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Abstract

American option pricing has been an active research area in financial engineering over the past
few decades. Since no analytic closed-form solution exists, various numerical approaches have
been developed. Among all proposed methods, the least square Monte Carlo (LSMC) approach
proposed by Longstaff and Schwartz (2001) is the most successful and popular. The LSMC
utilizes linear regression for the estimation of the continuation values for the option. However,
the accuracy of the LSMC is dependent on the chosen basis functions, where no objective strategy
exists for the basis function selection process. Recently, Hu and Zastawniak (2020) proposed
to use kernel ridge regression (KRR) with a bundling technique for high-dimensional American
option pricing to avoid selecting the basis functions.

The Heston model is an example of the stochastic volatility model (Heston, 1993), where
only limited literature can be found concerning multi-dimensional American option pricing un-
der this model (Samimi and Mehrdoust, 2018). In this thesis, we reproduce the proposed
KRR-based methods. Additionally, we extend the KRR-based methods for high-dimensional
American options under the Heston model. We also involve the LSMC method for evaluating
the pricing efficiency and accuracy of KRR-based methods. As no reliable benchmarks exist for
the valuation of American options under the high-dimensional Heston model, we implement the
primal-dual approach proposed by Andersen and Broadie (2004) and use its result as the refer-
ence price. Nevertheless, the obtained benchmarks are biased. Therefore, we can only conclude
that the KRR-based methods apply to American option pricing under the high-dimensional He-
ston model. Moreover, the KRR-based techniques are computationally more efficient than the
LSMC method.
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Chapter 1

Introduction

An option allows the owner to trade a prescribed amount of underlying assets at a predetermined
strike price before or on the expiration date. The American and European options can be
distinguished according to exercise time. The former permits the owner to exercise at any time,
including the day of expiration, whereas the latter allows the owner to exercise only at maturity.

The valuation of the options is crucial in the financial market. The traders can adjust their
strategies and portfolios according to the option value estimate. Over the past few decades, the
valuation of American options has been an active research area in financial engineering since it
has been widely traded in the financial market. The value of an American option is equal to
the achieved payoff when the holder optimally exercises it. This valuation problem is the same
as determining the optimal exercise strategy, which leads to an optimal stopping time problem.
In contrast to the valuation of European options, where a closed-form solution exists under
many models (Oosterlee and Grzelak, 2020), American option pricing is generally solved using
numerical approaches.

The Monte Carlo methods are the most feasible approach for high dimensional option pric-
ing. Tilley (1993) first applied Monte Carlo simulation to American option valuation. Among all
proposed Monte Carlo methods since then, the regression-based method is the most appealing
for pricing high-dimensional American options. This approach involves backward recursion to
solve the optimal stopping time problem, which was first proposed by Carriere (1996) and fur-
ther developed by Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz (2001). Especially
the Least Squares Monte Carlo (LSMC) approach proposed by Longstaff and Schwartz (2001)
remains the most successful simulation methodology for multidimensional American option pric-
ing in both pricing accuracy and computational efficiency. One drawback of this approach is
that the pricing accuracy depends on the chosen basis functions for linear regression. Han et al.
(2008) suggested using kernel ridge regression instead of linear regression to avoid the selection
process of the basis function. Hu and Zastawniak (2020) combined the kernel ridge regression
with the bundling idea in the stochastic mesh method developed by Jain and Oosterlee (2015).
This hybrid approach produces accurate pricing results and is computationally more efficient
than LSMC for high-dimensional American options (Hu and Zastawniak, 2020).

Most of the methods mentioned above were applied to American options from which the
underlying asset prices are generated by the Geometric Brownian motion (GBM) model (and
Merton jump-diffusion in Hu and Zastawniak (2020)). Since the development of GBM, it has
become a popular model for option pricing among researchers and practitioners. Nevertheless,
the GBM model does not satisfy the properties of the real asset prices as the volatility is
assumed to be a constant. To overcome this problem, stochastic volatility models are developed.
The Heston model is an example of those developed models, where the volatility follows the
Cox–Ingersoll–Ross(CIR) process (Heston, 1993). This CIR process ensures the underlying

1



2 CHAPTER 1. INTRODUCTION

asset prices have non-negative volatility. In addition, the asset prices generated by the Heston
model converge to their long-term mean value over time, as the Heston model satisfies the mean-
reverting property. Besides, the Heston model has a closed-form solution for European options.
Those are the reasons for the popularity of the Heston model.

Those numerical methods for option pricing are also applied to the Heston model. However,
only limited literature for American option pricing under the multi-dimensional Heston model
can be found. In Samimi and Mehrdoust (2018), the LSMC methods are applied to multi-
dimensional (up to dimension 3) assets under the Heston model. In this thesis, we will repro-
duce the kernel ridge regression (KRR)-based methods proposed by Hu and Zastawniak (2020).
Furthermore, we will investigate whether the KRR-based method applies to American option
pricing, where the asset prices are generated using the high-dimensional Heston model. We will
simultaneously utilize LSMC methods for the high-dimensional Heston model and compare the
LSMC-and KRR-based methods in terms of pricing accuracy and computational efficiency.

Main assumption

In this thesis, we consider the probability space (Ω,F ,Q) with a time horizon [0, T ], where Q
denotes the risk-neutral measure. F is the σ-algebra of all events Ω and {Ft|0 ≤ t ≤ T} is the
corresponding filtration.

Outline of the thesis

The thesis is organized as follows. chapter 2 covers the mathematical description of American
option pricing. The proposed kernel ridge regression-based (KRR-based) methods by Hu and
Zastawniak (2020) are derived in chapter 3. The pricing results under high-dimensional geomet-
ric Brownian motion and Merton jump diffusion are evaluated in chapter 4. We elaborate on
the Heston model in chapter 5, followed by numerical experiments of the Heston model using
the KRR-based method in chapter 6. The conclusion and recommended future research are in
chapter 7.



Chapter 2

Background

This chapter presents the fundamental concepts of American option pricing in a nutshell. We
will begin with preliminary information on financial assets, followed by numerous asset price
processes. Then we will cover the basic definitions of options. After the derivation of European
option pricing, we will present the main topic of this thesis: the valuation of high-dimensional
American options. Please keep in mind that, unless otherwise specified, all the fundamentals in
this chapter are derived from Oosterlee and Grzelak (2020).

2.1 Preliminaries

A stochastic process {W (t) : t ≥ 0} is called a Wiener process (or Brownian motion) if the
following conditions hold:

1. This process starts at 0 , i.e. W0 = W (0) = 0.

2. For all t > 0, Wt is normally distributed with mean equal to zero and variance equal to t,
i.e., Wt ∼ N (0, t).

3. It has independent increments, i.e. for 0 ≤ t0 < t1 < · · · < tn, the random variables
Yi = W (ti)−W (ti−1) are independent for all i ∈ {1, ..., n}.

4. It is an almost surely continuous path.

The movement of asset prices is generally represented by a stochastic differential equation (SDE),
which is commonly constructed using the Wiener process. Before presenting various examples of
the SDE, two essential properties will be discussed to provide an intuition regarding the behavior
of asset prices.

Definition 2.1.1 (Markov Process). Let (Ω,F ,Q) be a probability space with a time horizon
[0, T ], where F = {Ft|0 ≤ t ≤ T} is the filtration. A stochastic process S(t) defined on this
probability space is a Markov process if following condition holds for any bounded and measurable
function g : RN → R with s ≤ t :

E[g(S(t))|F(s)] = E[g(S(t))|S(s)].

This Markov property states that the current asset price contains all information about past
prices. The other property is the martingale property, which states that the expectation of the
future value is equal to the current value. If the martingale property holds, the model is free of
arbitrage. Or, equivalently, there are no risk-free profits.

3



4 CHAPTER 2. BACKGROUND

Definition 2.1.2 (Martingale). Given probability space (Ω,F ,Q) and define a stochastic process
S(t) on this probability space. S(t) is a martingale if E[|S(t))|] < ∞ for all t < ∞, and

E[S(t))|F(s)] = S(s), for s < t.

It is common to assume that the asset price follows the Itô’s process. The Itô’s process
satisfies the Itô’s lemma, which is fundamental for the derivation of the solutions of the SDE
and for the option pricing.

Definition 2.1.3 (Itô’s process). An Itô’s process is a stochastic process that satisfies the fol-
lowing SDE,

dX(t) = µ̃(t,X(t))dt+ σ̃(t,X(t))dWt,with X(t0) = X0

where µ̃(t,X(t)) a general drift function that represents the growth rate of the asset prices and
σ̃(t,X(t) the volatility function which indicates the difference with the expected value and Wt

is a Wiener process. The drift function and the volatility function must satisfy the following
conditions:

|µ̃(t, x)− µ̃(t, y)|2 + |σ̃(t, x)− σ̃(t, y)|2 ≤ K1|x− y|2

|µ̃(t, x)|2 + |σ̃(t, x)|2 ≤ K2(1 + |x|2),

for some x, y ∈ R and K1,K2 ∈ R+. Those two conditions state that the volatility and the
drift terms of a stock price should not change rapidly.

Before starting with Itô’s lemma, we will introduce Itô’s multiplication table (see Table 2.1)
for the Wiener process, which is an essential tool in financial mathematics.

dt dWt

dt 0 0

dWt 0 dt

Table 2.1: Itô’s multiplication table for Wiener process.

For the term dtdWt, it is clear that its expectation is equal to zero as the Wiener increments
follow the normal distribution with mean zero and variance dt. And the standard deviation of
dtdWt is dt

3
2 ; this term vanishes rapidly to zero as dt goes to zero.

Remark. (dWt)
2 → dt as dt → 0.

Proof. Suppose the time horizon [0, T ] is divided into N equal-sized timesteps and the step size
is ∆t = T

N , then we can define dWt = W (t+∆t)−W (t)

E[(dWt)
2] = lim

∆t→0
E[(W (t+∆t)−W (t))2] = lim

∆t→0
Var (W (t+∆t)−W (t)) = lim

∆t→0
∆t = dt.

The variance can be determined as follows

Var
(
(dWt)

2
)
= lim

∆t→0
E
[
(W (t+∆t)−W (t))4

]
− lim

∆t→0

(
E
[
(W (t+∆t)−W (t))2

])2
= lim

∆t→0
3(∆t)2 − lim

∆t→0
(∆t)2 = lim

∆t→0
2(∆t)2 = 2(dt)2.

As dt goes to zero, variance goes to zero faster than the expectation. Therefore, (dWt)
2 = dt.
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Lemma 2.1.1 (Itô’s lemma). Suppose X(t) is a Itô’s process, i.e. dX(t) = µ̃(t,X(t))dt +
σ̃(t,X(t))dWt, and suppose Y (t) = g(t,X(t)) is a function of time t and X(t) with continuous

partial derivatives: ∂g
∂t ,

∂g
∂X and ∂2g

∂X2 . Then the dynamic of g(t,X(t)) can be represented as:

dY (t) =

(
∂g

∂t
+

∂g

∂X
µ̃(t,X(t)) +

1

2

∂2g

∂X2
σ̃2(t,X(t))

)
dt+

∂g

∂X
σ̃(t,X(t))dWt. (2.1)

In the following section, we will present some commonly used models for generating asset
prices. These models will later be used for the American option pricing.

2.2 Various asset price process

2.2.1 Geometric Brownian Motion (GBM)

The most commonly used asset price process is the Geometric Brownian motion (GBM), which
satisfies the following SDE for t ∈ [0, T ]:

dS(t)

S(t)
= (r − q)dt+ σdWt, (2.2)

where St = S(t) is the asset price at time t, r is the annual risk-free interest rate, q the dividend
rate, σ denotes the volatility parameter which indicates the difference with its expected value,
and Wt is a Wiener process.

Let us consider the logarithmic process of the GBM, which is defined as Xt = X(t) =
log(S(t)) on t ∈ [0, T ]. The corresponding partial derivatives of this process are as follows

∂Xt

∂t
= 0,

∂Xt

∂St
=

1

St
, and

∂2Xt

∂S2
t

= − 1

S2
t

.

By applying the Itô’s lemma and then integrating, we get

dXt =

(
1

St
(r − q)St −

1

2S2
t

σ2S2
t

)
dt+

1

St
StσdWt =

(
(r − q)− 1

2
σ2

)
dt+ σdWt

⇒
∫ t

0
dXs =

∫ t

0

(
(r − q)− 1

2
σ2

)
ds+

∫ t

0
σdWs

Xt = X0 +

(
(r − q)− 1

2
σ2

)
t+ σ

√
tZ, (2.3)

with Z ∼ N (0, 1). From this expression, the exact solution of Eq.(2.2) can be derived as follows

log(St) = log(S0) + log(e((r−q)− 1
2
σ2)t+σ

√
tZ)

= log(S0e
((r−q)− 1

2
σ2)t+σ

√
tZ),

which gives

St = S0e
((r−q)− 1

2
σ2)t+σ

√
tZ . (2.4)

We can also consider the following for the simulation of the GBM process. Let us divide the
time horizon into N time steps with step size h = T

N , i.e. 0 = t0 < t1 < ... < tN = T . Then the
logarithmic asset price at each time step is

Xti+1 = Xti +

(
(r − q)− 1

2
σ2

)
h+ σ

√
ti+1 − tiZ, (2.5)

for i ∈ {0, ..., N − 1} and Z ∼ N (0, 1). Then Sti+1 = exp (Xti+1).
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Multi-dimensional GBM

Let us extend the single asset GBM to a multi-dimensional GBM with correlated asset prices of
dimension d. The SDE of the multi-dimensional underlying asset S(t) = (S1(t), ..., Sd(t)) ∈ Rd

is:
dSt,v

St,v
= (r − qv)dt+ σvdWt,v, v = 1, ..., d. (2.6)

The Wiener processes Wt,v and Wt,l are correlated with correlation coefficient ρvl, for v, l =
1, ..., d and v ̸= l. Let ΣS ∈ Rd×d denote the covariance matrix which is defined as (ΣS)vl =
σvσlρvl and we denote its Cholesky decomposition as ΣS = AAT . Then Eq.(2.6) can be rewritten
as

dSt,v

St,v
= (r − qv)dt+

d∑
l=1

Av,ldW̃t,l, v = 1, ..., d, (2.7)

with independent W̃t,v and W̃t,l for all v, l = 1, ..., d with v ̸= l.
The multi-dimensional GBM can be simulated similarly as the one-dimensional case. By

dividing the time horizon [0, T ] into N equal-sized time steps, the multi-dimensional logarithmic
process Xt = log(St) is discretized as

Xi+1,v = Xi,v + (r − qv −
1

2
σ2
v)h︸ ︷︷ ︸

=µi+1,v

+
√
h

d∑
l=1

Av,lZi,l, for i = 0, ..., N − 1, (2.8)

where h = T
N and Zi,l are identically independent standard normally distributed. The term

ti is denoted as i to simplify the notation. As a result, Xi+1|Xi is normally distributed:
Xi+1|Xi ∼ N (µi+1, hΣ

S), with µi+1 = (µi+1,1, ..., µi+1,d). Just like the single asset GBM,
Si+1,v = exp (Xi+1,v).

Sudden jumps can be observed when looking at the movement of asset prices in the financial
market. The GBM model does not capture this behavior which is a drawback of the GBM
model. In the following subsection, we will introduce an example of the model that covers this
phenomenon.

2.2.2 Merton Jump diffusion (MJD)

To investigate the discontinuity of the asset prices, Merton (1976) proposed the jump-diffusion
model. The jump-diffusion models consist of one diffusion and one jump part. For the Merton
jump-diffusion model(MJD), the diffusion part is generated from the GBM. Merton added the
Poisson process to this diffusion model to describe the sudden asset price jumps by utilizing the
discontinuous nature of the Poisson distribution.

Definition 2.2.1 (Poisson process). A Poisson process, {Γ(t), t ≥ t0 = 0}, is an integer-valued
stochastic process with the following properties

1. It starts at 0, i.e. Γ(0) = 0.

2. It has independent increments: for all t0 = 0 < t1 < . . . < tn, the random variables
Yi = Γ(ti)− Γ(ti−1) are independent for all i ∈ {1, ..., n}.

3. The increments are Poisson distributed:

Q [Yi = k] =

(
λJ(ti − ti−1)

)k
e−λJ (ti−ti−1)

k!
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for all i ∈ {1, ..., n} and integers k ≥ 0. The intensity λJ > 0 denotes the expected number
of jumps per time unit.

The underlying asset prices generated by an MJD model satisfy the following SDE under
the risk-neutral measure Q

dS(t)

S(t)
=
(
r − q − κJλJ

)
dt+ σdW (t) +

(
eN

J − 1
)
dΓ(t), t ∈ [0, T ], (2.9)

where r denotes the riskless interest rate, q the dividend rate and σ is the volatility of the
diffusion part. Γ(t) is a Poisson process with jump intensity λJ and NJ is the jump sizes
following normal distribution with mean µJ and variance (σJ)2. To make sure that e−rtSt is

a martingale under the risk-neutral measure, κJ = E
[
eN

J − 1
]
= exp

(
µJ + (12σ

J)2
)
− 1, for

the detailed derivation see p.135 of Oosterlee and Grzelak (2020). We assume that the Poisson
process Γ(t), the Wiener process W (t), and the jump size J are independent of each other.

The Itô’s table and the Itô’s lemma for MJD are slightly different than we have seen before.
The Itô’s table for the Poisson process is shown in the table below. For the proof that (dΓt)

2 =
dΓt, we refer to p.125 in Oosterlee and Grzelak (2020).

dt dWt dΓt

dt 0 0 0

dWt 0 dt 0

dΓt 0 0 dΓt

Table 2.2: Itô’s multiplication table for the Poisson process.

Single asset MJD

Now let us consider the logarithmic process X(t) = log(S(t)). By using the Itô’s table and the
Itô’s lemma for Poisson process (see P.124 in Oosterlee and Grzelak (2020)), the dynamics of
X(t) can be derived as

dXt =

(
r − q − κJλJ − 1

2
σ2

)
dt+ σdWt +NJdΓt.

By integrating, the analytic solution of the logarithmic process is

Xt −X0 =

(
r − q − κJλJ − 1

2
σ2

)
(t− 0) + σ (Wt −W0) +

Γt∑
m=1

NJ
m

⇒ Xt = X0 +

(
r − q − κJλJ − 1

2
σ2

)
t+ σWt +

Γt∑
m=1

NJ
m (2.10)

where Γt is the number of jumps between the time interval [0, t] and NJ
m is the jump size of the

m-th jump. Then the exact solution of the SDE in Eq.(2.13) can be obtained

St = S0 exp

((
r − q − κJλJ − 1

2
σ2

)
t+ σWt

)
exp

(
Γt∑

m=1

NJ
m

)
. (2.11)

When dividing the time horizon into N time steps with h = T
N the step size, we assume that

the number of jumps between each time step is defined as ∆Γi = k, for i = 0, ..., N − 1. Then
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Eq.(2.10) can be discretized as follows

Xi+1 = Xi +

(
r − q − κJλJ − 1

2
σ2

)
t+ σ(Wti+1 −Wti) +

k∑
m=1

NJ
m.

Since the jump size NJ
m

iid∼ N (µJ , (σJ)2), it implies that
∑k

m=1N
J
m ∼ N (kµJ , k(σJ)2). As a

result, the MJD is simulated using the following expression

Xi+1 = Xi +

(
r − q − κJλJ − 1

2
σ2

)
h+ σ

√
hZ + kµJ + σJ

√
kZJ , (2.12)

where Z,ZJ iid∼ N (0, 1).

Multi-dimensional MJD

Given a d dimensional underlying asset prices S(t) = (S1(t), S2(t), ..., Sd(t)) generated by the
multi dimensional MJD. Then the dynamic of this multi-dimensional asset is

dSt,v

St,v
=
(
r − qv − λJκv

)
dt+ σvdWt,v +

(
eN

J
v − 1

)
dΓt,v, v = 1, . . . , d. (2.13)

Since the diffusion part follows the multi-dimensional GBM model, we have the same setting as
in Eq.(2.6). For the jump part, we assume that the components of S(t) have the same jump
numbers with different jump sizes NJ = (NJ

1 , ..., N
J
d ) ∈ Rd. This jump size NJ is multivari-

ate normal distributed, i.e., NJ ∼ N (µJ ,ΣJ) with µJ = (µJ
1 , ..., µ

J
d ). Its covariance matrix is

defined as (ΣJ)vl = σJ
v σ

J
l ρ

J
vl, for v, l = 1, ..., d with v ̸= l. Moreover, we assume the Cholesky

decomposition of the variance matrix is ΣJ = AJ(AJ)T . And just as the one dimensional case,

κv = exp
(
µJ
v + (σJ

v )
2

2

)
− 1.

Suppose the number of jumps between each time step with step size h = T
N is defined as

∆Γi = k, for i = 0, ..., N − 1. Then similarly to the single asset case, the logarithmic process
Xi+1 given Xi and ∆Γi = k can be simulated as

Xi+1,v = Xi,v +

(
r − qv − κJvλ

J − 1

2
σ2
v

)
h+

√
h

d∑
l=1

Av,lZi,l + kµJ
v +

√
k

d∑
l=1

AJ
v,lZ

J
i,l, (2.14)

for v = 1, ..., d. Note the matrix A is the Cholesky decomposition of the covariance matrix

ΣS for the Wiener process and Zi,l, Z
J
i,l

iid∼ N (0, 1). The expression in Eq.(2.14) is a summation
of two independent normal distributions. Therefore, (Xi+1|Xi,∆Γi = k) is multivariate normal
distributed with the mean µJD

i+1 defined as

µJD
i+1,v = Xi,v +

(
r − qv − κJvλ

J − 1

2
σ2
v

)
h+ kµJ

v , v = 1, ..., d

and the variance ΣJD = hΣS + kΣJ .
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2.2.3 Cox–Ingersoll–Ross (CIR)

Up to now, we have only considered constant volatility. In this subsection, we will introduce
the Cox–Ingersoll–Ross(CIR) model as an example of stochastic volatility. The CIR process was
introduced by Cox et al. (1985) and was first used for the evaluation of interest rates. The SDE
of this variance process is

dv(t) = κ(v̄ − v(t))dt+ γ
√

v(t)dWv(t), (2.15)

where κ > 0 is the speed of mean reversion, i.e., the rate at which the variance process reverts to
the long-term mean v̄ ≥ 0. The term γ > 0 denotes the volatility of the variance process. This
variance process ensures non-negative volatility, which is desirable for simulating the underlying
asset prices. If the Feller condition 2κv̄ ≥ γ2 is satisfied, then it is guaranteed that the volatility
v(t) stays strictly positive (Feller, 1951). Else, the variance process may reach zero.

Definition 2.2.2 (CIR). Given a CIR Process vt = v(t) for t > 0. Let χ2(δ, κ̄(t, s)) denote a
non-central chi-squared random variable with degrees of freedom δ and the non-centrality param-
eter κ̄(t, s). Then vt | vs is distributed as

vt | vs ∼ c̄(t, s)χ2(δ, κ̄(t, s)), t > s > 0,

with

c̄(t, s) =
1

4κ
γ2
(
1− e−κ(t−s)

)
, δ =

4κv̄

γ2
, κ̄(t, s) =

4κv(s)e−κ(t−s)

γ2
(
1− e−κ(t−s)

) .
The mean and variance are

E[ν(t) | F(s)] = c̄(t, s)(δ + κ̄(t, s))

Var[ν(t) | F(s)] = c̄2(t, s)(2δ + 4κ̄(t, s)).

(2.16)

(2.17)

When the underlying asset price S(t) is generated using the GBM with the CIR model as
the variance process, i.e. σ =

√
v(t) in Eq.(2.2), then we get the Heston model{

dS(t)
S(t) = (r − q)dt+

√
νtdW

S(t)

dν(t) = κ(ν̄ − ν(t))dt+ γ
√
ν(t)dW ν(t)

, t ∈ [0, T ].

We have utilized the Euler discretization to simulate the previous two models. Nevertheless,
this discretization scheme does not apply to the CIR model as it leads to an unrealistic negative
variance process, although the model itself ensures non-negative variances (Alfonsi, 2015). We
will provide more details about the simulation of the Heston model in chapter 5.

2.3 Options

2.3.1 Basic definitions of options

An option is a contract between two parties that gives the option holder the right to sell or
buy a certain amount of the underlying assets for a strike price within a period. Let us denote
the strike price as K and the maturity of the option as T . The holder’s exercise strategy is
determined by the performance of the underlying assets. If the holder decides to exercise the
option, the option seller must abide by the contract and trade in the assets. An option is a call
option if the holder has the right to buy the underlying assets, and a put option if the holder
has the right to sell.
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When considering an European option, the option holder can only exercise the option at
the maturity, t = T . In contrast, an American option can be exercised at any moment,
including the maturity, i.e., t ∈ [t0, T ]. A Bermudan option can be seen as the intermediate
style between the European and American options. It provides the option holder with a finite
number of opportunities to decide whether to exercise the option, so t ∈ {t1, ..., tn = T}. When
n → ∞ and the step size T

n → 0, the Bermudan option approximates the American option.

The exercise strategy depends on the payoff of the particular option. The option holder will
exercise the call option if the asset price S(t) is higher than the strike price K at the exercise
time t. Since the holder can immediately sell assets in the market, the profit for the holder is
S(t)−K. Conversely, the call option is valueless when the strike is higher than the asset price
because the assets can be purchased at a lower price. Therefore, the profit is 0. In conclusion,
the payoff function h(t, S(t)) of a call option at a certain exercise time t is

h(t, S(t)) = ht(St) = max{S(t)−K, 0}. (2.18)

In the case of a put option, the holder will utilize his right as the asset price S(t) < K at
exercise time t. Since the option seller must purchase the underlying assets at the strike price,
the holder will benefit by K − S(t). When S(t) > K, selling the assets on the financial market
is a wiser choice for the option holder than exercising the option. Therefore the payoff function
of a put option is defined as

h(t, S(t)) = ht(St) = max{K − S(t), 0}. (2.19)

The S(t) − K and K − S(t) are also called the intrinsic option value of the call and put
options, respectively.

Definition 2.3.1 (ITM,ATM,OTM). Given the asset price S(t) and the strike price K for an
option. If the intrinsic option value corresponding to this option at time t is positive, then this
option is in-the-money (ITM). If the intrinsic option value is close to zero, then the option is
called at-the-money (ATM). When the payoff function of the option is equal to zero, the option
is out-the-money (OTM).

As mentioned, the Bermudan option approximates the American option as the number of
exercise dates goes to infinity. Let us consider a Bermudan option with N exercise dates. The
Bermudan can be treated as a European option between two exercise opportunities. Therefore,
the valuation of a Bermudan option can be seen as finding the best stopping time.

In the following sections, we will examine European option pricing, followed by high-dimensional
American option pricing. Finally, we explain the fundamental concept of the regression-based
Monte Carlo method to American option pricing. Please keep in mind that we are just looking
at the risk-neutral probability space.

2.3.2 European option pricing

The Feynman-Kac theorem can be used for obtaining a closed formed solution of the European
option pricing.

Theorem 2.3.1 (Feynman-Kac theorem). Given the money-savings account M(t) with constant
interest rate r which is modeled as dM(t) = rM(t)dt. Let the underlying asset price S = S(t)
defined by

dS(t) = µ̃(t, S(t))dt+ σ̃(t, S(t))dWQ(t),
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with µ̃(t, S) and σ̃(t, S) are the drift and the volatility, respectively. Suppose V (t, S) is a differ-
entiable function of time t and S(t) that satisfies the following PDE:

∂V

∂t
+ µ̃(t, S)

∂V

∂S
+

1

2
σ̃2(t, S)

∂2V

∂S2
− rV = 0,

with V (T, S) = h(T, S) and h(t, S) is the payoff function. Then the solution V (t, S) under the
risk neutral measure Q is given by:

V (t, S) = e−r(T−t)EQ [h(T, S)|Ft] ,

for all t < T .

Proof. See Appendix A.

Suppose the underlying asset is generated by GBM with a dividend rate q = 0. It means

dS(t)

S(t)
= rdt+ σdWt, for t ∈ [0, T ].

And suppose that our trading strategy is to hold one option with value V (t, St) and continuously
trade in the stock to hold an amount of n shares with price St. Then the value of our portfolio is
Π(t, St) = V (t, St)− nS(t). It means dΠ(t, St) = dV (t, St)− ndS(t). By using the Itô’s lemma,
we get the following dynamic for V (t, St)

dV =

(
∂V

∂t
+

∂V

∂S
rS +

1

2
σ2S2∂

2V

∂S2

)
dt+

∂V

∂S
σdWt,

therefore,

dΠ =

(
∂V

∂t
+

∂V

∂S
rS +

1

2
S2σ2∂

2V

∂S2

)
dt+

∂V

∂S
σdWt − n [rdt+ σdWt]S

=

(
∂V

∂t
+

(
∂V

∂S
− n

)
rS +

1

2
σ2S2∂

2V

∂S2

)
dt+

(
∂V

∂S
− n

)
σdWt. (2.20)

Let us assume that ∂V
∂S = n. This assumption can be made because we want to hedge the risky

position. Then Eq.(2.20) becomes

dΠ =

(
∂V

∂t
+

1

2
S2(t)σ2∂

2V

∂S2

)
dt. (2.21)

Moreover, the value of the portfolio should generate the same return as the money-saving account
M(t), as the growth speed has to be equivalent (Oosterlee and Grzelak, 2020). Let us assume
that the interest rates r are constant, then the time value of money can be determined by using
the compounded interest, which gives us:

dM(t) = rM(t)dt.

The solution of this equation is M(t) = M0 exp
(∫ T

0 rdt
)
, with M0 is the constant of integration.

Then, Π(t) = M(t) implies dΠ = rΠdt. If we combine this with the equation above, we get the
Black-Scholes PDE:

∂V

∂t
+

1

2
σ2∂

2V

∂S2
S2(t) = rΠ.
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Note that Π = V (t, St)− ∂V
∂S S(t), then we get

∂V

∂t
+

1

2
S2(t)σ2∂

2V

∂S2
= r(V (t, St)−

∂V

∂S
S(t)) ⇒ ∂V

∂t
+

∂V

∂S
rS(t) +

1

2
σ2S2(t)

∂2V

∂S2
− rV = 0.

It means the Feynman-Kac theorem applies to the GBM model. The Feynman-Kac theorem can
be adjusted for the MJD models. See chapter 5 of Oosterlee and Grzelak (2020). The verification
for the Heston model is similar to the procedure of the GBM model. For the derivation for the
Heston model, we refer to section 8.2.1 of Oosterlee and Grzelak (2020).

2.3.3 American option pricing

Let (Ω,F ,Q) be a probability space with a time horizon [0, T ], where F = {Ft|0 ≤ t ≤ T} is
the filtration and Q the risk-neutral measure. Let us define the moving saving account with
constant interest rate r as

Mt = exp

(∫ t

0
rdt

)
and the discount factor Ds,t =

Ms
Mt

= e−r(s−t). Assume the underlying asset prices St ∈ Rd with
d ∈ Z+ follow one of the models introduced in the previous section, which is a Markov process.
Moreover, we define the payoff at time t as ht(St) = h(t,St). Since an American option can be
exercised at any time before the expiration time T , the problem of American option pricing is
to find the best stopping time such that it optimizes the expected discounted payoff:

V0 = V (St0) = sup
τ∈T

e−r(τ−t0)E[hτ (Sτ )] = Dt0,τ∗E[hτ∗(Sτ∗)], with t0 = 0 (2.22)

where T is the set of all stopping times and τ∗ ∈ T is the optimal stopping time. We call a
random variable τs as a stopping time if {τs ≤ t} is Ft-measurable for all t ≥ 0.

In practice, a Bermudan option can be used to approximate the American option. As
mentioned before, a Bermudan option gives the holder the right to exercise at discrete time
steps. If we subdivide the time horizon [0, T ] as 0 = t0 < t1 < · · · < tN = T with step size
h = T

N , then the Bermudan option can be exercised at any t ∈ {t0, t1, · · · , tN}. From now, we
will denote ti as i to simplify the notations with i ∈ {1, ..., N}.

Regression-based Monte Carlo approach

The basic idea of the regression-based Monte Carlo approach consists of the following steps:

1. Simulate M paths of underlying asset prices S = (S0, ...,SN ) over the time horizon. This
can be done via the simulation process stated in the previous section.

2. Evaluate the discounted cashflow of the American option on each simulated path using
regression.

3. Average the obtained cashflows.

The main focus of the second step is to find the optimal exercise strategy with the corre-
sponding discounted cashflow. To accomplish this, we start from the maturity and perform a
backward recursive process. Let Si be an arbitrary Monte Carlo path at timestep i, simulated
in step 1. At every time step i ∈ {N − 1, ..., 0}, the option holder has two choices:

1. Exercise the option, which means the option value is equivalent to the payoff at the current
timestep, i.e. Vi(Si) = hi(Si),
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2. Hold the option to the next time step, then the option can be considered as newly issued
at timestep i. Therefore, the continuation value is defined as

Qi(Si) = E[Di,i+1Vi+1|Fi] = E[Di,i+1Vi+1|Si]. (2.23)

The second equality is due to the Markov property of the underlying asset prices.

The holder’s decision is based on which choice can maximize the profit. As a result, the
option value at time step i is

Vi(Si) = max{hi(St), Qi(Si))}, i = 0, ..., N − 1.

Note VN = hT (S(T )), and together with the equation above, it forms the dynamic programming
principle (DPP) for solving the optimal stopping problem stated in Eq.(2.22). To obtain the
true continuation value is as hard as solving the optimal stopping time problem of the American
option itself. The regression-based approaches estimate the continuation value using regression.
The DPP stated above uses the estimation of the continuation value directly in computing the
option value, which can result in less accurate results during the backward recursion process
(Hu and Zastawniak, 2020). To limit the influence of the estimated continuation value on the
valuation of the option, we will reformulate this DPP by using the stopping time.

The optimal stopping time τ∗ is the first time from the start such that the exercise payoff is
greater or equal to the continuation value

τ∗0 = inf{t ≥ t0 : hi(St) ≥ Qt(St)}.

Then we can interpret the options that were not exercised before current timestep i as newly
issued. Thus, τ∗i = inf{t ≥ ti : hi(St) ≥ Qt(St)}. The DPP in stopping time form is then as
follows: 

τ∗N = N = T

τ∗i =

{
i, if hi(Si) ≥ Qi(Si)

τ∗i+1, otherwise
, for i = N − 1, N − 2, ..., 0

. (2.24)

The estimation of the continuation values is the most essential step in the DPP. There are two
ways to estimate Qi(Si) in Eq.(2.23) using regression (Glasserman and Yu, 2004):

1. Regression now: this method approximates Qi(Si) directly. Given a finite number of
m basis functions ϕ(x) = [ϕ1(x), · · · , ϕm(x)]T with x ∈ Rd, the estimation of Qi(Si) is
determined by

Q̂i(Si) =

m∑
j=1

βi,jϕj(Si),

where the coefficients βi,j are the solution of the following ordinary least squares

min
βi

∥Qi(Si)− Q̂i(Si)∥2,

with Qi(Si) the cashflows. For an arbitrary path l ∈ {1, ...,M}, its cashflow is defined as
Ql

i(S
l
i) = Di,τ∗i+1

hτ∗i+1
(Sl

τ∗i+1,l
). The Least-Square Monte Carlo (LSMC) approach (Longstaff

and Schwartz, 2001), widely used for the American option pricing, is an example of the
regression now method.
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2. Regression later: this method first approximates Vi+1 by applying regression at time step
i+ 1, i.e.

V̂i+1(Si+1) =
m∑
j=1

βi,jϕj(Si+1)

and then calculate the continuation value as

Q̂i(Si) = Di,i+1

m∑
j

βi,jE[ϕj(Si+1)|Si].

The coefficients are obtained by solving

min
βi

∥Vi+1(Si+1)− V̂i+1(Si+1)∥2,

where V l
i+1(S

l
i+1) = hτ∗i+1

(Sl
τ∗i+1,l

) for l = 1, ...,M .

The output of this backward recursion process is the optimal stopping times for the American
options with simulated sample asset prices. Then the value of the option using the DPP in
Eq.(2.24) is given by

V̂0 =
1

M

M∑
j=1

D0,τ∗j
hτ∗j (S

j(τ∗j )), (2.25)

for Sj the j-th MC sample path and τ∗j the corresponding best exercise time.

As we can see, the regression-based methods mainly depend on the selected basis functions.
Especially for the regression later method, the conditional expectations of the chosen basis
functions must have analytical expressions for estimating the continuation values. Hu and
Zastawniak (2020) propose using the kernel ridge regression instead of the linear regression to
avoid selecting the basis functions. In the next chapter, we will derive how to estimate the
continuation value by utilizing kernel ridge regression.



Chapter 3

Methodology

In this chapter, we will present the methodology of kernel ridge regression-based American option
pricing proposed by Hu and Zastawniak (2020). We will begin with some fundamental knowledge
about kernel ridge regression before introducing the kernel ridge regression now (NKRR) and
kernel ridge regression later (LKRR) methods. The NKRR and LKRR will be examined in this
thesis for high-dimensional American option pricing under various asset price models.

3.1 Kernel Ridge Regression (KRR)

Given a data set D = {(x1, y1), (x2, y2), · · · , (xn, yn)} with xi ∈ Rd the input vector and yi ∈ R
the corresponding output. Let ϕ(x) = [ϕ1(x), · · · , ϕm(x)]T be a feature vector associated with
the input x. Note for all j ∈ {1, ...,m}, the function ϕj(x) is the selected basis function.
There are various possibilities for the basis functions, e.g., the polynomial basis function and
the Hermite functions. The Hermite function is defined as Hn+1(x) = xHn(x) +H

′
n(x), where

H
′
n(x) denotes the derivative of Hn(x) for n ∈ N0. Moreover, H0(x) = 1.

Now let us consider the following linear regression model (Bishop, 2007, Chapter 3):

y = Φβ + ϵ,

where Φ ∈ Rn×m the feature matrix with Φij = ϕj(xi) for j ∈ {1, ...,m} and i ∈ {1, ..., n}. The
output vector is denoted as y ∈ Rn, β ∈ Rm is the coefficients vector, and ϵ ∈ Rn is the residual
which is an independent random noise with zero mean. For the linear regression problem, the
goal is to find β such that the residual sum of squares(RSS) is minimized:

min
β∈Rm

∥y − Φβ∥2 = min
β∈Rm

(y − Φβ)T (y − Φβ).

The solution to this minimization problem is

β̂ = (ΦTΦ)−1ΦTy (3.1)

since
∂(y − Φβ)T (y − Φβ)

∂β
= 0 ⇒ (ΦTΦ)β = ΦTy

and the second partial derivative

∂2(y − Φβ)T (y − Φβ)

∂β2 = ΦTΦ

15
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is positive definite.

To overcome overfitting or prevent the problem becomes ill-posed, a ridge penalty term
λβTβ, with λ > 0, can be added to the linear regression, which results in a ridge regression
problem:

min
β∈Rm

R(β) = min
β∈Rm

(y − Φβ)T (y − Φβ) + λβTβ. (3.2)

By working out the brackets, we obtain R(β) = yTy − 2ΦTyβ + βT (ΦTΦ + λIm)β and the
ordinary least squared(OLS) estimate is obtained by solving

∂R(β)

∂β
= −2ΦTy + 2(ΦTΦ+ λIm)β = 0 ⇒ (ΦTΦ+ λIm)β = ΦTy

which gives us

β̂ = (ΦTΦ+ λIm)−1ΦTy. (3.3)

Since ∂2R(β)

∂β2 = ΦTΦ + λIm is positive definite, the above expression is the estimate of the

solution to the optimization problem in Eq.(3.2). The linear regression model satisfies the so-
called learning subspace property (LSP) (Kung, 2014), therefore β̂ ∈ span{Φ}. By definition,
there is some α̂ ∈ Rn such that β̂ = ΦT α̂.

Remark. Let A ∈ Rm×n, B ∈ Rn×m and Im ∈ Rm×m the identity matrix, then

B(Im +AB)−1 = (In +BA)−1B.

Proof. B(Im +AB) = (In +BA)B ⇒ (In +BA)−1B(Im +AB) = B, so
(In +BA)−1B = B(Im +AB)−1.

The expression for α̂ can be derived using this remark, since

(ΦTΦ+ λIm)−1ΦT =

(
1

λ
ΦTΦ+ Im

)−1 1

λ
ΦT =

1

λ
ΦT

(
1

λ
ΦΦT + In

)−1

= ΦT (ΦΦT + λIn)
−1.

The Eq.(3.3) can be rewritten as β̂ = ΦT (ΦΦT + λIn)
−1y and β̂ = ΦT α̂, we obtain

α̂ = (ΦΦT + λIn)
−1y. (3.4)

Now, let us define a kernel function K : X × X → R, such that K(xi,xj) = ϕT (xi)ϕ(xj) for
all i, j = 1, ..., n. Then the Gram matrix K ∈ Rn×n is given by:

K =

K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)

 .

Note (ΦΦT )ij = ϕT (xi)ϕ(xj), which means that K = ΦΦT and α̂ = (K + λIn)
−1y. The

corresponding prediction ŷ is then as follows:

ŷ = Φβ̂ = ΦΦT α̂ = Kα̂,

with

ŷi =

n∑
m=1

α̂mK(xm,xi) (3.5)
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for i ∈ {1, ..., n}.

There are various options for kernel functions. In this thesis, we will use the Gaussian kernel
as suggested by Hu and Zastawniak (2020), which is given by:

K(x,y) = e−
1
C
(x−y)T (x−y), C > 0. (3.6)

This kernel is chosen because it can cover any continuous basis function (Exterkate, 2013).

3.2 KRR-based American option pricing

Now that we have gained more insight into kernel ridge regression(KRR), we will apply this
method to estimate the continuation values. Suppose M Monte Carlo paths of the asset prices
are simulated and let St ∈ Rd be an arbitrary simulated sample path at time t ∈ [0, T ]. Since
this time horizon is divided into N equal-sized time steps, we denote Si ∈ Rd as the asset price
at time step i. Recall that the continuation value at time step i is given by

Qi(Si) = E[Di,i+1Vi+1(Si+1)|Si], for i = N − 1, ..., 1. (3.7)

The NKRR method estimates the continuation values directly by applying KRR at time step ti.
The regression later method LKRR first estimates Vi+1(Si+1) by regression on the data at time
step ti+1 and then substitutes it into the above equation to compute the desired continuation
value at ti. We will explain those two methods in detail in the following two subsections.

3.2.1 Regression-Now: NKRR

At maturity, the continuation value is equal to zero, which implies that the cashflow is equal to
its payoff VN (ST ) = hT (ST ). Since NKRR applies regression directly for the estimation of the
continuation value Qi(Si), it gives us the following by using Eq.(3.5) for i = N − 1, .., 1 :

Q̂i(Si) = Di,i+1

M∑
m=1

α̂i,mK(S
(m)
i ,Si), (3.8)

with Si an arbitrary asset price, S
(m)
i the m-th simulated Monte Carlo path and α̂i,m the m-th

coefficient at time step i. The coefficients vector α̂i ∈ RM can be calculated by using Eq.(3.4)
as

α̂i = (K+ λIM )−1Qi(Si),

with K ∈ RM×M is the Gram matrix of the Gaussian kernel. The vector Qi(Si) ∈ RM is the
discounted cashflow. According to the framework of regression now method using KRR, it is
defined as

Ql
i(Si) = Di,τ∗i+1,l

hτ∗i+1,l
(Sl

τ∗i+1,l
), l = 1, ...,M, (3.9)

where τ∗i+1,l is as in Eq.(2.24). The discounted cashflow Ql
i(Si) can also be interpreted as the

value of a newly issued option at the time step i where the optimal exercise strategy is τ∗i+1,l.
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3.2.2 Regression-Later: LKRR

The LKRR method has two differences in comparison with the NKRR. Instead of Si, the log-
arithmic process Xi = ln(Si) is used for the regression. Moreover, we apply regression on the
asset prices at time step i+1 for computing the continuation values. It means for i = N−1, ..., 1

V̂i+1(Xi+1) =

M∑
m=1

α̂i+1,mK(X
(m)
i+1,Xi+1), (3.10)

where α̂i+1 = (K+λIM )−1Vi+1(Xi+1) using Eq.(3.4). The term Vi+1 is the payoff of optimally
exercising the option. Despite the use of the log prices, the payoffs remain the same. Thus,

V l
i+1(S

l
i+1) = hτ∗i+1

(Sl
τ∗i+1,l

), l = 1, ...,M.

Then the estimation of the continuation value of any underlying asset Xi is given by:

Q̂i(Xi) = Di,i+1E

[
M∑

m=1

α̂i+1,mK(Xi+1,X
(m)
i+1)|Xi

]

= Di,i+1

M∑
m=1

α̂i+1,mE
[
K(Xi+1,X

(m)
i+1)|Xi

]
. (3.11)

The conditional expectations of the Gaussian kernel function depend on the model from which
the asset prices are generated. In this thesis, we are considering process Si that follows the
multidimensional GBM, MJD, or Heston models. The evaluation of the Heston model will be
done in a later Chapter. In the previous chapter, we established that logarithmic processes are
both multivariate normal under the former two models. Then the following lemma holds.

Lemma 3.2.1. (Hu and Zastawniak, 2020) Suppose X ∼ N (µ,Σ), then

E[e−
1
C
XTX] =

1

| 2CΣ+ I|
1
2

e−
1
C
µT ( 2

C
Σ+I)−1µ,

with I the identity matrix and | · | is the determinant function.

Proof. See Appendix B.

LKRR under GBM

Let Xi+1 be an arbitrary logarithmic asset price path at timestep i + 1 simulated using the

multidimensional GBM model and X
(m)
i+1 be the m-th simulated MC path. By using Eq.(3.6),

the Gaussian kernel is

K
(
Xi+1,X

(m)
i+1

)
= e

− 1
C

(
Xi+1−X

(m)
i+1

)T(
Xi+1−X

(m)
i+1

)
with C > 0

and the logarithmic process under GBM is normal distributed, Xi+1|Xi ∼ N (µi+1, hΣ
S) with

µi+1 ∈ Rd and ΣS ∈ Rd×d are defined as in Eq.(2.8). It implies that(
Xi+1 −X

(m)
i+1

)
|Xi ∼ N (µi+1 −X

(m)
i+1, hΣ

S).
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By applying Lemma 3.2.1, we get the following expression for the continuation value using
LKRR with the Gaussian kernel

Q̂i(Xi) = Di,i+1

M∑
m=1

α̂i+1,mE
[
K(Xi+1,X

(m)
i+1)|Xi

]
= Di,i+1

M∑
m=1

α̂i+1,m
1

| 2ChΣS + Id|
1
2

e
− 1

C

(
µi+1−X

(m)
i+1

)T
( 2
C
hΣS+Id)

−1
(
µi+1−X

(m)
i+1

)

=
Di,i+1

| 2ChΣS + Id|
1
2

M∑
m=1

α̂i+1,me
− 1

C

(
µi+1−X

(m)
i+1

)T
( 2
C
hΣS+Id)

−1
(
µi+1−X

(m)
i+1

)
. (3.12)

LKRR under MJD

As derived in subsection 2.2.2, the logarithmic process Xi+1 given Xi and the number of jumps
∆Γi = k within the time interval (i, i + 1] is normal distributed with mean µJD

i+1 and variance
ΣJD. Note the number of jumps is Poisson distributed, therefore the expectation of the Gaussian
kernel under the multi-assets MJD is

E
[
K(Xi+1,X

(m)
i+1)|Xi

]
= E

[
E
[
K(Xi+1,X

(m)
i+1)|Xi,∆Γi = k

]]
=

∞∑
k=0

E
[
K(Xi+1,X

(m)
i+1)|Xi,∆Γi = k

]
P(∆Γi = k)

=
∞∑
k=0

(
λJh

)k
e−λJh

k!
E
[
K(Xi+1,X

(m)
i+1)|Xi,∆Γi = k

]
. (3.13)

By substituting the above expression into Eq.(3.11) and then applying Lemma 3.2.1, the estimate
of the continuation value can be obtained:

Q̂i (Xi) =Di,i+1

M∑
m=1

α̂i+1,mE
[
K
(
X

(m)
i+1,Xi+1

)
| Xi

]
=Di,i+1

M∑
m=1

α̂i+1,m

∞∑
k=0

(
λJh

)k
e−λJh

k!
E
[
K(Xi+1,X

(m)
i+1)|Xi,∆Γi = k

]
=Di,i+1

∞∑
k=0

e−λJh(λJh)k

k!

M∑
m=1

α̂i+1,mE
[
K
(
X

(m)
i+1,Xi+1

)
| Xi,∆Γi = k

]
=Di,i+1

∞∑
k=0

e−λJh(λJh)k

k!

M∑
m=1

α̂i+1,me
− 1

C

(
µJD

i+1−X
(m)
i+1

)⊤
( 2
C
ΣJD+I)

−1
(
µJD

i+1−X
(m)
i+1

)
. (3.14)

Hu and Zastawniak (2020) suggest truncating the infinite summation for k > 2, as this truncation
still provides sufficient accuracy. We will adapt this truncation in our numerical experiments in
the next chapter.

3.2.3 Bundling

Since Monte Carlo techniques necessitate the simulation of large samples, the regression phase
entails computing the inverse of a large-scale matrix to compute the regression coefficients.
Moreover, regression has to be applied at each time step. As a result, the computation time
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will increase with the number of exercise opportunities. In general, the computational cost of
regression-based Monte Carlo also increases with the dimension, which is also a drawback of
the LSMC approach proposed by Longstaff and Schwartz (2001). The NKRR and LKRR also
suffer from a high computational effort if KRR is applied to the whole simulated data for high
dimensional option pricing.

To improve computational efficiency, Hu and Zastawniak (2020) proposes utilizing the bundling
technique for NKRR and LKRR. The main idea of this hybrid method is to partition the data
set into P non-overlapping bundles and then apply KRR to data in the same bundle. This ap-
plication strategy will reduce the time complexity of regression from O(M3) to O(M3/P 2) (Hu
and Zastawniak, 2020). As proven in Jain and Oosterlee (2015), local regression using bundling
provides more accurate pricing results than global regression. It means KRR with bundling
will also improve the pricing accuracy with a reasonable P . There are several approaches for
bundling, such as K mean clustering. In this thesis, we will use the payoff at each time step
as bundling references. In other words, options with similar payoffs are divided into the same
bundle. Moreover, we only use In the Money (ITM) paths in each bundle for the regression to
reduce computational costs further.

Because the data used for regression now and regression later procedures differ, so do the
bundling references. Suppose the current step is i for i ∈ {N − 1, ..., 1}. For the regression now
methods, the payoff at i − 1 is used as a bundling reference to partition the underlying asset
prices at i− 1 into P non-overlapping bundles. Then we perform the regression on the paths at
i that belong to the same bundle. The regression later approaches apply the regression to data
in the same bundle at i+ 1, where the payoff at i serves as a bundling reference.

3.2.4 Hyperparameter optimization

Three parameters need to be determined from the data: the ridge parameter λ, the Gaussian
kernel parameter C, and the number of bundles P . Those hyperparameters influence the perfor-
mance of the NKRR and LKRR methods. The former two hyperparameters are related to the
KRR. The ridge parameter λ shrinks the singular values (van Wieringen, 2015). Moreover, the
Gaussian kernel parameter C is the scale parameter that determines the prediction’s smoothness
and depends on the dimension of the input data (Exterkate, 2013). As for both methods, we
perform local regression at the bundle level. It is reasonable that the number of paths M/P
belonging to one bundle should not be too small for regression. Otherwise, it will lead to poor
pricing accuracy(Jain and Oosterlee, 2015). We aim to avoid hyperparameter optimization at
each time step to keep the computing cost to a minimum. Our fundamental goal is to find a
set of hyperparameters that optimizes the pricing result. A reference price V ref is required for
the hyperparameter tuning process, which might be the estimated price using LSMC or the true
price if it is known.

The most straightforward hyperparameter tuning technique is the grid search. The funda-
mental idea is to test every possible combination of the sets of specified hyperparameters and
select the one that produces the best results. However, this approach suffers from the curse of
dimensionality. As the number of hyperparameters that need to be tuned increases, the number
of combinations becomes large. This results in expensive computational costs and can become
impractical. Since we only have three hyperparameters, this approach is feasible in our case.
We first apply this approach to low-dimensional options and then find the hyperparameter set,
which makes the relative error between the estimated price (using NKRR/LKRR) and V ref

below 0.5%. When this stopping criterion is satisfied, we evaluate whether the found hyperpa-
rameters are also suitable for high-dimensional options. If not, we return to the previous step
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and test other sets of hyperparameters. The grid area for search is crucial for this approach. To
limit the running time of hyperparameter tuning, we will only use this approach if some prior
information about the hyperparameters is known.

Hu and Zastawniak (2020) suggest calibrating the Gaussian kernel hyperparameters C in
the following way. We consider C as C = C0 with C0 > 0 is a constant. The cross-validation
strategy is as follows

1. Choose the tolerance value ϵ and the maximum number of iterations.

2. Find C0 such that the mean squared error(MSE) of V ref and the estimated price is below
the tolerance.

3. Validate C0 on options of higher dimension(e.g. 100). If the MSE is smaller than ϵ, then
C = C0 is found. Else, we have to repeat steps 2 and 3.

If C0 cannot be found, then we will attempt to seek C = C1d in the same way. This cross-
validation strategy is also applicable to the ridge parameter λ. In this thesis, we fix λ = 1 and
P = 100 as in Hu and Zastawniak (2020).

3.3 Algorithm

This section will present the summary of the NKRR and LKRR methods with bundling for
multi-dimensional American option pricing. We mainly use the grid search approach for the
Gaussian kernel hyperparameter tuning for the numerical experiments. Note that λ = 1 and
P = 100 are fixed in this thesis.

Algorithm 1 KRR based multi-dimensional American option pricing

1: Determine C as stated in the previous section.

2: Simulate M underlying assets S ∈ Rd of N time steps.

3: Generate a M ×N zero cash flow matrix with the option value hT (SN ) as the cash flows at
tN .

4: For i = N − 1, ..., 1:

(i) Bundling. Use the payoff at ti−1(regression now) or ti(regression later) to partition the
corresponding grid points into P bundles.

(ii) For bundle p = 1, ..., P , perform KRR on in-the-money paths at ti(regression now) or
ti+1(regression later) to obtain α̂i or α̂i+1 and then compute Q̂i by using equation
(3.8) or (3.11).

(iii) Update cash flows in the cash flow matrix by comparing the estimated continuation
values with the exercise payoff.

5: Compute the average of the discounted cash flows to get the option price.
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Chapter 4

Experiments: GBM and MJD

In this chapter, we will conduct various numerical experiments to investigate the accuracy,
efficiency, and robustness of the NKRR and LKRR approaches for American option pricing.
The underlying asset prices are constructed using the multidimensional GBM and MJD models.
The numerical tests are primarily concerned with three aspects:

1. The pricing accuracy and the computational costs under a range of dimensions d =
{5, 10, 15, 20, 30, 40, 60, 80, 100};

2. The influence of the hyperparameters P, λ and C on the pricing accuracy;

3. The robustness of those two methods under varying parameters such as the initial asset
price S0, the drift term µ, etc.

In addition, we include the least square Monte Carlo (LSMC) method for the experiments
about the first aspect. The main reason is to investigate whether NKRR and LKRR improve the
pricing results in terms of accuracy and computational efficiency compared to the LSMC-based
method. It should be noted that the LSMC is an example of a regression now method. The
only distinction between LSMC and NKRR is the regression part, where LSMC utilizes linear
regression and uses Eq.(3.1) for calculating the regression coefficients. We consider two different
sets of basis functions for LSMC. The first one employs polynomial basis functions up to the
second degree, and we denote it as LSM. The other set has the payoff function as an additional
basis function, and we denote it as LSMP.

For the KRR-based methods, we will use fixed P = 100 and λ = 1 except for the experi-
ments about the second aspect. The bundling technique is not applied to the LSMC method
since bundling does not improve the pricing accuracy, and it increases the computational time
(Hu and Zastawniak, 2020).

Since no reliable results exist for high-dimensional American option pricing, we will use
the results from Premia1 as benchmarks for the numerical experiments. All the experiments
are performed using Matlab 2020a on an Intel Core i5-8265U and 8 GB of RAM laptop in a
Windows 10 environment.

1Premia is a numerical platform designed for option pricing, hedging, and financial model calibra-
tion.https://www.rocq.inria.fr/mathfi/Premia/index.html.

23
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4.1 Experiments GBM: max call American options

Let us consider a max call American option with the underlying asset prices following the
multidimensional GBM model. The payoff function of a max call option is defined as

h(St) = (max (St,1, ..., St,d)−Ks)
+ , (4.1)

where St = (St,1, ..., St,d) is generated using GBM and Ks denotes the strike price. We employ
the identical set of parameters as the study case of Hu and Zastawniak (2020) to verify the
correctness of our implementation of NKRR and LKRR. Table 4.1 shows the parameters, where
v, l = 1, ..., d with v ̸= l and d ∈ {5, 10, 15, 20, 30, 40, 60, 80, 100}. The terms r and qv are the
annual risk-free interest and dividend rates, respectively. The experiments utilize M Monte
Carlo simulations. The term N refers to the number of exercise opportunities, and T is the
maturity of the max call American option. Furthermore, we assume that the underlying assets
are not correlated. We will also use the same Gaussian kernel parameters for NKRR and LKRR,
which are Cnkrr = 105 and Clkrr = 30, respectively.

S0,v Ks σv r qv ρvl T P λ N M

100 100 0.2 5% 10% 0 3 100 1 3 10, 000

Table 4.1: Parameters for the tests under GBM.

4.1.1 Pricing accuracy and computational time

Figure 4.1 and Table 4.2 present the computational time of those four methods against the range
of dimensions. As mentioned, the running time of the LSMC approach increases in dimension.
This phenomenon is also visible in the plot below, as the computational times of LSM and LSMP
appear to increase exponentially for d > 40. For LKRR, the increase in running times is roughly
linear concerning the dimensions. On the other hand, the dimension of the options seems to
have a negligible influence on the computational cost for NKRR.

Figure 4.1: Computational time under GBM.

Considering computing performance for high-dimensional option pricing, the KRR-based
approaches surpass the LSMC method. NKRR is the best approach in terms of computing time



4.1. EXPERIMENTS GBM: MAX CALL AMERICAN OPTIONS 25

in all dimensions, as indicated in the table below. Among those four methods, LKRR is the
slowest for dimensions d ≤ 30. NKRR uses less running time than LKRR, which is reasonable,
as LKRR involves computing the conditional expectation of the Gaussian kernel to estimate
continuation values. A similar phenomenon exists between LSMP and LSM for d ≥ 60. LSMP
has an additional basis function, which might lead to a higher computational cost for computing
the regression coefficients.

d 5 10 15 20 30 40 60 80 100

LSM 0.1308 0.1481 0.1926 0.2523 0.4499 0.8214 2.3913 5.6007 13.4351
LSMP 0.1108 0.1501 0.2076 0.2685 0.4624 0.8397 2.6818 7.3514 18.5348
NKRR 0.0572 0.0573 0.0567 0.0592 0.0711 0.0780 0.0945 0.1044 0.1186
LKRR 0.1641 0.2785 0.2605 0.2910 0.4694 0.6028 0.8091 1.1086 1.4836

Table 4.2: GBM: Running time in (s) over dimensions.

Additionally, Table 4.3 and Figure 4.2 present the pricing accuracy of those four methods.
The benchmark prices acquired from Premia using the primal-dual approach of Andersen and
Broadie (2004) are listed in the column Premia. The primal-dual method provides a lower and
upper bound for the true option value. The lower bound price is achieved using the LSMC
method with M = 50000 Monte Carlo simulations and Hermite polynomials of degree 0− 3 as
the basis functions. The upper bound computation involves 500 outer simulation and 100 nested
simulations. This primal-dual method will be elaborated in more detail in subsection 6.2.1 when
dealing with the high-dimensional American option pricing under the Heston model. Premia
only provides the point estimates of the lower and upper bounds. Moreover, Premia does not
provide a confidence interval for their results. We will utilize the 95% confidence interval of
Premia constructed by Hu and Zastawniak (2020), see Appendix C.

The pricing results of those four methods are calculated using 60 independent iterations.
Between the brackets are the corresponding standard deviations. Moreover, the pricing errors
are the relative error with respect to the benchmarks.

d Premia LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 25.306 25.268(0.188) 0.150 25.294(0.177) 0.048 25.456(0.179) 0.593 25.487(0.189) 0.716
10 37.698 37.318(0.211) 1.008 37.363(0.213) 0.889 37.575(0.224) 0.325 37.697(0.227) 0.003
15 45.569 45.168(0.259) 0.880 45.261(0.262) 0.676 45.495(0.265) 0.161 45.652(0.263) 0.182
20 51.443 50.888(0.263) 1.079 51.029(0.251) 0.804 51.236(0.257) 0.403 51.428(0.252) 0.029
30 59.775 59.041(0.259) 1.228 59.245(0.264) 0.887 59.454(0.255) 0.537 59.622(0.267) 0.256
40 65.525 65.059(0.258) 0.711 65.286(0.251) 0.365 65.482(0.265) 0.066 65.597(0.257) 0.109
60 73.900 73.718(0.283) 0.247 73.913(0.287) 0.018 73.930(0.262) 0.041 73.964(0.277) 0.087
80 79.908 80.051(0.240) 0.179 80.136(0.240) 0.287 79.769(0.253) 0.174 79.812(0.248) 0.120
100 84.501 85.164(0.264) 0.784 85.200(0.260) 0.827 84.248(0.256) 0.299 84.410(0.252) 0.108

Table 4.3: Pricing results under GBM with Cnkrr = 105 and Clkrr = 30.

The pricing accuracy of LSM and LSMP is superior to KRR-based methods for d=5. While
NKRR and LKRR generally perform better than the LSMC approach for other dimensions.
Furthermore, LKRR is generally more accurate than NKRR, and LSMP is slightly better than
LSM in most dimensions. When only considering the accuracy, LKRR is the best pricing method
in most cases for d ≥ 10.

When taking the computational cost into account, LKRR is the best choice for dimensions
in most cases for d ≤ 30 (except for d= 5) since the computing time of LKRR is similar to the
other methods but has the best pricing accuracy. NKRR is superior for 40 ≤ d ≤ 80 because
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NKRR and LKRR have comparable pricing errors, but NKRR outperforms LKRR in running
time. A trade-off between pricing accuracy and efficiency needs to be made for d = 100.

Figure 4.2: Pricing error under GBM using 60 iterations.

Our pricing results are similar to the one of Hu and Zastawniak (2020), which verifies the
validity of our implementation. The computational costs of our implementation are generally
higher than theirs. It implies there is still room for improvement in efficiency.

4.1.2 The influence of the hyperparameters

In this subsection, we will vary the hyperparameters P, λ, and the Gaussian kernel parameters
Cnkrr and Clkrr. As we aim to investigate the influence of these parameters on the pricing
accuracy of options with low and high dimensions, we will use d = 20 and d = 100 for all
three test cases. When varying one of those parameters, all other parameters remain the same
as in the experiments of the previous subsection. Moreover, the test results are based on 20
independent iterations to limit the total computational time of our experiments.

The number of bundles P

Since we are using M = 10000 Monte Carlo simulations, let us consider this set for the number
of bundles, P = [20, 50, 80, 100, 200, 400]. The number of bundles P should not be too great,
as this would reduce the sample size for regression and result in poor pricing accuracy. The
computational time should decrease in P because the sample size of local regression decreases
(Zhang et al., 2015), which should improve the computational efficiency. This phenomenon can
be observed in the left subfigures of Figure 4.3.

The pricing errors of both methods decrease as P increases to 100 for both low and high
dimensions. For P = 200, the pricing result of LKRR is affected more significantly for low
dimensions than high dimensional options, while we observe the opposite for NKRR. Both
methods become less accurate with P = 400 for both low and high dimensions. This might
be because fewer data points are used for regression when the number of bundles grows, which
could result in erroneous regression coefficients and lead to greater relative errors.
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Figure 4.3: Running time and pricing error under GBM with various P.

Figure 4.3 also indicates the existence of optimal choice P . However, it seems to be different
for different dimensions and methods. Because the optimal P = 100 for LKRR while P = 200
is the best choice for NKRR at d = 20. Both methods have the most accurate pricing results at
high dimensions with P = 100. It implies the primary choice of P = 100 suggested by Hu et al.
is suitable for both low and high-dimension option pricing. In a later chapter, we will use this
choice for other numerical experiments under the Heston model.

The Gaussian kernel parameters

To evaluate the influence of the Gaussian kernel parameters for NKRR and LKRR, we multiply
C with a scale vector s = [0.5, 0.7, 0.9, 1, 1.25, 1.4, 1.5]. Recall that the previous tests employed
values of C = 105 and C = 30 for NKRR and LKRR, respectively. This hyperparameter
does not influence computational efficiency. Therefore, we will not perform experiments on the
running time. The figure below shows the pricing error of this experiment under 20 independent
iterations.

(a) d = 20 (b) d = 100

Figure 4.4: Pricing accuracy under GBM for various C.
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As can be seen, there are better choices C than what we selected for both NKRR and LKRR.
This indicates that pricing results in Table 4.3 can be further improved. Furthermore, the opti-
mal values of this hyperparameter also depend on the dimension of the options. Because when d
varies, we have different optimal C for both NKRR and LKRR. To limit the computational costs,
we aim to avoid the calibration process of C at each dimension. It implies that a compromise
must be made and choose C that provides accurate results in all dimensions.

The pricing error of LKRR is not sensitive to varying Gaussian kernel parameters as the error
rates vary between 0.025% and 0.5% for both dimensions. NKRR seems to be more affected by
the Gaussian kernels from the plot. However, keep in mind that the initial Cnkrr = 105, so Cnkrr

is varied between a broader range of parameters than Clkrr. It means a wider range of pricing
errors is reasonable for NKRR in our experiment. If we zoom in on the interval for Cnkrr, we
could expect a similar phenomenon as for Clkrr.

The ridge parameter λ

We modify the value of λ using the same scale vector s as the previous experiment. This
parameter does not affect the running time as well. Therefore, we only focus on its effect on
pricing accuracy. The outcomes are depicted in the figure below.

(a) d = 20 (b) d = 100

Figure 4.5: Pricing accuracy under GBM for various λ.

A similar conclusion can be drawn as the previous experiment, that the optimal λ depends
on the option dimension. The optimal choice is λ = 0.9 for both NKRR and LKRR when
d = 100. Although λ = 0.7 is the best at d = 20, this selection leads to a worse precision for
d = 100. Thus, the compromise choice is λ = 0.9 as it is the second best for d = 20. The pricing
result presented in Table 4.3 can be further improved since we used a nearly optimal λ = 1.

Moreover, the pricing error of LKRR fluctuates between 0.05% and 0.6%, while the error
rate of NKRR is between 0.1% and 1.5%. In other words, LKRR is more robust than NKRR as
the influence of varying ridge parameters is less significant for both dimensions.

4.1.3 Robustness under varying parameters

To figure out how other parameters affect the pricing results, we have plotted in Figure 4.6 for
various σ, S0, r and ρ with d = 30. Since the result of various ρ is not available in Premia,
we use the pricing values of LSM and LSMP as benchmarks. The differences between the
benchmarks and the results of NKRR and LKRR are insignificant. Only for the correlations,
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the results of NKRR are slightly higher than the other methods. This experiment indicates the
hyperparameters are quite robust with varying parameters.

Figure 4.6: Pricing error under GBM with various choices of parameters.

4.2 Experiments MJD: geometric put American options

This section will conduct various experiments with geometric put American options under the
multidimensional MJD. The payoff function is as follows

h(St) =

(
Ks −Πd

v=1S
1
d
t,v

)+

. (4.2)

where St is generated by the MJD model as in Eq.(2.13). Although Premia does not provide
results for the high-dimensional option under MJD, the multidimensional problem of MJD can
be converted into a one-dimensional problem. Recall the analytic solution of one-dimensional
MJD is as in Eq.(2.11) and is given by

S̃t = S̃0 exp

((
r − q̃ − κ̃J λ̃J − 1

2
σ̃2

)
t+ σ̃Wt

)
exp

(
Γt∑

m=1

ZJ
m

)
.

The parameters can be obtained using the parameters of the multi-MJD models (Hu and Za-
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We can evaluate those four approaches in high-dimensional settings using the results of one-
dimensional MJD as the benchmark, provided we obtain the parameters for multi-dimensional
MJD and their corresponding ones for one-dimensional MJD.

To investigate the correctness of our implementation of LKRR under the MJD model, the
parameters for the single MJD are the same as the study case in Hu and Zastawniak (2020), see
Table 4.4.

S̃0 Ks σ̃ r q̃ µ̃J σ̃ κ̃ λ̃J T N M

40 40
√
0.05 8% 0 −0.025

√
0.05 0 5 1 10 10, 000

Table 4.4: Parameters for the one-dimensional MJD.

The benchmark of this set of parameters is 6.995 (Broadie and Yamamoto, 2003), which
remains the same for all dimension values d. Then according to Hu and Zastawniak (2020), the
corresponding parameters for the multi-dimensional MJD are

S0,v = S̃0, σv = σJ
v = aσ̃, r = 8%, µJ

v = µ̃J , λJ = λ̃J ,

qv =
1

2

(
σ̃2 − σ2

v

)
− λJκv, ρvl = ρJvl =

d/a2 − 1

d− 1
, a > 1,

where a = 1.5 is chosen for the experiments.

As in the GBM experiments, we set P = 100 and λ = 1. The Gaussian kernel parameters
are as follows: Cnkrr = Clkrr = d × 104 (Hu and Zastawniak, 2020). Furthermore, no reliable
results exist for the multi-MJD with different parameters. We will drop the experiment that
investigates the influence of parameters(such as the mean, the variance, etc.) on the pricing
accuracy.

4.2.1 Pricing accuracy and computational time

Figure 4.7 and Table 4.5 present the computing time of those four pricing methods against
dimensions. The relationship between the dimension and computing time is comparable to the
GBM model, despite the running time being longer for all methods under the MJD model.

Figure 4.7: Computational time under MJD.
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The computing time of all four methods is below 5s for options with d ≤ 40, where the LKRR
approach is the slowest. For higher dimensions d ≥ 40, the KRR-based methods perform much
better in computational costs than the LSMC methods. As in the GBM experiment, the running
time of LSM/LSMP increases exponentially in dimension, while it is approximately linear for
LKRR. Although the NKRR approach is also slightly affected by increasing dimensions, it is
still the most computationally efficient method, regardless of the dimensions.

d 5 10 15 20 30 40 60 80 100

LSM 0.5245 0.3977 0.4734 0.6477 1.2058 2.5791 14.5253 48.0104 115.3042
LSMP 0.3071 0.3655 0.4843 0.6566 1.2269 2.4729 14.6209 48.2768 116.5671
NKRR 0.2617 0.1763 0.1649 0.1676 0.1864 0.2130 0.2300 0.2729 0.3188
LKRR 0.9584 1.0391 1.2562 1.4841 2.3745 3.9503 5.1054 7.5635 12.6317

Table 4.5: MJD: Running time in (s) over dimensions.

The pricing result of those four methods is presented in Table 4.6 and Figure 4.8. As the
running time of LSM/LSMP is above 100s at d = 100, we only run 20 independent iterations to
limit the total running time of this numerical experiment. The values between the brackets are
the corresponding standard deviations.

d LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 6.884(0.057) 1.585 7.015(0.053) 0.282 6.965(0.056) 0.432 7.058(0.057) 0.897
10 6.956(0.087) 0.552 7.070(0.083) 1.071 7.017(0.070) 0.313 7.049(0.074) 0.777
15 7.011(0.066) 0.231 7.123(0.060) 1.833 7.011(0.065) 0.233 7.028(0.057) 0.470
20 7.143(0.061) 2.114 7.232(0.052) 3.385 7.041(0.062) 0.660 7.054(0.054) 0.840
30 7.121(0.070) 1.796 7.464(0.068) 6.709 7.059(0.064) 0.929 7.055(0.064) 0.858
40 7.440(0.057) 6.359 7.727(0.054) 10.467 7.064(0.046) 0.990 7.043(0.052) 0.685
60 8.162(0.039) 16.678 8.331(0.052) 19.096 7.053(0.045) 0.824 7.032(0.035) 0.533
80 8.892(0.053) 27.120 8.900(0.055) 27.240 7.098(0.057) 1.470 7.065(0.059) 1.002
100 9.511(0.060) 35.968 9.517(0.060) 36.053 7.088(0.065) 1.323 7.065(0.065) 1.007

Table 4.6: Pricing results under MJD with C = d× 104 and benchmark is 6.995.

The KRR-based methods provide more accurate results than the LSMC methods, as indi-
cated in Table 4.6. LSM and LSMP produce acceptable results for low dimensions d < 20.
However, the relative error of the LSMC method increases in d, and it becomes more significant
for d ≥ 20. Therefore, the LSMC method is unsuitable for the high-dimensional American option
under the MJD model. NKRR is generally the best method of all for low dimensions. Further-
more, LKRR outperforms NKRR when d ≥ 30. Nevertheless, the pricing results of NKRR and
LKRR under the MJD model are generally less accurate than under the GBM model.

Regarding computing efficiency and pricing precision for d ≤ 30, NKRR is superior to LKRR.
Although LKRR has smaller relative errors than NKRR for d > 30, the computational cost for
LKRR is more expensive. Therefore, a trade-off between pricing efficiency and accuracy must
be made when the dimension increases. The LSMC-based approach requires more running time
while producing less convincing pricing results than KRR-based methods. Therefore, LSMC is
not the best pricing method under the MJD model in computing efficiency and pricing accuracy.
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Figure 4.8: Option value under MJD.

4.2.2 The influence of the hyperparameters

This subsection examines the influences of the bundle number P , the Gaussian kernel parameter
C, and the ridge parameter λ on the pricing accuracy of NKRR and LKRR for both low-and
high-dimension scenarios. We select d = 20 and d = 100 as representatives for low and high
dimensions. As in GBM experiments, the latter two parameters are multiplied with the scale
vector s = [0.5, 0.7, 0.9, 1, 1.25, 1.4, 1.5]. The test results are also based on 20 independent
iterations.

The number of bundles P

We use the same set of P = [20, 50, 80, 100, 200, 400] as in the GBM experiment. The running
time is decreasing in P for both dimensions as indicated in the left subfigures of Figure 4.9.
The influence of P becomes less significant for the required computing time in both dimensions
when P ≥ 100.

Figure 4.9: Running time and pricing error under MJD with various P.
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Considering the pricing error, P = 50 is a better choice for both methods in low and high
dimensions. The pricing result of both methods is significantly affected when P > 100, as the
error rates become above 2% in both dimensions. Recall the optimal P = 100 under GBM using
equal-sized Monte Carlo simulations. In other words, the used model for generating the asset
prices seems to impact the optimal choice of P in addition to the data size.

The Gaussian kernel parameter

The pricing results are shown in Figure 4.10. Both methods’ initial Gaussian kernel parameters
are equivalent and C = d × 104. As this parameter depends on the dimension, we observe
different x-axis for d = 20 and d = 100.

NKRR is more sensitive to the change of the Gaussian kernel parameters than LKRR, as
the relative errors of NKRR for both dimensions decrease significantly for a greater C value.
While for LKRR, the relative errors are below 1.2% for both dimensions and fluctuate within
a small range. The same conclusion can be drawn as in GBM tests, that the optimal choice of
C depends on dimensions. For LKRR, the best C = 2d × 104 in d = 20 while C = 0.7d × 104

when d = 100. The choice of C = d × 104 is clearly not optimal for both methods at low and
high dimensions, which means the pricing results presented in the table above still have room
for improvement. The better choice at both dimensions is C = 1.25d × 104 as it reduces the
pricing error for both methods.

(a) d = 20 (b) d = 100

Figure 4.10: Pricing accuracy under MJD for various C.

The ridge parameters

The pricing accuracy of these two dimensions under varying ridge parameters is depicted in the
image below. For NKRR, we observe a familiar phenomenon as in the previous experiment about
C: the pricing error reduces in λ. Additionally, the error fluctuation of LKRR is less significant
than NKRR. In conclusion, LKRR is more resistant to changes in the ridge parameter. An
optimal λ exists for both methods. Nevertheless, the current choice, λ = 1, produces satisfactory
outcomes among this range of λ.
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(a) d = 20 (b) d = 100

Figure 4.11: Pricing accuracy under MJD for various λ.

4.3 Conclusion

In this chapter, we have conducted various experiments to investigate the proposed NKRR and
LKRR methods by Hu and Zastawniak (2020) for multidimensional American options. For
comparison purposes, we have also implemented the LSMC methods with two sets of basis
functions, where one with polynomial functions up to degree 2(LSM) and the other has the
payoff function as an additional basis function(LSMP). Several experiments were conducted
to determine which method is the best choice under various asset price models for a range of
dimensions in the sense of computational efficiency and pricing accuracy. Furthermore, the
robustness of the NKRR and LKRR is examined using various (hyper)parameters at d = 20 and
d = 100.

Regarding computational costs and pricing accuracy, the performance of those four methods
differs under various asset price models. All four methods provide accurate results for asset
prices generated using multidimensional GBM. The KRR-based approach generally outperforms
LSMC-based methods as d > 5, just as shown in Figure 4.2. Among the KRR-based methods, the
pricing error of LKRR is smaller than NKRR in most tested dimensions. Therefore, LKRR is the
best method concerning pricing accuracy under the GBM model. When taking computational
costs into account, we suggest using LKRR for d < 40 and NKRR for 40 ≤ d ≤ 80 as NKRR
provides similar pricing results to LKRR but requires less running time, see Figure 4.1. At
d = 100, a trade-off between pricing accuracy and running time must be made. The LSMC-
based methods are not the best choice for high dimensional option pricing since their running
time increases exponentially in dimensions.

For asset prices following the multidimensional MJD model, the pricing accuracy of those
four methods is worse than under GBM. The LSMC method does not perform well in both
computational efficiency and accuracy; see Figure 4.7 and Figure 4.8. LKRR provides better
pricing results for d ≥ 30 than NKRR but with a more expensive computational cost. As the
running time of NKRR is only slightly affected by the dimension and LKRR generally requires
much more time, NKRR is a better choice under high dimensional MJD.

The optimal choice of hyperparameters varies with the dimensions. To avoid the calibration
process of the hyperparameters for each dimension, we must choose compromise hyperparameters
that provide accurate pricing results among both low and high dimensions. In general, LKRR is
less sensitive to varying hyperparameters compared with NKRR. We can also conclude that the
choice of λ = 1 and P = 100 produces satisfactory results, and we will use those two parameters
for the experiments under the Heston model.



Chapter 5

The Heston model

This chapter will elaborate on the Hetson model, an example of the stochastic volatility model.
Since the Euler discretization scheme of CIR generates unrealistic sample realizations (Oosterlee
and Grzelak, 2020), we will first introduce the so-called Quadratic Exponential scheme proposed
by Andersen (2008) for the simulation of the CIR process. The simulation of the one-dimensional
Heston model will then be generalized to the multi-dimensional Heston. Eventually, we will
derive an expression for estimating the continuation value using LKRR under the Heston model.

5.1 One dimensional Heston

The Heston model describes the prices of the underlying assets as the GBM with stochastic
volatility σ2 = νt, where νt follows the CIR process as in Eq.(2.15). Then the SDE of the asset
price S(t) under the Heston model is given as follows (Heston, 1993){

dS(t)
S(t) = (r − q)dt+

√
νtdW

S(t)

dν(t) = κ(ν̄ − ν(t))dt+ γ
√
ν(t)dW ν(t)

, t ∈ [0, T ]

where r is the annual risk-free interest rate, q the dividend rate, κ > 0 is the speed of mean
reversion. The long-term mean is denoted as ν̄, which is nonnegative. γ > 0 denotes the
volatility of the variance process. Further, WS(t) and W ν(t) are standard Brownian motions

under risk neutral measure with correlation dWS(t)dW ν(t) = ρdt. If we define W ν(t) = W̃ ν(t)

and WS(t) = ρdW̃ ν(t) +
√
1− ρ2dW̃S(t) with independent W̃S(t) and W̃ ν(t), then we obtain

the following SDE with independent Brownian motions
dS(t)

S(t)
= (r − q)dt+

√
νt

(
ρdW̃ ν(t) +

√
1− ρ2dW̃S(t)

)
,

dν(t) = κ(ν̄ − ν(t))dt+ γ
√

ν(t)dW̃ ν(t).

(5.1a)

(5.1b)

Suppose we discretize the time interval [0, T ] into N time steps with step size h = T
N and denote

the time step ti as i for i = 0, ..., N with t0 = 0 and tN = T . Moreover, let us consider the log
prices Xi = logSi, the dynamic can be derived using the Itô’s lemma

dXi =

(
r − q − 1

2
νi

)
dt+

√
νi

(
ρdW̃ ν

i +
√
1− ρ2dW̃X

i

)
.

By integrating dXiand dνi, the following formulas yield, which give us an intuition for the

35
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discretization

Xi+1 = Xi +

∫ i+1

i

(
r − q − 1

2
ν(s)

)
ds+ ρ

∫ i+1

i

√
ν(s)dW̃ ν(s)

+
√
1− ρ2

∫ i+1

i

√
ν(s)dW̃X(s) (5.2)

and

νi+1 = νi +

∫ i+1

i
κ(ν̄ − ν(s))ds+ γ

∫ i+1

i

√
ν(s)dW̃ ν(s).

Then by rearranging and simplifying the expression of the CIR process, we get∫ i+1

i

√
ν(s)dW̃ ν(s) =

1

γ

[
νi+1 − νi − κν̄h+ κ

∫ i+1

i
ν(s)ds

]
. (5.3)

Finally, the substitution of Eq.(5.3) into Eq.(5.2) gives us

Xi+1 = Xi + (r − q)h+
ρ

γ
[νi+1 − νi − κν̄h] +

(
κρ

γ
− 1

2

)∫ i+1

i
ν(s)ds

+
√
1− ρ2

∫ i+1

i

√
νidW̃

X(s).

Note that
∫ i+1
i

√
ν(s)dW̃X(s) is an Itô’s integral, which is normal distributed with zero mean

and variance
∫ i+1
i ν(s)ds, given νi. From the expression above, it is clear that the simulation

of the samples νi+1 and
∫ i+1
i ν(s)ds is essential. We will use the Quadratic Exponential (QE)

scheme for the simulation of νi+1 in this thesis since it is the most efficient and robust in accuracy
even if the Feller condition is violated (Oosterlee and Grzelak, 2020; Wadman, 2010). The QE
scheme will be discussed further in the following subsection.

5.1.1 The Quadratic Exponential scheme of CIR

The Quadratic Exponential (QE) discretization scheme for the simulation of the CIR process is
proposed by Andersen (2008). As the name suggests, this scheme is composed of two different
algorithms. The main idea behind this scheme is the switching between these two algorithms
based on the parameters of the CIR process.

The first algorithm of the QE scheme is to approximate ν(t)|ν(s) by a quadratic function for
t > s. From Definition 2.2.2, we know that the variance process ν(t)|ν(s) is propositional to a
non-central chi-squared distribution. With high non-centrality parameters, the variance process
ν(t) is far from the origin and can be approximated by a quadratic function of a Gaussian
variable (Patnaik, 1949)

ν(t) ≈ ν1(t) = a (b+ Zν)
2 , Zν ∼ N (0, 1) and a, b ∈ R. (5.4)

The constants a and b depend on the time step size and the parameters of ν(t), which can be
estimated using the moment matching technique.

Proposition 5.1.1. (Andersen, 2008) Given the mean m̄ and the variance s2ν of the variance
process ν(t)|ν(s) as in Definition 2.2.2, then the constants a and b of ν1(t) in Eq.(5.4) are

a =
m̄

1 + b2

b2 = 2φ−1 − 1 +
√
2φ−1

√
2φ−1 − 1.

(5.5a)

(5.5b)

with φ = s2ν
m̄2 ≤ 2.
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Proof. Since ν1(t) = a(b + Zν)
2 with Zν ∼ N (0, 1), it follows that ν1(t) is proportional to a

non-central chi-squared distribution with degree of freedom 1 and non-centrality parameter b2,
i.e., ν1(t) ∼ aX 2(1, b2)(Andersen, 2008). The mean and variance of X 2(1, b2) are (1 + b2) and
2(1 + b2), respectively. Thus

E[ν1(t) | F(0)] = a(1 + b2) and Var[ν1(t) | F(0)] = 2a2(1 + 2b2).

We approximate ν(t) by ν1(t), it means the mean and variance should be equivalent

m̄ = a(1 + b2) and s2ν = 2a2(1 + 2b2).

It gives us a = m̄
1+b2

and a2 = s2ν
2(1+2b2)

, thus

m̄2

(1 + b2)2
=

s2ν
2(1 + 2b2)

=⇒ b4 + 2

(
1− 2m̄2

s2ν

)
b2 + 1− 2m̄2

s2ν
= 0.

Let z = b2 and φ = s2ν
m̄2 , then we need to solve the following quadratic equation

z2 + 2(1− 2φ−1)z + (1− 2φ−1) = 0.

The discriminant of this equation is D = 4(1 − 2φ−1)2 − 4(1 − 2φ−1) and the solution exists
ony if D ≥ 0. This implies φ ≤ 2. By solving this equation with the constraint z = b2 ≥ 0, we
obtain

z = b2 = 2φ−1 − 1 +
√

2φ−1
√

2φ−1 − 1.

The above mentioned approximation becomes inaccurate when the probability mass of ν(t)
accumulates around the origin since the moment matching method for finding a and b fails to
work (Andersen, 2008). Therefore, the second algorithm is suggested, where the density of ν(t)
is approximated by the exponential function

fν(t)(x) ≈ fν2(t)(x) = c̃δ(0) + β(1− c̃)e−βx, x ≥ 0 (5.6)

with δ(0) the Dirac delta function and the constants c̃ ∈ [0, 1] and 0 ≤ β ∈ R to be determined.
The corresponding cumulative distribution is then

Fν(t)(x) ≈ Fν2(t)(x) = c̃+ (1− c̃)(1− e−βx), x ≥ 0. (5.7)

Note that Eq.(5.7) is invertible, therefore ν2(t) can be directly sampled from ν2(t) = F−1
ν2(t)

(u)

with u ∼ U(0, 1) and

F−1
ν2(t)

(u) =

{
0, 0 ≤ u ≤ c̃
1
β ln

(
1−c̃
1−u

)
, c̃ ≤ u ≤ 1

. (5.8)

Proposition 5.1.2. (Andersen, 2008) Given the mean m̄ and the variance s2ν of the variance

process ν(t)|ν(s) as in Definition 2.2.2 and φ = s2ν
m̄2 , then the constants c̃ and β of fv2(t) in

Eq.(5.6) are determined as

c̃ =
φ− 1

φ+ 1

β =
2

m̄(φ+ 1)
,

(5.9a)

(5.9b)

with conditions c̃ ∈ [0, 1] and β ≥ 0.
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Proof. The mean and the variance of v2(t) are (Oosterlee and Grzelak, 2020)

E[ν2(t) | F(0)] =
1− c̃

β
and Var[ν2(t) | F(0)] =

1− c̃2

β2
.

By applying the moment matching method, the following yields

β =
1− c̃

m̄
and β2 =

1− c̃2

s2ν
,

which implies

(1− c̃)2s2ν = m̄2(1− c̃2)
φ=

s2ν
m̄2−−−−→ (1 + φ)c̃2 − 2φc̃+ φ− 1 = 0.

Under the condition c̃ ∈ [0, 1], the solution of this quadratic equation is

c̃ =
φ− 1

φ+ 1
and β =

1− φ−1
φ+1

m̄
=

2

m̄(φ+ 1)
,

with φ ≥ 1. The constraint φ ≥ 1 is essential as we want c̃ be nonnegative.

The quadratic scheme in Eq.(5.4) and the exponential scheme in Eq.(5.8) form the QE scheme
of the CIR simulation. The remaining is the switching rule between these two algorithms. The
first algorithm is well defined for φ ≤ 2 while the second is for φ ≥ 1. It implies that both
procedures are applicable for 1 ≤ φ ≤ 2. We can select a critical value φc ∈ [1, 2] such that
ν(t)|ν(s) is approximated by Eq.(5.4) if φ ≤ φc, otherwise it is approximated by Eq.(5.8).
According to Andersen (2008), the choice of the critical level only has small effects on the
simulation scheme. We will use φc = 1.5 in this thesis.

Below is the summary of the QE scheme.

Algorithm 2 The Quadratic Exponential(QE) scheme of CIR simulation

1: Given a critical level φc ∈ [1, 2] and the variance νi at the current time step ti with i =
0, ..., N − 1. The step size is h = T

N .

2: Compute m̄ and s2ν using Eq.(2.16) and Eq.(2.17), respectively.

3: if φ ≤ φc then
4: Compute a and b using Eq.(5.5).
5: Draw Zν ∼ N (0, 1) and use eq.(5.4) to generate νi+1.
6: else
7: Compute c̃ and β using Eq.(5.9).
8: Draw u ∼ U(0, 1) and use Eq.(5.8) to generate νi+1.
9: end if

The remaining is the term
∫ i+1
i ν(s)ds. We define it as Andersen (2008) suggests∫ i+1

i
ν(s)ds = [γ1νi + γ2νi+1]h, (5.10)

for some constants γ1 and γ2. In this thesis, we will use the simplest case where γ1 = 1 and
γ2 = 0. There are other options, such as central discretization, where γ1 = γ2 =

1
2 . In Dufresne

(2001), the moment-matching method is utilized for finding those two constants.
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5.1.2 The simulation of Heston model

Recall

Xi+1 = Xi + (r − q)h+
ρ

γ
[νi+1 − νi − κν̄h] +

(
κρ

γ
− 1

2

)∫ i+1

i
ν(s)ds

+
√
1− ρ2

∫ i+1

i

√
νidW̃

X(s),

where the νi+1, νi are simulated using the QE scheme. As
∫ i+1
i ν(s)ds = νih and

∫ i+1
i

√
νiddW̃

X(s)
is normal distributed with zero mean and variance νih, the equation above can be rearranged as

Xi+1 = Xi + (r − q − 1

2
νi)h+

ρ

γ
[νi+1 − νi − κh(ν̄ − νi)] +

√
1− ρ2

√
νihZ

X , (5.11)

where ZX ∼ N (0, 1). The log price (Xi+1|Xi, νi+1, νi) is normal distributed.

5.2 The multi-dimensional Heston model

Let us now consider the assets price S(t) = (S1(t), ..., Sd(t)) ∈ Rd generated using the multi-
dimensional Heston model, which is defined on the time interval [0, T ]. By subdividing the time
interval into N steps and denoting ti as i for all i = 1, ..., N , the dynamics of the log price
Xi = ln (Si) is {

dXi,n =
(
r − qn − 1

2νi,n
)
dt+

√
νi,ndW

X
i,n

dνi,n = κn(ν̄n − νi,n)dt+ γn
√
νi,ndW

ν
i,n

, n = 1, ..., d. (5.12)

The correlations of the d-dimensional Heston model can be distinguished into four types:

1. ρn: the correlation between WX
i,n and W ν

i,n just as the one dimensional scenario.

2. ρnl: the correlation between the log price Brownian motions, i.e. dWX
i,ndW

X
i,l = ρnldt with

n ̸= l.

3. ρνnl: the correlation between the variance Brownian motions, so dW ν
i,ndW

ν
i,l = ρνnldt with

n ̸= l.

4. ρXν
nl : the correlation between the n-th asset price and the l-th variance Brownian motions,

so dWX
i,ndW

ν
i,l = ρXν

nl dt, with n ̸= l.

We only consider the first two types of correlations in further discussion.

Let us define the Brownian motion vector of the Heston model at time step i as

dWi =

[
dWν

i

dWX
i

]
∈ R2d, with dWν

i =

 dW ν
i,1
...

dW ν
i,d

 and dWX =

 dWX
i,1
...

dWX
i,d

 .

Then the corresponding correlation matrix C̄ ∈ R2d×2d has the form

C̄ =

[
Cν CXν

CνX CX

]
,
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where Cν = Id ∈ Rd×d is the identity matrix since we assume that the variances are independent.

CX denotes the correlation matrix of the underlying assets and CνX =
(
CXν

)T
with CXν the

correlation matrix between the asset price and the variance process. As we are only assuming
the first two correlation type, it implies

CX =


1 ρ12 . . . ρ1d
ρ12 1 . . . ρ2d
...

...
. . .

...
ρ1d ρ2d . . . 1

 and CXν =


ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . . 0

0 0 0 ρd

 .

The Brownian motion vector dWi can be expressed as dWi = LdW̃i with dW̃i the Brownian
motion vector with independent components and L the Cholesky decomposition of C̄ = LLT .
The lower triangular matrix L can be written in a similar form as the correlation matrix

L =

[
L1 0d
L2 L̃

]
,

with 0d ∈ Rd×d the zero matrix and all other submatrices have the same dimension as 0d. Given
that L is a lower triangular matrix, the matrix L̃ ∈ Rd×d should be lower triangular as well.
Moreover, L1 = Id and L2 = CXν , see Proposition 2 in Wadman (2010) for the proof. Therefore,[

dWν
i

dWX
i

]
=

[
Id 0d

CXν L̃

][
dW̃ν

i

dW̃X
i

]
=

[
dW̃ν

i

CXνdW̃ν
i + L̃dW̃X

i

]

with independent Brownian motion

dW̃ν =

 W̃ ν
i,1
...

W̃ ν
i,d

 and dW̃X =

 W̃X
i,1
...

W̃X
i,d

 .

Then the dynamic of the log price can be rewritten as:

dXi,n =

(
r − qn − 1

2
νi,n

)
dt+ ρn

√
νi,ndW̃

X
i,n +

d∑
l=1

√
νi,nL̃n,ldW̃

X
i,l , (5.13)

for an arbitrary n ∈ {1, .., d}. Its integral form is

Xi+1,n = Xi,n +

∫ i+1

i

(
r − qn − 1

2
νi,n

)
ds+ ρn

∫ i+1

i

√
νi,ndW̃

ν
n (s)︸ ︷︷ ︸

=c1

+

d∑
l=1

L̃n,l

∫ i+1

i

√
νi,ndW̃

X
l (s).

The term c1 can be expressed using Eq.(5.3), thus

Xi+1,n = Xi,n + (r − qn)h+
ρn
γn

[νi+1,n − νi,n − κnν̄nh]

+

(
κnρn
γn

− 1

2

)∫ i+1

i
νn(s)ds+

d∑
l=1

L̃m,j

∫ i+1

i

√
νi,ndW̃

X
l (s). (5.14)
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Since
∫ i+1
i νn(s)ds = νi,nh and

∫ i+1
i

√
νi,ndW̃

X
l (s) ∼ N (0, νi,nh), we obtain a similar expression

for Xi+1,n as in Eq.(5.11)

Xi+1,n =Xi,n + (r − qn − 1

2
νi,n)h+

ρn
γn

[νi+1,n − νi,n − κnh(ν̄n − νi,n)]︸ ︷︷ ︸
µi+1,n

+

d∑
l=1

L̃n,l

√
νi,nhZ

X
i,l , (5.15)

where ZX
i,l

iid∼ N (0, 1), for l = 1, ..., d. Let us define matrix Di ∈ Rd×d as

Di =


√
νi,1

. . .
√
νi,d

 L̃,

then Eq.(5.15) can be written in matrix form:

Xi+1 = µi+1 +Di

√
hZX

i ,

with ZX
i =

[
Zi,1 · · · Zi,d

]T
and Zi,l

iid∼ N (0, 1). For µi+1 =
[
µi+1,1 · · · µi+1,d

]T
, we need the

variances νi+1 and νi+1 which can be simulated independently using the QE scheme. It is clear
that (Xi+1|Xi,νi+1,νi) follows a multivariate normal distribution with mean µi+1 and variance
hΣH

i , where ΣH
i = DiD

T
i .

5.2.1 KRR method under Heston

The NKRR can be applied to American option pricing under the multi-dimensional Heton model
without any modifications. The estimation of the continuation value using LKRR needs to be
changed since the covariance matrix is now dependent on the CIR process. The CIR process can
be simulated independently under our assumption about the correlations. Therefore, Lemma

3.2.1 still applies to the Heston model as
(
Xi+1 −X

(m)
i+!

)
|Xi,νi+1,νi ∼ N (µi+1 −X

(m)
i+1, hΣ

H
i ).

The expression of the continuation value using LKRR is similar to Eq.(3.12)

Q̂i(Xi) = Di,i+1

M∑
m=1

α̂i+1,mE
[
K(Xi+1,X

(m)
i+1)|Xi, νi+1,νi

]
=

Di,i+1

| 2ChΣ
H
i i + Id|

1
2

M∑
m=1

α̂i+1,me
− 1

C

(
µi+1−X

(m)
i+1

)T
( 2
C
hΣH

i +Id)
−1

(
µi+1−X

(m)
i+1

)
. (5.16)
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Chapter 6

Experiments: The Heston model

This section will examine the pricing accuracy and efficiency of KRR-based approaches for
American option pricing under the Heston model. We begin with one-dimensional cases in
which the Feller condition is satisfied or violated. The results will then be evaluated against
the Premia benchmarks. No reliable benchmarks exist for the American option pricing under
the high-dimensional Heston model, not even in Premia. Recall that the benchmarks of Premia
are acquired utilizing the primal-dual method. According to Andersen and Broadie (2004), this
approach is applicable to any process dynamics. Therefore, we will elaborate on this approach
and implement it ourselves. To ensure the correctness of our implementation, we will compare
our results for the pricing of American options under the GBM model with the benchmarks of
Premia. Finally, we will investigate the accuracy of the KRR-based methods under the Heston
model using our results of Primal-dual as benchmarks. The hyperparameters P and lambda
used in previous tests, i.e., P = 100 and lambda = 1, will also be used in the experiments in
this chapter.

6.1 One dimensional Heston

This section presents two experiments of the American put option under one dimensional Heston
model, where the Feller condition is satisfied or violated. Recall the Feller condition 2κν̄ ≥ γ2.
The two sets of parameters used are study cases from Fang and Oosterlee (2011).

6.1.1 Heston with satisfied Feller condition

The Heston model parameters that satisfy the Feller condition are stated in Table 6.1.

S0 Ks r q ν0 ν̄ γ κ ρ T N M

10 10 10% 0% 0.0625 0.16 0.9 5 0.1 0.25 50 10, 000

Table 6.1: Parameters of 1d Heston with satisfied Feller condition.

The LSM/LSMP methods utilize the same basis functions as the experiments before. The
Gaussian kernel parameters are manually found using the grid search approach as explained in
subsection 3.2.4. The corresponding Gaussian kernel parameters are Cnkrr = 0.95 and Clkrr =
50.

The pricing results of those four methods obtained from 10 independent iterations are shown
in Table 6.2. The Premia benchmark is estimated using Premia, where the primal-dual method
of Andersen and Broadie (2004) is used with the same setting as experiments before. We observe

43
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that the KRR-based approach provides better pricing results than the LSMC-based methods.
Among NKRR and LKRR, the pricing accuracy of NKRR is better than the LKRR method. It
indicates that KRR-based approaches are applicable under the one-dimensional Heston model
and NKRR is the most accurate.

Premia LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

0.5278 0.5214 1.200 0.5228 0.946 0.5287 0.161 0.5309 0.588

Table 6.2: Pricing accuracy of 1d Heston with satisfied Feller condition.

6.1.2 Heston with violated Feller condition

Let us consider the following parameters where the Feller condition is violated.

S0 Ks r q ν0 ν̄ γ κ ρ T P N M

100 100 3% 5% 0.0348 0.0348 0.39 1.15 −0.64 1 100 10 10, 000

Table 6.3: Parameters of 1d Heston with violated Feller condition.

The Gaussian kernel parameters are Cnkrr = 450 and Clkrr = 380 are found using grid
search. Then the pricing accuracy is as follows

Premia LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

7.2109 6.8057 5.619 7.1822 0.398 7.2251 0.197 7.2373 0.366

Table 6.4: Pricing accuracy of 1d Heston with violated Feller condition.

The LSM is inaccurate under this set of parameters. The pricing accuracy can be improved
by choosing another set of basis functions, as we can conclude from the pricing result of LMSP.
The same conclusion can be drawn regarding the KRR-based methods as the previous exper-
iment: the KRR-based methods are better than LSMC. The accuracy of LSMP is similar to
LKRR, but the latter performs slightly better. NKRR is the best among all four approaches,
as it has the lowest pricing error.

6.2 Multi-dimensional Heston

Since no reliable price reference exists for the valuation of high-dimensional American options
under the Heston model (not in the literature or in Premia), we must design our test cases
carefully. Recall all the benchmarks from Premia that we used for the experiments are actually
results of the primal-dual method proposed by Andersen and Broadie (2004). We will first
discuss more details about this primal-dual approach in this section. The pricing results under
the GBM model acquired using self-implemented primal-dual and the pricing outcomes obtained
using Premia will then be compared to assess our implementation’s accuracy. Finally, we will
use self-implement primal-dual benchmarks to examine the price accuracy of the KRR-based
approaches.
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6.2.1 The primal-dual simulation algorithm

The primal-dual approach can be interpreted as computing the option values from the perspec-
tive of the option holder and the seller. The primal problem can be seen as determining the best
exercise strategy to maximize the payoff, which is the optimal stopping problem we previously
derived. Instead, the seller needs to estimate the minimum amount required to cover the holder’s
payout. Thus, the solution to those two problems provides the lower and upper bounds where
the actual option prices belong.

Let St ∈ Rd denotes the asset price with t ∈ [0, T ] and the set of possible exercise dates is
defined as T = {t1, ..., tN} with step size h = T

N . The primal problem is the same as the optimal
stopping problem derived before

Primal: V0 = sup
τ∈T

E[D0,τhτ (Sτ )|F0],

where D0,t =
M0
Mt

and Mt = ert.
The main idea of the dual approach is to minimize over a class of martingales. Let H denotes

the set of all adapted martingales π such that supt∈T |πt| < ∞ and π0 = 0. Then for any π ∈ H

V0 = sup
τ∈T

E [D0,τhτ + πτ − πτ |F0] = π0 + sup
τ∈T

E [D0,τhτ − πτ |F0]

≤ π0 + E
[
max
t∈T

(D0,tht − πt) |F0

]
. (6.1)

The second equality is due to the martingale property of πt and the optional sampling theorem.
The inequality follows from Jensen’s inequality. This inequality still holds when taking the
infimum over the set H

V0 ≤ inf
π∈H

(
π0 + E

[
max
t∈T

(D0,tht − πt) |F0

])
. (6.2)

as Eq.(6.1) holds for any arbitrary martingale.

Recall the option value at ti is

Vi(Si) = max{hi(Si),E[Di,i+1Vi+1|Fi]},

for i = 0, ..., N−1. By multiplying the option value with the discounted factor D0,i, the following
yields

D0,iVi = max{D0,ihi,E[D0,i+1Vi+1|Fi]}.

Andersen and Broadie (2004) claims the processD0,tVt is the smallest supermartingale that dom-
inates the discounted payoff process D0,tht. Then the corresponding Doob-Mayer decomposition
of this supermartingale is given by

D0,tVt = M̃t −At,

where M̃t is the martingale and At an increasing process with A0 = 0.
Equality holds in Eq.(6.1) if we take πt = M̃t, with M̃t = D0,tVt + At and M̃0 = V0. Since

substituting this expression into Eq.(6.1), we obtain

V0 ≤ V0 + E
[
max
t∈T

(D0,tht −D0,tVt −At) |F0

]
≤ V0.
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The second inequality holds as D0,tVt dominates D0,tht, i.e., D0,tVt ≥ D0,tht and At is an
increasing process. Then the dual problem can be formulated as

Dual: V0 = inf
π∈H

(
π0 + E

[
max
t∈T

(D0,τhτ − πt) |F0

])
. (6.3)

Nevertheless, finding the optimal martingale is difficult as we generally do not know how
the martingale involves over time. Andersen and Broadie (2004) suggest to construct πt as the
martingale part of the approximation of D0,tVt. The lower bound price process V̂t can be used
to approximate Vt. Then D0,tVt can be approximated by Lt = D0,tV̂t. We aim to compute the
martingale part of the following price process

{Li = E [D0,τihτi | Fi] , i = 1, . . . , N} ,

where τi are the exercise policy of the lower bound price process.

Glasserman (2010) proposed a simplified version of Andersen and Broadie (2004) where the
martingale can be constructed as follows

{
π̂0 = L0

π̂i = π̂i−1 + Li − E [Li | Fi−1] for i = 1, . . . , N.

(6.4a)

(6.4b)

We can verify that the obtained process π̂t indeed satisfies the martingale property:

E [π̂i | Fi−1] = E [π̂i−1 + Li − E [Li | Fi−1] | Fi−1]

= π̂i−1 + E [Li | Fi−1]− E [Li | Fi−1]

= π̂i−1

for i = 1, ..., N .

Let us denote the difference as ∆i = Li − E [Li | Fi−1]. Note

Li = E [D0,τihτi | Fi] =

{
D0,ihi, if hi ≥ Qi

E [Li+1 | Fi] , else
.

Since the continuation value QN = 0 which implies hN ≥ QN , the only term that we need
to estimate is E [Li | Fi−1] for i = 1, ..., N . The algorithm for finding the By using the tower
property,

E [Li | Fi−1] = E [E [D0,τihτi | Fi] | Fi−1] = E [D0,τihτi | Fi−1] .

The term E [D0,τihτi | Fi−1] will be simulated using nested Monte Carlo simulation and the
difference can be computed using

∆i =

{
D0,ihi − E [D0,τihτi | Fi−1] , if hi ≥ Qi

E
[
D0,τi+1hτi+1 | Fi

]
− E [D0,τihτi | Fi−1] , else

. (6.5)

.

Once the martingale π̂t is constructed, the duality gap between the lower and upper bound
can be calculated as

G0 = E
[
max
t∈T

(D0,tht − π̂t) |F0

]
.

The corresponding upper bound U0 = L0 +G0.
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Computing the upper bound

In order to construct the martingale, the only conditional expectation that we have to estimate
is E

[
D0,τk+1

hτk+1
| Fk

]
, for k = 0, ..., N − 1. Andersen and Broadie (2004) proposes to estimate

it using Min nested Monte Carlo simulations within an outer Monte Carlo simulation.
Suppose we generate Mout sample paths for computing the lower bound price process. In

addition, we will estimate the optimal exercise strategy and the corresponding continuation
values Qi at each timestep i ∈ {1, ..., N} using the LSMC method. Then the upper bound
computation proceeds by repeating the following steps Mout times

1. Let S0, ...,SN with Sj ∈ Rd be an arbitrary simulated outer path, for j = 0, ..., N .

2. At each timestep k = 0, ..., N − 1

• Simulate Nin subpaths Ŝk, ..., ŜN with Ŝk = Sk as the initial value.

• Use the LSMC method for computing the discounted payoff D0,τk+1
hτk+1

(
Ŝτk+1

)
of

each inner simulation and use the average of the discounted payoff as an estimate of
E
[
D0,τk+1

hτk+1

(
Sτk+1

)
| Fk

]
.

• Store the estimated conditional expectation in matrix E ∈ RMout×N .

3. Use matrix E and the pre-determined continuation values to computes ∆i as in Eq.(6.5).
Then calculate the martingale π̂i using Eq.(6.4).

4. Determine the duality gap G = maxt∈T (D0,tht − π̂t).

The output of this procedure is a vector of duality gaps G ∈ RMout . We use the average as
an estimate for the duality gap G0, and the upper bound is calculated by U0 = L0 +G0, where
L0 is the low bound price computed using the outer simulation paths.

Implementation of primal-dual algorithm

Andersen and Broadie (2004) suggests to compute the lower bound L̂0 and the duality gap
Ĝ0 using independent simulations. Furthermore, the point estimate offers a more accurate price
estimate than either the lower limit or higher bound by themselves(Andersen and Broadie, 2004).
The summary of the implementation can be found in Algorithm 3.

Algorithm 3 The primal-dual algorithm

Given M1,M2,Mout and Min as the numbers of Monte Carlo simulations. The number of
exercise opportunities is N .

1: Simulate M1 sample paths and use the LSMC method to estimate the regression coefficients
and store them for later usage.

2: Simulate M2 sample paths and use the estimated regression coefficients to compute the lower
bound estimate L̂0.

3: Use Mout outer simulations and Min inner simulations for computing the duality gap Ĝ0 as
explained before.

4: Compute the point estimate V̂0 = L̂0+
1
2Ĝ0 and the corresponding upper bound Û0 = L̂0+Ĝ0.

The first two steps are done to remove the forecasting bias that may occur in the Monte
Carlo pricing of Bermudan options (Fries, 2005). Longstaff and Schwartz (2001) propose only
using the ITM paths for the calculation of the option price. We will include all paths for the
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LSMC method since the estimated regression coefficients influence the computation of the upper
and lower bounds.

6.2.2 Accuracy of the self-implemented primal-dual algorithm

In this subsection, we will analyze the accuracy of the self-implemented primal-dual algorithm
using the GBM model with the same parameters as in section 4.1. Recall the used parameters
are:

S0,v Ks σv r qv ρvl T N

100 100 0.2 5% 10% 0 3 3

Table 6.5: Parameters for GBM.

The results of Premia are based on M = 5 × 104 simulations and use LSMC with Hermite
polynomial from degree 0 − 3 as basis functions for computing the lower bound. Moreover,
Nout = 500 and Nin = 100 for the duality approach. To keep the same setting as Premis, we
set M1 = M2 = 5 × 104 for the self-implemented primal-dual algorithm. The pricing result
of the self-implemented primal-dual approach using 60 independent iterations is presented in
Table 6.6. The values between the brackets are the standard deviations. The error rate is the
relative error between Premia and the obtained point estimate.

d Premia Lower Upper Gap Estimate Error(%)

5 25.306 25.1196(0.0792) 25.3550(0.0816) 0.2354(0.1215) 25.2373(0.0526) 0.2716
10 37.698 37.1744(0.0786) 37.4550(0.1071) 0.2807(0.1261) 37.3147(0.0696) 1.0168
15 45.569 44.9750(0.0946) 45.1869(0.1142) 0.2120(0.1479) 45.0810(0.0743) 1.0710
20 51.443 50.5994(0.1095) 50.8231(0.1112) 0.2237(0.1438) 50.7112(0.0837) 1.4225
30 59.775 58.6089(0.0995) 58.8226(0.1219) 0.2137(0.1652) 58.7158(0.0745) 1.7720
40 65.525 64.3290(0.1057) 64.5465(0.1155) 0.2175(0.1495) 64.4378(0.0817) 1.6592
60 73.900 72.4333(0.1067) 72.6201(0.0999) 0.1868(0.1504) 72.5267(0.0709) 1.8583
80 79.908 78.1792(0.1004) 78.3752(0.1088) 0.1961(0.1393) 78.2772(0.0781) 2.0409
100 84.501 82.6925(0.1350) 82.8653(0.1185) 0.1728(0.1802) 82.7789(0.0895) 2.0379

Table 6.6: Comparison self-implemented Primal-dual with Premia.

As we can conclude from this table, the price estimates using the self-implemented primal-
dual simulation algorithm are generally lower than the benchmarks. Moreover, the relative error
with respect to Premia increases in dimension. The reason may be the loose lower bounds we
get as the dimension increases. Premia’s documentation does not clarify whether they have used
variance reduction or other improvement methods. In conclusion, our implementation provides
biased pricing results. As the pricing errors are above 2% for d = 80 and d = 100, we will
exclude those two dimensions to examine the pricing accuracy of NKRR and LKRR under the
Heston model.

6.2.3 Multi-Heston with satisfied Feller condition

To investigate the pricing accuracy of the KRR-based approaches under the Heston model, we
will use the results of the self-implemented primal-dual as the benchmark prices. Since those
benchmark prices are biased, as concluded in the previous subsection, we will only verify whether
NKRR and LKRR are applicable for high American option pricing under the Heston model. It is
hard to conclude which method is the best with biased benchmarks. For low dimensions d ≤ 15,
we can conclude the best method among all four methods as the pricing results in the previous
subsection are acceptable.
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We keep the same settings as much as feasible from the GBM numerical experiments with the
hoop to reduce the computational time for finding the appropriate Gaussian kernel parameters
Cnkrr and Clkrr. Those of GBM may be used as initial values for the grid search. Table 6.7 lists
the set of parameters that satisfy the Feller criterion.

S0v Ks σv rv qv ν0,v ν̄v γv κv ρνSv ρSv T N M

100 100 0.2 5% 10% 0.03 0.04 0.1 1 0.1 0 3 3 10000

Table 6.7: Parameters for Heston with satisfied Feller condition.

Pricing accuracy and computational time

Recall the number of bundles P = 100 and the ridge parameter λ = 1 for the KRR-based
methods. Moreover, the LSMC methods in future experiments utilize the same basis functions
as previous experiments: polynomial up to degree 2 denoted as LSM, and LSMP has payoff as
an additional basis function.

Although the assessment of d = 80, 100 regarding pricing accuracy is pointless due to the
significant bias in our benchmarks, we can still examine those dimensions in terms of computing
time. We observe similar results as for the other two models. For d ≤ 40, the running time of
LKRR is the highest. As dimension increases further, KRR-based methods are more efficient
than LSMC methods. NKRR performs the best in running time and is slightly influenced by
the dimensions, indicated in Figure 6.1 and Table 6.8.

Figure 6.1: Computational time under Heston.

d 5 10 15 20 30 40 60 80 100

LSM 0.1060 0.1607 0.2096 0.2812 0.4710 0.8393 2.6016 5.6627 13.3707
LSMP 0.1106 0.1598 0.2177 0.2878 0.4904 0.8925 2.7940 7.0514 18.1013
NKRR 0.0446 0.0534 0.0586 0.0572 0.0673 0.0756 0.0928 0.1044 0.1236
LKRR 0.2351 0.3448 0.4346 0.5246 0.8696 1.3023 2.0124 3.0179 4.7500

Table 6.8: Heston: Running time in (s) over dimensions.
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We use the self-implemented primal-dual algorithm as the benchmark for the pricing results,
shown under the column Benchmark in the Table 6.9. The benchmark is obtained using 10
independent iterations. The pricing results of those four methods are based on 60 independent
iterations. In between the brackets are the standard deviations.

d Benchmark LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 21.9697 (0.0776) 21.9784(0.1739) 0.0396 21.9985(0.1786) 0.1311 21.9864(0.1854) 0.0761 21.9523(0.1745) 0.0789
10 32.9357 (0.0691) 33.0254(0.2674) 0.2723 33.0835(0.2693) 0.4487 33.0080(0.2476) 0.2196 33.0519(0.2344) 0.3527
15 40.1964 (0.0576) 40.2637(0.1746) 0.1674 40.3570(0.1772) 0.3995 40.2171(0.1754) 0.0515 40.3298(0.1921) 0.3319
20 45.4648 (0.0948) 45.5425(0.1975) 0.1709 45.6637(0.1878) 0.4373 45.4855(0.1805) 0.0454 45.6207(0.1901) 0.3427
30 53.0932 (0.0859) 53.3156(0.2310) 0.4189 53.4910(0.2245) 0.7493 53.2420(0.2172) 0.2804 53.3598(0.2161) 0.5022
40 58.4968 (0.0483) 58.9207(0.2240) 0.7246 59.0955(0.2224) 1.0234 58.7787(0.2406) 0.4818 58.8385(0.2316) 0.5840
60 66.2300 (0.0693) 67.0923(0.2226) 1.3019 67.2161(0.2288) 1.4888 66.8229(0.2352) 0.8952 66.7076(0.2274) 0.7210

Table 6.9: Pricing results under Heston with Cnkrr = 1.5 · 105 and Clkrr = 100.

As expected, the pricing errors of all methods are increasing in dimensions as the benchmarks
become more biased than lower dimensions. From the accuracy test in subsection 6.2.2, we can
only guarantee the correctness of the relative error of those four methods for d = 5. The KRR-
based methods produce accurate results in this dimension. Moreover, we have concluded that the
result of the self-implemented algorithm is generally lower than the Premia results. Therefore,
the benchmarks should be greater than what we stated in the table above, which might lead to
a smaller relative error for all four methods, especially when d ≥ 30. The NKRR method is the
best for the lower dimensions (d ≤ 15) among those four methods if we only look at the current
pricing results and computational costs.

The pricing results of KRR-based methods are similar to those of LSMC-based methods,
as the Gaussian kernel parameters are calibrated accordingly. It is done on purpose, as the
benchmarks are biased. Those similar results indicate that KRR-based approaches can provide
accurate pricing results once appropriate hyperparameters are found. Considering the calibra-
tion process of the hyperparameters, the NKRR is a better choice than LKRR since the running
time of NKRR is only slightly affected by the dimensions. Additionally, KRR-based algorithms
require less running time in higher dimensions compared to LSMC. When the calibration and
pricing running time is shorter than LSMC, KRR-based methods perform better as they can
provide similar results with cheaper computational costs. The Cnkrr and Clkrr used in this
chapter are manually found utilizing grid search. A more efficient way for finding the Gaussian
kernels should be designed. In conclusion, LKRR is robust under varying Gaussian kernel and
ridge parameters, while NKRR is less robust for the latter one, especially with high dimensions.

The influence of hyperparameters

Even though the current pricing errors are biased, we can still investigate the robustness of KRR-
based methods. If the error rates are not fluctuating between wide intervals, we can conclude
that those two methods are not sensitive to varying hyperparameters. We select d = 10 and
d = 40 as representatives for the low and high dimensions. The KRR hyperparameters C and λ
are multiplied with a scale vector s = [0.5, 0.7, 0.9, 1, 1.25, 1.4, 1.5].

In Figure 6.2, the pricing error is plotted against a range of λ for both dimensions. The
NKRR approach is more sensitive to a varying ridge parameter than LKRR, especially for high
dimensions. Optimal choices for λ exist, but we cannot conclude from the current results as the
benchmarks are biased. On the contrary, those two methods are less influenced by the choices
of the Gaussian kernel parameters in both dimensions, as shown in Figure 6.3.
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(a) d = 10 (b) d = 40

Figure 6.2: Pricing accuracy under Heston for various λ.

(a) d = 10 (b) d = 40

Figure 6.3: Pricing accuracy under Heston for various C.

Figure 6.4: Running time and pricing error under Heston with various P.
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Figure 6.4 presents the computing time and pricing accuracy against P = [20, 50, 80, 100, 200, 400].
We observe similar phenomena for the running time and the error rate as for the other two mod-
els. The running time decreases as the P increases, and it is only slightly affected by P for
P ≥ 100. The right sugfigures indicate the existence of optimal P for both dimensions. More-
over, the pricing error increases for P ≥ 100. As the relative error varies within a small range
of values, we can conclude that KRR-based methods are robust, provided P is not too great.

We have also studied pricing accuracy and efficiency using the Heston model with violated
Feller. As the results are similar to the one with satisfied Feller condition, we have set pricing
results in Appendix D.



Chapter 7

Conclusion and future research

7.1 Conclusion

The main idea of regression-based Monte Carlo methods for American option pricing is to ap-
proximate the continuation values using regression. Regarding the data used for the regression,
those methods can be categorized into regression now and later. In this thesis, we investigated
the KRR-based methods for valuing high-dimensional American options in various asset price
models. As the name suggests, those approaches utilize kernel ridge regression, where regression
now and later are denoted as NKRR and LKRR. The Gaussian kernel is used as the kernel func-
tion. Moreover, the KRR-based method involves the bundling technique, which divides the data
into P non-overlapping bundles. We also incorporated the LSMC (using linear regression) with
two sets of basis functions in the experiments to evaluate the pricing accuracy and computing
efficiency of the KRR-based approaches.

For the asset prices generated by high-dimensional geometric Brownian motion, the KRR-
based methods provide more accurate pricing results than the LSMC methods. For dimensions
d < 40, all methods have similar computational costs, where LKRR is the slowest. Although the
computational time of LKRR increases with dimension, it is still computationally more efficient
than LSMC. The LSMC suffers from the curse of dimension, as we can conclude from our
experiment. Its running time gains exponentially as the dimension increases. The computational
time of NKRR does not influence by the dimension, and its pricing accuracy is slightly worse
than LKRR.

The KRR-based methods are definitely a better choice than LSMC for pricing high-dimensional
American options in Merton jump-diffusion. LSMC provides inaccurate prices as the dimension
grows, while the pricing errors of NKKR and LKRR are up to 1.5%. Moreover, NKRR is better
than LKRR concerning computational costs.

No reliable results exist for valuing the high-dimensional American option under the Heston
model, neither in the literature nor in the third-party software Premia, which we used for the
other two models. For the experiments, we used the self-implemented primal-dual pricing results
as benchmarks. Nevertheless, those obtained benchmarks are biased. Therefore, we cannot con-
clude for sure which of the LSMC and KRR-based methods provides the most accurate pricing
results. However, we can conclude that the KRR-based techniques are applicable to the Amer-
ican option pricing for the high-dimensional Heston model. Once the proper hyperparameters
are found, the KRR-based approaches can also provide comparable pricing results with lower
computing costs than the LSMC method in higher dimensions (d ≥ 40). NKRR outperforms
LKRR in terms of computational efficiency as its running time is far below 1 second among all
dimensions d ≤ 100.

Furthermore, the robustness of the KRR-based methods is investigated for those asset price
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models. LKRR is robust both under varying Gaussian kernel parameters and ridge parameters,
while NKRR is more sensitive for the latter parameter. The optimal number of bundles P seems
to depend on the data size and the asset price model, as different optimal P are obtained for
the geometric Brownian motion and Merton jump diffusion.

7.2 Future research

The computational time of NKRR is regardless of dimensions and the models, as we concluded
from the experiments. Therefore, the NKRR approach is better than LKRR for practical usage.
However, the main drawback of the KRR-based methods is the time-consuming hyperparameter
tuning process. One of the suggestions for future research is finding a better hyperparameter
optimization strategy to reduce the total running time of the KRR-based methods.

In addition, the primal-dual algorithm we implemented provides biased results. In future
research, We can include an improvement strategy to reduce the bias and use the KRR-based
methods for the primal-dual algorithm.
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Appendix A

Proof: Feynmann-Kac theorem

Proof. Let us consider the term V (t,S)
M(t) , with M(t) = exp (r(t− t0)). So

V (t,S)
M(t) = e−r(t−t0)V (t, S).

By using the product rule, we know that

d
V (t, S)

M(t)
= e−r(t−t0)dV + V d(e−r(t−t0))

Since dS(t) = µ̃(t, S(t))dt+ σ̃(t, S(t))dWQ(t) and (dS(t))2 = σ̃2(t, S(t))dt, we get

dV =

(
∂V

∂t
+ µ̃(t, S)

∂V

∂S
+

1

2
σ̃2(t, S)

∂2V

∂S2

)
dt+ σ̃

∂V

∂S
dWQ.

We know that for the money saving account d(e−r(t−t0)) = −re−r(t−t0)dt, then

d
V (t, S)

M(t)
= e−r(t−t0)

[(
∂V

∂t
+ µ̃(t, S)

∂V

∂S
+

1

2
σ̃2(t, S)

∂2V

∂S2

)
dt+ σ̃

∂V

∂S
dWQ

]
− re−r(t−t0)V dt.

By multiplying both sides with er(t−t0) and using the assumption that was made, we get the
following expression

er(t−t0)d
V (t, S)

M(t)
=

(
∂V

∂t
+ µ̃(t, S)

∂V

∂S
+

1

2
σ̃2(t, S)

∂2V

∂S2
− rV

)
︸ ︷︷ ︸

=0

dt+ σ̃
∂V

∂S
dWQ

= σ̃
∂V

∂S
dWQ

As a result, we get

d
V (t, S)

M(t)
= e−r(t−t0)σ̃

∂V

∂S
dWQ

⇒
∫ T

t0

d(e−r(t−t0)V (t, S) =

∫ T

t0

e−r(t−t0)σ̃
∂V

∂S
dWQ

e−r(T−t0)V (T, S(T ))− V (t0, S) =

∫ T

t0

e−r(t−t0)σ̃
∂V

∂S
dWQ (A.1)

By taking expectation at both sides of above equation with respect to Q-measure, we get the
following expression for the option value at t0:

V (t0, S) = EQ
[
e−r(T−t0)V (T, S(T )|F(t0)

]
− EQ


∫ T

t0

e−r(t−t0)σ̃
∂V

∂S
dWQ︸ ︷︷ ︸

I(t)

|F(t0)

 . (A.2)
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We know that I(t0) = 0 and I(t) is a martingale, since it has no drift term. Therefore,
EQ[I(t)|F(t0)] = 0 for all t ≥ t0.As a result, we get

V (t0, S) = EQ
[
e−r(T−t0)H(T, S(T )|F(t0)

]
, (A.3)

note that V (T, S(T )) = H(T, S(T )).



Appendix B

Proof: Lemma 3.2.1

The characteristic function of the multivariate normal is needed to prove this lemma. Therefore,
we will first derive the characteristic function of the multivariate normal.

Suppose X ∼ N (µ,Σ) , then its density function fX(x) is

fX(x) =
1

(2π)d|Σ|
1
2

e−
1
2
(x−µ)TΣ−1(x−µ).

By definition, the characteristic function of variable X is given by

ϕX(t) = E[eit
Tx] =

∫
Rd

eit
TxfX(x)dx =

∫
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2
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2
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Proof. Since X ∼ N (µ,Σ), we can rewrite it as X = µ+Y with Y ∼ N (0,Σ). Then

E[e−
1
C
XTX] = E[e−

1
C
(µ+Y)T (µ+Y)] = E[e−

1
C (µ

Tµ+2µTY+YTY)]

= e−
1
C
µTµE[e−

2
C
µTY− 1

C
YTY]. (B.2)
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Since Y has zero mean and covariance Σ, the expectation term gives us the following

E[e−
2
C
µTY− 1

C
YTY] =

1

(2π)d|Σ|
1
2

∫
Rd

e−
2
C
µT z− 1

C
zT ze−

1
2
zTΣ−1zdz

=
| 2C I +Σ−1|

1
2

(2π)d|Σ|
1
2 | 2C I +Σ−1|

1
2

∫
Rd

e−
2
C
µT z− 1

2
zT ( 2

C
I+Σ−1)zdz

=
| 2C I +Σ−1|

1
2

(2π)d| 2CΣ+ I|
1
2

∫
Rd

e−
2
C
µT z− 1

2
zT ( 2

C
I+Σ−1)zdz

=
1

| 2CΣ+ I|
1
2

∫
Rd

| 2C I +Σ−1|
1
2

(2π)d
e−

2
C
µT z− 1

2
zT ( 2

C
I+Σ−1)zdz. (B.3)

Let Σ̂−1 = 2
C I+Σ−1, then |Σ̂|−

1
2 = | 2C I+Σ−1|

1
2 . It means the expression above can be rewritten

as

E[e−
2
C
µTY− 1

C
YTY] =

1

| 2CΣ+ I|
1
2

E[e−
2
C
µTZ], (B.4)

with Z ∼ N (0, Σ̂). Note i2 = −1, therefore
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µTZ] = E[ei

2 2
C
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2

c
iµ

)
.

By using the result that we have found in Eq.(B.1), we get
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If we substitute the above expression in equation (B.2), the following can be obtained:
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Confidence interval Premia

Figure C.1: Confidence interval reprinted from (Hu and Zastawniak, 2020).
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Appendix D

Heston with violated Feller condition

The set of parameters is listed in the table below, where the Feller condition is violated. The γv
is changed to γv = 0.39. Moreover, the correlation between the variance process and the asset
price is set as a negative value. The number of bundles P and the ridge parameter λ remain
unchanged.

S0v Ks σv rv qv ν0,v ν̄v γv κv ρνSv ρSv T N M

100 100 0.2 5% 10% 0.03 0.04 0.39 1 −0.1 0 3 3 10000

Table D.1: Parameters for Heston with violated Feller condition.

We only present the pricing results as the computational time does not change with the
varying of those two parameters. The benchmark is obtained using 10 independent iterations of
the self-implemented primal-dual algorithm. Furthermore, the pricing results are based on 20
independent iterations. We can see that KRR-based methods provide similar pricing errors as
in the experiment of Heston with satisfied Feller condition.

d Benchmark LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 21.3332 (0.0556) 21.3357(0.2559) 0.0119 21.3525(0.2450) 0.0903 21.4449(0.2746) 0.5236 21.3523(0.2811) 0.0894
10 32.5300 (0.0905) 32.6641(0.2484) 0.4122 32.7393(0.2381) 0.6434 32.8528(0.2442) 0.9923 32.7681(0.2631) 0.7319
15 40.3076 (0.0704) 40.4826(0.2854) 0.4341 40.6002(0.2908) 0.7259 40.6135(0.2691) 0.7590 40.5801(0.2790) 0.6763
20 46.2288 (0.1412) 46.4638(0.2600) 0.5083 46.5907(0.2698) 0.7829 46.5617(0.2459) 0.7202 46.5552(0.2610) 0.7061
30 55.1407 (0.0917) 55.6755(0.2954) 0.9699 55.8740(0.3046) 1.3300 55.7120(0.3103) 1.0361 55.7301(0.2804) 1.0689
40 61.7835 (0.1202) 62.4093(0.3662) 1.0129 62.5733(0.3809) 1.2783 62.3807(0.3395) 0.9665 62.3058(0.3798) 0.8454
60 71.7754 (0.0742) 72.8254(0.2861) 1.4630 72.9079(0.2939) 1.5779 72.6854(0.3051) 1.2679 72.4286(0.2755) 0.9101

Table D.2: Violated Feller: pricing results under Heston with Cnkrr = 1.95 ·105 and Clkrr = 150.
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