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Abstract. In this work, we investigate a method to derive characteristic dynamic flow
field behavior from field measurements. We further explore how these changes impact the
performance of a wind farm flow control strategy. For a long time, hourly to 10-min averaged
data has been the predominant form to store meteorological quantities such as wind speeds and
wind directions. With the decreasing cost of digital storage and improvements in measurement
technology, the assimilation of higher frequent data has become more feasible. We use one of
these open-source datasets provided by the KNMI to explore what characteristic flow behavior
is described in the high-frequency recordings of a Wind-LiDAR located in the North-Sea. To
this end we employ a K-Means algorithm to cluster 10-min time series of wind direction changes
sampled at 20 s. Our study finds that the majority of wind direction changes within this time
window can be described by five main clusters with clock- and counterclockwise changes of
the wind direction in the range of ±4 deg. Subsequently we investigate the implications for
quasi-steady wind farm flow control. We employ look-up table yaw-steering control next to
baseline control in selected cases in a turbulent Large Eddy Simulation to verify the predictions
made by a dynamic parametric engineering wake model. We find good agreement between both
simulation environments and use the engineering model to investigate all wind directions in 2
deg resolution. The results show that the identified wind direction changes can have a significant
negative impact on the power generated by a 10 turbine wind farm. The study also shows that
the fixed yaw-steering set-points are still favorable over baseline operation for wind direction
changes in the range of ±1.6 deg, but can act detrimental for larger changes.

1. Introduction
Wake steering is one method of wind farm flow control (WFFC). It utilizes the fact that a
wind turbine’s misalignment with the main wind direction will lead to a deflected wake. This
can be used to “steer” the turbine’s wake away from a downstream turbine. The upstream
turbine experiences a power loss, but the power generated by the downstream turbine can be
significantly increased [1].

How to set the yaw angle of a turbine depends on the wind farm layout and the flow conditions.
The latter encapsulates wind speed, direction and atmospheric stability. One existing approach
to apply wake steering is to offline generate yaw angle look-up-tables (LUT) for various flow
conditions [2]. During operation, the controller identifies the current flow conditions and applies
the previously derived setpoints. The complexity of these LUT depends on the flow conditions



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 032028

IOP Publishing
doi:10.1088/1742-6596/2767/3/032028

2

considered. In their simplest form, these are composed of a discrete range of relevant wind
speed and wind direction bins. To find accurate setpoints for each combination, fast-running
engineering models have been derived (e.g. [3]). These approximate the wind farm flow field
at a low computational cost and estimate how the farm power will be affected by a given yaw
angle choice. An optimization algorithm is then used to determine the ideal yaw angle for each
turbine. Most of these engineering models rely on steady state assumptions, and aim to predict
the mean wind farm flow field given a constant wind direction and speed. This, in return, limits
a derived LUT approach, which can only act based on the results derived in steady-state.

The question arises to which extend the steady-state assumption limits the yaw-steering
control approach. Formulated in a different way, how does a steady-state controller perform
once this assumption is violated?
To approach this question, a deeper understanding of the governing flow field behavior is
required. To this end, historical data can be used to identify reoccurring flow characteristics.
One approach to identify local wind patterns is presented by [4]. It uses one year of 10-minute
averaged data, split into sequences that describe one day. Similar days are then fused and
form a group. The study arrives at 31 centroids assembled in a decision tree, where similar
centroids are close to one another. In [5] they describe an approach to cluster hourly resolved
atmospheric data across the UK. The work results in an improved approach to 1- to 6-hour-ahead
forecasts. To achieve this, atmospheric patterns are found by k-means clustering, followed by a
self-organizing map. The latter describes a 2-layer artificial neural network that sorts a given set
of input vectors. A probabilistic decision tree approach is presented by [6]. It categorizes wind
farm power generation based on factors such as hourly to annual wind speed, farm area, and
capacity factor. The study applies a K-Means clustering to the data before sorting the centroids
into a Näıve Bayes tree. Similarly, [7] utilizes wind pattern clustering of hourly data in direct
connection to turbine power to derive a wind farm power forecast model.

As indicated by the literature, it is possible to determine characteristic flow field patterns
by clustering historical datasets. However, the considered low temporal resolution could hide
flow dynamics relevant to turbine-to-turbine interactions and therefore important to WFFC
strategies. Higher-frequent measurement datasets like [8] allow us to consider the transients
within a 10-minute average data bin. Once decomposed into characteristic trajectories, these
datasets can serve as a basis to study the effect of flow changes on the wind farm performance.
They further give an insight into the magnitude and frequency at which the steady-state
assumption is violated.

The main contribution of this work is twofold: (i) we provide a versatile data-driven method
to extend the steady-state assumption of the wind rose and to incorporate dynamics, (ii) we
utilize this tool to evaluate the impact of identified characteristic flow field behavior on the
perfromance of wind farm flow control algorithms. In addition, the results of this work show
how high frequent data can be used to systematically evaluate wind farm flow control algorithms
and how it could be used to lead to more robust control actions.

The remainder of this paper is structured as follows: Section 2 introduces the methods used to
prepare the flow field dataset, to cluster the data and to apply wind farm flow control techniques
to it. Section 3 presents the results following the proposed methods. Section 4 concludes the
work and points into possible directions of future work.

2. Methodology
2.1. Data preparation
The flow-field data is recorded by a ZephIR 300M wind lidar at the Borssele Alpha TenneT
Platform in the North Sea between November 2019 and July 2023 [8]. Among other data it
provides measurements of the horizontal and vertical wind speed, as well as the wind direction
at eleven heights from 14 m to 249 m. In this work we exclusively use the horizontal wind speed
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and wind direction at 119 m. This is equal to the hub height of the DTU 10 MW reference
turbine [9], which we will use for the wind farm simulations. The data is segmented into time
sections with sufficient completeness, and then interpolated using cubic splines from an irregular
1/17 to 1/22 Hz sampling frequency to consistent 1/20 Hz. The signal is filtered with a zero-
phase Butterworth filter with a cut-off frequency of 1/400 Hz. The resulting data segments are
assembled as 30 time step long “trajectories” or time series. Since the used dataset is recorded
within an operational wind farm, we have to assume that the wind speed is strongly influenced
by the wind turbines surrounding the measurement location. The wind speed data is therefore
disregarded for this study, and only the wind direction information is kept.

2.2. Wind pattern clustering
To determine underlying patterns of the flow field the trajectories are combined in clusters.
The assumption is that the cluster centroid is representative for the behavior of all trajectories
combined in its cluster. We are employing a hard K-means clustering algorithm to derive
these centroids [10]. This choice is in line with the previously discussed work on wind pattern
clustering. To combat the impact of increased turbulence levels due to the measurement location
within a wind farm, a large number of trajectories is combined in each centroid. The wind
direction fluctuations will still appear in the data as variance of the centroid, but the mean
behavior provides a low-pass filtered view on the underlying wind direction changes. As we
are interested in the wind direction changes, we further calculate the difference of the wind
direction values in the trajectory to its starting wind direction. As a result, all trajectories
start at ∆φ = 0deg before they diverge. To investigate for which wind directions the found
difference-trajectories are valid, we bin all trajectories by their initial wind direction. Since there
is a centroid for every trajectory, we can determine if a centroid is representative for all initial
wind directions or only for a subset.

The hard K-means algorithm is based on the Euclidean distance:

d(t1, t2) = ∥t2 − t1∥R , (1)

where ∥·∥R indicates that the calculation corrects for the radial nature of the dimensions. In a
first step, the distance of each trajectory and a prescribed number of centroids is calculated and
each trajectory is assigned to the closest centroid. In the second step, each centroid changes its
position to the mean coordinates/values of the trajectories assigned to it. Both steps are repeated
until either the position of the centroids is converged, or a maximum number of iterations is
reached. The term “hard” refers to the fact that each trajectory belongs to one centroid.

2.3. Wind farm simulation
A subset of ten turbines of the Hollandse Kust Noord (HKN) wind farm is used to determine
the impact of the wind direction changes. As there is no publicly available turbine model of the
installed 11 MW turbines, we use the 10 MW DTU reference turbine [9]. The turbine locations
are re-scaled such that the distance between the turbine is equivalent by turbine diameters (D)
to the original layout. The selected turbines form the south-west corner of the wind farm. This
layout has also been used in [11] and offers various turbine-to-turbine interactions: There are
closely spaced turbines at ≈ 5 D, as well as wake interactions with a distance of > 20 D.

Three models are used to simulate the wind farm: the two engineering models FLORIS and
FLORIDyn, as well as the LES wind farm model SOWFA:
The FLOw Redirection and Induction in Steady State (FLORIS) model is used to derive a naive
lookup-table (LUT) controller using yaw steering [3]. To this end, the serial refine method [12]
is used to determine the optimal yaw angles for the turbines to maximize the power generated
based on the current wind direction. Following [2] we assume a dead-band controller that only
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Figure 1. (a) HKN south-west corner wind farm layout with the domain rotated to fit the initial
wind direction of 235 deg and 201 deg. The dotted cross-stream lines indicate the downstream
distance of the turbines with respect to the most upstream turbine in 5 D steps. The down-
stream lines indicate along which line the wakes of the turbines are expected to develop. Subplot
(b) depicts the steady-state yaw angle control policy derived using FLORIS.

updates the yaw set-points once the mean wind direction exceeds a set difference to the previous
wind direction. The baseline controller acts identical, but always prescribes a yaw misalignment
angle of 0 deg once the wind direction is updated. In this study we assume the dead-band to
be ±5 deg. From the available wake models in the FLORIS toolbox, we employ the cumulative
curl model [13].
The FLOw Redirection and Induction Dynamics (FLORIDyn) model is a dynamic version of
FLORIS [14]. It models the wake behavior due to turbine state changes and flow changes based
on Lagrangian particles that propagate downstream with the flow. This implementation of
FLORIDyn interfaces directly with the FLORIS code and offers equal results in steady state
conditions, enhanced by flow dynamics. We use this model to approximate the impact of the
wind direction changes onto the power generated by the wind farm. To this end we choose 180
starting wind directions: from 1 deg to 359 deg in 2 deg steps. The turbine orientations are
initialized based on the LUT value for the initial wind direction. After a transient period of 700
s for the wakes to develop, the 600 s wind direction change takes place, prescribed by a centroid
deducted from the measurement data (see Section 2.2). The transition is followed by another
700 s transient period for the wakes to settle in the new wind direction. The simulation time
totals to 2000 s, resolved in 4 s steps. All 180 wind directions are simulated twice for every
selected centroid, once with a yaw steering controller, once with no yaw misalignment with the
initial wind direction. The low computational cost of FLORIDyn does allow us to simulate the
large quantity of dynamic simulations1.
The Simulator for Offshore Wind Farm Applications (SOWFA) is used to verify the results

given by FLORIDyn [15]. The turbines are modeled as Actuator Discs (ADM) in a 5×5×1 km
domain in a neutral atmospheric boundary layer, discretized into 20 × 20 × 10 m cells. To
drive the simulation, a single precursor is generated over 30000 s with a main wind direction
of 225 deg. It is followed by successor simulations of 2000 s during which the wind direction
uniformly changes based on the selected centroid data. The free wind speed forced at hub
height (119 m) is 9 ms−1, with a turbulence intensity of 5.4%. Figure 2 depicts the shear and
veer profile of the LES simulation. The precursor is run with a 1 s time step, the wind farm

1 Code and example cases are available at https://doi.org/10.4121/dbd831b5-8d6d-4ae2-9860-2d6a7a1be58e
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Figure 2. Veer and shear profile of
the precursor used in the SOWFA
simulations. The orange line depicts
the settings used for the FLORIDyn
simulations. The grey, striped area
indicates the rotor swept area. The
LES measurements are given with
one standard deviation.

simulation with a 0.5 s time step. To simulate the wind farm in different main wind directions,
the wind farm is rotated rather than the main wind direction, see Figure 1 (a).

3. Results
3.1. Wind pattern clustering
The K-means algorithm described in Section 2.2 was tested with K ∈ [1, 360]. A suitable trade-
off between within-cluster-error and number of clusters was found forK = 15. Multiple randomly
initialised starts indicated that the majority of the trajectories is predominately captured by 5
to 7 symmetrical clusters. Figure 3 (a) depicts the five dominant wind direction clusters chosen
for this study. They cumulatively represent 87% of the data set. Each cluster contains between
18.6k and 36.4k members. The clusters can be split into one steady wind direction time series,
two increasing and two decreasing ones. For each change the clustering finds one strong change
of approximate 4 deg and a moderate one of 1.6 deg. The clusters cover 80 to 90% of the time
series in most 5 deg wind direction bins, as can be seen in Figure 3 (b). An exception is the
area between 300 and 330 deg, which suggests that the time series found there are more extreme
than the dominant ones2. The question arises how these wind direction changes have an affect
on the performance of a wind farm and the control strategy that is being applied. Section 3.2
further investigates this question.

3.2. Wind farm simulation
3.2.1. The impact of wind direction changes starting at 201 deg and 235 deg At 201 deg wind
direction, the turbines T0, T1, T3, T5 and T7 stand in line, with approximately 4 D spacing,
see Figure1. In addition, T4 wakes T9 over a distance of 15 D. This scenario features multiple
wakes overlapping and very few turbines that are unwaked. WFFC strategies have thereby
the potential to significantly improve the farm power generation. At 235 deg wind direction,
far-wake interactions dominate: T0 wakes T8 with roughly 18 D spacing, T3 wakes T9 with
15 D spacing. Given the spacing we expect significant delays between the turbines, but we also
expect a near 100% power generation of the wind farm, as only far wake effects are present. The
cases will be denoted by C•-201deg-◦, where • denotes the wind direction time series 1 to 5, see
Figure 3, and ◦ is either replaced by BL for Baseline or Yaw for the respective control strategy.

During the comparison of the SOWFA and FLORIDyn cases it became clear that there is
a significant mismatch in absolute power generated by the wind farm: In C3-235deg-BL, the
SOWFA wind farm generates an average of 70.42 ± 1.78 MW, as opposed to FLORIDyn with

2 The data and the code to produce these results is available at https://doi.org/10.4121/02cbb452-4900-4c0a-
95ae-5bdb5ce42ed7
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Figure 3. (a) Wind direction centroids with one standard deviation, (b) as well as their
distribution across all wind directions.

50.53 MW. Similarly SOWFA generates an averaged of 50.92± 7.19 MW in C3-201deg-BL, and
FLORIDyn 35.09 MW. Looking at C3-235deg-BL, we would expect the wind farm to operate at
almost 100% as only T8 and T9 are waked over a far distance. Given a free wind speed of 9ms−1

and the power curve of the turbine [9] we would expect a power generation of roughly 50 MW
for a 10 turbine wind farm. This is reflected by FLORIDyn, but not by SOWFA. We attribute
the overestimation of the power generated in SOWFA by the way the effective wind speed is
sampled by the ADM on the coarse LES grid [16]. Given the cubed relation between generated
power and wind speed P ∝ u3, an overestimation of the wind speed leads to a much larger
overestimated power. For the remainder of the paper we will therefore rely on the normalized
power to detect trends and relations between the simulation environments and compare those.

Figure 4 (a & b) show the power generation ratio of LUT control to baseline control as
predicted by FLORIDyn and as simulated by SOWFA. Figure 4 (a) depicts the wind farm
power as the flow field is subject to the wind direction changes C1 and C5, starting from 201
deg (see Figure 3). During the initialization, FLORIDyn shows how the effect of the LUT yaw
angles propagating through the wind farm: A significant initial loss due to yaw misalignment
is recouped by a step-wise increase of the turbine performance as a result of the favorable
wake positions. This leads to a predicted power generation improvement of ≈ 10%. The wind
direction change happens between t = 700 s and 1300 s, which initiates the divergence of the
trajectories. Starting with the wind direction change, we see that the performance of the wind
farm significantly deteriorates in the C1 case in comparison to the previous performance and
the baseline performance. This is explained by the fact that the wind direction change forces
a strong wake overlap in the wind farm which the LUT initially tried to prevent. As a result,
the wakes are steered into the turbines instead of away from them. This is also reflected in the
LUT, see Figure 1 (b) where the yaw angle setpoints switch from large negative values to large
positive ones for T0, T1, T3 and T5.

Figure 4 (b) compliments the results of (a) with the wind direction change starting at 235
deg instead. The initial underperformance of the wind farm is now prolonged as the turbines
that benefit from the wake redirection are located 15 to 18 D downstream of the misaligned
turbines. C1 changes the wind direction from 235 deg to 239 deg, which initially leads to a
decrease of the yaw misalignment of the turbines T0 and T3 and therefore to a higher power
generation overall. However, the new wind direction also leads to a unfavorable stronger waking
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Figure 4. Power generation of the wind farm starting from (a) 201 deg initial wind direction,
and (b) 235 deg. The power generated is normalised by the wind farm with the same wind
direction change using baseline control. The dotted lines are the SOWFA time series, the
continuous lines from FLORIDyn. The mean wind speed is constant during the simulations.

of T6, T8 and T9 which causes a delayed decrease in wind farm performance. This leads to a
sub-optimal performance of the LUT controller in comparison to the baseline controller. In both
cases, Figure 4 (a) and (b) we see that a wind direction change does not necessarily lead to a
decreased performance of the controller. In the C2-235deg case for instance, the LUT approach
remains the better choice in comparison to the baseline performance. This is also true for the
larger direction change in the C5-201deg case.

Figure 5 depicts the farm energy, integrated starting at t = 600 s, to judge if and how much
the wind farm performance has suffered due to the wind direction change. The plot indicates
that the gain achieved by wake steering persists throughout four of the five cases. In the C5
case however, the performance is detrimental, which is in line with Figure 4 (a).

Comparing FLORIDyn and SOWFA overall, we can see a qualitative agreement between the
trends of the two simulators. While FLORIDyn cannot predict the turbulent fluctuations of
the LES simulation, it does predict the overall trend of the validation simulations and how one
control strategy compares to the other. In the farm energy cases (see Figure 5) FLORIDyn
consistently overpredicts the farm performance by one to two percent points. The curves also
show a converging relation, which points to an overall good agreement between the simulations.
The nature of the turbulent simulations makes it difficult to identify more nuanced differences
between SOWFA and FLORIDyn. Rerunning and averaging the LES simulations multiple times
with different turbulence generations could indicate where FLORIDyn might lack wake dynamics
relevant to a WFFC application. A longer time series would also indicate how the performance
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Figure 5. Normalised energy generation derived from the integral of the farm power starting
at t= 600 s from the initial wind direction of 201 deg. The dotted lines are the SOWFA time
series, the continuous lines from FLORIDyn.

compares on a continuous basis. For this work we conclude that FLORIDyn is sufficiently
accurate to predict the dynamic trends of yaw-based wind farm flow control strategies.

3.2.2. Wind farm power across all wind directions Based on the results from Section 3.2.1 we
broaden the range of investigated initial wind directions: Figure 6 depicts the farm performance
for 180 initial wind directions from 1 deg to 359 deg in 2 deg steps. For each wind direction all
clusters are simulated twice - once with the LUT approach and once with the baseline approach.
This totals to 1800 simulations, or an aggregated 41.7 days of simulated wind farm behavior.
Figure 6 (a) shows the raw data of the farm behavior starting at 235 deg over the simulation
duration. After the ratio has converged, the power difference between the no-direction change
case (C3) and the other cases is normalised by the performance of C3. As a result, we can
see in Figure 6 (b) that the wind direction changes mainly lead to a worse performance for the
LUT approach, compared to a steady wind direction. This aligns with the intuition that yaw
steering would operate at a local optimum, and that a change of conditions has detrimental
effects. Figure 6 (c) shows that baseline operation can benefit from wind direction changes. For
most cases one wind direction change leads to an improvement while the opposite direction has
a negative influence - in one case the wake overlap is decreased, in the other one it is increased.
The performance of both is compared in Figure 6 (d), red indicates a superior performance of
the LUT approach, while a better performance of the baseline is indicated by a blue color. The
figure shows that yaw steering is consistently a better choice for small wind direction changes,
but underperforms for wind direction larger wind direction changes of ±4 deg.

Figure 6(e-f) depict the same content as Figure 6(b-d) but for the energy generated. The
interpretation remains largely the same, only Figure 6(f) indicates that the initial gain due to
yaw-steering might not be entirely lost at the end of the simulation.

4. Conclusion
In this work we showcase a method to compress high frequent wind direction change time series
into a small number of representative clusters. This makes wind directions changes tangible and
provides a test bench for wind farm flow control approaches. As a demonstration we applied the
five most dominant cluster time series to two basic farm controllers: a baseline controller with the
turbines aligned with the initial wind direction and a lookup table yaw steering controller. Both
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Figure 6. Normalised power (b-d) and energy (e-f) generated by the wind farm for five wind
direction time series and 180 initial wind directions with u∞ = 9ms−1. Subplot (a) depicts how
the values for (b-d) are derived, (e-f) are based on the integral from t = 700 s to 2000 s.
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controllers were tested in ten scenarios in the LES code SOWFA and the dynamic engineering
model FLORIDyn. Two central takeaways from the study are that 1) wind direction changes in
the range of [−4.1, 4] deg can have a significant impact on the power generated by the wind farm
and 2) that the FLORIDyn prediction of the farm’s power is sufficiently accurate to derive trends
between controllers that are in line with the reference LES behavior. Based on this a broader
study with 180 initial wind directions was conducted that reveals that the tested wake steering
controller yields a consistent performance improvement for small wind direction changes, but
can lead to detrimental performance for larger changes.

For future work we recommend considering a larger dataset, and to correct for other
factors such as wind speed regimes, atmospheric stability, time of day and seasons. This
work could further lead to a dynamic approach to estimate the annual-energy-produced and
to systematically investigate the impact of the used control strategy onto the structural loads in
the presence of changing flow. Lastly, this approach could be used to aid a robust optimization
of real-time wind farm flow control strategies by providing different scenarios as well as their
likelihood.
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