en het corrigeren van fase voorspellingsfouten. 
De niet-lineaire analyse van de tijdreeksen van een dynamisch systeem kan wijzen op de 
hoogdimensionale faseruimte wederopbouw. Een principaal component analyse (PCA) 
techniek is gebruikt om de fase-ruimte dimensie te verminderen naar een lagere 
dimensionale fase-ruimte met behoud van belangrijke informatie (principale componenten) 
van een hoge dimensionale fase-ruimte (d.w.z. informatie op afstand).De toepassing van 
PCA heeft nog een ander voordeel hier,namelijk het verwijderen van ruis dat kan ontstaan 
in de gegevens. Omdat meetinstrumenten en data-transmissie niet altijd feilloos werken in 
de praktijk, is het van het grootste belang een procedure in te bouwen op basis van de 
onvolledige tijdreeks. De mogelijkheid dat data verloren kan gaan moet ook worden 
onderkend bij het bouwen van een model. Om dit probleem op te lossen worden 
verschillende algoritmen zoals de gewogen som van lineaire interpolatie, de Bayesiaanse 
PCD en de “cubic spline’ interpolatie voorgesteld. Een aanpak om een model te bouwen om 
de fase afwijking dynamisch te karakteriseren wordt voorgesteld voor het corrigeren van 
fase voorspellingsfouten in het chaotische model. Twee soorten modellen worden gebruikt 
als afwijkende voorspellers (voorspellend chaotisch model en ANN), die in staat zijn het 
dynamische gedrag van de afwijkende fase te identificeren en te voorspellen op basis van 
een standaard chaotisch model. 
 
Een aantal methoden wordt getest om de problemen in verband met de gevoeligheid voor 
beginvoorwaarden en de beperking van de voorspelbaarheid van ieder model aan te pakken, 
inclusief een voorspellend chaotisch model. Het probleem is niet op te lossen door de 
gevoeligheid van de begin voorwaarde op de precieze en exacte initiële condities te bepalen. 
Door een data-assimilatie schema aan te brengen in het chaotische voorspellend model 
bestaat de mogelijkheid dit op te lossen. Een niet-lineair autoregressief neuraal netwerk met 
exogene ingangen (Nonlinear AutoRegressive with eXogenous inputs –  NARX) is 
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geïmplementeerd als een bijna real-time data-assimilatie techniek voor het assimileren van 
nieuwe geobserveerde gegevens in het voorspellend chaotische model. Deze techniek kan de 
lage nauwkeurigheid van de voorspellingen na een bepaalde tijd effectief corrigeren, wat 
vervolgens leidt tot de uitbreiding van de voorspelbaarheid van het chaotische model. 
 
Een andere innovatie is het gebruik van multi-model ensemble voorspelling wat gezien kan 
worden als een effectieve manier om de voorspellingsprestatie (op basis van bias-variantie 
decompositie) te verbeteren. Het is vaak de moeite waard om een combinatie van 
verschillende voorspellingsmodellen te zoeken in plaats van alleen de beste te selecteren, 
zeker als die slechts marginaal de beste zou kunnen zijn. Voor het combineren van de 
heterogene vormen van voorspellende chaotische modellen worden multi-model ensemble 
voorspelling met behulp van dynamische gemiddelden en een dynamisch neurale netwerk 
geïntroduceerd. Een dynamische gemiddelde methode is hier geïntroduceerd - een 
combinatie van model selectie en combinatie van methoden gebaseerd op de prestaties van 
het model over een bepaalde tijd van voorspellingen. Een andere techniek maakt gebruik 
van dynamische neurale netwerken, een zgn. gericht tijdsvertragend neuraal netwerk 
(Focused Time-Delayed Neural Network – FTDNN). Verschillende voorspellingen van 
diverse types voorspellende chaotische modellen worden geselecteerd en gecombineerd 
door deze twee technieken om zo meer accurate en betrouwbare voorspellingen te 
verkrijgen. Met betrekking tot een hoogdimensionaal chaotisch systeem betekent dit dat een 
ensemble van alle toekomstige trajecten in de fase-ruime wordt geschat op basis van 
individuele heterogene modellen. 
 
Een aantal verbeterde methoden om voorspellende chaotische modellen te bouwen is 
uitgevoerd en getest. De resultaten toonden een verhoogde voorspelling en prestatie ten 
opzicht van het initiële voorspellende chaotische model: PCM is 63% nauwkeuriger dan het 
ANN model; univariabel-PCM met PCA kan de nauwkeurigheid met 118% verhogen in 
vergelijking tot multi-variabele ANN; het gebruik van een PCM afwijking corrector kan de 
prestatie verhogen met 94%; verminderde nauwkeurigheid van -8% is het geval bij cubic 
spline interpolatie wanneer 30% van de waarden niet aanwezig is, de traject gebaseerde 
methode is beter in het vinden van de juiste buren wat resulteert in een verbetering van 
185%; ACCO bleek de meest efficiënte optimisatie techniek te zijn voor het voorspellend 
chaotisch model, wat leidde tot een toename van 67% van de nauwkeurigheid; data 
assimilatie met gebruik van een NARX netwerk bracht 553% verbetering; multi-model 
ensemble voorspellingen die gebruik maken van FTDNN met ‘batch learning’ bleek de 
meest effectieve methode om de prestatie van het voorspellend chaotisch model te verhogen 
met 967%. Toch, zal er nog verder onderzoek gedaan moeten worden om de 
betrouwbaarheid van de verbeterde methoden en de mogelijkheden om deze te 
combinerenen, te testen. 
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Over het geheel genomen draagt dit onderzoek bij aan de ontwikkeling om extreme 
waterstanden beter te voorspellen. De modeltechnieken gebaseerd op de methoden van 
niet-lineaire dynamica, chaostheorie, statistiek en neurale netwerken met diverse 
verbeteringen en innovaties hebben aangetoond dat het voorspellende chaotische model 
kan dienen als een efficiënt hulpmiddel voor accurate en betrouwbare korte termijn 
voorspellingen van stormvloeden ter ondersteuning van beleidsmakers bij het nemen van 
beslissingen in geval van overstromingen en ten behoeve van navigatie. We geloven dat deze 
aanpak goede mogelijkheden biedt om als aanvullende methode te worden gebruikt in de 
praktijk, samen met de traditionele numerieke oceaanmodellen. 
 
 
 

Delft, 6 December 2011 
 

Michael Siek 



Accurate predictions of storm surge are of importance in many coastal areas in the 
world since they help to avoid and mitigate its destructive impacts. For this purpose 
the physically-based (process) numerical models are typically utilized. However, 
in data-rich cases, one may use data-driven methods aiming at reconstructing the 
internal patterns of the modelled processes and relationships between the observed 
descriptive variables.

This thesis focuses on data-driven modelling using methods of nonlinear dynamics 
and chaos theory. First, some fundamentals of physical oceanography, nonlinear 
dynamics and chaos, computational intelligence and European operational storm 
surge models are covered. After that a number of improvements in building chaotic 
models are presented: nonlinear time series analysis, multi-step prediction, phase 
space dimensionality reduction, techniques dealing with incomplete time series, 
phase error correction, finding true neighbours, optimization of chaotic model, 
data assimilation and multi-model ensemble prediction. The major case study is 
surge prediction in the North Sea, with some tests on a Caribbean Sea case.

The modelling results show that the enhanced predictive chaotic models can serve 
as efficient tools for accurate and reliable short and mid-term predictions of storm 
surges in order to support decision-makers for flood prediction and ship navigation.
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