

Re-commoning Water The Public Grounds of Water

in Urban Ecosystems

SHERYL SI 5482933 PUBLIC BUILDING GRADUATION STUDIO 2022/2023

THE COMMONS

Water and The Commons

Commoning is a **process of negotiating differences and conflicts** between the individual, the community and society.

A water commons means that **water is available for all people and ecosystems**, and that the resource be passed on undiminished and intact for future generations' enjoyment

WHERE ARE WE? BERLIN, FRIEDRICHSHAIN!

BERLIN FINDINGS

SITE PICTURES

"Many public swimming pools have closed...it would be nice to have a place where I can teach my toddler how to swim..."

-mother with child

"Friedrichshain is changing... More and more young families are moving into the area"

- couple with toddler

Hello investors, now koofen euch the real Berliners the apartments weg.

OWNR

Pollems

Jetzt kannst du Eigentum. <u>ownr.de</u>

BERLIN FINDINGS

15% of Friedrichshain-Kreuzberg is **under 18**

43,558 inhabitants as of 2019

a quarter of the population is married 68,300 [25.3 %] 2009 the average age is **38 years old.** The district's inhabitants are mainly young people and young families

single child families make up for the majority (58%) in Berlin

RESEARCH QUESTION

Given the amorphous nature of water, how can it be used as a design material to form spaces that foster social interactions?

Can water be used to develop a new public building typology that not only acts as a recreation and gathering device but also an education and communing tool?

to liberate built space

from exclusively functional determintations in order to

render it interpretable

PROGRAM

CORE PROGRAM

SPACES	SIZE (SQM)		
WADING POOL	1200		
MEETING SPACES - LANGUAGE CLASSES - FAMILY SUPPORT MEETINGS - COOKING CLASSES - BABY YOGA - PARENT MEET-UPS	600	CE	SPACES
FAMILY CAFE	190	SPA	RECEPTION/LOCKER
GREENHOUSE GARDEN	370	Ш Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	
EXHIBITION SPACE	560		
RECEPTION/LOCKERS	140		WADING
TOTAL	3060		POOL
		FAMILY CAFE	

SERVICE PROGRAM

SPACES	SIZE (SQM)
RECEPTION/LOCKERS	200
TOILETS/SHOWERS	200
MECHANICAL ROOM	100
WETLAND/GREEN SPACE	3970
	4 470
TOTAL	44/0

CASE STUDY 1

MINNAERT BUILDING, THE NETHERLANDS

A large 10m x 50m pond collects rainwater from the building. This **water basin is used to cool down the building** during the day. The water is pumped through the building to absorb the heat.

SPATIAL PRINCIPLES & THERMODYNAMICS

DESIGNING WITH DATA

Temperature

Humidity

CASE STUDY 2

BORDEN NATURAL SWIMMING POOL, CANADA

Filtration is achieved in two ways: by means of a **biological-mechanical** system or the constructed wetland and gravel filter, and in situ, with Zooplankton.

The involves pool a balanced ecosystem where plant materials, microorganisms, and nutrients come together within a gravel and sand filtering process to create "living water"

PROGRAM ANALYSIS & DATA

RELATIONSHIP BETWEEN TEMPERATURE & HUMIDITY

ENERGY DEMAND

H = Heat Hu = Humidity E = Energy

WATER CONNECTION DISTRICT: FRIEDRICHSHAIN-KREUZBERG

SPREE RIVER WATERFRONT

WATER CONNECTION DISTRICT: FRIEDRICHSHAIN-KREUZBERG

WATER PIPES SNAKING THROUGH THE CITY

FRIEDRICHSHAIN DISTRICT MAP

SITE PICTURES

PUBLIC TRANSPORTS AND MAJOR ROADS

25,279 inhabitants

15,780 households

SCHOOLS & DAYCARES

WATER RECREATION

HOUSING

Einhorn Family Centre

Total Schools/ :]] Daycare

CLIMATE ANALYSIS

SUNLIGHT HOURS ANALYSIS WIND SPEED ANALYSIS NOV NOV - APR MAY-OCT N MAY - OCT Ŵ

MAY - OCT

NOV - APR

Hourly Data: Wind Speed (m/s) Calm for 2.72% of the time = 120 hours.

Hourly Data: Wind Speed (m/s) Calm for 1.43% of the time = 62 hours.

MINIMUM RAINWATER TANK SIZE = 1,944,667 L ASSUME THE RAINWATER TANKS CAN FILL 3 TIMES PER YEAR

TOTAL YEARLY RUNOFF FROM PRECIPITATION

Total Yearly Runoff from Precipitation

TOTAL RAINWATER COLLECTED = 5,831,8000 L FROM SURROUNDING ROOFS

PART 1 : WATER SYSTEMS

PART 2 : RESILIENCE IN PROGRAMMING

PART 3 : COMBINATION

WATERSCAPES IN THE BUILDING

The

multifunctionality of the waterscapes within the building contribute to the scheme's overall hybridity, multiplicity, sustainability and resilience.

NATURAL SWIMMING POOL

SWIMMING POOL

PUBLIC CONDENSER

Humboldt Park wading pool, USA

POND

constructed wetland

Shanghai Houtan Park, China

Emmen Zoo, The Netherlands

WATER TANKS

WATER TANK TYPOLOGIES IN THE BUILDING

TOILETS

STAIRS

Waterzuivering Berenplaat, The Netherlands

WETLAND

ORGANISATIONAL DIAGRAM

SITE LINES

ESTABLISHING A GRID

ORGANISATIONAL DIAGRAM

WATER CYCLE ANALYSIS

WATER CYCLE IN THE BUILDING

WATER PATH THROUGH THE BUILDING

RAINWATER COLLECTED IS FILTERED THROUGH THE INLET TANKS

RAINWATER IS DISCHARGED INTO THE WETLANDS

DURING HEAVY STORMS, THE EXCESS WATER IS STORED IN THE MIDDLE TANKS TEMPORARILY

THE EXCESS CLEAN WATER IS STORED IN THE FRONT & BACK TANKS FOR THE SWIMMING POOL

PART 1 : WATER SYSTEMS

PART 2 : RESILIENCE IN PROGRAMMING

PART 1 : WATER SYSTEMS

PART 2 : RESILIENCE IN PROGRAMMING

PART 3 : COMBINATION

BUILDING FRAGMENT

THE LAYERS OF THE BUILDING

WATER COLLECTION & SOLAR COLLECTORS

ROOF

TECHNICAL LAYER

WETLANDS

FIRST FLOOR PLAN SCALE 1:300

ROOF PLAN SCALE 1:300

DESIGN SEQUENCE

PROGRAMME BOXES ARE STACKED UPON EACH OTHER OVER WATER

THE WETLANDS ARE ESTABLISHED

DESIGN SEQUENCE

WATER TANKS PUNCH THROUGH THE MASS

A TECHNICAL LAYER IS INTRODUCED BETWEEN FLOORS

DESIGN SEQUENCE

THE ROOF IS SHAPED BY AND FOR WATER

THE LAYERS OF THE BUILDING

WATER COLLECTION & SOLAR COLLECTORS

TECHNICAL LAYER

WETLANDS

ROOF

ECOLOGY

WETLAND ZONES

Soil PH should be 6.5 -8.5PH

Medium textured/loamy soils are a good choice.

For stormwater wetlands, the goal should be a diverse assemblage of plants not only for it to be aesthetically pleasing but also it will be more likely to resist invasive species and pests.

The water should only reach up to 3m, otherwise light cannot penetrate to the bottom of the pond

-

ECOLOGY WETLAND PLANT TYPES

Emergent aquatic macrophytes

These are the dominating life form in wetlands andmarshes, growing within a water table range from 50 cm below the soil surface to awater depth of 150 cm or more.

Common Reed

Mannagrasses

Floating-leaved aquatic macrophytes

The freelyfloating species are highly diverse in form and habit, ranging from large plants withrosettes of aerial and/or floating leaves and well-developed submerged roots to minute surface-floating plants with few or no roots

Submerged aquatic macrophytes:

These have their photosynthetic tissue entirelysubmerged but usually the flowers exposed to the atmosphere

Water Lilies

Water Lettuce

Elodea

Myriophyllum

Water Hyacinth

ECOLOGY PLANTING PLAN

WETLAND PLANT TYPES

Emergent aquatic macrophytes

Floating-leaved aquatic macrophytes

Submerged aquatic macrophytes:

ECOLOGY EXHIBITION HALL VIEW

ECOLOGY EXTERIOR VIEW

WATER COLLECTION & SOLAR COLLECTORS

ROOF

TECHNICAL LAYER

WETLANDS

CLIMATE MATERIAL CATALOG: FAMILY CENTRE

HIGH MOISTURE ADSORPTION CAPACITY

LOW MOISTURE ADSORPTION CAPACITY

Glass 0%

Clay 0.98%

TECHNICAL LAYER FAMILY CENTRE VIEW

CLIMATE MATERIAL CATALOG: SWIMMING POOL HALL

HIGH MOISTURE ADSORPTION CAPACITY

LOW MOISTURE ADSORPTION CAPACITY

Clay 0.98%

DETAIL B

Pool

Tile + adhesive

Waterproofing membrane

Fibreglass mesh

Waterproofing membrane

Overflow channel

Reinforced concrete

Pool return jets

Main drain

Insulation

Insulation

Waterproofing membrane

Fibreglass mesh

Waterproofing membrane

Concrete waffle slab

Water pipes

TECHNICAL LAYER SWIMMING POOL HALL VIEW

WATER COLLECTION & SOLAR COLLECTORS

TECHNICAL LAYER

WETLANDS

ROOF FORM DIAGRAM

ROOF FORM DIAGRAM

CREATING 3 TYPES OF WATER SCAPES

- 1. WATER FLOWING INTO SELECTED TANKS
- 2. WATER POOLING ON THE ACCESSIBLE ROOF
- 3. WATER FLOWING DOWN THE BUILDING INTO THE WETLANDS BELOW

DETAIL A Roof

Shotcrete with steel structure

Shear connector

Steel Roof Truss

False Ceiling

Polyproylene geotextile drainage layer

Quick action hanger

Gypsum board

Waterproofing membrane

Galvanised steel profile with clips

Black acoustic non-woven tissue

Solid wood linear panel

ROOF DIAGRAM

WATER COLLECTION & SOLAR COLLECTORS

TECHNICAL LAYER

WETLANDS

ROOF

STRUCTURAL LAYERS

SHOTCRETE MIXED WITH CLAY ROOF FORM STEEL TRUSS SYSTEM WAFFLE SLAB STRUCTURE WATER TANKS & COLUMNS

Water Tank Detail

Metal cover

Grate cover

Concrete water tank

Outlet pipe

Shotcrete with steel structure

Steel truss connector

Hard insulation

Waterproofing membrane

Concrete column

False ceiling

BUILDING FRAGMENT

THE LAYERS OF THE BUILDING

WATER COLLECTION & SOLAR COLLECTORS

ROOF

TECHNICAL LAYER

WETLANDS

