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Abstract—This paper investigates the performance of com-
monly used spike detection algorithms (Absolute Amplitude
Thresholding and Non-linear Energy Operator) on compressed
neural signals using a novel wired-OR lossy compression algo-
rithm. Performing compression with the wired-OR architecture
mainly removes the noisy baseline and preserves spikes in
the neural signal. As a result, the spike detection sensitivity
and accuracy improve or stay similar after compression. In
addition, this paper proposes a new spike detection algorithm,
the non-zero spike detector, that can be efficiently integrated into
hardware with the wired-OR compression scheme. By using a
firing rate-based approach to optimize the threshold in the non-
zero spike detector, the proposed technique outperforms both
Absolute Amplitude Thresholding and the Non-linear Energy
Operator across different signal-to-noise ratios and firing rates.
The wired-OR readout architecture, in combination with the non-
zero spike detector, is a promising approach to achieve massive
compression while preserving the neural signal and maintaining
spike detection performance.

I. INTRODUCTION

EURAL interfaces are systems that form a direct in-

teraction between the nervous system and an external
device, by recording from and/or stimulating neural tissue
[1]]. Each recording unit typically contains a neural amplifier,
an analog-to-digital converter, and a digital signal processor
(Fig. T). Research has shown that recording the simultaneous
activity of many neurons in the brain makes it possible to
generate control signals that can drive cursors or prosthetic
limbs through active thoughts [2]. Moreover, future neural
interfaces have the potential to help restore sensory, motor,
and other neural functions. In order to develop clinically
viable neural interfaces, a key criteria will be to record the
neural signal with single-cell resolution while simultaneously
recording from large groups of neurons [3]], [4]. In addition,
a crucial feature for clinically viable neural interfaces is that
the device can operate wirelessly. A wired connection between
the implant and the machine limits the mobility of the subject
and leaves a transcutaneous opening that increases the risk of
infection [J5]]. Lastly, power consumption should be minimized
(<1 mW/mm?) for wireless implants, as this can reduce
battery volume and prevent excessive heat generation, which
can damage surrounding tissue [6]—[8].

Recent advancements in microelectrode arrays (MEAs) have
led to the development of high-density arrays (>1000) with
single-cell spatial resolution and high temporal resolution [3]],
[9]. However, the large amount of data generated by these
MEAs, on the order of gigabytes per second (1000 channels x
20 KS/s x 10 bits > 0.2 Gb/s), presents a significant challenge
for wireless neural interfaces due to excessive power consump-
tion and processing power required for the transmission and
analysis of this data [4]. This challenge highlights the need
for data compression techniques that can preserve important
neural signal components. Moreover, extracellular signals from
individual neurons exhibit a wide range of amplitudes (20 uV
to 1 mV), making spike detection difficult due to the influence
of various factors, such as cell geometry, distribution of ionic
channels, and electrode position relative to the neuron [10],
[11]]. In addition, MEA neural interfaces encounter four main
sources of noise, including electrode impedance thermal noise,
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Fig. 1. Typical components of a neural interface. The raw analog signal from
the MEA is amplified in the frequency band of interest by a neural amplifier
(A). Next, the amplified signal is digitized by an analog-to-digital converter
(ADC) and subsequently transmitted through a transmitter (TX) to a computer
for further processing. In cases where spike detection is performed on-chip,
pre-processing occurs before the transmitter by the digital signal processing
(DSP) unit. Image adapted from [4].

flicker noise at the interface with neural tissue, tissue thermal
noise, and background electrical activity from neighboring
neurons, including local field potentials (LFP) [[12f], [[13[]. LFPs
and spikes can be identified within the frequency band of
0.001-10 kHz, with the majority of energy content residing
within the 500 Hz to 5 kHz band [4], [[11], [14]. More
specifically, LFPs can be observed in the low-frequency range
(<1 kHz) and spikes can be observed in the high-frequency
range (~0.3-10 kHz), with an amplitude between 20 1V to 1
mV and a SNR between 0.01-0.15) [4], [L1]], [14]. Filtering
the signal within the 300-5000 Hz band can reduce noise and
obtain spikes from nearby neurons, along with background
activity from further away neuron populations. However, as
the spacing between MEAs becomes smaller (~0.1 microns),
individual electrodes may detect activity from multiple neu-
rons, and spikes from a single cell may be detected on multiple
electrodes [9].

Typically after recording, raw signals are first amplified in
the band of interest for action potentials (300 Hz - 5 kHz)
and then digitized. The digitized signal is further processed to
detect the time location of the spikes (spike detection). Spike
sorting can also be performed to assign spikes to putative
neurons in the tissue [|15]—[/17]]. Notably, most high-performing
brain-computer interfaces make use of neural interfaces that
do not sort spikes and only use simple binary signal encoding
(1’ if a spike is detected, ’0’ otherwise) to decode the user’s
intention [4]]. Research shows that the benefit of spike sorting
on BCI decoding performance is minimal (~5%) compared
to only performing spike detection [4]]. However, in specific



scenarios performing spike sorting can potentially improve
brain-machine interface (BMI) performance. For instance, by
identifying spikes from neural populations tuned differently,
such as neurons in the motor cortex with different preferred
directions. Nonetheless, in applications in which the activity
of the entire neuron pool is summarized to assess the subject’s
intention, spike sorting is probably unnecessary and only
transmitting the time location of the spike can compress the
signal [4].

The required processing for spike detection can be per-
formed off-chip on a close-by processing unit or on-chip
directly after recording neural activity on the neural interface.
Performing the processing off-chip outside the body allows for
a significantly larger power and area budget. However, wire-
lessly transmitting high-resolution (10-16 bit) high bandwidth
(0.01-10 kHz) data can consume two orders of magnitude
more power than the entire recording channel electronics
[4]. Since the spikes in the extracellular neural signal have
typical durations of ~1 ms and occur 1-150 times per second,
the raw neural signal is sparse in time [4], [[18|]. Hence,
transmitting the complete neural signal would mean that most
of the content is non-useful information, thus making on-chip
spike detection the preferred approach [18]. Typically, on-chip
spike detection algorithms have been limited to the Absolute
Amplitude Thresholding (AT) and the Non-Linear Energy
Operator (NEO) due to power constraints in the implant [[15]-
(LL7]I, [19]-122].

Previous research showed that the wired-OR architecture
can preserve spike sorting performance while achieving mas-
sive compression [23[]. However, in spike sorting, the aver-
age of many spikes is taken, making the loss of individual
spikes less impactful. In neural interface applications where
the individual spikes are used to decode intentions, the loss
of individual spikes can limit performance and can become
problematic. Moreover, the effect of wired-OR compression
on the spike detection performance has not yet been validated.
In this work, the effect of the wired-OR architecture on spike
detection performance for different experimental scenarios is
assessed on both ex vivo and multiple artificial neural datasets.
The commonly used spike detection algorithms NEO and AT
are applied to the neural signal and wired-OR output signal,
and their spike detection performance is compared. In addition,
this paper proposes a new spike detection algorithm, the non-
zero (NZ) spike detector, that can be efficiently integrated into
hardware with the wired-OR compression scheme. This spike
detector is assessed and applied to the wired-OR output for
both ex vivo and artificial datasets. It is found that wired-
OR compression mainly removes noise and preserves spikes
while achieving high compression (up to ~85x at 10-bit).
In addition, the NZ spike detector displays superior spike
detection performance compared to AT and NEO for different
experimental scenarios. Lastly, optimizing the threshold with
the firing rate-based approach further enhances the perfor-
mance of the NZ spike detector.
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Fig. 2. Probability mass function and cumulative distribution function of
100,000 samples from 512 electrodes after offset removal. Histogram of
channels within the same digital code for spike and baseline samples (ap-
proximately 4on window, average over 100,000 samples). For this example,
on is 17.5 pVrms and the quantizer’s least significant bit is ~LSB 3.5 pV.
The baseline window spans ~20 LSBs. Image from [24]].

II. BACKGROUND
A. Conventional Spike Detection Algorithms

In this study, the two most commonly used spike detection
algorithms are utilized: AT and NEO (Eq.J).

AT detects spikes if the absolute filtered signal exceeds a
certain amplitude threshold. A brief shadow period is often
enforced to prevent multiple detections of a single spike.
An automatic threshold is preferred to manually setting the
threshold, especially when processing many channels. The
automatic threshold is typically a constant multiple of the
standard deviation of the noise. For example, the automatic
threshold can be set as a multiple (k) of the standard deviation
of the noise, where k is a constant typically between 3 and 5
[25]].

Thr =kx*xon (D

Taking the standard deviation of the signal (including the
spikes) could lead to high threshold values, especially in cases
with high firing rates and large spike amplitudes [26]]. While
this detection method is simple, its performance deteriorates
rapidly under low SNR conditions [10]. To overcome this
limitation, it has been proposed to use an automatically set
threshold based on the median absolute deviation of the signal
[26]. By taking the median, the interference of the spikes,
under the reasonable assumption that spikes amount to a small
fraction of all samples, is diminished.

Thr =5%xon 2)
on = median{|z|/0.6745} 3)

where x is the bandpass filtered signal, on is an estimate of the
standard deviation of the background noise, and the denom-
inator comes from the inverse of the cumulative distribution
function for the standard normal distribution evaluated at 0.75
[26]. An estimate based on the median absolute deviation of
the filtered signal is much more robust than one using the
standard deviation estimate. In fact, this improvement has been
demonstrated using simulations [26] and real data [27]], even
when the noise distribution might deviate from a Gaussian
distribution. For that reason, this method is used in this work,
and a threshold event is detected if the absolute value of the
signal crosses the automatically set threshold.



NEO uses filtering and morphological features to make a
distinction between spikes and noise. It is based on the premise
that a spike may also be defined as a localized increase in
signal energy [[15], [[16], [22]. The NEO of a signal x(n), can
be defined as:

Plz(n)] = [z(n) xz(n)] = [z(n =) xz(n+1)] @

Similar to AT, NEO requires setting a threshold, which can
be set manually or automatically. The manual setting of this
threshold becomes unfeasible for devices with high electrode
counts. The threshold in this work is defined as:

Thr = C % mean(¢[z(n)]) %)

Where C is a constant of typically 8 and ¢[z(n)] the NEO of
a signal x(n) [[16]. Even though NEO is known as a powerful
spike detection method with high detection accuracy and low
system requirements, the spike detection performance of this
algorithm deteriorates when the signal has a low SNR and
firing rate [|16], [22].

B. Wired-OR architecture

The recorded neural signal exhibits two distinct characteris-
tics: time sparsity, which indicates that only a limited number
of channels record a spike at any given time point, and am-
plitude diversity, whereby channels that register a spike rarely
exhibit identical digital codes. Based on these observations
and that the majority of the power consumption of a wire-
less neural interface comes from transmitting data, Muratore
and colleagues proposed an architecture called wired-OR to
address the challenge of compressing neural signals while
maintaining the useful part of the signal [[24]. Specifically, the
architecture digitizes only the important samples needed to
reconstruct the spike waveforms. As these samples comprise
only a small portion of the raw signal, this method should
allow for high compression rates. The sparsity of the neural
signal is demonstrated in which shows the probability
mass function and cumulative distribution function of ex
vivo data from a 16x32 electrode array. By assuming that
only a small percentage of samples need to be recorded, the
algorithm is able to perform high compression with minimal
loss of information and impact on spike detection performance.
Moreover, these observations should hold if the electrode
density is not significantly larger than the cell density, and
spiking activity is reasonably uncorrelated in nearby cells. This
is significant to prevent the occurrence of coinciding signals
on neighboring channels during the same time sample, which
would result in the failure to uphold the amplitude diversity
property. However, it should be noted that electrode density is
exclusively a design factor and that spikes of correlated cells
are focused on distinct channels. Additionally, the correlations
between neurons predominantly occur at time scales ranging
from a few milliseconds (far greater than the 50 us sampling
period used in this work), thereby preserving the amplitude
diversity property.

The digitization process in this architecture relies on the
single-slope A/D conversion principle (Fig. 3). The sampled
input voltage is compared to a ramp signal. The magnitude

of each ramp step represents the least significant bit of the
ADC, while the overall range covered by the ramp defines the
ADC's full-scale range. The ADC’s internal clock operates at
a frequency of (Ns+2B)fS, where Ns represents the number of
clock periods allocated for sampling, 2B denotes the number
of ramp steps, and fs is the sampling frequency. The wired-
OR architecture utilizes wired-OR connections to combine
the outputs of the comparators to reduce power dissipation.
Peripheral readout circuits sense the states of the horizontal
and vertical wires at each ramp value and transmit them to a
decoder for further processing.

The suggested architecture’s main concept is depicted in
[Fig. 4]and displays the projection of samples from a spike onto
the global ramp signal. The blue dots show spike samples that
sparsely map to the extremes of the ramp, while the red dots
represent baseline samples, which are mostly uninformative
but constitute the majority of the samples. [Fig. 4(b) shows
the same concept for a few sample time examples and across
an ensemble of channels. Most channels will be around the
baseline, and only a few will carry spike samples at any
given sample time. [Fig. 4[c) illustrates an array configuration
for sample n with three different scenarios in this readout
scheme: no collision, small collision, and massive collision.
The array depicts channel values, and three ramp steps show
the different possible scenarios. Moreover, a collision occurs
when multiple comparators trigger simultaneously, and there
is no unique decoding solution. By design, this architecture
discards baseline samples that cause collisions, achieving high
data compression. The system employs a method that outputs
solely the address ([loga(Nrow)+loga(Ncol)]) of the channels
that are free from collisions. The actual data is reconstructed
off-chip using this information and missing samples due to
collisions are set to zero. In this context, Nrow represents the
number of rows and Ncol represents the number of columns
in the array, which in this case is 16 x 32. The resulting
data rate is influenced by the rate of collision-free channels
per sample. An optimal design should maximize collision
events for baseline samples and collision-free events for spike
samples. The probability and severity of a collision depend
on the signal distribution, and the effective baseline window
is not a design parameter but is implicitly defined at each
sample from the input statistics.

Collisions occur when nearby comparators are triggered
simultaneously. To decrease the number of collisions and
preserve additional spike samples, the comparator outputs are
encoded onto distinct row and column wires for adjacent
channels. This encoding strategy splits the array into mul-
tiple sub-arrays, generating various encoding levels. Two of
these levels are shown in The use of wire encoding
reduces the number of collisions and waveform distortion but
lowers the compression rate. Moreover, the use of the 1-wire
configuration results in maximum compression, and the use
of a configuration with 2-, 4-, or 8-wires reduces the amount
of compression. Lastly, the use of the 16-wire configuration
results in no compression for a 16 by 32 MEA.
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Fig. 3. Wired-OR readout architecture. Wired-OR architecture utilizing wired-
OR readout and a 2x2 example. Note that for the sake of simplicity, the input
signal conditioning circuit, including the amplifier, filter, track, and hold, is not
included (Top). Timing diagram for a traditional single-slope ADC designed
for a single channel (bottom). Image adapted from [24].

C. The non-zero spike detector

As the wired-OR algorithm sets all collision values to zero,
the assumption is that the output signal should contain non-
zero values only when there is a spike present. The NZ spike
detector takes advantage of this assumption by defining a spike
as a time window with more than a predetermined number of
non-zero values. A sliding time window of 2 ms (40 data
points at 20 kHz) is used, which is the typical duration of a
retinal ganglion cell spike. If more than 5 (the threshold) of
the 40 data points have a non-zero value within this sliding
time window, it is classified as a threshold event. To avoid
classifying the same threshold event multiple times, a shadow
period of 2 ms is introduced every time a threshold event
is detected, similar to AT and NEO. The threshold value
(5) has been determined by analyzing small datasets and
yielded optimal spike detection accuracy while maintaining
high sensitivity. Increasing the threshold of non-zero values
reduces the number of false spike detections but increases the
number of missed spikes, and vice versa. To automatically
identify the optimum threshold for the dataset, a recently
proposed approach is explored by automatically setting the
threshold based on the expected firing rate [28]. The NZ spike
detector can be defined as follows:

D (n(0:39)!=0)>5 (6)
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Fig. 4. (a) The distribution of information during the ramp cycle is shown
for single channel and multiple samples. (b) The distribution of information
during the ramp cycle is shown for a single sample and multiple channels,
with selected examples from uniformly sampled values at the bottom. (c)
Ilustrations demonstrate wired-OR signal scenarios at three different ramp
steps for sample n in (b): no collision, small collision, and massive collision.
The channel coordinates on the left in (b) correspond to the array coordinates
in (c). To limit the diagram size, additional colliding channels during massive
collisions are not shown. Image from [24].

III. APPROACH

To evaluate the impact of the wired-OR architecture on
spike detection performance, data collected from a primate
retina with a 512-channel MEA sampled at 20 kHz for 60
seconds is used. The electrodes are separated by a distance of
60 um and have a diameter of 7.5 pym. The recorded data is
reprocessed using ramp resolutions of 6-10 bits and bandpass
filtered with 300-6000 Hz with a third-order Butterworth filter.
The quality of the detected threshold events is assessed based
on the mean peak-to-peak amplitude and the mean signal-
to-noise ratio (SNR) of all detected threshold events. As a
threshold event is not always necessarily a true spike, the term
threshold event is used instead of spike. A threshold event is
defined as a time window of 1 ms before and after the detected
threshold peak (40 data points at 20 kHz). The peak-to-peak
amplitude is determined by taking the absolute difference
between the minimum value and the maximum value of the
threshold event. The SNR is defined as follows:

SNR — MazxAmplitude 7

Onoise

where Max Amplitude is the threshold event’s maximum
absolute amplitude and 0,5 1s the standard deviation of the
noise (onoise) in the threshold event. A relatively high peak-
to-peak amplitude and SNR indicate that the detected threshold
event has a high probability of being a true spike.

Ex vivo datasets can provide a representation of real-
world scenarios, but the ground truth of spike generation is
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Fig. 5. (a) The correlation matrix for channel (6, 19) along with a collision
that is induced by the correlation. (b) An example that demonstrates how
collision avoidance can be achieved using 2-wire encoding. Image from [24].

unknown. To overcome this, artificial datasets are generated
with different noise levels and firing rates using the Python
platforms MEArec and Spike Interface [29], [30]]. The datasets
are simulated to be similar to the above-described ex vivo
dataset with a 512-channel MEA, spaced 60 pm apart and with
a diameter of 7.5 um, sampled at 20 kHz for 60 seconds. The
generated datasets are reprocessed using ramp resolutions of
6-10 bits and bandpass filtered at 300-6000 Hz with a third-
order Butterworth filter. To assess the effect of wired-OR on
spike detection performance under different scenarios, datasets
with SNRs of 5, 10, 20, 30, and 40 are generated. The ex vivo
dataset is recorded from a primate retina, and retinal ganglion
cells have an average firing rate of 14 Hz [31]], thus initially
all datasets are generated at 14 Hz. To assess the performance
of wired-OR at different firing rates, additional datasets with
average firing rates of 42 and 84 are generated. As retinal gan-
glion cells are excitatory, only excitatory neurons are used in
the artificial datasets. Furthermore, to mimic the waveform of
retinal ganglion cells, slender tufted pyramidal cells are used,
producing spikes with a minimum amplitude of 30 'V and
a maximum of 60 pV, with similar rise and fall times of the
spikes detected in the ex vivo dataset. Lastly, a cell density of
one cell per electrode is used. All data is generated, processed,
and analyzed using Python version 3.9 [32f]. The Python code
used for the data analysis is accessible on https://github.com/

Yawende/Spike_detection_performance_wired_OR, access is
granted upon request. Since the ground truth is known for
the artificial datasets, spike detection algorithm accuracy, and
sensitivity can be calculated. The accuracy and sensitivity are
defined as follows:

TP
A = 8
ccuracy TPTFN L FP ®)
TP

TP represents spikes that are correctly detected as spikes,
FN represents spikes that are not detected as spikes, and FP
represents non-spikes that are detected as spikes. In order to
be labeled as TP, a spike must have been generated by a cell
and detected on at least one of the ten closest electrodes. A
spike is labeled as FN if it is generated by a cell but not
detected on any of the ten closest electrodes. A detected spike
is considered FP if it is detected on any electrode, but there
is no corresponding spike generated by a cell within the ten
closest electrodes at the same time.

The spike detection performance of AT and NEO is ana-
lyzed before and after processing the neural signal with the
wired-OR algorithm. The threshold is calculated based on the
uncompressed neural signal for each individual electrode and
applied to the wired-OR output at different wire configura-
tions. This is done as the median absolute deviation of the
wired-OR output is zero, which would lead to extremely low
thresholds for AT with increased compression. The perfor-
mance of the NZ spike detector is analyzed only after process-
ing the neural signal with the wired-OR algorithm. Afterward,
the mean peak-to-peak amplitude and SNR are compared for
the ex vivo and artificial datasets. In addition, for the artificial
datasets the accuracy and sensitivity are compared, as the
ground-truth is known. Lastly, the compression is calculated
by dividing the original number of data points (60s x 20 kHz
= 1200000) by the number of non-zero values after wired-OR
compression.

IV. RESULTS
A. Wired-OR reduces noise and preserves spikes

Implementing the wired-OR algorithm on the ex vivo
dataset gradually increases the mean peak-to-peak amplitude
and SNR for the identified threshold events as the compression
rate is increased. This trend holds for both AT, NEO, and
the NZ spike detector. For AT and NEO, switching from the
16-wire setup (no compression) to the 1-wire configuration
results in a decrease in detected threshold events of 68% and
80%, respectively, coupled with a rise in mean peak-to-peak
amplitude and SNR (Fig. 6). For AT, this leads to an increase
in mean peak-to-peak amplitude and mean SNR from 75.18
uV to 98.31 pV and from 11.19 to 13.83, respectively. For
NEO, the mean peak-to-peak amplitude increases from 63.30
1V to 97.26 11V, and the mean SNR from 9.62 to 13.62. When
using the NZ spike detector with minimal compression (8-
wires), threshold events are detected with a mean peak-to-peak
amplitude of 80.28 1V and a mean SNR of 11.22 (Fig._6).
Notably, maximal compression (1-wire) in conjunction with
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The mean peak-to-peak amplitude for AT, NEO, and the NZ spike detector at
different wire configurations (right). For both the mean SNR and peak-to-peak
amplitude a gradual increase is observed with increased compression for AT,
NEO and the NZ spike detector. Abbreviations: Signal-to-noise ratio (SNR),
Absolute Amplitude Thresholding (AT), Non-Linear Energy Operator (NEO),
and non-zero (NZ).

the NZ spike detector results in a 95% reduction in the number
of detected threshold events compared to minimal compression
(8-wires). However, it also leads to an almost doubling of
the mean peak-to-peak amplitude to 151.23 pV and a SNR
of 18.78. This is gradually the case when the compression
is increased. In addition, as can be seen in the SNR
and peak-to-peak amplitude of individual detected threshold
events, gradually increases for AT, NEO and the NZ spike
detector at lower wire configurations. Moreover, these results
suggest that the wired-OR compression mainly affects the low
amplitude and low SNR threshold events, likely comprising
noise. Furthermore, by inspecting the threshold events that are
uniquely present when using minimal compression and are lost
when using maximum compression further confirms that lost
threshold events generally are low amplitude and low SNR
threshold events (Fig. 8). Moreover, these lost threshold events
have an average peak-to-peak amplitude of 61.29, 61.29, and
72.84 1V, and an average SNR of 9.57, 9.57, and 10.41,
for AT, NEO, and the NZ spike detector, respectively. For
comparison, in the peak-to-peak amplitude of the
threshold events that are preserved with 1-wire wired-OR is
higher compared to the threshold events that are lost (Fig. §),
for both AT, NEO and the NZ spike detector. In addition,
[Fig. 9] shows that within the preserved threshold events, the
waveform of the neural signal is better preserved compared
to the lost threshold events in [Fig. 8| This further indicates
that the lost threshold events consist of noise and are not
true spikes. However, as the ground truth is not known in
the ex vivo dataset, artificial datasets are used to confirm this
hypothesis.

To confirm the above observations, artificially generated
datasets are analyzed, of which the ground truth is known.
The datasets have an average firing rate of 14 Hz and have
either low, medium, or high SNRs (5, 20, and 40 SNR).
Results show that using the 1-wire wired-OR with AT reduces
detected threshold events by approximately 30%, 29%, and
45% compared to using AT on the uncompressed neural signal
for the low, medium, and high SNR datasets, respectively. This

also results in an increase in the mean SNR and peak-to-
peak amplitude of detected threshold events at medium and
high SNR (Fig. 10{a)). Specifically, for the medium SNR
dataset, the mean SNR increases from 14.94 to 17.31, and
the mean peak-to-peak amplitude increases from 197.04 to
233.21 pV. For the high SNR dataset, the mean SNR increases
from 12.05 to 18.21, and the mean peak-to-peak amplitude
increases from 142.29 to 222.48 V. In addition, the increase
in mean SNR and peak-to-peak amplitude are accompanied by
an increase in accuracy for the medium and high SNR datasets
(22% and 44%) while maintaining high sensitivity (>99.9%)
(Fig. TI|b)). The increase in accuracy can be explained due
to a ~3x and ~6x reduction in FP values for the artificial
dataset at medium and high SNRs. Moreover, this suggests that
the increase in mean SNR and peak-to-peak amplitude that is
observed in the ex vivo dataset, is due to the removal of noise.
Similarly, for the low SNR dataset, there is a ~12x reduction
in the number of FP values detected using AT on the 1-wire
wired-OR output compared to the uncompressed neural signal,
however, the sensitivity decreases from 88% to 79%, resulting
in unchanged accuracy Moreover, this is also reflected
in the increase in the mean SNR from 14.37 to 22.41, and the
slight decrease in mean peak-to-peak amplitude from 471.87
to 432.75 uV. As expected, due to the low SNR, additional
collisions occur when performing wired-OR compression. The
combination of the wired-OR compression and spike detection
with AT results in the removal of noise, but at low SNR this
comes at the cost of true spike events in the process.

Using NEO on the 1-wire wired-OR output compared to
using NEO on the uncompressed neural signal, results in a
reduction in detected threshold events of 12%, 49%, and 48%
for the low, medium, and high SNR datasets, respectively.
Moreover, this results in an increase in the mean SNR and
peak-to-peak amplitude (Fig. T0[b)). For the low SNR dataset,
the mean SNR increases from 10.14 to 10.56, and the mean
peak-to-peak amplitude increases from 349.35 to 362.07 pV.
For the medium SNR dataset, the mean SNR increases from
11.94 to 16.20, and the mean peak-to-peak amplitude increases
from 156.18 to 218.96 uV. For the high SNR dataset, the
mean SNR increases from 13.04 to 18.00, and the mean
peak-to-peak amplitude increased from 148.10 to 220.17 pV.
Again, the increases in mean SNR and peak-to-peak amplitude
are accompanied by an accuracy increase for both the low,
medium, and high SNR datasets (7%, 22%, and 44%), while
maintaining a high sensitivity (>99%) (Fig. TI[b)). In sum-
mary, combining NEO with wired-OR compression increases
the accuracy, while maintaining high sensitivity, for all noise
levels. This can be explained due to the increased difference
between baseline and spike samples due to the wired-OR
compression. NEO works based on the rapid increase in
energy during spikes, which is enhanced due to wired-OR
compression. In contrast, AT has a set threshold that has to
be passed for a threshold event to be detected. As wired-OR
reduces noise, fewer FPs threshold events are detected, but
this also increases the amount of FN detections at low SNR.

Notably, when using the NZ spike detector, there is a
considerable decrease in the number of detected threshold
events by 98%, 75%, and 75%, for the low, medium, and



high SNR datasets, respectively, when comparing the 1-wire
configuration to the 8-wire configuration. Similar to the ex
vivo dataset, this results in an increase in the mean peak-to-
peak amplitude and SNR for the detected threshold events.
Moreover, for the low, medium, and high SNR datasets
the mean SNR and peak-to-peak amplitude almost doubled
(Fig. 10(c)). Interestingly, the majority of these threshold
events can be confirmed to be FP values, as the accuracy
increases by 70%, 62% and 62% for the low, medium, and
high SNR datasets, respectively (Fig. 11[c)). The sensitivity
remained above 98% at medium and high SNR. However,
at low SNR the sensitivity decreases from 100% to 75%.
In summary, the artificial datasets show that the increase in
mean SNR and peak-to-peak amplitude observed with wired-
OR compression is accompanied by an increase in accuracy,
while the sensitivity remains high. Moreover, this confirms the
initial observation in the ex vivo dataset that the lost threshold
events are generally comprised of noise at medium and high
SNR, but gradually affects true spikes at low SNR.

B. Wired-OR reduces false positive detections at a variety of
Signal-to-Noise ratios

Wired-OR compression applied to a neural signal with
low SNR should, in theory, result in more collisions for
both baseline and spike samples. Moreover, this can result in
additional spike waveform distortions and potentially decrease
spike detection performance. To evaluate the spike detection
performance at different SNRs, 10-bit datasets with an average
firing rate of 14 Hz with SNRs of 5, 10, 20, 30, and 40 are
examined.

Applying AT to the uncompressed neural signal, results in
accuracies of 80.48%, 81.63%, 54.58%, 38.84%, and 32.65%
for SNRs of 5, 10, 20, 30, and 40, respectively (Fig. T1]a)).
For datasets with SNRs of 20, 30, and 40, the lower accuracy
can be attributed to a high number of FP detections (45.38%,
61.14%, and 67.35% of detected threshold events), while FNs
are a small fraction of incorrect detections (sensitivity of
>99.9%). For the datasets with SNRs of 5 and 10, AT achieves
a higher accuracy due to fewer FP detections, but this leads to
a 12% decrease in sensitivity at 5 SNR. Furthermore, applying
AT to the 1-wire wired-OR output greatly increases accuracy
while maintaining a sensitivity above 99% for datasets with
SNRs of 20, 30, and 40. This is achieved by reducing
the number of FP detections while the sensitivity remains
above 98%. The accuracy improvement is less prominent for
datasets with SNRs of 5 and 10, but the sensitivity remains
above 99% at 10 SNR, but decreases by 9% at 5 SNR.
In addition, using the 1-wire wired-OR output instead of
the uncompressed neural signal achieves a significant data
compression of approximately ~65-86 times, depending on
the SNR (Table I). Applying AT on the 2-wire wired-OR
output for SNRs of 20, 30, and 40 results in an accuracy
increase of approximately 12-25%, which decreases gradually
with higher wire configurations. However, a compression rate
of approximately ~150-300 times is still achieved if only the
spike times are transmitted when AT is combined with the 2, 4,
or 8-wire configuration, and sensitivity remained above 99%.
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Fig. 7. Violinplots of the distribution of the SNR and peak-to-peak amplitude
for the detected threshold events in the ex vivo dataset at 1-, 2-, 4-, 8-,
and 16-wire wired-OR compression. (A) Distribution of the SNR for the
detected threshold events using AT (left). Distribution of the peak-to-peak
amplitude for the detected threshold events using AT (right). (B) Distribution
of the SNR for the detected threshold events using NEO (left). Distribution
of the peak-to-peak amplitude for the detected threshold events using NEO
(right). (C) Distribution of the SNR for the detected threshold events using
the NZ spike detector (left). Distribution of the peak-to-peak amplitude for
the detected threshold events using the NZ spike detector (right). For both
AT, NEO and the NZ spike detector, there is a gradual increase in the SNR
and peak-to-peak amplitude of the detected threshold events with increased
compression. This indicates that wired-OR compression mainly removes noise
and preserves spike samples. Abbreviations: Signal-to-noise ratio (SNR),
Absolute Amplitude Thresholding (AT), Non-Linear Energy Operator (NEO)
and non-zero (NZ).

Notably, applying AT on the 8-wire wired-OR output slightly
increases sensitivity at 5 SNR, indicating that at 5 SNR more
of the essential part of the neural signal is preserved while
still achieving compression.

Using NEO on the neural signal yields accuracies of
25.99%, 26.65%, 27.90%, 31.21%, and 22.57% for SNRs of 5,
10, 20, 30, and 40, respectively (Fig. TT(b)). The low accuracy
for the different noise levels can be attributed to the high num-
ber of FP detections, ~70% of the detected threshold events,
while the FNs remain low (sensitivity >97%). Moreover, the
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Fig. 8. Waveforms and the normalized peak-to-peak distribution of lost
threshold events during maximum wired-OR compression in the ex-vivo
dataset for AT, NEO, and the NZ spike detector. (A) Overlapping waveforms
of the first 10 000 threshold events that are lost during wired-OR compression
(left) and the normalized distribution of the peak-to-peak amplitudes of the
threshold events that are lost during wired-OR compression (right) of 1-wire
+ AT compared to AT on the uncompressed neural signal. (B) Overlapping
waveforms of the first 10 000 threshold events that are lost during wired-
OR compression (left) and the normalized distribution of the peak-to-peak
amplitudes of the threshold events that are lost during wired-OR compression
(right) of 1-wire + NEO compared to NEO on the uncompressed neural signal.
(C) Overlapping waveforms of the first 10 000 threshold events that are lost
during wired-OR compression (left) and the normalized distribution of the
peak-to-peak amplitudes of the spike events that are lost during wired-OR
compression (right) of 1-wire + the NZ spike detector compared to 8-wire
the NZ spike detector. For both AT, NEO, and the NZ spike detector, the
overlapping waveforms of the lost threshold events have a max amplitude of
approximately -80, which is significantly lower than the preserved threshold
events. In addition, the waveform is flat, and less of the typical spike waveform
is recognizable. Furthermore, it can be noted that the majority of the lost
threshold events detected for all spike detectors have a peak-to-peak amplitude
below 80. Abbreviations: Absolute Amplitude Thresholding (AT), Non-Linear
Energy Operator (NEO), and non-zero (NZ).

low accuracy found here is in line with the literature as the
spike detection performance of NEO is known to degrade at
firing frequencies below 30 Hz [10], [I5]. Applying NEO
on the wired-OR output increases accuracy and sensitivity
for all SNRs and wire configurations, except for the 8-wire
configuration, although the improvement is less prominent at
lower SNRs (Fig. TT[b)). Remarkably, the most significant
enhancement in accuracy is observed when NEO is applied on
the 1-wire wired-OR output, demonstrating that the maximum
compression rate can be achieved while also increasing spike
detection performance and maintaining high sensitivity (>
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Fig. 9. Waveforms and the distribution of the normalized peak-to-peak
amplitude of detected threshold events in the ex-vivo dataset at 1-wire for
AT, NEO, and the NZ spike detector. (A) Overlapping waveforms of the first
10 000 threshold events (left) and the normalized distribution of the peak-to-
peak amplitudes of the detected threshold events (right) with 1-wire + AT.
(B) Overlapping waveforms of the first 10 000 threshold events (left) and
the normalized distribution of the peak-to-peak amplitudes of the detected
threshold events (right) with 1-wire + NEO. (C) Overlapping waveforms of
the first 10 000 threshold events (left) and the normalized distribution of the
peak-to-peak amplitudes of the detected threshold events (right) with 1-wire
+ the NZ spike detector. It can be noted that the negative peak at -180 is
the broadest for the NZ spike detector. In addition, the majority of the spike
events detected with the NZ spike detector have a peak-to-peak amplitude of
approximately 150, while for AT and NEO in combination with the 1-wire
configuration, this is approximately 100. This is higher than the threshold
events that are lost. Abbreviations: Absolute Amplitude Thresholding (AT),
Non-Linear Energy Operator (NEO), and non-zero (NZ).

99%). In theory, the increase in the number of zero values
due to wired-OR compression can enhance the spike detection
performance of NEO, as spikes are identified based on the
localized increase in signal energy.

As the NZ spike detector solely can be used on the wired-
OR output, the least possible compression is with the 8-wire
configuration. On the 8-wire output, the NZ spike detector
achieves an accuracy of 3.75%, 8.56%, 29.80%, 29.66%,
and 28.04% for SNRs 5, 10, 20, 30, and 40, respectively
(Fig. TTJc)). Remarkably, when applied to the 8-wire wired-
OR output, the sensitivity remains perfect across all levels of
noise. Meanwhile, the 2 and 4-wire setups show a rapid in-
crease in accuracy for all SNRs while maintaining a sensitivity
>99%, with the exception of the 2-wire configuration at an
SNR of 5, achieving a sensitivity of 92.92%. Surprisingly, the
NZ spike detector attains the highest accuracy for SNRs 10,
20, 30, and 40 when applied to the 1-wire wired-OR output
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Fig. 10. The mean SNR and peak-to-peak amplitude of the detected threshold
events for artificial datasets with low (black), medium (green) and high
(orange) SNR, 14 Hz firing rate, and a 10-bit signal at 1-, 2-, 4-, 8-, and
16-wire configurations using AT, NEO, and the NZ spike detector. (A) The
mean SNR using AT at different wire configurations (left). The mean peak-
to-peak amplitude using AT at different wire configurations (right). (B) The
mean SNR using NEO at different wire configurations (left). The mean peak-
to-peak amplitude using NEO at different wire configurations (right). (C) The
mean SNR using the NZ spike detector at 1-, 2-, 4-, and 8-wire configurations
(left). The mean peak-to-peak amplitude using the NZ spike detector at 1-,
2-, 4-, and 8-wire configurations (right). For both the mean SNR and peak-
to-peak amplitude a gradual increase is observed with increased compression
for AT, NEO and the NZ spike detector. Abbreviations: Signal-to-noise ratio
(SNR), Absolute Amplitude Thresholding (AT), Non-Linear Energy Operator
(NEO), and non-zero (NZ).

(>90%) and surpassing both NEO and AT, while retaining a
high sensitivity (>95%). However, at a SNR of 5, the accuracy
decreases to 73.15%, and the sensitivity fell to 74.58%. Unlike
AT and NEO, this decline in accuracy is due to a high
number of false negatives. As will be discussed later, the
performance can be improved by using the firing rate-based
approach to automatically set the threshold. In summary, at
an average firing rate of 14 Hz and a 10-bit resolution, the
NZ spike detector outperforms NEO and AT when the signal
is maximally compressed for SNRs 10, 20, 30, and 40. At 5
SNR, the NZ spike detector performs better than NEO and
slightly worse than AT.
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Fig. 11. Spike detection accuracy and sensitivity for AT, NEO, and the NZ
spike detector at 5 (blue), 10 (orange), 20 (green), 30 (red), and 40 SNR
(purple) with a low firing rate and a 10-bit signal. (A) AT accuracy (top) and
sensitivity (bottom). (B) NEO accuracy (top) and sensitivity (bottom). (C)
The NZ spike detector accuracy (top) and sensitivity (bottom) for different
SNRs. For AT the spike detection accuracy increases at lower SNRs. The
sensitivity of AT decreases at 5 SNR, but remains high at 10 SNR and above.
The spike detection accuracy of NEO decreases at lower SNRs, but wired-OR
compression improves the accuracy of NEO at all SNRs. The sensitivity of
NEO remains high for all configurations and slightly improves with higher
compression. The spike detection accuracy of the NZ spike detector increases
with compression rate, with optimums depending on a combination of the
SNR and compression rate. The sensitivity of the NZ spike detector decreases
at lower SNRs at maximal compression.



C. Wired-OR compression preserves the neural signal at dif-
ferent firing rates

Theoretically, compressing a neural signal that has a high
firing rate with wired-OR will result in more collisions for
spike samples, as there is a higher probability of spikes
occurring at the same time in close proximity to the same
electrode. To evaluate the spike detection performance at
different firing rates, 10-bit datasets with low (14 Hz), medium
(42 Hz), and high (84 Hz) average firing rates in combination
with low (5), medium (20), and high (40) SNRs are examined.

At low SNR levels, AT demonstrates consistent spike de-
tection accuracy and sensitivity across all firing rates, with
only slight variations (~2-4%) observed among all wire con-
figurations (Fig. 12[a)). At medium and high SNR levels, AT
maintains a sensitivity above 97% for all firing rates and wire
configurations, while showing an increase in spike detection
accuracy associated with higher firing rates. For medium
and high SNRs, AT achieves a spike detection accuracy of
approximately 94% at high firing rates, while maintaining
a sensitivity above 97% for all wire configurations. These
results indicate that AT is mainly influenced by the firing rate
and SNR, rather than wired-OR compression. However, AT
demonstrates minimal changes in performance from medium
to high firing rates at all noise levels. This suggests that at
medium to high firing rates, AT’s maximum spike detection
accuracy ranges from around 84% for low SNRs up to 94%
for medium and high SNRs. These findings are consistent with
prior research that reports an accuracy of over 90% for AT
on datasets with high SNRs and firing rates, which declines
at lower SNRs (<5) and firing rates (<30 Hz) [10], [33].
Nonetheless, the results indicate that wired-OR can be used
in combination with AT without compromising the sensitivity
of the signal. In addition, at low firing rates, it may even lead
to a significant increase in accuracy (up to ~45% at 40 SNR
with 1-wire) due to the removal of false positive detections.

At low SNR, an increase in firing rate results in a significant
improvement in the spike detection accuracy (~50%) for NEO
across all wire configurations, while maintaining a sensitivity
above 98% (Fig. 12(b)). As for medium and high SNRs, the
spike detection accuracy of NEO improves by approximately
40-50% from low to medium firing rate, and another 12-16%
from medium to high firing rate, while the sensitivity remains
above 99%. These findings are consistent with previous studies
that report a spike detection accuracy of over 90% on datasets
with high SNRs and firing rates for NEO, which, similarly to
AT, decline at lower SNRs (<5) and firing rates (<30 Hz) [10],
[33]. However, The improvement in spike detection accuracy
becomes less significant with increased compression by wired-
OR (~20-50%), as the removal of FP detections by the wired-
OR compression already increases the accuracy. However,
the highest accuracy for NEO at medium and high SNR is
achieved at high firing rates and the 1-wire configuration.
Moreover, this suggests that NEO can be effectively combined
with wired-OR compression without compromising sensitivity
and can enhance accuracy at all firing rates. Notably, this
combination allows NEO to achieve higher accuracy at low
SNRs (up to 85%) or low firing rates (up to 75%).
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Fig. 12. Spike detection accuracy and sensitivity at different firing rates for
AT, NEO, and the NZ spike detector. (A) AT accuracy (left) and sensitivity
(right). The spike detection accuracy of AT decreases the most with a decrease
in firing rate and the sensitivity decreases the most with a decrease in SNR.
(B) NEO accuracy (left) and sensitivity (right). The spike detection accuracy
of NEO decreases the most with a decrease in the firing rate. The sensitivity
of NEO remains high for all configurations and slightly improves with higher
compression. (C) The NZ spike detector accuracy (left) and sensitivity (right).
The spike detection accuracy of the non-zero spike detector increases with
compression rate, with optimums depending on a combination of the SNR
and firing rate. The sensitivity of the NZ spike detector decreases the most
with an increase in compression. Low firing rate in black (*), medium firing
rate in orange (o) and high firing rate in green (+). Low SNR dashed line
(—), medium SNR dotted line (...) and high SNR depicted with a dash-dotted
line (.- . - .). Abbreviations: Signal-to-noise ratio (SNR), Absolute Amplitude
Thresholding (AT), Non-Linear Energy Operator (NEO), and non-zero (NZ).

For the low SNR dataset, the NZ spike detector performs
better or similarly as the firing rate increases for the 2-, 4-
, and 8-wire configurations, while maintaining a sensitivity
above 91% (Fig. 12|c)). The 2-wire configuration achieves
the highest spike detection accuracy of 83.23%, 88.51%, and
90.12% for low, medium, and high firing rates, respectively.
However, for the 1-wire configuration, both the accuracy and
sensitivity slightly decrease with an increase in firing rate.
Moreover, at high firing rate results the NZ spike detector
showed a 7% decrease in both accuracy and sensitivity. This
is most likely the result of the higher firing rate in combination
with low SNR producing additional collisions in the spike
samples, which is reflected in the reduction in sensitivity



(~9%). For medium SNR, the spike detection accuracy of
the NZ spike detector increases for the 2-, 4-, and 8-wire con-
figurations with an increase in firing rate, while maintaining a
sensitivity above 95%. The 2-wire configuration achieves the
highest accuracy at medium and high firing rates of 93.11%
and 94.05%, respectively. However, at medium SNR with the
1-wire configuration, the accuracy decreases as the firing rate
increases and the highest accuracy is achieved at a low firing
rate of 92.97%. This decrease in accuracy is due to a steep
increase in FN detections associated with the increase in firing
rate, resulting in a 17.43% decrease in sensitivity. For high
SNR, the spike detection accuracy of the NZ spike detector
increases with the firing rate for all wire configurations while
maintaining a sensitivity above 97%, except for the medium
firing rate compared to the high firing rate for the 1-wire
configuration, which results in a 7% decrease in sensitivity. At
high SNR, the highest accuracy is achieved for the medium
and high firing rates with the 2-wire configuration, 92.47%,
and 94.00%, respectively. However, for 1-wire, the accuracy
decreases at a high firing rate compared to a low firing rate
(12%). This decrease in accuracy is associated with an 18.70%
decrease in sensitivity, showing that the decrease in accuracy
is due to an increase in FN spikes. The increase in FN spikes
indicates that for medium or high firing rates in combination
with medium and high SNRs, the threshold should potentially
be lowered to reduce the number of FN values to subsequently
increase the spike detection accuracy.

D. Wired-OR can achieve massive compression at lower bit-
rates

In previous research by Muratore et al. [24]], it has been
found that reducing the bit resolution of the neural signal can
result in an increased number of collisions and waveform dis-
tortion when performing compression with wired-OR. How-
ever, by relaxing the bit rate, additional signal compression
can be achieved.

In the ex vivo dataset, reducing the neural signal from
10-bit to 8-bit results in ~2x compression, but for AT and
NEO, this leads to a 78% and 44% reduction in detected
threshold events, respectively. The increased compression at
8-bit increases the mean SNR and peak-to-peak amplitude of
the detected threshold events for both AT, NEO, and the NZ
spike detector (Fig. 13). The 8-bit signal in combination with
wired-OR compression increases the mean SNR and peak-to-
peak amplitude at all wire configurations for NEO and the
NZ spike detector, but for AT this stays relatively similar
(Fig. T3). The lost threshold events have a lower mean peak-to-
peak amplitude and SNR than the preserved threshold events,
this suggests that the lost threshold events are likely noise or
low-amplitude spikes. As the ground truth is not known for
the ex vivo dataset, artificial datasets are used to confirm this
hypothesis.

The aforementioned observation that with an increase in
mean SNR and peak-to-peak amplitude the number of FP
detections is reduced, and vice versa, is applicable to the
artificial datasets as well. In the case of AT, when the 10-
bit neural signal is compared with the 8-bit neural signal at

medium and high SNRs, a ~4x and ~8x increase in the
number of detected threshold events is observed. However,
this is accompanied by a ~2x decrease in the mean SNR and
peak-to-peak amplitude for the detected threshold events due
to a steep increase in FP events (Fig. 14{(a)). Consequently,
the accuracy decreases by 50% and 28% at medium and high
SNRs, respectively, while the sensitivity remains above 99.9%
(Fig. T3[a)). On the other hand, for the low SNR dataset, the
number of detected threshold events, mean SNR and mean
peak-to-peak amplitude remain similar whether AT is applied
on the 10-bit or 8-bit neural signal. Interestingly, the accuracy
slightly increases by ~5%, and the sensitivity remains constant
at ~88%. This indicates that for low SNRs at low firing
rates, AT performs slightly better on an 8-bit signal. This is
a result of a reduction in FP detections due to the threshold
being higher at low SNR and 8-bit compared to 10-bit for the
uncompressed signal.

Similarly, when comparing the spike detection performance
of NEO at 10-bit and 8-bit for medium and high SNRs
datasets, a 30% and 40% decrease in the number of detected
threshold events is observed. This is accompanied by an in-
crease in mean SNR and peak-to-peak amplitude (Fig. T4|b)),
and the accuracy increases by ~20% and ~60%, while the
sensitivity remains above 99% (Fig. 15(b)). Hence, NEO
performs better on an 8-bit signal for medium and high SNRs
at low firing rates. For the low SNR dataset, the accuracy
decreases by 7%, while the sensitivity stays similar (~2%).
Moreover, the effect of a lower bit rate is less prominent
at a low SNR for NEO. Nonetheless, the aforementioned
observation that with an increase in mean SNR and peak-to-
peak amplitude the number of FP detections is reduced, and
vice versa, is shown here as well.

When combining the 8-bit rate with 1-wire wired-OR, the
compression rate increases to ~285x compared to using the
10-bit signal with 1-wire, which achieves a compression of
~212x, which decreases gradually when using higher wire
configurations (Table I). However, for the ex vivo dataset
this also results in a loss of threshold events detected for
AT, NEO, and the NZ spike detector by 87%, 69%, and
91%, respectively. For AT, the lost threshold events have a
higher mean SNR and peak-to-peak amplitude compared to the
preserved threshold events, indicating that the lost threshold
events are most likely true spikes at this compression rate
(Fig. 13[@)). In contrast, for NEO and the NZ spike detector
at 8-bit combined with wired-OR, the lost threshold events
have a lower mean SNR and peak-to-peak amplitude than
the preserved threshold events (Fig. 13[b&c)). However, the
values for the lost threshold events gradually increase with
increased compression. This suggests that for NEO and the
NZ spike detector, combining 8-bit and wired-OR initially
removes noise but gradually sacrifices true spikes.

Interestingly, when comparing the 8-bit wired-OR output
to the 10-bit output, the spike detection accuracy increases
for AT and NEO for all wire configurations at high SNR. In
addition, the sensitivity remains above 99% for AT and NEO,
with the exception of 1-wire at high SNR where the sensitivity
slightly decreases to 95% (Fig. 13). The NZ spike detector
shows an accuracy increase for 4 and 8-wire configurations
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Fig. 13. The mean SNR and peak-to-peak amplitude of the detected threshold
events for the ex vivo dataset at 6-, 8-, and 10-bit with 1-, 2-, 4-, 8-, and
16 wire configurations using AT, NEO, and the NZ spike detector. (A) The
mean SNR using AT at different configurations (left). The mean peak-to-peak
amplitude using AT at different wire configurations (right). (B) The mean
SNR using NEO at different wire configurations (left). The mean peak-to-
peak amplitude using NEO at different wire configurations (right). (C) The
mean SNR using the NZ spike detector at different wire configurations (left).
The mean peak-to-peak amplitude using the NZ spike detector at different wire
configurations (right). For both the mean SNR and peak-to-peak amplitude a
gradual increase is observed with increased compression for AT, NEO, and
the NZ spike detector. Abbreviations: Signal-to-noise ratio (SNR), Absolute
Amplitude Thresholding (AT), Non-Linear Energy Operator (NEO), and non-
zero (NZ)

with 8-bit compared to 10-bit at high SNR, while a decrease is
observed for 1 and 2-wire configurations (6-8%) (Fig. 15]c)).
The sensitivity for the 2-wire configuration remains above
99%, while it decreases by 12% for 1-wire. This can be
explained due to the increase in collisions leading to additional
zero values at 8-bit. This is reflected in the reduction of FP
detections and increase in FN detections at 4 and 8-wires, and
vice versa for the 1 and 2-wire configurations. Moreover, using
the predetermined threshold of 5 is most likely too stringent at
8-bit and 1 or 2-wire configurations. As will be shown later,
the performance of the NZ spike detector at lower bit rates
can be improved by using the threshold-based approach to
automatically set the optimal threshold.

At medium SNR, applying NEO to the 8-bit wired-OR out-
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Fig. 14. Mean SNR and peak-to-peak Amplitude for AT, NEO, and the
NZ spike detector at a 10-bit, 8-bit, and 6-bit signal for low, medium, and
high SNRs at 14 Hz firing rate at different wire configurations. (A) Mean
SNR (left) and mean peak-to-peak amplitude (right) using AT. (B)Mean SNR
(left) and mean peak-to-peak amplitude using NEO. (C) Mean SNR (left) and
mean peak-to-peak amplitude using the NZ spike detector. Abbreviations:
Signal-to-noise ratio (SNR), Absolute Amplitude Thresholding (AT), Non-
Linear Energy Operator (NEO), and non-zero (NZ) mean sNR and ptp of ex
vivo datasets at different bit rates 10-bit in black (¥), 8-bit in red (o), and
6-bit in purple (+). Low SNR dashed line (—), medium SNR dotted line (...)
and high SNR depicted with a dash-dotted line (.- . - .).

put increases the spike detection accuracy (6-40%) for all wire
configurations, with higher compression being associated with
higher spike detection accuracy. As previously mentioned, the
lower bit rate increases the number of collisions, increasing the
number of zero values. Moreover, NEO identifies spikes based
on a localized increase in signal energy, which is enhanced for
TP spikes due to the baseline samples being set at zero due
to the removal of noise. For AT, the spike detection accuracy
decreases for 4 and 8-wire configurations (10% & 25%), and
increases for 1 and 2-wire configurations (10%), while the
sensitivity remains above 97% for all wire configurations at
medium SNR. Similar to the NZ spike detector, this can be
explained due to the increase in collisions leading to additional
zero values at 8 bits. As the threshold in AT is calculated
based on the median absolute value, additional zeros result
in a lower threshold. This is reflected in the reduction of FP
detections and increase in FN detections at 4 and 8-wires,
and vice versa for the 1 and 2-wire configurations. The NZ
spike detector shows an accuracy increase for 4 and 8-wire
configurations (17% & 48%) and a decrease for 1 and 2-wire
configurations (30% & 4%) when comparing the 8-bit wired-
OR output to the 10-bit wired-OR output at medium SNR. The
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Fig. 15. Spike detection accuracy and sensitivity for AT, NEO, and the NZ
spike detector at a 10-bit, 8-bit, and 6-bit signal for low, medium, and high
SNRs at 14 Hz firing rate. (A) Spike detection accuracy (left) and sensitivity
(right) using AT. The spike detection accuracy of AT increases due to wired-
OR compression for 8§ and 10-bits at medium and high SNR. At low SNR,
AT achieves a higher accuracy for the 8-bit signal than the 10-bit signal.
This is a result of the wired-OR compression generating additional collisions
at 8-bits, reducing the number of false positive threshold detections. The
spike detection sensitivity of AT decreases due to wired-OR compression
and decreases further in combination with 8 and 6 bits. Similar to why the
accuracy increases, this is a result of the wired-OR compression generating
additional collisions at an 8-bit and 6-bit signal, increasing the number of
false negative threshold detections. (B) spike detection accuracy (left) and
sensitivity (right) using NEO. The spike detection accuracy of NEO increases
with increased wired-OR compression at a 10 and 8-bit signal and decreases
at 6-bits for all SNRs. Using wired-OR compression with a lower bit rate
increases the number of collisions, and subsequently reduces the amount of
false positive threshold detections. The sensitivity of NEO remains above
99% for all configurations and SNRs for the 8 and 10-bit signal but rapidly
decreases at 6-bits. Using a lower bit rate in combination with wired-OR
compression increases the number of collisions and leads to an increase in
false negative detections, resulting in a decrease in accuracy and sensitivity at
6-bits. (C) Spike detection accuracy (left) and sensitivity (right) using the NZ
spike detector. The spike detection accuracy of the NZ spike detector increases
with wired-OR compression when applied on the 10-bit signal at all SNRs,
with the exception of the 1-wire compared to the 2-wire configuration at low
SNR. With the 8-bit signal, the highest spike detection accuracy of the NZ
spike detector is achieved at 4-wires and gradually decreases with increased
wired-OR compression for all SNRs. The spike detection accuracy of the NZ
spike detector rapidly decreases with wired-OR compression when applied
on the 6-bit signal at all SNRs. The sensitivity of the NZ spike detector
rapidly decreases with increased wired-OR compression, and even more so at
lower bit rates and SNR. Abbreviations: Signal-to-noise ratio (SNR), Absolute
Amplitude Thresholding (AT), Non-Linear Energy Operator (NEO), and non-
zero (NZ) mean sNR and ptp of ex vivo datasets at different bit rates 10-bit
in black (*), 8-bit in red (o), and 6-bit in purple (+). Low SNR dashed line
(—), medium SNR dotted line (...) and high SNR depicted with a dash-dotted
line (.- . - .).

sensitivity remains above 98% for 4 and 8-wire configurations

but decreases by 38% and 12% for 1 and 2-wire configurations,
respectively(Fig. T5|c)). The combined compression of wired-
OR and a lower bit rate result in additional zero values, which
at 1 and 2-wires results in an increase in FN detections.
Moreover, the NZ spike detector with the threshold set at 5,
has an optimum compression it performs optimally at, which
seems to be too high for 1 and 2-wires in combination with
8-bits at medium SNR.

At low SNR, using NEO on the 8-bit signal decreases the
accuracy for 4 and 8-wire configurations (8% & 3%), but
increases it for 1 and 2-wires (20% & 8%) compared to the
10-bit signal. The sensitivity remains above 97% for 2, 4, and
8-wires but drops to 93% at 1-wire. Similarly, as with medium
SNR, the lower bit rate increases the number of collisions
and enhances the performance of NEO due to the baseline
samples being set at zero. Using AT on the 8-bit wired-OR
output yields a slight change in spike detection accuracy and
sensitivity at low SNR (~2-4%) compared to the 10-bit output.
The NZ spike detector shows a steep increase in accuracy
for 4 and 8-wire configurations at low SNR (46% & 52%),
with sensitivity remaining at 100% for 8 wires but decreasing
22% for 4 wires. However, for 1 and 2-wire configurations,
the accuracy decreases by 42% and 30%, respectively, and
sensitivity decreases by 45% for 1-wire and 40% for 2-wires.
In conclusion, the use of wired-OR compression in conjunction
with an 8-bit rate can result in higher compression rates, with
the threshold set at 5, the optimum compression it performs
optimally at, seems to be too high for 1 and 2-wires in
combination with 8-bit at low SNR.

When the bit rate of the ex-vivo dataset is decreased to 6-bit,
the signal is compressed ~2.5x compared to the 10-bit signal.
However, this leads to a 96% decrease in detected threshold
events for NEO and a 700x increase in the number of detected
threshold events for AT, due to the AT threshold being ex-
tremely low as a result of the high number of zero values. This
results in a high number of false positive detections. Moreover,
there is a massive increase in collisions when using wired-OR
at a 6-bit resolution on the ex-vivo dataset, leading to >99%
of all values being set to zero. Consequently, no threshold
events can be detected with the NZ spike detector, and there
is a >99% decrease in the number of threshold events detected
with AT and NEO For the artificial datasets at 6-bit,
a maximum compression of 609x, 1053x and 1017x can be
reached for low, medium and high SNRs, respectively
However, at this compression rate, the spike detection accuracy
and sensitivity of the NZ spike detector completely deteriorate
(<10%) for all SNRs (Fig. 13]c)). For the 6-bit 1-wire wired-
OR output, AT and NEO are still able to achieve a spike
detection accuracy between ~ 45% and 65% and sensitivity
between approximately 55% and 70% (Fig. 15)). In summary,
combing wired-OR compression with bit rates of 6 and 8
can result in massive compression (~150-1000x). AT and
NEO achieve similar or better spike detection accuracy and
sensitivity at 8-bit for all SNRs, but the performance quickly
deteriorates at 6-bit. This is a consequence of the increased
collisions at 6-bit leading to an increase in zero values and sub-
sequently lowering the threshold and detecting a high amount
of FP threshold events. The NZ spike detector performs worse



at 6 and 8 bits with 1 and 2-wire configurations compared to
the 10-bit signal at all SNRs. However, for the 4 and 8-wire
configurations at 8-bit, the NZ spike detector achieves higher
accuracies and similar sensitivity. As previously mentioned,
with the threshold set at 5, at 8-bit the optimum compression
rate is the 4-wire configuration and further increasing the
compression decreases the sensitivity due to an increase in
FN detections. As will be discussed later, using the firing
rate-based approach to optimize the threshold, can improve
the spike detection performance at higher compression rates.

E. The firing rate-based approach optimizes threshold for the
non-zero spike detector

The NZ spike detector has demonstrated superior perfor-
mance compared to both AT and NEO in various scenarios
when using a predetermined threshold. It achieves up to 93%
accuracy and maintained a sensitivity of ~98% at 10, 20,
30, and 40 SNR, even for low firing rates where AT and
NEO typically perform sub-optimally [I0], [33]]. However,
in the case of a low firing rate and 5 SNR for the 1-wire
configuration, AT performs better than the NZ spike detector
due to a high number of FN spikes detected by the latter.
As previously mentioned, by decreasing the threshold, the
number of FNs can be reduced, and vice versa. Interestingly,
Zhang et al. proposed an approach to determine the spike
detection threshold based on the firing rate [28]]. This approach
ensures the detection of useful information by optimizing the
threshold to match the firing rate. The firing rate of a particular
brain region is relatively stable on average, and by setting a
reasonable target detection rate and threshold update strategy,
the threshold can be set to automatically detect spikes at the
desired rate. Retinal ganglion cells are known to have an
average firing rate of 14 Hz [31]}, but since in this work dense
MEAs are used, spikes can be detected on multiple electrodes.
The Utah array data that has been spike sorted showed 3
to 5 clusters per channel, while research by Todorova and
colleagues suggests that there are 3.8-4 clusters on average
per channel [34], [35]. Therefore, a reasonable assumption is
that the target detection rate should be between 3 and 4 times
the expected average firing rate.

The firing rate-based approach is implemented in the NZ
spike detector by automatically adjusting the detection thresh-
old according to the measured firing rate. Specifically, based
on analyzing the first second of data, if the number of spikes
detected, per channel, per second is below the lower target
firing rate, the threshold is decreased by one; if it is above
the upper target firing rate, the threshold is increased by one.
If the measured firing rate is within the target range, the
optimal threshold is determined. A maximum of 10 iterations
are used and an initial threshold is set at 5. However, as the
threshold must be a positive integer, there could be two optimal
thresholds, one resulting in a lower number of detected spikes
than the lower target rate and the other in a higher number of
detected spikes than the upper target rate. In this case, selecting
the lower threshold preserves additional spikes and optimizes
the sensitivity, whereas selecting the higher threshold increases
accuracy but reduces sensitivity.

18

P

Accuracy Over SNR At 1-Wire, Medium Firing Rate

100

Accuracy (%)
y 58 3

o

Low SNR Medium SNR

SNR
Sensitivity Over SNR At 1-Wire, Medium Firing Rate

| . tn penzer
e S —

90 - == o

High SNR

100

80

70

Sensitivity (%)

High SNR

o)

Accuracy Over SNR At 1-Wire, High Firing Rate

B et lon Ze
B Marussl WorTrm Ske Setechar

. 80
g
> 60
®
=
B 40
<

20

Low SNR Medium SNR High SNR
SNR
100 Sensitivity Over SNR At 1-Wire, High Firing Rate

8

Sensitivity (%)
-~ @
? o

&
o

g

Low SNR Medium SNR

High SNR

Fig. 16. The firing rate-based approach improves spike detection accuracy
and sensitivity for the non-zero spike detector at 1-wire, for medium and
high firing rates for all SNRs. (A) Accuracy at 1-wire, medium firing rate
for different spike detectors (top). Sensitivity 1-wire, medium firing rate for
different spike detectors (bottom). (B) Accuracy at 1-wire, high firing rate
for different spike detectors (top). sensitivity 1-wire, high firing rate for
different spike detectors (bottom). Using the optimal threshold determined
with the firing rate-based approach increases spike detection accuracy and
sensitivity, allowing the non-zero spike detector to perform similar to AT
and NEO at medium and high firing rates. AT (green), NEO (red), the Non-
zero spike detector with optimal threshold (blue), and the Non-zero spike
detector with the predetermined threshold (orange). Abbreviations: Absolute
Amplitude Thresholding (AT), Non-Linear Energy Operator (NEO).

For example, if the firing rate is low and the SNR is 5 for
the 1-wire configuration, the NZ spike detector detects many
FN spikes, resulting in lower spike detection accuracy and
sensitivity compared to AT. However, by utilizing the firing
rate-based approach, the optimal threshold can be determined
to be 2 or 3, resulting in a spike detection accuracy of 46.45%
and 82.68%, and a sensitivity of 86.35% and 98.91%, respec-
tively. This shows that the NZ spike detector outperforms AT
under these circumstances when using the optimal threshold.



TABLE I
COMPRESSION RATES FOR WIRED-OR AT DIFFERENT WIRE CONFIGURATIONS AND BIT RATES AT LOW, MEDIUM AND HIGH SNR.
Wire 10-bit 8-bit 6-bit 10-bit 8-bit 6-bit 10-bit 8-bit 6-bit
configuration | low SNR | low SNR | low SNR | medium SNR medium SNR medium SNR | high SNR | high SNR high SNR
1-wire 86.02 285.01 609.82 70.56 207.40 1053 64.74 192.58 1016.92
2-wires 42.20 144.49 325.34 43.46 110.39 600.87 38.45 100.08 550.91
4-wires 17.15 144.49 325.34 25.89 55.98 445.04 22.13 52.80 395.76
8-wires 4.55 24.01 187.97 12.31 32.24 383.06 11.16 32.52 334.54
16-wires 1.0 1.44 2.09 1.0 2.25 2.38 1.0 242 2.56
100 Accuracy Over SNR At 6-bit, 1-Wire, Low Firing Rate 6-bit with the 1-wire configuration, while AT and NEO still
i -z achieved accuracies and sensitivities of ~40-60%. However,
9 = utilizing the firing rate-based approach to calculate the optimal
> 60 threshold (threshold = 1), results in an increase in accuracy to
© o e o
5 a0 51, 59, and 57% and sensitivity of 78, 60 and 58%, for low,
< 2 medium and high SNRs, respectively (Fig. 17). This shows
that by using an optimal threshold, the NZ spike detector
o Low SNR Medium SNR High SNR can achieve similar spike detection performance at 6-bit and
SNR . . .
o ) ) - the 1-wire configuration. In summary, the above-discussed
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< 80 = calculate the optimal threshold for the NZ spike detector can
< 6o lead to similar or better spike detection performance compared
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g 40
Q
v 20 V. DISCUSSION
o,

Low SNR

Medium SNR
SNR

High SNR

Fig. 17. The firing rate-based approach improves spike detection accuracy
and sensitivity for the non-zero spike detector at 6-bit, 1-wire, for low firing
rates for all SNRs.Accuracy at 6-bit, 1-wire, low firing rate for different
spike detectors (top). Sensitivity at 6-bit, 1-wire, low firing rate for different
spike detectors (bottom). Using the optimal threshold determined with the
firing rate-based approach increases spike detection accuracy and sensitivity,
allowing the non-zero spike detector to perform similar to AT and NEO at
6-bit, 1-wire and low firing rates. AT (green), NEO (red), the Non-zero spike
detector with optimal threshold (blue), and the Non-zero spike detector with
the predetermined threshold (orange). Abbreviations: Absolute Amplitude
Thresholding (AT), Non-Linear Energy Operator (NEO).

At a medium firing rate (42 Hz), AT performs better than the
NZ spike detector for low, medium, and high noise levels.
Nevertheless, by employing the firing rate-based approach
to determine the threshold for the NZ spike detector, the
accuracy can be slightly enhanced (~1%-3%) for medium
and high SNRs. Intriguingly, this approach can improve the
sensitivity from 86% to over 99.8% for medium and high
SNRs at a medium firing rate. At low SNR and medium
firing rate, using the optimal threshold results in an increase
in accuracy of 14% compared to using the manual threshold
and is accompanied by a sensitivity increase up to 97.6%,
making it perform better than AT at low SNR and medium
firing rates (Fig. 16(a)). Finally, by using the firing rate-based
approach to determine the optimal threshold at high firing
rates, the non-zero spike detector achieves a similar spike
detection accuracy (~1-2% difference) to AT and NEO for
all SNRs. Interestingly, the sensitivity improves significantly
to 99.6% for all SNRs with the automatically set threshold
(Fig. 16(b)). In addition, as previously mentioned, the spike
detection performance of the NZ spike detector deteriorates at

The development of wireless neural interfaces capable of
simultaneously recording from over 1000 electrodes with
high temporal and single-cell spatial resolution holds great
potential for developing brain-machine interfaces capable of
restoring motor, sensory, and tactile functionality in patients.
Nevertheless, the transmission of the vast amount of data
generated by these interfaces poses a significant challenge
due to constraints in power consumption. As a result, there
is a pressing need for data compression techniques that can
maintain critical neural signal components.

The aim of this work is to evaluate the impact of wired-OR
compression on spike detection performance. Results confirm
that the wired-OR architecture achieves significant data com-
pression, up to ~86x for low SNRs at 10-bit. Moreover, it
achieves this while preserving spike samples and removing
noise across a range of SNRs and firing rates. Conveniently,
the wire configuration of the wired-OR architecture can be
adjusted to decrease compression and retain additional spike
samples, as required. Interestingly, recent research shows that
the wired-OR architecture can achieve this at low power
consumption [36]. Furthermore, combining wired-OR with
relaxed bit resolution leads to massive compression rates (up
to ~1000x) while maintaining or increasing spike detection
performance depending on the SNR and wire configuration.
However, caution must be taken when combining wired-OR
with a bit rate of 6 and 8, as performance varies depending
on the SNR, firing rate, wire configuration, and the selected
spike detection algorithm.

Analysis of the ex vivo dataset indicated that wired-
OR compression primarily reduces noise and low amplitude
spikes, with the mean SNR and peak-to-peak amplitude of
detected threshold events increasing with compression for all
spike detection algorithms. This is confirmed by analyzing



artificial datasets with similar parameters to the ex-vivo dataset
(10-bit, 14 Hz, and SNRs ranging from 5 to 40) that also dis-
played an increase in mean SNR and peak-to-peak amplitude
with increased compression. Moreover, this is accompanied by
an increase in accuracy while maintaining high sensitivity for
both AT, NEO and the NZ spike detector, confirming that lost
information is mainly noise.

Furthermore, this work shows that using the commonly used
spike detection algorithms AT and NEO, on the wired-OR
output improves or maintains spike detection accuracy for all
SNRs and firing rates while maintaining high sensitivity. How-
ever, to overcome the limitations of AT and NEO in detecting
spikes at low SNRs and firing rates the NZ spike detector
is developed [10], [33]. The NZ spike detector demonstrates
superior spike detection performance compared to both AT
and NEO across a variety of SNRs and compression rates,
when using a predetermined threshold. On datasets with a high
firing rate AT performed better than the NZ spike detector
with the predetermined threshold. However, by optimizing the
threshold of the NZ spike detector with the firing rate-based
approach, the NZ spike detector is able to achieve similar
performance as AT and NEO even at high firing rates. An
additional advantage of using the NZ spike detector is that it
can be implemented at extremely low power. To implement
this, an N-bit adder and threshold detector would be required.
This block is clock gated by the wired-OR decoder, as it
only uses power when there is a collision-free sample. Since
the neural signal is sparse, this does not happen frequently.
For instance, for the 1-wire output of a 10-bit signal firing
at 14 Hz and sampled at 20 kHz, only approximately ~1%
of the samples are digitized for all noise levels. Currently,
there is no neural interface that has implemented a spike
detection algorithm on-chip besides AT and NEO, because of
the computational costs that come with them (e.g., template
matching and the wavelet detection method [[10f], [19]). The
firing rate-based NZ spike detector, in combination with the
wired-OR architecture, offers an alternative that has improved
spike detection performance and has limited processing and
power requirements. Moreover, the NZ spike detector has the
potential to be implemented as an on-chip spike detector in
wireless neural interfaces that can scale to 1000+ electrodes.

In recent research by Yan and colleagues, they investigated
different wire configurations of the wired-OR readout architec-
ture for compressing neural data [[23]]. Moreover, they showed
that diagonal wiring outperformed other wiring configurations,
such as the one used in this work. For additional details on
diagonal wiring refer to [23]. It is reported that at least 80%
of the spikes during spike sorting were able to be recovered,
in combination with approximately ~150x compression, for
datasets with an SNR between 7 and 10. However, AT was
used on the wired-OR output to detect spikes. In this work, it is
shown that AT achieves sub-optimal spike detection accuracy
and sensitivity at low SNR. Investigating the use of diagonal
wiring for the wired-OR architecture in combination with the
firing rate-based NZ spike detector can potentially further
improve spike detection performance, and subsequently spike
sorting performance in future research.
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VI. CONCLUSION

In conclusion, in order to realize a wireless neural in-
terface that can support simultaneous recording from 1000+
channels with low power consumption and without sacrificing
significant performance and size, here it is shown that using
the wired-OR architecture in combination with the NZ spike
detector is a promising approach.
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