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Abstract

Records from ledgers of Dutch companies all across the Netherlands are used in this study. Records
can be submitted in the ledgers with various lags, because the data of many different bookkeepers
is involved with different workflows. Bookkeepers can be punctual or late, therefore records can be
submitted with various lags in the ledgers. This causes missing data, which results in a deformation of
a time series that is constructed from these records. Using a technique called now-casting, a prediction
can be made of how these series with no missing data would have looked like.

This study sheds light on how information of an incomplete time series from ledgers of Dutch com-
panies can be used to now-cast on that series, without the use of external indicators. To better utilize
the information available from the series, an addition to the Seasonal Auto Regressive Integrated Mov-
ing Average with eXogenous regressors (SARIMAX) model is proposed. The addition to the SARIMAX
model is presented in two forms: the additive- and multiplicative relation between indicator- and target
series. These are modeled with the goal to improve the information utilization and therefore improve the
now-casting accuracy. Experiments have shown that this addition to the model does not give a direct
improvement in accuracy compared to an ordinary SARIMAX model. Thereafter an iterative now-cast
procedure is proposed to utilize information from highly lagged records. It has been shown that this
gives a slight increase in accuracy for the overall now-cast.






List of Figures

List of Tables
1 Introduction and Related work
1.1 Problemstatement. . . ... .. ... ... ........
1.2 RelatedWork . . . . . . . . ... ... ... L.
1.3 ReportOutline . . . .. ... ... ... ... ... ....
2 Data and Methodology
21 Dataset . . . . .. ...
2.1.1 Data acquisition and Pre-processing . . . . . . ..
2.1.2 Two-dimensionaldataset. . . . . . ... ... ...
2.2 Forecastingmethods. . . . . .. .. ... ...
2.21 Forecasting on historicaldata . . . . . . ... ...
2.2.2 Now-casting with indicatordata . . . . ... .. ..
2.3 ProposedMethods . . . .. ... ... ... ........
231 TimeseriesModel . . .. ... ...........
2.3.2 Extendedmodel . .. ... .. .. ... ......
2.3.3 lterativeMethod . .. ... ... ... ... ....
3 Experiments
3.1 Time-varying relation experiment . . . . . ... ... ...
311 Setup . . . ...
3.1.2 ErrorAnalysis. . . . ... ... ... ... ...
313 Results . . . . ... .. ... o
3.2 Laggedrecords experiment . . . ... ... ... ... ..
321 Setup . . .. ...
322 Results . . .. ... ... ... ...
4 Conclusion, discussion and Recommendations
41 Conclusion . . . . ... ... . ... ..
4.2 Discussion . . . . ... ... e
421 Modeldesign. . ... ... ... .. ........
422 Assumptions . . ... ... ... L.
4.3 Recommendations . . . ... .. ... ... ........
A Further Notes
A.1 Experiments on artificialdata . . . . . ... ... .....
Bibliography

Xi

Contents






1.1

1.2
2.1

2.2

23

24

3.1

3.2
3.3

A1
A2
A3

List of Figures

Average distribution of missing records as a function of time. The distribution can differ
for records from other sectors or dates. This figure serves for the purpose of giving a
generalintuition. . . . . . . .. 2
Aggregated sum of a selectionofrecords . . . . ... ... ... ... ... ... ... 2

Auto Correlation and Partial Auto Correlation of one of the financial time series in the

dataset . . . . . e 8
The ratio A;/Y; as a function of At for November and December. A4, is the sum of records
available after At. . . . . . . .. 9
The relation between Endogenous- (Y;) and Exogenous (X;) time series. X; is the sum
ofrecords availableat At =1 . . . . . . . .. ... 10
An example now-cast from the iterative now-cast procedure . . . . . ... ... ... .. 12

Three scatter plots of accuracy for SARIMAX (Y;, X, + D,) versus SARIMA (D). Every

dotis a sample fromone of thedatasets. . . . . ... ... ... ... ... ....... 17
Relations R; and D; of a problem instance fromthe dataset. . . . . . .. ... ... ... 18
An example of an over-now-cast . . . . . . . . ... e 19
Time series Y; and a fitted AR(3)-process . . . . . . . . . ... ... .. .. ... 25
Time series Y/ and two processes . . . . . . . . . . .. 26
Time series Y{ influenced by external variable X, . . . ... ... ... ... ....... 26

xiii






2.1

3.1
3.2
3.3

3.4

List of Tables

Records submitted over time as seen from January 2019, crosses indicate submitted
records.

Models used in experiments.
Averages of MASE and nRMSE forall At € {1,2,6}. . . . ... ... ... . ....... 17
First three iterations of the forward validation. Orange is the training set and red is the

test set.

Average now-casting accuracies, expressed in MASE and nRMSE. . . . . ... .. .. 19

XV






Nomenclature

Abbreviations and Acronyms

AR
ARMAX
CBS
DFM
ECB
GDP

KPI

MA
MASE
MF-VAR
MIDAS
nRMSE
PCA
RCSFI

S
SARIMA
SARIMAX
SME

X

Auto Regressive (component)

Auto Regressive Moving Average with eXogenous regressors
Dutch national institute of statistics

Dynamic Factor Model

European Central Bank

Gross Domestic Product

Integrated (component)

Key Performance Indicator

Moving Average (component)

Mean-Absolute-Scaled-Error

Mixed Frequency Vector Auto Regressive

Mixed Data Sampling

normalised Root-Mean-Squared-Error

Principal Component Analysis

Reference Classification System of Financial Information
Seasonal (component)

Seasonal Auto Regressive Integrated Moving Average
Seasonal Auto Regressive Integrated Moving Average with eXogenous regressors
Small to Medium Enterprise

Exogenous (component)

XVii






Introduction and Related work

Exact is a Dutch software company that offers a service for online accounting!. One of the goals
of Exact is to give financial insights into the Dutch economy by means of Key Performance Indicators
(KPIs) to its customers?. Timely and reliable KPIs play a key role for important decisions of companies 3.
Bookkeeping records from ledgers of Dutch Small- to Medium Enterprises (SMEs) are used to produce
these KPIs. To generate KPIs which give a representative view on the current state of the Dutch
economy, records from the bleeding edge are used. These records are submitted in ledgers of the
online accounting software. They are submitted by many bookkeepers from different companies and
sectors all across the Netherlands. Bookkeeping can be done in many ways. A common bookkeeping
workflow is to submit records of transactions after the end of each quarter. This way, records are
submitted in time to publish quarterly financial reports. Various workflows can differ in punctuality,
which influences the delay in which records are submitted. As an example, a sales transaction that
happened in January could be submitted in the ledger by a bookkeeper as a record after the first quarter,
in April. Bookkeepers which are more punctual, would for example submit records of all transactions
before the end of the week. These reporting lags can vary from a day to over a year.

The following pattern from aggregated records is observed: a lot of transactions are not yet recorded
in the recent past. Further back in the past, fewer records are still missing. Figure 1.1 displays the
average distribution of records which are still not reported after one or more months have passed since
the transaction date. From the figure, one could observe that when three months have passed, less
than 10% of records are still expected to be submitted.

1.1. Problem statement

At Exact, KPI time series are produced by summing a selection of records, partitioned in a monthly
interval. A problem arises: KPI time series constructed with records (of which some are still missing
due to submission delays) can give a wrong representation of the real world. A sudden drop is observed
at the end of time series constructed from the presently known records. The missing records cause a
downward bias in the time series. Figure 1.2 shows an example financial time series, observed at the
end of January 2016 (Figure 1.2a) and January 2018 (Figure 1.2b). The bias is especially clear in the
last three points in the two plots of Figure 1.2 because the time series drops to zero. This behavior
renders the correctness of possible interpretations on the data debatable.

The objective of this thesis is to make a projection of the series in such a way that useful interpre-
tations can be made (e.g. calculate the year-over-year growth rate per month). The desired output is
a time series with no downward bias. This means that the data points in 2016 in Figure 1.2a would be
projected in such a way that they approach the data points of 2016 observed two years later, depicted
in Figure 1.2b. This projection can be produced by financial now-casting. This term is a contraction of

"Exact offers more products, for the complete list visit ht tps: //www.exact .com/products.

2Some of the KPIs are publicly displayed and can be seen at https://www.exact.com/nl/over—ons/mkb-monitor (At
the time of writing).

3Exact published a (Dutch) white paper with clarifications of the motivation and displayed KPIs: https://files.exact.com/
static/web/downloads/NL-OTH-Whitepaper-Exact-MKB-Monitor.pdf

1
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Percentage of missing records
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Figure 1.1: Average distribution of missing records as a function of time. The distribution can differ for records from other sectors
or dates. This figure serves for the purpose of giving a general intuition.

now and forecasting. Now-casting is the prediction of the present, the very near future and the very
recent past in economics [2]. In Section 1.2 the difference between forecasting and now-casting is
explained in more detail. The main question of this thesis is how to now-cast in such a way that the
downward bias is removed. Early reported records might give a premature glance of the time series.
Many other background indicators could be used for now-casting. However, this study focuses on how
much information a financial time series provides for its own now-cast. In this research it is studied how
this premature view could be used as auxiliary information for the now-cast.
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(a) Time series as seen from Januari 2016 (b) Time series as seen from Januari 2018

Figure 1.2: Aggregated sum of a selection of records

1.2. Related Work

The growth rate of Quarterly Gross Domestic Product (GDP) is a key indicator for the state of the
economy. The GDP is of great importance to decision-makers in governments, central banks, financial
markets and non-financial firms [6]. Banks estimate GDP prematurely because GDP is subject to
substantial lags of financial publications. A timely and reliable evaluation of economic conditions is a key
element in the assessment of the monetary policy stance [9]. Financial statements are published with
high delays, therefore the European Central Bank (ECB) publishes preliminary estimates approximately
30 days after the end of the reference quarter [9]. To acquire a real-time estimate of the real GDP, banks
use indicators with higher publication frequencies to produce short term now-casts.

Generally, now-casting is the act of predicting for the pending or just finished period (e.g. quarter).
A now-cast can be seen as an intra-period forecast, with the information about that period already
available, which is used for the forecast [24]. Now-casting is different than forecasting in the sense that
a now-cast uses information available from the pending period which is being now-casted, whereas
forecasts use the information available to predict subsequent periods from which no information is
available yet.
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For the estimation of current quarter GDP, usually a mix of indicators is used such as industrial
production, unemployment, consumer confidence, stock markets and prices of goods and services [6].
Richardson et al. used Factor Models and machine learning approaches to now-cast the GDP growth
of New Zealand [20]. The Factor Model combines different indicators with a linear combination. The
Factor Model is described by:

k
yt=a0+2aifi+st (1.1)
i=1

Where «, to a, are parameters and ¢, is the residual term. f; are factors obtained using Principal
Component Analysis (PCA) on the indicator time series.

Giannone et al. used about 200 macroeconomic indicators to now-cast the GPD. A combination
of indicator time series from different sources usually increases the forecasting accuracy but comes at
the cost of using different types of data being released in a non-synchronous manner and with different
degrees of lag and frequency. This results in datasets with a so-called jagged edge [12]. Now-casting
with a combination of mixed-frequency indicators can be challenging because of the unstructured na-
ture. Bridge equations are used to translate the linear combination of factors to GDP. The information
contained in various short-term indicators gets transferred, or bridged, to the coherent structure implied
by the National Accounts® [13]. In other words, high-frequency time series gets converted to quarterly
time series using a dynamic linear equation:

q
Yye=a+ Z BisXit—s + €it (1.2)
5=0

« is a constant and f5; ; are regression coefficients, q is the number of high-frequency periods that fit in
the low-frequency period (e.g. 3 months per quarter). x;, is the i indicator at time t.

Mixed Frequency Vector Auto Regressive models (MF-VAR) are more recent approaches which are
capable of using many data sources with different reporting- frequencies and lags. Ouwehand used
MF-VAR models to now-cast Quarterly GDP with Monthly time series. The quarterly time series is
modeled as a monthly time series with missing data in the first two months of the quarter [18]. Kalman
filters are used to estimate regressors in a model and is capable of working with missing data in time
series.

Mixed Data Sampling Regression Models (MIDAS) is yet another model, introduced by Ghysels
et al. [11]. MIDAS includes indicators in the regression at their original observation frequency. This
approach has the advantage of preserved timing information in the indicators. Different types of MIDAS
implementations have successfully been applied to data produced by Portuguese automated teller
machines and points-of-sale [8].

The Dynamic Factor Model (DFM) is a technique that models the motions of unobserved factors in
a time series. Doz et al. introduced a two-step estimator that combines DFM with a Kalman filter to
perform now-casting [7, 21]. DFM is generally written as two equations:

yo =AM+ PBxc+e, & ~N(@OEL) (1.3)

fo =Y aifici+& & ~N(©OI) (1.4)

Where f;, are the latent factors. A is a matrix of factor loadings®. x, are optional indicators. I is a
covariance matrix. I is the identity matrix. p is the number of autoregressive factors. A, a; and 8 are
parameters. Equation 1.4 describes the motion of the unobserved factors. The DFM described in
Equations 1.3 and 1.4 can be cast into state space form to estimate the parameters with a Kalman
Filter. Banbura et al. and Schiavoni et al. adopted and extended the model from Doz et al. in their
studies [1, 21].

Xie et al. now-casted electricity prices in Sweden using a SARIMAX model. SARIMAX is short
for Seasonal Auto regressive Integrated Moving Average with eXogenous regressors. Different power
production sources are used as indicator data for the now-cast of electricity prices. This model has a
satisfactory performance on the domain [26].

4A National Account implements a technique for measuring economic activity of a nation.
5A factor loading matrix is a matrix of size p x k with p observable random variables and k unobserved random variables. The
matrix is used to indicate the relationship between each observable- and unobservable random variable.
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1.3. Report Outline

In Chapter 2, the data used during this study is described and two new ideas are proposed. This
is followed by the experiments in Chapter 3 where the experimental setup is defined and results are
shown. The results are interpreted in Chapter 4 with a conclusion, discussion and recommendations
for future work. The Appendix contains work that is not a part of the core study but gives additional
insight in the topic.



Data and Methodology

In this chapter the problem is identified with more details. First, it is described with what kind of data
has been worked and how the data is pre-processed. Thereafter a model for now-casting is described
and explained. Furthermore, a change to the model is proposed.

2.1. Dataset

Exact provides data from their online accounting software for this study. This data comprises bilions
of transactions. These transactions are structured as records in a ledger. Together they represent the
accounting of over 300,000 Dutch SMEs. These records are submitted in the ledgers with a delay.
This delay (or lag) marks the difference between the execution date of a transaction and the date this
transaction is submitted as record in the ledger. The month a transaction is executed in, will be referred
to as transaction month (or transaction date) later in this report. Different ledgers are used per account
to distinguish the purpose of the transaction. Revenue transactions represent sold products which are
recorded in the revenue ledger, salary payments are recorded in the salaries ledger, and so on.

Time series can be acquired from these different ledgers. As an example, the revenue ledger can
be shown as function of time by using the revenue transactions from a company as time series. To take
a step further, a time series can be acquired with the revenue transactions of thousands of companies
from the same sector. This represents the revenue of a whole sector. Series like these are used to
construct KPIs, such as the year-over-year growth rate'. From the provided data, time series can be
acquired from different sectors and different ledger types. Later in this report, hypothesis are defined
and validated. These tests are explained in Chapter 3 using time series with a variety of characteristics.
For this reason datasets are generated from the data provided by Exact.

2.1.1. Data acquisition and Pre-processing

The transactions are subdivided in different ledgers for different companies. Every ledger is identified
by a Reference Classification System (RCSFI) code? and company. The timestamps of all transactions
in the ledgers are partitioned to monthly intervals. All transactions from companies in the same sector
are aggregated together by summing the values per month and per sector. Time series are produced
on sector level, not for individual companies. Sector time series represent the total sum of the transac-
tions from companies in the same sector. This way, so much transactions are used to construct the time
series that the series is much smoother than series constructed from individual companies. Therefore
the fluctuations caused by noise in the series are reduced and yearly patterns become more empha-
sized. From the data, 15 sectors and 7 RCSFI codes are identified. From every sector/RCFl-code
combination is a time series constructed. In total, 15 x 7 = 105 datasets are obtained.

"Year-over-year growth rate compares a statistic for a period with the same period from one year ago.

2Reference Classification System of Financial Information, or Referentie GrootboekSchema in Dutch, is a scheme intro-
duced to use standardized codes in bookkeeping, general ledger, profit and loss accounts and balance sheets. Exam-
ple accounts for these codes are: Salary payment, Revenue, Taxes. More information about RCSFI: https://www.
referentiegrootboekschema.nl/.
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Publicly available data from the Dutch National Institute of Statistics (CBS) is used as a reference
in this study to check whether the produced time series are representative. For example, the revenue
growth of the construction sector obtained from CBS? is compared with the revenue growth time series
constructed from the transactions of the construction sector. The time series are compared by means
of the Pearson correlation coefficient. Pearson correlation is widely used as a measure of the linear
relationship between two variables and can also be used to measure the noise between two signals
[3, 4]. The Pearson correlation coefficient of the publicly available data and the constructed time series
is about 0.75.

The records that are used to construct time series might contain mistakes. Records of transaction
which are accidentally an order of magnitude bigger than they should have been (e.g. an extra 0 at the
end), can disrupt the time series. Therefore, outlier removal methods have been explored to increase
the correlation. Removing transactions with values outside the Lower- and Upper-limit range* shows
an improvement in correlation. Removing transactions with even stricter bounds, values outside the
lower Quartile and upper quartile, will improve the correlation still. After outlier removal, the correlation
coefficient between the two time series has improved to over 0.8. Such a correlation coefficient indicates
that the the available data is relatively representative, especially when considering that the data from
Exact represents about 20% of all SMEs in the Netherlands. Outlier transactions are ignored during
the construction of the 105 datasets to obtain more realistic time series.

2.1.2. Two-dimensional dataset

Each dataset contains all records for a particular sector/RCSFI-code combination. In the dataset, the
record submission dates are preserved. Therefore it is possible to consider older versions from the time
series. Records submitted after a particular date could be ignored when a time series is constructed.
This is effectively changing the present time to some point in the past. The date that the present
time is set to, will from now on be referred to as the observation date. Records submitted after the
observation date are not used in the time series. Figures 1.2a and 1.2b are examples where the
observation date is changed to January 2016 and January 2018 respectively. All the datasets that
are produced as described in Section 2.1.1, are two-dimensional: they can be used to construct a
time series of transactions for different observation dates. The observation date will be used for a
now-casting procedure, described in Section 2.3.3.

2.2. Forecasting methods

In this study we consider two general methods to produce a forecast for this projection: time series
forecasting using historical data and now-casting using indicator data.

2.2.1. Forecasting on historical data

A lot of financial time series from individual companies in our dataset do not always show clear pat-
terns such as seasonality or trend. As an example, monthly salary payments of a company might
show a trend, while business purchases might be much more irregular and unpredictable. During pre-
processing of the data as described in Section 2.1.1, the fluctuations caused by noise are reduced and
the patterns in the time series are emphasized. The noise and fluctuation is reduced by aggregating
financial data of companies from the same sector together, resulting in a dataset with time series which
are likely to contain a trend-, seasonal- or cyclical component. These components can be modeled
with time series models.

In order to get a representative forecast, a model should be fitted on unbiased data. Less recent
data contains almost no bias. As explained in Section 1.1 the bias is caused by the absence of lagged
records. When fitting a model from the start of a time series until a point where the bias increases over
a certain threshold w, then there is a risk of generalizing on data that lost relevance due to economic
change. Economic change can be caused by many factors. Therefore the economy as a whole is
treated as a hidden context®, which is subject to gradual Concept Drift [23]. Informally, gradual eco-

3Publicly available database with year-over-year revenue growth of the Dutch construction sector, provided by CBS: https:
//opendata.cbs.nl/statline/#/CBS/nl/dataset/83837ned/table?ts=1575465775727

4Lower-limit and Upper-limit are defined as Q1-1.5IQR and Q3 + 1.5/QR respectively, according to Box plot terminology.

5A system is considered a Hidden Context if the rule set that would express the outputs of that system is unknown or difficult to
uncover [25].
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nomic Concept Drift refers to a slow shift in the structure of an economic system [10]. These shifts could
for example be caused by governments which are embarking subsidies to shift a market. A model fitted
on data from too far in the past, could suffer from a wrong generalization for the present due to possible
Concept Drift. A model fitted on data too close to the present suffers from a bias caused by missing
records. The optimum is somewhere in the middle.

To be able to train models on unbiased data, it is important to quantify the bias and find a point
where the bias becomes insignificant. To do this, the bias threshold w is defined as a change of
0.1% compared to the observation of the prior month. Records are submitted with delays according to
an exponential distribution. In the recent past of a transaction month a lot of records are submitted.
whereas further in the past, fewer records are submitted for that transaction month. The amount of
records submitted with high delays becomes small enough after 12 to 24 months that the impact of
these delayed records on the total observed value less than 0.1%. Over 95% of the time series in
our dataset reach below threshold w between 12 and 24 months. In other words, 24 months after a
transaction date, the aggregated sum of records for the transaction date does not change more than
0.1% and is assumed to not change anymore. This is used as a motivation to assume every time series
in the dataset is saturated with records, and therefore has a negligible bias, after 24 months. We define
the number of months passed since the transaction month e as At. At = t — e, where t is the month of
the present date. In Section 2.3.2 is further elaborated on the motivation for the choice of 24 months.
Throughout this study, it is assumed that for every transaction month e in the data, e is considered
unbiased if At = 24. In Section 2.3.2 is this assumption used to train models on unbiased data.

2.2.2. Now-casting with indicator data

External indicators can be incorporated in the model to improve the accuracy. Indicators are referred to
as exogenous data®. The time series that is being modeled is referred to as endogenous data. Different
external data sources can be used as exogenous data. Ouwehand and Gianonne et al. have observed
that the use of relevant indicators play an important role in the stability and accuracy of a now-cast
[12, 18]. The use of many indicator data-sources for now-casting has to be done with caution; too many
data-sources used together can lead to over-fitting due to the Curse of Dimensionality. MIDAS and MF-
VAR are two techniques which are especially sensitive for this problem, as their design encourages the
use of a broad range of data-sources [6, 16].

In this study, the option of multiple external data-sources to improve the stability and accuracy is
disregarded. As explained in Section 1.1, this study focuses on how much information early records
can give when used as indicator series. Instead, the information from early submitted records are used
as indicator data. As explained earlier records are submitted in the ledgers with a delay. These records
in the ledgers are used to construct a time series. They also provide some extra information about the
time series in two ways: (1) they reflect the punctuality of bookkeepers which can be observed with
a delay distribution of the records. This delay distribution is similar to the missing records distribution
displayed in Figure 1.1. It is assumed that the punctuality of bookkeepers stays somewhat the same.
(2) They also reflect the state of the economy at the transaction date. The latter is interesting because
it can serve as an indicator for a now-cast. Records with low delays, e.g. records submitted within a
month after the transaction date, give a premature glance of the current state of the economy. These
low delay records can be used as an indicator time series. In the following sections, this concept is
used in the model design.

2.3. Proposed Methods

In the sections below, models addressing the problem of time series with a downward bias are pro-
posed.

2.3.1. Time series Model
A time series model is created and configured for our data. Most of the financial time series in the
dataset show a strong yearly auto correlation, this is displayed for one of the datasets with an Auto
Correlation Function shown in Figure 2.1.

Some time series also show an Auto Correlation at lags three, six and nine months. This indicates
that they have quarterly auto correlations. The yearly auto correlation is the most significant in many

6An Exogenous variable is one whose value determined externally and independently of the endogenous variable.
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Figure 2.1: Auto Correlation and Partial Auto Correlation of one of the financial time series in the dataset

time series, therefore it is chosen to model two Auto Regressive (AR) parameters and a seasonal
component. The seasonal component will be discussed later. An AR(p) process is described as follows:

Yo =o+ 2 diYeoi + &, & ~N(0,02) (2.1)

¢; are the parameters and p is the AR order. ¢; is a noise term, drawn from an independent and
identically distributed normal distribution. Subsequently, Moving Average (MA) terms are incorporated
for the lagged prediction errors. An MA(q) process is described as follows:

Yo =& + 3L, 06 i, &~ N(0,07) (2.2)

6; are the parameters and q is the MA order.

In time series, seasonality is modeled to capture the variations that occur in every period. This
component contributes by modeling the seasonal adjustment [15]. It is a way of modeling in a desea-
sonalized fashion, which Pijpers applied for now-casting unemployment payments[19]. In this study, a
Seasonal component with a period of 12 lags with 2 Seasonal AR parameters is used.

The constructed time series in this study usually have an upward trend which means that the time
series is not stationary. A non-stationary time series can be transformed into a stationary one, by
taking the difference of the series [27]. For this reason an Integrated component is modeled. The
integration part is realized by taking the d difference of ;. For d = 1, first order differencing is applied:
Y/ =Y, — Y;_,. Similarly, a seasonal difference D = 1 and seasonal period of s lags is specified with:
Y=Y — Y

Early submitted records are used as indicator data, which form a premature observation of the
current state of economy. The indicator time series is treated as exogenous data. From now on we
refer to exogenous time series with X;. The indicator time series X, contains aggregated sums with only
transactions from records that were reported in the same month as they were executed. In other words,
X, is in essence a time series of early submitted records. X, is used to steer the now-cast according to
the current economy. The exogenous data contains the initial transactions that happened in the recent
past and reveal the presence of a potential economic- depression or growth. X; can be seen as a time
series that contains a subset of all aggregated transactions as a function of time t. It is important to
note that X; is discretized per month, just like Y;. Therefore adjusting the frequency of X, to match Y;’s
frequency is not needed. This renders Bridge Equations unnecessary.

To illustrate the operation of X;, an ARMAX(p, q) process is shown:

Yy =YX, + Z?:l oY + Z?:l Oigc—i + &, & ~ N(0,0%) (2.3)

Y, ¢;, 8; and o? are the parameters in this model. p is the AR order. q is the MA order.

The use of premature observations of aggregated transactions is only effective if the policies driving
bookkeeping behavior stay somewhat the same. If this would not be the case, then the relation between
X; and Y; would suddenly change. This might lead to a wrong generalization, resulting in erroneous
estimations. As an example, if bookkeepers would stop reporting records throughout the year and
report almost all records at the end of the year instead, then the modeled behavior is not applicable
anymore and wrong estimations will be made for Y; with respect to X;. Therefore the bookkeeping
behavior is assumed to stay somewhat the same or changes gradually so generalizations can be made.

The cash flow of a month depends on the number of day per month and the number of working days
per month. For simplicity reasons, the number of days per month are assumed to be constant across
time.
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With a combination of the components S, AR, |, MA and X described earlier, a SARIMAX model
is created. This model is suited for time series from the datasets and can anticipate its predictions
on economic turbulence due to the influence of X;. A SARIMAX model is specified with: (p,d,q) X
(P,D,Q)s. The orders of AR, | and MA are specified with p, d and g respectively. The seasonal- AR, |
and MA orders are specified with P, D and Q respectively.

This model forms the basis of this study. New additions that are proposed in the following sections
will extend on this model.

2.3.2. Extended model

Indicator time series used in Equation 2.3 can be very reliable if X, is a process that shows a somewhat
consistent relation with respect to Y;. The relation of X; to Y; however, is time-varying in many datasets.
Figure 2.2 depicts two charts of the A;/Y; ratio as a function of the time passed At. Where A; is the
aggregated sum of records for transaction month e submitted between e and e +At. With e € E where E
is the set of transaction dates: all Novembers from 2011 to 2017 in Figure 2.2a and all Decembers 2011
to 2017 in Figure 2.2b. As the observation time progresses (At goes up), more records have become
available and at At = 24: Y; = A;. The distribution of lags from the submitted records are somewhat
consistent throughout the years. These two charts are plotted from the same dataset, but they show
that the lag distribution differs per month of the year. As an example: In November 2017 (Figure 2.2a)
at At = 0, the sum of available records is ~ 0.42 times the sum for November 2017 At = 24. While one
month later, December 2017 (Figure 2.2b) at At = 0, the sum of available records is only ~ 0.12 times
the sum for December 2017 At = 24.

— November 2011 0.8
— November 2012
November 2013
November 2014
November 2015 0.4
November 2016
November 2017 0.2

— December 2011
— December 2012
December 2013
December 2014
December 2015
December 2016
December 2017

y y y t t T T T T y 4 y T t
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

At (months) At (months)
(a) Ratio of all November months from 2011 till 2017 (b) Ratio of all December months from 2011 till 2017

Figure 2.2: The ratio 4. /Y; as a function of At for November and December. A; is the sum of records available after At.

Figure 2.2 shows how the punctuality of the records can vastly differ. Let us now change the per-
spective and consider what implication this has on the information carried by the exogenous data. In
Section 2.3.1 is described that X, is a time series obtained from aggregated records reported between
transaction month e and e + At. The behavior of X;, constructed with records from e to e + 1, as a
function of all transaction months e, is illustrated in Figure 2.3a. The graph shows that the December
months of Y; are distinct compared to the other months of the year. These distinct data points are
present in Figure 2.3b as a dip. The data points of the December months in Figure 2.3b are the same
as the points at At = 1 in Figure 2.2b.

These patterns observed in the data can be used to better utilize the information. Information utiliza-
tion is defined as: how much information is contributing to the prediction of the now-cast. If a model is
better capable of utilizing the available indicator information, then the accuracy of the now-cast should
increase.

It is inviting to incorporate this time-varying relation as an extension on the earlier discussed SARI-
MAX model. The metric used to measure utilized information is explained in Section 3.1.1. To test
whether these additions increase the information utilization, a hypothesis is defined:

Hypothesis 1. Modeling a time-varying relation between exogenous- and endogenous time series for
now-casting, improves the information utilization. With exogenous data being a time series constructed
with early submitted records.

To validate Hypothesis 1, two processes are proposed which model a relation. They are described
below.
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Figure 2.3: The relation between Endogenous- (Y;) and Exogenous (X;) time series. X, is the sum of records available at At = 1

The relation between X; and Y; can be modeled as a process. Inspired by Factor Models, a linear
combination of the time series X, can be used to model the time-varying relation between X, and Y;. Let
us define the relation R, as R, = X, /Y;. R; is modeled as an AR process and is defined in Equation 2.4.
y; and a2 are the parameters and p’ is the AR order. p’ = 12 could be a suitable order to capture the
seasonality, because the time-varying behavior is yearly.

The process from Equation 2.4 with estimated parameters is used for the process that models Y;
in Equation 2.5. This equation is an ARMAX model with parameters ¥, ¢;, 6; and ag. R; is used as
exogenous data. The ratio R; is used to remove the time variance of X;. This is done through: X;/R;
and can be seen in Equation 2.5.

Ry = 25;1 YiRe_i + &, &,~ N(0,0%) (2.4)

X
Ve =Wt + 30 biYemi + By Oife-i + 60§~ N(0,6F) (2.5)

The formulas described with Equation 2.4 and 2.5 are capable of modeling financial time series in
the dataset with a multiplicative time varying-relation between the endogenous and exogenous data.
Instead of the ratio R;, also the difference can be used to model additive exogenous time variance.
This would be useful if the time variant relation can better be described by a time series representing
the difference between Y, and X,. Therefore D, = Y; — X; is introduced as an alternative to R,. This
would give two new but similar equations:

Dy = Z?:l YD + &, &~ N(0,02) (2.6)

Yo = WX + D) + X1y diYeoi + Ny 06 + & &~ N(0,02) (2.7)

The equations 2.4 and 2.6 describe an AR(p’) process and Equations 2.5 and 2.7 describe an
ARMAX(p, q) process. These processes can extended with the Seasonal and Integrated component
to better fit on the data used in this study.

These models are used in Section 3.1 to validate Hypothesis 1.

2.3.3. Iterative Method

The model described in the previous section can be extended even further. The exogenous data X,
gives a premature view of Y;. Records of various delays can be incorporated as indicator time series.
The use of information available from records submitted with higher lags could increase the information
utilization during now-casting. The reasoning for this is explained in this section.

The data-source used for the exogenous time series has an interesting property: it can be con-
structed with more delayed records. For every time step (At) of new information, an exogenous time
series can be obtained. For higher At values, more records are available. Therefore exogenous time
series X; that incorporates records with higher lags are assumed to contain more information about Y;.

Giannone et al. observed from forecasting errors on their data that new information has a monotonic
and negative effect on the forecasting uncertainty [12]. The data used in this study might also show
a negative effect on the uncertainty with new information from higher lagged records. A hypothesis is
defined to test this:
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12 X

1 X X

10 X X X

9 X X X X

8 X X X X X

At 7 X X X X X X

6 X X X X X X X

5 X X X X X X X X

4 X X X X X X X X X

3 X X X X X X X X X X

2 X X X X X X X X X X X

1 X X X X X X X X X X X X

0 X X X X X X X X X X X X X
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2018 2019

Table 2.1: Records submitted over time as seen from January 2019, crosses indicate submitted records.

Hypothesis 2. The use of delayed records as indicator data for now-casting increases the information
utilization.

To validate Hypothesis 2, a method is designed that uses records submitted with higher delays.
This is described below.

Table 2.1 illustrates how much months of records are available after At months passed. As an
example: in January 2019, 12 months have passed since January 2018 and therefore records for
January 2018 with a lag of up to 12 months have been recorded. Hence, predictions for January 2018
with 12 months of data will be much more accurate than predictions for January 2019 with only one
month of data.

To exploit this property, now-casts can be made with exogenous data that contains more information.
This is achieved by constructing X, using records submitted with higher lags. This approach is limited
by the fact that records with high lags have not been submitted for the months in the recent past. Older
months contain more information, but might be less representative for the economy at present date.
Many factors influence the economy and is therefore treated as a hidden context. Let us consider this
ballpark example: the economy of January 2018 is likely to be similar to the economy of February 2018,
but the economy might gradually change after one or more years, which means that the economy of
January 2018 might not be similar to the economy of January 2019.

To summarize: older months used for the exogenous time series give a less biased and therefore
more representative view of the economy at that time, because many records are known now. Older
dates give less insight in present day economy compared to the months in the recent past. Months
from the recent past have more missing records and therefore have a downward bias. For this reason
a procedure is designed that uses both a recent- and unbiased view of the economy. This is done by
exploiting these properties by means of iteratively now-casting for each step At with At € {0,1,---,23}
7. The procedure starts at At = 23 and goes down with each step. Each step uses less information and
therefore now-casts become less accurate. From now on, this procedure is referred to as the iterative
now-cast.

The iterative now-cast procedure uses a matrix M that consists of cumulative aggregated sums of
records. M is structured with the same intuition as Table 2.1. M is a lower triangular matrix of size
k x k, with k the number of time steps. Every column represents the date in which a transaction from
a record happened. Every row represents the total sum of aggregated records which are submitted
within i months, starting with i = 0 at the bottom of the matrix. A cell at row i and column j in M is
referred to as m; ;. Cells in M above the diagonal contain a Not-a-Number value, indicated with a dash
(—). Cells are cumulative, meaning that m; ; equals the aggregated sum of the new records plus m;_ ;.
Accessing a complete row i of M is done using the colon symbol (:), m; .. Accessing a range of cells
from the p'" column to g column on row i is done with: m;p.q- The matrix M is shown in Equation 2.8.

"Take note that X, = Y; if X, contains records all with a delay At < 24.
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The iterative now-cast procedure is described in Algorithm 1. The procedure makes a one-point
prediction in every iteration. n is the number of observations (the length of the time series to train the
model on). r is the total number of iterative steps. As assumed in Section 2.2.1, the bias becomes
negligible after two years. Therefore, the total number of iterative steps is 24 (months). At line 6, f is
a function that takes the endogenous- and exogenous time series and returns an instance of a time
series model, for which the parameters are fitted to the data with the f£it ()-function. Various time
series models can be used, this will be discussed in Section 3.2.1. The model .predict () -function
at line 7, predicts n_predict steps ahead and requires exogenous data to make predictions. Line 8
writes the prediction to the matrix M, the prediction will be used in later iterations as endogenous data.
Atline 9, n is incremented to increase the time series length for fitting the model with every iteration.

Algorithm 1 Iterative Now-cast

procedure iterativeNowcast(M, n, r)
for(i=0;i<r;++i)do
YO:n < My o:n
XO:n < My—i-1,0:n

model « f(Yy.n, Xo:n)-fit()
Vi quel.predict(n_predict «1,exog « Xp41)
Mynt1 < Ynia
nen+1
10: return m, .,

11:

12: n « 60 / Number of observations, example initialization
13: r « 24 // Total number of iterations, Two years

14: Yo.60424 < iterativeNowcast(M, n, )

1:
2
3
4
5 Xn+1 € My_i—1n41
6
7
8
9

The procedure in Algorithm 1 is used to now-cast from n to n + r, where n + r is the present time.
The output of the iterative now-cast procedure is a time series ¥ with the intention to have removed
the bias due to missing records. An example now-cast from the procedure is shown in Figure 2.4. In
the figure, Y, and now-cast Y, are slowly deviating halfway the prediction. At that point ¥, starts making
a difference because the portion of missing records becomes significant enough to see. Whether the

25,000 4
] n
20,0001 _ g 4r
1 ot
15,000 ] o Now-cast ¥, ’

value

10,000 J

5,000 J

0]

0 12 24 36 48 60 72 84
Months t

Figure 2.4: An example now-cast from the iterative now-cast procedure
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iterative procedure is better able to utilize information can not be judged from Figure 2.4, this will be
analyzed in Section 3.2.






Experiments

Two experiments are performed to analyze how the proposed now-casting models perform on financial
data. The first experiment tests if the information can be utilized in a more effective way. Modeling the
relation between exogenous- and endogenous time series might improve the efficiency of information
utilization. Two relations are considered in this experiment which are described in Section 2.3.2: the
additive relation and the multiplicative relation. The information utilization is assessed by measuring
the accuracy of the model. This will be explained in more detail in Section 3.1.2.

In the second experiment is tested if highly lagged records can be incorporated in the now-cast and
provide some extra information. The iterative procedure provides means for utilizing records with higher
delays. The contribution of using records with higher delays is assessed by means of the prediction
accuracy.

3.1. Time-varying relation experiment
This experiment aims to verify the validity of Hypothesis 1, defined in Section 2.3.2.

3.1.1. Setup

The goal of the experiment is to analyze the contribution of modeling time variant exogenous behavior.
To do so, different models are tested on various financial datasets. The first model is a SARIMAX
(2,1,2) x (1,1, 2)4, without time varying X;. This model is is shown as #1 in Table 3.1. As second and
third model, the Equations 2.5 and 2.7 with additional Seasonal and Integrated components are used.
These models are explicitly capturing the time variant behavior of the exogenous time series in either
R; or D,. All three SARIMAX models use 9 free parameters with the earlier specified configuration and
have the free parameters assigned as follows: 2 for AR, 2 for MA, 1 for seasonal AR, 2 for seasonal MA,
1 for exogenous data and 1 parameter for the state covariance'. The two models are shown as #2.1
and #3.1 in Table 3.1. Model #2.1 and #3.1 both use the relation modeled with R; and D; respectively.
These two processes are modeled by a SARIMA (2,1, 2) x (1,1, 2);,, without exogenous data. R; and
D, are estimated with 8 free parameters. The models are used to simulate the process R; and D,, this
yields time series R, and D,. These series are used as exogenous data in #2.1 and #3.1 respectively.
Table 3.1 shows these additional processes as #2.2 and #3.2.

# Model(endog. data, exog. data) Explicitly model time variance X; | N° parameters
1 SARIMAX (Y;, X;) No 9
2.1 | SARIMAX (Y;, X;/R;), with R, from #2.2 Yes, multiplicative 9
2.2 | SARIMA (R;), with R; = X, /Y; 8
3.1 | SARIMAX (Y;, X; + D;), with D, from #3.2 | Yes, additive 9
3.2 | SARIMA (D;), with D, =Y, — X; 8

Table 3.1: Models used in experiments.

"The state covariance is a covariance matrix for the current state and next state of a system estimated by a Kalman Filter.

15
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The data provided by Exact is used to compare the models. The financial data ranges from 2011 to
the end of 2018 and is separated into many time series. With the pre-processing method explained in
Section 2.1.1, time series for different sectors and different RCSFI-codes are obtained. A total of 105
datasets are acquired. From these datasets the endogenous data Y; is selected and three different
exogenous time series: X; containing all records for transaction months e € E with a report date from
e to e + At, with At € {1,2,6} and E = {January 2011, February 2011, ---, November 2018, December
2018}. 315 datasets are harvested, of which 3 datasets were not usable. These 3 datasets have a
low record density which resulted in time series with empty partitions. In total 312 problem instances
(datasets) are used in this experiment. From every dataset the time series Y; and X; are obtained.
These are used as training data for the models with n = 60 observations. Every model has access to:
Yy, -+, Yn_q and X,, .-+, X; as training data. The models have to now-cast 24 data points: Yy, -+, ¥;, with
T as the observation date.

3.1.2. Error Analysis

The models are assessed on the now-casting accuracy. The accuracy is measured with the Mean-
Absolute-Scaled-Error (MASE) and normalized Root-Mean-Squared-Error (nRMSE). In the field of time
series forecasting, MASE is one of the metrics that is widely used for time series with different scales,
such as for method comparison in the M4-competition [17].

MASE scales the error down by the magnitude of fluctuation in Y;, this makes comparisons between
now-casts of time series with different scales and fluctuations possible [14]. MASE is shown in Equa-
tion 3.1, with Y, the time series and Y, the predicted time series. A model is assessed from its first
prediction, at time n, to the last prediction, at time 7, with 7 = r + n and r = 24.

1 A
“ Y Ve = Yl

1

— X Y = Yea

(3.1)

€EMASE =

The nRMSE measure is used to normalise for different time series scales. NRMSE measure scales the
error down with the mean value ¥ of ¥,. nRMSE is in contrast with MASE disregarding the fluctuations
in the time series [22]. It is shown in Equation 3.2.

T
1 1 .
€EnRMSE = ? Z(Yt -Y)? (3.2)
t=n

T—n

3.1.3. Results

The accuracy results are too extensive to show all in one table, therefore the results are presented in
a summarized fashion. Table 3.2 shows the average values of the now-casting accuracy for the three
models. The results are averaged per different exogenous At values. All measurements are shown
with the standard deviation. The standard deviation of the accuracy measures MASE and nRMSE is
relatively high for all models. The table also shows that no model outperforms the other two models.
Models #1 and #3.1 have a competing performance while model #2.1 scores somewhat worse. From
Table 3.2 can be seen that a more saturated exogenous dataset positively contributes to lower error
measures for #1, #2.1 and #3.1. In other words: as time passes (At goes up), the uncertainty goes
down.

The models #2.1 and #3.1 are both dependent on the quality of the modeled processes R, and D,
respectively. In other words, if by accident #2.2 or #3.2 does not manage to fit its parameters properly
and produces an R, or D, which can be considered worthless, then model #2.1 or #3.1 will suffer from
it. Figure 3.1 shows the MASE of process #3.1 versus the MASE of process #3.2 for the three different
dataset groups: At € {1,2,6}. Every dot in the figure resembles a sample from the dataset and is
located according to the accuracy of #3.1 and #3.2. The dependence of #3.1 on #3.2 can be seen by
the correlation between the errors from #3.1 and #3.2 in the three sub-figures. The average accuracy
increases for both #3.1 and #3.2 with higher At datasets. Similar patterns are observed for processes
#2.1 and #2.2. The accuracy of #2.2 displayed in Table 3.2 is relatively bad, this negatively impacts the
accuracy of #2.1. A paired T-Test is performed to determine if the accuracy of model #3.1 is improved
relative to model #1. The following hypotheses are defined:
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Dataset | # Model MASE nRMSE
1 SARIMAX (Y;, X;) 0.589 +0.47 0.117 +0.078
2.1 SARIMAX (Y, X./R;) 0.730 +0.55 0.172 +0.213
At=1 | 22 SARIMA (R,) 1170 +1.89 0.276 +0.728
3.1 SARIMAX (Y, X, +D;) | 0.585 +0.45 0.116 +0.080
3.2 SARIMA (D,) 0.672 40.53 0.133  +0.093
1 SARIMAX (Y;, X;) 0.484 +0.31 0.100 +0.061
2.1 SARIMAX (Y, X./R;) 0.584 +0.46 0.144 +0.178
At=2 | 22 SARIMA (R,) 0.878 +1.17 0.281 +0.332
3.1 SARIMAX (Y., X, +D,) | 0.471 +0.32 0.099 +0.064
3.2 SARIMA (D) 0.543 40.41 0.386 +0.478
1 SARIMAX (Y;, X;) 0.288 +0.18 0.061 +0.041
2.1 SARIMAX (Y;, X, /R;) 0.351 40.41 0.105 +0.351
At=6 | 22 SARIMA (R,) 1197 +1.27 0.249 +1.498
3.1 SARIMAX (Y., X, +D,) | 0.296 +0.20 0.065 +0.047
3.2 SARIMA (D) 0.758 +0.70 0.291 +0.324

Table 3.2: Averages of MASE and nRMSE for all At € {1,2,6}.
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Figure 3.1: Three scatter plots of accuracy for SARIMAX (Y;, X; + D;) versus SARIMA (D;). Every dot is a sample from one of
the datasets.
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Ug; is the average MASE error of model #i. Hy is not rejected. There is not enough evidence in
the data to prove whether modeling a time variance improves the accuracy. Considering the fact that
model #1 also requires less parameters to produce similar results, makes model #1 is the preferred
model in this experiment.

This experiment is performed to validate Hypothesis 1, defined in Section 2.3.2. Modeling a time-
varying relation between exogenous and endogenous data have not been shown to improve the infor-
mation utilization. With the models and datasets used in this experiment, there is not enough evidence
to accept Hypothesis 1, therefore it is rejected.

From the experiments, various now-cast accuracies are observed for different problem instances
among the models #1, #2.1 and #3.1. This variation in accuracy is caused by the different ways in
which the information of X, is used in the models. For some problem instances, X; is more informative
for a now-cast than R, or D;. For other problem instances R; or D; can be more informative. R; and D;
are shown in Figure 3.2 from an example problem instance. R; (in Figure 3.2a) is less informative for a
now-cast because the relation does not reveal patterns (which makes it hard to model the series). D,
(in Figure 3.2b), on the other hand, shows a yearly seasonality and a trend. For this problem instance,
D, is more useful than R, when used as auxiliary data in a now-cast.
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Figure 3.2: Relations R; and D, of a problem instance from the dataset.

3.2. Lagged records experiment
This experiment aims to verify the validity of Hypothesis 2, defined in Section 2.3.3.

3.2.1. Setup

In the second experiment the performance of the Iterative procedure, introduced in section 2.3.3, is
tested. f was left unspecified in Algorithm 1. The results in Section 3.1.3 have shown that a SARI-
MAX (Y;, X;) model would be the preferred implementation. For this reason a SARIMAX (Y;, X;) model
with the configuration as described in Section 3.1.1 is chosen as implementation for f in the second
experiment.

The goal of this experiment is to analyze the contribution of incorporating lagged records in a now-
cast, by means of the iterative procedure. The contribution of lagged records is measured in terms of
the now-cast accuracy.

In this experiment, 24 time steps are being now-casted. For some months of the year it is harder to
now-cast than other months of the year. Therefore a twelve-iteration forward validation (or walk-forward
validation) method is used to weight every month of the year equally. Forward validation is used to
measure how well a model generalizes for time series [5]. Every iteration in the forward validation has
a training set of 48 or more data point and a test set of 24 data points. The first three forward validation
iterations are shown in Table 3.3. The table shows how the Y, shifts with every iteration. Referring
to the table: the training set is indicated with orange, the test set is indicated with red. The iterative
procedure will be tested with 105 datasets, which are obtained as described in Section 2.1.1. With
the use of forward validation, in total with 105 datasets and 12 iterations 105 - 12 = 1260 tests are
performed.

2011 2014 2014 2015 2015 2017 2017 2017
Iteration | Jan - Nov Dec Jan Feb -+ Jan Feb Mar
1 Y, Y04 Y, ’
2 Y, o Y, ‘
: Y, Yoos Y, ‘

Table 3.3: First three iterations of the forward validation. Orange is the training set and red is the test set.

The accuracy of the now-cast is measured by the mean error of the 24 predicted points: from Y;_,,
to Y, with Y; the last- and most recent point. Every predicted point has equal weight in the accuracy
measure. The prediction of the most recent point Y;, usually is the most uncertain because only one
month of information from the exogenous data is available. Therefore the accuracy of the prediction of
the most recent point Y; is of interest and will also be measured as a separate score metric.

Two additional models are compared in this experiment. As second process, a SARIMAX (Y;, X;)
model predicting 24 steps, with X, containing records with lags e to e + 1 (At = 1). Informally, the
second model will use a time series of early submitted records as exogenous data. As third process
a SARIMA (Y;) model is used, which does not utilize the information that X, provides. The third model
in this experiment disregards X; whereas the iterative procedure and second model do not. With this
difference, the contribution of exogenous data is measured.
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The accuracy is measured with MASE and nRMSE (described with Equations 3.1 and 3.2).

3.2.2. Results

In total, 1260 time series are tested and the results are summarized in Table 3.4. This table shows
the average errors accompanied with the standard deviation. The first MASE- and nRMSE columns
show the average error of 24 now-casted time steps. The second MASE- and nRMSE columns only
considers the accuracy of the most recent point on the same now-casts.

Accuracy of now-casted Y,_,, to Y, Accuracy of now-casted Y,
# Method MASE nRMSE MASE nRMSE
1 lterative Procedure | 0.2540 +0.4543 | 0.0874 +0.0935 | 0.6420 +1.2663 | 0.1246 +0.2106
2  SARIMAX (Y, X;) 0.5894 +0.4604 | 0.1887 +0.1516 | 0.8458 +0.9134 | 0.1645 +0.2098
3 SARIMA (Y;) 0.6818 +0.6745 | 0.1906 +0.1569 | 1.1097 +1.2181 | 0.1655 +0.1314

Table 3.4: Average now-casting accuracies, expressed in MASE and nRMSE.

In Table 3.4 can be seen that the Y, errors are much higher than the error of Y;_,, to Y;. This aligns
with the other experiments and agrees with the assumption that recent points are now-casted with more
uncertainty. It is interesting to notice that the standard deviation of the most recent prediction errors
from the Iterative Procedure is the highest compared to the other models. This is caused by the way
the iterative procedure is constructed. In every iteration, it uses its prior predictions. This is done with
the idea to utilize the information in X, as much as possible. The downside of this approach is that
prediction errors can be compounded. Therefore this procedure is prone to over- or under predictions.
An example of a now-cast with an over prediction is depicted in Figure 3.3. The dashed blue line
indicates a hypothetical correct now-cast.

From the accuracy results of models #2 and #3 in Table 3.4 can be concluded that the use of
information available in X; somewhat positively contributes to the now-cast. Even more information in
X, can be utilized if more lagged records are incorporated by means of the iterative procedure. This
also increases the accuracy as can be seen with the accuracy measures of #1 and #2 in Table 3.4.

120,000 ] v,
] Correct Y;
100,000 E @ Now-cast ¥,
S 80,000 ]
S 1
60,000 ]
40,000 ]
t T § ! J
36 48 60 72 84

Months t
Figure 3.3: An example of an over-now-cast

A second Paired T-Test is performed to see if the iterative procedure is able to better utilize records
with higher delays. The following hypothesis are defined for the models used in this experiment:

Ho: 1y = uu

Hit g < pyo

Uy; is the average MASE of the prediction for Y,_,, to Y;, from model #i. From the Paired T-Test a
p-value of 7.697110 js obtained, therefore Hy is rejected.

This experiment is performed to validate Hypothesis 2, defined in Section 2.3.3. The results show
that the use of delayed records as indicator data for now-casting increases the accuracy. With this
result can be concluded that the information utilization is increased if records are used with higher
delays. Hypothesis 2 is accepted.







Conclusion, discussion and
Recommendations

This chapter presents the conclusions from this thesis research, followed by a discussion about the
design choices and the assumptions that are made. The last section gives recommendations for future
work.

4.1. Conclusion

In this thesis the problem of incomplete time series due to missing records is addressed. The main
problem was the downward bias in the time series as a consequence of lagged records. The bias can
be removed by the practice of now-casting. Different studies applied financial now-casting to estimate
the quarterly GDP. An important aspect in these studies was the acquisition of data. Various data-
sources are used together as indicator time series to serve as exogenous data for the now-casts.

In this study is analyzed how records in a ledger can be used as auxiliary data for a now-cast. The
lag distribution of the submitted records is generated by the workflows of bookkeepers. This informa-
tion is used for now-casting. Furthermore, it is studied if more information of records can be utilized
by modeling the relation between the exogenous and endogenous series. Experiments have been
performed to uncover whether modeling the time-varying behavior can improve the utility of the avail-
able information. Utility is measured by comparing now-cast accuracies of models which use different
auxiliary data. In the first experiment three different models are tested, of which one does not use the
time-varying relation. The results of the experiments do not show an improved accuracy when model-
ing the time-varying relation between indicator- and target time series. There is not enough evidence
to prove that modeling a time-varying relation increases the information utility. The models that use
a time-varying relation for the now-cast depend on two processes, which together requires more pa-
rameters. It is preferred to not model the relation between endogenous and exogenous, because this
addition does not show an improvement. For some problem instances however, the use of an additive-
or multiplicative relation results in a better accuracy. This means that some properties, extracted from
the indicator data can be used to better utilize the available information in the data. Although modeled
relations do not improve the overall accuracy, they can provide some extra information for a now-cast.

Records which are submitted recently after the transaction date, can be used to give a premature
view of the economy. Records with higher delays can give an even better view of the economy at
that time. This motivation is used to analyze whether incorporating lagged records can improve the
utilization of the available data to now-cast. An iterative fashion is used to now-cast with different
levels of delayed records. This approach makes more use of the available information than a model
that only uses early reported records. Results from the experiments show there is a slight improvement
when using more information by means of an iterative now-cast. This comes at a cost of possible
compounding errors, which makes the method more prone for over- or under predictions. The most
recent data point is now-casted with the most uncertainty, because for this point the least information
is available.
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4.2. Discussion
This section will elaborate on some of the design choices made during this project.

4.2.1. Model design

There is not enough evidence to show that modeling a time variant relation between X, and Y; increases
the amount of utilized information during now-casting. It could be possible that the datasets used in
this experiment have a less significant time variant relation than initially thought.

In the Section 2.3.2 is described how the time variant relation between X; and Y; can be modeled
with two processes each. One downside is that two processes are used to model the time variance
while only one was needed. A linear combination of X; and Y; would reduce the model to only one
process. Such a process is described with Equation 4.1.

P
Y, = YicoWiXei + Toy $iYeoi + &, & ~ N(0,02) 4.1)

p is the AR order, and P is the exogenous-AR order. ;, ¢;, 6? are the parameters. This model can
be extended by also incorporating the additive or multiplicative relation between X; and Y;, as shown
in Equations 4.2 and 4.3. Even a mix of additive and multiplicative relation can be used.

P Xe—i
Yo = YoXe + Xy wiﬁ + 25;1 ¢iYe_i + &, & ~N(0,0%) (4.2)

Y: = PoX; + Zf=1 Yi(Yeoi — Xemp) + 25;1 iYe_i + &, & ~N(0,02) (4.3)

During the project, the models described in the equations above are implemented in State Space
form, which is convenient for the Kalman Filter to fit the parameters of the model. The State Space
form of Equation 4.1 was somewhat challenging to implement, but it was realised. This was challenging
because the library (Statsmodels') that was used to build the models was not very transparent. It is
even more complicated when the Integrated and Seasonal components are modeled in State Space
form. These components are difficult to build because they require a big change in the matrices used
inside the State Space model. The Seasonal and Integrated components are needed to be able to
test on real data, such as the dataset provided by Exact. Something went wrong in the design of the
models during the developments, because the parameters of the State Space equivalent of a SARIMA
with Auto Regressive X were not able to converge properly. It took too much time to correct the mis-
takes, therefore an alternative solution was tried. The alternatives are the processes described with
Equations 2.4, 2.5, 2.6 and 2.7.

One of the important questions which is still left unanswered is whether Zio Y X;_; in Equation 4.1 is
able to capture a time-varying relation such that the Equations 4.2 and 4.3 are not needed. Section A.1
provides an artificial scenario in which Equation 4.1 would not be capable of properly modeling without
the relation. The scenario is crafted with artificial data, and therefore does not prove the idea. It is
unfortunate that this question can not be answered at the end of this project.

In this study, statistical models similar to SARIMAX are analyzed and tested. To gain more insight,
a comparison with other models from the now-casting literature should be performed. The use of
different techniques would allow to extract other information from the indicator data. As an example:
Bridge Equations can be used discretize the indicator data with smaller time intervals. This means that
the date property of the records have higher resolution and therefore less information is lost.

4.2.2. Assumptions
A few assumptions had to be made for the now-casts on the data. This section briefly goes through
them and discusses the consequences of these assumptions.

As mentioned in Chapter 1, bookkeepers have different record submission punctualities. The punc-
tuality of bookkeeping influences the value of indicator X; used for the now-casts. As an example, if
bookkeepers would suddenly be less punctual, then X; observed at At = 1 would change. During
model fitting it is assumed that bookkeepers will remain about as punctual as they were previously.
Of course bookkeepers can differ with their punctuality from time to time, but because the time series
involve so much different companies, the punctuality distribution will smooth out. It is also assumed

"Statsmodels is a Python library for statistical modeling. Documentation about State Space of Statsmodels: https://www.
statsmodels.org/stable/statespace.html
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that the overall punctuality might gradually change. The punctuality can be impacted in many ways,
such as system down-time for a long period that causes bookkeepers to submit records at a later time.
In this study, these domain specific factors are not taken into account. It is also assumed that economic
turbulence will hardly impact the punctuality.

Monthly cash flow is influenced by the number of days per month and the number of working days
per month. All months are assumed to have the same number of days and the same number of working
days for the sake of simplicity. In reality, on average every month has about 21 working days. The
number of working days per month can vary from 18 days (in April 2017) to 23 days (in March 2017) 2.

During the pre-processing described in Section 2.1.1 it is assumed that some bookkeeping mistakes
can disrupt a now-cast. Records of transaction which are accidentally an order of magnitude bigger
than they should have been because of an extra 0 at the end, can have a major impact on the time
series. It is not investigated how these mistakes can be detected and therefore it is chosen to strip the
outliers from the dataset. Outliers which are benign are also stripped from the dataset, this is the price
that is payed to reduce the overall noise in the dataset.

4.3. Recommendations

There are still some directions left to explore due to limited time and scope of this thesis. In this section,
possible future steps will be recommended. Some of these recommendations are follow-ups from the
research done in this project.

It is observed in the data of this study that after 24 months the downward bias is vanished, because
almost all the records are submitted by that time. Therefore, for all the time series in the dataset the
now-casting starts 24 months before the present. Beginning a now-cast 24 months before the present
is not necessary for all datasets. How long it takes before enough records have been submitted for
the bias to disappear can differ per time series and per month of the year. If this would have been
measured, then variable starting times could have been used for now-casting. It would be preferred to
start a now-cast closer to the present if the downward bias vanishes early. This gives less overhead
and a now-cast starting point which might better reflect the present economy.

The use of more indicators is an interesting direction to explore. More relevant indicators for now-
casting can be obtained either from the dataset provided by Exact or external economic data. Various
data sources might improve the accuracy, but more importantly, opens up a more techniques which
can be explored. For example, the Factor Model or Dynamic Factor Model described in the Related
Work, could be extended to additionally model the relation between endogenous data and exogenous
indicators.

The data that is used for this study is discretized per month. This means that the submission date
and transaction date of each record is partitioned in intervals of months. This is convenient because it
is the same frequency as the KPIs that need to be now-casted. This results in some loss in information
due to the discretization. The records could be partitioned in higher frequency periods, such as weeks
or days. It is also possible to not discretize at all. To be able to still now-cast on a monthly frequency
Bridge Equations could be used. The use of models designed for mixed frequency data will become
more inviting to use.

In the data that is used were also records submitted with future transactions. The records with future
transactions are expected to occur in the future, usually because they happen on a regular basis, like
fixed costs. These future transactions give an insight in the foresighted cash flow from the bookkeeper’s
perspective. The foresights are disregarded during this study but might be able to contribute in a now-
cast.

2Calendar of working days for the Netherlands: http://www.vakantiespreiding.eu/aantal-werkdagen/.
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Further Notes

A.1. Experiments on artificial data

This section illustrates the possible contribution of modeling a time varying relation. Artificial time series
are used to show how the principle works in simple circumstances. In this section is shown how a model,
that would be able to capture a time varying relation between exogenous and endogenous data, would
be designed to (almost) perfectly fit on the data.

In Figure A.1 is a time series Y; displayed with an auto regressive lag of 3. In this artificial setup, Y;
has no noise and follows this signal: {4,3,7,4,3,7,---}. An AR(3) process for which its parameters are
fitted on time series Y; is displayed with the green line in Figure A.1. The AR(p)-process is described in
Equation A.1, with ¢; free parameters. The model is trained on Y; from t = 0 to t = 29. For t > 30 the
model forecasts subsequent points. The dashed line starting from t = 30 for Y; in Figure A.1 indicates
that this is not shown to the model. The AR(3) model is able to (almost) perfectly reproduce and forecast
Y.
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Figure A.1: Time series Y; and a fitted AR(3)-process

An external factor X; can be observed. X; has 4 auto regressive lags and is described by:
{1,0.5,1.5,0.75,1,0.5,1.5,0.75, ---}. A new time series Y{ is introduced. Y} is influenced by X;. X; has
a time varying influence on Y;. This time varying influence is described with relation R,. The relation
R, is described by an artificial time series which has 4 auto regressive lags and follows this signal:
{1,3,2,4,1,3,2,4,---}. Infigure A.2 is the new time series Y; depicted which is influenced by the external
factor X, according to: Y/ = Y; - R, - X;. The different auto regressive lags of R, and Y, cause a more
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complex structure in Y{. The external influence causes Y{ to obtain an auto regressive lag of 12. An
AR(3)-process would not be able to fit on ¥{. An AR(12)-process however would be able to (almost)
perfectly fit on the training data. An AR(12)-process requires 12 parameters. We can do better in terms
of parameters and generalization. A new model is introduced which models an AR- and exogenous-AR
(ARXAR) process. an ARXAR(p, P) is described with Equation A.2. An ARXAR(3, 4) is trained on Y/
with exogenous time series: X; - R;. 7 parameters are used for this model. It is able to (almost) perfectly
fit on the new data Y{

P P
Y, = Z Yo i Z YiXe i (A.2)
=1 =0
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Figure A.2: Time series Y{ and two processes

The AR(12)-process does not correctly generalize because it has not learned to model the external
influence. This can be tested by changing the values of X; in with t > 30. To allow the process to
anticipate on external changes, an ARX model is introduced. ARX is desribed by Equation A.3. In
Figure A.3a is shown that the ARX(12) process is not able to fit properly on the data. An ARXAR(3, 4)
requires X; - R; as exogenous time series to be able fit on Y;.

Let us change X; to an IID random variable: X; ~ N(0,1). Y{ is still defined as: Y/ = Y; - R; - X;. The
ARXAR is still able to obtain a good fit on the data if the relation is as exogenous data. This can be
seen in Figure A.3b. An ARXAR(3, 4) with X, is provided as exogenous data. The model is not able to

properly fit.
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Figure A.3: Time series Y{ influenced by external variable X,

We have seen that Y; is influenced by an observable external variable X;. X; has a time dependent
influence on Y/. This time dependent influence is described by R; which is not directly observable, but
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can be uncovered: R, = Y{/(X; - Y;). To be able to use relation R,, it needs to be modeled because it
is derived as the relation between X, and Y/, but Y/ is unknown after t > 30. The modeled relation R;
and external variable X; are used together in a model to properly fit on the data.
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