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Summary

Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most
prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is
particularly critical in Groningen, a province located in the northern part of the Netherlands,
where low-intensity ground shaking has occurred since 1991 due to gas extraction. The
majority of buildings in this area are constructed using URM and were not designed to
withstand earthquakes, as the area had never been affected by tectonic seismic activity before.
Hence, the assessment of URM buildings in the Groningen province has become of high
relevance.

Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-
to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and
boundary conditions. Therefore, studying the mechanical behaviour of such connections is of
prime importance for understanding and preventing damages and collapses in URM structures.
Specifically, buildings with double-leaf cavity walls constitute a large portion of the building
stock in the Groningen area. The connections of the leaves in cavity walls, which consist of
metallic ties, are expected to play an important role. Regarding the wall-to-floor connections,
the traditional way for URM structures in Dutch construction practice is either a simple
masonry pocket connection or a hook anchor as-built connection, which are expected to be
vulnerable to out-of-plane excitation. However, until now, little research has been carried out
to characterise the seismic behaviour of connections between structural elements in traditional
Dutch construction practice.

This thesis investigates the seismic behaviour of two types of connections: wall-to-wall
connections between cavity wall leaves and wall-to-floor connections between the masonry
cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen
area. The research is divided into three phases: (1) inventory of existing buildings and
connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and
validation of numerical and mechanical models. The thesis explores the three phases as

follows:



(1) An inventory of connections within URM buildings in the Groningen area is
established. The inventory includes URM buildings of Groningen based on
construction material, lateral load-resisting system, floor system, number of storeys,
and connection details. Specific focus is given to the wall-to-wall and wall-to-floor
connections in each URM building. The thickness of cavity wall leaves, the air gap
between the leaves and the size and spacing of timber joists are key aspects of the
inventory.

(i1) Experimental tests are performed on the most common connection typologies identified
in the inventory. This phase consists of two distinct experimental campaigns:

o The first experimental campaign took place at the laboratory of the Delft
University of Technology to provide a comprehensive characterisation of the
axial behaviour of traditional metal tie connections in cavity walls. The
campaign included a wide range of variations, such as two embedment lengths,
four pre-compression levels, two different tie geometries, and five different
testing protocols, including both monotonic and cyclic loading. The
experimental results showed that the capacity of the wall tie connection is
strongly influenced by the embedment length and the tie geometry, whereas the
applied pre-compression and the loading rate do not have a significant
influence.

o The second experimental campaign has been carried out at the laboratory of the
Hanze University of Applied Sciences to characterise the seismic behaviour of
timber joist-masonry cavity wall connections, reproducing both as-built and
strengthened conditions. Twenty-two unreinforced masonry wallets were
tested, with different configurations, including two tie distributions, two pre-
compression levels, two different as-built connections, and two different
strengthening solutions. The experimental results highlighted the importance of
cohesion and friction between joist and masonry since the type of failure
mechanism (sliding of the joist or rocking failure of the masonry wallet)
depends on the value of these two parameters. Additionally, the interaction
between the joist and the wallet and the uplift of the latter activated due to
rocking led to an arching effect that increased friction at the interface between
the joist and the masonry. Consequently, the arching effect enhanced the force

capacity of the connection.
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(iii)Mechanical and numerical models are proposed and validated against the performed
experiments or other benchmarks. Mechanical and numerical models for the cavity wall
tie and mechanical models for the timber joist-masonry connections were developed
and verified by the experimental results to predict the failure mode and the strength
capacity of the examined connections in URM buildings.

o The mechanical model for the cavity wall tie connections considers six possible
failures, namely tie failure, cone break-out failure, pull-out failure, buckling
failure, piercing failure and punching failure. The mechanical model is able to
capture the mean peak force and the failure mode obtained from the tests. After
being calibrated against the available experiments, the proposed mechanical
model is used to predict the performance of untested configurations by means
of parametric analyses, including higher strength of mortar for calcium silicate
brick masonry, different cavity depth, different tie embedment depth, and the
use of solid bricks in place of perforated clay bricks.

o The results of the experimental campaign on cavity wall ties were also utilised
to calibrate a hysteretic numerical model representing the cyclic axial response
of cavity wall tie connections. The proposed model uses zero-length elements
implemented in OpenSees with the Pinching4 constitutive model to account for
the compression-tension cyclic behaviour of the ties. The numerical model is
able to capture important aspects of the tie response, such as strength
degradation, unloading stiffness degradation, and pinching behaviour. The
mechanical and numerical modelling approach can be easily adopted by
practitioner engineers seeking to model the wall ties more accurately when
assessing URM structures against earthquakes.

o The mechanical model of timber-masonry connections examines two different
failure modes: joist-sliding failure mode, including joist-to-wall interaction and
rocking failure mode due to joist movement. Both mechanical models have been
validated against the outcomes of the experimental campaigns conducted on the
corresponding connections. The mechanical model is able to estimate each
contribution of the studied mechanism. Structural engineers can use the
mechanical model to predict the capacity of the connection for the studied

failure modes.

vii



This research study can contribute to a better understanding of typical Groningen houses
in terms of identifying the most common connections used at wall-to-wall and wall-to-floor
connections in cavity walls, characterising the identified connections and proposing

mechanical models for the studied connections.
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Samenvatting

Constructieve schade na aardbevingen laat zien dat uit-het-vlak bezwijken van muren één van
de meest voorkomende faalmechanismen is in gebouwen van ongewapend metselwerk. Dit is
ook een urgente uitdaging in Groningen, een provincie in het noorden van Nederland, waar
sinds 1991 aardschokken van lage intensiteit voorkomen als gevolg van gaswinning.
Aangezien het gebied in het verleden nooit door tektonische aardbevingen werd getroffen
bestaat het merendeel van de gebouwen hier uit ongewapend metselwerk dat niet is ontworpen
om aardbevingen te weerstaan. Daarom is de beoordeling van bestaande metselwerkgebouwen
in de provincie Groningen van groot belang geworden.

Uit-het-vlak faalmechanismen in bakstenen metselwerkconstructies zijn vaak het gevolg
van slechte wand-wand, wand-vloer of wand-dak verbindingen waardoor met name slanke
wanden onvoldoende steun ervaren als gevolg van de zwakke randcondities. Daarom is
onderzoek naar het mechanische gedrag van dergelijke verbindingen van groot belang om
schade en instortingen in metselwerkconstructies te begrijpen en te voorkomen. In de regio
Groningen komen vooral gebouwen met spouwmuren voor. De wand-wand verbindingen
tussen binnen- en buitenblad van de spouwmuren, die bestaan uit metalen spouwankers, zullen
daarom naar verwachting een belangrijke rol spelen. Wat betreft de verbinding tussen wand en
houten vloeren is de traditionele manier ofwel een schuifverbinding waarbij de balk
ingemetseld is in de muur, of een verbinding waarbij een haakanker wordt toegevoegd, beiden
naar verwachting kwetsbaar zodra de wand uit-het-vlak geéxciteerd wordt. Tot nu toe is er
echter weinig onderzoek gedaan naar het seismisch gedrag van dergelijke wand-wand en wand-
vloer verbindingen.

Deze dissertatie onderzoekt het seismisch gedrag van twee typen verbindingen: wand-
wand verbindingen in spouwmuren en van verbindingen tussen spouwmuren en houten vloeren
zoals die in de traditionele Groningse huizen worden toegepast. Het onderzoek is
onderverdeeld in drie fasen: (1) inventarisatie van bestaande gebouwen en verbindingen in de
omgeving van Groningen, (2) uitvoering van laboratoriumproeven op de verbindingen, en (3)
voorstel en validatie van numerieke en mechanische modellen voor de verbindingen. Het

proefschrift onderzoekt deze drie fasen als volgt:
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(1) Er wordt een inventarisatie gemaakt van ongewapende metselwerkgebouwen en hun
verbindingen in de regio Groningen. De inventarisatie van de gebouwen is op basis van
bouwmateriaal, weerstand tegen zijdelingse belasting, vloersysteem, aantal
verdiepingen en verbindingsdetails. VVoor elk metselwerkgebouw worden de details van
de wand-tot-wand en wand-tot-vloer verbindingen beschreven en gecategoriseerd.
Speciale aandacht wordt besteed aan de dikte van de spouwmuurbladen, de luchtspleet
tussen de bladen en de grootte en afstand van de houten balken.

(i) Er worden experimentele proeven uitgevoerd op de meest voorkomende
verbindingstypologieén die in de inventarisatie zijn geidentificeerd. Er zijn twee
verschillende reeksen van experimenten uitgevoerd om de prestaties van respectievelijk
de verbindingen tussen de beide metselwerkbladen en de verbindingen tussen houten
balken en metselwerkbladen te onderzoeken.

o De eerste reeks experimenten is uitgevoerd in het laboratorium van de
Technische Universiteit Delft om het axiale gedrag van traditionele metalen
spouwankers in spouwmuren te karakteriseren. In deze reeks experimenten is
een groot aantal variaties onderzocht: twee inbeddingslengtes, vier
voordrukniveaus, twee verschillende geometrieén en vijf verschillende
testprotocollen, waaronder monotone en cyclische belasting. Uit de resultaten
van deze experimenten blijkt dat de capaciteit van de spouwmuurverbinding
sterk wordt beinvloed door de inbeddingslengte en de geometrie van de
spouwankers, terwijl de toegepaste voordruk en de belasting snelheid geen
significante invloed hebben.

o De tweede reeks experimenten is uitgevoerd in het laboratorium van de Hanze
Hogeschool om het seismische gedrag van verbindingen tussen houten balken
en gemetselde spouwmuren te karakteriseren, waarbij zowel de oorspronkelijke
omstandigheden zoals ze zijn gebouwd als de omstandigheden na versterking
werden gereproduceerd. In totaal werden tweeéntwintig ongewapende
metselwerkwanden getest, met verschillende configuraties zoals twee
verschillende verdelingen van de verbindingen, twee voordrukniveaus, twee
verschillende as-built verbindingen en twee verschillende
versterkingsoplossingen. De resultaten van deze experimenten toonden aan dat
cohesie en wrijving tussen balk en metselwerk belangrijke parameters zijn

omdat ze het bezwijkmechanisme bepalen, hetzij afschuiving tussen balk en
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metselwerk, hetzij uit-het-vlak falen (rocking) van het metselwerk. Daarbij
bleek de interactie tussen balk en muur, en de door rocking geactiveerde uplift
van de muur tot een boogwerkingseffect te leiden. Dit resulteerde in additionele
wrijving langs de hout-metselwerk interface en een toename van de
krachtcapaciteit van de verbinding.

(iii) Mechanische en numerieke modellen worden voorgesteld en gevalideerd aan de hand
van de uitgevoerde experimenten of andere benchmarks. Mechanische en numerieke
modellen voor de spouwmuurverbinding en mechanische modellen voor de houtbalk-
metselwerkverbindingen werden ontwikkeld en geverifieerd aan de hand van de
resultaten van de experimenten om de faalwijze en de sterktecapaciteit van de
onderzochte verbindingen in metselwerkgebouwen te voorspellen.

o Het mechanische model voor de spouwmuurverbindingen houdt rekening met
zes mogelijke faalmechanismes, namelijk bezwijken van de verbinding,
uitbreken van een kegel, uitrukken, knikken, doorboren en ponsen. Het
mechanische model is in staat de gemiddelde piekkracht en het uit de proeven
verkregen faalmechanisme vast te leggen. Na kalibratie aan beschikbare
experimenten wordt het voorgestelde mechanische model gebruikt om de
prestaties van niet-geteste configuraties te voorspellen door middel van
parametrische analyses, waaronder een hogere sterkte van de mortel van het
kalkzandsteenmetselwerk voor het binnenblad, een andere spouwdiepte, een
andere verankeringslengte van de spouwankers en het gebruik van massieve in
plaats van geperforeerde bakstenen voor het buitenblad.

o De resultaten van de reeks experimenten op spouwmuurverbindingen werden
ook gebruikt om de hysterese en energie-dissipatie voor de cyclische axiale
respons van spouwmuurverbindingen in het numerieke model te kalibreren. Het
voorgestelde model maakt gebruik van nul-lengte-elementen in OpenSees met
het constitutieve model Pinching4 voor het cyclische druk-trek gedrag van de
spouwmuurverbindingen. Het numerieke model is in staat om belangrijke
aspecten van de respons van de spouwankers te beschrijven, zoals de degradatie
van de sterkte, de degradatie van de ontlastingsstijfheid en het knijpgedrag. Het
mechanische model en de numerieke modelbenadering kunnen gemakkelijk

worden overgenomen door ingenieurs uit de praktijk, die de spouwankers
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nauwkeuriger willen meenemen bij de beoordeling van constructies tegen
aardbevingen.

o Het mechanische model van hout-metselwerkverbindingen onderzoekt twee
verschillende faalmechanismes: het faalmechanisme "schuivende balk" waarbij
de balk uit de muur schuift, met inbegrip van de toegenomen wrijving door
boogwerking en interactie tussen balk en muur, en het faalmechanisme
"rocking” waarbij de muurdelen heen en weer bewegen met de balk. Beide
mechanische modellen zijn gevalideerd aan de hand van de resultaten van de
reeks experimenten op de overeenkomstige verbindingen. Het mechanische
model is in staat om elke bijdrage van het bestudeerde mechanisme in te
schatten. Constructeurs kunnen het mechanische model gebruiken om de
capaciteit van de verbinding voor de bestudeerde faalwijzen te voorspellen.

Dit onderzoek kan bijdragen tot een beter begrip van kenmerkende Groningse huizen door
het identificeren van de meest gebruikte wand-wand en wand-vloer verbindingen bij
spouwmuren, het mechanisch karakteriseren van de geidentificeerde verbindingen en het

voorstellen van mechanische modellen voor de bestudeerde verbindingen.
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Symbols and abbreviations

The frequently used notations and abbreviations in this dissertation are listed below.

Roman Symbols
A area of loaded end which is under either the hooked end or zigzag end
Az piercing area of mortar under loaded end

ab factor varying from 0O to 1 to define the degree of moment restraint associated with the
related bottom extremity

A contact area of joist
Apt projected break-out area of mortar
As area of cross-section of cavity wall tie connection

Aw effective area of cone of mortar

C thrust force per unit width of joist

c cohesion along the embedded part of joist in masonry wall
dt diameter of cavity wall tie

e eccentricity

Eat  elastic modulus of tie evaluated between 1/10 and 1/3 of the maximum tensile stress
E; elastic modulus of joist

fbom flexural strength of mortar

fc compressive stress at the contact area between the joist and masonry

Fc coupling force contribution of embedded wall ties

Fer  cracking force

fet tie strength at Euler’s critical load

fa compressive stress at wall’s middle height due to the vertical load applied at its™ top
plus the weight of the upper half of the wall

fm compressive strength of mortar
Foiw rigid body mechanism force of inner leaf
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Foow rigid body mechanism force of outer leaf

fp Selected pre-compression level

ft tensile strength of mortar

fit tie tensile strength

fut ultimate tensile strength of cavity wall tie connection
fvo initial shear strength of mortar

fw bond strength between masonry unit and mortar

fw bond strength between masonry unit and mortar
fw masonry flexural strength

fyt tie yield strength

h wall height

h1 panel height below where the maximum tensile stress equals the masonry flexural
strength

h2 panel height above where the maximum tensile stress equals the masonry flexural
strength

Ha  contribution of arching force at peak force

hb height of the applied force

Hc  contribution of cohesion force at peak force

He peak force from the experiment

H, contribution of joist deflection force at peak force
Hwm  peak force obtained by mechanical model

Hwm,push peak force in pushing obtained by mechanical model
Hwm,pun peak force in pulling obtained by mechanical model
Hs contribution of arching force at peak force

Hv contribution of initial normal force at peak force

lj moment of inertia of joist along the cross-section

It moment of inertia of tie

Iw moment of inertia of wallet

K column effective length factor

I embedment length of cavity wall tie either in CB or CS masonry
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Na
Nbuck

Ncone
Ny
Npier

cavity length between two leaves

edge distance from the end of tie to the surface of mortar
cavity wall tie depth of a zigzag end or L-shaped hooked end
total length of joist

total length of cavity wall tie

total thickness of cavity wall

bottom cracking moment

Richter Magnitude

top cracking moment

additional vertical force due to the arching effect
Compressive buckling capacity of cavity wall tie connection
Tensile break-out capacity of cavity wall tie connection
additional vertical force due to the deflection of joist

Compressive piercing capacity of cavity wall tie connection

Npun,ce Tensile pull-out capacity of cavity wall tie connection embedded in CB masonry

Npui,cs Tensile pull-out capacity of cavity wall tie connection embedded in CS masonry

Npunc
Ns
Ntie
Nv
Q

fj

tm

tw

Compressive punching capacity of cavity wall tie connection
additional vertical force acting on the contact area due to arching
Tie rupture capacity

initial force acting on the contact area between joist and masonry
overburden load

width of joist

mortar joint thickness

wall thickness

idealised control perimeter for punching failure

cracking displacement

weight of wall

weight of the masonry above the joist

dead load of joist
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y dimensionless distance from the extreme compression fibre at the top and bottom
sections of the wall to the line of action of the load

Z4 section modulus of the bedded area of masonry wall

Greek Symbols

a modification factor

at factor varying from O to 1 to define the degree of moment restraint associated with the
related top extremity

Y parameter for the internal lever arm

Ym density of wall

Jj vertical displacement of the joist at peak force

A horizontal displacement of the inner leaf due to the joist

Am monotonic ultimate lateral displacement

Ect tie strain at Euler’s critical load

&rt tie elongation at rupture

&t tie strain at tensile strength

it tie yield strain

] angle of the tie with respect to the axis, in radians, in the case of a bent tie

u friction coefficient

ON normal stress on joist

s stress on joist due to arching

ow  applied pre-compression stress on wallet

T shear strength of joist connection

] ratio of the applied vertical load to the weight of the upper half of the wall

Abbreviations

CB

CS

CoV

clay brick masonry
calcium silicate brick masonry

coefficient of variation

EDB exposure database
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LVDT linear variable displacement transducer
NCG Nationaal Codrdinator Groningen
PGA peak ground acceleration

URM unreinforced masonry
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Chapter 1: Introduction

1.1 Background

A large gas field in the north of the Netherlands was discovered in 1959 in the province of
Groningen, and gas extraction started in 1963 [1]. In order to stimulate the extraction of natural
gas, a hydraulic fracturing process has been conducted from deep geological formations [2].
This process has led to reservoir depletion. Hence, low-intensity ground shaking has occurred
since 1991 due to gas extraction. The first recorded induced seismicity was on December 5th,
1991, with a local magnitude, M., of 2.4. In the subsequent years, the number of human-
induced earthquakes in the province of Groningen has considerably increased (Figure 1.1). The
largest event was recorded on August 16th, 2012, near Huizinge, with a local magnitude, My,
of 3.6 and horizontal peak ground acceleration (PGA) of 0.084g. A tremendous amount of
research has been initiated related to induced seismicity since the area was hit by many induced

earthquakes [1,3-8].
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Figure 1.1 Registered induced earthquakes in Groningen between 1991 and 2020, with a lower
limit of M =1.5 and subdivided into five groups: 4.0> My >3.5 (red), 3.5> M. >3.0 (orange),
3.0> ML >2.5 (yellow), 2.5> M >2.0 (green), and 2.0> M >/.5 from KNMI [9].

The earthquakes have a significant impact on the existing buildings. The majority of the
existing buildings in the Groningen area are composed of unreinforced masonry (URM),
representing 77% of the building stock [10]. URM buildings are typically low-rise in the

Netherlands, which generally embody vulnerable structural elements such as large openings,

1



slender and cavity walls, or non-structural elements such as gable-end walls, chimneys, and
parapets. Since tectonic earthquakes had never affected the area, the current building stock was
not designed to withstand earthquakes.

Detached and terraced houses are the two most dominant housing types. A typical detached
house in Groningen is characterised by either single-wythe or double-wythe clay-brick URM
walls, timber floor and lack of any specific seismic detailing such as connections between
structural elements [11,12]. A typical Groningen terraced house usually consists of 5 to 10
housing units. Terraced houses, namely low-rise residential URM buildings, are characterised
by slender walls, large openings and the use of cavity walls [13,14]. Generally, the ground or
first floor is made of rigid diaphragms (reinforced concrete floors), while the attic floor and the
roof have flexible diaphragms (made of timber).

Detached house typology can be found in many countries all over the world. For example,
a detached house is the most common typology in New Zealand, representing almost 80% of
residential buildings [15], and 89% of the building stock is a detached house in Finland [16].
Similarly, in Australia, the detached houses cover 76% of the building stock [17]. As far as
detached houses are concerned in the province of Groningen, the Netherlands, they are
generally one- or two-storey buildings with irregular plan configurations and wide openings.
URM Dutch detached houses are generally characterised by steep pitch roofs, e.g. gambrel,
mansard or Dutch Gable etc. [18].

The other dominant type of residential structure in the area, the terraced houses, represents
more than 50% of the URM building stock of the region [19]. The terraced house typology in
the Netherlands often consists of URM cavity walls. Cavity walls are widely used for URM
structures in many countries all over the world, especially for residential constructions.

The use of a cavity in masonry construction started in England in the early decades of the
19th century. The cavity wall, which was indicated as a hollow wall by Nicholson, is defined
as “a wall built in two thicknesses, having a cavity between, either for the purpose of saving
materials, or to preserve a uniform temperature in the apartments.” [20]. In the study by
Hamilton [21], the cavity walls consisted of two walls with a thickness of 230 mm, separated
by a 76 mm gap, interconnected by means of either solid clay brick headers or iron ties.
However, using solid clay brick headers as a connection between the leaves, moisture can
penetrate into buildings via the headers. Hence, the use of iron ties became more common.
After World War I, cavity-wall construction started widely used in many countries all over the
world [22-25].



In the Netherlands, a cavity wall usually consists of an inner load-bearing wall made of
calcium silicate brick masonry and an outer veneer of clay brick masonry separated by a cavity.
Metal ties are used for connecting the inner load-bearing leaf to the outer veneer. Cavity walls
are commonly found in the other most diffuse house typology, called terraced houses. Although
URM buildings represent almost 77% of the building stock in the Groningen area, where
terraced houses are one of the most common typologies characterised by cavity walls, very
limited research has focused on cavity wall tie connections at the component level.

The seismic behaviour of URM structures depends on several factors, including lack of
homogeneity in masonry, material properties, geometry, the stiffness of the horizontal
diaphragms and the connections between structural elements such as wall-to-wall, wall-to-floor
or wall-to-roof connections. In addition, the in-plane stiffness of a masonry wall is significantly
higher than its out-of-plane (OOP) stiffness. Hence, the seismic behaviour of masonry
structures also depends on the capability to redistribute the horizontal loads between the
structural elements. In order to explore the maximum in-plane strength of the wall and prevent
the OOP mechanisms, the connection between the wall and floor plays an important role in the
structures for the capability to redistribute the seismic loads [26].

Lessons from past earthquakes showed that satisfactory seismic performance is achieved
when the building vibrates like a monolithic box. To this end, building components need to be
well connected. Without box behaviour, the walls of a URM building behave independently,
which can be followed by an OOP failure mechanism. Conversely, in the case of box behaviour,
walls are connected to horizontal diaphragms such as floor and roof, which usually lead to a
good building performance when subjected to earthquakes. Hence, to improve the seismic
safety of masonry buildings, “box-type” behaviour which can be characterised by enhancing
the structural integrity of the entire building, must be ensured.

The role of connections is essential during an earthquake excitation, which has been
reported well in the literature [27]. The monolithic behaviour of masonry buildings could be
enhanced by fully utilising the potential resistance and energy dissipation capacity using a
connection between the floor and masonry wall [27]. In order to visualise the influence of box-
type behaviour, Tomazevic [28] illustrated a total of 3 possible failure modes of a masonry
building during an earthquake depending on how the walls are interconnected at the floor and
roof levels and the stiffness of the floor (Figure 1.2). The uncoupled wall where timber joists
are not connected, representing masonry buildings without box behaviour, is illustrated in
Figure 1.2a. As seen, vertical cracks develop, and transverse walls can collapse, leading to an
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out-of-plane local mechanism. On the other side, if the walls are connected with the floor tie
beams, the masonry vibrates as a monolithic box, as seen in Figure 1.2b and c. The energy
dissipation capacity of a masonry building which is one of the key parameters of seismic

resistance can be significantly improved by providing a good connection of walls [27].

(@) (b) (©)

Figure 1.2 Vibration of masonry buildings during earthquake. Building with wooden floors
without ties (a), building with wooden floors and tied walls (b) and building with rigid floors
and tie-beams (c) from Tomazevic [28].

Post-earthquake structural damage such as that observed after the 1997 Umbria-Marche
earthquake in Italy [29], the 2009 L’Aquila earthquake in Italy [30], the 2011 Canterbury
earthquake in New Zealand [31] or the 2015 Gorkha earthquakes in Nepal [32] show that OOP
wall collapse is one of the most common failure mechanisms in URM structures. It is also
expected to be a critical issue in Groningen, as the building stock is constituted by slender walls
and the use of cavity walls, which are generally connected by weak and corroded wall ties.
OOP failure mechanisms in brick masonry structures primarily originated from insufficient
connections at wall-to-wall and wall-to-floor levels. Therefore, the study of the mechanical
behaviour of such connections is of prime importance to understand and prevent damage and
collapse in URM structures. Until now, little research has been carried out to characterise the
seismic behaviour of connections between structural elements in typical Groningen houses.

Cavity walls are particularly vulnerable to OOP mechanisms due to the slender geometry
of the two leaves, and, in fact, the OOP behaviour of cavity walls represents a major concern
during a strong shock [13,14,33]. In a study where full-scale brick veneer wall panel specimens
were tested [34], it was found that OOP wall damage occurred when the veneer moved away
from the interior wood backup, placing a high demand on the tensile force and displacement
capacities of the ties, underlining the prominent role of the ties in the composite response of

the two leaves. Giaretton et al. [23] showed that when a sufficient number of connections are



used, the OOP failure of cavity walls can be prevented. According to BSI PD 6697 [35], a
minimum number of wall ties per unit can be calculated, which is not less than 2.5 ties per
square metre and should be used for walls with both leaves having a size of 90 mm or thicker,
whereas the spacing, embedment length in the mortar and inadequate number of ties will
influence the overall capacity of the cavity wall.

An extensive multiscale testing program has been performed at Delft University of
Technology since 2014 to characterise the seismic behaviour of URM buildings at the material,
connection, component and assemblage level [36,37]. Whenever possible, experimental
campaigns investigate first the structural behaviour at the material and component level and
then on full-scale structures for both as-built/replicated and retrofitting conditions. First, the
axial and shear capacity of connections between the leaves of cavity walls and between
concrete slabs and masonry veneers was studied for both as-built (at the component level
[38,39] and on full-scale structures [33]) and retrofitting ties [40,41]. As for the replicated as-
built connections, the masonry piers and the concrete floor were connected by means of steel
threaded rods, and a tailored system was tested to assess the OOP failure of retrofitted wall-to-
floor connections. In addition, connections between timber floor joists and masonry walls were
also tested [42]. Joist-masonry connections for both single-leaf and solid walls were studied:;
three configurations were investigated: the joist in a masonry pocket (i) without any anchors,
(i) with an anchor, and (iii) with a folded steel plate. The former two setups represent the as-
built conditions, and the latter represents the retrofitted conditions.

Although valuable information can be found in the earlier studies, there is still a lack of
essential knowledge regarding connection details specific to the Groningen case. Therefore, it
is necessary to conduct both experimental and mechanical characterisations of the connection
typologies mentioned above (wall-to-wall connections between cavity wall leaves and wall-to-
floor connections between the masonry cavity wall and timber diaphragm). Experimental tests
should be performed on connection details to develop and validate mechanical models to

predict the failure mode and strength capacity of the examined connections in URM buildings.

1.2 Research questions, methodology and contributions

The main objective of this study is to investigate the seismic behaviour of wall-to-wall and
wall-to-floor connections in typical Groningen houses. To this end, the research is structured

into three phases: (i) an inventory of existing buildings and connections in the Groningen area
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is established; (ii) experimental tests are performed on the identified connection typologies;
(iii) numerical and mechanical models of the identified connections are developed and
validated against the performed experiments or other benchmarks. The research will address
several sub-questions, as outlined in Table 1.1, in order to provide a comprehensive
understanding of the seismic behaviour of the connections in typical Groningen houses.

Table 1.1 Research questions associated with the primary objective.

Phases

Chapters

Research questions

The inventory
of
existing buildings
in the Groningen area

Chapter 2:
Inventory of existing as-
built connections in
Groningen masonry
buildings

How can the most common connection
types at wall-to-wall and wall-to-floor levels
in the Groningen region be statistically
described and interpreted?

Performing
experimental tests
on the connection

typologies

identified
in the inventory

Chapter 3:
Experimental
characterisation of cavity
wall tie connections

How can the axial behaviour of traditional
masonry wall metal tie connections in cavity
walls be experimentally characterised?

Chapter 4.
Experimental
characterisation of timber
joist-masonry connections

How can the timber joist-masonry
connections be experimentally
characterised?

Validating numerical
and
mechanical models
against the performed
experiments or other
benchmarks

Chapter 5:
Mechanical and numerical
modelling of wall tie
connections

How can the experimental results of cavity
wall tie connections be interpreted to
propose a mechanical model?

How can the experimental investigation be
studied to develop a numerical constitutive
law for engineers and researchers?

Chapter 6:
Mechanical modelling of

How can the experimental results of timber
joist-cavity wall connections be interpreted

timber joist-masonry

. to propose a mechanical model?
connections

The first phase, the inventory, allows defining the most common connection typologies
used in the Groningen area. These typologies will be listed and statistically categorised
depending on their prevalence in the Groningen region in terms of building typologies,
structural systems, and connection details between structural elements, including the median
properties of a typical Dutch cavity wall and timber joist. In the second phase, a significant
number of variations were investigated for the cavity wall tie connections at the laboratory of
Delft University of Technology. This included two different embedment lengths, four pre-
compression levels, two tie geometries, and five testing protocols, which encompassed both
monotonic and cyclic loading. In addition, a total of twenty-two wallets were tested at the

laboratory of Hanze University of Applied Science to characterise the seismic behaviour of



timber joist-masonry connections. For the final phase, mechanical models were developed and

validated using the experimental results to predict the failure mode and strength capacity of the

examined connections in URM buildings.

The main contributions of this thesis are as follows:

It provides a comprehensive database of connection details between structural
elements for typical Groningen URM buildings. The thesis presents a statistical
distribution for the most common connections and introduces additional
information on the tie distribution, cavity depth, timber joist cross-sections,
masonry wall thickness, and other relevant parameters.

It provides a complete characterisation of the axial behaviour of traditional
connections in cavity walls in terms of failure mechanism, average force-
displacement curve, peak force, and displacement at the peak force and failure. This
in-depth understanding improves the knowledge of the connection between the
leaves in cavity walls which can be helpful in identifying and validating assessment
methods and retrofit interventions. It also contributes to the improvement of testing,
standardisation, and design of wall-to-wall metal ties, benefiting the construction
industry in the long run.

It investigates the behaviour of timber joist-masonry connections in cavity walls,
representing the Dutch construction practice, in both as-built and strengthened
conditions. It provides valuable insights into the behaviour of the failure
mechanisms, ranging from unstrengthened connections to the strengthened ones.
It introduces a mechanical model that can predict the failure mode and the strength
capacity of metal tie connections in masonry cavity walls. This model can be
adopted by structural engineers to estimate the peak force capacity of wall tie
connections in masonry cavity walls and to assess their performance during seismic
events.

It conducts numerical exploration of the quasi-static cyclic response of tie tests.
The developed numerical model enables structural engineers to accurately simulate
the response of wall-to-wall connections.

It identifies and predicts the failure mode and strength capacity of timber-joist
connections in masonry cavity walls. The proposed mechanical model allows

structural engineers to estimate the capacity of these connections.



1.3 Thesis outline

The research presented in this thesis consists of three phases divided into seven chapters, as
schematised in Figure 1.3. The synopsis of each chapter is as follows:

As regards the first phase, Chapter 2 presents an inventory of URM structures in the
Groningen region to document the most common connection types at wall-to-wall and wall-to-
floor levels.

In the second phase, Chapter 3 and Chapter 4 cover the experimental campaign on the wall
metal tie and the joist-masonry connections, respectively. Chapter 3 aims to provide a complete
characterisation of the cyclic axial behaviour of cavity wall ties. It also helps to provide a better
understanding of the behaviour of the tested metal wall ties for the industry to find suitable
methods for developing their products and improving the seismic response of existing URM
structures. The chapter is adapted from Arslan et al. [43]. Chapter 4 aims to investigate the
behaviour of the timber joist-masonry cavity wall connections under cyclic axial loading with
special attention to the developed failure mechanism and the definition of force-displacement
curves for each group of tests performed. It describes the specimen geometry, the test setup,
the adopted testing protocol, the tests carried out to characterise the used materials, the
characteristics of the groups of specimens tested, geometry and loading protocols. Finally, it
presents and discusses the test results, focusing on the developed failure mechanism and the
definition of average force-displacement curves for each group of tests performed.

Regarding the final phase, Chapter 5 focuses on a mechanical model defined to predict the
failure mode and the strength capacity of metal ties in masonry cavity walls. The mechanical
model for the wall ties was published by Arslan et al. [44]. In addition, the chapter utilises the
results of the experimental campaign described in Chapter 3 to calibrate a hysteretic model that
presents the cyclic axial response of cavity wall tie connections. The numerical model was
published by Arslan et al. [45]. Chapter 6 discusses an analytical model of timber-masonry
connections, which examines two different failure modes. Chapter 7 discusses conclusions and

gives recommendations for future research.
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Chapter 2: Inventory of existing as-built connections
In Groningen masonry buildings

Structural details must be adequa