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The computational complexity and efficiency of the approximate mode component synthesis 
(ACMS) method is investigated for the two-dimensional heterogeneous Helmholtz equations, 
aiming at the simulation of large but finite-size photonic crystals. The ACMS method is a Galerkin 
method that relies on a non-overlapping domain decomposition and special basis functions 
defined based on the domain decomposition. While, in previous works, the ACMS method was 
realized using first-order finite elements, we use an underlying ℎ𝑝--finite element method. We 
study the accuracy of the ACMS method for different wavenumbers, domain decompositions, and 
discretization parameters. Moreover, the computational complexity of the method is investigated 
theoretically and compared with computing times for an implementation based on the open 
source software package NGSolve. The numerical results indicate that, for relevant wavenumber 
regimes, the size of the resulting linear systems for the ACMS method remains moderate, such 
that sparse direct solvers are a reasonable choice. Moreover, the ACMS method exhibits only a 
weak dependence on the selected domain decomposition, allowing for greater flexibility in its 
choice. Additionally, the numerical results show that the error of the ACMS method achieves the 
predicted convergence rate for increasing wavenumbers. Finally, to display the versatility of the 
implementation, the results of simulations of large but finite-size photonic crystals with defects 
are presented.

1. Introduction

Photonic crystals are nanostructures consisting of periodically repeating building blocks, the so-called unit cells, which usually 
consist of different materials, modeled by discontinuous material parameters [1,2]. Photonic crystals find many applications, such 
as enhanced absorption in solar cells and thin films [3--5], or the control of spontaneous emission of quantum emitters [6--9]. A 
mathematical treatment of photonic crystals can be found in [10,11].
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The governing equations for light propagation in photonic crystals are Maxwell’s equations, which may be reduced, under certain 
conditions, to the heterogeneous Helmholtz equations for transverse-magnetic and transverse-electric polarizations [2]. In view of the 
complex behavior of electromagnetic waves in photonic crystals, numerical approaches for the simulation of their optical properties 
are required, which we briefly discuss next.

Finite difference methods [12--16] are primarily used for structured grids, which allow for computationally highly efficient imple
mentations. Using the regular sparsity structure of the resulting linear systems, problems up to tens of millions to one hundred million 
degrees of freedom can still be solved using sparse direct solvers [17,18]. Second order finite difference methods may suffer from 
a so-called pollution effect, i.e., large dispersion errors, which require much finer meshes than expected for a given wavenumber. 
Higher order finite difference methods weaken such strong assumption on the mesh, see, e.g., [19] for a discussion. However, the 
required smoothness of the fields may not be satisfied in the aforementioned application, e.g., due to discontinuous material param
eters. Moreover, stair casing may occur for curved geometries, which requires non-trivial modifications for a robust and accurate 
implementation [20].

Finite element methods (FEM) are particularly well-suited for handling discontinuous material parameters due to their high 
geometric flexibility, but they also suffer from a pollution effect, which, in the FEM context, shows up in the form of wavenumber
dependent constants in the error analysis [21,22]. As a result, linear finite elements generally require excessive mesh resolution for 
growing wavenumbers, whereas high-order methods allow for overcoming the pollution effect; see, e.g., [23--27]. Let us also refer 
to interior penalty (high-order) discontinuous Galerkin methods [28,29] for the homogeneous Helmholtz equation. Additionally, 
boundary integral equation methods have been developed in [30] to solve plane wave scattering problems by periodic arrays of 
two-dimensional obstacles.

For large nanostructures, finite element methods lead to large linear systems, because of the required partitioning of the unit cells 
into sufficiently small elements. Therefore, solving these systems using a direct solver may become infeasible. Additionally, solving 
the resulting systems using iterative methods is also challenging for large wavenumbers: cf., e.g., [31,32]. To reduce the size of 
the linear systems, approaches that employ problem-adapted basis functions instead of piecewise polynomials have been employed. 
Trefftz discontinuous Galerkin methods [33--35] use solutions of the differential equation (plane waves) for the local approximation of 
the fields. For piecewise constant materials, these are often known, but for non-constant materials, the computation of such functions 
becomes more involved. In [36], polynomial discrete plane wave functions have been constructed numerically from a piecewise 
polynomial discretization. From all the degrees of freedom per element when considering a standard discontinuous Galerkin method, 
some are removed, while others are agglomerated into (polynomial) Trefftz ansatz functions. A detailed comparison for the latter is 
also given in [37].

For infinite periodically repeating nanostructures, the solutions are given in terms of Bloch modes [10,38]. In [39], a conforming 
finite element method that uses Bloch modes has been developed for 2D photonic crystals that are infinite in one direction and sur
rounded by an external medium in the other. The conformity requirement is satisfied by modulating the Bloch modes with polynomial 
functions, which makes the assembly of the corresponding matrices involved, but independent of the size of the structure. In [40, 
Chapter 5], photonic crystals which are finite in two-dimensions, are discretized using a discontinuous Galerkin method that treats 
the crystal as one element and that uses Bloch modes as basis functions within the crystal. Dropping the conformity requirement and 
exploiting properties of the Bloch modes greatly simplifies the assembly, yielding only a weak dependence on the number of unit 
cells; the dependence is linear instead of quadratic for crystals consisting of the same amount of unit cells in each direction.

When the periodic arrangement of the unit cells is broken, the aforementioned methods [39,40,30] are, however, not directly 
applicable. Such cases occur, e.g., in waveguides [2] or naturally in truly manufactured nanostructures due to unavoidable manufac
turing flaws. For direct numerical simulations of real nanostructures and comparisons to the design structure using a discontinuous 
Galerkin method, see [41].

Multiscale methods [42--46] employ (local) problem adapted basis functions. As such, they aim to provide accurate approximation 
with only a few degrees of freedom, and at the same time, they can handle non-constant material properties and complex geometries. 
In practice, such methods usually also rely on an underlying discretization for their numerical realization.

This work focuses on the computational aspects and implementation of the approximate mode component synthesis (ACMS) 
method to solve two-dimensional heterogeneous Helmholtz equations. We refer to [43] for a theoretical analysis and preliminary 
numerical studies. The method has originally been introduced in [47] and further theoretically analyzed in [48] for heterogeneous 
diffusion problems. The ACMS method relies on a combination of a non-overlapping domain decomposition approach, which allows 
for straightforward parallelization over the number of unit cells during assembly, and the construction of problem-adapted basis 
functions. We mention that the ACMS method does not rely on (local) periodicity assumptions, allowing it to easily handle waveguides, 
defects, and other perturbations in the crystal structure. This flexibility broadens the method’s applicability, including its use in the 
numerical simulation of quasicrystals; cf. [49]. The computational experiments in [43] considered relatively small examples and 
employed linear finite elements, which, as mentioned above, are susceptible to the pollution effect. Consequently, also the discrete 
realization of the ACMS method can potentially suffer from the pollution effect. Moreover, the efficient implementation of the ACMS 
method and its computational complexity has not been investigated in [43]; however, an efficient parallel implementation of the 
ACMS method employing linear finite elements for two-dimensional heterogeneous diffusion problems has been presented in [50].

Before going into a more detailed description of the ACMS method, we outline our main contributions, aimed at addressing the 
research gaps mentioned above. Our contributions include a detailed computational complexity analysis and an efficient implemen
tation of the ACMS method using an underlying ℎ𝑝--finite element method. The efficiency of our implementation, i.e., assembly of 
linear systems and their solution using sparse direct solvers, is due to structural similarities to usual ℎ𝑝--finite element methods. 
In particular, the usual local degree 𝑝 polynomials are replaced by problem-adapted basis functions; and when fixing the domain 
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decomposition, the ACMS method allows for increasing the number of local basis functions for each ACMS element (subdomain), 
similar to increasing the polynomial degree in ℎ𝑝--finite elements. The rather small number of basis functions required to achieve 
engineering relevant tolerances in practical wavenumber regimes yields linear systems of moderate size, allowing the use of sparse 
direct solvers. Additionally, since our implementation is based on underlying high-order finite elements, we can numerically inves
tigate the wavenumber dependence of the method. This is particularly important for the Helmholtz equations, because Galerkin 
methods like the ACMS, require sufficient resolution in order to be well defined; see, e.g., [51]. Moreover, we study the influence 
on the computational complexity as well as on the accuracy of the choice of the domain decomposition and the number of modes 
per subdomain. Finally, we show that, by suitable choices of the discretization parameters, we can simulate large two-dimensional 
nanostructures. Our implementation employs the open source package NGSolve [52] and the code is publicly available at [53].

The remainder of the paper is structured as follows. We first introduce the Helmholtz equation and the essential notation in 
Section 2. Then, in Section 3, we give a summary of the continuous ACMS method and recall relevant analytical results. In Section 4, we 
describe the numerical realization and computational cost of the ACMS method when employing an underlying ℎ𝑝--FEM discretization. 
Finally, in Section 5, we present numerical results to highlight the method’s flexibility in the choice of the domain decomposition 
and the benefit of choosing a high-order approximation of the ACMS basis functions. We conclude with final remarks in Section 6.

2. Notation and model equation

In the coming section, we present the basic notation along with the Helmholtz equation.

Notation. Given a connected polygonal domain Ω ⊂ ℝ2 with piecewise 𝐶2 boundary and strictly convex angles, we denote with 
𝐿2(Ω) the Lebesgue space of square-integrable functions 𝑢, 𝑣 ∶ Ω→ℂ with inner product

(𝑢, 𝑣)Ω = ∫
Ω 

𝑢𝑣 𝑑𝐱,

and with 𝐻1(Ω) the usual Sobolev space of functions in 𝐿2(Ω) with square-integrable weak derivatives. Additionally, let 𝐻1∕2(𝜕Ω) be 
the trace space of functions in 𝐻1(Ω). Moreover, 𝐻1

0 (Ω) denotes functions in 𝐻1(Ω) with vanishing trace on 𝜕Ω and 𝐿∞(Ω) denotes 
the space of essentially bounded measurable functions. Corresponding notation is also used for other measurable sets besides Ω. We 
indicate with ‖ ⋅ ‖𝑉 the corresponding norm on a function space 𝑉 .

Problem formulation. We consider the heterogeneous Helmholtz problem:

−div(𝑎∇𝑢) − 𝜅2𝑢 = 𝑓 in Ω,

𝑎𝜕𝑛𝑢− 𝜄𝜔𝛽𝑢 = 𝑔 on 𝜕Ω,
(1)

where 𝜄 is the imaginary unit. The coefficient functions 𝑎, 𝑐 ∈ 𝐿∞(Ω) describe material properties of the background medium occu
pying Ω and are such that 𝑎 ≥ 𝑎0 > 0 and 𝑐 ≥ 𝑐0 > 0 for some constants 𝑎0, 𝑐0 ∈ ℝ. Together with the positive angular frequency 
denoted by 𝜔, we then obtain the wavenumber 𝜅 = 𝜔∕𝑐. The real-valued function 𝛽 ∈ 𝐿∞(𝜕Ω) is related to the transmission and 
reflection of the unknown function 𝑢 on the boundary 𝜕Ω, and we assume that either 𝛽 ≥ 𝛽0 > 0 or 𝛽 ≤ 𝛽0 < 0, for a given 𝛽0 ∈ ℝ. 
Impedance boundary conditions are described by the function 𝑔 ∈𝐻1∕2(𝜕Ω), and any interior sources may be modeled by the function 
𝑓 ∈𝐿2(Ω). In the current work, we focus on the case of a homogeneous interior source, i.e., 𝑓 ≡ 0, and we refer to Remark 1 below 
for a discussion of the more general case.

To obtain a weak formulation of the Helmholtz problem, let us introduce the sesquilinear form  ∶𝐻1(Ω) ×𝐻1(Ω)→ ℂ defined 
by

(𝑢, 𝑣) = (𝑎∇𝑢,∇𝑣)Ω − (𝜅2𝑢, 𝑣)Ω − 𝜄(𝜔𝛽𝑢, 𝑣)𝜕Ω,

and the antilinear functional 𝐺 ∶𝐻1(Ω)→ℂ defined by

𝐺(𝑣) = (𝑔, 𝑣)𝜕Ω. (2)

The weak form of the Helmholtz problem (1) then reads

Find 𝑢 ∈𝐻1(Ω) ∶ (𝑢, 𝑣) =𝐺(𝑣), for all 𝑣 ∈𝐻1(Ω). (3)

With the aforementioned regularity assumptions on the coefficients and the functions, the Helmholtz problem is well-posed and the 
weak formulation (3) admits a unique solution; see [51, Theorem 2.4].

3. The continuous ACMS method

In the following section, we recap the ACMS method and recall some theoretical convergence results obtained in [43].
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Domain decomposition. We introduce by  = {Ω𝑗 , 𝑗 = 1, ..., 𝐽} a conforming decomposition of Ω into 𝐽 non-overlapping open 
subdomains with piecewise smooth boundaries, and we define the interface Γ of the domain decomposition as

Γ =
𝐽⋃

𝑗=1 
𝜕Ω𝑗 ,

which also includes the boundaries of the domain Ω. Moreover, we introduce the set  of edges and the set  of vertices of the 
domain decomposition:

 = {𝑒 ⊂ Γ ∶ 𝑒 = 𝜕Ω∩ 𝜕Ω𝑗 or 𝑒 = 𝜕Ω𝑗 ∩ 𝜕Ω𝑖, for some 𝑖, 𝑗 = 1, ..., 𝐽},

 = {𝑞 ∈ Γ ∶ ∃𝑒 ∈  ∶ 𝑞 ∈ 𝜕𝑒}.

ACMS spaces. The proper formulation of the ACMS method relies on the solvability of local Helmholtz problems with Dirichlet 
boundary conditions [43]. To that end, fix 𝑗 ∈ {1,… , 𝐽}, and let us consider the following eigenvalue problem: Find 𝑏 ∈𝐻1

0 (Ω𝑗 )⧵{0}
and 𝜆 ∈ℝ such that

(𝑎∇𝑏,∇𝑣)Ω𝑗
= 𝜆(𝜅2𝑏, 𝑣)Ω𝑗

for all 𝑣 ∈𝐻1
0 (Ω𝑗 ). (4)

The local solvability condition can then be conveniently characterized by requiring that 𝜆 ≠ 1, for all 𝑗 ∈ {1,… , 𝐽}, which we assume 
in the following. To discuss how the condition 𝜆 ≠ 1 is related to 𝜔, which is important for investigating the wavenumber dependency 
of the method, let us denote by 𝜆𝑗

𝑖
, 𝑖 ∈ ℕ, the non-decreasing sequence of eigenvalues of (4) for the subdomains Ω𝑗 . Since 𝜅 = 𝜔∕𝑐, 

we observe that 𝜆𝑗
𝑖
= 𝜆̃

𝑗
𝑖
∕𝜔2 with 𝜆̃𝑗

𝑖
independent of 𝜔. The condition 𝜆𝑗

𝑖
≠ 1 is then equivalent to 𝜆̃𝑗

𝑖
≠ 𝜔2. Therefore, to ensure that |𝜆𝑗

𝑖
− 1| is uniformly positive for changing 𝜔, we additionally assume in the following that there is 𝛾 > 0 such that

𝜔 ∈ (0,∞) ⧵
⋃
𝑖,𝑗 

[
(1 − 𝛾)

√
𝜆̃
𝑗
𝑖
, (1 + 𝛾)

√
𝜆̃
𝑗
𝑖

]
. (5)

We note that in other works, such as [44,54,55], the condition (5) is replaced by a stronger local coercivity assumption, which can 
be expressed as 𝜔≤ (1 − 𝛾)

√
𝜆̃
𝑗

1. The validity of the local coercivity condition implies that for increasing frequencies 𝜔, the smallest 
eigenvalue 𝜆̃𝑗

1 is required to grow. Since 𝜆̃𝑗

1 increases if the area of Ω𝑗 decreases properly, this can be related to a refinement of the 
domain decomposition, i.e., a sufficient resolution condition.

Assuming (5) and recalling that we assumed 𝑓 = 0, the solution 𝑢 to (3) is determined by its trace on Γ, see Remark 1 below 
for the case 𝑓 ≠ 0. The ACMS method now relies on the approximation of 𝑢|Γ using functions that are locally supported on Γ. We 
will introduce the local functions associated with vertices and edges as follows. For all 𝑞 ∈  , let 𝜑𝑞 ∶ Γ→ℝ be edgewise harmonic 
functions defined on Γ, i.e., 𝜑𝑞(𝑟) = 𝛿𝑞,𝑟 for 𝑞, 𝑟 ∈  , where 𝛿 is the Kronecker delta, and

∫
𝑒 

𝜕𝑒𝜑
𝑞𝜕𝑒𝜂 𝑑𝑠 = 0 for all 𝜂 ∈𝐻1

0 (𝑒),

where 𝜕𝑒 is the tangential derivative along the edge 𝑒. The vertex-based space is then defined as the linear combination of the functions 
𝜑𝑞 :

𝑉 = span{𝜑𝑞 ∶ 𝑞 ∈ }.
Additionally, let us define the edge modes as solutions to the following weak formulation of the edge-Laplace eigenvalue problems: 
for each 𝑒 ∈  , find (𝜏𝑒

𝑖
, 𝜆𝑒

𝑖
) ∈𝐻1

0 (𝑒) ×ℝ, 𝑖∈ ℕ, such that

(𝜕𝑒𝜏𝑒
𝑖 , 𝜕𝑒𝜂)𝑒 = 𝜆𝑒

𝑖 (𝜏
𝑒
𝑖 , 𝜂)𝑒, for all 𝜂 ∈𝐻1

0 (𝑒). (6)

According to [56, p. 415], the eigenvalues depend quadratically on the index of the mode, that is

𝜆𝑒
𝑖 ∼

(
𝑖𝜋 |𝑒|)2

. (7)

In the following, we assume that the eigenvalues 𝜆𝑒
𝑖

are ordered non-decreasingly. With a slight abuse of notation, we continue to 
use the symbol 𝜏𝑒

𝑖
to denote the extension by zero of the edge basis function to the whole interface Γ. The edge-based space is then 

defined as the linear combination of the eigenmodes 𝜏𝑒
𝑖

for all edges

𝑉 = span{𝜏𝑒
𝑖 ∶ 𝑒 ∈  , 𝑖 ∈ ℕ}.

It follows from [43, Lemma 3.6], that 𝑉 + 𝑉 is dense in the trace space

𝐻1∕2(Γ) = {𝑣 ∶ Γ→ℂ ∶ ∀𝑗 = 1, ..., 𝐽 , ∃𝑢𝑗 ∈𝐻1(Ω𝑗 ) s.t. 𝑢𝑗 |𝜕Ω𝑗
= 𝑣|𝜕Ω𝑗

}.
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In order to approximate (3), we next extend functions in 𝐻1∕2(Γ) to functions in 𝐻1(Ω). To do this, we first introduce the 
extensions 𝐸𝑗 associated with the subdomains Ω𝑗 , and then the extension 𝐸Γ associated with the full interface Γ. For a given Ω𝑗 ∈
and 𝜏 ∈𝐻1∕2(𝜕Ω𝑗 ), let us define the local Helmholtz-harmonic extension operator 𝐸𝑗 ∶𝐻1∕2(𝜕Ω𝑗 )→𝐻1(Ω𝑗 ) such that

(𝑎∇𝐸𝑗𝜏,∇𝜂)Ω𝑗
− (𝜅2𝐸𝑗𝜏, 𝜂)Ω𝑗

= 0, for all 𝜂 ∈𝐻1
0 (Ω𝑗 ),

(𝐸𝑗𝜏)|𝜕Ω𝑗
= 𝜏.

(8)

The Helmholtz-harmonic extension operator is well-defined and bounded independently of 𝜔 if (5) holds, which follows from the 
above assumption on the solvability of local Helmholtz problems [43]. Let us also introduce 𝐸Γ ∶ 𝐻1∕2(Γ) → 𝐻1(Ω), which first 
restricts a given function 𝜏 ∈𝐻1∕2(Γ) to the boundaries of the subdomains Ω𝑗 , for all 𝑗 = 1,… , 𝐽 , and then applies the local Helmholtz
harmonic extension operator, i.e., (𝐸Γ𝜏)|Ω𝑗

=𝐸𝑗 (𝜏|𝜕Ω𝑗
). We note that a vertex basis function 𝜑𝑞 is supported on all edges that share 

the vertex 𝑞 while its extension 𝐸Γ𝜑𝑞 is supported on all subdomains Ω𝑗 that share the vertex 𝑞. In contrast, the extension of an edge 
basis function 𝐸Γ𝜏𝑒

𝑖
is supported on the two neighboring subdomains that share the edge 𝑒. Moreover, we can write the solution 𝑢

of (3) in terms of its trace 𝑢|Γ ∈𝐻1∕2(Γ) that is extended to 𝐻1(Ω) with the operator that was just introduced: 𝑢 =𝐸Γ(𝑢|Γ).
Using the above extensions, we can now approximate the solution space using a combination of local spaces associated with vertex 

functions and edge modes:

𝑉 () ∶=𝐸Γ𝑉 +𝐸Γ𝑉 ⊆𝐻1(Ω).

We are now able to define the finite-dimensional ACMS space 𝑉𝐴() ⊂ 𝑉 (). For every edge, we select the eigenmodes associated 
with the 𝐼 ∈ℕ smallest eigenvalues, assuming that they are non-decreasingly ordered thus obtaining

𝑉𝐴() ∶=𝐸Γ𝑉 +𝐸Γ𝐼 , with 𝐼 = span{𝜏𝑒
𝑖 ∶ 𝑒 ∈  , 1 ≤ 𝑖 ≤ 𝐼}. (9)

Remark 1. The methodology presented here can be extended to more general 𝑓 by replacing the antilinear functional 𝐺 defined in 
(2) with

(𝑓, 𝑣)Ω + (𝑔, 𝑣)𝜕Ω.

In this case, the technique illustrated here only approximates 𝐸Γ(𝑢|Γ) and not the full solution 𝑢. In fact, we have the decomposition 
𝑢 = 𝑢𝐵 +𝐸Γ(𝑢|Γ). The term 𝑢𝐵 , which is not discussed here, satisfies 𝑢𝐵 |Ω𝑗

∈𝐻1
0 (Ω𝑗 ) for each subdomain Ω𝑖 and can, for instance, be 

approximated using the local eigenfunctions specified in (4). Hence, the numerical approximation of 𝑢𝐵 can be done independently 
for each subdomain Ω𝑗 and in parallel. Moreover, the computation of 𝑢𝐵 is independent of the approximation of 𝐸Γ(𝑢|Γ). We refer 
the reader to [43] for more details.

ACMS approximation of the Helmholtz equation. The weak formulation (3) of the Helmholtz equation can be approximated in the 
ACMS space: find 𝑢𝐴 ∈ 𝑉𝐴() such that

(𝑢𝐴, 𝑣𝐴) =𝐺(𝑣𝐴), for all 𝑣𝐴 ∈ 𝑉𝐴(). (10)

The well-posedness of the approximation problem (10) relies on the smallness of the adjoint approximability constant 𝜎∗; see, for 
instance, [42,44,51]. To introduce 𝜎∗ in our context, denote 𝑇 ∗ ∶ 𝐿2(Ω)→ 𝑉 () the solution operator of the dual problem to (3)
restricted to 𝑉 (), i.e., for 𝜒 ∈𝐿2(Ω) we define 𝑇 ∗𝜒 = 𝑧, where 𝑧 ∈ 𝑉 () is the unique solution to

(𝑣, 𝑧) = (𝑣,𝜒), for all 𝑣 ∈ 𝑉 ();

see [43] for details and [51] for the well-posedness of the dual problem. The adjoint approximability constant specifies how well the 
solution to the dual problem can be approximated by functions in 𝑉𝐴(), i.e.,

𝜎∗ = sup 
𝜑∈𝐿2(Ω)⧵{0}

inf𝑣𝐴∈𝑉𝐴() ‖𝑇 ∗(𝜅2𝜑) − 𝑣𝐴‖‖𝜅𝜑‖𝐿2(Ω)
,

where the -norm is defined by

‖𝑣‖2 = (𝑎∇𝑣,∇𝑣)Ω + (𝜅2𝑣, 𝑣)Ω, 𝑣 ∈𝐻1(Ω).

In [43, Theorem 4.6], it has been shown that 𝜎∗ =(𝐶𝜅‖𝜅‖2∞∕𝐼 ) if the coefficients 𝑎 and 𝛽 are Lipschitz continuous in a neighbor
hood of the interface Γ. Here, 𝐶𝜅 is the stability constant of the Helmholtz problem, i.e., a bound on the solution operator associated 
with (3), mapping 𝑓 ∈𝐿2(Ω) to 𝑢 ∈𝐻1(Ω), for 𝑔 = 0. We note that 𝐶𝜅 in general depends on 𝜅, and we refer to [51] for a discussion. 
Hence, 𝜎∗ can be made small by using sufficiently many edge modes. Moreover, under these regularity assumptions on 𝑎 and 𝛽, it 
has been shown in [43, Theorem 4.7] that

‖𝑢− 𝑢𝐴‖𝐿2(Ω) ≤ 𝐶
max𝑒∈ |𝑒|3𝐶𝜅‖𝜅‖2∞

𝐼3

∑
𝑒∈

‖𝑢‖𝐻3(𝑒), (11)
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where 𝐶 is a constant independent of 𝜅. These results indicate that the wavenumber 𝜅 influences the number of edge modes required 
to obtain a given 𝐿2--error of the ACMS approximation against the exact solution. Since other factors enter the estimate, the relation 
between edge modes and wavenumber in this bound will be further investigated numerically; see Sections 5.1 and 5.2.

We close this section with some remarks on the error bounds. In addition to the stated 𝐿2--error bound (11), the smallness 
of 𝜎∗ implies a corresponding 𝐻1--error bound in terms of ‖𝜅‖∞∑

𝑒∈ |𝑒|2‖𝑢‖𝐻3(𝑒)∕𝐼2 ; see [43, Lemma 4.4]. Moreover, we note 
that the regularity 𝑢∣𝑒 ∈𝐻3(𝑒) is often met in practice. For example, by elliptic regularity, if the boundary data are smooth and the 
material parameters are constant in a neighborhood of Γ, which is the case in our numerical examples below. In case of discontinuous 
parameters the solution 𝑢 may be less smooth. The ACMS method is then still applicable, but the convergence rates are lower and 𝜎∗

decays sub-linearly in 1∕𝐼 . We refer to [57] for a detailed error analysis.

4. The discrete ACMS method

The approximation space (9) is spanned by extensions of the vertex basis functions and of the edge modes defined in (6). In 
practice, though, we need to numerically approximate the eigenproblems and harmonic extension operators. We now discuss the 
numerical realization of the ACMS method when employing an ℎ𝑝--FEM discretization.

Triangulation. For the sake of simplicity, we suppose that all edges are line segments, although the following discussion would hold 
similarly in the case of curved edges. Let ℎ = {𝑇1, ..., 𝑇𝑁} be a triangulation of the domain Ω without hanging nodes, with mesh size

ℎ =max
𝑇∈ ℎ𝑇 ,

where ℎ𝑇 is the diameter of 𝑇 ; see, e.g., [58]. If not explicitly mentioned differently, we use a quasi-uniform triangulation. Addi
tionally, we want the mesh to be conforming with the domain decomposition, namely, we require every open triangle 𝑇 ∈ ℎ to be 
contained exactly in one subdomain 𝑇 ⊂Ω𝑗 .

FEM approximation of the Helmholtz equation. For the sake of the discussion, let us present a finite element approximation of the 
Helmholtz equation. 
Let 𝑝 be the set of all polynomials in two variables of degree less or equal to 𝑝 ≥ 1. Then, the usual finite element space 𝑉 ℎ,𝑝(Ω)
defined on the triangulation of the domain Ω consisting of piecewise polynomials of degree 𝑝 is given by

𝑉 ℎ,𝑝(Ω) = {𝑣 ∈ 𝐶0(Ω) ∶ 𝑣|𝑇 ∈ 𝑝, ∀ 𝑇 ∈ ℎ};
see, e.g., [58]. The finite element approximation of the weak formulation (3) reads as: find 𝑢ℎ,𝑝 ∈ 𝑉 ℎ,𝑝(Ω) such that

(𝑢ℎ,𝑝, 𝑣ℎ,𝑝) =𝐺(𝑣ℎ,𝑝), for all 𝑣ℎ,𝑝 ∈ 𝑉 ℎ,𝑝(Ω). (12)

By choosing a basis for 𝑉 ℎ,𝑝(Ω), equation (12) reads

𝕊𝐹 𝐮𝐹 = 𝐠𝐹 ,

where 𝐮𝐹 ∈ ℝ𝑁𝐹 is the solution vector, 𝕊𝐹 ∈ ℝ𝑁𝐹 ×𝑁𝐹 is the system matrix and 𝐠𝐹 ∈ ℝ𝑁𝐹 is the right-hand side vector, and 𝑁𝐹 =
dim𝑉 ℎ,𝑝(Ω).

4.1. Setup of the discrete ACMS method

In order to define the discrete counterparts of the elements in 𝑉𝐴(), we introduce auxiliary spaces on a generic set  ⊆ Ω in 
the following way:

𝑉 ℎ,𝑝() = {𝑣| ∶ 𝑣 ∈ 𝑉 ℎ,𝑝(Ω)},

𝑉
ℎ,𝑝

0 () = {𝑣| ∶ 𝑣 ∈ 𝑉 ℎ,𝑝(Ω), 𝑣|𝜕 = 0}.

The discrete vertex basis function of a generic vertex 𝑞 ∈  is referred to as 𝜑𝑞

ℎ
∈ 𝑉 ℎ,𝑝(Γ) and is such that 𝜑𝑞

ℎ
(𝑟) = 𝛿𝑞,𝑟 for all 𝑞, 𝑟 ∈  . 

Moreover, the function is piecewise harmonic on the edges in the discrete sense, meaning that it satisfies

(𝜕𝑒𝜑
𝑞

ℎ
, 𝜕𝑒𝜂

ℎ,𝑝)𝑒 = 0, for all 𝜂ℎ,𝑝 ∈ 𝑉
ℎ,𝑝

0 (𝑒), for all 𝑒 ∈  . (13)

The discrete edge modes are computed by numerically solving the eigenvalue problem (6): for 𝑒∈  and 𝑖 = 1, ..., 𝐼 , find (𝜏ℎ,𝑝
𝑒,𝑖

, 𝜆𝑒
𝑖
) ∈

𝑉
ℎ,𝑝

0 (𝑒) ×ℝ such that

(𝜕𝑒𝜏
ℎ,𝑝
𝑒,𝑖

, 𝜕𝑒𝜂
ℎ,𝑝)𝑒 = 𝜆ℎ

𝑒,𝑖(𝜏
ℎ,𝑝
𝑒,𝑖

, 𝜂ℎ,𝑝)𝑒, for all 𝜂ℎ,𝑝 ∈ 𝑉
ℎ,𝑝

0 (𝑒). (14)

Again, with a slight abuse of notation we continue to use the symbol 𝜏ℎ,𝑝
𝑒,𝑖

to denote the extension by zero of the edge basis function 
to the whole interface Γ. As in (8), we introduce the discrete Helmholtz-harmonic extension 𝐸𝑗

ℎ
∶ 𝑉 ℎ,𝑝(𝜕Ω𝑗 )→ 𝑉 ℎ,𝑝(Ω𝑗 ) such that:
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(𝑎∇𝐸
𝑗

ℎ
𝜏ℎ,𝑝,∇𝑣ℎ,𝑝) − (𝜅2𝐸𝑗

ℎ
𝜏ℎ,𝑝, 𝑣ℎ,𝑝)Ω𝑗

= 0, for all 𝑣ℎ,𝑝 ∈ 𝑉
ℎ,𝑝

0 (Ω𝑗 ),

(𝐸𝑗

ℎ
𝜏ℎ,𝑝)|𝜕Ω𝑗

= 𝜏ℎ,𝑝.
(15)

Let us introduce the discrete extension 𝐸Γ
ℎ
∶ 𝑉 ℎ,𝑝(Γ)→ 𝑉 ℎ,𝑝(Ω), which first restricts functions to the boundaries of the subdomains 

Ω𝑗 and then applies 𝐸𝑗

ℎ
.

The discrete ACMS space, indicated with the subscript 𝐴, is then defined on the domain decomposition  as the span of the 
extended discrete edge modes and discrete vertex basis functions:

𝑉
ℎ,𝑝

𝐴
() = span{𝐸Γ

ℎ
𝜏
ℎ,𝑝
𝑒,𝑖

, ∀𝑒 ∈  , 𝑖 = 1, ...𝐼} ∪ span{𝐸Γ
ℎ
𝜑

𝑞

ℎ
, ∀𝑞 ∈ }.

The weak formulation (10) can be rewritten in the ACMS space: find 𝑢ℎ,𝑝
𝐴

∈ 𝑉
ℎ,𝑝

𝐴
() such that

(𝑢ℎ,𝑝
𝐴

, 𝑣
ℎ,𝑝

𝐴
) =𝐺(𝑣ℎ,𝑝

𝐴
), for all 𝑣ℎ,𝑝

𝐴
∈ 𝑉

ℎ,𝑝

𝐴
(). (16)

Finally, the weak formulation in the ACMS space (16) turns into

𝕊𝐴𝐮𝐴 = 𝐠𝐴, (17)

where 𝐮𝐴 ∈ ℝ𝑁𝐴 is the solution vector, 𝕊𝐴 ∈ ℝ𝑁𝐴×𝑁𝐴 is the system matrix and 𝐠𝐴 ∈ ℝ𝑁𝐴 is the right-hand side vector. Here, 
𝑁𝐴 = dim𝑉

ℎ,𝑝

𝐴
() is the space dimension.

4.2. Computational costs

In the following, we give some insights on the expected computational costs, in terms of FLOPS, when using the discrete ACMS 
method. For more details, we refer to [50], where an efficient and parallel implementation for 𝑝 = 1 is discussed. We are interested 
in the dependence of the cost on the number of modes 𝐼 , the number of subdomains 𝐽 and related quantities, such as ||, ||, and 
the corresponding dimension of the ACMS space 𝑁𝐴 = ||+ ||𝐼 .

To ease the presentation, we make the following assumptions:

• all subdomains Ω𝑗 ∈  of the domain decomposition are of comparable size, and correspondingly also the dimensions 𝑁𝑗 =
dim𝑉 ℎ,𝑝(Ω𝑗 ) are similar,

• all edges 𝑒 ∈  are of comparable size, and correspondingly also the dimensions 𝑛𝑒 = dim𝑉 ℎ,𝑝(𝑒) are similar.

For a given mesh size ℎ and polynomial order 𝑝 of the underlying finite element space, we can introduce the following two costs

𝐶𝑒𝑥𝑡 ∶ cost of solving the extension problem (15) on a subdomain Ω𝑗 ∈,

𝐶𝑒𝑖𝑔(𝐼 ) ∶ cost of solving the eigenvalue problem (14) on an edge 𝑒 ∈  .
Edge basis computation. The cost for the computation of the edge modes is given by solving the eigenvalue problem (14) for all edges 
𝑒 ∈  and by the application of the extension operator to the corresponding neighboring subdomains for each mode (and each edge) 
separately; see Remark 3. Thus, it is given by the respective contributions

(||𝐶𝑒𝑖𝑔(𝐼 )
)
+(||𝐼𝐶𝑒𝑥𝑡). (18)

Remark 2. When the eigenvalue computation has to be done for each edge separately, the first term in (18) might dominate when 
𝐼 grows, although, in practice, we expect that the problem structure can be exploited such that the eigenvalue problem only needs 
to be solved (1) times; see Section 4.3.

Vertex basis computation. The costs of the vertex basis functions, where we only consider the application of the harmonic extensions, 
are given by

(||𝐶𝑒𝑥𝑡

)
. (19)

Note that, for the above cost, we assumed that the restrictions on the edges of functions 𝜑𝑞

ℎ
which fulfill property (13) are either 

given or very cheap to compute. This assumption is motivated by the fact that, in case the edges of the domain decomposition are 
straight lines, the restriction of 𝜑𝑞

ℎ
on an edge 𝑒 ∈  is given by a linear function.

Assembly. From an implementation perspective, the ACMS method exhibits some similarities to a high-order finite element method, 
which can be utilized during setup and assembly; see also Remarks 6 and 7. More precisely, as already discussed in [47,50], the 
assembly is done in the usual way, via a loop over the subdomains Ω𝑗 ∈ , see also, e.g., [59]. On each cell Ω𝑗 , one then first 
computes the local ACMS basis functions (as discussed in the previous paragraph) and then calculates the local ACMS stiffness matrix 
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Fig. 1. Left: Sparsity pattern of 𝕊𝐴 for 𝐼 = 32 and 𝐽 = 36 domains for Ω as in Section 4.3. The bandwidth is approximately 𝑏𝐴 ∼ 3
√

𝐽𝐼 , hence 𝑏𝐴 ∼ 384. Right: dof 
numbering of a crystal with 𝐽 = 4 and 𝐼 = 2.

𝕊𝐴 by means of the stiffness matrix 𝕊𝐹 of the underlying finite element space 𝑉 ℎ,𝑝(Ω𝑗 ). With a slight abuse of notation let us write 
the local contributions on Ω𝑗 ∈ as

𝕊𝐴|Ω𝑗
= 𝔹𝑇

𝑗 𝕊𝐹 |Ω𝑗
𝔹𝑗 , (20)

where the restriction is understood as taking only into account degrees of freedom of basis functions (of the corresponding finite 
element spaces) which have a non-zero support on Ω𝑗 . Likewise, we indicate with 𝔹𝑗 the matrix where each column corresponds to a 
restriction of the ACMS-basis functions supported on Ω𝑗 . Consequently, the column dimension of 𝔹𝑗 scales with (𝐼 ). Since 𝕊𝐹 |Ω𝑗

is sparse with (𝑁𝑗 ) bandwidth, the costs for (20) are (𝑁𝑗𝐼
2 ). Since this has to be done on each subdomain, the total cost for the 

assembly is given by

(
𝐽𝑁𝑗𝐼

2
)
.

Solving the system. Finally, the cost for solving the system (17) is (𝑁3
𝐴
) in case the matrix 𝕊𝐴 is dense. However, since the matrix 

𝕊𝐴 shows a sparsity pattern, due to the aforementioned local support of the ACMS basis functions, as depicted in Fig. 1, these costs 
can be further reduced to

(𝑁𝐴𝑏
2
𝐴
), (21)

where 𝑏𝐴 is the bandwidth of 𝕊𝐴; see [60, Ch. 2.1.1]. We note that on structured grids this estimate might be pessimistic; see [61]. 
Indeed, we observe a better scaling in the following section.

Remark 3. The cost for the extension 𝐶𝑒𝑥𝑡 on a given domain Ω𝑗 ∈ , corresponds to solving a sparse system associated with 
problem (15) and is of order (𝑁𝑗𝑛

2
𝑒 ); see [60, Ch. 2.1.1]. In the implementation of the extension operators, we only compute 

the factorization once (using a sparse Cholesky solver), and subsequently apply the forward/backward substitution for each basis 
function independently. Therefore, the contribution of 𝐶𝑒𝑥𝑡 is split into factorization and application costs. The factorization is reused 
for both edge and vertex basis functions and, therefore, is carried out once per subdomain, accounting for a total cost of (𝐽𝑛4𝑒 ). 
The application is carried out 𝐼 times per subdomain in the edge basis computation (18), meaning (||𝐼𝑛3𝑒 ), and only once per 
subdomain in the vertex basis computation (19), which is (||𝑛3𝑒 ).
Remark 4. We emphasize that 𝐶𝑒𝑖𝑔(𝐼 ) clearly depends on the choice of the number of edge modes 𝐼 . In fact, the cost for solving 
the eigenvalue problem on an edge 𝑒 ∈  is of order (𝑛2𝑒𝐼 ), using, e.g., an Arnoldi GMRES, see [60, Ch. 2.6.2].

Remark 5. We remind that, since it always holds that 𝐼 ≤ 𝑛𝑒, the computation of a high number of edge modes will require enriching 
the underlying finite element space 𝑉 ℎ,𝑝

0 (𝑒). That can be obtained by either refining the mesh size or increasing the polynomial degree 
of approximation.

Remark 6. If the ACMS method is interpreted as a high-order finite element method, increasing the maximum number of modes 𝐼
is similar to having a 𝑝-FEM method, while increasing the number of domains 𝐽 can be related to an ℎ-FEM method.

Remark 7. So far, we have not considered the advantages of potential parallel implementation. Nevertheless, we want to emphasize 
that, as with standard finite element methods, there is considerable room for improvement. For example, the assembly process and 
the independent application of the extensions (see Remark 3) can be parallelized.
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Fig. 2. Timings and reference lines for varying number of edge modes 𝐼 (left) and number of subdomains 𝐽 (right). 

4.3. Comparison of costs and timings for a prototype crystal

In this section, we want to discuss the above derived computational costs and compare them to the timings of our implementation. 
We choose 𝑎 = 𝛽 = 𝜅 = 1. As the computational domain, we consider a square-shaped prototype photonic crystal structure Ω =
[0,

√
𝐽 ] × [0,

√
𝐽 ] decomposed into 𝐽 unit square subdomains that we refer to as unit cells. For a given mesh size ℎ and order 𝑝, 

considering a quasi-uniform and shape regular triangulation of Ω, we have 𝑁𝑗 = 𝑛2𝑒 ∼ (𝑝∕ℎ)2 for every subdomain. It is clear that, for 
this setting, the assumptions from Section 4.2 are fulfilled. Additionally, we consider a mesh such that vertical and horizontal edges 
have the same (one-dimensional) mesh and thus the eigenvalue problem (15) has to be solved only once (and the cost is ignored); 
see Remark 2. Since || ∼ 𝐽 and || ∼ 𝐽 , and hence 𝑁𝐴 = ||𝐼 + || ∼ 𝐽𝐼 , the total computational costs are given by

(𝐽𝐼𝐶𝑒𝑥𝑡)
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

basis computation

+(𝐽𝑁𝑗𝐼
2 )

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
assembly 

+(𝐽 2𝐼3 )
⏟ ⏞⏟ ⏞⏟

solve 

, (22)

where we used the fact that the bandwidth of our structured prototype crystal is 𝑏𝐴 ∼ 3
√

𝐽𝐼 . The latter is derived by considering 
the following degrees of freedom (dof) numbering of the ACMS basis: we start with the lower left vertex and number all dofs on 
vertices and edges increasingly along the 𝑥-axis, i.e., we consider only horizontal edges. Next, all dofs on vertical edges are numbered 
increasingly along the 𝑦-axis of the lowest row of the domain. This pattern is repeated for each row. Then the aforementioned 
bandwidth follows since we have 

√
𝐽 unit cells in each direction and 𝐼 basis functions per edge, see also Fig. 1 for an illustration of 

the sparsity pattern and the dof numbering. For the total costs (22), we observe that, similarly to standard finite element methods, 
solving the system could potentially be the dominant factor for very large 𝐽 and 𝐼 . However, for the discrete ACMS method, we 
expect that 𝑁𝐴 is small enough that the assembly and the basis computation are the limiting factors in the computations. This is 
motivated by the limit case when 𝐼 = 𝑛𝑒 =

√
𝑁𝑗 , then, taking into account Remarks 3 and 4, the full cost (22) becomes

(𝐽𝐼4 )
⏟ ⏟ ⏟

basis computation

+(𝐽𝐼4 )
⏟ ⏟ ⏟
assembly 

+(𝐽 2𝐼3 )
⏟ ⏞⏟ ⏞⏟

solve 

.

When doing ℎ𝑝--refinements while keeping the domain decomposition fixed, the number of modes 𝐼 becomes much larger than the 
number of subdomains 𝐽 and the cost is dominated by the basis computation and assembly.

Scaling with respect to 𝐼 . In Fig. 2 (left), we present the timings for the computation of the basis functions 𝑡𝑏𝑎𝑠 , the assembly 𝑡𝑎𝑠𝑠, 
the time to solve the system 𝑡𝑠𝑜𝑙 , and the sum of these timings 𝑡𝑡𝑜𝑡 . For our computation, we choose ℎ = 0.01, 𝑝 = 6, 𝐽 = 4, and we 
set 𝐼 = 2𝑙 with 𝑙 = 1,… ,9. According to (22), we expect a linear scaling (𝐼 ) for the basis computation, a quadratic scaling (𝐼2 )
for the assembly and a cubic scaling (𝐼3 ) for solving the system. While the times of the basis computations and the assembly given 
in Fig. 2 (left) are in accordance with the theory, we see a better scaling for the solving times. Note, that (21) might be pessimistic; 
see [61]. In our computations we used SciPy to solve the system, which uses the sparse UMFPACK solver; see [62,63]. In practice, 
considering such a high number of modes might not be necessary due to the fast error reduction; see (11).

Scaling with respect to 𝐽 . In Fig. 2 (right), we again present the timings for the computation of the basis functions 𝑡𝑏𝑎𝑠 , the assembly 
𝑡𝑎𝑠𝑠, the time to solve the system 𝑡𝑠𝑜𝑙 , and the sum of these timings 𝑡𝑡𝑜𝑡. For our computation, we choose ℎ = 0.1, 𝑝 = 4, 𝐼 = 4, 
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Fig. 3. In a, the domain Ω and the domain decomposition . In b, the corresponding coarse finite element mesh with ℎ= 0.1. The vertices in  are marked with dots.

and we set 𝐽 = 𝑙2 with 𝑙 = 1,… ,40. According to (22) we expect a linear scaling (𝐽 ) for the basis computation and the assembly, 
and a quadratic scaling (𝐽 2) for solving the system. Again, while the timings for the basis computations and the assembly are in 
accordance to the theory, the solver provided by SciPy now scales with the optimal rate (𝐽 3∕2); see [61].

5. Numerical results

The main goal of this section is to exemplify how to choose the different parameters of the discrete ACMS method in order to solve 
large scale problems. Namely, we will present a study on suitable choices of the mesh size of the (underlying) finite element space, 
the polynomial order, and the number of edge modes needed to achieve a certain accuracy, depending on the material parameters 
and the chosen wavenumber. The computations were done using the finite element library Netgen/NGSolve, see [52]. Further, for 
reproduction purposes, all data can be found in the repository [53].

We consider three different numerical examples. First, in Section 5.1, we investigate the effect of using an underlying higher 
order FEM for the ACMS basis computation on the method’s accuracy in relation to the wavenumber. Then, in Section 5.2, we test 
a configuration with discontinuous coefficients and, given the flexibility of the ACMS method, we examine how the chosen domain 
decomposition impacts the accuracy and efficiency of the method. Finally, in Section 5.3, we show the applicability and flexibility of 
the method on a large but finite-size structure that has defects.

Note that, in the following, we focus exclusively on the 𝐿2--norm errors. We do not present the corresponding tests in the 𝐻1--norm, 
as they align with the theoretical convergence rates mentioned after (11).

5.1. Example 1: circular domain

We consider (1) on the unit disk Ω=𝐵1(0) and set the constant functions 𝑎 = 1, 𝛽 = 1, 𝑐 = 1, and 𝑓 = 0. We define the boundary 
source term 𝑔 such that the problem admits the plane wave 𝑢 = 𝑒−𝜄𝜅(0.6𝑥+0.8𝑦) as its analytical solution, with constant wavenumber 
𝜅 = 𝜔. We mention that this setting is as in [43, Section 5.1]. We choose a domain decomposition  as shown in Fig. 3a, with 𝐽 = 8
subdomains, 12 edges in  , and 5 vertices in  . In Fig. 3b, we show a coarse triangulation that is uniformly refined in order to compute 
the approximated ACMS solution. Below, we will compare the relative 𝐿2--error, i.e., ‖𝑢 − 𝑢

ℎ,𝑝

𝐴
‖𝐿2(Ω)∕‖𝑢‖𝐿2(Ω) of the approximated 

ACMS solution against the analytical solution; this will verify the correct implementation of the high-order ACMS method. In this 
example, we examine the effects of increasing the maximum number of computable edge modes by either refining the mesh size or 
driving up the polynomial order of approximation; in both cases, 𝑛𝑒 is increased, as commented in Remark 5. 

First, we investigate how the degree of approximation of the underlying finite element space, used to approximate the computed 
ACMS basis functions, affects the accuracy of the ACMS method. In Fig. 4, we show the 𝐿2--relative errors for different discretization 
parameters: ℎ = 0.025 and 𝐼 = 32 (left), ℎ = 0.0125 and 𝐼 = 64 (middle), and ℎ = 0.00625 and 𝐼 = 128 (right). We consider an 
increasing degree of approximation 𝑝 = 1,2,3,4,5, and repeat the tests for different wavenumbers 𝜅 = 16,32,64,128. On the one 
hand, we observe that the approximation gets worse for higher wavenumbers. In particular, there is hardly any error reduction for 
𝑝 = 1 and 𝜅 = 128, which might be explained by a pollution effect. On the other hand, the error decreases approximately by an order 
of magnitude if 𝐼 is doubled for each 𝑝 ≥ 3 fixed. The observed saturation effect in Fig. 4 occurs, due to the fixed number of edge 
modes used and the decreasing value of ℎ.

To overcome this saturation effect, it is necessary to employ more edge modes while keeping ℎ fixed. In Fig. 5, we adjust the 
number of modes based on the degree of approximation, since, as noted in Remark 5, the maximum number of possible edge modes 
𝐼 increases for a higher polynomial order. We choose mesh size ℎ = 0.025 and the modes considered are 𝐼 = 32 for degree 𝑝 = 1, 
𝐼 = 64 for degree 𝑝 = 2,3 and 𝐼 = 128 for degree 𝑝 = 4,5. This choice was made because these numbers of modes are the largest 
values we can compute for each degree of approximation while still being powers of two, ensuring consistency with the previous 
tests. As expected, we can now see convergence without saturation and correspondingly the full benefit of choosing a high-order 
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Fig. 4. Example in Section 5.1, on a circular domain with decomposition  depicted in Fig. 3a. The 𝐿2--relative error ‖𝑢− 𝑢
ℎ,𝑝

𝐴
‖𝐿2 (Ω)∕‖𝑢‖𝐿2 (Ω) is computed against the 

exact solution for a fixed mesh size and number of edge modes. We choose ℎ= 0.025 and 𝐼 = 32 (left), ℎ = 0.0125 and 𝐼 = 64 (middle), ℎ = 0.00625 and 𝐼 = 128
(right). Test with increasing degree of approximation 𝑝 = 1,2,3,4,5 (horizontal axis), for different wavenumber values 𝜅 = 16, 32, 64, 128. In the blue region, the 
values are highlighted for a better comparison with Fig. 5.

Fig. 5. Example in Section 5.1, on a circular domain with decomposition  depicted in Fig. 3a. The 𝐿2--relative error ‖𝑢 − 𝑢
ℎ,𝑝

𝐴
‖𝐿2 (Ω)∕‖𝑢‖𝐿2 (Ω) is computed against 

the exact solution for mesh size ℎ = 0.025 and for different wavenumber values 𝜅 = 16, 32, 64, 128. The modes considered are 𝐼 = 32 for degree 𝑝 = 1, 𝐼 = 64 for 
degree 𝑝= 2,3 and 𝐼 = 128 for degree 𝑝= 4,5. In the blue region, the values are highlighted for a better comparison with Fig. 4.

approximation. Edge modes are better approximated because the smooth eigenfunctions, which underlie the ACMS basis functions, 
are effectively approximated using a 𝑝-method. Additionally, the number of computable edge modes increases, which enriches the 
approximation space of the ACMS method and further reduces the approximation error. To further highlight this observation, we 
point out that we obtain the same error accuracy if we compare the error in Fig. 4 (right) (where ℎ = 0.00625) and in Fig. 5 (where 
ℎ = 0.025), for example, for degree 𝑝 = 5 and 𝐼 = 128 (errors within the blue ellipses). This means that, for the coarsest mesh, we 
obtain already the most accurate solution if we use high polynomial order 𝑝 and employ a suitable number of modes.

Before proceeding to the next example, we want to verify numerically the dependence between the number of edge modes and the 
wavenumber that we observed in our theoretical result (11). In Fig. 6, we plot in logarithmic scale the relative 𝐿2--error for varying 
number of edge modes 𝐼 = 1, ...,128 for different wavenumber 𝜅 = 16,32,64,128 and for fixed mesh size ℎ = 0.025 and degree of 
approximation 𝑝 = 5. Qualitatively, the curves show the same behavior. First the error stagnates, and then there is a significant drop 
after which the asymptotic convergence rate is achieved. Stagnation of error might be explained by requiring a minimal resolution 
condition, compare this to the situation of piecewise linear approximation, where ℎ𝜅 ≈ 1∕10 is required to be able to interpolate 
a corresponding wave accurately on the given grid. The transition from stagnating errors to monotonically decreasing errors is 
marked with a black circle. We observe that the required number of modes to enter this monotone behavior almost doubles if the 
wavenumber is doubled. This might be related to a minimal resolution condition. Moreover, for this example, we may state that the 
adjoint approximability constant 𝜎∗ behaves better than the scaling (𝐶𝜅‖𝜅‖2∞∕𝐼 ) predicted by theory, see the discussion following 
(10). We conclude that, in this example, when doubling the wavenumber, the errors achieve the predicted convergence rates and 
enter the asymptotic regime when the number of edge modes is also doubled.

5.2. Example 2: square crystal with circular pores

We consider (1) on a square domain Ω= [0,16] × [0,16] that is meant to model a finite-size photonic crystal made of silicon with 
periodically arranged pores (circular holes of radius 0.25 carved in a periodic fashion), as depicted in Fig. 7. The difference in the 
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Fig. 6. Example in Section 5.1, on a circular domain with decomposition  depicted in Fig. 3a. The 𝐿2--relative error ‖𝑢− 𝑢
ℎ,𝑝

𝐴
‖𝐿2 (Ω)∕‖𝑢‖𝐿2 (Ω) , shown in logarithmic 

scale, is computed against the exact solution for a fixed order of approximation 𝑝= 5 and with mesh size ℎ = 0.025. We consider an increasing number of edge modes 
per edge 𝐼 = 1, ...,128 for different wavenumber values 𝜅 = 16, 32, 64, 128. The small black circles indicate the index 𝐼 after which the error decays monotonically.

Fig. 7. Ω= (0,16) × (0,16) with 16 × 16 square unit cells. In this case the decomposition 16×16 contains only one subdomain Ω. 

domain material, silicon for the crystal and air for the pore, is encoded in the discontinuous diffusion coefficient 𝑎 = 1∕𝜀, where 𝜀 is 
the permittivity with 𝜀 = 12.1 in silicon (crystal) and 𝜀 = 1 in air (pores) [2]. We note that the units are chosen such that the speed 
of light is 𝑐 = 1; see [40,41] for similar example configurations. We set 𝛽 = −1, 𝑓 = 0, and define the boundary source term as an 
incoming plane wave that propagates in the 𝑥-direction, namely 𝑔 = 𝜄𝜅(1 − (1,0)𝑇 ⋅ 𝑛̂)𝑒−𝜄𝜅𝑥, with 𝑛̂ being the unit outward normal 
vector, and constant wavenumber 𝜅 = 𝜔. Since it is of interest to model how light propagates and interacts with the pores within a 
photonic crystal, we take the wave frequency as a multiple of the length of a unit cell, specifically 𝜅 = 1 in this section. 

With no analytical solution available for this example, we show the relative 𝐿2--error decay ‖𝑢ℎ,10 − 𝑢
ℎ,𝑝

𝐴
‖𝐿2(Ω)∕‖𝑢ℎ,10‖𝐿2(Ω) of the 

ACMS approximation against a high-order FEM solution 𝑢ℎ,10 with degree of approximation 𝑝 = 10, which we refer to as the ground 
truth solution.

Denoting a 1 × 1 square that has a circular pore in its center a unit cell, a natural choice for a domain decomposition is to assign 
to each unit cell a subdomain Ω𝑗 for 𝑗 = 1,… ,256, see Fig. 8a.

The ACMS method is, however, applicable for more general domain decompositions, and we next investigate the accuracy and 
efficiency of the corresponding ACMS approximation. Therefore, we repeat the numerical tests for different subdivisions of the 
domain Ω as depicted in Fig. 8, which correspond to domain decompositions into 𝐽 = 1,4,16,64,256 subdomains with number of 
edges || = 4,12,40,144,544, and number of vertices || = 4,9,25,81,289. We refer to each domain decomposition as 𝑗×𝑗 , where 
𝑗2 indicates the number of unit cells per subdomain. As 𝑗 increases, the number of subdomains decreases.

For each choice of such a domain decomposition, the material coefficients are constant in a suitable neighborhood of the cor
responding interface. Therefore, the asymptotic error bound (11) holds in each case. The length of the edges, which influences the 
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Fig. 8. Ω is a 16 × 16 square, decomposed into 256 (a), 64 (b), 16 (c) and 4 (d) subdomains. 

error estimate (11), varies for each domain decomposition. Hence, in order to counterbalance the effect of the increased edge length 
on the error, we have to consider twice as many modes in our numerical tests when going from 𝑗×𝑗 to 2𝑗×2𝑗 .

In Table 1, we present the approximation error for the different domain decompositions for a fixed mesh size ℎ = 0.05 and for 
an increasing polynomial order 𝑝 = 1,2,3,4,5,6. The number of edge modes 𝐼 , indicated in brackets, increases with the order 𝑝
and doubles if the subdomain size doubles. From the data shown in the table, we observe that all domain decompositions 𝑗×𝑗 , 
𝑗 = 1,2,4,8,16 give similar results. Hence, we may conclude that the constants in the error estimate (11) depend only weakly on the 
chosen domain decomposition. The slight increase in the error for 𝑝 = 5 might be explained by the fact that the respective ACMS 
spaces for 𝑝 = 4,5,6, which employ the same 𝐼 if 𝑗×𝑗 is fixed, are not nested.

We next discuss the influence on the computational costs when going from 𝑗×𝑗 to 2𝑗×2𝑗 and at the same time doubling the 
number of modes for accuracy reasons, see (11). We first observe that the corresponding number of subdomains 𝐽 decreases by 4
and the number of degrees of freedom on an edge 𝑛𝑒 roughly doubles, and 𝑁𝑗 = 𝑛2𝑒 approximately increases by four. We recall (22)

(𝐽𝐼𝐶𝑒𝑥𝑡)
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

basis computation

+(𝐽𝑁𝑗𝐼
2 )

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
assembly 

+(𝐽 2𝐼3 )
⏟ ⏞⏟ ⏞⏟

solve 

.

The basis computation cost depends on the cost 𝐶𝑒𝑥𝑡 for the extension. Assuming 𝐶𝑒𝑥𝑡 =(𝐽 (𝑛4𝑒 + 𝐼𝑛3𝑒)), cf. Remark 3, the resulting 
basis computation cost of (𝐽 2(𝐼𝑛4𝑒 + 𝐼2𝑛3𝑒 )) favors larger 𝐽 , i.e., smaller 𝑗. Similarly, the assembly cost favors smaller 𝐼 , i.e., 
larger 𝐽 , since 𝐽𝑁𝑗 is constant. The cost for solving of (𝐽 2𝐼3 ) favors smaller 𝐽 , but if it scales only like 𝑂(𝐽 3∕2𝐼3 ), cf. Fig. 2, it 
becomes independent of the domain decomposition, because 𝐽 3∕2𝐼3 stays constant. From these considerations, we may conclude that 
choosing 𝑗 as small as possible is beneficial. However, parallelization allows to reduce the influence of the basis computation and 
assembly costs. Moreover, if subdomains have moderate number 𝑁𝑗 of degrees of freedom, then cache effects and dense linear algebra 
may reduce the influence of 𝐶𝑒𝑥𝑡 on the runtime. Since the applicability of sparse direct solvers may be limited by the size of the 
corresponding linear system, keeping the overall system size small is favorable. Since the system size corresponds to the dimension of 
the ACMS space 𝑁𝐴 =(𝐽𝐼 ), it is favorable to keep 𝐽 moderate, i.e., to employ larger subdomains. For these reasons, we continue 
with the domain decomposition 2×2. 
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Table 1
Example in Section 5.2, on the square domain Ω with different decompositions depicted in Figs. 7 and 8: 1×1 , 2×2 , 4×4 , 
8×8 , 16×16 . The 𝐿2--relative error ‖𝑢ℎ,10 − 𝑢

ℎ,𝑝

𝐴
‖𝐿2 (Ω)∕‖𝑢ℎ,10‖𝐿2 (Ω) is computed against the ground truth solution. We choose 

mesh size ℎ = 0.05, degree of approximation 𝑝= 1,2,3,4,5,6, and number of edge modes 𝐼 as indicated in brackets.

𝑝

1 2 3 4 5 6

1×1 6.9⋅10−2 (16) 2.4⋅10−4 (32) 6.5⋅10−6 (32) 4.1⋅10−7 (64) 9.1⋅10−7 (64) 7.2⋅10−7 (64)
2×2 7.4⋅10−2 (32) 2.6⋅10−4 (64) 6.5⋅10−6 (64) 4.1⋅10−7 (128) 8.8⋅10−7 (128) 7.0⋅10−7 (128)
4×4 7.7⋅10−2 (64) 2.8⋅10−4 (128) 6.5⋅10−6 (128) 4.1⋅10−7 (256) 8.7⋅10−7 (256) 7.0⋅10−7 (256)
8×8 7.9⋅10−2 (128) 2.9⋅10−4 (256) 6.6⋅10−6 (256) 4.1⋅10−7 (512) 8.7⋅10−7 (512) 7.0⋅10−7 (512)
16×16 8.0⋅10−2 (256) 2.9⋅10−4 (512) 6.6⋅10−6 (512) 4.1⋅10−7 (1024) 8.6⋅10−7 (1024) 6.9⋅10−7 (1024)

Fig. 9. Example in Section 5.2 on the square domain Ω with domain decomposition 2×2 , Fig. 8b. The 𝐿2--relative error of the ACMS approximation is computed 
against a ground truth solution, for ℎ = 0.05 and 𝑝 = 6. We show the convergence rate for an increasing number of edge modes per edge 𝐼 = 1, ...,128 for different 
wavenumber values 𝜅 = 0.5,1,2,4,8,16.

Finally, besides the dependence on the chosen decomposition, we further want to confirm the linear correlation between the 
number of modes and the wavenumber that was shown in Fig. 6, in case of a discontinuous diffusion coefficient and a different setting. 
In this test, we choose the wavenumbers based on an appropriate scaling of the example in [41]: wavelengths between 400 nm and 
5000 nm correspond to 𝜔 values ranging from 0.628 to 7.85, hence we choose 𝜅 ∈ [0.5,8]. We additionally consider 𝜅 = 16 to test 
the method’s limits. In Fig. 9, we show the relative 𝐿2--error for the domain decomposition 2×2, order of approximation 𝑝 = 6 and 
an increasing number of edge modes 𝐼 = 1, ...,128. Again, we mark with a black circle the drop after which the error decreases with 
the predicted rate, and we observe that the number of edge modes required in order to have a monotonic error decay varies linearly 
with the wavenumber, i.e., when doubling 𝜅 we have to double 𝐼 .

5.3. Example 3: large crystal with non periodic pores

In this section we want to show that the ACMS method can be employed to simulate large but finite-size crystals, which possibly 
contain defects. To do so, we compute the transmission of a ``localized'' wave that is placed in front of a waveguide-like crystal 
structure. We consider a rectangular shaped crystal Ω = [−𝐽𝑥∕2, 𝐽𝑥∕2] × [−𝐽𝑦∕2, 𝐽𝑦∕2] consisting of 𝐽𝑥 × 𝐽𝑦 unit cells of size [0,1] ×
[0,1]. We choose the same parameter as before, i.e., 𝑓 = 0, 𝛽 = −1, 𝑐 = 1, 𝑎 = 1 in the pores and 𝑎 = 1∕12.1 outside, and the right 
hand side

𝑔 =

{
𝜄𝜅 𝑒−𝜄𝜅𝑥 𝑒−𝑦2 on [−𝐽𝑥∕2] × [−𝐽𝑦∕2, 𝐽𝑦∕2],
0 else.

Different to the previous examples, some unit cells consist of silicon only (𝑎 = 1∕12.1), while others include pores with a radius 
𝑟 = 0.25 centered within the cell as before. We refer to Fig. 10 for an example of the geometry for 𝐽𝑥 = 10, 𝐽𝑦 = 10, where two vertical 
lines, 𝛾𝑖𝑛 = [−𝐽𝑥∕2]×[−3,3] and 𝛾𝑜𝑢𝑡 = [𝐽𝑥∕2]×[−3,3], are also added on the boundary since they are used for later computations. The 
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Fig. 10. Geometry of a crystal (green) with pores (red) and a waveguide like structure (depicted by the vertical line pattern) for 𝐽𝑥 = 10 and 𝐽𝑦 = 10. Further we plot 
two lines 𝛾𝑖𝑛 = [−𝐽𝑥∕2] × [−3,3] and 𝛾𝑖𝑛 = [𝐽𝑥∕2] × [−3,3] in cyan and magenta, respectively. The dotted lines depict the structure of the domain decomposition used 
for the ACMS computations.

Fig. 11. The norms 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 on a crystal structure with 𝐽𝑥 = 𝐽𝑦 = 10 and wavenumber 𝜅 ∈ [0.5,2]. 

dashed lines depict the 2×2 decomposition of the crystal that is considered for all computations. Furthermore, we choose polynomial 
order 𝑝 = 5, mesh size ℎ= 0.1 and number of edge modes per edge 𝐼 = 16.

First, we are going to perform a frequency sweep over 𝜅 ∈ [0.5,2]. To compare the results we measure the 𝐿2--norm on the left 
and right side of the crystal

𝐸𝑖𝑛 ∶=

𝐽𝑦∕2 

∫
−𝐽𝑦∕2

|𝑢ℎ,𝑝
𝐴

(−𝐽𝑥∕2, 𝑦)|2 𝑑𝑦 and 𝐸𝑜𝑢𝑡 ∶=

𝐽𝑦∕2 

∫
−𝐽𝑦∕2

|𝑢ℎ,𝑝
𝐴

(𝐽𝑥∕2, 𝑦)|2 𝑑𝑦.

Note that 𝐸𝑜𝑢𝑡 is related to the time-averaged energy flow through 𝛾𝑜𝑢𝑡 via the complex Poynting vector [2], while 𝐸𝑖𝑛 corresponds 
to the time-averaged energy flow through 𝛾𝑖𝑛 up to contributions that are due to the inhomogeneous boundary terms. In the upper 
plot of Fig. 11, where we have chosen 𝐽𝑥 = 𝐽𝑦 = 10, one can clearly see the wavenumber dependence of 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 showing that 
the transmission pattern varies with wavenumber; see also [41] for an analogous behavior. While some areas exhibit a transmission 
pattern, i.e., 𝐸𝑖𝑛 ≈ 𝐸𝑜𝑢𝑡, others suppress transmission, i.e., 𝐸𝑜𝑢𝑡 ≪ 𝐸𝑖𝑛, e.g., for 𝜅 ≈ 1. In addition, we further plot in more detail the 
values of 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 for 𝜅 ∈ [1.2,1.32] and 𝜅 ∈ [1.42,1.54]. First, we observe that the smallest amplitude of 𝐸𝑜𝑢𝑡 occurs at 𝜅 = 1.26
(within the considered wavenumber range [0.5,2]), indicating poor wave transmission. In contrast, at 𝜅 = 1.48, we have 𝐸𝑖𝑛 = 𝐸𝑜𝑢𝑡, 
suggesting that, at this frequency, the incoming localized wave can pass through the crystal structure, or waveguide, with minimal 
dissipation. Indeed, in Fig. 12 the absolute value of 𝑢ℎ,𝑝

𝐴
is plotted and we can observe the expected behavior.

We note that the dimension of the ACMS space is 𝑁𝐴 = 516 for 𝐽𝑥 = 𝐽𝑦 = 10, while the underlying FEM space has a dimension 𝑁𝐹 =
253 926, i.e., about 𝑁𝑗 ≈ 2 500 degrees of freedom per unit cell. For inclusions with simple geometries and moderate wavenumbers 
such a resolution might not be necessary and finite element methods with lower resolution may still yield accurate solutions for the 
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Fig. 12. Absolute value |𝑢ℎ,𝑝
𝐴
| for 𝜅 = 1.26 (left) and 𝜅 = 1.48 (right) for a crystal structure with 𝐽𝑥 = 𝐽𝑦 = 10. 

Fig. 13. Absolute value |𝑢ℎ,𝑝
𝐴
| evaluated on 𝛾𝑖𝑛 and 𝛾𝑜𝑢𝑡 for a crystal with 𝐽𝑥 = 𝐽𝑦 = 30 (left) and 𝐽𝑥 = 𝐽𝑦 = 110 (right) and a frequency 𝜅 = 1.26. 

full crystal problem. However, high resolutions guarantee that the ACMS basis functions are realized accurately. Moreover, highly 
resolved FEM spaces do not cause computational issues for the ACMS method, because the local systems related to the extension 
operator remain small. Next we illustrate this observation by increasing the crystal size.

Since the previous computations were performed on a very small crystal, we conclude this section by extending the computations 
to larger crystal structures. For this purpose, we select two frequencies, 𝜅 = 1.26 and 𝜅 = 1.48, and compute the solution on two 
crystals, one with 𝐽𝑥 = 𝐽𝑦 = 30 and the other with 𝐽𝑥 = 𝐽𝑦 = 110, i.e., 900 and 12 100 unit cells, respectively. We note that the 
dimension of the approximation spaces is 𝑁𝐴 = 4 096 and 𝑁𝐹 = 2 405 776 for 𝐽𝑥 = 𝐽𝑦 = 30; while 𝑁𝐴 = 52 416 and 𝑁𝐹 = 30 636 426
for 𝐽𝑥 = 𝐽𝑦 = 110, which prohibits the solution of the FEM discretization with standard sparse direct solvers on our machines. In 
Figs. 13 and 14, we plot the absolute value of the solution along the two aforementioned lines, 𝛾𝑖𝑛 and 𝛾𝑜𝑢𝑡. Motivated by the findings 
from the previous example, we expect that for 𝜅 = 1.26 the wave is less transmitted through the crystal, while for 𝜅 = 1.48 we expect 
that the wave is passing through the crystal with a minimal amount of absorption and possible reflection. This behavior is indeed 
observed in Fig. 13 and Fig. 14 for both cases 𝐽𝑥 = 𝐽𝑦 = 30 and 𝐽𝑥 = 𝐽𝑦 = 110, where in the latter case the amplitude on 𝛾𝑜𝑢𝑡 for 
𝜅 = 1.26 has almost vanished. Additionally, it is clear that the amplitude on 𝛾𝑖𝑛 is significantly higher for 𝜅 = 1.26 compared to 
𝜅 = 1.48, due to greater reflection. The same conclusion can also be drawn for the values 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 in Fig. 12 for 𝜅 = 1.26 and 
𝜅 = 1.48.

6. Discussion and conclusions

We studied the computational and implementational aspects of the approximate component mode synthesis (ACMS) method. The 
numerical study has been carried out using the Python interface of the open source software NGSolve [52], which allows access to 
state-of-the-art implementations of high-order finite element methods in a non-intrusive manner. We identified similarities of the 
ACMS method to usual ℎ𝑝--FEM, which permit efficient assembly and solution procedures, using sparse direct solvers. We gave a full 
computational complexity analysis, which we verified numerically. From this analysis, it also became clear that the system assembly 
can be parallelized straightforwardly.

We studied numerically the influence of the underlying ℎ𝑝--FEM approximation on the convergence of the ACMS method, focusing 
on varying wavenumbers. We found a strong improvement in accuracy when the degree of approximation is larger than one, which 
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Fig. 14. Absolute value |𝑢ℎ,𝑝
𝐴
| evaluated on 𝛾𝑖𝑛 and 𝛾𝑜𝑢𝑡 for a crystal with 𝐽𝑥 = 𝐽𝑦 = 30 (left) and 𝐽𝑥 = 𝐽𝑦 = 110 (right) and a frequency 𝜅 = 1.48. 

is in line with the discussion about the pollution effect, see Section 1. We numerically confirmed the theoretical results of [43] 
for different wavenumbers, see (11), i.e., that the 𝐿2--error decays cubically in the number of edge modes. We observed that, for 
increasing wavenumber, the error starts to decrease monotonically for a number of modes that scales linearly in the wavenumber. 
This is better than expected by the theoretical results given in [43]. Since the error decay is initially very rapid, we may conclude 
that the ACMS method can achieve engineering relevant accuracy by employing a moderate number of basis functions. If higher 
accuracy is required, one may use exponentially convergent schemes [42,44,45]. We leave a detailed computational comparison of 
the different methods for future research.

We further studied the dependence of the error on the employed domain decomposition, and we find a weak dependence. Hence, 
we may conclude that the ACMS method offers flexibility in choosing the domain decomposition to minimize computational cost, 
e.g., to exploit fast dense linear algebra. This flexibility, in turn, allowed us to simulate a large but finite-size crystal that has a line 
defect.

Code availability statement

The code used to generate the findings of this study is openly available in Zenodo at https://doi.org/10.5281/zenodo.13898694.
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