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Abstract
Insertion maneuvers are used to move a spacecraft from an open orbit (parabolic or hyperbolic) into
a closed orbit around a target body. These maneuvers are key components in any space mission
considering orbiting a body for a large amount of time, for exploration or landing; the hyperbolic orbit
will be the one that will be used to transfer between Earth and the target, while the closed orbit will
be the one on which the spacecraft will station. In preliminary mission studies, insertion maneuvers
are often assumed as being performed at pericenter, and with the two velocity vectors (before and
after the maneuver) having the same direction. However, this method does not account for the relative
orientation of the two orbits, which are often constrained by separate optimization studies, which may
not grant the necessary conditions for a tangential insertion. This study aims to provide a simplemethod
to perform preliminary studies on insertion maneuvers, while ensuring the continuity between the two
trajectories, even when those are subject to shape or orientation requirements. The objective is to
optimize the insertion maneuver for a crewed mission to Mars, and via this case study gain insight in
the best maneuver available (instead of assuming a pericenter, tangential insertion), as well as the best
shape and orientation of the trajectories before and after the maneuver.
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1
Introduction

The future of space missions has recently seen a resurgence of human missions outside of Earth orbit
with plans of exploration of the Moon (with the ARTEMIS program). The Moon missions will serve as
a stepping stone for an even more ambitious objective, that of landing a crew on Mars [16], [19].

As part of the mission design process, there is a need to perform preliminary studies of each phase
of the mission, from the transfer between Earth and Mars to the daily operations once in the vicinity
of Mars. These studies have critical requirements, different from the ones of current robotic missions
around Mars, due to the presence of a human crew, such as those highlighted in a study by Goodliff
[8]. Only preliminary studies have been published at time of writing, detailing the objectives, tentative
launch windows and architectures of such missions, for example the studies by Percy [19], [20].

While these studies already contain a lot of detailed information, documentation is often incomplete,
in particular on the exact mathematics and computations behind the trajectory and maneuver models
employed in their analyses. Studies such as those performed by Joyner ([12], [11]) and Merrill ([15])
on the subject often mention models without providing their implementations, as will be explained in
this study. The idea of this thesis study stems from this obstacle, with the intention of charting a clear
way of solving the problem, specifically focusing on the insertion maneuver, a key component in any
propellant budget. The insertion maneuver is the link between the transfer trajectory between Earth
and Mars and the stay time in the orbit of Mars (while the mission is being accomplished). Ensuring
the continuity between these two phases is a non trivial problem, which will be examined in the study,
attempting to find a suitable method to model and optimize the problem.

This study will use as a reference the case of a crewed mission to Mars, based on a series of NASA
studies on future missions to Mars called the Evolvable Mars Campaign ([19]). This reference will pro-
vide useful information on environmental variables, parameters and constraints applicable to crewed
missions to Mars.

The research question is:
”What are the optimal conditions for an insertion in an operational orbit around Mars in terms of cost of
the maneuver and characteristics of the trajectories involved, ensuring the compatibility of the maneu-
ver with the transfer trajectory and resulting parking orbit, and considering a single maneuver?”.

Chapter 2 provides background on the choice of the insertion maneuver problem, as well as introducing
the EMC frame. Chapter 3 details the assumptions that characterize the case studies selected, derived
from different studies on missions to Mars. Chapter 4 presents the theoretical background into the
insertion maneuver problem and its analytical solution. Chapter 5 is dedicated to the presentation of
the optimization problem, from its definition to the choice and tuning of an optimizer algorithm. Chapter
6 will present the results of the optimization and lessons learned, while Chapter 7 will conclude the
study and give recommendations for future studies.
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2
Heritage

This chapter will describe how the thesis topic selection has evolved through the first months of the
project. The literature study [22], which was done in preparation for the current study, was focused on
the area of off-nominal scenarios in space missions, more specifically due to an incomplete maneuver
or an error while performing it. The suggestion for the thesis was to study how an appropriate trajectory
design could be helpful in both preventing and recovering those situations.

The literature study also covered which types of missions would be more interesting for this appli-
cation, and the choice fell, among others, on Martian missions. The following sections will build from
these results, and expand on the decision and assumptions leading the search for the case study, and
how it developed into the final research question and its subquestions, which will be presented at the
end of this chapter.

2.1. Results of Literature Study
Off-nominal scenarios are defined as any situations that deviate from the nominal mission. Some off-
nominal scenarios do not allow the mission to continue with the planned sequence of trajectories and
maneuvers, but require Emergency Maneuvers (EMs) to either continue or prematurely be ended.

The literature study focused on the definition of multiple off-nominal scenarios and the study of the
possible solutions that had been described in previous research. The result of the literature review was
a selection of interesting aspects and questions that will be summarized below [22].

• Presence of a human crew
The presence of a human crew changes the available options once the nominal mission cannot
be completed. A robotic mission can be ended prematurely by, for example, crashing an orbiter
on a target body. On the other hand, a human mission must allow for the safe return of the crew to
Earth, by planning for appropriate EMs. Human missions are therefore more complex problems
when it comes to EMs, and have been selected for further study, also due to the renewed interest
in human exploration, with the ARTEMIS program [16].

• Mission target
The next target in the field of human exploration is returning to the Moon. New lunar missions
will be the necessary step between the human presence in the ISS and future Martian missions
[27]. However, a large number of studies on such missions and their abort scenarios is already
present in literature. It was then decided to cover Martian missions instead. The idea was to
apply some of the already developed concepts to a different setting, with different conditions and
requirements, and identify solutions that could become the new staples in the field of EMs, with
specific characteristics dictated by the different target body.

• Mission stage In a study on the Apollo missions, Diamant divides the EMs according to when
and where in the mission they occur [7]. The main distinction is whether they occur during the
insertion in a Lunar Parking Orbit (LPO) or during the escape from it and insertion in the return
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2.2. Evolvable Mars Campaign 5

trajectory to Earth. It also contains suggestions on the transfer trajectories between Earth and
the Moon, and how to achieve a ”free return” trajectory, or an 8-shaped trajectory that will grant
the return of the spacecraft in Earth orbit, without the need of an additional maneuver.

Studies on EMs for missions to Mars have until now only covered maneuvers operated during
the transfer between Earth and Mars, both in the studies of Joyner [12], [11] and Patole [18].
These studies cover the characteristics of the transfer trajectory in the travel between Earth and
Mars and the addition of Deep Space Maneuvers (DSM) to obtain more favourable conditions (in
terms of propellant budget or total time of flight). The emergency tackled is the need for an abort
maneuver to return to Earth as soon as possible, instead of continuing the mission. Free return
trajectories to Mars have been studied by Joyner [11] and Wooster [28], but tend to have a very
high time-of-flight (TOF, a critical quantity for a human crew). On the other hand, abort strategies
that tackle the characteristics of the insertion or escape maneuver considering both the transfer
trajectory and the parking orbit around the target (such as the ones by Diamant for the Apollo era)
are not present in current literature on Martian missions, and represent an interesting subject for
the thesis study.

2.2. Evolvable Mars Campaign
The previous section resulted in the choice of a human mission to Mars as case study. In order to
employ some more realistic parameters and boundaries for the project, it was decided to use a current
mission design as a reference, and the Evolvable Mars Campaign appears the most suitable for this
purpose. The next section will present how this mission has been selected and its characteristics.

2.2.1. Choice of mission frame
Several studies have been seminal in the current body of knowledge around planning crewed missions
to Mars, from the ones dedicated to robotic missions on the planet to theoretical research and feasibility
studies for crewed missions. In recent years a few specific projects have raised to the level of plausible
plans for attempting a human mission on Martian soil. The following is a short list of the main ones,
compiled by Goodliff [8]:

• NASA’s Design Reference Architecture (DRA) 5.0.
• NASA’s Evolvable Mars Campaign (EMC)
• JPL’s Minimal Mars Architecture
• Inspiration Mars Mission
• Mars One Campaign

In the analysis of these different projects, it was clear that the Mars One Campaign and the Inspiration
Mars Mission were not feasible, first from an economical and funding standpoint, secondly from the
technological developments they required in a very short time frame.

The DRA 5.0 was an older project, started in 2009 to study the feasibility of a crewed Martian
mission. While different from its successor, the EMC, it was decided to not consider the DRA as the
studies that focused on it considered many technological developments which, after almost a decade,
will not be achieved in time. It also requires an extremely high number of crews that would be involved
in the missions, making it less efficient than the others.

The EMC and Minimal Mars Architecture shared many similarities, from the same time frame and
launch windows, to the idea of starting with the exploration of Phobos as a first step, while allowingmore
time to research and find solutions for a Mars habitat. The propulsion system is also similar (SEP for
cargo and chemical for crew), but themain difference would be in the location of the TransMars Injection
(TMI) maneuver. The JPL Minimal Mars Architecture considers a LEO insertion, which requires a very
costly impulsive maneuver, while the EMC performs the maneuver in a LDHEO orbit (Lunar Distance
Highly Elliptical Orbit), which results in propellant savings and the reutilization of services that will be
developed for in-between lunar missions (ProvingGround) and the Asteroid RedirectionMission (ARM).
Therefore, the sustainability of operations and the use of in-between steps to develop and test relevant
technologies make the EMC a more mature plan, and the one chosen for this thesis study.
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2.2.2. EMC introduction
The EMC was first proposed in 2014, by the NASA Human spaceflight Architectures Team (HAT), to
investigate the possibilities for human exploration of Mars in the 2030s, according to the National Space
Policy of the USA [19].

The EMC includes three separate missions, all carrying a crew of four: the first one landing on
Phobos, the second and third both landing on Mars (all planned between 2033 and 2045).

In order to allow for such a long and complicated mission, it is necessary to deploy critical com-
ponents in advance, such as cargo (lander, surface habitat for humans, taxi vehicle). Otherwise the
mission would be too heavy and it would be too expensive if not impossible to launch. Those elements
can be sent either directly to Phobos, or to a Mars Parking Orbit, via Solar Electric Propulsion (SEP)
stages to save propellant, since the absence of a crew can allow for a longer Time Of Flight (TOF).

It is also possible to pre-deploy some propulsion stages for the crew vehicle. The ”main” propulsion
system (the one of the transfer vehicle) is split between the inbound and outbound legs of the journey,
with each maneuver having its own dedicated propulsion stage. The Trans Earth Injection (TEI) and
Earth Orbit Insertion (EOI) stages are pre-deployed in the Mars Parking Orbit (MPO) and await there
the arrival of the transfer vehicle. This mission architecture is referred to as ”split-mission” [19].

Figure 2.1: Overivew of the flight sequence and stack deployment for the threemissions in the EMC campaign, with chemical/SEP
split [20].

The following description of the mission phases comes from a study by Percy [20] on the propulsion
system for the EMC missions. A summary of the EMC strategy is also shown in Figure 2.1. The crew
stack is the only one that will perform the transfer using chemical propulsion. The crew stack is made
of the deep space habitat and two propulsion stages (one for the MOI maneuver, and one for the TMI
maneuver). This stack is assembled in Lunar Distance Retrograde Orbit (LDRO) and then departs
for LDHEO, where it rendez-vous with an Orion capsule carrying the crew, which then moves into the
transfer habitat. The maneuvers listed below assume that the stack and crew have already performed
such rendez-vous successfully.

The transfer to Mars will begin in cis-lunar space, at perigee of a LDHEO, pericenter altitude of 400 km
and apocenter at lunar distance. A TMI maneuver injects the spacecraft into a transfer trajectory; it can
either be a direct transfer to Mars, or a DSM can be planned approximately in the middle of the total
transfer duration, to achieve more advantageous conditions on arrival into the Mars SOI (this depends
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on the launch and arrival conditions).
Once the spacecraft arrives inside the Martian SOI, the Mars Orbit Insertion (MOI) stage is used to
position it into a 1-sol MPO. The stack does a rendez-vous with the two propulsion stages needed to
return to Earth, forming the transfer stack. In the first mission, an additional ”taxi” vehicle is employed,
to transfer the crew between Mars and Phobos, while in the other two missions a lander is added to
reach the surface of Mars. However, this study will focus on the main stack.

The transfer stack (deep space habitat and return propulsion stages) is then re-positioned in a
different MPO, in order to achieve better conditions for the return travel. The TEI stage is used to inject
the spacecraft in a direct return trajectory. Upon arrival, the transfer spacecraft is positioned in LDHEO
using the EOI stage, and does a rendez-vous with a Orion capsule, which will carry the crew to the
Earth’s surface. The transit habitat moves to LDRO to be refitted and used in future EMC missions.

2.2.3. Choice of MPO as environment instead of transfer
As mentioned in Section 2.1, the design of EMs for Martian crewed missions has focused mainly on
the design of transfer trajectories between Earth and Mars (with or without a DSM).

However, it is worth noticing that, differently from the Apollo mission, the EMC strategy has the crew
stack first insert in an elliptical orbit around Mars, but then also perform additional maneuvers to repo-
sition and obtain more optimal conditions for the departure towards Earth. This so-called repositioning
strategy is not covered by Percy [19] in the general overview of the EMC missions, but in additional
studies led by Merril and Qu [15], [21] on the EMC frame.

Repositioning strategies may also be necessary for future missions to the Moon, due to the long stay
time on the surface and the need to rendez-vous with any return stages, or additional cargo that was
pre-deployed. However, at time of writing, there are no studies covering EMs in case these maneuvers
in the Martian orbit were to fail, which is identified as an interesting gap in the current knowledge. In
order to attempt to address it, it is first necessary to understand the necessity and characteristics of
repositioning maneuvers in the SOI of a planet.

2.3. PO repositioning history
Repositioning a spacecraft, once it is on a parking orbit, means achieving, via multiple maneuvers, a
closed orbit that is more advantageous for escaping the central body. The objective of the repositioning
is to minimize the total ΔV spent by the mission in the SOI of the central body (the sum of the insertion,
repositioning and escape ΔVs). There are many combinations of repositioning maneuvers available
at the mission design stage, which are organized into so-called ”strategies”, which are a sequence of
them starting from the insertion maneuver and ending with an escape maneuver around a central body.

These strategies can be developed both numerically (for example via numerical integration of the
equations of motion of the spacecraft) or analytically. This section will explore the analytical studies
that have introduced the necessity and usefulness of repositioning techniques for a mission to Mars.

2.3.1. Free repositioning
The repositioning problem has been introduced by Desai in two publications [5] [6] which state that
previous studies for human exploration of Mars assumed that a coplanar insertion at pericenter was
always possible, without considering the actual relative geometry between the Earth-to-Mars trajectory
and the elliptical parking orbit.

Desai is the first to show how this assumption can result in an underestimation of the propellant
budget, and to offer a solution for the issue, called ”free repositioning”. The input are the conditions of
the hyperbolic arrival, and the strategy identifies the elliptical parking orbit that would grant a coplanar,
pericenter insertion both at arrival and at departure. The innovation by Desai is twofold.

First, the parking orbit selected accommodates both insertion and departure maneuvers, while in
the past pericenter coplanar maneuvers were assumed, without considering whether the parking orbits
would have had the same orientation in space or not in order to intersect with the transfer legs.

In addition to this, while previous studies assumed Mars to be perfectly spherical, Desai adds the
influence of the J2 effect, which causes the precession of the parking orbit. The resulting parking orbit
selected maintains the same geometrical properties in terms of shape (same eccentricity and semi-
major axis) but changes orientation over time, due to the planet’s oblateness (and therefore second-
order terms of its gravitational field), as shown in Figure 2.2.
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Figure 2.2: Geometry of a transfer between an hyperbolic orbit and an elliptical parking orbit, at insertion (left), departure in the
case of a spherical Mars (center) and departure in the case of an oblate Mars (right) [5].

Desai’s strategy results in a parking orbit that matches correctly the orientation of the arrival hyperbola
for the insertion maneuver, and then precesses over the total stay time (based on the required time
in the orbit of Mars for the selected mission) to match the orientation of the return hyperbola for the
escape maneuver. No additional maneuvers are necessary, and the strategy is therefore called ”free
repositioning”.

Another study by Desai [4] considers orbit precession but instead of having the orbit perfectly precess
to have a pericenter tangential escape, the study computes the propellant budget for a non-tangential,
non-coplanar escapemaneuver (after 60 days of orbit precession and a fixed transfer hyperbola asymp-
tote). The same study varies the true anomaly of the maneuver in the elliptical orbit, finding that peri-
center is not always the best position for out-of-plane escape maneuvers, demonstrating how even
assuming that pericenter is always the best position for insertion and escape maneuvers is a limiting
hypothesis. The same study suggests that the use of retrograde parking orbits applied to this problem
can reduce the total propellant budget for the mission (considering the total cost of the insertion and
escape maneuver).

2.3.2. 3-step repositioning
Landau introduces an additional maneuver, to offer a higher degree of flexibility to the problem, with the
so-called 3-step strategy [13]. The study applies all the conclusions of Desai (need of considering the
orbit orientation and J2 effect) and adds a maneuver to ”supplement” the change in orientation, so that
the desired final orientation of the parking orbit can be achieved in virtually any amount of time (instead
of having to wait for the precession effect). Landau explains that the method suggested by Desai results
in ”rare” solutions, which usually do not correspond with the conditions for minimum transfer time and
ΔV.

The initial assumption of Landau’s problem is that the angles characterizing the asymptote for the
incoming and departure hyperbolas are different (which is usually the case for these orbits). The initial
parking orbit is selected to achieve a pericenter tangential insertion. However, the stay time of the
mission does not allow the parking orbit to precess enough to match exactly the departure hyperbola
for another pericenter tangential maneuver (therefore Desai’s method cannot be applied). Landau then
suggests two solutions:

• A 2-step strategy, which allows for an off-tangential escapemaneuver at periapsis. Themaneuver
would be quite expensive because it would usually require a change in inclination of the orbit, with
the higher velocity magnitudes of positions close to pericenter.

• A 3-step strategy invented to minimize the cost of changing the orbit orientation. Both inser-
tion and escape are pericenter tangential maneuvers. The additional maneuver is a so-called
apotwist: it is performed at apocenter and it twists the orbit around the apoapsis line, to obtain a
change of orientation. An example of apotwist maneuver is shown in Figure 2.3.

Landau’s study shows how an off-tangential burn at pericenter for insertion and departure (a 2-step
strategy) is generally more expensive than his proposed 3-step strategy, also named apotwist tech-
nique.
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Figure 2.3: Rotation of parking orbit about the line of apsides by twist angle 𝜙, from Landau [13]

2.3.3. 7-step maneuver, or bi-elliptic apotwist
Both Desai and Landau start from the characteristics of the transfer hyperbolas and arrive at the def-
inition of the parking orbit ellipse (or ellipses) that would best fit in-between these two maneuvers.
However, parking orbits do play an important role in space missions, and some of their characteristics
may be fixed in order for the scientific objectives to be achieved.

The bi-elliptic apotwist is a 7-step repositioning strategy that tries to combine the benefit of a low-cost
insertion and escape maneuver (by adopting high-eccentricity elliptical orbits after such maneuvers)
with the need to reach a specific target parking orbit (usually with a lower eccentricity) during most of
the stay time around Mars.

The bi-elliptic apotwist technique was first introduced by Merrill [15] for a study of the EMC ma-
neuvers in the SOI of Mars. The following list will detail the orbits and the seven maneuvers part of
the strategy. All orbits have the same pericenter distance, called 𝑟𝑃𝑂. In order to understand what is
considered parking orbit, and what is a bi-elliptic transfer orbit instead, the reference is in Figure 2.4,
since this nomenclature is taken from the original study.

• Orbit A: Incoming hyperbola of Earth-to-Mars transfer
• Maneuver 1: Off-periapsis, coplanar, non-tangential insertion maneuver
• Orbit B: First bi-elliptic transfer orbit
• Maneuver 2: Apotwist maneuver (same definition as Landau)
• Orbit C: Second bi-elliptic transfer orbit
• Maneuver 3: Lower the height of the apoapsis, performed at periapsis
• Orbit D: (Arrival) Parking Orbit
• – First Orbit precession (due to long stay time on the target PO, orbit D)
• Orbit E: Same shape as parking orbit D, but precessed
• Maneuver 4: Second Apotwist maneuver
• Orbit F: Parking orbit
• – Second Orbit precession (due to long stay on orbit F)
• Orbit G: Departure parking orbit
• Maneuver 5: Raise the height of the apoapsis, performed at periapsis
• Orbit H: Third bi-elliptic transfer orbit
• Maneuver 6: Third Apotwist maneuver
• Orbit I: Inbound transfer orbit
• Maneuver 7: Off-periapsis, coplanar, non-tangential escape burn
• Orbit J: Outgoing hyperbola of Mars-to-Earth transfer
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Figure 2.4: Bi-elliptic apotwist technique orbits and maneuvers, concept of operations [15]. For the detailed explanation of the
orbits and maneuvers, check the description in this section.

Merril’s strategy presents the additional risk of performing a high number of maneuvers; on the other
hand, it provides additional degrees of freedom that allow to apply it to missions with very different
objectives and duration, like those of the EMC frame, as well as allowing for more room to perform
different EMs in case of failures.

2.4. Insertion Maneuver challenges
Having covered the characteristics of different repositioning strategies in the previous section, it was
decided that an interesting thesis objective could be to adapt the 7-step repositioning technique as-
suming that one of the maneuvers was not executed correctly, and which propellant margin would be
reasonable to perform an emergency correction maneuver. In order to do so, the first step would have
been reproducing the conditions of the nominal mission, using the strategy adopted by Merril, in order
to then modify it.

However, some important issues emerged. The largest was that Merrill, while explaining the use
of a numerical method (and the selection of input and output variables) for the problem, does not
mention any of the equations adopted for their 7-step strategy. While the apotwist maneuver and
changing the height of apoapsis are both very straightforward maneuvers under the assumptions of
impulsive maneuvers and a two-body problem (more information on those assumptions in Chapter 3),
the insertion and escape maneuver were not as easy to model. Merril adopted a coplanar, off-periapse,
non-tangential maneuver, but in case of an emergency there was a need to model a non-coplanar, off-
periapse maneuver, with an additional degree of difficulty in ensuring that the orbits would intersect at
the desired location for the maneuver. Desai’s paper mentions non-coplanar maneuvers, but does not
include a mathematical model for them as well [4].

A different study on the EMC, performed by Nervo [17], replicates the nominal repositioning strat-
egy of the EMC but adds a non-coplanar insertion maneuver model, first introduced by Cornick [2].
Nervo justifies the adoption of the most generic maneuvers possible (off-periapsis, non-coplanar) to
include the largest number of options in their study. Clearly, it pairs a high flexibility with an additional
computational challenge.
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Cornick’s paper includes a full description of the analytical model used to solve the insertion maneuver
problem (which will be introduced more thoroughly in Chapter 4). While many papers mention the
use of non-coplanar insertions as an option, Cornick is one of the few references that present all the
information to replicate their model.

While Nervo goes on to compute the full seven-step strategy via an optimization problem, the study
and optimization of the insertion maneuver by itself, paired with the flexibility of performing an off-
pericenter, non-coplanar maneuver opened up a new and promising area of research, since insertion
and escape maneuvers are the only ones which appear in all the above-mentioned repositioning strate-
gies.

2.5. Rationale for research question
The heritage study has resulted in a better definition of the case study, a human exploration mission to
Mars, and the topic of the project, which is insertion maneuvers. With the help of previous studies, it
is clear how an oversimplification of the insertion maneuver will result in a high error on the estimation
of the maneuver cost (as demonstrated by Desai [4]), which is a relevant metric in preliminary mission
studies aimed at sizing the mission such as the one by Percy for the EMC frame [19].

The research question is: ”What are the optimal conditions for an insertion in an operational orbit
around Mars in terms of cost of the maneuver and characteristics of the trajectories involved, ensuring
the compatibility of the maneuver with the transfer trajectory and resulting parking orbit, and considering
a single maneuver?”.

The research question can be split in the following sub-questions:

• What is the smallest ΔV achievable?

• What is the optimal pairing of transfer hyperbola conditions and target PO?

• What is the difference in ΔV between insertion in the target PO, and insertion in a preliminary PO,
which is later modified (as defined by the EMC)?

• How robust are the resulting optimal insertion conditions? What is the sensitivity of the solution to
a variation in the input conditions (the relative geometry between the transfer and parking orbits)?.



3
Overview of Methodology

This chapter will present the thesis problem in greater detail. First, all the information from the EMC
documentation will be presented as it can be found in literature. After this overview, parameters, as-
sumptions and constraints will be derived in order to replicate the insertion conditions for a mission to
Mars as accurately as possible. Four mission scenarios will be presented, as well as their character-
istics. Then, the insertion problem will be defined more accurately as well as the strategy selected to
solve it.

3.1. Assumptions
This section contains the assumptions made in order to create the environment and acceleration model
necessary for the mathematical description of the problem, which will follow in Chapter 4.

3.1.1. Two-body problem and resulting trajectories
The first assumption is describing the movement of the spacecraft as a two-body problem. Under the
two-body problem, the movement of the spacecraft is due only to the gravitational influence of a single
central body. Vice-versa, the influence of the spacecraft on the central body would be present, but is
irrelevant due to the small mass of the spacecraft with respect to the chosen body (usually the Sun, a
planet or a moon).

According to the two-body problem, the gravitational influence is approximated to its first-order term,
also called the point-mass gravitational acceleration. The assumption is deemed sufficient by Merrill
[15] in their study of EMC reorientation strategies, and all the previous studies cited both for Mars
transfers and emergency maneuvers in Chapter 2. All other accelerations are assumed small with
respect to the gravitational acceleration, and therefore negligible.

The validity of such approximation can be explained by examining the second-largest acceleration,
after the point-mass gravitational acceleration. Terms such as any atmospheric effects when closer to
Mars, solar radiation pressure or the gravitational influence of different bodies are never mentioned for
preliminary studies that focus on maneuvers inside the SOI of Mars (such as the insertion maneuver).
The only mentioning of a non-negligible acceleration is in the studies of Desai [5] and Landau [13],
presented in Chapter 2 as the source of the repositioning strategies around Mars. In their papers, they
both point out the impact of the J2 effect on the choice of the parking orbit for a mission. The J2 effect is
a part of the gravitational spherical-harmonics approximation due to the three-dimensional distribution
of the mass of Mars. However, Desai and Landau apply the J2 effect only as a perturbation of the
two-body problem and exclusively to compute the change in Ω and 𝜔 of a long-stay parking orbit. The
effect of precession is therefore negligible if the insertion maneuver is considered by itself instead of
in a complete repositioning strategy, as there is no need to compute the long-term precession of the
parking orbit.

Having considered the options above, the two-body approximation with no additional perturbations
is therefore deemed sufficient to model the accelerations of the problem.

A two-body problem in astrodynamics results in so-called ”Keplerian” trajectories, or trajectories
that can be described via a conic section equation. More information on the subject can be found in

12
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the literature study [22].
For the purpose of the problem, it is sufficient to say that the two-body problem considered is the

one between Mars (as central body) and the spacecraft (the body we are describing the state of). At
the beginning of the problem the spacecraft is on a transfer orbit, which (once entered into SOI of Mars)
is a hyperbolic orbit with sufficient energy to escape the gravitational pull of the central planet. In order
to achieve the mission objective, the spacecraft has to perform an insertion (see Subsection 3.1.2) in a
parking orbit, which is a closed orbit around the central body. The Keplerian parking orbit is an elliptical
orbit. The reference frames and coordinate systems used to describe the state of the spacecraft on
such trajectories are introduced in Subsection 3.1.3.

3.1.2. Insertion maneuvers
”Insertion maneuver” is a term that indicates maneuvers that insert the spacecraft in a different orbit. In
this study, we will use this terminology to refer to the specific insertion of the spacecraft in a closed orbit
around Mars. The maneuver marks the shift between two separate phases of the mission: the transfer
phase (between Earth and Mars) and the orbital phase (in which the spacecraft revolves around Mars).

A common assumption in preliminary studies, as first-order approximation, is that of an impulsive
maneuver. Impulsive maneuvers happen instantaneously (Δt = 0) and only cause a change in velocity
of the spacecraft (Δ𝑣⃗), without a change in position. The hypothesis is that, since the time necessary
to maneuver is very small compared to the time spent on the previous and following trajectories, the
whole maneuver is applied at the same time, in the same location in space.

Previous studies, such as those of Merrill on the repositioning strategy in Mars SOI [15] do not
apply any restrictions concerning the direction of the change in velocity applied (Δ𝑣⃗), probably due to
the preliminary nature of such studies, usually used as proof of concept and to obtain a preliminary
propellant budget. With the intent of comparing results and strategies with those previous studies, the
same assumption will be used for the problem at hand.

3.1.3. Reference frames and coordinates
The following reference frames will be used in the model description [25] :

• Heliocentric J2000
• Mars Equatorial
• Perifocal

The reference frame adopted for the heliocentric transfer is the J2000 heliocentric frame. It is an inertial
reference frame with its origin at the Solar System Barycenter (SSB), a location very close to the center
of the Sun and uses a set of fiducial objects as references. It is usually referred to as the ”mean equinox
of 2000 reference frame”, as the reference for the X axis corresponds to the mean vernal equinox, and
the reference plane is the mean equatorial plane (contains both the X and Y axes), both averaged at
the beginning of the year 2000. The Z axis is in the direction of the celestial North Pole. This reference
frame is used only to introduce the initial conditions of the problem related to the hyperbolic transfer
orbit, once the spacecraft enters the SOI of Mars.

The reference frames adopted to describe the state of the spacecraft inside the SOI of Mars are
two: an inertial, equatorial reference frame centered in the center of Mars, and the perifocal reference
frame. The equatorial reference frame has the x-direction towards the vernal equinox and z-direction
towards Mars rotational axis, pointed towards the North Pole. The reference frame is inertial, meaning
that the reference directions do not shift according to the movement of the ”current” Mars rotational
axis, but stay fixed along its mean J200 direction (see the convention above for the J2000 frame). The
same holds for the other directions.

The perifocal reference frame has its origin in the center of Mars, and the direction of the x-axis and
y-axis are on the orbital plane of the spacecraft. The x-axis is the direction of pericenter, the y-axis is
the direction of the semi-latus rectum and the z-axis is in the direction of the angular momentum vector
of the orbit of the spacecraft.

To have a more clear description of all the quantities of the problem, all results will be expressed
in the Mars Equatorial Reference Frame (MERF). The other two reference frames will only be men-
tioned to explain how to translate quantities into the MERF, in the description of the analytical model in
Chapter 4.
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Figure 3.1: Position of a satellite around a central body, in an inertial body-centered reference frame. Definition of orbital elements
( 𝑖, Ω,𝜔, 𝜏) and spherical coordinates (𝑟, 𝛼, 𝛿) [25].

Having defined these reference frames, the following coordinates are used to describe the state of the
spacecraft [25]:

• Rectangular coordinates [𝑥,𝑦,𝑧,𝑥̇,𝑦̇,𝑧̇] : used to define the position and velocity vector (𝑟 and 𝑣⃗)
and their 3D components, especially at the maneuver location.

• Spherical coordinates [𝑟, 𝛼, 𝛿, 𝑉, 𝛾, 𝜓]: the right ascension 𝛼 and declination 𝛿 are used to define
the direction of the asymptotes of the hyperbola in a Mars-centric reference frame. Applied to this
problem, those coordinates are necessary to approximate the incoming and outgoing direction
of the position vector direction when modelling a spacecraft on hyperbolic trajectories at infinite
distance from the target body (Mars, in this instance).

• Orbital elements [𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝜃]: the so-called Keplerian elements are used to describe the trans-
fer (hyperbolic) trajectory and the target parking orbit (elliptical) around Mars, to highlight their
geometrical properties and any differences between the two in terms of size and orientation.

For a more in-depth description and definition of these coordinates, the author refers the reader to the
Literature Study prepared in advance of this thesis [22].

The formulas to move from one reference frame to the other, and to convert from one coordinate
system to another have not been cited in this report for the sake of brevity, but can be found in most
astrodynamics manuals (see: [25], [9], [26] ). Transformations will be mentioned in Chapter 4 only
when crucial in the problem definition.

3.2. Mission scenarios
The mission scenarios, along with the assumptions, define a set of conditions necessary to move
from a most generic insertion maneuver (with no boundary conditions or environmental settings) to a
problem case with more realistic settings. This section will describe the specific scenarios chosen as
examples, in terms of defining the transfer hyperbolic orbits and elliptical orbits involved (the initial and
final conditions of the problem).

The transfer trajectories, between Earth and Mars, are usually divided in two big categories: with
or without a Deep Space Maneuver (see the NASA reference Handbook on Mission Opportunities [1]).
However, since the Deep Space Maneuver is supposed to be applied during the transfer, and far from
the SOI of Mars, from the point of view of the insertion maneuver both transfer types look the same.
There was no need to derive different case studies based on the two types of transfers.
As mentioned in Subsection 3.1.2, the insertion maneuver chosen is of one kind, the most open-ended
possible, to open up the search space to all the available options. The same insertion maneuver will
therefore be applied to all the cases.

In order to differentiate the case studies and answer the research questions, the choice fell to selecting
different elliptical orbit conditions after insertion.
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The main reference papers on the EMC, by Percy [19] and Merril et al. [15], [21] were used to
collect information on parking orbit characteristics around Mars. The EMC approach is to first insert
the spacecraft in a highly elliptical orbit, advantageous for a low-cost insertion, to then perform addi-
tional repositioning maneuvers to achieve the parking orbit of interest for the scientific objectives of the
mission (whether they are observation or landing), usually of lower eccentricity and different orientation.

As mentioned in Chapter 2, the idea of this study is to focus on the insertion maneuver, without fur-
ther considerations on repositioning, applying an analytical method to compute the insertion conditions
(rather than the numerical one used in previous studies).

Without performing a new study on parking orbit selection, it is therefore possible to highlight two
kinds of elliptical orbits that can be the result of the insertion maneuver:

• Orbit A: arrival orbit, a highly elliptical parking orbit that is advantageous to achieve a low-cost orbit
insertion. However, it would require additional follow-up maneuvers to position the spacecraft in
a meaningful scientific orbit.

• Orbit P: scientific parking orbit, an orbit that already has the required characteristics (altitude
of pericenter, inclination, orientation with respect to the Martian surface) to achieve the mission
objectives. Usually, this is an orbit with lower eccentricity.

The mission scenarios will show how different problems result from the choice of a direct insertion or
a repositioning strategy. In the first case, the propellant budget is optimized for the single insertion
maneuver, but in the second case the scientific orbit is directly achieved, at the expense of a higher
propellant budget, but with less risk (performing less maneuvers).

Another area of interest is the exploration of retrograde parking orbits. Qu [21] does not exclude
the use of retrograde PO, except for flyby missions of the Martian moons, which are orbiting Mars in
prograde orbits. To explore whether prograde or retrograde orbits are more advantageous, given a set
of conditions on the hyperbolic arrival trajectory, case A will be divided in A1 and A2, which will consider
the same arrival orbit (geometrically) but with opposite inclinations (i1 = 180 – i2).

When it comes to the parking orbits P, two kinds of missions are considered:

• P1: A landing mission, also mentioned as part of the EMC, which would require to target a specific
landing area on Mars surface, and therefore a very strictly defined parking orbit.

• P2: A preliminary observation mission, which would have the option of exploring most of the sur-
face of the planet as scientific requirement, and would generally require a polar, circular parking
orbit.

The polar mission is not mentioned in the EMC frame, but has been included as to add another inter-
esting case study, which could work for a non-crewed mission as well.

3.3. Parameters
The relevant fixed parameters, which are set as constant across multiple scenarios, are listed below:

• Central body
As mentioned throughout the study, the central body is Mars. The key parameters derived from
this choice are the gravitational parameter 𝜇, the definition of the length of a mean solar day on
Mars (1 sol) and the mean radius of Mars and the radius of Mars SOI, as in Table 3.1. The Martian
day (sol) is used to quantify the size of a target elliptical orbit, based on its period, and will be
mentioned in Section 5.6. The table contains the definition of 1 sol in mean solar days (d), which
are defined in seconds.

Quantity Value
𝜇 4.2828 × 104 km3/s2

1 sol 1.027490 d
1 d 86400 s
r𝑀𝐴𝑅𝑆 3389.5 km

r𝑀𝐴𝑅𝑆,𝑆𝑂𝐼 0.57 × 106 km

Table 3.1: Definition of parameters related to the Martian environment [17], [25], [14].
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• Launch window
The EMC frame considers three missions, departing from Earth in 2037, 2041 and 2045. The
values of the transfer hyperbolas selected by Qu [21] for their EMC study refer to those three mis-
sions. The values of velocity at infinite distance from Mars v∞, right ascension 𝛼 and declination
𝛿 of the hyperbolic asymptote are reported in Table 3.2. The ideal ΔV is for a tangential insertion
at pericenter, in a 1-sol coplanar orbit around Mars with a pericenter altitude (h𝑝) of 250 km.

Launch Year Mars Arrival v∞ [km/s] 𝛼 [deg] 𝛿 [deg] Ideal ΔV [km/s]
2037 8/2/2038 2.789 19.4 38.7 0.966
2041 7/27/2042 2.920 113.8 -1.7 1.033
2045 10/6/2046 3.334 162.9 -34.0 1.257

Table 3.2: Earth-Mars transfer conditions for EMC missions using chemical propulsion, as reported by Qu [21].

Instead of repeating the case studies (A1, A2, P1 and P2) for three different launch years, it has
been decided to select a single window. The launch window selected is the one for 2041, as the
corresponding mission in the EMC frame includes a landing portion (case P1 would then make
the most sense considering that window), while the 2037 mission does only consider a Mars fly-
by. The input values for the hyperbolic arrival used in the optimization problem will be derived
from this assumption, the process will be explained in Chapter 5.

• Elliptical orbits
The pericenter altitude of all elliptical orbits is assumed at h𝑝 = 250 km.
For A1 and A2, the period is set to 10 sol. For P1, the orbital period is set to 1 sol. Both cases
are referencing the values used in the EMC. For P2, there is no previous reference; it has been
chosen to fix the eccentricity of the orbit (e = 0.001), which along with the fixed pericenter altitude
does define the shape of the orbit univocally.

3.4. Methods and simulation tools
The mission scenarios will be implemented using all the assumptions, parameters and constraints
mentioned before. In addition to those elements, a final definition of the off-pericenter, non-tangential
insertion and a model to obtain the problem solution are necessary.

First of all, the insertion maneuver problem is not simply about computing the ΔV of an insertion maneu-
ver, given two fully-defined orbits, or it would be trivial (under the assumptions selected). The real issue
comes from the fact that preliminary mission studies tend to define only partially both the hyperbolic
arrival and the parking orbits around Mars, in order to leave the problem open for further refinement,
once more data on the mission is available.

Asmentioned before, a follow-up step is tomake sure that the final stage of the hyperbolic arrival and
the parking orbit do intersect, to make sure that the insertion maneuver is indeed feasible. Sometimes
this assumption is simply “a given”, or is approximated by assuming a forced pericenter insertion, and
usually by fully defining the parking orbit, and then deriving the characteristics of an incoming hyperbolic
trajectory. An example simplified algorithm for this maneuver is shown in Table 3.3.

However, there is not a clear method to match these resulting hyperbolas with the asymptotes of
the hyperbolic transfer trajectory selected with a study on the transfer stage (for example, the values
used by Qu and shown in Table 3.2).
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Step Action Quantities defined
1 Define the elliptical parking orbit Keplerian el-

ements, based on scientific requirements
a𝑒, e𝑒, i𝑒, Ω𝑒, 𝜔𝑒

2 Assume pericenter insertion in the elliptical or-
bit

Θ𝑒 = 0

3 Assume pericenter insertion in the hyperbolic
orbit

r𝑝,ℎ = r𝑝,𝑒 = a𝑒(1 - e𝑒),
Θℎ = 0

4 Assume coplanar insertion iℎ = i𝑒, Ωℎ = Ω𝑒
5 Compute the semi-major axis of the hyper-

bola via the transfer orbit energy (see Equa-
tion 4.15)

aℎ

6 At this point you have two fully-defined or-
bits, and at insertion point their velocities are
aligned.

𝑣⃗ℎ , 𝑝 ∥ 𝑣⃗𝑒 , 𝑝

7 Compute cost of pericenter insertion ΔV

Table 3.3: Simple insertion algorithm, for a coplanar, pericenter insertion problem

Merrill [15] uses a numerical method that relies on a complete repositioning strategy and optimization
to approximate consecutive orbits (for example the transfer hyperbola and the parking orbit) as inter-
secting. However, the strategy includes seven maneuvers (from insertion to escape towards Earth) in
the Mars SOI, therefore going well beyond the scope of this study.

Merrill’s numerical method cannot be applied to a problem that only considers the insertion ma-
neuver by itself, even if we were to consider the first maneuver of the 7-step strategy (the insertion),
separating it from the follow-up repositioning maneuvers. Doing this would only result in an underde-
termined system (the unknowns would be more than the equations available to solve the problem).
However, it would still be possible to derive a numerical method starting from Merrill’s and adding fur-
ther constraints to the problem.

Cornick [2] is the only available study to provide an analytical method with equations included to solve
the problem at hand. The method description includes both how to compute the ΔV budget and at the
same time ensure the intersection of the initial and final orbits, even when they do not have coinciding
orbital planes.

The method by Cornick has been selected over the ”simple” insertion and the numerical method for
multiple reasons. First, its implementation was clearer and more easy to reproduce. Secondly, it still
had the flexibility of being applicable to more than just a so-called perfect case, in which the orientation
of the hyperbola were to match that of the target elliptical orbit. In addition to this, an analytical method
allows to develop a tool that yields a clear and quick result for a given set of input values, which is an
attractive quality both for the verification of the tool and for its application in preliminary studies.

The definition of Cornick’s problem is: “Given the conditions at infinity of an hyperbolic transfer, and
given a completely defined elliptical orbit and a target insertion point on the elliptical orbit, define the
required characteristics of the hyperbolic orbit in the MERF and the resulting ΔV budget of the insertion
maneuver”. The complete analytical description of the problem implementation is given in Chapter 4.



4
Model formulation

This chapter will introduce the model used for the insertion maneuver implementation. The selection
of the model has been covered in Chapter 4. The original model formulation is taken from a study by
Cornick [2] and has an analytical solution. The analytical method will be presented in its equations, as
well as any additional simplified cases (for example a coplanar case) used for its verification.

The solution of Cornick’s insertion problem is a full characterization of the arrival hyperbola and ellip-
tical orbit, intersecting at the insertion maneuver location, as well as the resulting cost of the maneuver
ΔV. The results obtained with this method will require optimization, in order to answer the research
questions mentioned in Chapter 2. The optimization strategy will be introduced in Chapter 5.

4.1. Input and Output
This study intends to start from the elements that are used in the transfer studies, and those used in
the studies of maneuvers inside the SOI of Mars, and find ways to optimize the insertion maneuver,
that represents the common element between these two studies. The output of a transfer trajectory
optimization study is:

• Transfer orbit specific orbital energy ℰ or energy integral C3
• Transfer orbit asymptote, defined as the right ascension (𝛼) and declination (𝛿) of the hyperbolic
asymptote. These values approximate the 𝛼 and 𝛿 of the spacecraft position at infinite distance
from Mars, on the transfer hyperbola.

The state of a spacecraft in the SOI of Mars is defined by six values (as explained in the literature
study [22]), which means that the transfer hyperbolas, as defined by these studies, still have three ”free
parameters” which can be used to make sure their conditions are suitable for a transfer to the target
parking orbit.

A parking orbit study usually starts from the mission objectives and technical constraints (like space-
craft size, propellant budget, costs and time constraints) dictated by an architecture frame (such as the
EMC) in order to design suitable parking orbits to achieve such objectives. The output of the EMC
parking orbit reorientation study is (as presented by Qu [21]):

• Definition of PO pericenter radius
• Definition of PO orbital period
• Definition of PO inclination
• Definition of stay time in the SOI of Mars (depending on the mission duration)
• Definition of additional re-orientation maneuvers

The latter two elements are not relevant for this study, obviously. The switch between architecture and
parking orbit studies is usually an iterative procedure, to arrive to a feasible mix of technical design and
mission design results.

18
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Considering the results from transfer studies and PO studies, Table 4.1 presents the input and output
quantities of Cornick’s problem, as formulated in Chapter 3.

Symbol Input Symbol Output
C3,ℎ Energy Integral of hyperbola ΔV Insertion cost
𝛼ℎ Right ascension of hyperbola aℎ Semi-major axis of hyperbola
𝛿ℎ Declination of hyperbola eℎ Eccentricity of hyperbola
a𝑒 Semi-major axis of ellipse iℎ Inclination of hyperbola
e𝑒 Eccentricity of ellipse Ωℎ RAAN of hyperbola
i𝑒 Inclination of ellipse 𝜔ℎ Argument of pericenter of hyperbola
Ω𝑒 RAAN of ellipse 𝜃ℎ True Anomaly of hyperbola
𝜔𝑒 Argument of pericenter of ellipse
𝜃𝑒 True Anomaly of ellipse

Table 4.1: Overview of the input and output quantities of Cornick’s analytical method to solve the insertion maneuver problem to
transfer from a hyperbolic to an elliptical orbit [2].

4.2. Cornick’s analytical method
Cornick’s analytical method is the most open-ended solution of the insertion problem, as there are
no assumptions on the relative positioning of the transfer hyperbola and elliptical orbit. The following
section will introduce the equations of the method, as well as some conclusions on its application to
the insertion maneuver problem specifically.

4.3. Method description
In order to compute the cost of the insertion maneuver, one has to compute the orbital characteristics
of the transfer hyperbola, the characteristics of the elliptical parking orbit of arrival and the position of
the maneuver on both, since the maneuver is considered to be potentially off-pericenter.

We will call Orbit A the incoming hyperbola, and Orbit B the first parking orbit post-insertion (Fig-
ure 2.4). First, Orbit B will be characterized. Orbit B will have its Keplerian elements (semi-major axis,
eccentricity, inclination, argument of periapsis, longitude of the ascending node, and true anomaly of
the maneuver point) as already defined, according to Cornick’s problem input list (Table 4.1). The idea
is to define the radial position and velocity of the spacecraft at the maneuver point in the MERF. First, it
is necessary to compute the node vector n (magnitude in Equation 4.1, direction towards the ascending
node of the orbit as in Equation 4.2).

𝑛𝐵 =
1 + 𝑒𝐵
1 − 𝑒𝐵

(4.1)

𝑛̂𝐵 = [Ω𝐵]3[𝑖𝐵]1 ̂𝐼 (4.2)

̂𝐼 = [
1
0
0
] (4.3)

The following notation has been used for the rotation matrices: a rotation matrix [𝜃]𝑗 is a rotation of
argument 𝜃 about axis j of a specified reference frame. Equations 4.4 to 4.6 show the three basic
rotation matrices for a rotation of angle 𝜃, and the three possible pedices.

[𝜃]1 = [
1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos𝜃

] (4.4)

[𝜃]2 = [
cos𝜃 0 sin𝜃
0 1 0

− sin𝜃 0 cos𝜃
] (4.5)
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[𝜃]3 = [
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

] (4.6)

The rotation matrices [Ω𝐵]3,[𝑖𝐵]3 are rotation matrices to transform vectors from the orbital plane ref-
erence frame of Orbit B in the Mars-centric equatorial reference frame (frame XYZ in Figure 4.1). For
more information about this transformation, see Wakker [25].

Figure 4.1: Earth geocentric frame (XYZ), same assumptions as the MERF used in the study (except for the central body),
ascending node and node line N highlighted [3].

Knowing the true anomaly at capture, 𝜃𝐵,𝑐𝑎𝑝𝑡, it is possible to compute the angle 𝜌𝐵 :

𝜌𝐵 = 𝜃B,capt + 𝜔𝐵 (4.7)

The angle 𝜌𝐵 is the angle measured from the ascending node to the position of the spacecraft, in the
orbital plane. The position vector at capture, 𝑟𝑐𝑎𝑝𝑡 direction and magnitude are defined as follows:

𝑟capt =
𝑎𝐵 (1 − 𝑒2𝐵)

1 + 𝑒𝐵 cos𝜃capt
(4.8)

𝑟̂capt = [Ω𝐵]3[𝑖𝐵]1[𝜌𝐵]3 ̂𝐼 (4.9)

𝑟𝑐𝑎𝑝𝑡 = 𝑟𝑐𝑎𝑝𝑡𝑟̂𝑐𝑎𝑝𝑡 (4.10)

One can formulate the velocity vector in the Mars Equatorial Reference Frame (MERF), for a generic
true anomaly of Orbit B, as in Equations 4.11 and 4.12, and then apply these equations to derive the
velocity at capture, on the arrival orbit (𝑉⃗𝐵,𝑐𝑎𝑝𝑡):

𝑉𝐵 = √
2𝜇
𝑟𝐵
− 𝜇
𝑎𝐵

(4.11)

𝑉̂𝐵 = [Ω𝐵]3[𝑖𝐵]1[𝜌𝐵]3[𝜓𝐵]3 ̂𝐼 (4.12)
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Cornick, in the description of the method, uses an outdated definition of flight path angle, which will be
referred here as the angle 𝜓, or the angle between the direction of the position vector and the velocity
vector, positive in the direction of motion of the orbit, see Figure 4.2.

Figure 4.2: (Left) Elliptical orbit and flight path angle 𝛾, as defined by Wakker [25]. (Right) Elliptical orbit and angle 𝜓 as defined
by Cornick [2].

This angle serves the same purpose as the flight path angle (𝛾) in determining the relationship between
the direction of the velocity vector and the reference orbit, and can be computed from Equation 4.13.

𝜓 = arcsin⎛

⎝

√𝜇𝑎𝐵 (1 − 𝑒2𝐵)
𝑟𝑉𝐵

⎞

⎠

(4.13)

with the condition:

• 0 ≤ 𝜓 ≤ 𝜋
2 if 0 ≤ 𝜃 ≤ 𝜋

• 𝜋
2 < 𝜓 < 𝜋 if 𝜋 < 𝜃 < 2𝜋

After having computed the conditions on the first parking orbit (B), one has to compute the velocity on
the incoming hyperbolic orbit (A), before the injection maneuver. The quantities necessary for that are
the energy integral (C3,𝐴), right ascension (𝛼𝐴) and declination (𝛿𝐴) of a position at the edge of the SOI
of Mars, which will be an approximation of their values at infinite distance from Mars.

In the problem definition by Cornick [2], in the SOI of Mars, there are two hyperbolas that have
the same hyperbolic asymptote direction: one where that direction is the direction of the outgoing
asymptote, and one where that direction is the direction of the incoming hyperbolic asymptote. There
are only two solutions to the problem because in addition to the conditions at infinity (which define the
hyperbolic asymptote direction and the semi-major axis, as will be explained later), there are three
conditions determined by the maneuver point (the three components of the 𝑟𝑐𝑎𝑝𝑡 vector defined in the
elliptical problem above).

If one were to look at the two solution hyperbolas in space, without knowing the direction of motion
of the spacecraft on such trajectories, the two would be identical since they have the same asymptote
and have to go through the same point. However, since they have opposite direction of motion, they
will have the same semi-major axis and eccentricity, but different inclination, right ascension of the
ascending node and pericenter anomaly.

Before diving in the computation of the results, it is important to look at these two hyperbolas from a
geometrical point of view, to derive insight in the expected results. Figures 4.3 and 4.4 show the main
angles that will be used for the following analysis.

Three directions are used to define these angles: the direction of the reference hyperbolic asymptote
(𝑆̂), the direction of the pericenter (𝑝⃗) and the radial direction indicating the capture position (𝑟𝑐𝑎𝑝𝑡).

The angle 𝛽 is defined as the angle between 𝑟𝐵,𝑐𝑎𝑝𝑡 and the reference hyperbolic asymptote direction
𝑆̂. The angle 𝜃 is the true anomaly of the maneuver, measured from the pericenter of the hyperbola to
the position vector. The angle 𝜃𝑎 is the true anomaly of the hyperbolic asymptote, or the angle between
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the pericenter and the hyperbolic asymptote direction (𝑆̂). All angles are defined positive in the direction
of motion of the hyperbola.

As mentioned before, there are two cases that differ on whether the insertion maneuver happens
after pericenter (on the outgoing leg of the hyperbola, 𝜃 < 180 deg as in Figure 4.3), or before pericenter
(on the incoming leg of the hyperbola, 𝜃 > 180 deg, as in Figure 4.4).

Figure 4.3: Transfer Hyperbola A, highlighted the conditions of an insertion on the outgoing branch. S/C on hyperbola moving
in the anti-clockwise direction. 𝑝̂ is the pericenter direction vector. Figure generated with GeoGebra.

Figure 4.4: Transfer Hyperbola A, highlighted the conditions of an insertion on the incoming branch. S/C on hyperbola moving
in the anti-clockwise direction. 𝑝̂ is the pericenter direction vector. Figure generated with GeoGebra.

From Figures 4.3 and 4.4, the following characteristics can be deduced:

• Outgoing asymptote: 𝛽 < 180 deg, 𝜃𝑎 < 180 deg, 𝜃 < 180 deg
• Incoming asymptote: 𝛽 > 180 deg, 𝜃𝑎 > 180 deg, 𝜃 > 180 deg
• In both cases: 𝜃𝑎 = 𝛽 + 𝜃
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• 𝜃𝑎,𝑖𝑛 = - 𝜃𝑎,𝑜𝑢𝑡, 𝛽𝑖𝑛 = - 𝛽𝑜𝑢𝑡, 𝜃𝑖𝑛 = - 𝜃𝑜𝑢𝑡
The right ascension and declination are used to express the direction of the hyperbolic asymptote

in the MERF with the following transformation:

𝑆̂ = [𝛼𝐴]3[−𝛿𝐴]2 ̂𝐼 (4.14)

The energy integral defines the semi-major axis of Orbit A:

𝑎𝐴 = −
𝜇
𝐶3,𝐴

(4.15)

with 𝜇 = 42828 km3

s2
, which is Mars gravitational parameter (see Chapter 3).

To define the true anomaly of the capture on the hyperbola (𝜃𝐴,𝑐𝑎𝑝𝑡), it is necessary to to define the
orientation of the orbital plane of the hyperbola with respect to the MERF. To do so, first it is necessary
to compute 𝛽𝐴 (see Equation 4.16). Since the capture can happen on the incoming or outgoing leg of
the hyperbola, two values of 𝛽𝐴 are possible:

𝛽𝐴,𝑜𝑢𝑡 = arccos(𝑟𝑐𝑎𝑝𝑡 ⋅ 𝑆̂)
𝛽𝐴,𝑖𝑛 = 2𝜋 − arccos(𝑟𝑐𝑎𝑝𝑡 ⋅ 𝑆̂)

(4.16)

The hyperbolic angular momentum direction can be defined as:

𝑊̂ = 𝑟̂𝑐𝑎𝑝𝑡 × 𝑆̂/𝑠𝑖𝑛(𝛽𝐴) (4.17)

In Equation 4.17, only one value of 𝛽𝐴 is mentioned, but the study should be carried out for both, to
evaluate the most advantageous position to maneuver in terms of ΔV𝑐𝑎𝑝𝑡.

In order to do so, Cornick [2] provides two different equations to compute the true anomaly of the
hyperbolic asymptote for the outgoing and incoming cases. However, only the outgoing case (Equa-
tion 4.19) produces results that are consistent with the geometric analysis. The results for the incoming
leg will be derived from the ones of the outgoing leg, considering the geometric analysis explained be-
fore.

For the outgoing asymptote, the value of 𝛽 allows to compute 𝜃𝐴,𝑎, (the true anomaly of the hy-
perbolic asymptote) and 𝜃𝐴,𝑐𝑎𝑝𝑡 (the true anomaly at the capture location), using the parameter 𝜎 to
simplify the notation:

𝜎 =
𝐶3,𝐴𝑟𝑐𝑎𝑝𝑡
2𝜇 (4.18)

tan (𝜃𝐴,𝑎,𝑜𝑢𝑡) = 𝜎 sin𝛽𝐴,𝑜𝑢𝑡 +√(1 + 𝜎)2 − (1 − 𝜎 cos𝛽𝐴,𝑜𝑢𝑡)2 (4.19)

𝜃𝐴,𝑐𝑎𝑝𝑡,𝑜𝑢𝑡 = 𝜃𝐴,𝑎,𝑜𝑢𝑡 − 𝛽𝐴,𝑜𝑢𝑡 (4.20)

For the incoming asymptote, as explained before:

𝜃𝐴,𝑎,𝑖𝑛 = −𝜃𝐴,𝑎,𝑜𝑢𝑡 (4.21)

𝜃𝐴,𝑐𝑎𝑝𝑡,𝑖𝑛 = 𝜃𝐴,𝑎,𝑖𝑛 − 𝛽𝐴,𝑖𝑛 (4.22)

Again, for ease of explanation, the following equations refer only to a generic hyperbola A, but should
be applied both to the outgoing and the incoming cases separately.

The eccentricity of Orbit A can be computed using:

𝑒𝐴 = −
1

cos𝜃𝐴,𝑎
(4.23)

As a sanity check, it is also possible to verify the magnitude of the radial position at capture (r𝐵,𝑐𝑎𝑝𝑡)
using the geometric parameters for the hyperbola, to make sure it coincides with the one computed for
the elliptical parking orbit:
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𝑟𝐴,𝑐𝑎𝑝𝑡 = 𝑟𝑐𝑎𝑝𝑡 =
𝑎𝐴 (1 − 𝑒2𝐴)

1 + 𝑒𝐴 cos𝜃𝐴,𝑐𝑎𝑝𝑡
(4.24)

The hyperbolic velocity is composed of a magnitude and direction (Equation 4.25), the magnitude is
computed with Equation 4.26:

𝑉𝐴 = 𝑉𝐴 ̂𝑉𝐴 (4.25)

𝑉𝐴 = √𝐶3 +
2𝜇
𝑟𝑐𝑎𝑝𝑡

(4.26)

In order to compute the velocity vector direction via the unit vector ̂𝑉𝐴, one has to use the angle 𝜓𝐴
(defined in the same way as for the elliptical case), derived with the use of the hyperbolic angular
momentum ℎ𝐴:

ℎ𝐴 = √𝑎𝐴𝜇 (1 − 𝑒2𝐴) = 𝜇√
𝑒2𝐴 − 1
𝐶3

(4.27)

𝜓𝐴 = arcsin( ℎ𝐴
𝑟𝑐𝑎𝑝𝑡𝑉𝐴

) (4.28)

with:

• 0 ≤ 𝜓𝐴 ≤
𝜋
2 for 0 ≤ 𝜃𝐴 ≤ 𝜋

• 𝜋
2 < 𝜓𝐴 < 𝜋 for 𝜋 < 𝜃𝐴 < 2𝜋

from which follows the direction of the velocity vector on hyperbola A:

𝑉̂𝐴 = cos𝜓𝐴𝑟̂𝑐𝑎𝑝𝑡 + sin𝜓𝐴 (𝑊̂𝐴 × 𝑟̂𝑐𝑎𝑝𝑡) (4.29)

Having defined the velocity vectors before and after the injection maneuver, it is possible to compute
the cost of the maneuver as the difference between these vectors:

Δ𝑉⃗1 = 𝑉⃗𝐵 − 𝑉⃗𝐴 (4.30)

The same equations can be used in the escape scenario, with the only difference of considering the
departure orbit as the elliptical orbit I, and the hyperbolic orbit J as the arrival, after the maneuver has
been performed (referring to the EMC nomenclature for the bi-elliptic apotwist technique, presented in
Chapter 2). However, the project will focus on insertion maneuvers only.

4.3.1. Cornick’s problem and insertion conditions
Of the two hyperbolas that are the solutions of the problem, as defined by Cornick [2], one will be
optimal in terms of cost (ΔV). However, looking at the problem of a spacecraft transferring from Earth
to Mars, and knowing the conditions of one of the asymptotes (𝛼, 𝛿), related to the branch on which
the maneuver will be operated, it is clear that only the incoming branch should be used for the Mars
insertion problem, and only the outgoing branch should be used for the Mars escape problem, as the
input of the problem (presented in Section 4.1) are the coordinates of only one asymptote. If both the
asymptotes were known, there would be no freedom of defining the eccentricity and other Keplerian
elements of the hyperbola around Mars.

In the computational tool developed in Python for the project (implementing the equations of Sec-
tion 4.3), this case is selected automatically by verifying the direction of the incoming asymptote of
the two solutions, and choosing the one with the correct direction. All the equations employed for this
selection will be presented as part of the tests of Cornick’s problem in Subsection 4.5.1.
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4.3.2. Further analysis on insertion conditions
Insertion maneuvers can be located on either the incoming or outgoing branches of an hyperbola. After
testing Cornick’s problem for different conditions (part of these tests is presented in Subsection 4.5.1),
it was clear that, depending on the input, two kinds of solutions were available.

1. Solutions in which the maneuver point was located on the same branch as the reference asymp-
tote, as presented in Figures 4.3 and 4.4. The reference asymptote (𝑆̂) is the asymptote direction
given in the input (via 𝛼 and 𝛿 coordinates).

2. Solution in which the maneuver point was located on the opposite branch as the reference asymp-
tote, as presented below in Figures 4.5 and 4.6.

Since the second type of solutions is still a product of Cornick’s algorithm (as explained in Section 4.3),
the solutions will be two hyperbolas with the same geometrical characteristics, but different orientations
in space, such that the intersection with the elliptical parking orbit will be at the same radial distance,
once before and once after the pericenter (due to the hyperbola symmetry).

However, this time the angles 𝛽 and 𝜃𝐴 will not be defined referencing the same asymptote as the
branch on which the maneuver is operated, but the opposite. Therefore, the ”outgoing” case, identified
by the subscript ”out” in Section 4.3 will still have the outgoing asymptote as reference asymptote 𝑆̂𝑜𝑢𝑡,
but the solution will be a maneuver point with 𝜃 ∈ [180, 360] deg, thus identifying a maneuver on the
incoming branch of the hyperbola. This example is presented in Figure 4.5.

Figure 4.5: Example of the problem 2, outgoing asymptote used as a reference (therefore ”out” subscript), solution on the
incoming branch. S/C on hyperbola moving in the anti-clockwise direction. 𝑝̂ is the pericenter direction vector. Figure generated
with GeoGebra.

Then, the characteristics of the problem in Figure 4.5:

• Motion of the hyperbola: anti-clockwise (as displayed in the figure)
• Maneuver on the incoming branch, 𝜃𝑜𝑢𝑡 ∈ [180,360] deg.
• The outgoing asymptote 𝑆̂𝑜𝑢𝑡 is the reference asymptote
• Reference asymptote true anomaly, 𝜃𝑎,𝑜𝑢𝑡 < 180 deg.
• The angle between radial position and reference asymptote is 𝛽𝑜𝑢𝑡
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Figure 4.6: Example of the second type of Cornick’s solutions. Incoming asymptote used as a reference (therefore ”in” subscript),
solution on the outgoing branch. Hyperbola moving in the anti-clockwise direction. 𝑝̂ is the pericenter direction vector. Figure
generated with GeoGebra.

The characteristics of the opposite case, in which the reference asymptote is the incoming one (𝑆̂𝑖𝑛)
are presented in Figure 4.6, and are here summarized:

• Motion of the hyperbola: anti-clockwise (as displayed in the figure)
• Maneuver on the outgoing branch, 𝜃𝑖𝑛 ∈ [0, 180] deg.
• The incoming asymptote 𝑆̂𝑖𝑛 is the reference asymptote
• Reference asymptote true anomaly, 𝜃𝑎,𝑖𝑛 > 180 deg.
• The angle between radial position and reference asymptote is 𝛽𝑖𝑛

As with problem 1, in Section 4.3, some considerations can be made after examining the figures:

• In both cases: 𝜃𝑎 = 𝛽 + 𝜃
• 𝛽𝑖𝑛 = - 𝛽𝑜𝑢𝑡, 𝜃𝑎,𝑖𝑛 = - 𝜃𝑎,𝑜𝑢𝑡, 𝜃𝑖𝑛 = - 𝜃𝑜𝑢𝑡

These relationships are the same found in Section 4.3, another proof of how these solutions are indeed
related to the same problem.

It is important to make two considerations. The first one is that the equations presented in Sec-
tion 4.3 identify both solution 1 and solution 2, and therefore there is no way of foreseeing whether the
result will be one or the other. Verification can only be made ”a posteriori”, and that is entirely due to
the interplay of the position of the maneuver (defined by 𝑟𝑐𝑎𝑝𝑡), the hyperbola asymptote direction and
its specific energy.

The second consideration comes from a natural follow-up question: is it possible to define an ad-
ditional equation (different from Equation 4.19) to obtain two additional solutions, and therefore obtain
four solutions out of Cornick’s algorithm? The simple answer, as it stands, is no.

The reason is that the equation that Cornick suggests for deriving the true anomaly of the hyperbolic
asymptote in the case of the incoming branch (𝜃𝐴,𝑎,𝑖𝑛), as mentioned in Section 4.3, gives results that
are not consistent for the case of the two identical hyperbolas.

Equation 4.31 consistently outputs values of 𝜃𝑎 outside of the interval [90, 270] deg, which is the
standard definition of an hyperbola [25]. The conclusion is that either the values of 𝛽𝑖𝑛 or 𝜎 were ill-
defined in Cornick’s paper, or simply that Equation 4.31 does not define angle 𝜃𝑎,𝑖𝑛,in, but some other
angle related to the reference directions used in Cornick’s problem, different from the interpretation
given above. However, it is yet to be understood what that equation (Equation 4.31) should be used
for.

tan (𝜃𝑎,𝑖𝑛) = −𝜎 sin𝛽𝑖𝑛 −√(1 + 𝜎)2 − (1 − 𝜎 cos𝛽𝑖𝑛)2 (4.31)
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A way of solving a similar problem would be to use as a free parameter the eccentricity of the hy-
perbola, fixing for example the inclination and right ascension of the hyperbola, and compute for which
eccentricity and pericenter anomaly values the resulting hyperbola (that has a defined incoming asymp-
tote) would intersect the target elliptical parking orbit (in random points, as in this case the maneuver
point would not be fixed beforehand), and which are the optimal results.

However, that would require to set up a completely different problem, while Cornick’s solution does
already provide a result. It has been therefore decided to only use the two solutions of the problem
deriving from the application of Equation 4.19, and obtain two hyperbolas instead of four.

4.4. Tangential pericenter insertion
Tangential pericenter insertion maneuvers are a very special sub-group of the more generic insertion
maneuvers. The maneuver can only be performed under very strict conditions:

• The two orbits are coplanar (identical i and Ω).
• The two orbits have a common orientation in the plane (identical 𝜔).
• The two orbits have the same pericenter radius magnitude.
• As a result, both orbits share the same pericenter vector (same direction, same magnitude).
• As an additional result, the velocities at pericenter on the two orbits are aligned (have the same
direction).

• The maneuver can only happen when at the intersection of the two orbits, and therefore can only
be performed at pericenter (unless the two orbits have the same shape as well, but in that case
the cost of the maneuver would be zero).

Given the characteristics of the maneuver, the pericenter radius will remain the same, while the apoc-
enter radius will change, as well as the semi-major axis and the eccentricity of the orbit. The orientation
of the orbit in space does not change (𝑖, Ω, 𝜔 remain unchanged).

The cost of the maneuver is derived from Equation 4.32, which can be found in many astrodynamics
textbooks such as Wakker’s [25].

Δ𝑉 = 𝑉𝑓,𝑝 − 𝑉𝑖,𝑝 = √
−𝜇
𝑎𝑓

+ 2𝜇𝑟𝑝
−√−𝜇𝑎𝑖

+ 2𝜇𝑟𝑝
(4.32)

with:

• 𝑉𝑓,𝑝 = velocity at pericenter, after maneuver [km/s]

• 𝑉𝑖,𝑝 = velocity at pericenter, before the maneuver [km/s]

• 𝑎𝑓 = semi-major axis of the final orbit [km]

• 𝑎𝑖 = semi-major axis of the initial orbit [km]

• 𝑟𝑝 = pericenter radius [km]

The eccentricity of the final orbit (e𝑓) can be found using:

𝑒𝑓 = 1 −
𝑟𝑝
𝑎𝑓

(4.33)

4.5. Verification of tools
Verification is a step that demonstrates the correct functioning of a model or a tool. This chapter will
contain the verification of Cornick’s analytical method, and the proof that it indeed is able to make sure
the resulting hyperbolic and elliptical orbit intersect, while at the same time being constrained by the
input values selected.
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4.5.1. Verification of Cornick’s method
The first test was implemented to verify that Cornick’s method is indeed able to provide, as a result,
two trajectories intersecting at the desired maneuver location. The input values used in this example
(renamed test T1), are presented in Table 4.2. The maneuver is off-pericenter (𝜃𝑒 = 10 deg) to verify
whether the algorithm can output the correct quantities in this generic case.

Quantity Input T1
C3,ℎ [km2/s2] 20.6
𝛼ℎ [deg] 138.0
𝛿ℎ [deg] 5.9
r𝑝,𝑒 [km] 4000
a𝑒 [km] 20000
i𝑒 [deg] 20
Ω𝑒 [deg] 20
𝜔𝑒 [deg] 50
𝜃𝑒 [deg] 10

Table 4.2: Input values used for test 1 (T1), h = hyperbola, e = ellipse.

The results of case T1 are shown in Tables 4.3 and 4.4. In Table 4.3 the results for angles 𝛽, 𝜃𝑎, 𝜃 show
how the result is consistent with the mathematical description in Section 4.3. Since the ”out” solution
has a true anomaly ∈ [0, 180], or on the outgoing branch of the hyperbola, this case falls under problem
1, which is the problem in which the position of the maneuver is on the same branch of the reference
asymptote (see Figures 4.3 and 4.4 and Subsection 4.3.2).

Quantity T1 ”out” case T1 ”in” case
𝛽ℎ [deg] 59.2 303.9
𝜃𝑎,ℎ [deg] 115 244
𝜃ℎ [deg] 56.1 303.9
r𝑐𝑎𝑝𝑡 [km] 4027.2
𝑟̂𝑐𝑎𝑝𝑡 [km,
km,
km]

[0.192
0.94
0.30]

𝑣⃗𝑒 [km/s,
km/s,
km/s]

[-4.18
0.95
0.85]

𝑣⃗ℎ [km/s,
km/s,
km/s]

[-4.02
4.97
0.95]

[4.02
-4.97
-0.95]

ΔV [km/s] 4.03 10.28

Table 4.3: Output values of test T1. Pedices h = hyperbola, e = ellipse. The definition of the ”out” and ”in” cases can be found
in Section 4.3.

The results in Table 4.4 are consistent with the method equations: the semi-major axis and eccentricity
of the two hyperbolas are the same, while the orientation is ”opposite” (one is prograde, one retrograde),
as it is also visible from the velocity vectors in Table 4.3, which have the same direction but opposite
sign. The Keplerian elements of the elliptical orbit in Table 4.4 have been computed starting from the
radial position and velocity of Table 4.3. The elements match those of the input in Table 4.2, and this
reverse-engineering experiment is further proof that the result is reliable.
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Quantity Ellipse Hyperbola ”out” Hyperbola ”in”
a [km] 20000 -2079 -2079
e [-] 0.8000 2.3368 2.3368
i [deg] 20.0 17.5 162.44
Ω [deg] 20.0 -22.9 157.08
𝜔 [deg] 50.0 44.7 135.26
𝜃[deg] 10.0 56.1 303.9

Table 4.4: Resulting trajectories for case T1. The definition of the ”out” and ”in” cases can be found in Section 4.3

One can apply the following equations to further verify the result, by checking that the asymptote of the
hyperbola points in the direction used as an input (𝛼, 𝛿 values in Table 4.2).

𝜃∞ = 𝑎𝑐𝑜𝑠 [(
𝑎 − 𝑎𝑒2
𝑟∞

− 1) 1𝑒 ] (4.34)

The equation has two results, both 𝜃∞ ∈ [90,270]; these results should be the same values of 𝜃𝐴 found
in the problem. Knowing the true anomaly at infinite distance (as an approximation), one can compute
the radial distance and velocity at infinity as vectors in the MERF; the following equations can be found
to derive the direction of the reference asymptote starting from the position at infinite distance (on the
outgoing branch for the ”out” branch solution, and vice versa for the incoming one).

𝑠𝑖𝑛𝛼 =
𝑟∞,𝑦

√𝑟2∞,𝑥 + 𝑟2∞,𝑦
(4.35)

𝑐𝑜𝑠𝛼 = 𝑟∞,𝑥
√𝑟2∞,𝑥 + 𝑟2∞,𝑦

(4.36)

𝛼 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝛼, 𝑐𝑜𝑠𝛼) (4.37)

𝛿 = 𝑎𝑠𝑖𝑛⎛

⎝

𝑟∞,𝑧
√𝑟2∞,𝑥 + 𝑟2∞,𝑦 ++𝑟2∞,𝑧

⎞

⎠

(4.38)

In problem 1, case A, both satisfy this condition.

Test T2 will cover an example belonging to problem 2, the problem mentioned in Subsection 4.3.2 and
sketched in Figures 4.5 and 4.6. Test T2 will perform verification of the use of Cornick’s equation, by
applying a reverse engineering experiment. The idea is to start from the solution (the two hyperbolas
and their characteristics) to then see if the equations suggested by Cornick are able to guess those
solutions, even if the maneuver point is on the opposite branch with respect to the one given by the
input asymptote (as per problem 2 definition).

In the next paragraph, the problem of starting from a completely defined hyperbola and finding a
random ellipse that intersects it will be described. This problem is used only to generate the input
of example T2. The idea is to replicate the example shown in Figure 4.5, but the same procedure
is applicable to all the other combinations of true anomaly (of the insertion maneuver) and reference
asymptote.

First, plausible values for the problem-specific angles of the hyperbola from Figure 4.5 are presented
in Table 4.5. The orientation of the hyperbola is also fixed, and the numbers have been chosen with
the only condition of not falling on the cases of a hyperbola with 0 deg inclination (special case for the
definition of angles Ω and 𝜔 as explained in the Literature Study [22]).
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Quantity Hyperbola
𝜃𝑎 [deg] 130
𝛽 [deg] 140
a [km] -2300
i [deg] 10
Ω [deg] 20
𝜔 [deg] 30
𝜃 [deg] 350

Table 4.5: Reverse engineering problem to generate input of problem T2, definition of the transfer hyperbola, case based on
Figure 4.6.

Then the eccentricity of the hyperbola and its C3 value can be computed, using the inverse of the
equations in Section 4.3.

𝑒 = − 1
𝑐𝑜𝑠(𝜃𝐴)

= 1.5557 (4.39)

𝐶3 = −
𝜇
𝑎 = 18.6

𝑘𝑚2
𝑠2 (4.40)

Starting from those it is possible to derive the input conditions 𝛼, 𝛿 for the outgoing and incoming
asymptotes, using Equations 4.34, 4.37 and 4.38, results are given in Table 4.6.

Quantity Incoming asymptote Outgoing asymptote
𝛼 [deg] 279.1 180.2
𝛿 [deg] 3.4 -9.8

Table 4.6: Reverse engineering problem, generation of input for test T2, asymptote direction.

Using 𝜃, it is possible to compute the radial position and velocity at capture on the hyperbola, and
generate a random velocity for the same radial position for a parking ellipse (results in Table 4.7).

Quantity Hyperbola Ellipse
𝑥 [km] 990 990
𝑦 [km] 822 822
𝑧 [km] 76 76
𝑣𝑥 [km/s] -6.6 2.5
𝑣𝑦 [km/s] 6.27 2.5
𝑣𝑧 [km/s] 1.43 4.7

Table 4.7: Reverse engineering problem to generate the input of test T2, maneuver point characteristics on the reference hyper-
bola and parking orbit ellipse.

From position and velocity, it is possible to compute the Keplerian elements of the arrival ellipse, results
shown in Table 4.8. It is important to note that a value of 1346 km for the semi-major axis of the orbit
would be impossible around Mars, which has a radius of 3389.5 km. However, for the purpose of this
test and because of the point mass gravity field assumed in Chapter 3, this value will be considered
acceptable.

Quantity PO Ellipse
a [km] 1346.6
e [-] 0.6457
i [deg] 85.8
Ω [deg] 39.5
𝜔 [deg] -123.9
𝜃[deg] 127.3

Table 4.8: Reverse engineering problem to obtain the conditions for problem T2, definition of the elliptical parking orbit
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The preparation for test T2 has finished, as a hyperbola and an ellipse intersecting at a specific ma-
neuver point have been defined. Problem T2 has therefore the input values of Table 4.9. The problem
uses the outgoing asymptote as an input (therefore the solution to be compared with the input hyper-
bola will be the ”out” solution), while the maneuver point is on the incoming branch, (𝜃 = 350 deg as in
Table 4.5), following the example of Figure 4.5.

Quantity Input test1
C3,ℎ [km2/s2] 18.6
𝛼ℎ [deg] 180.2
𝛿ℎ [deg] -9.8
a𝑒 [km] 1346.6
e𝑒 [-] 0.6457
i𝑒 [deg] 85.8
Ω𝑒 [deg] 39.5
𝜔𝑒 [deg] -123.9
𝜃𝑒 [deg] 127.3

Table 4.9: Input values used for problem T2, subscript h = hyperbola, e = ellipse.

The values of Table 4.9 have been used to generate the results in Table 4.10, which has two solutions,
one referring to the outgoing asymtpote (”out” solution), and one referring to the incoming asymptote
(”in” solution). As expected, it is the ”out” solution that replicates the input values for the hyperbola,
both for the values of the characteristics angles for Cornick’s problem (𝛽, 𝜃𝑎, 𝜃), and for its Keplerian
elements (in Table 4.11).

Quantity T2 ”in” T2 ”out”
𝛽ℎ [deg] 139.9 220.1
𝜃𝑎,ℎ [deg] 130.01 229
𝜃ℎ [deg] 350 10
r𝑐𝑎𝑝𝑡 [km] 1290.1
𝑟̂𝑐𝑎𝑝𝑡 [km,
km,
km]

[0.76
0.63
0.05]

𝑣⃗𝑒 [km/s,
km/s,
km/s]

[2.50
2.50
4.70]

𝑣⃗ℎ_vect[km/s,
km/s,
km/s]

[-6.59
6.28
1.43]

[ 6.59
-6.28
-1.43]

ΔV [km/s] 10.37 11.46

Table 4.10: Output values of test T2. Pedices h = hyperbola, e = ellipse. The definition of the ”out” and ”in” cases can be found
in Section 4.3.

Quantity Ellipse Hyperbola ”in” Hyperbola ”out”
a [km] 1346.6 -2300 -2300
e [-] 0.6457 1.5551 1.5551
i [deg] 85.85 10.0 170.0
Ω [deg] 39.5 20.0 200.0
𝜔 [deg] -123.9 30.0 150.1
𝜃[deg] 127.3 350.0 10.0

Table 4.11: Resulting trajectories for case T2. The definition of the ”out” and ”in” cases can be found in Section 4.3.

From these results, it is clear that the problem has correctly identified the hyperbola that intersects
the elliptical parking orbit on the incoming branch (the one used as a reference to generate the prob-
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lem inputs, and in Figure 4.5), even though the reference asymptote used as input was the outgoing
asymptote. As for the second solution, the hyperbola that has a solution on the outgoing branch (see
Table 4.11) has an incoming asymptote that points in the input direction (the direction at infinity matches
the coordinates given as input at the beginning of the problem). With this reverse-engineering problem
it is possible to see that Cornick’s problem is able to compute accurately the solution of the insertion
maneuver problem, when it comes to correctly identifying the two trajectories (hyperbolic and elliptical
orbits).

It is possible to repeat the problem, using as input the values of the incoming asymptote (𝛼, 𝛿 of
Table 4.6). The results would be the same two hyperbolas, but this time the solution will be on the same
side of the reference asymptote (in this case, using the incoming asymptote results in the ”in” solution
that has the same characteristics of the input, instead of the ”out” solution).

After the verification effort, it is possible to consider Cornick’s problem (and its implementation in
Python for the purpose of the thesis project) fit for the application in the next chapters.



5
Optimization

After having defined the problem and the mathematical model to describe it, it is necessary to introduce
the optimization strategy selected for this study. Starting from the results of the literature study and
previous chapters, all the elements of the optimization will be defined for the problem of the insertion
maneuver in the Mars SOI, with a special focus to the specific conditions of a mission of the EMC frame.

5.1. Analysis of the problem
As mentioned in Chapter 4, this study wants to address the gap between transfer studies and studies
focused on orbit repositioning or orbit selection for scientific purposes. The optimization problem stems
from the need to not only ensure the continuity between the conditions on the transfer hyperbola and
the target elliptical orbit (which has been addressed by adopting Cornick’s method) but also look into
which are the optimal outcomes for an insertion maneuver, or what is the best possible maneuver that
can be achieved under certain conditions.

It is therefore useful to remind the reader of the parameters that mission designers provide as
an output of preliminary studies on transfer and parking orbits, as discussed in Section 4.1. These
parameters are key quantities in the insertion problem, a fact that has to be considered before choosing
the problem variables and constraints of the optimization in the following sections.

Symbol Hyperbola characteristics Symbol Ellipse characteristics
𝛼ℎ Right ascension of hyperbola r𝑝,𝑒 Pericenter radius
𝛿ℎ Declination of hyperbola T𝑒 Orbital period
C3,ℎ Energy Integral of hyperbola i𝑒 Inclination

Table 5.1: Overview of the result from transfer studies (impacting the hyperbola characteristics) and the parking orbit studies
(impacting the arrival ellipse characteristics), which inform the insertion problem definition.

5.2. Variables
Optimization variables are the quantities that are varied in order to find the combination that yields the
optimal result. Starting from all the input variables necessary for the model (in Section 4.1), those have
been restricted to select a number of variables for the optimization problem, highlighted among the
other input quantities in Table 5.2. The remaining input quantities will be mentioned in Section 5.4, as
part of the equality constraints, also referred to as the fixed parameters of the problem.

33
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Symbol INPUT
𝛼ℎ Right ascension of hyperbola
𝛿ℎ Declination of hyperbola
C3,ℎ Energy Integral of hyperbola
a𝑒 Semi-major axis of ellipse
e𝑒 Eccentricity of ellipse
i𝑒 Inclination of ellipse
Ω𝑒 RAAN of ellipse
𝜔𝑒 Anomaly of Pericenter of ellipse
𝜃𝑒 True Anomaly of ellipse

Table 5.2: Input quantities for Cornick’s analytical method, highlighted in bold the selected optimization variables (Orbit inclination
variable only in A1 and A2 cases) [2]

The chosen optimization variables are:

• Hyperbola asymptote conditions (𝛼, 𝛿): the idea is to test multiple available options instead
only the one considered optimal on the transfer trajectory side. The objective of the study is to
not only achieve a result on the optimal insertion maneuver for a single mission (like the EMC
campaign) but to also gain further insight into how the conditions of the arrival hyperbola itself
can influence the propellant budget of an insertion maneuver.

• Hyperbola energy integral C3: the hyperbola energy integral, together with the asymptote an-
gles, defines the Earth-Mars transfer when outside of the SOI of Mars. The reasoning for choosing
a range of values instead of a specific one is similar to the reasoning for the quantities above.

• Parking orbit inclination i: will be used as a variable only in the case studies concerning arrival
elliptical orbits (A1 and A2, presented in Section 3.2), as there is not a specific orientation to be
targeted by the insertion (it will be changed as part of the repositioning strategy).

• RAAN Ω and anomaly of pericenter 𝜔 of the elliptical PO: part of the orientation of the PO is
left as a free variable, as it plays a slightly less important role than the inclination of the orbit. The
orientation plays a role in some missions (for example, reaching a specific spot on the surface
of the planet), but can generally be adjusted with less expensive maneuvers than inclination
changes.

• True anomaly 𝜃 of themaneuver point on the elliptical PO: to allow themaneuver to be located
off-pericenter. The idea is to identify the best spot for the maneuver, which may not be pericenter
as the hyperbola may intersect the PO at any point, and not have the same orientation of the PO
(to investigate further the results by Desai mentioned in Chapter 2).

The chosen variables and ranges on which to perform the optimization will be presented in Section 5.6,
as to constrain the optimization and perform a more focused study, which should yield clearer results
on the research questions.

5.3. Objectives
The objective of an optimization is the quantity that is intended to be minimized or maximized (de-
pending on the problem definition) via the process. This quantity is therefore the main metric used to
evaluate the result of each step of the optimization, and derive information on how the algorithm should
proceed to converge. A discussion of the chosen convergence criteria will follow in Section 5.5.

The optimization will be a single-objective optimization, with the propellant budget (ΔV) as objective.
Considering the insertion maneuver alone, this is the main metric to be minimized, as can be seen in
similar studies on the topic such as Merrill [15], and Landau [13], in their studies on the insertion and
repositioning strategy in the SOI of Mars.

Other metrics, such as the time-of-flight are not as critical if the insertion maneuver is considered
alone, instead of as part of the complete mission profile. The accuracy of the maneuver (whether it is
able to target the desired PO or not) could be better examined in a sensitivity study than as part of the
first global optimization, as it is customary to first derive information on the problem as a whole, before
examining specific cases in detail.
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5.4. Constraints
Constraints are necessary to make sure that the results of the optimization are realistic and feasible in
the context of the EMC frame.

The equality constraints, or fixed quantities used as inputs for the problem are:

• Orbital period of the elliptical orbit (T𝑒): from this information it is possible to compute the
semi-major axis of the elliptical orbit using the third of Kepler’s laws [25] as in Equation 5.1

𝑎𝑒 = (
𝜇𝑇2𝑒
4𝜋2)

1
3

(5.1)

• Radius of pericenter of the elliptical orbit (r𝑝,𝑒): from this value it is possible to compute the
eccentricity of the elliptical orbit using Equation 4.33.

• Elliptical orbit inclination (i𝑒): will be used for the parking orbit scenarios (P1 and P2), as the
parking orbit selected is tied to the mission objectives, and has therefore a specific inclination
required, as explained in Section 3.2.

The quantities that are fixed for the problem, with the special case of the PO inclination, are presented
in Table 5.3, while numerical values of these constraints are mentioned in Section 5.6.

Symbol INPUT
𝛼ℎ Right ascension of hyperbola
𝛿ℎ Declination of hyperbola
C3,ℎ Energy Integral of hyperbola
a𝑒 Semi-major axis of ellipse
e𝑒 Eccentricity of ellipse
i𝑒 Inclination of ellipse
Ω𝑒 RAAN of ellipse
𝜔𝑒 Anomaly of Pericenter of ellipse
𝜃𝑒 True Anomaly of ellipse

Table 5.3: Input quantities for Cornick’s analytical method, highlighted in bold the equality constraints introduced (Orbit inclination
only for P1 and P2 cases) [2].

The output of the algorithm implementation is a full characterization of the incoming hyperbola and
parking orbit ellipse (via Keplerian elements), as well as the state of the spacecraft at the maneuver
point and the ΔV of the insertion maneuver (the objective of the optimization). One can rank the solu-
tions based only on the results of the objective. On the other hand, one can use fitness functions, a
combination of objective function and penalization functions, which are the product of a fitness factor
and the constraint parameter, computed as in Equation 5.2 (see [22] for more information on that).

𝐹 = 𝑂 +
𝑁

∑
𝑖=1
𝐶𝑖𝑓𝑖 (5.2)

F = fitness function
O = objective function
N = number of constraints
C = constrained parameter
f = fitness factor

Fitness functions are a valid option when there is a single-objective optimization, but there is at
the same time the need for the solution to respect some additional requirements or to avoid infeasible
solutions (under aspects that are not directly tied with the minimization of the objective).
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In our problem case, the following constraints have been identified, which could be added as part
of the fitness function:

• Maximum ΔV, based on the propellant budget, which according to Merrill [15] should be between
1.7 -2.5 km/s for the combined arrival and departure ΔV, which makes the expected ΔV of an
optimal insertion between 0.8-1.25 km/s approximately [15]. It could be possible to penalize
higher ΔV solutions.

• Penalization for true anomaly of the maneuver point (on the hyperbola side) that are ”far” from
the pericenter: first, because a solution that is far from pericenter is automatically also far from
Mars. In addition to this, in case of emergencies and if the insertion was operated on the outgoing
branch of the hyperbola, it would be more difficult to recover as the spacecraft travels farther away
from the target PO.

• Penalization for a large change in orbit inclination between hyperbola and ellipse, as changes in
inclination are usually the most expensive maneuver category in terms of propellant.

It is clear how all of these constraints are related to the propellant budget of the insertion maneuver,
which is already minimized by the objective function alone. It is possible to assume that at the end of
the optimization, the constraints will be met or at least be redundant. That is the reason why the tuning
of the optimizer has been performed using the objective (minimize ΔV) without implementing the use
of a more complex fitness function (the use of penalties related to additional constraints).

However, during the optimization it was ensured that some solutions were to be rejected due to the
properties that made them infeasible. The reasoning can be traced back to geometrical considerations
or to simple practical limitations:

• Only values of 𝜃𝐴 that were in the [90, 270] interval were accepted, otherwise it would not have
been an hyperbola. The constraint was implemented directly in the formulation of Cornick’s prob-
lem in Chapter 4.

• Only solutions that reference the incoming asymptote for insertion maneuvers are selected, also
explained in Chapter 4.

• The radius of pericenter of the hyperbola must be higher than the radius of Mars(r𝑀𝐴𝑅𝑆 = 3389
km, [14]), with an additional safety altitude (h = 100 km), in order to avoid impact with the planet
(in case of failed insertion maneuver or post-pericenter maneuver). However, this constraint was
never active in the whole optimization process, due to the choice of appropriate ranges for the
input variables in Section 5.6.

As explained, such constraints were either embedded in the formulation of the analytical method, or
were never active in the optimization and therefore had no influence on the result.

5.5. Stopping criteria
The convergence criteria is a limit imposed on the optimization problem once the result is deemed
”good enough” to satisfy some accuracy and stability requirements. Adding a convergence criteria is
necessary for optimization problems, as most of them are based on iterative processes that would oth-
erwise continue to try to improve on a solution way beyond a realistic result for a preliminary study.
Another strategy is to demand a fixed maximum number of iterations of the algorithm, however this
method would not ensure convergence at each optimization run. Another problem to avoid is prema-
ture convergence, which means that the optimizer has converged to a local optimum. A proper set of
convergence criteria should check that the optimum should not change significantly over several suc-
cessive iterations of the optimization algorithm, to reduce the possibilities of identifying a local optimum
instead of the intended global optimum.

The convergence and stability requirements suggested for the optimization problem are:

• The result of the optimization should be accurate to up to 0.01 m/s.
The study is a preliminary study, based on an analytical model and the two-body problem. Similar
studies mentioned before report their ΔV budget with an accuracy of 1 m/s [15], [21]. In order to
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grant the same accuracy for the final result, the numerical model (which the optimization is part
of) should yield an even more accurate result. In this case, we have chosen to achieve a result
that is stable up to 0.01 m/s on the optimization objective. The idea is to compare the results
of the current optimization output with those of previous iterations, and verify that the change in
result is less than 0.01 m/s; when this condition is achieved, the process can stop.

• The convergence will be evaluated on the total population.
Usually, the accuracy mentioned above is evaluated by comparing the current best solution (best
individual in the population) with the best solution of a previous iteration. However, global opti-
mizers do have a large exploratory phase, in which they keep generating new solutions in order to
explore the largest number of solutions possible, so as to exclude premature convergence. The
idea for this criteria is to evaluate the average of the solutions; once that has converged (accord-
ing to the criteria above) it means that all the individuals in the final population have converged
to the same solution (considering the required accuracy) and therefore the optimization algorithm
has ended its ”exploratory phase”, and therefore the optimization can be considered finished.

• The algorithm should at least examine 2000 different scenarios.
The smallest number of different scenarios (i.e. combination of input values) that have to be
examined is added as a criterion to avoid premature convergence. The number chosen is based
on the number of scenarios considered by Merril [15] as initial guesses, though it must be pointed
out that their paper employs a very different model and optimization strategy. It is a ballpark figure,
but it ensures that the optimizer does not stop prematurely. It means that the accuracy criterion is
activated only after 2000 different scenarios have been examined by the algorithm. The number
of scenarios can be computed by multiplying the population size by the number of generations of
the optimization. For a definition of such quantities, refer to Section 5.8.

• The result should be stable for at least 50 iterations.
The condition refers to the accuracy criterion; the average of the current population is compared
with the accuracy of a population that is 50 generations in the past. That is to ensure the ro-
bustness of the result, and make sure that the optimizer algorithm is not coming up with radically
different solutions in the final population.

The list above can be converted in the following convergence criteria:

If k>2000 and Δ𝑉̄𝑖 - Δ𝑉̄(𝑖−50) < 0.01 m/s : → stop optimization

k = cumulative number of scenarios used for the whole optimization
Δ𝑉̄ = average cost of the insertion over the results of the whole population
i = number of iterations of the process

On the other hand, convergence does not mean automatically that the algorithm has found the global
optimum of the problem, as complex problem usually have multiple local optima. In order to avoid local
optima, and investigate more options, the use of different randomizer seeds for the sampling of the input
values is adopted. By starting with different populations, the idea is to achieve a more consistent result,
which should provide a better assessment of whether or not the global optimum has been identified
correctly. The seeds chosen will be reported to allow these experiments to be replicated.

5.6. Design Space Exploration
The Design Space Exploration (DSE) is the phase of the study in which the input variables are reviewed
to determine meaningful ranges for their optimization. It is possible to apply the largest range possible
for all the variables (for example as done by Nervo [17]) but it is not recommended, as the Design
Space of a real space mission does have some limitations. In addition to this, it is helpful to identify
regions of such space in which the optimum is more likely to be located, to expedite the optimization
process.
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5.6.1. Free parameters ranges
First, the free variables ranges will be established by looking at studies of the EMC frame and Mars
missions, to derive insight in what is feasible for a crewed Martian mission.

The values of the transfer hyperbolas selected by Qu [21] for their EMC study refer to three mis-
sion windows in the years 2037, 2041 and 2045, and have been presented in Section 3.3, Table 3.2.
However, Qu reports the transfer hyperbola values for a single mission scenario instead of ranges.

Merrill’s study on the EMC parking orbit reorientation [15] constrains the arrival declination 𝛿 of the
hyperbolas between -33 and 38 degrees. It also mentions a range of v∞ values between 2.6 and 4.8
km/s for chemical propulsion missions.

More values for transfer trajectories between Earth and Mars can be found in the NASA Interplan-
etary Mission Handbook, for missions between 2026 and 2045 [1]. Two transfer types are considered
in this study, type I (characterized by shorter trip times but higher cost of the injection maneuver to-
wards Mars) and type II (characterized by longer trip times but lower cost of the injection maneuver).
In addition to this, both ballistic trajectories (defined as direct-to-Mars transfers, with no maneuvers in
between launch and insertion in the Mars orbit) and DSM trajectories, characterized by the use of one
or more DSMs during the transfer.

Contour plots for the optimization of such transfers are reported in the Handbook, as well as tables
with optimal v∞, RA 𝛼 and declination 𝛿 of the hyperbolic asymptote. However, it is important to note
that those refer to the launch hyperbola, and do vary if DSMs are applied. Since it is not clear from the
tables whether the optimal solutions reported employ DSMs or not, it is assumed that they do not.
It is also important to note that the assumptions of the EMC study consider a launch from a lunar-
distance orbit, while the NASA Handbook considers transfers from a 407 km circular parking orbit
around Earth. The conclusion is that optimal launch conditions could vary between the two environ-
ments, therefore it has been decided to consider ranges for the hyperbola conditions at infinite distance
from Mars as a guideline, rather than a definitive source.

Both from the tables and the contour plots referring to the ballistic trajectories, as well as the results of
EMC papers mentioned before, the resulting ranges of input data chosen for each mission window are
presented in Table 5.4.

Launch Year Mars Arrival v∞ [km/s] 𝛼 [deg] 𝛿 [deg]
2037 2037-2038 2.0 - 3.5 20 - 60 0 - 40
2041 2042 2.3 - 4.2 90 - 130 10 - 40
2045 2046 3.0 - 5.6 160 - 230 -35 - +25

Table 5.4: Selected Earth-Mars transfer input conditions (ranges) for chemical propulsion, missions between 2037 and 2045.

As mentioned before, the 2041 mission window has been selected, but the other ranges are reported
for future developments or validation of the method.

The insertion maneuver targets an elliptical orbit. Many studies have been performed on how to select
specific elliptical orbits in order to perform flyby missions of the Martian moons, or observe a specific
side of the planet, or even land on its surface.

In preliminary studies, often only one parking orbit is considered, similarly to what is mentioned
in lunar missions, without the need of repositioning (as explained in Chapter 2). However, the EMC
differs in that multiple orbits around Mars are employed in a ”repositioning strategy” to rendez-vous with
additional modules, allow for the crew to transfer and achieve an overall lower propellant budget.

Two main orbits are mentioned by Merrill in their study on the EMC on parking orbit reorientation:

• 1-sol parking orbit, defined as the target parking orbit for the scientific objectives of the mission,
with pericenter altitude (h𝑝) of 250 km, which is going to be considered for the mission scenario
P1.

• 10-sol parking orbit, defined as the arrival and departure parking orbit, chosen because it would
be less expensive to later on perform a plane change at apoapsis at a larger distance, which is
going to be considered for the mission scenarios A1 and A2.

Additional constraints on the parking orbits are based on the following considerations:
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• Parking orbit P2 is a parking orbit for an observation mission; therefore, a circular or near-circular
orbit is recommended (e ≈ 0) to stay close to the planet for the full orbit, as well as a polar orbit
to make sure to cover most of its surface (at different latitudes). Polar orbits have ≈ 90 deg
inclination.

• Parking orbit P1 is the target orbit for a landing mission. According to Merril’s study [15], the
parking orbit inclination and periapsis argument are both constrained by the landing location and
latitude. For a mission targeting the Jezero Crater as landing spot, for the 2041 EMC mission,
Merril suggests a 18.8 deg inclination (i) and a periapsis argument (𝜔) of 86 deg.

• The optimal arrival parking orbits can be both prograde (A1) and retrograde (A2), according to
Qu [21]; all the other parameters are the same for these two cases, in order to compare whether
prograde or retrograde orbits are more advantegeous for the insertion problem defined.

• Retrograde parking orbits (inclination larger than 90 deg) should be avoided for missions that
want to target Phobos or Deimos (transferring the crew to a separate taxi vehicle), as the ΔV
budget of the taxi vehicle is clearly penalized in those cases, according to Qu [21].

• A range for the true anomaly values on the elliptical orbit (𝜃𝑒) is suggested in order not to drift
too much away from a pericenter insertion (considered often the optimal insertion point). This will
only be applied to the elliptical orbits (A1, A2, P1) and not to the circular PO of case P2. The
recommended range is between -20 and +20 deg.

The parking orbit parameters that will be used in the optimization are summarized in Table 5.5.

Orbit Name A1 Prograde A2 Retrograde P1 Landing P2 Polar
h𝑝 [km] 250 250 250 250
T [sol] 10 10 1 0.075
a [km] 94911 94911 20448 3643
e [-] 0.9616 0.9616 0.8220 0.001
i [deg] 14 - 24 157 - 167 18.8 88
Ω [deg] 0 - 360 0 - 360 0 - 360 0 - 360
𝜔 [deg] 0 - 360 0 - 360 70 - 90 0 - 360
𝜃 [deg] -20 - +20 -20 - +20 -20 - +20 0 - 360

Table 5.5: Preliminary free parameters selected for elliptical orbits aroundMars, insertion problem optimization. The true anomaly
is the true anomaly of the insertion maneuver.

The idea is to explore four different cases, corresponding to each mission (A1, A2, P1, P2) each paired
with the hyperbolic transfer for the 2041 mission. After having completed this preliminary selection
of the free variables ranges, a Monte Carlo analysis was performed in order to better understand the
effect of the input variables on the objective value and possibly further restrict the search space.

5.6.2. Monte Carlo analysis
The Monte Carlo analysis was made for 1000 samples, with the all-at-once method, meaning that all
the input variables were sampled at the same time, and varying for each individual case analyzed. The
summary of the settings used in the Monte Carlo analysis is presented in Table 5.6. The computations
are repeated for three seed numbers, but unless stated the discussion below will refer to one case
(seed 1728) and the conclusions that have been made can be applicable to the other seeds as well (all
the results are included in Appendix A).

Sobol sampling has been chosen, with a higher number of generated individuals (1048576) with
respect to the number of samples, because the number of samples (1000) was not a power of 2. As
explained in the scipy implementation of the method (see [23]), it is therefore necessary to employ a
higher number of samples. A Sobol sequence that is not scrambled will always be characterized by
exactly the same numbers, regardless of the seed choice. That is why the scrambling has been added
as a setting, as well as a much higher number of generated individuals (with respect to the sample size
N) from which the parameters can be selected from (after scrambling it), to increase diversity in the
results across different seeds.
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DSE method N = Number of
samples

Core random generator algo-
rithm

Seeds used

Monte Carlo all at once 1000 Sobol sequences, dimen-
sionality = 7

1728, 2358, 3682

Table 5.6: Settings for the Monte Carlo analysis used in the DSE for the insertion problem, with scrambling and a total generation
of 1048576 individuals, of which only the first N were used.

Case A1 has been chosen for the MC analysis, as it has the additional free parameter of the inclination
of the orbit (P1 and P2 only have six free variables instead).

The results of the MC sampling for the hyperbolic transfer quantities (𝛼, 𝛿 and C3) are shown in
Figure 5.1. First, it is clear how for the entire range of 𝛼 values it is possible to find a variety of results,
as the minima do not seem to be located in one specific sector. On the other hand, for values of 𝛿
greater than 30 deg the cost of the maneuver is clearly higher, as there are no results under 2 km/s.
This could have to do with the inclination range selected for the elliptical orbit, as the same is verified for
the two other seeds. The decision is to therefore reduce the range for the declination of the hyperbolic
asymptote. The same stands for the value of the orbital energy C3; it would make sense that, as
hyperbolas have a higher energetic content than ellipses, in order to reduce the cost of an insertion
maneuver it is more advantegeous to adopt a lower-energy hyperbola, and the trend is reflected in
the Monte Carlo results. It is therefore decided to leave the lower bound of energy content for the
hyperbola, and modify the upper bound to 12 km2/s2.

Figure 5.1: Monte Carlo analysis results, hyperbolic transfer free parameters and objective function results (ΔV), seed 1728.
Results shown are filtered, only results with ΔV < 5 km/s.

The results of the Monte Carlo sampling of the elliptical orbit free parameters are shown in Figure 5.2.
The ranges of 𝜃𝑒𝑙 and 𝑖𝑒𝑙 generate results that are scattered across the entire range of the free parame-
ter considered. It would be possible to highlight a small reduction in the range of the inclination, maybe
between 15 and 22 degrees instead of the [14,24] deg interval, but the conclusion is that it would not
be a meaningful reduction, and the range is kept as is.

It is interesting how the results for the RAAN Ω and argument of pericenter 𝜔 seem to be somehow
related. The initial range selected for these quantities was [0,360] deg, but there is a clear gap for both
quantities for which there are no optimal solutions. In order to investigate the issue, the sum of Ω and
𝜔 was plotted in Figure 5.3. From this plot, it is clear how the behaviour of the cost of the maneuver,
as a function of the sum of the two quantities, is periodic (following a cosine function).

This is probably due to the orientation of the elliptical orbit with respect to the orientation of the
incoming hyperbola, constrained since it is still coming from a specific direction (represented by the
𝛼 and 𝛿 values) and how the best solutions can probably be achieved when they both have a similar
orientation, therefore pericenter positions that are close to each other.
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Figure 5.2: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 1728. Results shown are filtered, only results with ΔV < 5 km/s.

The two quantities (Ω and 𝜔) are therefore tied to each other, at least for cases A1, A2, P1 with elliptical
orbits and a selected range of true anomaly values, and that the best decision would be to split each
scenario in two, one to ensure that the sum of the Ω and 𝜔 (called S=Ω + 𝜔) was in the interval [150,
300] deg, and another to ensure that the sum was in the [525, 675] deg interval.

Figure 5.3: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 1728. Results shown are unfiltered.
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The split has been performed in the following way:

• For cases A1, and A2 the range for 𝜔 is selected to be between 150 deg and 300 deg for the
case A-left, or 525 deg and 675 deg for the scenario A-right, similar to the desired ranges for the
sum of the two variables (S). The range for a new free variable, that substitutes the RAAN so it
will be called Ω̃, will be between [-75, 75] deg, to make sure that the sum Ω + 𝜔 is in range. In
the optimization process, it is then possible to compute the value of Ω starting from the random
value of 𝜔 and Ω̃ as presented in Equation 5.3

Ω = (𝑆𝑈𝑃 + 𝑆𝐷𝑂𝑊𝑁2 ) − 𝜔 + Ω̃ (5.3)

𝑆𝑈𝑃 = upper bound of the range for the sum of Ω and 𝜔
𝑆𝐷𝑂𝑊𝑁 = lower bound of the range for the sum of Ω and 𝜔

• For case P1, the argument of pericenter is constrained in order to target a specific landing position.
Therefore, the same procedure as for A1 and A2 is applied, only the range of 𝜔 is reduced to be
between [70, 90] deg. Equation 5.3 is applied to compute Ω and obtain the P1-left and P1-right
cases.

• Case P2 considers a circular PO and therefore the range of true anomaly is left as open as
possible (between 0 and 360 deg); it has therefore been decided to not apply the split to this last
scenario.

The new ranges selected for the problem are presented in Table 5.7. Cases A1, A2 and P1 are split
into a left and right case, due to the discovery of the relationship between Ω and 𝜔. The two problems
will be optimized independently, to avoid dealing with discontinuities in the optimization.

Orbit Name A1 Prograde A2 Retrograde P1 Landing P2 Polar
h𝑝 [km] 250 250 250 250
T [sol] 10 10 1 0.075
a [km] 94911 94911 20448 3643
e [-] 0.9616 0.9616 0.8220 0.001
i [deg] 14/24 156 - 166 18.8 90
Ω [deg] Used Ω̃ Used Ω̃ Used Ω̃ 0 - 360
Ω̃ [deg] -75 - +75 -75 - +75 -75 - +75 Not used
𝜔 [deg] 150 - 300 525 - 675 150 - 300 525 - 675 70 - 90 0 - 360

S (Ω + 𝜔) [deg] 225 600 225 600 225 600 Not used
𝜃 [deg] -20 - +20 -20 - +20 -20 - +20 0 - 360

Table 5.7: Final selected free parameters for elliptical orbits around Mars, insertion problem optimization, after Monte Carlo study.

5.7. Optimizer selection
The selection of the optimizer algorithm has been led by two references: the literature study [22], and
the availability of optimization tools. As explained in the literature study, Pygmo is the suite of tools
for optimization that will be used for the optimization problem. The most versatile and approachable
single-objective optimizers available in Pygmo were the Bee Colony (BC) and Differential Evolution
(DE), both for their stability and ease of tuning, due to the limited number of tuning parameters. The
stability of the result concerns how these algorithms have been proven to be able to solve complex
problems in a contained number of repetitions, converging in most of the tested cases.

The final choice has been to apply the DE algorithm to be problem. Hrstka [10] in a comparison
between different evolutionary algorithmsmentions that DE is a good tool for problemswith less than ten
free variables, and the reference paper for the algorithm implementation in Pygmo, authored by Storn
[24] shows how competitive it can be against other optimization strategies, especially for its robustness
under a wide range of settings.



5.8. Tuning 43

The DE algorithm is a heuristic approach part of the Evolutionary Algorithms family. Without going into
too much detail (a more thorough description can be found in Storn’s paper [24]), the main steps of the
optimization will be presented:

• Initial population
A population is a group of size NP (an integer) of individuals 𝑥⃗𝑖, which are D-dimensional vectors
(D is the number of free parameters of the optimization problem). The initial population is chosen
by randomly sampling the design space, and a uniform distribution is used for the randomizer.

• Mutation
The initial population is, at the moment, the current generation (G) of individuals. In order to
create the next generation, new individuals must be created. A mutated individual is created by
computing the difference of two individuals of the current generation (x1,𝐺 and x2,𝐺) , multiply the
result by a factor F and then combine it with a vector of the current generation that is subject to
mutation (x𝑖,𝐺). The result is the so-called ”mutated” vector. Mutation is controlled, in the algorithm
implementation in Pygmo, by the parameter F, with F ∈ [0,2].

• Crossover
Crossover is the operation by which only some parameters of the mutated vector (𝑣⃗𝑖) get sub-
stituted with the parameters of another vector from the current generation (𝑥⃗𝑗), to form the ”trial”
vector. It is different from mutation as not all parameters of the mutated vector may get changed
at the same time, and also because the parameters of the mutated vector 𝑣⃗𝑖 are substituted,
not combined with those of the additional vector 𝑥⃗𝑗. Crossover is controlled, in the algorithm
implementation in Pygmo, by the parameter CR, with CR ∈ [0,1].

• Selection
Selection of the new population is made with a greedy criterion: the newly generated vector x𝑖,𝐺+1
and current vector x𝑖,𝐺 are used as input in the cost function, and the one that yields the lowest
result is added to the new population (G+1).

The selected version of DE is rand/1/bin, which is cited by Storn [24] as the one used in the study
with all the test functions. In the definition, ”rand” stands by the selection method of the vector to be
mutated (x𝑖 , 𝐺) which in this case is random from the current population G; ”1” stands for the number
of difference vector couples (x1,𝐺 and x2,𝐺 in this case, therefore one couple) used in the method; ”bin”
stands for the way the crossover is applied, which in this case is by performing independent binomial
experiments (related to the way the parameters to be changed are selected).

The algorithm will be tuned in the next section in order to gain familiarity both with the problem and
with the DE optimizer, and perform the most efficient optimization.

5.8. Tuning
The following parameters are used to tune the DE rand/1/bin algorithm:

• F: F influences how much the mutation will affect the selected vector, with higher values of F
generating mutated vectors that are (on average) more distant from the initial one. This means
that, as a rule of thumb, lower values of F will result in a faster convergence, as the individuals of
the population look more and more similar to each other between generations (they do not mutate
that much between generations). Storn [24] suggests F=0.5 as a reference value to begin the
tuning, and to not go below F=0.4 or higher than F=1.0.
The three values of F chosen for the tuning are: 0.4, 0.5, 1.0.

• CR: CR influences how many parameters will be interested by the crossover process. A higher
value of CR corresponds to (on average) more parameters being interested by crossover for
each individual. Higher values of CR correspond to a faster convergence, as noted by Storn
[24], whose study suggests to test CR=0.1 and CR= 0.9, the latter to see if convergence can be
sped up. A possible explanation for this behaviour is that by having a high crossover rate the
individuals in the population begin to be more and more homogeneous, with a runaway effect
that keeps generating more uniformity inside the population itself, therefore between populations
as well, which leads to converging to a minimum (if convergence is possible).
The three values of CR chosen for the tuning are: 0.1, 0.5, 0.9.
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• NP, or population size: The population size is the number of individuals for which the cost func-
tion is evaluated at each generation. A lower number of individuals speeds up convergence, as
there is a smaller number of vectors with which the algorithm can performmutation and crossover.
Storn [24] recommends as a rule of thumb to employ a population size between 5D and 10D (D
is the number of free parameters in the optimization). However, in the verification steps with test
functions, Storn often employs NP = 20 even for problems with six or seven parameters.
The three values of NP chosen for the tuning are: 20, 35, 50.

All the considerations above are a trend more than a strict rule applicable to any and all cases, since
the random nature of the process allows for instances in which the behaviour is not foreseen correctly
by simply applying those conclusions. That is why the tuning process has been repeated over three
different seed numbers (1728, 2358, 3682), which generate different series of (quasi) random numbers.
The results across different seed numbers can be found in Tables 5.8 to 5.10 and in Appendix B.

The tuning has been performed using the ”A1-left” problem, as defined in Section 5.6. Usually tuning
has to balance two sides: a slow convergence could be the sign that the optimizer is covering multiple
solutions, therefore having a better chance of finding the global optimum instead of a local one; on the
other hand, more generations equal a higher number of function evaluations, and therefore cpu time
employed. The insertion problem has an analytical solution (i.e. lengthy numerical processes such as
integrations are absent), and by performing the tuning of the optimizer it has become apparent that the
maximum cpu time, in the worst-case scenario, still amounted to less than one minute. The cpu time
(represented by the number of function evaluations in the tables below) is therefore a less important
metric, compared to trying to avoid premature convergence and achieving a robust result over different
seed numbers.

Different seed numbers all seem to yield the same solution in terms of ΔV budget, which indicates
that for whatever value of the settings, the optimizer is able to find the same optimum; however, a
discussion on whether this is the global optimum is premature, as the DE algorithm is theoretically not
tuned yet. The optimization results will be discussed in Chapter 6.

The following conclusions on tuning have been drawn:

• F: F = 0.5 has been selected. For this parameter, in Table 5.8 the number of function evaluations
does not vary that much across different values of F per seed, compared to the tuning of CR
(Table 5.9) and NP (Table 5.10). It is necessary then to evaluate the behaviour of the best fit,
average of the population and standard deviation of the population across different generations.
Across different seeds, F=0.4 provided the steepest and fastest convergence, while F=1.0 had
a more gentle slope, especially considering the standard deviation. The results are slightly con-
tradictory between different seeds, with F=1.0 sometimes achieving a faster convergence than
F = 0.4. It has therefore been decided to select F=0.5 in order to stay in the middle of the two
recommended boundaries.

Seed 1721 2358 3682
F ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-]
0.5 0.564336 6880 0.564398 10180 0.564345 9160
0.4 0,564346 6780 0.564386 8200 0.56434 7800
1 0.56441 6480 0.564353 9160 0,564348 10460

Table 5.8: Tuning of DE optimizer, under different settings of parameter F. A1-left insertion problem, CR = 0.1, NP = 20 for all
cases.
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• CR: CR = 0.5 has been chosen as the result in Table 5.9 that is the most consistent across
different seeds (in terms of number of function evaluations and of result) while at the same time
trying to avoid premature convergencewith a higher setting like 0.9, as can be seen in the resulting
number of function evaluations.

Seed 1721 2358 3682
CR ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-]
0.1 0.56434 6880 0.56440 10180 0.56435 9160
0.5 0.56435 5260 0.56435 4920 0.56434 4360
0.9 0.56440 3840 0.56433 2740 0.56433 2820

Table 5.9: Tuning of DE optimizer, under different settings of parameter CR. A1-left insertion problem, F = 0.5, NP = 20 for all
cases.

• NP:NP = 50 has been selected. It is the largest value for population size, which yields the highest
number of function evaluations per seed number in Table 5.10. However, this is a global opti-
mization on a preliminary study, and the exploratory phase of the optimizer should be facilitated,
since the cpu time is not a limiting factor.

Seed 1721 2358 3682
NP ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-] ΔV [km/s] Func. eval.[-]
20 0.564336 6880 0.564398 10180 0.564345 9160
35 0.564338 13650 0.564343 19110 0.564336 12950
50 0.564334 24450 0.564336 26400 0.564337 24000

Table 5.10: Tuning of DE optimizer, under different settings of parameter NP. A1-left insertion problem, F = 0.5, CR = 0.1 for all
cases.

Having performed the tuning, the summary of the characteristics of the chosen DE algorithm for the
optimization of the insertion maneuver problem are presented in Table 5.11. In the next chapter, these
settings will be applied to all the mission scenarios and the results of the optimization will be discussed.

Name Setting
DE method rand/1/bin

F 0.5
CR 0.5
NP 50

Table 5.11: Tuning of the DE optimizer for the insertion problem, final settings chosen for the optimization in Chapter 6.
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Results

This chapter will cover the results of the optimization strategy defined in Chapter 5. The results will be
presented first divided by case study (A1, A2, P1, P2), and will serve as a starting point to draw general
conclusions on the insertion maneuver problem.

6.1. Optimization results
The optimization has been repeated across three seed numbers (1728, 2358, 3682) achieving con-
sistent results. The following discussion will present such results employing figures obtained all using
the same seed number (1728) in order to avoid repetitions. However, a complete set of all the figures
generated across different seed numbers can be found in Appendix C.

All the case studies converged to a solution, under the criteria mentioned in Chapter 5. As an example
and proof of this statement, the statistical data on the best individual, average fitness and standard
deviation of the population at different generations has been plotted for case A1-left in Figure 6.1.
Instead of plotting the best individual value, the plot presents the difference between the best individual
at generation ”i” and the best individual of the complete optimization, meaning the best individual of the
final generation. This difference shows how the method does not only converge in terms of average
of the whole population, but that the choice of this convergence criterium also means that the best
individual has reached the desired accuracy.

The ”vertical” line at the end of the graph showing the difference between the best individual of
the current and final generation is due to the choice of adopting the logarithmic scale; once the best
solution is found, the quantity (a difference between two theoretically identical numbers) should drop
to zero, which would mean an infinite y-axis in logarithmic form.

Figure 6.1: Statistical data on the ΔV values of the population over the complete optimization of the A1-left insertion problem,
seed number = 1721

46
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6.1.1. Case A1
Case A1 was divided in a ”A1-left” and ”A1-right” problem as explained in Chapter 5, and the optimiza-
tion of the two cases has been carried out independently. Both optimizations have converged under
the criteria mentioned in Chapter 5.

The results for case study A1 are reported in Tables 6.1 and 6.2. The optimum ΔV is extremely
low, even lower than the expected values according to Merril (see Section 5.4). The relative geometry
between the hyperbolic and elliptical orbit make it an almost perfect coplanar tangential periapsis in-
sertion (see definition in Chapter 4), thus granting the lowest ΔV budget possible as expected. Another
result that was confirmed from an hypothesis made in the Monte Carlo analysis is that the best result is
paired with the lowest value of C3, or hyperbolic energy, available based on the input range selected.

However the result is far from redundant, as the algorithm is able to find the best orientation (for
hyperbola and ellipse) based on the given direction of the transfer hyperbola asymptotes.

The result is so close to the pericenter of the hyperbolic and elliptical orbits, for both the left and
right case, that any discussion on whether it would be more advantageous to adopt the solution placed
on the incoming branch or outgoing branch is not relevant.

Quantity Transf. hyperbola (L) Elliptical orbit (L) Transf. hyperbola (R) Elliptical orbit (R)
a [km] -8095.955 94911.256 -8095.856 94911.2563
e [-] 1.4495 0.9616 1.4495 0.9616
i [deg] 19.694 19.680 17.987 17.992
Ω [deg] 28.428 28.376 18.005 18.029
𝜔 [deg] -128.147 231.955 -122.403 237.497
𝜃 [deg] 359.951 -0.094 0.573 0.648

Table 6.1: Characteristics of the best individual, hyperbolic transfer and elliptical orbit Keplerian elements, A1-left (L) and A1-right
(R) cases. The true anomaly is that of the insertion maneuver location. Seed number = 1721.

Trajectory 𝛼ℎ [deg] 𝛿ℎ [deg] C3,ℎ [km2/s2] ΔV insertion [km/s]
Transfer hyperbola (left) 127.164 19.482 5.29009 0.56434
Transfer hyperbola (right) 122.669 17.437 5.29015 0.56435

Table 6.2: Characteristics of the best individual, hyperbolic transfer input values and cost of the insertion maneuver, A1-left and
A1-right cases. Seed number = 1721.

In Table 6.1 it is clear that the A1-left and A1-right problems do not converge to the same optimum.
That can be explained by the input values for the hyperbola asymptote direction in Table 6.2, as the
two hyperbolas have clearly different orientation. Even though the ”true” optimum should be the one
from the A1-left problem, by examining the entire population of both cases it is clear that the insertion
problem does not only yield one optimum results, but identifies a larger area in the design space were
optimal maneuvers can be located. The analysis therefore continues by looking at the entire population
of the final generation, starting by the elliptical PO results.

The elliptical parking orbit had fixed semi-major axis and eccentricity, with the other Keplerian elements
variable within a range and used as input in the optimization problem. The results in Figure 6.2 show
a reduction in the range of the Keplerian elements for the final population, even though the values still
range over more than 10-15 deg (for i, Ω and 𝜔), while still maintaining a very low cost of the maneuver.
This result shows how the method has converged to a minimum that is quite robust, since for a set of
different orientations of the parking orbit the insertion cost does not change drastically.
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Figure 6.2: Results from the final population, elliptical parking orbit Keplerian elements, A1-left insertion problem, seed num-
ber=1721.

The Keplerian elements of the hyperbolic transfer maneuver are all results of the optimization problem,
as there was no range set from the beginning. The final population is characterized by values of C3
that are close to the minimum (due to the range), as explained above; this, in return, yields results that
have virtually the same semi-major axis value (all the results are between -8097 km and -8094 km).
The same goes for the eccentricity; all the individuals of the final population have similar eccentricity (up
to 1e-4). This is due to two effects of the optimization: the semi-major axis value gets flattened towards
the same value, corresponding to min(C3), and the true anomaly of the solution becomes very close to
pericenter, both for hyperbola and ellipse. Since the pericenter radius is fixed for the elliptical PO, if it
becomes the maneuver location it will also be fixed for the hyperbolic orbit, therefore determining the
eccentricity.

The optimal results in Figure 6.3 show the remaining Keplerian elements for the transfer hyperbola.
In the initial population (top row of the figure) the values of Ω and 𝜔 are conditioned by the values on
the elliptical parking orbit (the ranges presented in Section 5.6). This effect has a simple explanation:
Cornick’s method always guarantees the intersection between the two orbits, therefore their orientation
in space must be similar.

As explained for the best individual of the final population in Table 6.1, the hyperbolas in the final
population are very close in orientation to their respective elliptical orbits, in order to achieve insertion
close to pericenter and tangentially. The values of true anomaly (not shown in the figure) confirm this
as well, with all the results clearly grouped close to 𝜃 = 0 deg.
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Figure 6.3: Results from the initial (top row) and final (bottom row) populations, A1-left insertion problem, seed number=1721

6.1.2. Case A2
Case A2 was separated in cases A2-left and A2-right, in a similar way as A1, and their optimization was
carried out independently. The optimization converged to two best individuals, presented in Tables 6.3
and 6.4.

The conclusions made for case A1 are applicable to A2 as well: both results are almost a perfect
coplanar tangential insertion at pericenter, with very low values for the cost of insertion ΔV. The two
solutions, this time, are extremely similar to each other, and it is possible to conclude that the results
of the optimization of the left and right cases found the same minimum (at least in terms of location of
the minimum considering the complete search space as a whole).

Quantity Transf. hyperbola (L) Elliptical orbit (L) Transf. hyperbola (R) Elliptical orbit (R)
a [km] -8096.081 94911.256 -8095.995 94911.256
e [-] 1.4495 0.9616 1.4495 0.9616
i [deg] 162.793 162.793 162.088 162.088
Ω [deg] -94.813 265.220 -95.330 264.651
𝜔 [deg] -89.223 270.921 -83.613 276.349
𝜃 [deg] 359.509 -0.602 359.972 -0.007

Table 6.3: Characteristics of the best individual, hyperbolic transfer and elliptical orbit Keplerian elements, A2-left (L) and A2-right
(R) cases. The true anomaly is that of the insertion maneuver location. Seed number = 1721.

Trajectory 𝛼ℎ [deg] 𝛿ℎ [deg] C3,ℎ [km2/s2] ΔV insertion [km/s]
Transfer hyperbola (left) 126.724 11.604 5.2900 0.56434
Transfer hyperbola (right) 120.540 10.724 5.2900 0.56434

Table 6.4: Characteristics of the best individual, hyperbolic transfer input values and cost of the insertion maneuver, A2-left and
A2-right cases. Seed number = 1721.

The selection of case study A2 was originated by Merril’s and Desai’s studies (see Section 5.6) and
their use or retrograde PO for missions to Mars. It is known from Cornick’s problem (presented in
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Chapter 4) that the problem always has two solutions, that are two identical hyperbolas from a geo-
metrical standpoint, though one is prograde and the other one is retrograde. Case A2 is therefore also
a sanity check, to see whether the optimization is able to identify those two hyperbolas independently
(not as part of the same solution of the analytical insertion problem) by forcing one solution space to
investigate only prograde parking orbits (A1) and one only retrograde parking orbits (A2).

However, there is no constraint on the hyperbola inclination, and in the initial population the orbits are
free to adopt both prograde and retrograde inclinations (see Figure 5.1), both in the A1 and A2 cases.
How would one be sure that the optimization of case A1 would not yield both of Cornick’s solutions by
itself (without the need of problem A2)? According to astrodynamics, moving from an orbit with opposite
orientation (prograde vs retrograde) will result in a very high insertion ΔV. Therefore, the results for
the inclination range of the hyperbolas of the final population will automatically act accordingly, only
containing prograde or retrograde orbits according to what was imposed on the elliptical PO.

Both case A2-left and A2-right have results that are very close to those of case A1-right, due to the
inclination of the elliptical parking orbit, which is ≈ 18 deg in all three scenarios. This proves that the
optimizer is identifying the same region dense in local minima in the design space, that contains case
A1-left and case A2, even if the results are not perfectly coinciding.

6.1.3. Case P1
Case P1 has been divided in P1-left and P1-right in a similar way as it was done for A1 and A2, and
the optimization of the two cases has been performed independently. For both P1 and P2, conver-
gence has been achieved much faster than for A1 and A2, as shown in Figure 6.4. While case A1
and A2 converged (on average) after 400-500 generations, cases P1-left and P1-right converged (on
average) after 200-300 generations. That is probably related to the lower number of free parameters
(the inclination of the elliptical PO is fixed in cases P1 and P2).

Figure 6.4: Statistical data on the ΔV values of the population over the complete optimization of the P1-left insertion problem,
seed number = 1721

The results of the optimization are presented in Tables 6.5 and 6.6. The ΔV is around 1.5 km/s higher
than the result for the insertion on an arrival orbit (A1 and A2). This is probably due to the restriction
of the search space, both considering the fixed inclination and the reduced range of the pericenter
anomaly.

It is also worth pointing out how the inclination of the hyperbola and the inclination of the ellipse
are quite different, making the resulting insertion non-coplanar. In addition to this, the true anomaly of
the maneuver is ≈ 20 deg on the ellipse, and ≈ 353 deg on the hyperbola, which is further away from
pericenter than in the first scenarios. This would confirm what Desai had postulated in his study on PO
[4], which is that in certain conditions pericenter insertions are either not available (due to the geometry
of the problem), or simply not the optimal solution.

The true anomaly on the ellipse is also the upper boundary on the range imposed for this input
variable (in the DSE of Section 5.6). This would suggest that opening up the search space (with a
wider range) may yield a more optimal solution to the problem.

The results of the left and right problem yield similar results in terms of ΔV, but once again differ in
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the orientation of the hyperbolic transfer. It is interesting how, in this scenario, only the Ω differs between
P1-left and P1-right, both in the hyperbolic and elliptical orbits. This is mirrored by the asymptote right
ascension 𝛼 in Table 6.6, which differs between the two cases, while the declination and value of C3
are approximately the same. In order to investigate this characteristic of the problem, the entire final
population has been analyzed.

Quantity Transf. hyperbola (L) Elliptical orbit (L) Transf. hyperbola (R) Elliptical orbit (R)
a [km] -4863.224 20448.010 -4869.655 20448.0103
e [-] 1.7662 0.82209 1.7651 0.8220
i [deg] 27.968 18.800 27.975 18.800
Ω [deg] 93.966 126.1803 76.319 108.547
𝜔 [deg] 146.216 89.999 146.233 89.999
𝜃 [deg] 353.563 19.999 353.559 19.999

Table 6.5: Characteristics of the best individual, hyperbolic transfer and elliptical orbit Keplerian elements, P1-left (L) and P1-right
(R) cases. The true anomaly is that of the insertion maneuver location. Seed number = 1721.

Trajectory 𝛼ℎ [deg] 𝛿ℎ [deg] C3,ℎ [km2/s2] ΔV insertion [km/s]
Transfer hyperbola (left) 113.361 10.000 8.8065 2.07578
Transfer hyperbola (right) 95.707 10.000 8.7949 2.07578

Table 6.6: Characteristics of the best individual, hyperbolic transfer input values and cost of the insertion maneuver, P1-left and
P1-right cases. Seed number = 1721.

The final population of elliptical POs is characterized by orbits that all share the same semi-major
axis, eccentricity, inclination. The results of the optimization show that these individuals also have
(approximately) the same argument of pericenter 𝜔 and true anomaly 𝜃 of maneuver (the standard
deviation for both is < 10−3 deg).

Figure 6.5: Results from the final population of hyperbolic transfer orbits, P1-left insertion problem, seed number=1721.
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The entire final population, for the hyperbolic transfer, has been presented in Figure 6.5. All the Keple-
rian elements are characterized by a small range, and all the individuals have approximately the same
cost of insertion. The only exception is the RAAN Ω, which ranges in the interval [75, 105] deg. It is
possible to conclude that the optimization has resulted in a very tight locus of optimum solutions, all
similar except for the values of Ω.

An interesting conclusion is that in order to target a PO with specific inclination and a small range
of argument of pericenter acceptable, one must identify a highly specific combination of conditions on
the ellipse and hyperbola, but still has some freedom via the RAAN.

6.1.4. Case P2
Case study P2 has not been separated into two separate cases, due to the adoption of a circular
parking orbit (as explained in Section 5.6). The optimization converges but requires more generations
than all the previous cases (Figure 6.6), on average (averaged across different seed numbers) about
200 generations more than cases A1 and A2. This is probably due to the adoption of the largest search
space possible ([0, 360] deg) for three free variables (i, Ω, 𝜔), since the orbit is circular. Results for all
seed numbers can be found in Appendix C.

Figure 6.6: Statistical data on the ΔV values of the population over the complete optimization of the P2 insertion problem, seed
number = 1721

The result of the optimization is presented in Tables 6.7 and 6.8. The optimum result for an insertion
in a polar orbit corresponds to an approximation of a pericenter, coplanar, tangential insertion. The
inclination of the hyperbolic and elliptical orbit is, in first-order approximation, the same, and since the
eccentricity of the orbit is very low, the condition for 𝜃 = 354 deg can be approximated with those at
pericenter. In fact, the difference between the true anomaly of the ellipse and that of the hyperbola is
compensated by the difference in argument of pericenter 𝜔 between the two trajectories, thus aligning
the velocity vectors.

The cost of the maneuver, though minimum due to the pericenter insertion, is still much higher than
that of case A1 and A2, and closer to the result found for P1, even with a larger range of input for the
orientation of the ellipse.

The semi-major axis of the hyperbola is determined by the value of C3 which, like in case A1 and
A2 is the lowest value possible according to the ranges selected for the input variables.

Trajectory Transfer hyperbola Elliptical orbit
a [km] 3643.143 -8095.930
e [-] 0.0010 1.4495
i [deg] 88.000 87.981
Ω [deg] 98.198 98.204
𝜔 [deg] 167.238 161.946
𝜃 [deg] 354.708 0.000

Table 6.7: Characteristics of the best individual, hyperbolic transfer and elliptical orbit Keplerian elements, P2 case. The true
anomaly is that of the insertion maneuver location. Seed number = 1721.
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Trajectory 𝛼ℎ [deg] 𝛿ℎ [deg] C3,ℎ [km2/s2] ΔV insertion [km/s]
Transfer hyperbola (left) 99.291 28.293 5.2901 1.93682

Table 6.8: Characteristics of the best individual, hyperbolic transfer input values and cost of the insertion maneuver, P2 case.
Seed number = 1721.

All the elliptical parking orbits in problem P2 share the same semi-major axis, eccentricity and incli-
nation. Results in Figure 6.7 show that, while reduced, the range for Ω and 𝜔 that correspond nearly
to the same cost of insertion maneuver is quite large (around 30-40 deg). On the other hand, even
though the orbit has a very low eccentricity, the values of 𝜃 still group around ≈0 and ≈360 deg (with
approximately +/- 3 deg of standard deviation).

Figure 6.7: Results from the final population of elliptical orbits, P2 insertion problem, seed number=1721.

The hyperbola has the same trends for the values of Ω, 𝜔 and 𝜃 as the elliptical PO, as it is clear from
Figure 6.8, when comparing it with Figure 6.7. However, the values of true anomaly are much closer to
the pericenter than for the ellipse, since the latter is almost circular and the true anomaly value holds a
smaller influence on the result.

Figure 6.8: Results from the final population of hyperbolic transfer orbits, P2 insertion problem, seed number=1721.

6.2. Validation and lessons learned
Given the results of the optimization, a summary of useful deductions on the insertion maneuver prob-
lem, solved via Cornick’s method and a DE optimizer, is presented:

• In case A1 and A2 the optimizer did not converge to a single solution, a single pairing between
an hyperbolic orbit and a target elliptical orbit. The result was a larger and more flexible set of
solutions, all with minimal ΔV, which could be a useful tool for mission designers.

• If one wanted to obtain a single solution, defined more strictly, two ways are possible. The first
one is to constrain the target PO, such as in the P1 example. The second one would be to
select a specific transfer hyperbola, rather than a range of values for its energy and especially its
asymptote direction. In this way, it would be possible to understand which elliptical PO are more
advantageous for a given launch schedule.
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• The results of cases A1 and A2 in terms of ΔV were even lower than expected. Percy, in an
overview of the EMC mission [20], computes the cost of the Trans Mars Injection maneuver (TMI,
to move the spacecraft on the hyperbolic transfer trajectory from Earth to Mars) and Mars Orbit
Insertion maneuver (MOI, the insertion problem). The ΔV results by Percy for both the TMI and
MOI, shown in Figure 6.9, are higher than the optimal insertion maneuver computed in cases A1
and A2. It would then be an idea to perform an iteration of transfer and parking orbit studies, to
achieve a compromise between conditions that have lower cost of the TMI, and those that have
the lowest MOI cost.

Figure 6.9: Overview of propellant and TOF budget for the EMC missions. [20]

• Qu, in a study on the EMC frame, makes a preliminary assessment of the total cost of the repo-
sitioning maneuvers, which should be approximately 0.05 km/s for cases A1 and A2, and around
0.20 to 0.30 km/s for case P2 [21]. The budget for the insertion, repositioning and escape maneu-
vers is set by Qu to 2.3 km/s. If one were to consider the direct insertion in a PO, as exemplified in
cases P1 and P2, it is clear how those strategies would be too expensive, since the insertion alone
would amount to ≈ 2 km/s. This is a confirmation that repositioning strategies are advantageous
from the standpoint of the propellant budget.

• The division between a ”left” and ”right” problem is not recommended for future applications of
the problem. The results were either very similar, or almost identical. It is simply recommended
to perform the optimization on the ”left” side alone, since the input selection process of the ”right”
side uses basically the same range for 𝜔 of the ”left” side (only with a 360 deg difference).

• The use of different seeds has been implemented in the problem. However, since the result of
the optimization, more often than not, highlighted a pool of options with minimal ΔV, it is possible
to compare the size and shape of such pool with that generated by a different seed, but no
conclusions should be made by simply comparing the best individual trajectory pairs (hyperbolic
and elliptical orbit) out of the optimization process. In terms of ΔV, the use of different seeds
always yielded the same result (up to the desired accuracy). In order to not repeat the same
conclusions at each case study, the proof of this will be presented in Appendix C. The use of
different seeds is evidence of the robustness of the solutions.
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Conclusions and recommendations

This study has focused on insertion maneuvers, in the context of crewed missions to Mars. First,
an overview of previous studies on maneuvers in the context of Mars missions has been given in
Chapter 2, as well as the presentation of the EMC, the NASA set of missions used as a reference for
this project. Then, all the assumptions necessary to create a model of the problem were presented
in Chapter 3. The chapter also presented the different case studies selected as good candidates for
further analysis. These cases all had specific characteristics that made them relevant either under
the EMC frame (cases A1, A2 and P1) or for an optional exploration mission (case P2). An analytical
method to solve the insertion maneuver problem, by Cornick [2], was presented in Chapter 4.

After the insertion problem and model have been defined, as well as the case studies to be opti-
mized, the optimization problem had to be defined with the introduction of the variables, objectives,
constraints and the choice and tuning of an optimizer in Chapter 5. The choice of the optimizer landed
on the Differential Evolution, for its limited number of settings and efficiency on a wide set of problems.

Chapter 6 presented the results of the optimization problems. Via these results, the research ques-
tion has been answered. The research question was: ”What are the optimal conditions for an insertion
in an operational orbit around Mars in terms of cost of the maneuver and characteristics of the tra-
jectories involved, ensuring the compatibility of the maneuver with the transfer trajectory and resulting
parking orbit, and considering a single maneuver?”.

The answer of the research question is obtained by answering the sub-questions mentioned in
Chapter 2:

• What is the smallest ΔV achievable?
The smallest ΔV achievable via insertion, for the EMC frame, have been summarized in Table 7.1.

Case ΔV insertion [km/s]
A1-left 0.56434
A1-right 0.56435
A2-left 0.56434
A2-right 0.56434
P1-left 2.07578
P1-right 2.07578
P2 1.93682

Table 7.1: Characteristics of the best individual, cost of the insertion maneuver. Seed number = 1721.

• What is the optimal pairing of transfer hyperbola conditions and target PO?
The pairing of hyperbolic and elliptical orbits is a complex problem. It is clear how certain values
are more affected by the problem definition, resulting in a very narrow range of optimal solutions
(for example, the semi-major axis of the hyperbola in all cases, or its inclination in case P1). The
insertion problem is very robust to other quantities, such as part of the orientation of the hyperbola

55
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(especially its Ω), which in all problems could be varied by 10-20 deg without impacting majorly
the objective result.

• What is the difference in ΔV between insertion in the target PO, and insertion in a prelimi-
nary PO, which is later modified (as defined by the EMC)?
As explained in Chapter 6, the insertion directly in the target PO (cases P1 and P2) is a very
expensive maneuver, especially if the target PO has a specific inclination which is relevant to
the scientific objectives of the mission. The conclusion is that the repositioning strategy by Merril
[15] is indeed the best way of tackling the problem, by first performing an insertion in an arrival
orbit (A1, A2) which can lower significantly the cost of insertion, and then perform less expensive
repositioning maneuvers.

• How robust are the resulting optimal insertion conditions? What is the sensitivity of the
solution to a variation in the input conditions (the relative geometry between the transfer
and parking orbits)?.
The optimization problem is quite robust to changes in seed number, but it is recommended to
perform a separate sensitivity study in the future, to assess further the behaviour of the solution
under perturbations. The results of Chapter 6 highlight a difference in sensitivity between cases
A1 and A2 and cases P1 and P2. Cases A1 and A2 identified areas of optimum conditions
that allowed to vary the free variables of the problem around a wide range, between 10 and 20
deg for Ω and 𝜔 and around 5 deg for i and 𝜃 (both for the elliptical and hyperbolic orbits) and
still obtain optimum results. Problems P1 and P2 have less free variables. Problem P1 sees
a reduction in the size of the optimum solution ranges, with a very small range in the elliptical
PO orbit characteristics (around 10−3 deg) and ≈ 25 deg in Ω and 0.05 deg for both 𝜔 and 𝜃 for
the hyperbolic orbit. The results for case P2 show how optimum solutions can be found for a
range of around 20 deg for Ω, 10 deg for 𝜔 and around 2-3 deg for 𝜃. However, this study varies
both elliptical and hyperbolic orbit conditions at the same time; it would be interesting, once a
solution is selected, to see the sensitivity of the result to changes in the characteristics of one of
the trajectories instead of both at the same time.

The insertion problem is a fundamental link between the Earth-to-Mars transfer and the repositioning
techniques inside the SOI of Mars. This study has proven that an analytical method can provide so-
lutions quite quickly while ensuring the continuity of the conditions between the different phases of a
mission. The optimization tool can be used in future preliminary mission studies, as its flexibility (can
be adapted for different free parameters and constraints very easily) and computational speed make it
a desirable candidate.
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Appendix A

The following appendix is dedicated to showing all the results of the Monte Carlo analysis discussed
in Section 5.6. The analysis has been repeated using three different seed numbers in order to ensure
that a single randomized sample did not condition too heavily the choice of variable ranges of the DSE.
The results are presented in the following graphs:

• ΔV results plotted against the initial conditions of the hyperbolic orbit (𝛼, 𝛿, C3).
• ΔV results plotted against the free variables belonging to the elliptical POs.
• ΔV results plotted against the sum of Ω and 𝜔 of the elliptical POs.

A.1. Seed 1728

Figure A.1: Monte Carlo analysis results, hyperbolic transfer free parameters and objective function results (ΔV), seed 1728.
Results shown are filtered, only results with ΔV < 5 km/s.
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Figure A.2: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 1728. Results shown are filtered, only results with ΔV < 5 km/s.

Figure A.3: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 1728. Results shown are filtered, only results with ΔV < 5 km/s.
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A.2. Seed 2368

Figure A.4: Monte Carlo analysis results, hyperbolic transfer free parameters and objective function results (ΔV), seed 2358.
Results shown are filtered, only results with ΔV < 5 km/s.

Figure A.5: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 2358. Results shown are filtered, only results with ΔV < 5 km/s.
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Figure A.6: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 2358. Results shown are filtered, only results with ΔV < 5 km/s.

A.3. Seed 3682

Figure A.7: Monte Carlo analysis results, hyperbolic transfer free parameters and objective function results (ΔV), seed 3682.
Results shown are filtered, only results with ΔV < 5 km/s.
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Figure A.8: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 3682. Results shown are filtered, only results with ΔV < 5 km/s.

Figure A.9: Monte Carlo analysis results, elliptical arrival orbit free parameters, case A1, and objective function results (ΔV),
seed 3682. Results shown are filtered, only results with ΔV < 5 km/s.
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Appendix B

The following appendix is dedicated to showing all the results of the optimizer tuning process discussed
in Section 5.8. The analysis has been repeated across multiple seeds to ensure the most reliable tuning
of the DE optimizer. For each parameter (F, CR, NP) the optimization has been run till convergence
(according to the criteria mentioned in Chapter 5). For each generation, three metrics have been
computed and shown in the graphs:

• Result of the optimization objective of the best individual (minimum ΔV of that generation).

• Average of the population objective values (ΔV).

• Standard deviation of the population objective values (ΔV).

64



B.1. Seed 1728 65

B.1. Seed 1728
Tuning F

Figure B.1: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 1721. F = 0.5 (top), F = 0.4 (center),
F = 1.0 (bottom). For all: CR = 0.1 , NP = 20.
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Tuning CR

Figure B.2: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 1721. CR = 0.1 (top), CR = 0.5
(center), CR = 0.9 (bottom). For all: F = 0.5, NP = 20.
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Tuning NP

Figure B.3: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 1721. NP = 20 (top), NP = 35
(center), NP = 50 (bottom). For all: F = 0.5, CR = 0.1.
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B.2. Seed 2358
Tuning F

Figure B.4: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 2358. F = 0.5 (top), F = 0.4 (center),
F = 1.0 (bottom). For all: CR = 0.1 , NP = 20.
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Tuning CR

Figure B.5: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 2358. CR = 0.1 (top), CR = 0.5
(center), CR = 0.9 (bottom). For all: F = 0.5, NP = 20.
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Tuning NP

Figure B.6: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 2358. NP = 20 (top), NP = 35
(center), NP = 50 (bottom). For all: F = 0.5, CR = 0.1.
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B.3. Seed 3682
Tuning F

Figure B.7: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 3682. F = 0.5 (top), F = 0.4 (center),
F = 1.0 (bottom). For all: CR = 0.1 , NP = 20.
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Tuning CR

Figure B.8: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 3682. CR = 0.1 (top), CR = 0.5
(center), CR = 0.9 (bottom). For all: F = 0.5, NP = 20.
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Tuning NP

Figure B.9: Statistical data on the ΔV values of the A1-left insertion problem, seed number = 3682. NP = 20 (top), NP = 35
(center), NP = 50 (bottom). For all: F = 0.5, CR = 0.1.
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The following appendix is dedicated to the optimization results across multiple seeds. For all cases
(A1, A2, P1, P2) the optimization has been repeated for three different seeds, with the same optimizer
settings mentioned in Chapter 5. Only the results of the final population are included. The results are
presented in the following graphs:

• Initial conditions of the hyperbolic orbit (𝛼, 𝛿, C3), and hyperbolic asymptote influence on the ΔV.
• Keplerian elements of the final elliptical POs.
• Keplerian elements of the final hyperbolic orbits.

These graphs have been included as proof of the conclusions made in Chapter 6 and Chapter 7.

C.1. Case A1-left
Seed 1721

Figure C.1: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles vs
ΔV. A1-left insertion problem, seed number=1721.
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Figure C.2: Results from the final population of elliptical parking orbits, A1-left insertion problem, seed number=1721.

Figure C.3: Results from the final population of hyperbolic orbits, A1-left insertion problem, seed number=1721.
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Seed 2358

Figure C.4: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles vs
ΔV. A1-left insertion problem, seed number=2358

Figure C.5: Results from the final population of elliptical parking orbits, A1-left insertion problem, seed number=2358.



C.1. Case A1-left 77

Figure C.6: Results from the final population of hyperbolic orbits, A1-left insertion problem, seed number=2358.

Seed 3682

Figure C.7: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles vs
ΔV. A1-left insertion problem, seed number=3682
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Figure C.8: Results from the final population of elliptical parking orbits, A1-left insertion problem, seed number=3682.

Figure C.9: Results from the final population of hyperbolic orbits, A1-left insertion problem, seed number=3682.
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C.2. Case A1-right
Seed 1721

Figure C.10: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A1-right insertion problem, seed number=1721.

Figure C.11: Results from the final population of elliptical parking orbits, A1-right insertion problem, seed number=1721.



80 C. Appendix C

Figure C.12: Results from the final population of hyperbolic orbits, A1-right insertion problem, seed number=1721.

Seed 2358

Figure C.13: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A1-right insertion problem, seed number=2358
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Figure C.14: Results from the final population of elliptical parking orbits, A1-right insertion problem, seed number=2358.

Figure C.15: Results from the final population of hyperbolic orbits, A1-right insertion problem, seed number=2358.
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Seed 3682

Figure C.16: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A1-right insertion problem, seed number=3682

Figure C.17: Results from the final population of elliptical parking orbits, A1-right insertion problem, seed number=3682.



C.3. Case A2-left 83

Figure C.18: Results from the final population of hyperbolic orbits, A1-right insertion problem, seed number=3682.

C.3. Case A2-left
Seed 1721

Figure C.19: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-left insertion problem, seed number=1721.
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Figure C.20: Results from the final population of elliptical parking orbits, A2-left insertion problem, seed number=1721.

Figure C.21: Results from the final population of hyperbolic orbits, A2-left insertion problem, seed number=1721.
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Seed 2358

Figure C.22: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-left insertion problem, seed number=2358

Figure C.23: Results from the final population of elliptical parking orbits, A2-left insertion problem, seed number=2358.
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Figure C.24: Results from the final population of hyperbolic orbits, A2-left insertion problem, seed number=2358.

Seed 3682

Figure C.25: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-left insertion problem, seed number=3682
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Figure C.26: Results from the final population of elliptical parking orbits, A2-left insertion problem, seed number=3682.

Figure C.27: Results from the final population of hyperbolic orbits, A2-left insertion problem, seed number=3682.
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C.4. Case A2-right
Seed 1721

Figure C.28: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-right insertion problem, seed number=1721.

Figure C.29: Results from the final population of elliptical parking orbits, A2-right insertion problem, seed number=1721.
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Figure C.30: Results from the final population of hyperbolic orbits, A2-right insertion problem, seed number=1721.

Seed 2358

Figure C.31: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-right insertion problem, seed number=2358



90 C. Appendix C

Figure C.32: Results from the final population of elliptical parking orbits, A2-right insertion problem, seed number=2358.

Figure C.33: Results from the final population of hyperbolic orbits, A2-right insertion problem, seed number=2358.
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Seed 3682

Figure C.34: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. A2-right insertion problem, seed number=3682

Figure C.35: Results from the final population of elliptical parking orbits, A2-right insertion problem, seed number=3682.
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Figure C.36: Results from the final population of hyperbolic orbits, A2-right insertion problem, seed number=3682.

C.5. Case P1-left
Seed 1721

Figure C.37: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-left insertion problem, seed number=1721.
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Figure C.38: Results from the final population of elliptical parking orbits, P1-left insertion problem, seed number=1721.

Figure C.39: Results from the final population of hyperbolic orbits, P1-left insertion problem, seed number=1721.
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Seed 2358

Figure C.40: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-left insertion problem, seed number=2358

Figure C.41: Results from the final population of elliptical parking orbits, P1-left insertion problem, seed number=2358.
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Figure C.42: Results from the final population of hyperbolic orbits, P1-left insertion problem, seed number=2358.

Seed 3682

Figure C.43: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-left insertion problem, seed number=3682
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Figure C.44: Results from the final population of elliptical parking orbits, P1-left insertion problem, seed number=3682.

Figure C.45: Results from the final population of hyperbolic orbits, P1-left insertion problem, seed number=3682.
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C.6. Case P1-right
Seed 1721

Figure C.46: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-right insertion problem, seed number=1721.

Figure C.47: Results from the final population of elliptical parking orbits, P1-right insertion problem, seed number=1721.
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Figure C.48: Results from the final population of hyperbolic orbits, P1-right insertion problem, seed number=1721.

Seed 2358

Figure C.49: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-right insertion problem, seed number=2358
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Figure C.50: Results from the final population of elliptical parking orbits, P1-right insertion problem, seed number=2358.

Figure C.51: Results from the final population of hyperbolic orbits, P1-right insertion problem, seed number=2358.
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Seed 3682

Figure C.52: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P1-right insertion problem, seed number=3682

Figure C.53: Results from the final population of elliptical parking orbits, P1-right insertion problem, seed number=3682.
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Figure C.54: Results from the final population of hyperbolic orbits, P1-right insertion problem, seed number=3682.

C.7. Case P2
Seed 1721

Figure C.55: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P2 insertion problem, seed number=1721.
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Figure C.56: Results from the final population of elliptical parking orbits, P2 insertion problem, seed number=1721.

Figure C.57: Results from the final population of hyperbolic orbits, P2 insertion problem, seed number=1721.
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Seed 2358

Figure C.58: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P2 insertion problem, seed number=2358

Figure C.59: Results from the final population of elliptical parking orbits, P2 insertion problem, seed number=2358.
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Figure C.60: Results from the final population of hyperbolic orbits, P2 insertion problem, seed number=2358.

Seed 3682

Figure C.61: Results from the final population of hyperbolic orbits, (left) conditions at infinite distance, (right) asymptote angles
vs ΔV. P2 insertion problem, seed number=3682
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Figure C.62: Results from the final population of elliptical parking orbits, P2 insertion problem, seed number=3682.

Figure C.63: Results from the final population of hyperbolic orbits, P2 insertion problem, seed number=3682.
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