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Abstract

Few rare, circular, concentric enclosure ditches called rondels were discovered in Slovakia, a country
in Europe; within the ditches, material traces of Neolithic European culture can be excavated. For exca-
vations to happen, archaeologists must first locate these rare structures. Most rondels were spotted on
agricultural fields or searched for manually during aerial surveys in a time-consuming manner. With the
release of a high-resolution multispectral aerial orthophotomosaic data set of Slovakia, detailed sites
containing rondels may be discovered using machine learning techniques.

Machine learning techniques using convolutional neural network (CNN) models can be applied to the
field of archaeology to search for excavation sites automatically. An obstacle remains: CNN models
require a lot of training image data to be efficient at their task, which is to classify whether areas contain
rondels or otherwise. There are only 20 visible rondels on the orthophotomosaic that can be used as
training images for model input, creating an imbalanced data set of a class with a minority class of
aerial images of rondels and a large majority class of aerial images without rondels. Sketches and
recorded characteristics of rondels from current images and from archaeological publications were
used to automatically and randomly replicate rondel appearances from above, resulting in a created
balanced data set with sufficient rondel examples for CNN training.

Multiple ResNet-34 models and a ConvNeXt model with differing hyperparameters were trained. The
most promising model, a modified ResNet-34, was selected based on validation loss from the cross-
entropy loss function and on the number of correctly and incorrectly classified labeled images from a test
set. The selected model is used to classify data from the orthophotomosaic for rondels using a sliding
window technique. Over 9510 square kilometers of agricultural land cover in western and eastern
Slovakia was selected from the CORINE land cover map for classification. 7 suspected rondel sites
were found, and 2 were determined to likely be rondels, based on their circular ditch-like appearance in 4
sets of multispectral images and in LiDAR elevation data. Results indicate that exact rondel layouts can
be delineated with high-resolution orthophotomasics, however identifying circular elevation patterns of
ditches proves to be challenging without using additional LiDAR data.
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Introduction

1.1. Objective

The objective of this thesis project is to automatically search for rare, circular, Neolithic era structures in
Slovakia called rondels with few remaining positive examples in RGB and near-infrared aerial images
using a trained convolutional neural network model.

1.1.1. What are rondels and why are they important?

Rondels are enclosure ditches arranged in circular patterns. For reasons currently unknown, they were
built around 6800 years ago during the Neolithic [5]. The ditches are concentric with entrances. The
circular pattern can be seen more clearly from above; figure 1.1 shows an example of a rondel from an
aerial photograph, the rondel has two clear rings with an opening to the right of the rings [4].

Slightly over a hundred suspected rondels have been reported across Slovakia, therefore rondels are
confirmed to be sparingly sighted [5]. Outside of Slovakia, similarly, rondels are found scattered across
other central and eastern Europe countries in less urbanized areas [5], usually in agricultural fields
where their remains have not been removed by construction projects.

We are interested in searching for rondel sites because, for archaeologists, rondels contain unearthed
material remains of past Neolithic cultures and are one of the earliest examples of ancient European
architecture. It has been theorized from objects at excavated ditches that rondels may have served a
ceremonial purpose. At a few sites, declinations in celestial bodies can be observed during equinoxes
or solstices at their openings [5] [51]. For archaeologists to excavate rondels, the sites should first be
located using a non-destructive method, preferably by using aerial imagery [4].

Figure 1.1: Remains of a rondel in Golianovo, Slovakia seen from an aerial photograph [4].
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1.1.2. What are convolutional neural networks?

Convolutional neural networks (CNNs) are a type of layered neural network model commonly used
to classify data with multiple channels and dimensional sizes such as colored images. Convolutional
and aggregating operations are applied to multiple layers to summarize and reduce spatially significant
patterns from images for the classification process, making CNNs a viable choice for classifying ar-
chaeological fields in large, terabyte scale spatial data sets the size of a country [28]. To do this, CNNs
must first be trained on 2 classes of aerial images- in this case images of rondels and images without
rondels. The more a CNN ’sees’ a class of trained images, the more the model is updated to effectively
classify images of that class [25].

1.1.3. What are RGBN aerial images?

The Slovak cadastre released a complete second orthophotomosaic data set of Slovakia in 2023 cre-
ated from processed airborne photos [21] at a 20 centimeter resolution. The orthophotomosaic contains
processed multispectral imagery of the country collected via 4 channels: visible red, green, and blue
colors, and a near-infrared channel. We will be using this data set to train our CNN and search for
rondels from above.

1.2. Problem Statement

Not a lot of machine learning techniques have been implemented in archaeological studies as they
have been used in engineering or scientific research [2]. Slovak archaeologists have been using aerial
surveys since 1963 to search for Roman forts [4]. We are planning to close this research gap by
training neural network models to search for rarely spotted archaeological sites on aerial orthophotos.
Physically searching for rondels during field campaigns is time consuming for archaeologists. With a
published dataset of Slovak aerial photos, it is possible to 'scan’ through the photos for rondels with a
neural network model.

However, few problems remain: First, neural networks require large amounts of inputted training im-
ages to be effective at classifying an object of interest. A hundred positive examples of visible rondels
are not enough to train the network adequately [30]. And second, seasonal changes in crop growth
over agricultural fields can potentially obscure the remains of a rondel from above [3]. We are going to
address the problem statement by conducting research to answer the following research questions:

1.3. Research questions
Main question: How can we detect new rondels in RGBN aerial images with limited positive
examples?

Sub-question 1: Which configurations and parameters can we use for the training data set and the
convolutional neural network models that will result in an effective model for finding new rondels?

Sub-question 2: Can we differentiate any seasonal vegetation changes that would affect rondel ap-
pearances in the orthophotomosaic data set?

Sub-question 3: What additional value do high-resolution multispectral images bring when it comes to
rondel detection? How useful are they compared to LiDAR data?



Background

This chapter introduces the characteristics and locations of Slovak rondels, a brief overview of convo-
lutional neural network (CNN) model mechanics, and what the CNN models are used for. We will also
discuss previous archaeological research utilizing digital images and neural network models, and past
research specifically on searching for Slovak rondels.

2.1. Rondels

The exact purpose rondels serve and how they originally looked like around the time they were built
remains unclear to researchers. Archaeologists have theorized that rondels could have served as a
place for social gatherings such as ceremonies and celebrations, or as a marketplace, based on tools,
ceramics, and stone materials found at excavated sites. Rondels could have served as burial sites
based on human and animal remains found inside the ditches or as astronomical sites, similar to the
British Stonehenge where openings align with declining celestial bodies at certain times of the year [5].

2.1.1. Characteristics of rondels

Most recorded rondels range from 40 to 200 meters across- there may be a large variance in their sizes
but all rondels are arranged in circular and oval patterns. The ditches contain 1 to 3 main concentric
rings with 2 to 5 entrances leading from the field outside the largest ditch to the innermost ditch [5]. A

general "blueprint” of their layout is shown in figure 2.1.
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Figure 2.1: Recorded Slovak rondel "blueprints” from Slovakia from a publication by Ridky (2007) [4].

When viewed from the ground level, rondels appear as circular ditches like in figure 2.2; this is partic-
ularly visible at excavated sites. The maijority of spotted rondels are on agricultural fields where they
are covered by crops, but their circular ditch structures remain beneath. The entire ditch-like structure
becomes more apparent from higher ground and from aerial photos [42] [4].
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Figure 2.2: An excavated ditch near Prague in the Czech Republic. Photograph by Google user Vladislav Urban. [20]

Circular rondel features can be spotted in visible RGB and near-infrared imagery as crop or soil marks
because they lead to anomalous vegetation growth over ditches. Soil inside rondel ditches on vege-
tated terrains (like agricultural fields) are able to culminate more organic materials and water than their
surroundings, leading to higher moisture retention. This causes vegetation growing over the ditches to
grow healthier and taller than ones growing over non-ditched areas [46]. During drier seasons of the
year, the contrast is more visible from above than during colder and wetter seasons [3].

The data set used in this project is an orthophotomosaic generated from multispectral aerial photog-
raphy in the visible (RGB) and the near-infrared channels [21]. Multispectral refers to the data set’s
multiple channels. Although various crop types and camera sensors have different reflectance charac-
teristics, generally, near-infrared light is reflected more strongly by chlorophyll in healthier vegetation
and RGBN aerial imagery captures this contrast well [8]. Green light is reflected the most out of the
three visible channels, creating a stronger and darker color over rondel ditches [46].
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2.1.2. Known and located rondels

Figure 2.3 shows a total of 129 suspected rondels have been reported in Slovakia; but only 20 of
them are clearly visible on the orthophotomosaic data set. Even fewer in Slovakia were well-studied or
excavated [5]. Most of the recorded rondels were spotted from surveys and previous research studies in
western Slovakia’s fields overlooking rivers [36] [4]. It should be noted that a majority of archaeological
aerial surveys done by Slovak researchers coincidentally take place in the western part of the country
which has been Slovakia’s most densely populated area since the Neolithic to the present day [4].

Figure 2.3: Map of 129 rondel locations on the orthophotomosaic data set provided by projects and publications [36] [4] [5].
109 red circles are non-visible, but reported rondels, while 20 blue circles indicate visible rondels.
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The 20 visible rondels marked in blue are shown in figure 2.4 in the red, green, and blue (RGB) channels.
They are also shown in figure 2.5 in the near-infrared (N) channel. The majority of visible rondels appear
as a darker circle on the field in the RGB and N channels.

Berinova Bezenica Cepiec Chrenove Dlhé zeme
HLOHOVEC 54 HLOHOWEC _5-4 PLASTOVCE_9-6 MITRA_B-T MITRA_T-6
48.474419 48.31977 45.1353569 48.26106 48277832
17.881665 17.81848 15.785695 18.216208 18.182765
28-08-2020 21-06-2020 04-09-2021 02-08-2020 02-08-2020
Hrubonovo 2 Konsky jarok Ludianska dolina Od Bielku Pedik
HLOHOVEC_1-6 MOVE_ZAMKY_5-4 LEVICE_1-4 SENICA_0-5 ZELIEZOVCE_2-5
48.455598 47.96829 48.16328 48.625204 4797726
18.02284 18.275386 18.73207 17.6759769 15.71833
02-08-2020 12-08-2020 12-08-2020 22.08-2020 12-08-2020
Piligské Prostredné pole Sekaniny Stotky Tempname 1
MITRA_6-8 TRNAVA_T-6 TOPOLCANY 1-9 HLOHOWEC_5-4 TRNAVA_G6-2
48.23951 45.421801 48341131 48.48289 45.494041
18.20525 17.459703 18.36924 17.87473 17.507435
0z-08-2020 28-08-2020 02-08-2020 28-08-2020 28-08-2020

Tempname 10 Zadné pole 1 Zadné pole 2 Zajatie Zavodské
PLASTOVCE_§-1 TRNAVA_1-B SENICA_0-8 SURANY_5-6 SURANY_T-2
43.23587 48.395214 48.583642 481061 48.178596
18.8856 17.667628 17.696871 13.16958 18.188239
03-09-2021 28-08-2020 22.08-2020 12-08-2020 12.08-2020

100 | —

Figure 2.4: Rondels (with location names) visible in the 2nd cycle orthophoto, file name, WGS-84 latitude and longitude, and
image date is included. RGB channels.
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Berinova Cepiec Chrenove Dlhé zeme
HLOHOWEC 5-4 HLOHOWVEC _5-4 PLASTOVCE_9-6 NITRA_G6-7 MNITRA_7-6
48474419 48.135369 48.26106 48277632
17.881665 18.785695 18.216208 18.182765
28-08-2020 21-08-2020 04.09-2021 02-08-2020 02-08-2020

Hrubonowvo 2
HLOHOVEC_1-6
45.455598
18.02284
02-08-2020

Pilidské
MITRA_G-8
48.23951
18.20525
02-08-2020

Tempname 10
PLASTOWCE_6-1
48.23587
15.8856
03-09-2021

Konsky jarok Ludianska dolina Od Bielku
NOVE_ZAMKY 5-4 LEVICE 1.4 SENICA_0-5
48.16328 48.625204
18.73207 17 679769
12-08-2020 12-08-2020 22-08-2020
Prostredné pole Sekaniny Stocky
TRNAVA_T-6 TOPOLCANY_1.9 HLOHOVEC 5-4
4841131 48.48289
18.36924 17.87473
02-08-2020 28-08-2020

Zadné pole 1 Zadné pole 2 Zajatie

TRMNAVA_1-8 SENICA_0-B SURANY_8-6
48.583642 48.1061
17.696871 15.16958
22-08-2020 12-08-2020

Petik
ZELIEZOVCE_2-5
47.97726
18.71833
12-08-2020

Tempname 1
TRNAVA_6-2
48494041
17.507435
28-08-2020

Zavodské
SURANY_7-2
48.178596
18.188239
12-08-2020

M | —

Figure 2.5: Rondels (with location names) visible in the 2nd cycle orthophoto, file name, WGS-84 latitude and longitude, and

image date is included. Near-infrared (N) channel.
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2.2. Convolutional neural network models

Convolutional neural networks (CNNs) are a type of layered deep learning model used for tasks such
as image classification, segmentation, and object detection on images [6]. The model takes in image
data and, after data transformations, outputs a prediction [7]. Dimension reducing transformations on
inputs make CNNs in general, effective for usage with extracting patterns from large scale data sets
[28].

During the training process, the more data we input into a model, the more its predictive abilities are
expected to improve. Likewise, supervised models work better with more labeled data [25]. Our CNN
models are supervised, meaning that training images contain a class label identifying whether or not
they contain a rondel. After feeding in training data at each epoch, another set of unseen ground truth
validation data is used for evaluation [11]. A model’s effectiveness is measured through values from
a loss function by comparing incorrectly or correctly classification results to labeled ground truth data.
We are aiming for a model which minimizes the loss value since a divergence from the ground truth
label increases the value [7] [19]. With each epoch, the model updates it's weights. We also want to
hold out another data set called the test set that has not been used in the model evaluation process, to
provide a final, unbiased view on the model’s effectiveness.

Most CNNs consist of convolutional layers, pooling layers, and fully connected layers.

In convolution layers, filters performing matrix operations are applied across inputted images as sliding
windows, or kernels, to extract relevant features. Common features extracted are patterns such as
curves, lines, edges, or even whole shapes, depending on the side of the filter and kernel. The extracted
features would get passed on to the next layers as a feature map. Pooling layers "summarize” the
features found by reducing the dimension count of the feature map through aggregating functions. In
the final connected layer, the features and their probabilities are flattened and passed to a prediction
layer for output label generation [28].

3 tasks CNNs are commonly used for in image operations include: image classification, object detection,
and object segmentation; shown in figure 2.6. Image classification is used in this project.

(a) Image classification (c) Object segmentation

0 25 som A
O

Figure 2.6: 3 tasks with CNN usage in archaeological research. (a) shows a digital elevation image classified as containing a
Neolithic French burial mound. (b) shows the detected location of the structure with a bounding box on the image. (c) shows a
delineated, or segmented burial mound. [2]

2.2.1. Object detection and segmentation

In an object detection study, the neural network outputs a located bounding box surrounding an object
of interest belonging to a class within an image [2]. The advantage of object detection is that the output
directly shows the object’s location, but a drawback is that it takes time to draw bounding boxes. To
train a supervised detection model, training samples must contain four coordinates pairs for drawing
bounding boxes. With over a thousand training samples required to effectively train a CNN, we would
be spending too much time; therefore we are not going to use object detection in this project [36].

Similarly, object segmentation outputs a located and delineated mask around an object of interest.
As non-archaeologists, we have limited expertise on the details and layouts of rondels; additionally,
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the rondel ditch could be covered by more or less vegetation depending on the season [3]. Creating
delineated masks over rondel samples therefore becomes time consuming and may require input and
expertise from actual archaeologists.

2.2.2. Image classification

In an image classification study, the neural network outputs a class associated with an input image [2].
An image containing a rondel has a 'rondel’ class, similarly, an image without a rondel has a 'not a
rondel’ class. Image classification does not require bounding boxes or masks to be drawn around the
object of interest (in our case, rondels) in training images, therefore this reduces time used to create
training images for supervised models. We are using this method since the images can be rapidly
generated without intervention to add in masks or boxes [36]. Large areas can be classified in smaller
parts using the sliding window technique; for example, searching for smaller archaeological sites of
interest on a larger map or a high-resolution aerial image [41] [12].

ResNet

A ResNet, or a residual neural network, is the name of a CNN model that we will be training for the
project’s purpose. Having a deep layered neural network results in improving target feature recognition-
yet they comes at the expense of over-complexity, overfitting, and causes exploding gradients that could
prevent converging during training. ResNets contain a ’skip-connection’ at each residual block (or, a
group of layers) to skip through multiple layers and prevent such issues that arise when layers are
increasingly added [23]. The number behind ResNet indicate the amount of layers in the model. We
will train a modified version of a ResNet-34 with a stride of 1 for it's moving filter to detect finer image
details; we call this a simple ResNet.

ConvNeXt

Another classification model we will be training is the ConvNeXt. This model is ’inspired’ by vision
transformers and is said to have achieved better results than the ResNet. A 'tiny’ version of the Con-
vNeXt comes with more parameters than a ResNet model with 49 convolutional layers (and a fully
connected layer) [33]. The ConvNeXt splits input images into patches and classifies them individually
with depth-wise convolution.

2.3. Class imbalance
We are performing a binary image classification with two classes: rondels’ and 'not’ rondels.

The entire country of Slovakia contains much more areas without rondels than there are areas with,
therefore we are dealing with a large class imbalance in the data set [30]. When a neural network model
is trained on imbalanced data, the model’s weights are updated based on more gradients coming from
the majority than the minority class, increasing the error coming from the minority class and results in
worse classification performance. Other examples of imbalanced data include oil spill detection from
satellite images, catching fraudulent transactions, and diagnosing rare medical cases [25] [30]. This
is an intrinsic imbalance in the data where the imbalance of data is naturally occurring due to their
low frequency. Oil spills are infrequent, most patients don’t have rare disease diagnoses, and most
monetary transactions are legitimate [31].

Our class imbalance can be partially solved regardless of class disproportion by equally representing
both classes through sampling. In this case we can intentionally over-sample the ’rondels’ class [30].
With a binary dataset with few positive class examples, only outputting an negative class classification
means the model is accurate. We are reducing this problem on the data-level by reducing the imbalance
through sampling more "rondels” by randomly generating synthetic training images of them [31].
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2.4. Previous research

A ResNet-18 CNN model was previously trained specifically for searching rondels in digital terrain
rasters from processed LIiDAR data over western Slovakia [36]. The data set used was processed at a
resolution of 1 meter per pixel and at that time, was only available over the western part of the country
[21]. The model was trained on augmented versions of existing visible rondels pasted on terrain maps.
It was then used to search for new rondels in the surroundings of an area called LOT5, northeast of
Bratislava. 32 possible new rondels in figure 2.7 were found within LOT5.
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Figure 2.7: 32 new possible rondel sites and their probabilities in western Slovakia from a LiDAR data study [36].

Most of the new rondels shown tend to be located on fields and close to abandoned rivers [36]. It
is theorized that rondels found on fields were not yet removed by urbanization, since rondels have
been found in urbanized areas close to buildings, for example the rondel in Prague from figure 2.2 [20].
Another study using terrain data reported that most rondels were built on sloped areas [51].

A following archaeological project has shown how rondels appear in each channel and combination
in multispectral aerial images- but without taking into account seasonal differences [42]. Multispectral
RGBN images and their combinations containing archaeological sites are claimed to appear different
seasonally in research papers; usually during drier months without heavy rainfall the sites can be more
easily discerned [3]. Fall and spring are the months where less vegetation differences can be seen
over other non-rondel buried archaeological sites in Greece and Turkey because of low plant growth
and overall wetter conditions- an ideal time to carry out multispectral studies in Europe would be from
July through September [27] [3].



Data and study area

This chapter details the specific data sets we’ll use in this project. All data used are stored on a remote
computer and accessed through a remote server.

3.1. Data sources

3.1.1. Orthophotomosaic of Slovakia - 2nd cycle

We are searching for rondels on the official second cycle orthophotomosaic of Slovakia. An orthopho-
tomosaic is a digital aerial photograph created from multiple mosaiced photos, or orthophotos, where
corrections were made for terrain reliefs, sensor and camera calibrations, and feature displacements
[17]. A full version of the orthophotomosaic is shown in figure 3.1 below. This cycle’s orthophoto was
generated from aerial photos taken between 2020-2022 May to October and was released by Slovakia’s
cadastre in 2023 via Geoportal [21].

Figure 3.1: Full view of the 2nd cycle Slovak orthophotomosaic provided by Slovakia’s cadastre [21].

The full orthophoto of Slovakia is split into 13,000 smaller rectangular 12,000 by 10,000 pixel tiled
images (5 square kilometers per tile), totaling at around 2 terabytes in file size. 4 image channels (red,
green, blue, near infrared) are available as a .TIFF raster alongside a .TFW sidecar file containing
its projection and co-location [21]. The images have a ground sampling distance, or resolution, of 20
centimeters. A square pixel on the orthophoto represents 20 by 20 centimeters on the ground [34].

Every .tif image tile and it's .tfw sidecar file containing geolocated information is named using the fol-
lowing convention: AREA_##-#i#.tif or .tfw. Following digits indicate the tile’s position in a named area
of the country [21].

As of 2024, only the second orthophoto cycle is fully available over the entire country in all 4 channels.

11
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Table 3.1 lists the full details on this cycle. The first cycle does not contain near-infrared image channels
[21].

The data set comes with a .shp shapefile containing metadeta on the dates at which aerial photos used
to generate the tiles were taken [21].

Orthophotomosaic properties

1st cycle 2nd cycle
Resolution 25 cm per pixel 20 cm per pixel
Channels RGB RGB + Near-infrared
Cycle duration 2017-2019 May 1 - September 30 2020-2022 May 1 - October 17
Format .TIF images + .TFW sidecar .TIF images + .TFW sidecar
Size per image tile | 10000 x 8000 pixels 12500 x 10000 pixels
Coordinate system | S-JTSK(JTSK) - EPSG:5514 S-JTSK(JTSK) - EPSG:5514

Table 3.1: First and second orthophotomosaic properties covering Slovakia

3.1.2. Reference data: 1st cycle orthophotomosaic

RGB orthophotos (without the near-infrared channel) are available for the first 2017-2019 cycle over
Slovakia. With the photos, we may be able to see slight seasonal vegetation changes in the visible
spectrum because the images were taken between 1.5. - 30.9. during different years [21]. Slight
vegetation differences between two cycles are show in figure 3.2.

Figure 3.2: First cycle (left) and second cycle (right) images over a western Slovak village up close - this region was
previoiusly discovered to have more detected rondels than in other areas in the country. [21] [36]

3.1.3. Rondel sketches

We are using rondel sketches from archaeological publications and textbooks to create new samples
and address the inherent class imbalance in our data set [30]. The rondel sketches below in figure
3.3 are blueprints of their layouts based on publications recording rondel excavations and sightings in
Austria, Slovakia, and Germany [4] [5] [48].
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200060
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66506060
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Figure 3.3: All rondel sketches used in this project from Austria, Slovakia, Czechia, and Germany [4] [5] [48]

3.1.4. CORINE land cover map

New training images are generated based on sketches and on empty agricultural land containing no
rondels. The majority of remaining rondels, visible or not, are found on agricultural fields [36][5]. The
CORINE 2018 land cover map made available by EU Copernicus’ land monitoring service confirms this
in figure 3.4 below where agricultural land cover is colored in light green. 2018 was the year with the
latest land cover data update provided [44].
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Figure 3.4: A CORINE shapefile (in green) over the 2nd cycle Slovak orthophotomosaic with reported rondel locations [21].

The land cover map is supplied as a raster and as a vector shapefile containing land cover type for each
EU country. Land cover types can range from agricultural areas to water bodies, forests, industrial and
commercial areas [44]. The shapefile is used in Python’s GDAL package and in the QGIS software to
constrain areas where generated rondels are set to appear on only fields. It is also used later on in the
project to narrow down areas to search for rondels in order to limit data storage and runtime [41].



Methodology

This chapter lists out all steps required to carry out this thesis project. Figure 4.1 contains a visual
overview.

Extract known Empty tile extraction
rondels from from the orthophoto
orthophotomosaic as training samples

S B Data set construction CNN (ResNet or . Sliding window | Evaluate areas
| Extract all visible from tiles with and —» ConvNeXt) model infzrenoe classified as rondels
rondels as test set without rondels construction - for potential rondels
- I I - .
_Generate rondel Training set 80% Train and validate
Gather literature and —| images for training I I
pictures of rondels and validation Validation set 20% Confirm with test set
I
Adjust model

hyperparameters

Figure 4.1: Flowchart showing the methodology, step by step, of this project.

4.1. Training, validation, and test set folder construction

To run a binary classification of areas which either contains a rondel or none at all, a CNN model must
first be trained on images split into separate folders. Images containing rondels are positive examples,
images without rondels are negative examples. There are only 20 clear rondel examples from the
Slovak orthophotos in comparison to thousands of areas without rondels. This imbalanced data set is
not enough to train a neural network model, but this issue can be resolved by using synthetic rondel
examples [30].

Our data set consists of a training, validation, and test set with a split shown in figure 4.2. The training
set is what we feed to train the model before using it as a classifier, while the validation set is the one we
use to evaluate the results of the model at each epoch using the training set. We will use approximately
a 8:2 training to testing data set ratio since it is the most commonly used ratio with resulting in the best
model results empirically [26] [22].

Data in each set should be independent of each other so that the model does not evaluate the validation
set based on data it has already seen; therefore, for synthetic rondels, rondels generated from the same
sketches should be grouped together in either set, but never in both. For both sets we chose to use a
balanced 1:1 number of positive and negative examples [26].

A test set consisting of all 20 real, visible rondels and 625 empty areas is held out separately for the
final evaluation step. No real rondel examples are used in the training or validation stages to prevent
overfitting.

15
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Training set Validation set
0% 20% Test set
i N ( ) Real rondels
Fake 'rondels’ Fake 'rondels’ 20 images
50% 80%
~ ~ A Random empty
r N 4 £ R areas without
i mply areas rondels
Empty are assg;’hn ut rondels without rondels
\ J 50% | —
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Figure 4.2: Training, validation, and test set split.

4.2. RGBN image extraction

Rondels appear as dark and faint circles on fields and on all 4 image bands because ditches cause
vegetation growing above them to retain more moisture [46]. Most rondels have been discovered on
agricultural fields in Central and Eastern Europe [5]. Crops growing over rondel ditches and images
show a relief difference formed where vegetation overlays near-surface archaeological remains. In this
case, archaeological features can retain soil moisture with a different percentage of moisture compared
to non-archaeological areas. [1].

A script was written to extract square images and numpy arrays from RGBN bands centered around
any given S-JTSK or WGS-84 formatted coordinate located within the orthophotomosaic dataset. We
use the extracted images to construct our data set. An example of extracted visible rondels (and
their locations plus tile names) the RGB and N bands was shown previously in figures 2.4 and 2.5.
Additionally, these rondel images make up the 20 real examples in our test set.
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4.3. Synthetic training sample generation

20 out of all recorded rondels are visible in the Slovak orthophoto. A lack of positive rondel examples
makes it difficult to construct an adequate training and validation set for CNN models. To compensate
our imbalanced data set, we sampled our own synthetic training images resembling the appearance
of existing rondels on RGBN bands; otherwise, using an imbalanced data set can adversely affect the
classifier’s results [25]. The generated rondels were created using sketches of Austrian, German, and

Slovak rondels from archaeological textbooks. Few rondels in Austria appear to have triple concentric
rings [5] [48].

Our randomly generated rondel images are made to closely match the appearances of vegetation with
more moisture retention growing in a circular crop mark pattern on top of arranged ditches on fields [8]
[46].

First, rondel sketches were individually cropped out of the textbook and edited to appear as greyscale
sketches on a transparent alpha channel. An example of an cropped image is shown in figure 4.3.

O

Figure 4.3: A rondel in Slovakia edited and cropped out of a Slovak archaeology textbook authored by Ridky et al. [5]

The cropped sketches are then randomly and automatically modified according to figure 4.4 using
image editing functions in openCV and sklearn to increase training sample variety while still retaining
the characteristics of a rondel [36]. An increase in training sample variety and augmentation increases
the trained CNN'’s performance [10].
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Original sketch Resize Flip Blur
Rotate Shear Binary dilation Alpha/transparency

N

Figure 4.4: Randomly and automatically augmenting a rondel sketch with random openCV and sklearn image editing functions.

Next, a specifiable number of randomly geolocated images are cropped out of the orthophoto if the
ground below has a land cover type indicating agricultural activity. Areas containing known rondels (to
our knowledge) within half a kilometer are excluded from the process. Since all of our visible rondels
fall within the boundaries of an agricultural area as delineated by the CORINE 2018 land cover map;
picking random agriculture fields to place generated rondels on should give a representative sample.

The modified rondel sketch is pasted onto the cropped area on a random location of the image on all
4 (RGBN) channels like in figure 4.5.

RGB Near-infrared (N)

T00 I  ————

Figure 4.5: A modified rondel stamped on a random field on RGB and N channels.

We inserted the modified sketches on random locations on extracted fields since CNNs are reported to
not be shift invariant, therefore a difference in the location of an object of interest affects CNN perfor-
mance to a significant extent [9]. Training and validation samples resemble pictures in figure 4.6. RGB
channels are shown for easier visualization.
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100 m

Figure 4.6: Examples of edited rondels on empty fields at different locations on each extracted field. RGB channels are shown.

Negative examples of the 'not a rondel’ class are extracted randomly from all land cover types over the
country. This includes infrastructure, villages, water bodies, and forests where rondels are not typically
found. Figure 4.7 shows several examples of images containing no rondels, generated or otherwise.

100 m

Figure 4.7: Examples of images containing no rondels for the 'not a rondel’ class. RGB channels are shown.

The images are pre-processed into numpy arrays and to a normalized data type called tensors for use
in the Pytorch machine learning package. Every sample is manually inspected before being fed into the
model. Generated training images labeled in the rondel’ class showing no clear rondels are discarded.
Horizontal and vertical flips are also applied to the images for further augmentation to increase training
sample variability and rondel placements.

4.4, Hardware

To train and evaluate our models, and to search for rondels, we used a remote machine accessed
through a remote server with 4 GPUs and 12 CPU cores. 2 NVIDIA GeForce RTX 2080Ti and 2
NVIDIA RTX A4000 GPUs were used. All data is accessed through the remote server. To speed up
training and search times with data parallelism, Pytorch utilizes all 4 GPUs by splitting loaded data into
individual GPUs through the DataParallel function. We increased CPU memory usage and training
speed further with a higher num_workers value up to the number of CPU cores during the data loading
process [29].

4.5. Convolutional neural network training

4.5.1. Model setup

We are using the Pytorch library to set up a modified simple ResNet-34 and a modified ConvNeXt
tiny classifier for 4 channel multispectral image inputs. The expected output is a binary classification
of an input image. The models take in tensors; matrices containing elements of a single data type
with a square input size of 512 by 512 pixels and 4 channels (RGBN). In our models, the input data
type is float32. All square multispectral images are converted to multichannel (4) numpy arrays, then
normalized and rescaled to the input size to train the classifiers. Bilinear interpolation is first used to
rescale training images. Then the multi-channel numpy arrays are converted to float32 tensors.

Each image channel is normalized from ’color’ values from [0-255] in their original RGBN format to
tensor values between [0-1] and with a mean and standard deviation of [0.5, 0.5, 0.5, 0.5] before being
fed to the neural network model for training or classification. Data normalization also speeds up the
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training process [24]. An example a normalized image in comparison to it’s original image is shown in
figure 4.8.

Figure 4.8: A cat image to the left before normalization on all channels, and a normalized version of the same image to the
right [47].

A softmax layer at the end of the classifier produces a decimal output containing the probabilities of
each class the image is is given an input [13], with all class probabilities adding up to 1. The softmax’s
layer output is used to quantitatively evaluate a model at each epoch with the test and training sets
through the cross-entropy loss function [19]. Figure 4.9 is an example of a softmax probability output
with 3 classes.

Figure 4.9: The softmax layer outputs the probability of an inference output belonging to one of three classes [13]. The input
picture has a 0.94 probability it belongs to the 'Dog’ class.

After training, a generated .pth file containing model weights is used to run the trained model. With
a trained model and its corresponding .pth file on hand, the model can be set to inference mode to
classify input images and output classification probabilities. Images are classified as belonging to the
‘rondel’ or the 'not a rondel’ classes when their softmax probabilities for the respective class is above
0.5 [28].

4.5.2. Hyperparameter tuning

Before training each ResNet or ConvNeXt model, we can configure hyperparameters to optimize their
training times and performances, and to minimize test and validation loss from the cross-entropy loss
function [11].

Epoch: The number of times the model updates its weights based on trained data passed through it
[11]. We initially train models with different hyperparameters for 20 epochs to see their perforamnces
and validation loss values, then for the best model, train up to 200 epochs. At each epoch the model
iterates over the training set to update weights, and over the validation set to check it's performance
[39].

Batch size: The number of training samples used in each training epoch before the model updates its
weights [11]. Batches in powers of 2 work well on hardware [12]. We're using batch sizes of 8, 16, 32,
64.

Learning rate: We use values of 0.01, 0.001, 0.0001. The learning rate is the rate at which the model
adjusts it's parameters at each epoch [11]. Models with low learning rates risk not updating weights
enough at each epoch while having high learning rates can result in the model going too far with weight
updates and overfitting.
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Optimizer: We’re using AdamW as our optimizer. AdamW is a modified version of the Adam optimizer
which was claimed to work better than both Adam and SGD optimizers when it comes to classification
tasks [35].

Weight decay (L2 regularization): This is a regularization technique used to penalize weight updates
in a neural network. Smaller weight values penalize weight updates less and the model is prone to
overfitting, while the inverse is true with larger weights and underfitting [35]. The default weight decay
for AdamW in Pytorch is 0.01. We’re using values of 0.1, 0.01, 0.00001, 0.000001.
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4.6. Model selection

We want to chose the most promising model we could train; preferably one with the lowest validation
loss and a low false positive rate for our rondel search. This particular model will be discussed in detail
in the following results chapter.

4.6.1. Cross-entropy loss function

To evaluate how well a model classifies images based on its true labeled class, we’re using the cross-
entropy loss function at each epoch on the validation set. This is an error log function measuring the
performance of a model using its classification output is a probability of each class between 0 and 1 with
possible values shown in figure 4.10. The value it outputs is higher as the classified output probability
diverges from the true label, therefore, more promising models incur low validation loss values [19]. At
each epoch, we calculate the validation set’s loss for each training run’s first 20 epochs and use it for
evaluation before training further for 200 epochs [11].

10

Log Loss when true label = 1

log loss

| | | | | |
0.0 0.2 0.4 0.6 0.8 10
predicted probability

Figure 4.10: Log-loss values from the cross-entropy loss function. Loss values increase as the output probability is further
from 1, the ground truth class. Values decrease as the probability is closer to 1 [19].

4.6.2. Test set performance

A confusion matrix is a table resembling figure 4.11 which we are using to evaluate the CNN model’s
binary classification performance. To save time sifting through the output for field patterns resembling
rondels, we want a low false positive rate while maintaining a sufficient true positive rate to detect a few
obvious examples [36]. The model’s classification result for each image is compared quantitatively to
the image’s true labeled class.

Confusion Matrix

aruelNegative] False|Positive

Not a rondel

Actual class

False /Negative iTrue|Positive

Rondel

Mot a rondel Rondel
Predicted class

Figure 4.11: An example of a confusion matrix showing classification results versus ground truth classes. [19]
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There are four types of results for binary classification as follows:
True positive: The model correctly classifies an image containing a rondel pattern as such.
True negative: An image without a rondel pattern is correctly classified as not containing a rondel.

False positive: Image is classified as containing a rondel pattern when it is labeled as not containing
one.

False negative: An image with a rondel pattern is misclassified as not containing one.

As stated previously, we want a low number of false positive classifications to save time searching for
rondels. It is more valuable to discover at least one item of the rare class (rondels), than it is to run into
too many false positives of the more common class (not a rondel) [49], and finding more false positives
is costlier time-wise both for us and for archaeologists.

4.7. Sliding window inference

Although our goal is to search for more rondels in the country with a sliding window, we will not search
through the entire orthophoto dataset due to storage constraints and hardware limitations, since sliding
windows are computationally expensive [12]. Our hardware limitations increases the time it takes to
read orthophoto tiles from the .TIF format. Therefore, each search tile must first be preprocessed and
saved as a numpy array before we can run an inference to reduce runtime. Without preprocessing,
reading in a tile takes longer than the classication process.

And to save storage space, we chose to search only through tiles in areas near rondels and exclude
tiles which are known to contain rondels (visible or otherwise). All search tiles are over agricultural land
cover from the CORINE data set [44]. The search area is shown in the following figure, figure 4.12,
with a comparison to a previous LiDAR research project at cosine [306].

Figure 4.12: Our search area colored in blue over orthophotomosaic tiles. Previous search area, LOT5, from a LiDAR search
in purple [36].

The selected model is set to inference mode for classification then it is used to search through or-
thophotomosaic tiles for rondels with the sliding window method, which has successfully been used
in archaeological research to search for ancient Nazca lines in Peru from aerial RGB imagery [41].
Each tile in the data set is split up into 456 smaller patches of 512 by 512 pixels with an overlap of
256 pixels between each patch (or, half a patch), in case a rondel lies between two patches. The
patches are created with PyTorch’s nn.Unfold function and are subsequently inputted into the model
for classification.
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Orthophotomosaic

Figure 4.13: A sliding window classifier moving through an orthophotomosaic tile, classifying each patch by patch.

We then obtain a list of tiles and the patch location of a suspected rondel where the model encounters a
patch with a high softmax probability output of the 'rondel’ class. After manually inspecting the highest
probability patches, we create a list of potential rondels [49].



Results and Discussion

This section discusses the final generated data set for model training, trained model evaluations and
the selected model which shows the promising classification performance out of all evaluated models.
Furthermore, this section discusses the results of the test set classification and gives an overview of
the rondel search process with the selected model.

5.1. Final data set size

The final data set consists of RGBN channels of 2466 synthetic rondel images and 2466 images without
synthetic rondels as our training set. Figure 5.1 contains the number of exact images used. Our
validation set consists of 417 synthetic rondel images and 417 images without rondels; roughly equating
to a 8:2 split. 20 real examples of rondels were held out (seen in figure 2.4 and 2.5) with 625 random
images without rondels as out test set for evaluating the most promising models.

Training set Validation set
£
i 0% Test sat
© h ( ) Real rondels
Fake 'rondels’ Fake 'rondels' 20 images
2466 images 417 images
—_ Random empty
- ™ - £ ™ areas
i mpty areas 625 images
Empty azrigz m:nsé rondels without rondels 9
\ 9 J 417 images A ———
R A L A

Figure 5.1: Training, validation, and test set final data set sizes.

5.2. Evaluating and selecting a trained model

We trained multiple models with differing hyperparameters and used the cross-entropy loss function
after each epoch to evaluate the validation set’s loss determined based on the differences between cor-
rectly or incorrectly classified images from the validation set. A model’s lower loss value from the cross-
entropy loss function indicates that there were fewer incorrectly classified samples [19]. 20 epochs of a
simple ResNet model was trained initially with different hyperparameters. A ConvNeXt model (reported
to result in better classification) was also trained to check whether performance improves with more
parameters or otherwise [33].

5.2.1. ResNet evaluation
Validation loss

At 20 epochs, the modified ResNet-34 model with hyperparameters resulting in the lowest validation
loss values at most epochs has a batch size of 32, an AdamW optimizer, a learning rate of 0.001,
and the default weight decay value of 0.1. This model shows the most promising performance and

25
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we chose to train this model longer for more epochs. Figures 5.2, 5.3, and 5.4 shows all the different
hyperparameter combinations tested.

loBal:c:h sizes and loss: simple ResNet, learning rate = 0.001, weight decay = 0.1
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Figure 5.2: Batch size variations and validation loss.
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Figure 5.3: Learning rate and validation loss.
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Figure 5.4: AdamW weight decay and validation loss.

Test set

We ran our test set’s classification using the first 20 trained epochs for an initial check. Figure 5.5
shows the results as a confusion matrix. More than half of our rondel images were correctly classified,
and a significant majority of images without rondels were also correctly classified. 52 negative exam-
ples were misclassified as the 'rondel’ class. We have trained this model further to see whether this
false positive number would decrease, since more false positive classifications are costly time-wise for
archaeologists.

simple ResNet (first 20 epochs) test set confusion matrix
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Figure 5.5: Confusion matrix for the simple ResNet model with 20 epochs.
573 out of 625 images without rondels were correctly classified as not belonging to the rondel class

(figure 5.5). The distribution of the test set’s softmax probabilities are imbalanced, falling on either the
0 or 1 end of the histogram.
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Simple ResNet (first 20 epochs) test set histogram
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Figure 5.6: Probability histogram of images with the rondel class. Classifier: ResNet model with 20 epochs.

5.2.2. ConvNeXt evaluation

Similarly, we also tested a newer ConvNeXt 'tiny’ classification model using the hyperparameters result-
ing in the lowest validation losses from our previous simple ResNet model. The ConvNeXt 'tiny’ model
has 28 million parameters, takes longer to train per epoch, and uses more GPU resources overall. Al-
though the original model’s publication claims that a ConvNeXt is better at classification tasks than a
ResNet with similar number of parameters [33], our validation loss and classification results shows that
a more complex model with more parameters does not lead to better performance.

Validation loss

With identical hyperparameters, the ConvNeXt tiny model did not classify images as well as the simple
ResNet according to the validation losses in figure 5.7, contrary to published claims [33].

CloonvNeXt tiny, learning rate = 0.001, batch size = 32, AdamW, weight decay = 0.01

ConvNexXt (tiny) validation loss
—— ResMNet (simple) validation loss
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Figure 5.7: ConvNeXt tiny validation and training loss graph.

Test set

We can also perform an identical test set classification using the first 20 trained epochs but with a Con-
vNeXt model. The results are in figure 5.8. Less than half (239 out of 625)of our images without rondels
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were correctly classified. Over half (386) were incorrectly classified as containing a rondel, indicating
a high false positive count. We want to reduce the number of false positives during classification to
decrease manual inspection time, therefore this model is not good for our objective. All 20 images
containing a rondel, however, were correctly classified without any false negatives.

ConvNeXt tiny test set confusion Matrix

386.0

Mot a rondel

Actual class

0.0 20.0 - 100

Rondel

Not a rondel Rondel
Predicted class

Figure 5.8: Confusion matrix for the ConvNeXt tiny model with 20 epochs.
Most classified images have a lower (less than than 0.9-1) probability of belonging to the 'rondels’
class with the ConvNeXt classifier (figure 5.8). There is a higher spread in the classification’s softmax

probabilities, but there are also more empty images incorrectly classified as rondels than before with
the simple ResNet model.
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Figure 5.9: Probability histogram of images with the rondel class. Classifier: ConvNeXt 'tiny’ model with 20 epochs.

5.3. Final ResNet model evaluation

The selected model with the lowest validation loss and low false positive classifications is a simple
ResNet with a batch size of 32, learning rate of 0.001 and an AdamW optimizer with a weight decay of
0.01. We chose this model to train further for 200 epochs.

Figure 5.10 below is the training and validation loss and accuracy plot for the final selected model



5.3. Final ResNet model evaluation 30

trained up to 200 epochs. The graph indicates that this model begins to overfit starting from the 25th
epoch as the validation loss increases up to twofold, while training loss continues to decrease [15].
Fluctuating loss values in the first 50 epochs are likely due to the high variations of augmented and
randomized rondel appearances over different fields in the training dataset [16].

Silryple ResNet, batch size = 32, Learning rate = 0.001, AdamW, weight decay = 0.01
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Figure 5.10: Simple ResNet model training loss and evaluation loss graph over 200 epochs.

Figure 5.11 shows a confusion matrix from classifying the test set with the selected model trained up
to 200 epochs. This model trained for more epochs resulted in a lower false positive count (18 out
of 625) and most images without a rondel were correctly classified as 'not a rondel’. Only 18 out of
625 empty images were incorrectly labeled as containing a rondel. Yet, 7 existing rondel images were
correctly classified. Keeping the false positive count low is important when a high count can cost us
more time, which we’re trying to minimize through an automatic searching method, therefore a false
negative classification is preferred over a false positive in this study and this model is a good choice.
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Figure 5.11: Selected ResNet model’s confusion matrix from our test set classification.
After training the model up to 200 epochs, a majority of test set images were correctly classified as not

containing a rondel (figure 5.12). There are now lower false positive classifications, but this results in
less true positives classifications.
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Simple ResNet test set histogram
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Figure 5.12: Probability histogram of images with the rondel class. Classifier: ResNet model with 200 epochs.
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Figure 5.13: 20 visible rondels and their classified results alongside a softmax probability output for the 'rondel’ class.
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5.4. Comparing results from the generated training set

To compare the effectiveness of using a generated training set of rondels, we trained a model with
identical parameters to the selected model using only training images consisting of the 20 real visible
rondel images from our test set. The validation loss is perpetually much higher when the model is
trained with only 20 images (figure 5.14) indicating that a generated training set is required for better
classification results in this study.

106 Validation loss, generated training set versus using visible rondels

—— Comparison training set (real) validation loss
—— Generated rondels training set validation loss
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Figure 5.14: Validation loss from training the simple ResNet model on only our visible rondels (batch size = 20, the entire data
set) versus on the generated training set.

Interestingly, upon classifying the test set with this model, all but one test set image were correctly
classified as seen in the confusion matrix in figure 5.15. This does not equate to the model being near-
perfect. Despite the test set performing well with classification, this model does not generalize well
to classifying unseen rondels beyond the 20 existing rondel images it was trained on. This explains
the large discrepancy in model performances from the validation loss between the model trained on
generated rondel examples versus real visible rondels which are those in the test set.
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Figure 5.15: Confusion matrix for a simple ResNet model trained using only visible rondel images.
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5.5. Rondel search and inference

The sliding window method resulted in 426 patches classified per tile with the CNN. A total of 1902 tiles
covering 9510 square kilometers, and around 1 terabyte of data was preprocessed then classified.

This resulted in a much higher false positive count than expected; but overlapping patches may have
contributed to similar scenes being classified consecutively. Probabilities are high for patches classified
as the positive rondel class. Overall, probabilities fall either on the far 0 or 1 end of the histogram,
with all 1902 tiles containing at least a 0.5 up to 1 probability for the rondel class, signifying that the
classifications are rather confident, resembling the histograms of test set probabilities. We only looked
at tiles with patches containing the probability ‘1’ for a rondel, given histogram distributions for our test
set.

Some tiles may contain more agricultural areas than others, and puddles or pools were misclassified.
Small, but darker areas of grass in villages or near were also misclassified as rondels.

Tiles containing the highest count of positive patches have a count of 65, 68, 56, 48, and 45. We've
looked at these tiles for possible rondels or false positives. There are 167 tiles containing only 1 patch
within classified as containing a rondel, which were inspected. We also inspected tiles containing 2 to
6 patches classified as such to expand search options.

Once we extracted RGBN images from the above 3 groups of positive tiles, we found 7 possible sites
to further study in detail. 2 (sites 1 and 3) out of the 7 new suspected rondels sites from our list were
found with their locations mapped in figure 5.16. These 2 rondels display a clearer circular pattern.
Close up images and an in-depth review of their characteristics are found in figures in section 5.4.1.

Figure 5.16: 2 new suspected rondels (sites 1 and 3). Both marked in yellow with a plus sign located on the orthophotomosaic.
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5.5.1. Site 1: 48.21540, 17.55654 SERED_5-8

Site 1. SERED_5-8
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Figure 5.17: 1st suspected rondel.

This site shows a clear rondel-like pattern in the 2nd cycle and 2010 orthophoto images. The 2nd and
1st cycles’ images were taken during the same month and season, but the circular ring is not apparent

in the 1st cycle unlike in 2010’s data set. On a digital terrain map there is a ring-like depression on this
location, so it is likely this site contains a rondel.

Site 1: SERED_5-8

2nd cycle '20-'22 1st cycle '17-'19
21-08-2020

01-08-2017

Figure 5.18: Site 1 on the 1st and 2nd orthophotomosaic.
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Site 1. SERED_5-8

2010 orthophotomosaic 1950 orthophotomosaic

Figure 5.19: Site 1 on the 2010 and 1950 orthophotomosaic.

Site 1: SERED_5-8

Digital terrain map

Figure 5.20: Site 1 digital terrain map.

5.5.2. Site 2: 47.94624, 17.69755 DUNAJSKA_STREDA_2-3

Site 2: DUNAJSKA_STREDA_2-3
RGB Near-infrared (N)

47.94624
17.69755
21-08-2020

Figure 5.21: 2nd suspected rondel.
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Upon zooming out from the concentric circular pattern on this site, the pattern is revealed to be merely a
geographical feature resulting from an old part of a river’s abandoned channels with vegetation growing
above. Although the ResNet model has classified a circular rondel-like pattern correctly, this site likely
does not contain a rondel after inspecting the patch’s surroundings at a large scale.

Site 2: DUNAJSKA_STREDA_2-3

2nd cycle '20-'22 1st cycle ‘17-'19

21-08-2020 01-08-2017

Figure 5.22: Site 2 on the 1st and 2nd orthophotomosaic.

5.5.3. Site 3: 48.22847,17.84106 MOCENOK_708

Site 3: MOCENOK_7-8
RGB Near-infrared (N)

100 M —————
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21-08-2020

Figure 5.23: 3rd suspected rondel.

In all 4 orthophotos, a dark circular pattern is visible. The circle does not show a ring-like pattern in
all but the first cycle orthophotomosaic. On digital terrain, it's location has a circular depression and
could be a remain of a ditch. Once zoomed in on the first cycle’s image, a slightly darker ringed pattern
becomes more apparent. This site likely contains a rondel.
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Figure 5.24: Site 3 on the 1st and 2nd orthophotomosaic.

Site 3: MOCENOK_7-8

2010 orthophotomosaic 1950 orthophotomosaic

Figure 5.25: Site 3 on the 2010 and 1950 orthophotomosaic.

Site 3: MOCENOK_7-8

Digital terrain map

Figure 5.26: Site 3 on a digital terrain map.
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Site 3: MOCENOK_7-8

Figure 5.27: The ringed ditch zoomed in on the first orthophotomosaic cycle.

5.5.4. Site 4: 48.33399, 17.78244 MOCENOK_8-2

Site 4: MOCENOK_8-2
RGB Near-infrared (N)
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48.33399 100m

1775244
21-08-2020

Figure 5.28: 4th suspected rondel.

Similar to site 1, the circular pattern on site 4 is likely to be a pattern resulting from an old part of a
river’s abandoned channels with vegetation growing above. This site likely does not contain a rondel
despite a rondel-like pattern on the orthophoto being classified by the model as a rondel.

Site 4: MOCENOK_8-2

2nd cycle '20-'22 1st cycle ‘17-'19

21-08-2020 03-08-2017

Figure 5.29: Site 4 on the 1st and 2nd orthophotomosaic.
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5.5.5. Site 5: 48.11326, 18.83470 PLASTOVCE_8-7
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Figure 5.30: 5th suspected rondel.

A darker circular pattern is vaguely visible in the two latest orthophotomosaics. On the digital terrain
map, this circle is revealed to be part of a large depression next to a hill which could have been an
abandoned river channel, rather than a rondel’'s remains.

Site 5: PLASTOVCE_8-7

2nd cycle '20-'22 1st cycle ‘17-'19

04-08-2021 18-09-2018

Figure 5.31: Site 5 on the 1st and 2nd orthophotomosaic.
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Figure 5.32: Site 5 on a digital terrain map.

5.5.6. Site 6: 48.55702, 17.70455 SENICA_0-9

Site 6: SENICA_0-9

RGB Near-infrared (N)

48.55702

T00 IN | ———
17.70455
22-08-2020

Figure 5.33: 6th suspected rondel.

A circular pattern appears in all 4 orthophotomosaics, however, there is no ditch-like pattern on the
digital terrain map. It is unlikely this site contains a rondel despite the existence and classification of a
rondel pattern. The digital terrain map shows no clear evidence of the site being an abandoned river
channel either.
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Site 6: SENICA_0-9

2nd cycle '20-'22 1st cycle ‘17-'19

22.08-2020 26-08-2017

Figure 5.34: Site 6 on the 1st and 2nd orthophotomosaic.

Site 6: SENICA_0-9

2010 orthophotomosaic 1950 orthophotomosaic

Figure 5.35: Site 6 on the 2010 and 1950 orthophotomosaic.

Site 6: SENICA_0-9

Digital terrain map

Figure 5.36: Site 6 on a digital terrain map.
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5.5.7. Site 7: 48.08548, 18.35974 SURANY_2-7

Site 7: SURANY_2-7
RGB Near-infrared (N)
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Figure 5.37: 7th suspected rondel.

Only the two latest orthophotos shows a darker circular pattern on the field. This pattern is not visible
in orthophotos from 2010 and 1950. In the first cycle’s image, nearby lines indicate that the circular
pattern could be traces of an old abandoned river channel rather than a rondel. This is confirmed to be
the case on the digital terrain map.

Site 7: SURANY_2-7

2nd cycle '20-'22 1st cycle '17-'19

12-08-2020 11-08-2017

Figure 5.38: Site 7 on the 1st and 2nd orthophotomosaic.
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Site 7: SURANY_2-7

2010 orthophotomosaic 1950 orthophotomosaic

Figure 5.39: Site 7 on the 2010 and 1950 orthophotomosaic.

Site 7: SURANY_2-7

Digital terrain map

Figure 5.40: Site 7 on a digital terrain map.



Conclusion and future work

We'll conclude this thesis by first discussing which method(s) were effective (or otherwise), then by
answering our main and sub research questions, and finally by suggesting alternative methods or data
sets which could be used to find more new rondels in future projects.

6.1. What worked?

A more complex model isn’t always the best model to use in this project’s case. A generated data
set is required for a better trained model since validation loss is much lower than when the model is
trained on a much smaller but real data set consisting of real rondel images. Judging from validation loss
graphs, the simple ResNet-34 model with less parameters showed lower loss values and outperformed
a more complex ConvNeXt model with 28 million parameters due to a lower false positive rate on
images containing no rondels of the 'not a rondel’ class. It is possible that the ConvNeXt has identified
even more empty agricultural land cover, or its random darker patterns, as rondels than the ResNet.
Additionally, a simpler model with less parameters takes less time to train per epoch. We may want
to also try a different simple model in future studies or attempt to reduce overfitting at later epochs by
introducing learning rate cycling [45].

Regardless of the high false positive count, we were still able to manually and visually narrow down
two possible rondels out of 7 potential rondel sites on the 2nd orthophoto cycle with the help of other
orthophotomosaic cycles (1st, 2010, and 1950) and a digital terrain map for verification [37]. The
locations of the 2 potential rondels are shown in figure 6.2 on Google maps in relation the locations of
previously reported rondels and on the Slovak orthophotomosaic in figure 6.1.

Figure 6.1: 2 new potential rondel sites (sites 1 and 3). Both marked in yellow with a plus sign located on the Slovak
orthophotomosaic.

45
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Figure 6.2: 2 new potential rondel sites (yellow plus signs) on Google earth, zoomed in, relative to nearby sites.

6.2. What did not work?

It was time consuming to search for rondels with the current high false positive count. Even though the
model has classified multiple patches which contain rondel-like patterns correctly, we are left with the
task of further checking to see if the tiles’ features actually have the characteristics of a rondel in other
orthophotomosaic data sets and in a digital terrain map. Minimizing time searching for rare rondels is
the goal of this project, and we attempted to reduce search time by reducing false positive classifications.
We cannot confidently say that a tile that contains a rondel-like pattern without the pattern in other data
sets are truly false positives, due to the classifier correctly still identifying the pattern as belonging to
the 'rondel’ class. Further archaeological expertise is needed to study possible identified rondel sites
in detail and distinguish their similarly circular patterns from geographical features.

Nevertheless, we encountered several tiles with up to 40 to 60 patches of false positive ‘rondel’ classes.
There is a known uneven and extreme distribution of softmax percentages in the test set in figure 5.12.
Images classified as 'not rondels’ have a near-zero probability, while images classified as rondels al-
most always have high softmax probabilities. This proves to be an issue with false positive classifica-
tions when we are trying to cut down time manually searching for rondels.

Some tiles (a few examples in figure 6.3) contain large fields with darker incoherent patterns, which
resemble few of our test set rondel images, interestingly, yet less circular. Site 2, 4, 6, and 7, our
potential sites, are clear examples of this. Up close, a patch may appear to contain a circular patten-
upon zooming out to the larger area, the patterns are a part of the natural geography, they could be an
old, abandoned river or they could also be arbitrary crop patterns over a field.
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Figure 6.3: Examples of patches on fields classified as rondels where no further evidence of rondels are found. Fields contain
somewhat circular and darker patterns (some may be old rivers).

Tiles with multiple circular to oval puddles or pools were classified as rondels, and this may include
inherent colored patterns on fields the puddles were on. These circular examples likely were from
imagery during a period of high precipitation and moisture and are probably not rondels. Buried ar-
chaeological structures are more apparent during drier periods of the year [27] and what we are seeing
are puddles.

Figure 6.4: False positive patch examples of puddles and pooling water.

We also encounter several rare tiles, confidently classified as a rondel (even with a probability of 1)
where the image definitely does not have a chance of containing a rondel. These are from villages,
urbanized areas, and bodies of water where the CORINE 2018 land cover map may have incorrectly
indicated as an agricultural land cover. Some bodies of water show a small darker circular pattern and
few urbanized areas contain fields. This may explain their classification results, but it is not certain.

100N j—

Figure 6.5: False positive patch examples on urbanized areas and water bodies.

Another part of the project which did not work was using orthophotomosaic timestamped metadata to
explain and visualize seasonal variability in crop pattern visibility or growth. It turns out that for both the
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first and the second image cycles, most aerial images were taken within the same months of the year,
and differences were at most 2 to 3 weeks apart [21]. We will require additional timestamped imagery
from other times of the year [27].

Furthermore, undetected rondels may be located between two orthophoto tiles, causing the sliding
window search process to miss out on more possible rondel sites. We do not have enough local or
remote computing power to merge the search area tiles into one large .TIF file in either GDAL or QGIS
[38], therefore the tiles must be pre-processed then searched through individually. We also ran into an
issue with patterns resembling rondels, only once zoomed in. The ResNet classifier does classify such
patterns as rondels.

6.3. Rondel visibility

Starting from the second cycle, 4 channels, RGBN, are made available for the orthophotomosaic [21].
Some rondels (Konsky jarok and site 1) are more clearly visible in the near-infrared channels than in
RGBN imagery. It is not a uniform requirement either that their ringed ditches should appear darker or
brighter in the NIR channel as they do in the RGB channels [42]. This occurs despite literature stating
that the ditches will lead to visual differences in the fields from moisture retention and different growth
[46] [3], especially in the R,G, and N channels [8]. One of the most obvious rondels (Zadne pole 2) in
RGB channels is barely visible in the near-infrared channel, which could have affected classification
results and caused it to be classified as empty land.

Most orthophotomosaic tiles were processed from aerial images taken from the same months (with a
few weeks of difference) for both the first and the second cycle, therefore the imagery are all from the
same season, summer, around August [21]. We do not have orthophotomosaic data of Slovakia, or
at least their collection date metadata, from other seasons outside of summer and early fall. For older
orthophotomosaic data sets with a resolution of 50 centimeters per pixel, such as 2010 or 1950 RGB
aerial images, the data is for now only available without date or scale metadata through an online map
service provided by TU Zvoden [37]. Digital terrain imagery from processed LiDAR data is also provided
on the same online service. Our figures of possible rondel sites (such as figures 5.25 and 5.19) have
shown that even at a 50 cm resolution, we are still able to discern at least a few clear rondel structures
and their layouts from 2010 and 1950 orthophoto images, therefore these older data sets served as
useful references for the most obvious circular ditches. We cannot easily determine an accurate rondel
layout using only digital terrain data from LiDAR due to it's lower resolution at 1 meter per pixel. Older
data sets may even display rondels which are later destroyed by urbanization in more recent years.
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6.4. Answers to research questions

Main question: How can we detect new rondels in RGBN aerial images with limited positive
examples?

We trained a ResNet convolutional neural network classifier on synthetic images of augmented rondel
sketches replicating characteristics of rondel remains in central and eastern Europe. Additional syn-
thetic rondel images resolved the class imbalance problems by increasing data available from the rare
rondel class. Otherwise, models trained on data with a large class imbalance perform worse [30]. The
images were created using rondel layout sketches from archaeological publications and from agricul-
tural land cover extracted out of the orthophoto. Multiple models with varying hyperparameters were
trained for 20 epochs and the most promising model was picked and trained further to 200 epochs.
This model has the lowest false positive count on our test set and a low validation loss value. Next,
a sliding window creates small patches at each orthophotomosaic tile in our search area to run the
patches through our model. We then inspect patches classified as ‘rondels’ for a clear circular rondel
structure.

Compared to a model trained with only a few real examples of rondels, the model trained on a generated
training set has resulted in lower validation losses and is therefore more effective. We can say that using
a generated training set is required for this study.

Sub-question 1: Which configurations and parameters can we use for the training data set and
the convolutional neural network models that will result in an effective model for finding new
rondels?

A good CNN model for the project’s purpose has a low validation loss and a low false positive count.
The model should also be able to generalize to new, unseen data.

We are using the cross-entropy loss function on the trained CNN’s validation set at each epoch to
determine how much a classified image’s class probability strays from it's true class . This value is
ideally minimized as the function’s output increases with a higher probability difference from the true
class, therefore better CNN models have low validation set loss values [19].

A low false positive count is visualized using a confusion matrix on our test set containing 20 real rondel
examples and 625 images without rondels. Our project goal is to reduce time spent manually finding
new rondels in western Slovakia and spending more time should be penalized [49]. A high false positive
classification count would cost us more time to sift through possible rondel images which do not contain
rondels. We have trained a modified ResNet-34 model that should classify less false positives but also
less true positives, meaning that it misses some rondels. We are still successful if we were to miss few
barely visible unreported rondels, but detect one or two obviously visible rondel structures.

Sub-question 2: Can we differentiate any seasonal vegetation changes that would affect rondel
appearances in the orthophotomosaic data set?

Before we can conclude a seasonal trend, we may have to also account for the influence of weather over
multiple years, especially precipitation in the area which affects crop growth [27] [3]. With our current
orthophotomosaic data set and their imagery metadata, this is not possible. A majority of aerial images
used in this project may be collected during different years and weather conditions, but they are mostly
taken on dates that are at most 2-3 weeks apart, likely to intentionally reduce seasonal differences
between the cycles. There are also date overlaps in both cycles. Mostimages in western Slovakia’s 1st
and 2nd cycles were taken during August, a typically dry month where buried archaeological features
become more apparent under crops [27]. We will expand on this in section 7.2 under 'future work’.

Sub-question 3: What additional value do high-resolution multispectral images bring when it
comes to rondel detection? How useful are they compared to LIDAR data?

With multispectral imagery, we were able to find 2 unreported and possible rondels for further exami-
nation by archaeologists, whereas a previous study utilizing processed LiDAR data was able to find 32
possible rondels within a smaller search area [36]. Many rondels were reported to be built on hillslopes
[51], we cannot confirm elevation differences in a rondel’s vicinity using solely multispectral imagery
since processed LiDAR contains terrain information but multispectral images do not. A drawback Li-
DAR and their processed digital terrain maps both have is that while their lower resolutions (1 meter)
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may be enough to detect a circular ditch-like depression, once the rondel pattern is found, it's exact
blueprint cannot be easily drawn or determined. Higher resolution imagery with a lower ground sam-
pling distance (20 cm) can resolve finer details of the rondel’s structure for archaeologists to study,
such as its openings or its number of rings, due to more details and pixels representing a smaller area
[34].

6.5. Future work

6.5.1. Data level improvements

As of mid-July 2024, the third orthophotomosaic starting from 2023 was made available for the western
part of Slovakia. This data set contains all RGBN channels at a 15 centimeter resolution [21]. Rondels
are may or may not be visible on a particular orthophotomosaic, depending on weather conditions when
the aerial images were taken. This data set can be used to perform another search for undetected
rondels in the second cycle.

We suggest acquiring high-resolution commercial multispectral satellite data, such as imagery from
Planet's SkySat with a 50 centimeter resolution. This data set starts from 2020 to the present date.
Satellite images are taken during orbits and have a shorter (daily) revisit frequency than the Slovak
cadaster’s aerial surveys every 3-4 years [14]. A high revisit frequency equates to the availability of
imagery during most seasons of the year, depending on cloud coverage percent [32]. A 50 centimeter
resolution from this data set is also enough to resolve a rondel’'s structural details, as we could see
from the 2010 Slovak orthophotomosaic with a 50 cm resolution as well.

To account for rondel-like patterns which may not be rondels at a larger scale (such as sites 2, 4, 5, 6,
and 7), we may want to use an image pyramid during our preprocessing steps for the sliding window
method to find rondel patterns at multiple different scales of an image, such as at different zoom levels
of an orthophotomosaic tile [18] [12]. This method increases file reading and computing time, and
therefore takes longer than simply using a uniform-sized sliding window over each tile.

6.5.2. Model level improvements

Due to hardware limitations during the computationally expensive sliding window search [12], we may
want to get exchange the sliding window inference for a quicker, and less computationally expensive
classification method over larger images. This involves using convolutional layers in a neural network,
as they already contain sliding feature detectors before a fully connected layer with an output class.
The CNN’s fully connected layer is converted to a fully convolutional layer with global average pooling
resulting in lower memory usage and similar classification results where features of interest can be
detected using a large input area without multiple sliding windows [40] [43].

Finally, on the model level, we may want to try using few-shot image classification models based on
existing model backbones, such as the ResNet, commonly used when there are limited annotated
examples. Less manually annotated data is required for supervision and training. Methods for few-shot
classification are most effective using transformer models, similar to the ConvNeXt model, however
ResNet is also a common choice [50]. Boosting algorithms for weight update penalization from the
maijority class can also be used to insure that more weights are updated based on the minority rondel
class [30].
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