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a b s t r a c t 

The travelling salesman problem forms a basis for many optimisation problems in logistics, finance, and 

engineering. Several variants exist to accommodate for different problem types. In this paper, we discuss 

the fixed-destination, multi-depot travelling salesman problem, where several salesmen will start from 

different depots, and they are required to return to the depot they originated from. We propose a novel 

formulation for this problem using 2-index binary variables and node currents, and compare it to other 

2-index formulations from the literature. This novel formulation requires less binary variables and con- 

tinuous variables to formulate a problem, resulting in lower computation times. Using a large benchmark 

the effectiveness of the new formulation is demonstrated. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Although the travelling salesman problem (TSP) can be stated

imply as “Find the shortest route that connects all cities on a map”,

olving this problem has kept people busy for decades. The ongo-

ng quest for faster algorithms for finding (an approximation of)

he optimal solution of the TSP has led to a large amount of lit-

rature on the subject. Heuristic methods ( Helsgaun, 20 0 0; Lin &

ernighan, 1973 ) can be used to find solutions of large TSP in-

tances quickly, but no guarantees can be given for finding the op-

imal solution. In this paper, we consider exact formulations that

uarantee finding the globally optimal solution. A comprehensive

iscussion of the history and state-of-the-art for solving the TSP

an be found in Applegate, Bixby, Chvatal, and Cook (2006) , Cook

2012) . 

.1. Literature review 

The power of the TSP ( Dantzig, Fulkerson, & Johnson, 1954;

iller, Tucker, & Zemlin, 1960; Öncan, Altinel, & Laporte, 2009 )

oes not only lie in finding tours of minimal distance along cities,

ut also in the fact that it forms the mathematical basis of many

cheduling and routing problems. Extensions such as the vehicle
� This work is supported by the European Union Seventh Framework Programme 

 FP7/2007-2013 ] under grant agreement no. 257462 HYCON2 Network of Excellence. 
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outing problem ( Kulkarni & Bhave, 1985; Toth & Vigo, 2002b )

nd the pick-up and delivery problem ( Parragh, Doerner, & Hartl,

0 08a, 20 08b; Røpke & Cordeau, 2009; Savelsbergh & Sol, 1995 )

re important problems in the fields of logistics and economics.

ecent applications include the optimal maintenance routing and

cheduling for offshore wind farms ( Irawan, Ouelhadj, Jones,

tålhane, & Sperstad, 2017 ), and the optimal delivery or pickup

f goods using hybrid electric vehicles ( Doppstadt, Koberstein, &

igo, 2016 ). In those problems one usually tries to minimise some

cost’ (e.g. distance, time, money, or a combination) using multiple

salesmen’ (e.g. people, trucks, air planes, vessels) that can visit the

cities’ (e.g. shops, harbours, airports, or actual cities). The use of

ultiple salesmen to visit the cities makes the problems harder to

olve due to the increase in possible solutions. The multiple travel-

ing salesmen problem (mTSP) is at the basis of the vehicle routing

roblem and the pick-up and delivery problem. 

The essence of mTSP is to find the shortest total travel distance

or multiple salesmen starting from and returning to a single de-

ot/home city. Since certain problems require more than one depot

e.g. for delivering goods to shops that can be supplied from mul-

iple storage facilities), an extension to the multi-depot multiple-

alesmen TSP (MmTSP) has been made ( Bekta ̧s , 2006 ). In this case

he problem consists of finding the shortest distance such that sev-

ral salesmen will start at a depot, they visit all the cities once

and only once), and return to a depot again. When it is not im-

ortant at what depot the salesmen end their route, we talk about

 nonfixed-destination problem ; when the salesmen are supposed

o return to their original depot we talk about a fixed-destination
dex formulation for the fixed-destination multi-depot travelling 
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Table 1 

Overview of CECs and CICs and the order of their numbers. 

Order Cycle elimination Cycle imposement 

O (2 N ) Loop conditions ( Dantzig et al., 1954 ) Path elimination ( Belenguer et al., 2011 ) 

O ( N 3 ) Commodity flow ( Gavish & Graves, 1978 ) Commodity flow ( Bekta ̧s , 2012 ) 

O ( N 2 ) Node potentials ( Miller et al., 1960 ) Node currents ( Burger, 2014 ) 
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1 In general, using more binary variables will lead to larger computation times 

for solving the problem. 
problem ( Kara & Bekta ̧s , 2006 ). The work of Benavent and Martínez

(2013) is also concerned with multi-depot TSPs, where the number

of salesmen per depot is not limited and the travel distances are

symmetric. In this paper we will focus on problems with a fixed

number of salesmen per depot, and asymmetric costs. 

The fixed-destination multi-depot multiple-salesmen TSP

(FMmTSP) is a restricted case of the nonfixed-destination prob-

lem, with the additional constraint that all salesmen should

return to their original location. Therefore, the former is more

difficult to solve than the latter; the solutions to the FMmTSP

are a subset of the solutions to the MmTSP. In Kara and Bekta ̧s

(2006) a mixed-integer linear programming (MILP) description for

the fixed-destination problem has been proposed using 3-index

decision variables, resulting in a large increase in binary variables

for each added depot. 

Cycle (or subtour) elimination constraints (CECs) are used to

ensure that no cycles exist within the set of city nodes. They

have been a topic of active research over many decennia, start-

ing with the use of loop constraints by Dantzig et al. (1954) , the

node potentials by Miller et al. (1960) , and (multi)-commodity

flow-based constraints in Gavish and Graves (1978) . Loop condi-

tions give strong linear programming relaxations, but the num-

ber of constraints grows exponentially with the problem size. The

number of node-potential-based constraints only grows quadrati-

cally with the problem size, but they result in much weaker relax-

ations. Using multi-commodity flow formulations it is possible to

obtain strong relaxations, but with a number of constraints grow-

ing cubically in the problem size. 

Cycle imposement constraints (CICs) can be used to ensure a

(minimum) number of cycles in a set of nodes. Fixed-destination

solutions for TSP-like problems can be created by enforcing that

there should be at least D cycles in the combined set of depot

and city nodes, while using CECs to ensure that no subtours ex-

ist in the set of city nodes; when D equals the number of depots

this will result in exactly D cycles in the network; one for each

of the depots. CICs have only recently been discussed in the liter-

ature, starting with the path elimination constraints of Belenguer,

Benavent, Prins, Prodhon, and Calvo (2011) , the multi-commodity

flow-based constraints of Bekta ̧s (2012) , and the node currents of

Burger (2014) . 

Table 1 shows the order of the number of the discussed CECs

and CICs. This paper will introduce the node current-based CICs,

which can be seen as the equivalent of the node potentials for cy-

cle imposement. 

1.2. Contributions 

The main contribution of this paper is the generalisation of the

node current constraints from Burger (2014) for the one-salesman-

per-depot case to the multiple-salesmen-per-depot case, result-

ing in a novel formulation for FMmTSPs with asymmetric costs.

Furthermore, assignment constraints are presented that limit the

number of salesmen per depot for the MmTSP. 

Node currents are used for cycle imposement constraints , which

ensure each salesman to return to his original depot. They can

be seen as the dual to the node potentials introduced by Miller

et al. (1960) in their subtour elimination constraints. We have

used a preliminary version of these cycle imposement constraints
Please cite this article as: M. Burger et al., A node current-based 2-in

salesman problem, European Journal of Operational Research (2017), ht
or micro-ferry scheduling problems with the purpose of iden-

ifying which micro-ferry will pick up which customer ( Burger,

chutter, & Hellendoorn, 2012 ), and for the routing of multiple har-

esters ( Burger, Huiskamp, & Keviczky, 2013 ). In the current paper

his method is used to enforce fixed-destination solutions to the

mTSP. 

For an FMmTSP with L nodes/locations, including D depots and

 cities, two approaches where L = 2 D + C exist in the literature

 Bekta ̧s , 2012; Oberlin, Rathinam, & Darbha, 2009b ); we will intro-

uce an approach that uses L = D + C nodes, thereby reducing the

mount of costly binary variables. 1 This formulation has been pre-

ented for the fixed-destination, multi-depot, single-salesman-per-

epot TSP in Burger (2014) ; here we introduce the generalisation

or problems with multiple salesmen per depot. 

.3. Outline 

Section 2 provides an introduction to the FMmTSP, and de-

nes the problem discussed in this paper. An FMmTSP formula-

ion consists of four components, which are discussed in detail in

ection 3 . The main contribution of this paper is the introduction

f node currents as a means to enforce fixed-destination solutions

hrough cycle imposement constraints. This approach is discussed

n Section 4 , and it is compared to two existing approaches. A com-

utational comparison for three distinct FMmTSP formulations will

e given in Section 5 , followed by concluding remarks in Section 6 .

. Problem description 

For the mTSP with one depot (and multiple salesmen) it is ob-

ious that all salesmen should return to this single depot. However,

hen considering multiple depots, two situations can occur: either

he salesmen may end their tour at any depot, or they are required

o return to their original depot. The latter is a restricted case of

he former and can be obtained by using additional constraints, as

ill be discussed next. 

.1. Description of the MmTSP 

We consider the MmTSP, where there are D depots available

rom where C cities should be visited. Each depot d has a certain

umber of salesmen available, indicated by m d . Each city should be

isited by one and only one salesman. The cost to travel from city

 to j is denoted by the constant c i j . The costs can be asymmetric,

.e., c i j and c ji might be different. The decision variable x ij indicates

hether ( x i j = 1 ) or not ( x i j = 0 ) city j is visited directly after city i

y a salesman. 

The locations of both the cities and the salesmen can be

aken into account in the modelling by denoting both the D lo-

ations of the depots (where the salesmen are) and the C loca-

ions of the cities as one set of L = C + D locations. The sets D,

, and L —associated with the depots, the cities, and the locations

espectively—are defined as 

 = { 1 , . . . , D } , C = { D + 1 , . . . , L } , L = D ∪ C. (1)
dex formulation for the fixed-destination multi-depot travelling 
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Table 2 

The definition of prime symbols for formulations with and 

without depot-node copies. 

With copies of depots Without copies of depots 

d ′ d + L d 

D ′ { L + 1 , . . . , L + D } D
L ′ { 1 , . . . , L + D } L 
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.2. Description of the FMmTSP 

For the fixed-destination problems, the additional restriction

hat all salesmen should return to their original depots makes the

MmTSP more difficult to solve. The reason is that compared with

he non-fixed destination MmTSP, new auxiliary variables or deci-

ion variables of higher index are required for the fixed-destination

etting to impose the additional restriction that each salesman

ust return to his departing depot. In the literature often the

fixed-destination) multi-depot problems (or multi-vehicle prob-

ems when considering vehicle routing) are solved using a 3-index

ariant of the decision variables ( Bekta ̧s , 2006; Coelho & Laporte,

013; Ramkumar, Subramanian, Narendran, & Ganesh, 2012; Toth &

igo, 2002b ), thereby drastically increasing the number of binary

ariables (that are computationally expensive) with each depot

dded to the problem. The three indices represent (1) the origin,

2) the destination, and (3) the depot (vehicle) number. An exam-

le of an MILP description of both nonfixed- and fixed-destination

mTSP formulations using 3-index formulations is given in Kara

nd Bekta ̧s (2006) . 

Recently, formulations of the MmTSP ( Oberlin et al., 2009b ) and

MmTSP ( Bekta ̧s , 2012 ) using 2-index binary variables have been

resented in the literature. Both methods make use of a copy D 

′ 
f the set of depot nodes D, where one depot serves as a start

oint and the other depot serves as the end point of a tour for

 salesman. For D depot nodes and C city nodes in the original

roblem, there will be 2 D depot nodes and C city nodes in the

xtended problem. The resulting set of nodes in the graph is 

 

′ = D ∪ C ∪ D 

′ , (2)

here the copied set of the D depots in D is defined as 

 

′ = { 1 

′ , . . . , D 

′ } = { L + 1 , . . . , L + D } , (3)

uch that node i and node i ′ = L + i represent the start and end

epot of depot i ∈ D , respectively. This formulation results in L ′ =
 D + C nodes in the graph. 2 

A transformation of the MmTSP problem to an asymmetric TSP

as been proposed by Oberlin et al. (2009b) , Oberlin, Rathinam,

nd Darbha (2009a) by using a copy of the depot nodes as in (3) .

ore recently, Bekta ̧s (2012) has proposed a method to solve the

MmTSP using D 

′ based on commodity flows. In Section 4 we will

ntroduce a formulation that only requires L = D + C nodes to rep-

esent the same problem. 

. Problem formulation 

The FMmTSP can be described as a mathematical program con-

isting of the following components 3 

inimise costs (4a) 

ubject to assignment constraints (4b) 

cycle elimination constraints (4c) 

cycle imposement constraints (4d) 
2 With an efficient implementation – where the start node only has outgoing arcs 

nd the end node only has incoming arcs – the number of arcs (and thereby the 

umber of binary variables) remains the same. 
3 Constraints (4c) are commonly known as subtour elimination constraints (SECs). 

ince the term ‘subtour’ has the implicit property of being undesired, we will 

resent the counterpart of the SECs as cycle imposement constraints, thereby us- 

ng the modern term ‘cycle’ instead of ‘subtour’. For consistency we therefore also 

se the term cycle elimination constraints. 

Please cite this article as: M. Burger et al., A node current-based 2-in

salesman problem, European Journal of Operational Research (2017), ht
In this section, we provide a brief overview of the currently

vailable types of constraints for each of the components. For a

ore thorough discussion on the available cycle (subtour) elimina-

ion constraints (including the relations of their linear relaxation

trengths) we refer to Roberti and Toth (2012) and the references

herein. 

For ease of notation we will use the index d ′ and the sets D 

′ 
nd L 

′ in this section, where their definition will depend on the

ype of formulation that is used, as specified in Table 2 . 

.1. Costs 

The cost in (FMm)TSPs is the distance the salesmen travel, re-

ulting in minimising the total travel distance 

 td = 

∑ 

i ∈ L 

′ 

∑ 

j ∈ L 

′ 
c i j x i j , (5) 

here c i j ≥ 0 is the travel distance between cities i and j , and

 ij ∈ {0, 1} is a decision variable satisfying 

 i j = 

{
1 if city j is visited directly after city i , 
0 otherwise . 

(6) 

When using 3-index decision variables x ijk the total travel dis-

ance is given by 

 td = 

∑ 

i ∈ L 

∑ 

j ∈ L 

∑ 

k ∈ D 

c i j x i jk , (7) 

here c i j ≥ 0 is the travel distance between cities i and j , and

 ijk ∈ {0, 1} is a decision variable satisfying 

 i jk = 

{ 

1 if city j is visited directly after city i by a 
salesman originating from depot k , 

0 otherwise . 
(8) 

.2. Assignment constraints 

The assignment constraints ensure that each node has exactly

ne incoming arc and one outgoing arc (see Fig. 1 ), thereby sat-

sfying a necessary condition for visiting the cities once and only

nce . 

.2.1. Description of the assignment constraints 

The assignment constraints for the (F)MmTSP ( Bekta ̧s , 2006;

aporte, 1992 ) are given by ∑ 

j ∈ L 

′ 
x dj = m d ∀ d ∈ D (9a) 

∑ 

j ∈ L 

′ 
x i j = 1 ∀ i ∈ C (9b) 

∑ 

i ∈ L 

′ 
x i j = 1 ∀ j ∈ C (9c) 

∑ 

i ∈ L 

′ 
x id ′ = m d ∀ d ′ ∈ D 

′ (9d) 
dex formulation for the fixed-destination multi-depot travelling 

tp://dx.doi.org/10.1016/j.ejor.2017.07.056 

http://dx.doi.org/10.1016/j.ejor.2017.07.056


4 M. Burger et al. / European Journal of Operational Research 0 0 0 (2017) 1–15 

ARTICLE IN PRESS 

JID: EOR [m5G; August 4, 2017;3:49 ] 

Fig. 1. A solution to the FmMTSP. Cycles should be eliminated in the set C, whereas 

they should be imposed in the set L = D ∪ C. 
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4 The number of salesman returning to depot d ′ is less or equal to the capacity q d 
minus the number of salesmen m d present at the start plus the number of salesmen 

that leave depot d . 
5 Loop conditions representation with workload bound were first proposed in 

Kara and Bekta ̧s (2006) for the mTSP (single depot), and were extended in Bekta ̧s 

(2012) for the MmTSP (multidepot). 
x i j ∈ { 0 , 1 } ∀ i, j ∈ L 

′ (9e)

Due to (9a) all of the m d salesmen will leave their depot d , and

by (9b) each city i is succeeded by exactly one location (a sales-

man leaves the city). Furthermore, Eq. (9c) ensures that each city

j is preceded by exactly one location (a salesman enters the city),

whereas (9d) ensures that m d salesmen will return to depot d ′ . The

set D 

′ denotes—depending on the problem formulation—either a

copy of the depot nodes, or the original set D of depot nodes, as

defined in Table 2 . Finally, (9e) ensures that the decision variable

x ij is treated as a binary variable. 

3.2.2. Variants for the assignment constraints 

The assignment constraints in (9) force all m d salesmen to leave

their depot, and also require m d salesmen to return to depot d .

The former is restrictive for both fixed- and nonfixed-destination

problems, whereas the latter only restricts the solutions for the

FMmTSP. Both restrictions can be loosened as shown next. 

Idle salesmen: To allow salesmen to stay at the depot without

visiting a city (hence some salesmen may be ‘idle’; they do not

provide any work), the equality constraints (9a) and (9d) can be

substituted by (see Toth & Vigo, 2002a ) ∑ 

j ∈ L 

′ 
x dj ≤ m d ∀ d ∈ D ( 9a ∗)

∑ 

i ∈ L 

′ 
x id ′ = 

∑ 

j ∈ L 

x dj ∀ d ′ ∈ D 

′ ( 9d 

∗)

where (9a ∗) limits the amount of salesmen that can leave depot

d to m d (which equals the number of salesmen present at depot

d ), whereas ( 9d 

∗) ensures that the same amount of salesmen that

have left the depot, will also return to the depot. 

Fixed-capacity depots: For nonfixed-destination problems the

number of salesmen at a depot will in general be different before

and after the salesmen travelled. To avoid solutions where certain

depots will receive more salesmen than they can facilitate, an up-

per bound on the number of salesmen that are allowed to return

to each specific depot should be set. To accomplish this we pro-

pose the following. 

If the capacity of depot d (with d ′ the associated end depot) is

q d ′ salesmen one could substitute ( 9d 

∗) with 

m d + 

∑ 

i ∈ L 

′ 
x id ′ ≤ q d + 

∑ 

j ∈ L 

′ 
x dj ∀ d ′ ∈ D 

′ ( 9d 

� 
1 )
Please cite this article as: M. Burger et al., A node current-based 2-in

salesman problem, European Journal of Operational Research (2017), ht
∑ 

 

′ ∈ D 

′ 

∑ 

j ∈ L 

′ 
x d ′ j = 

∑ 

d ∈ D 

∑ 

i ∈ L 

′ 
x id ( 9d 

� 
2 )

nequalities ( 9d 

� 
1 ) ensure that no more than q d ′ salesmen end up in

epot d ′ , 4 whereas ( 9d 

� 
2 ) ensures that all the salesmen that leave a

epot will also return to a depot. 

.3. Cycle elimination constraints 

Note that the constraints (9) do not avoid 

(i) the existence of cycles (subtours) in C, resulting in routes along

cities that do not have a salesman associated with them, 

ii) the existence of cycles in L 

′ containing more than one node

from D, resulting in a schedule where salesmen end their tour

at an arbitrary depot. 

The former situation would result in a schedule where some

ities will not be visited by a salesman (since no-one is assigned

o do so), whereas the latter situation would result in a schedule

here the salesmen do not have the guarantee that they return to

heir original depot. To assure that each city is visited by a salesman ,

olutions using cycle elimination constraints have been proposed in

he literature ( Dantzig et al., 1954; Fox, Gavish, & Graves, 1980;

avish & Graves, 1978; Miller et al., 1960 ). These constraints are

ased on different concepts, for which a brief description will be

rovided next; a more detailed description can be found in Orman

nd Williams (2007) . 

.3.1. Loop conditions 

The loop conditions were introduced in the seminal work of

antzig et al. (1954) , which can be stated as ∑ 

, j ∈ S 
x i j ≤ | S | − 1 ∀ S ⊂ L 

′ , 2 ≤ | S | ≤ L ′ − 1 , (10)

here | S | represents the cardinality of set S (see Harris, Hirst, &

ossinghoff, 2008 ). These constraints provide strong linear pro-

ramming relaxations, but the number of constraints grows expo-

entially with the number of nodes. 

.3.2. Node potentials 

Miller et al. (1960) proposed an approach for eliminating cycles

y using additional variables u i that represent node potentials. Us-

ng the strengthened formulation of Desrochers and Laporte (1991) ,

he C continuous variables u i should satisfy 

 i − u j + C x i j + (C − 2) x ji ≤ C − 1 ∀ i, j ∈ C , (11)

esulting in C 

2 inequality constraints. 

The node potential representation has been extended by Kara

nd Bekta ̧s (2006) , Bekta ̧s (2012) to set workload bounds 5 on the

umber of cities a salesman should visit. Denoting u and u as the

inimum and maximum number of cities the salesmen may visit,

espectively, the cycle imposement constraints 

 i − u j + u x i j + ( u − 2) x i j ≤ u − 1 ∀ i, j ∈ C (12a)

 i + ( u − 2) 
∑ 

d ∈ D 

x di −
∑ 

d ′ ∈ D 

′ 
x id ′ ≤ u − 1 ∀ i ∈ C (12b)
dex formulation for the fixed-destination multi-depot travelling 
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 i + 

∑ 

d ∈ D 

x di + (2 − u ) 
∑ 

d ′ ∈ D 

′ 
x id ′ ≥ 2 ∀ i ∈ C (12c) 

nsure that each salesman will be assigned between u and u cities

o visit, and city i will be the u i th city a salesman visits. 6 Inequal-

ties (12a) provide cycle elimination constraints. In both (12b) and

12c) the first summation is 1 if and only if node i represents the

rst city of a tour (and it is 0 otherwise), and the second summa-

ion is 1 if and only if node i represents the last city of a tour (and

s 0 otherwise). Therefore, (12b) and (12c) ensure that u i ≤ u and

 i ≥ u for the last cities in a tour, thereby setting the desired upper

nd lower bound respectively on the number of visited cities per

alesman. 

For the TSP with time windows ( Ascheuer, Fischetti, &

rötschel, 2001 ) the constraints 

 i − t j + τi j + T x i j ≤ T (13)

an be seen as a variant of the node potential approach, where t i 
s the time instant city i is visited, τ ij is the potential difference

etween the nodes, and T is a sufficiently large constant. 

.3.3. Commodity flows 

Gavish and Graves (1978) introduced commodity flows as a

eans for eliminating undesired cycles. The L ′ 2 continuous vari-

bles f ij should satisfy the constraints ∑ 

j ∈ L 

′ 
f i j −

∑ 

j ∈ L 

′ 
f ji = 1 ∀ i ∈ C (14a) 

f i j ≤ C x i j ∀ i ∈ C , j ∈ L 

′ (14b) 

f i j ≥ 0 ∀ i, j ∈ L 

′ (14c) 

Extensions to two-commodity flows ( Finke, Claus, & Gunn,

984 ) and multi-commodity flows ( Claus, 1984 ; Wong, (1980) have

een proposed, resulting in stronger linear programming relax-

tions ( Langevin, Soumis, & Desrosiers, 1990; Padberg & Sung,

991 ). 

.3.4. Time periods 

For a graph with L ′ nodes, Fox et al. (1980) present a cycle

limination formulation using a 3-index binary variable represen-

ation x ijt , where 

 i jt = 

{
1 if i precedes j as the tth node in the tour , 
0 otherwise . 

(15) 

he index t ∈ T represents the time period in which the salesman

ravels from city i to city j . To ensure that all cities are visited in

ome time period, and that in each time period only one city is

isited, the O(L ′ 3 ) binary variables x ijt should satisfy ∑ 

i ∈ L 

′ 

∑ 

j ∈ L 

′ 

∑ 

t ∈ T 
x i jt = L ′ (16a) 

∑ 

j ∈ L 

′ 

∑ 

t ∈ T \{ 1 } 
t x i jt −

∑ 

j ∈ L 

′ 

∑ 

t ∈ T 
t x jit = 1 ∀ i ∈ L 

′ 
− (16b) 
6 In Kara and Bekta ̧s (2006) , Bekta ̧s (2012) it is stated that these inequality con- 

traints are only valid for u ≥ 4 ; this is only under the restriction that salesmen 

hould at least visit two cities, and hence x di = x id ′ = 1 is not allowed. Lifting this 

estriction by allowing salesmen to visit zero or one city these inequality con- 

traints are valid for all u ≥ 0 . 

 

w  

e  

(  

d  

f  
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 i jt ∈ { 0 , 1 } ∀ i, j ∈ L 

′ t ∈ T (16c) 

Constraints (16a) and (16c) replace the assignment constraints

9). Equality constraints (16b) ensure that in each time period t

xactly one city i is visited. 

.4. Cycle imposement constraints 

To assure that each salesman returns to the original depot , ad-

itional constraints are needed to enforce cycles that start and

nd in the same depot (or paths leading from one start depot to-

ards the associated end depot). Opposite to the cycle elimina-

ion constraints, the constraints that enforce the existence of a cer-

ain amount of cycles in a graph can be seen as cycle imposement

onstraints . To the authors’ best knowledge, currently only three

pproaches exist for obtaining fixed-destination solutions; using 3-

ndex binary variables, or using 2-index binary variables plus com-

odity flow variables ( Bekta ̧s , 2012; Kara & Bekta ̧s , 2006 ), or us-

ng the path elimination constraints ( Belenguer et al., 2011 ), which

ntroduces no new variables, but modifies the definition of the 2-

ndex binary variable associated with each arc. We will introduce a

ourth approach in Section 4 that is based on node currents, which

an be seen as the dual of the node potentials introduced by Miller

t al. (1960) presented in (11) . 

.4.1. 3-index formulation 

Using decision variables x ijd that satisfy 

 i jd = 

{
1 if i precedes j directly in the tour of depot d , 
0 otherwise , 

(17) 

he existence of D cycles can be enforced ( Kara & Bekta ̧s , 2006 )

sing ∑ 

j ∈ C 
x djd = m d ∀ d ∈ D (18a) 

∑ 

d ∈ D 

{ 

x djd + 

∑ 

i ∈ C 
x i jd 

} 

= 1 ∀ j ∈ C (18b) 

 djd + 

∑ 

i ∈ C 
x i jd = x j d d + 

∑ 

i ∈ C 
x jid ∀ d ∈ D , j ∈ C (18c) 

∑ 

j ∈ C 
x djd = 

∑ 

j ∈ C 
x j d d ∀ d ∈ D (18d) 

Constraints (18a) and (18d) ensure that exactly m d salesmen de-

art and return to depot d . Constraints (18b) guarantee that each

ity are visited exactly once. Constraints (18c) ensure the path

ontinuity. Together with the degree constraints (18b) , constraints

18c) ensure that a salesman starts at depot d and visits city j first

ill either continue to another city i or return to the same de-

ot. Note that this formulation uses O(L 2 D ) binary variables, and

he number of binary variables increases cubically with the num-

er of depots (as opposed to the quadratic increase for 2-index

ormulations). 

.4.2. Multi-commodity flow formulation 

A multi-commodity flow problem is a network flow problem

ith multiple flows ( Rader, 2010 ). Besides applications for cycle

limination (as discussed in Section 3.3.3 ) it was shown by Bekta ̧s

2012) that this concept can also be used for enforcing fixed-

estination solutions to the mTSP. In this context a commodity

 

d represents the number of salesmen originating from depot d .
dex formulation for the fixed-destination multi-depot travelling 
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The constraints based on commodity flows ( Bekta ̧s , 2012 ) are given

by ∑ 

j ∈ C ∪ D 

′ 
f d dj −

∑ 

j ∈ D ∪ C 
f d jd = m d ∀ d ∈ D (19a)

∑ 

j ∈ C ∪ D 

′ 
f d i j −

∑ 

j ∈ D ∪ C 
f d ji = 0 ∀ i ∈ C , d ∈ D (19b)

∑ 

j ∈ D ∪ C 
f d j d ′ −

∑ 

j ∈ C ∪ D 

′ 
f d d ′ j = m d ∀ d ′ ∈ D 

′ (19c)

0 ≤ f d i j ≤ x i j ∀ i, j ∈ L 

′ , d ∈ D (19d)

In this formulation each depot d in D acts as a source of

commodity f d , while each depot d ′ in D 

′ acts as a sink where

only commodity d = d ′ − L is accepted. By (19a) exactly m d units

of commodity f d will leave depot d (meaning that m d salesmen

will leave the depot). Constraints (19b) are flow-conservation con-

straints that guarantee that the same amount of commodity f d en-

tering a node i will also leave node i (meaning that each salesman

that enters a city will also leave the city). By (19c) exactly m d units

of commodity f d will reach depot d ′ (meaning that m d salesmen

will arrive at the duplicate depot node d ′ ). Combined with the as-

signment constraints (9), the inequality constraints (19d) restrict

the commodities to only flow along arcs that are part of the se-

lected routes; if x i j = 0 no commodity can flow from city i to city

j . This formulation uses L ′ 2 D commodity flow variables f d 
i j 
, where

L ′ = 2 D + C is the number of nodes in the graph. 

3.4.3. Path elimination constraints 

The path elimination constraints, first proposed in Belenguer

et al. (2011) , fix the destination of each salesman by eliminat-

ing paths that start and end in two different depots. The idea

is inspired by the chain-baring constraints introduced in Laporte,

Nobert, and Arpin (1986) . Although originally designed for location

routing problems, path elimination constraints have been applied

to many fixed-destination mTSP variants ( Benavent & Martínez,

2013; Contardo & Martinelli, 2014; Sundar & Rathinam, 2016 ). The

decision variables are 

x i j = 

{
1 if (i, j) is traversed exactly once , 
0 otherwise , 

(20)

for i, j ∈ L and 

w i j = 

{
1 if (i, j) is in a return trip , 

0 otherwise , 
(21)

for all i ∈ D, j ∈ C. The path elimination constraints given by

Belenguer et al. (2011) are ∑ 

p,q ∈S∪{ i, j} 
x pq + 

∑ 

d ∈ D 

◦
x jd + 

∑ 

d ∈ D \D 

◦
x id ≤ | S | + 2 (22)

∀ i, j ∈ C , ∀S ⊆ C\{ i, j} , ∀D 

◦ ⊂ D 

If all cities in S ∪ { i, j} are in a consecutive path, then the

loop conditions (10) are satisfied with equality, i.e., 
∑ 

p,q ∈S∪{ i, j} =
| S | + 1 . Because of constraints (22) we have 

∑ 

d ∈ D 

◦ x jd +∑ 

d ∈ D \D 

◦ x id ≤ 1 . This indicates that a path connected to a depot

in D 

◦ cannot be connected to another depot in D \D 

◦. Constraints

(22) can eliminate all unwanted paths that visit at least two cities

and start and end in different depots. The constraints ∑ 

d ∈D 

x dj + w dj ≤ 1 ∀ j ∈ C (23)
Please cite this article as: M. Burger et al., A node current-based 2-in

salesman problem, European Journal of Operational Research (2017), ht
re needed to also eliminate undesired paths that visit only one

ity (and start and end in different depots).This formulation re-

uires O (L 2 + DC ) binary variables, and the number of constraints

 O (2 C C 

2 2 D ) grows exponentially with the number of cities and

epots. Just as for the loop conditions (10) these constraints are

uitable for branch-and-cut implementations, but not to formulate

he complete problem and use a MILP solver to obtain optimal

olutions. 

. Novel FMmTSP formulation 

In the previous section it has been discussed that the FMmTSP

an be formulated using four components (as provided in (4)). The

ost that needs to be minimised is the total travel distance of the

alesmen, for which a standard formulation is given in (5) . For the

ssignment constraints the conventional constraints are given in (9),

ut variations can be used to e.g. allow some salesmen to be idle or

o limit the number of salesmen that may end at a depot, as dis-

ussed in Section 3.2.2 . The component that has the most variants

n literature provides the cycle elimination constraints (or subtour

limination constraints), discussed in Section 3.3 . 

The component that has received the least attention provides

he cycle imposement constraints . Until recently, fixed-destination

olutions for mTSPs and its variants have been ensured by us-

ng 3-index formulations of the decision variables as discussed in

ection 3.4.1 . The formulation of Bekta ̧s (2012) is the first formula-

ion that ensures fixed-destination solutions using 2-index binary

ariables and the multi-commodity flow constraints presented in

ection 3.4.2 . In this section we will introduce a novel approach

or cycle imposement. This approach is also based on 2-index bi-

ary variables, where one continuous variable per node is added

o the formulation to ensure a fixed-destination solution. The new

ormulation needs a few less binary variables than the formulation

f Bekta ̧s (2012) ; more importantly, it uses DL times less continu-

us variables than the multi-commodity flow approach. 

.1. Cycle imposement through node currents 

Inspired by the node potentials of Miller et al. (1960) we pro-

ose an alternative formulation of the FMmTSP using node currents

 Burger, 2014 ). Similar to the commodity flow transported between

ities over the arcs, the current in an electric circuit can also be

onsidered as a flow in a directed graph. With the depots repre-

enting current sources, a proper electric circuit contains only cy-

les (if not, there would be an open circuit or short circuit), which

orresponds to the cycle imposement constraint stating that every

alesman must return to his departing depot. A flow conservation

aw combined with assignment constraints forces the current flow-

ng into a node to be equal to the current flowing out of the node,

o that nodes in the same cycle must have the same current. Thus,

e can view the current k i as a property of node i (instead of a

roperty of the arc x ij ). 

.1.1. Node current formulation 

For the newly proposed node current formulation there is

o need to use copies of the depot nodes. Therefore, this

ormulation will use less binary variables as for the copy-based

ormulation, since there are D less nodes to represent the graph.

ixed-destination solutions can be obtained by using L = D +
 continuous variables k i satisfying the cycle imposement con-

traints 

 d = d ∀ d ∈ D (24a)

 i − k j ≤ (D −1)(1 −x i j ) ∀ i, j ∈ L (24b)
dex formulation for the fixed-destination multi-depot travelling 
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Fig. 2. A solution without a copy of the set D, using node currents to ensure a 

fixed-destination solution. Each of the three cycles has a unique ‘current’: the depot 

nodes act as current sources of 1, 2 and 3 Ampère, respectively, and this current 

is flowing through the arcs and nodes. Since each node has exactly one incoming 

arc and one outgoing arc (due to the assignment constraints) this ‘node current’ 

uniquely defines to which depot a city is assigned. 
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B  
esulting in k i ≤ k j if x i j = 1 using (D + C ) 2 − C constraints. Addi-

ionally, one can obtain the tighter constraint k i = k j if x i j = 1 by

dding 

 j − k i ≤ (D −1)(1 −x i j ) ∀ i, j ∈ L . (24c)

o the constraints (24a) and (24b) , resulting in stronger linear re-

axations at the cost of using more constraints. If the minimum

umber of cities to visit is set to be at least two one can substi-

ute (24b) and (24c) with 

 i − k j ≤ (D −1)(1 −x i j −x ji ) ∀ i, j ∈ L . (24d)

This enforces the equality k i = k j using half the amount of in-

quality constraints. Notice that constraints (24d) exclude solutions

here a salesman visits only one node, since x i j + x ji = 2 is infea-

ible by (24d) . 

heorem 4.1 (Cycle imposement) . The MILP consisting of (5) and

9), any of the cycle elimination constraints, and the cycle imposement

onstraints (24) will result in a graph with exactly 
∑ 

d ∈ D 

m d cycles,

here each node d ∈ D is contained in exactly m d cycles. 

roof. Let the directed graph G = (L , A ) be the graph associated

ith a feasible solution of the given MILP. The node set of G coin-

ides with the set of locations of the FMmTSP, and the arc set A is

efined as 

 i, j ∈ L , (i, j) ∈ A if and only if x i j = 1 

efine a cut (D, C) on G , and denote the subset of forward and

ackward arcs in the cut set as 

+ = { (i, j) ∈ A | i ∈ D, j ∈ C} 
− = { (i, j) ∈ A | i ∈ C, j ∈ D} 
hich represents all salesmen leaving the depots and all salesmen

eturning from the cities, respectively. By assignment constraints

n the city nodes (9b) and (9c) , the in- and out-degree of each

ode in C is one, and the cycle elimination constraints ensure that

o cycles exist in C, so no path can start or end in C. Therefore

 

δ+ | = | δ−| , indicating that any salesman leaving a depot must also

eturn to a depot (see Fig. 2 ). 
Please cite this article as: M. Burger et al., A node current-based 2-in
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The above arguments actually show that the graph associated

ith a solution of the non-fixed destination MmTSP contains ex-

ctly 
∑ 

d ∈ D 

m d distinct paths starting and ending in D. Now we

eed to prove that by the additional cycle imposement constraints

or the fixed-destination setting, the 
∑ 

d ∈ D 

m d distinct paths are

ll cycles, and each node d ∈ D is contained in exactly m d cycles,

.e., each path starting in a depot node d ∈ D must also end in the

ame depot d . We prove this statement by induction. 

For any path P = { d, c i 1 c i 2 . . . d 
∗} , where d, d ∗ ∈ D and

 i 1 , c i 2 . . . ∈ C, by constraint (24b) that the node current k i is

on-decreasing along a path, one has 

 d ≤ k c i 1 ≤ k c i 2 ≤ · · · ≤ k d ∗

n addition, by (24a) each depot node is assigned a unique node

urrent, and hence 

 ≤ k d ≤ D ∀ d ∈ D. 

We use the following inductive steps to prove that any path

tarting in depot d must also end in the same depot. 

(i) By (9a) there will be m D paths leaving depot D . For any path

P starting in depot d = D, one has D = k d ≤ k d ∗ ≤ D, where

the upper limit follows from the fact that a path must return

to a depot, for which D is the highest value. Thus k d ∗ = D,

indicating d ∗ = D = d. Therefore, a path starting in node D

can only end in node D . By (9a) –(9d) exactly m D cycles start

and end in depot D , i.e., depot D is contained in exactly m D 

cycles, and can accept no more incoming arcs because the

constraint (9d) on its in-degree is already satisfied. 

(ii) For any path P starting in depot d = D − 1 , similarly one has

D − 1 = k d ≤ k d ∗ ≤ D . So k d ∗ can only take the value D or

D − 1 , i.e., path P can only end in depot D or D − 1 . By the

previous argument P cannot end in D because (9d) is already

satisfied for d = D, so the m D −1 paths starting at depot D − 1

can only end in depot D − 1 . Similarly, by the assignment

constraints, depot D − 1 is contained in exactly m D −1 cycles,

and can accept no more incoming arcs. 

(iii) Continuing this argumentation for any path P starting in de-

pot d , P can only end in the same depot d since the con-

straint (9d) is already satisfied for depots d + 1 to D , and by

the assignment constraints depot d is contained in exactly

m d cycles. 

(iv) Finally, it follows that any path P starting in depot 1 must

end in depot 1. �

By assigning a unique value to the node currents of the depots

hrough (24a) and adding constraints (24b) and (24c) or (24d) —

uch that k i = k j if there is a connection between nodes i and j —it

s guaranteed that a tour starting at depot d will return to depot d

ithout visiting another depot by Theorem 4.1 . 

ote. For the optimal solution the node current variables will im-

licitly satisfy 

 ≤ k i ≤ D ∀ i ∈ L , (25)

nd these bounds can be set explicitly in the MILP formulation

ithout affecting the result. 

Fig. 2 shows an example of a feasible solution for D = 3 depots

nd C = 6 cities. Note that within the set L = D ∪ C the existence

f three cycles has been imposed, whereas in the set C no cycles

xist due to the cycle elimination constraints. 

.1.2. MILP formulation using node currents 

As an alternative to the FMmTSP formulation presented in

ekta ̧s (2012) we propose a novel formulation of the problem
dex formulation for the fixed-destination multi-depot travelling 
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Table 3 

Properties of the three formulation types, divided 

into the number of nodes (N), binary variables (BV), 

continuous variables (CV), equality constraints (EC), 

and inequality constraints (IC). 

I II III 

N L = C + D L ′ = C +2 D L ′ = C +2 D 

BV ( C + D ) 2 ( C + D ) 2 ( C + D ) 2 

CV 2 C +2 D 2 C +4 D ( DL ′ +1) L ′ 
EC 2 C +3 D 2 C +4 D 2 C + (4+ L ′ ) D 
IC C 2 +2 C +2 L 2 C 2 +2 C +2 L ′ 2 C 2 +2 C + DL ′ 2 

a  

l  

e  

n

 

f  

f  

s  

C  

e  

e

5

 

a  

d  

o  

F  

t  

w

5

 

c  

r  

1  

(  

l  

p  

t  

o

i  

w  

g  

t  

o  

t  

s  

f  

d  

3  

t

 

(  

(  

f  

p  

o  

1  

M  
based on node currents as cycle imposement constraints. It is

based on 2-index decision variables using the cost function given

by (5) . The formulation will be presented using the standard as-

signment constraint given in (9), but the variant with idle sales-

men may also be used. For a comparison with the formulation in

Bekta ̧s (2012) (which excludes the possibility of idle salesmen) it

should be possible to set workload bounds for the salesmen, there-

fore the cycle elimination constraints (12) are chosen. For the com-

putational comparison in the next section the minimum number

of cities to visit per salesman will be u = 1 , therefore we use con-

straints ( 24a )–( 24c ) to impose 
∑ 

d ∈ D 

m d cycles in the set L ; if u ≥ 2

it would be more efficient to use (24a) and (24d) . The maximum

number of cities per salesman can be set to 

u = C + u (1 −
∑ 

d ∈ D 

m d ) (26)

where 
∑ 

d ∈ D 

m d gives the total number of salesmen, such that

u (1 − ∑ 

d ∈ D 

m d ) becomes the minimum number of cities that

need to be visited by other salesmen; a single salesman can visit

at most all cities minus the minimum number of cities visited by

the others. The MILP formulation of the FMmTSP using workload

bounds and node currents then becomes 

min . 
∑ 

i ∈ L 

∑ 

j ∈ L 

c i j x i j (27)

s . t . 
∑ 

i ∈ L 

x ic = 

∑ 

j ∈ L 

x c j = 1 ∀ c ∈ C 

∑ 

i ∈ L 

x id = 

∑ 

j ∈ L 

x dj = m d ∀ d ∈ D 

u i − u j + u x i j + ( u −2) x ji ≤ u −1 ∀ i, j ∈ C 

u i + ( u −2) 
∑ 

d ∈ D 

x di −
∑ 

d ∈ D 

x id ≤ u −1 ∀ i ∈ C 

u i + 

∑ 

d ∈ D 

x di + (2 − u ) 
∑ 

d ∈ D 

x id ≥ 2 ∀ i ∈ C 

k d = d ∀ d ∈ D 

k i − k j ≤ (D −1)(1 −x i j ) ∀ i, j ∈ L 

k j − k i ≤ (D −1)(1 −x i j ) ∀ i, j ∈ L 

x i j ∈ { 0 , 1 } , 1 ≤u i ≤C , 1 ≤k i ≤D ∀ i, j ∈ L 

Note. As opposed to the two alternative FMmTSP formulations

( Bekta ̧s , 2012; Oberlin et al., 2009a ), this novel formulation does

not use copies of the depot nodes, therefore only L = D + C nodes

are needed for this formulation instead of 2 D + C . Furthermore,

unlike the other two formulations, the costs of travelling between

the nodes remains the same as for the nonfixed-destination prob-

lem, hence there is no need to build a new cost matrix; the origi-

nal cost matrix C can be used without any modification. 

4.2. Properties of fixed-destination formulations 

Adding more variables to an optimisation problem in general

results in larger computation times and a higher memory usage.

Compared to continuous variables the number of binary variables

used in a programming problem can significantly influence the

computation times. Therefore, reducing the number of binary vari-

ables to represent a problem can result in a noticeable perfor-

mance gain. Although in general the addition of a few continuous

variables has little influence on the computation times, using many

continuous variables can cause problems due to the larger memory

use, and would also result in larger computation times. 

Table 3 shows the number of nodes, binary variables, continu-

ous variables, equality constraints, and inequality constraints that
Please cite this article as: M. Burger et al., A node current-based 2-in
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re needed to represent the FMmTSP per formulation. In the fol-

owing ‘I’ denotes the novel MILP formulation (27) , ‘II’ denotes the

xtended formulation based on Oberlin et al. (2009b) , and ‘III’ de-

otes the formulation from Bekta ̧s (2012) . 

Notice that besides less binary variables, the newly proposed

ormulation also uses less continuous variables compared to the

ormulation of Bekta ̧s (2012) ; there are D + C node currents neces-

ary to solve the fixed-destination problem, compared to D (2 D +
 ) 2 commodity flow parameters needed to represent the D differ-

nt commodities that could move along the (2 D + C ) 2 arcs in the

xtended network. 

. Computational comparison 

The three aforementioned formulations for solving FMmTSPs

re compared by solving a large number of test cases. First we

escribe the benchmark that we use, followed by a discussion

n the results. The formulations provide optimal solutions for the

MmTSP, and all computation times give the time it took to reach

his optimum. When the optimum was not reached within 3 hours

all-clock time the test was marked as failed. 

.1. Description of test instances 

To compare the three formulations of the FMmTSP we have

hosen 32 symmetric and asymmetric TSP test cases with size

anging from 14 to 170 nodes from the library TSPLIB ( Reinelt,

991 ), where the numbers in the name of the test instance

e.g. dantzig42 ) represent the number of locations L in the prob-

em. For each test case we have selected D cities to represent de-

ots. Since e.g. the cities in dantzig42 are given in the order of

he optimal tour (and hence subsequent cities are close to each

ther), the depot nodes are selected as the i th cities satisfying 

 = 1 + (d − 1) 
⌊ 

C 

D 

⌋ 

∀ d ∈ D , (28)

here � a  represents the operator that returns the largest inte-

er smaller than or equal to a . This approach is used to reduce

he chance that the depots are close to each other. The number

f depots D varies from 2 to 6 for each test case. We consider

wo scenarios, namely, one-salesman-at-each-depot and multiple-

alesmen-at-each-depot. (The number of salesmen at each depot

or the second scenario is fairly distributed using the procedure

escribed in Appendix A .) In this way we create a benchmark of

2 × 5 × 2 = 320 FMmTSP test instances, which are solved using

hree different formulations, and three MILP solvers. 

Since the formulation using the commodity flows according to

19) requires that each salesman visits at least one city (due to

19a) ), we set u = 1 and u = C to obtain the same problem for each

ormulation. All computations are performed on a desktop com-

uter with an Intel Xeon E5-1620 Quad Core CPU and 64 gigabytes

f RAM, running 64-bit versions of SUSE Linux Enterprise Desktop

1, and Matlab R2014b. Three state-of-the-art commercial and free

ILP solvers are used, namely, CPLEX 12.5 (called via Tomlab 8.0),
dex formulation for the fixed-destination multi-depot travelling 
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Table 4 

The average relative difference for the mean CPU times compared with formulation 

I. The average is taken over all test instances that are successfully computed by the 

corresponding formulation and solver. A positive result means longer computation 

time, indicating worse performance. 

Solver Small Large Small Large 

and single (%) and single (%) and multi (%) and multi (%) 

II CPLEX 7 192 −27 455 

Gurobi 51 7 −13 −9 

CBC 46 33 −18 –

III CPLEX 535 1880 104 720 

Gurobi 113 78 37 24 

CBC 621 1676 130 –

G  

O

 

r  

m  

A  

r  

t  

o  

s  

e  

3  

s

5

 

c  

a  

b

5

 

b

 

s  

a  

c  

f  

f  

t  

t  

f  

m

 

(  

l  

C  

e  

N  

a  

f

5

 

t  

s  

Table 5 

The number of failed test instances (‘failed’) and the size 

(i.e., the number of nodes) of the largest instance success- 

fully solved (‘largest’) for each formulation (I–III) solved 

per solver type. ‘Single’ means one-salesman-at-each-depot, 

and ‘multiple’ means multiple-salesmen-at-each-depot. The 

number before ‘/’ is the number of failed test instances out 

of the 160 that were performed. 

Solver Single Multiple 

Failed Largest Failed Largest 

I CPLEX 9/160 124 37/160 124 

Gurobi 12/160 170 40/160 124 

CBC 49/160 76 92/160 42 

II CPLEX 14/160 124 8/160 124 

Gurobi 15/160 124 11/160 124 

CBC 51/160 64 90/160 42 

III CPLEX 30/160 124 25/160 124 

Gurobi 24/160 124 19/160 124 

CBC 52/160 64 90/160 42 
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s
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f  
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m

urobi Optimizer 5.6, and CBC 2.9.4 from COIN-OR (called via the

PTI-Toolbox). 

The results for the one-salesman-at-each-depot problem are

eported in Tables B.7 –B.9 , followed by the results for the

ultiple-salesmen-at-each-depot problem in Tables B.10 –B.12 of

ppendix B . To reduce the chance that the outcome is affected by

andom events, we chose to run each test case a few times and

ake the average value of the computation times. Tables B.10 –B.12

f Appendix B contain the average CPU time to find the optimal

olution over 10 runs for each small test case, and over 5 runs for

ach large test case, for each number of depots D . A time limit of

 hours is imposed on each test run, and all reported times are in

econds. 

.2. Comparison of problem formulations 

When a test case is solved to optimality within 3 hours wall-

lock time, we register this time. Otherwise, we mark the test case

s failed. A comparison is made between the three formulations on

oth the average CPU times and the number of failed cases. 

.2.1. Comparison of average CPU times 

To compare the three problem formulations, we have split the

enchmark into four sets: 

• Small problems with a single salesman per depot 
• Large problems with a single salesman per depot 
• Small problems with multiple salesmen per depot 
• Large problems with multiple salesmen per depot 

The first 16 test cases ( burma14 up to ry48p ) are considered

mall problems, while the last 16 test cases ( hk48 up to ftv170 )
re included in the large problems. Table 4 shows the relative in-

rease in CPU time needed to compute the solution compared to

ormulation I. For the FMmTSP with a single salesman per depot,

ormulation I was the fastest on average; for the variant with mul-

iple salesmen per depot formulation II outperformed the other

wo. Although formulation II uses a few more binary values than

ormulation I, it cannot be concluded from our results that the use of

ore binary variables results in larger computation times . 

Notice that the difference between formulations I and II is small

I is less than 1.5 times faster than II for all averages), but formu-

ation III is significantly slower on average when using CPLEX or

BC, even for the small instances (where memory use is not yet

xpected to be a problem); for Gurobi the differences are smaller.

evertheless, we conclude that the use of node current formulations

re expected to be faster than multi-commodity-based formulations

or fixed-destination problems . 

.2.2. Comparison of failed test cases 

Next we compare how often a test case did not reach an op-

imal solution in time. We distinguish between the results for a

ingle salesman per depot and for multiple salesmen per depot.
Please cite this article as: M. Burger et al., A node current-based 2-in
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or each formulation we provide the number of failed cases (per

olver) in Table 5 . 

From Table 5 , it is clear that formulation II demonstrates

tronger ability to solve large test cases. Formulation III also per-

orms rather well in solving large test cases when there are mul-

iple salesmen at each depot, but it has problems for cases with

 single salesman per depot. CPLEX and Gurobi seem to perform

qually well, but also here it becomes clear that CBC cannot match

he other two solvers. 

. Concluding remarks 

In this paper we have provided a brief overview of cycle elim-

nation and imposement constraints, and 2-index formulations for

he fixed-destination multi-depot travelling salesman problem. A

ovel cycle imposement constraint formulation has been proposed

ased on node currents, which can be seen as the dual of the node

otentials of Miller et al. (1960) . The main advantage of the novel

ormulation over the existing formulations is the reduced number

f binary and continuous variables needed to formulate the prob-

em. Furthermore, the novel formulation can be used to find solu-

ions where several salesmen can be idle. 

The comparisons of the formulations have been performed us-

ng three state-of-the-art MILP solvers. Similar to the node poten-

ial constraints (11) , the node current constraints can be used to

asily formulate (variants of) fixed-destination multi-depot prob-

ems. This approach is suitable for the initial development of for-

ulations; once it is confirmed that the formulation provides the

esired solutions, one can use more sophisticated techniques, e.g.

enders’ decomposition ( Benders, 1962 ), to reformulate the prob-

ems and solve them faster. The proposed formulation was able

o solve problems up to 170 nodes using general MILP solvers,

nd ( Bekta ̧s , 2012 ) found optimal solutions up to 170 nodes us-

ng Benders’ decomposition. By using a branch-and-cut algorithm

 Benavent & Martínez, 2013 ) even managed to solve (symmetric)

roblems up to 255 cities and 25 depot to optimality within rea-

onable time. It would be interesting to see whether improve-

ents can be obtained by using the node currents combined with

.g. Benders decomposition or user-specified cuts. Furthermore, the

roposed formulation for FMmTSP can be applied to other schedul-

ng and routing problems. 

ppendix A. Allocation of salesmen over depots 

A three-step procedure is described to allocate salesmen for the

ultiple-salesmen-at-each-depot scenario. 
dex formulation for the fixed-destination multi-depot travelling 
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Step 1 : Compute the number of cities C = L − D, and generate

the total number of salesmen to be assigned to the D depots 

S = min 

(
max 

(
D + 1 , 

⌊ 

L 

3 

⌋ )
, C − 1 

)
We choose 

⌊
L 
3 

⌋
for the total number of salesmen (as long as it lies

in the interval [ D + 1 , C − 1] ), since too few salesmen are insuf-

ficient to consider the multiple-salesmen-at-each-depot scenario,

and too many salesmen can lead to idle salesmen in the solution. 

Step 2 : Assign x = 

⌊ 

S 

D 

⌋ 

salesmen to each depot, and calculate

the number of the unassigned salesmen 

r = S − x · D 

Step 3 : Assign one salesman to the depots with index 

i = 1 + (k − 1) 
⌊ 

D 

r 

⌋ 

∀ k ∈ { 1 , 2 , . . . , r} 
Since the number of remaining salesmen calculated at Step 2 is
Table B.6 

Summary of optimal values obtained using three solvers and three fo

Test case One-salesman-at-each-depot 

D = 2 D = 3 D = 4 D = 5 D = 6 

burma14 3098 3033 2993 3480 3728 

ulysses16 6986 6326 6097 5809 8862 

gr17 2054 1819 1945 1684 1815 

br17 36 23 16 6 34 

gr21 2716 2662 2674 2684 3228 

ulysses22 6445 6282 6435 6147 6855 

fri26 930 939 940 932 903 

bayg29 1596 1598 1641 1583 1608 

bays29 1988 1993 2018 1972 1966 

ftv33 1302 1291 1292 1237 1214 

ftv35 1457 1453 1429 1396 1421 

ftv38 1521 1510 1518 1455 1512 

dantzig42 661 633 645 611 631 

swiss42 1272 1262 1274 1277 1257 

ftv44 1611 1602 1608 1569 1582 

ry48p 14,097 14,318 14,366 14,306 14,146

hk48 11,439 11,358 11,222 11,285 11,310 

eil51 426.358 423.013 424.452 431.966 423.28

berlin52 7464.36 7591.94 7528.97 7501.83 7733.9

ft53 6926 7029 6880 6842 6896 

ftv55 1590 1585 1594 1623 1584 

ftv64 1782 1835 1798 1770 1846 

st70 671.792 667.264 659.917 654.026 655.04

eil76 542.325 541.004 540.436 555.114 551.76

gr96 54,795 55,076 54,047 54,653 54,999

kroB100 21954.8 21698.8 21695.2 21680.6 21415.

kroC100 20504.7 20400.2 20308.2 20321.8 20434

kroD100 21,493 – – 20792.4 –

kroE100 21896.9 21932.2 21700.5 21865 21386.

eil101 641.711 637.213 636.541 641.933 640.55

kro124p 36,316 36,244 36,252 36,041 36,427

ftv170 2755 2740 – 2744 –

Table B.7 

Mean CPU time (in seconds) obtained from the CPLEX solver, for sc

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.50 0.19 0.19 0.31 0.40 

II 0.21 0.25 0.16 0.23 0.15 

III 0.34 0.18 0.34 0.26 0.24 

I ulysses16 1.16 0.30 0.17 0.23 392.31 

II 0.57 0.31 0.23 0.23 0.32 

III 21.30 0.37 0.35 0.37 0.43 
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lways less than D , all salesmen have been assigned to a depot

fter performing the three-step procedure. Moreover, the last step

lso ensures a fair allocation of the remaining salesmen. 

ppendix B. List of results 

The optimal values for the benchmark described in

ppendix A are provided in Table B.6 . These values are ob-

ained by summarising all instances successfully solved by three

ILP solvers (CPLEX, Gurobi, and CBC) and three formulations

nder a 3-hour time limit. A complete list of tables with the

verage CPU time (in seconds) for all test instances solved by

he three afore mentioned formulations, and three different MILP

olvers is presented in Tables B.7 –B.12 . The fastest instances are

ndicated by the bold-faced numbers, and the symbol “–” is used

o denote the failed test instances. 
rmulations. 

Multiple-salesmen-at-each-depot 

D = 2 D = 3 D = 4 D = 5 D = 6 

3253 3079 3039 3696 3944 

8324 6873 6101 5816 9774 

2374 2056 2182 1818 1953 

39 23 16 6 34 

3623 3454 3932 3004 3360 

12520 6769 7701 6386 6888 

1442 1385 1143 1093 1061 

1955 1972 1962 1867 1851 

2471 2469 2476 2369 2351 

1831 1732 1536 1402 1490 

2157 1999 1801 1918 1735 

2297 2158 1962 1941 1966 

1202 1016 977 795 813 

2054 1982 1640 1583 1604 

2744 2232 2546 2205 2171 

 23,925 22,637 19,560 18,506 19,378 

18,259 19,258 14,989 14,697 13,717 

 712.039 624.878 554.267 549.326 558.837 

7 11896.5 14113.6 9754.51 9460.11 94 4 4.27 

12211 12012 9376 8857 8943 

2905 2715 2865 2666 2279 

3052 3067 2722 2935 2601 

6 1423.55 1166.02 1023.21 1029.61 884.627 

1 941.31 898.858 866.489 864.664 795.141 

 130,169 126,797 101,320 88,968 92,425 

8 47224.9 40190.7 38024.8 32726.8 33430.7 

 49947.6 39621.9 40213.4 35719.9 32695.2 

60888.7 47247.5 36873.3 36597.8 37458.2 

3 46588.1 42585.9 35477.3 33493 37063.9 

4 1353.47 1414.26 1098.31 973.447 973.366 

 69,844 67,146 – 58,912 53,206 

– – – – –

enario one-salesman-at-each-depot. 

Test case D = 2 D = 3 D = 4 D = 5 D = 6 

hk48 4.30 32.14 1.34 0.45 1.97 

8.06 33.00 2.26 0.79 1.54 

114.81 25.21 10.05 4.00 36.04 

eil51 1.86 2.25 1.88 13.28 2.18 

2.48 1.69 2.49 9.05 1.54 

70.44 29.06 15.39 152.15 26.55 

( continued on next page ) 

dex formulation for the fixed-destination multi-depot travelling 
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Table B.7 ( continued ) 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I gr17 0.36 0.36 0.33 0.20 0.25 berlin52 1.71 5.58 1.22 1.65 28.17 

II 0.32 0.27 0.29 0.29 0.21 1.58 5.98 1.85 2.68 9.55 

III 1.39 0.35 0.32 0.26 0.34 264.08 27.24 14.69 12.67 110.63 

I br17 0.39 0.35 0.25 0.30 0.30 ft53 2.31 67.92 2.04 2.17 1.36 

II 0.43 0.39 0.26 0.24 0.28 4.54 20.50 3.84 2.72 1.67 

III 1.09 0.61 0.25 0.34 0.31 866.05 1024.84 52.29 46.70 18.25 

I gr21 0.23 0.25 0.24 0.25 1.79 ftv55 1.19 1.08 1.51 5.87 12.48 

II 0.23 0.20 0.19 0.21 0.22 1.93 1.37 2.34 2.37 0.85 

III 0.41 0.28 0.27 0.34 0.38 4.13 9.30 17.74 7.31 28.34 

I ulysses22 0.44 0.28 0.51 0.30 3.62 ftv64 1.68 7.01 2.51 1.30 14.36 

II 0.55 0.37 0.59 0.41 0.38 1.56 13.07 1.67 3.09 3.09 

III 1.86 0.40 0.92 0.64 0.73 21.04 59.80 22.06 9.54 1107.09 

I fri26 0.54 0.45 0.41 0.51 0.33 st70 107.87 45.59 146.17 106.91 25.82 

II 0.63 0.77 0.55 0.48 0.52 253.25 82.69 171.05 122.70 35.93 

III 4.68 0.92 1.17 1.34 1.35 527.36 92.28 698.98 448.71 131.62 

I bayg29 0.38 0.57 3.01 0.36 1.15 eil76 10.83 11.52 5.57 3034.21 1060.30 

II 0.45 0.67 2.72 0.33 0.86 14.81 15.08 8.32 25.54 6.06 

III 2.62 1.18 9.71 0.85 2.98 71.22 126.64 120.74 4 4 4.12 98.20 

I bays29 0.45 0.39 1.30 0.30 0.46 gr96 52.71 232.55 23.88 158.68 405.34 

II 0.40 0.53 1.46 0.30 0.75 126.06 129.70 51.32 97.39 181.88 

III 1.87 0.73 9.85 0.75 1.77 366.28 2506.87 342.34 – –

I ftv33 0.71 2.76 0.53 0.38 0.32 kroB100 715.08 253.79 10249.36 159.69 418.96 

II 0.91 1.04 0.73 0.40 0.32 1100.80 223.31 – 265.20 915.75 

III 73.28 1.52 1.43 1.77 1.33 – 2192.25 – – –

I ftv35 0.49 0.54 0.37 0.34 0.31 kroC100 1079.32 198.89 175.56 759.76 2653.58 

II 0.57 0.51 0.44 0.29 0.37 2032.30 299.03 199.45 632.67 1007.79 

III 2.18 1.24 1.61 1.68 1.70 6054.43 7025.49 – – –

I ftv38 0.77 0.60 0.47 0.48 0.62 kroD100 – – – 8739.53 –

II 0.62 0.59 0.70 0.34 0.67 2995.81 – – – –

III 3.86 1.63 1.70 1.83 3.15 6718.39 – – – –

I dantzig42 3.25 0.75 1.80 0.87 0.61 kroE100 440.11 222.39 254.65 676.93 44.51 

II 3.96 1.40 2.25 1.55 0.66 798.82 238.56 163.79 946.49 –

III 36.54 2.06 6.93 6.10 5.23 – – – – –

I swiss42 1.50 1.13 1.42 1.75 1.27 eil101 78.90 26.07 133.80 71.34 71.21 

II 1.84 1.65 2.41 1.92 1.87 338.65 33.88 143.56 117.90 58.03 

III 33.78 6.40 6.61 16.46 9.48 6377.94 – – – –

I ftv44 1.17 0.67 1.27 0.58 0.95 kro124p 25.41 34.76 22.02 11.13 33.28 

II 0.99 0.96 0.82 0.58 0.62 1154.00 2196.56 – – –

III 3.26 1.99 6.16 4.47 3.79 1151.96 2195.11 – – –

I ry48p 1.52 7.30 8.02 5.60 6.46 ftv170 – – – – –

II 2.32 13.40 11.75 9.48 1.23 – – – – –

III 37.00 32.92 36.70 44.33 11.96 – – – – –

Table B.8 

Mean CPU time (in seconds) obtained from the Gurobi Optimizer, for the scenario one-salesman-at-each-depot. 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.07 0.07 0.04 0.22 0.68 hk48 7.17 86.31 2.55 0.23 3.10 

II 0.13 0.06 0.09 0.10 0.04 3.66 107.00 2.22 0.41 5.32 

III 0.14 0.08 0.08 0.14 0.09 4.27 105.61 5.51 0.59 4.86 

I ulysses16 2.05 0.15 0.05 0.07 461.46 eil51 2.69 3.97 0.99 32.10 4.03 

II 1.02 0.26 0.04 0.08 0.27 1.86 2.89 1.53 38.29 2.56 

III 1.59 0.27 0.11 0.24 0.26 3.86 2.78 4.56 21.79 3.32 

I gr17 0.19 0.14 0.18 0.03 0.11 berlin52 2.06 10.88 1.94 1.84 49.24 

II 0.35 0.17 0.28 0.05 0.10 1.10 8.64 2.86 3.90 21.73 

III 1.08 0.27 0.40 0.08 0.18 3.50 29.66 6.74 5.95 29.06 

I br17 1.14 0.78 0.21 0.11 0.33 ft53 28.29 56.11 22.43 19.16 36.85 

II 2.71 0.43 0.24 0.22 0.32 7.13 46.61 43.77 11.04 6.97 

III 2.52 0.70 0.32 0.19 0.43 28.82 39.73 35.95 111.07 11.81 

I gr21 0.13 0.06 0.16 0.07 3.04 ftv55 1.84 1.69 3.10 10.94 18.37 

II 0.21 0.09 0.23 0.10 0.07 1.60 2.28 2.12 2.32 1.59 

III 0.20 0.20 0.29 0.45 0.11 4.15 3.98 4.17 4.12 4.33 

I ulysses22 0.46 0.18 0.42 0.23 3.19 ftv64 1.84 4.22 2.56 1.46 21.49 

II 0.67 0.22 0.47 0.55 0.46 1.62 4.96 1.68 3.17 5.62 

III 0.70 0.31 1.26 0.47 0.48 1.95 12.61 4.02 2.82 8.09 
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Table B.8 ( continued ) 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I fri26 0.40 0.72 0.97 0.51 0.38 st70 636.50 241.88 1133.48 379.68 29.23 

II 0.76 0.98 1.01 0.67 0.48 – 261.64 1506.71 475.47 84.12 

III 0.87 1.24 1.30 1.36 0.80 1595.30 307.17 4683.77 1098.81 189.27 

I bayg29 0.73 0.55 4.45 0.47 2.27 eil76 9.48 11.43 4.68 10547.85 2205.36 

II 0.88 0.99 3.41 1.23 1.03 6.85 10.49 2.50 14.06 2.51 

III 0.95 1.13 5.70 1.18 2.07 13.21 27.92 4.30 48.19 8.06 

I bays29 0.38 0.57 2.81 0.42 1.32 gr96 349.41 957.70 97.39 362.25 329.48 

II 0.54 1.09 2.92 0.40 1.00 209.83 376.86 128.38 443.95 666.62 

III 0.69 0.96 3.84 0.30 1.26 259.31 1196.67 124.34 439.49 –

I ftv33 0.55 0.85 0.91 0.37 0.17 kroB100 6013.72 420.09 – 1580.18 2098.60 

II 2.12 1.17 1.18 0.87 0.27 5341.60 1115.09 – 1071.68 4772.04 

III 1.85 1.24 3.19 0.65 0.46 – 1648.63 – – –

I ftv35 0.64 0.63 0.31 0.23 0.18 kroC100 – – 319.52 2720.50 –

II 1.17 0.97 0.26 0.37 0.24 – 2370.29 308.45 5469.71 –

III 1.27 0.71 0.54 0.63 0.49 5304.34 – 2094.30 – –

I ftv38 0.94 0.79 0.62 0.27 0.71 kroD100 – – – – –

II 1.31 1.22 0.61 0.26 1.55 8377.61 – – – –

III 1.00 0.64 1.09 0.51 0.98 10581.25 – – – –

I dantzig42 4.67 0.77 2.39 1.84 0.56 kroE100 – 1189.62 800.29 6460.41 303.35 

II 4.98 2.17 1.27 1.55 0.63 10475.87 1143.61 675.25 8845.54 525.64 

III 4.77 2.44 1.52 1.59 0.98 – 3482.50 1186.41 – –

I swiss42 2.37 1.45 1.70 2.80 1.49 eil101 229.58 317.55 242.76 140.20 189.96 

II 2.33 1.77 3.20 3.63 2.89 125.33 26.50 126.40 157.08 47.72 

III 5.27 5.63 4.97 5.00 5.09 421.55 17.71 356.45 – –

I ftv44 0.61 0.81 1.51 0.32 0.83 kro124p 30.17 254.38 24.80 16.82 269.64 

II 1.23 0.97 0.81 0.85 0.62 74.38 336.59 77.14 – –

III 0.76 1.25 1.48 1.02 1.02 74.46 337.20 77.08 – –

I ry48p 3.35 8.76 14.18 6.82 7.52 ftv170 32.24 26.90 – 24.86 –

II 2.84 14.54 77.48 14.98 2.16 – – – – –

III 3.89 18.89 17.72 29.67 3.86 – – – – –

Table B.9 

Mean CPU time (in seconds) obtained from the CBC solver, for scenario one-salesman-at-each-depot. As the largest test case that CBC can solve for 

this scenario is eil76 , we have truncated the table to make it more concise. 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.79 0.41 0.39 1.55 4 9.4 8 dantzig42 133.87 19.19 30.06 23.48 4.92 

II 0.78 0.44 0.57 0.70 0.75 356.50 15.07 89.85 128.51 5.17 

III 2.55 0.72 0.99 0.55 0.60 – 75.43 339.87 126.71 70.08 

I ulysses16 33.17 1.97 0.32 0.51 6772.37 swiss42 27.77 79.93 21.82 41.73 16.61 

II 11.18 0.86 0.42 0.72 1.35 45.40 25.81 60.22 48.75 27.37 

III 28.21 1.67 0.35 1.78 2.42 598.24 68.51 72.12 132.23 102.62 

I gr17 1.19 0.65 0.52 0.32 0.45 ftv44 23.38 5.13 237.46 8.41 20.77 

II 1.68 1.04 1.05 0.50 0.92 9.08 9.95 24.70 13.49 11.77 

III 3.56 1.36 0.82 1.31 1.04 65.52 38.73 30.67 106.26 104.84 

I br17 599.43 46.45 0.54 0.58 33.90 ry48p 20.75 1775.21 729.87 222.86 1302.83 

II 618.82 23.23 0.83 0.89 1.00 216.58 321.03 4956.45 348.75 17.26 

III 1995.82 31.05 2.50 1.91 1.10 577.59 875.94 1188.08 1306.19 220.15 

I gr21 0.64 0.54 0.99 1.05 25.46 hk48 333.89 – 75.05 6.73 43.39 

II 0.77 0.65 1.89 1.00 0.84 406.06 7452.41 152.95 11.88 11.87 

III 1.32 4.39 0.96 3.52 0.79 2509.90 7621.84 51.88 33.55 174.17 

I ulysses22 5.87 0.93 5.31 1.64 70.65 eil51 51.23 34.59 44.43 935.99 247.47 

II 6.23 1.34 2.27 2.25 5.73 47.27 21.94 36.56 853.15 14.74 

III 31.50 4.18 16.83 7.09 6.54 2116.50 70.25 76.43 490.93 101.66 

I fri26 1.99 6.20 7.97 9.51 3.93 berlin52 13.95 129.52 27.39 106.86 3666.44 

II 7.10 8.37 14.70 7.04 7.99 11.10 362.80 53.40 86.09 548.08 

III 140.05 11.24 11.38 12.23 16.64 9137.46 1977.97 135.74 355.46 423.07 

I bayg29 5.31 8.11 67.46 3.75 15.35 ft53 159.03 – 9468.16 121.40 85.57 

II 8.51 15.64 67.00 2.06 23.53 152.91 527.96 – 130.30 24.68 

III 29.43 13.70 104.49 8.47 24.26 – 1926.62 1004.57 439.18 85.58 

I bays29 4.46 11.88 42.83 3.24 78.02 ftv55 16.37 14.44 36.75 259.52 614.58 

II 7.22 16.14 22.97 2.20 11.73 116.94 27.70 22.57 31.31 15.38 

III 24.90 10.34 37.78 12.36 9.43 2539.82 86.93 86.52 337.31 314.63 

I ftv33 12.61 10.90 7.60 2.83 1.52 ftv64 36.75 192.80 627.11 27.18 879.96 

II 14.44 15.71 17.40 9.78 3.04 93.52 225.63 104.97 34.65 98.39 

III 319.31 15.58 22.57 59.12 64.11 2311.47 211.36 318.15 650.50 770.92 

I ftv35 6.44 3.34 4.68 2.33 3.18 st70 – – – – –

II 21.41 5.17 5.55 3.45 3.83 – – – – –

III 177.13 13.57 17.46 17.31 30.32 – – – – –

I ftv38 7.81 4.58 6.90 3.13 9.90 eil76 1246.47 402.44 69.14 – –

II 15.28 8.56 8.37 4.55 6.24 – – – – –

III 39.18 39.36 8.82 40.58 12.55 – – – – –
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Table B.10 

Mean CPU time (in seconds) obtained from the CPLEX solver, for the scenario multiple-salesmen-at-each-depot. 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.26 0.16 0.21 0.48 0.54 hk48 1.92 – 0.66 1.28 1.97 

II 0.22 0.29 0.23 0.22 0.16 2.06 3.36 1.10 1.16 1.85 

III 0.29 0.27 0.26 0.28 0.21 4.26 9.11 5.00 11.19 19.29 

I ulysses16 6.91 0.23 0.14 0.33 1037.06 eil51 1.01 0.82 0.49 7.12 83.13 

II 0.20 0.27 0.17 0.24 0.25 2.22 2.01 0.43 3.84 1.45 

III 0.26 0.33 0.23 0.32 0.39 4.44 11.14 2.04 27.18 14.75 

I gr17 0.36 0.33 0.33 0.18 0.23 berlin52 1.15 3.85 2.05 1.63 588.83 

II 0.42 0.29 0.35 0.23 0.23 0.83 1.69 2.57 1.65 2.68 

III 0.44 0.56 0.40 0.37 0.31 6.12 16.82 13.62 11.57 37.65 

I br17 0.35 0.28 0.27 0.20 0.28 ft53 – 2305.90 2.07 96.97 2.40 

II 0.32 0.29 0.21 0.24 0.25 1.93 336.30 4.82 5.75 2.66 

III 0.45 0.33 0.27 0.37 0.39 44.95 31.36 49.45 16.60 10.19 

I gr21 0.40 0.45 91.74 0.29 1.30 ftv55 4.16 – 2627.80 – 1158.37 

II 0.22 0.27 0.21 0.20 0.17 0.98 2.57 5.96 19.94 1.93 

III 0.35 0.27 0.25 0.28 0.28 10.74 23.80 7.58 21.99 9.09 

I ulysses22 0.31 0.25 0.42 0.49 2.12 ftv64 1.20 1.10 91.39 2.79 –

II 0.29 0.31 0.44 0.36 0.31 0.56 1.69 1.14 0.78 4.01 

III 0.43 0.31 0.82 0.64 0.63 1.70 5.86 4.56 5.50 38.52 

I fri26 0.38 0.73 0.42 0.45 0.44 st70 – – 27.42 – 120.53 

II 0.40 0.34 0.44 0.59 0.42 22.42 10.68 27.66 8.85 49.54 

III 0.59 0.69 1.06 0.89 1.04 50.52 101.39 159.51 144.87 343.32 

I bayg29 0.28 0.27 0.38 0.66 0.49 eil76 3.66 51.39 2.50 – –

II 0.40 0.37 0.64 0.31 0.65 4.72 1.38 2.74 2.37 2.96 

III 0.42 0.41 1.28 0.82 1.45 32.96 7.01 67.98 45.81 43.07 

I bays29 0.25 0.33 0.55 1.04 0.55 gr96 136.12 – – – –

II 0.21 0.32 0.61 0.46 0.41 70.37 32.37 5271.15 216.89 400.03 

III 0.33 0.62 1.36 0.74 1.54 430.93 739.18 3902.65 – –

I ftv33 5.32 0.55 0.39 0.19 0.67 kroB100 11.80 42.46 – 154.68 –

II 0.38 0.74 0.44 0.27 0.42 19.18 29.77 324.27 232.42 1647.09 

III 0.88 1.19 0.98 0.53 2.17 85.15 477.31 – – –

I ftv35 0.34 0.69 0.43 1.38 0.28 kroC100 35.14 – 5360.70 – –

II 0.43 0.48 0.41 0.34 0.26 32.06 575.64 178.00 70.52 253.15 

III 0.51 0.88 1.03 1.11 0.79 340.68 1199.03 – – –

I ftv38 88.85 0.64 5.76 0.55 3.32 kroD100 – – 33.37 – –

II 0.28 0.73 0.47 0.54 0.55 62.94 226.68 18.18 6993.22 157.58 

III 0.59 1.95 2.90 1.27 3.07 312.03 923.29 – – –

I dantzig42 0.47 0.43 1.23 0.86 0.72 kroE100 271.89 – 6675.83 – –

II 0.41 0.34 2.64 1.26 0.57 143.93 138.07 242.76 8398.49 58.45 

III 1.13 1.21 11.39 2.73 11.66 479.70 858.16 – – –

I swiss42 1.41 554.87 1.73 10.63 13.95 eil101 – – 23.64 – –

II 0.49 2.11 1.61 1.05 1.49 45.14 19.24 16.01 52.81 18.28 

III 1.20 11.93 10.22 2.41 21.49 350.63 357.35 – – –

I ftv44 1233.89 1.32 1968.36 0.54 1.11 kro124p 4.03 5.51 – 2768.97 39.11 

II 0.35 0.51 1.06 0.64 0.40 185.08 1410.72 – – –

III 1.29 1.21 4.36 2.84 1.44 184.42 1412.88 – – –

I ry48p 1.25 3691.25 16.56 52.54 – ftv170 – – – – –

II 2.06 3.36 4.29 1.34 1.21 – – – – –

III 7.43 12.42 28.10 8.19 11.64 – – – – –

Table B.11 

Mean CPU time (in seconds) obtained from Gurobi Optimizer, for the scenario multiple-salesmen-at-each-depot. 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.04 0.04 0.04 0.52 0.61 hk48 2.21 – 0.48 0.99 2.71 

II 0.04 0.05 0.05 0.05 0.04 1.23 1.52 0.68 2.05 2.84 

III 0.05 0.07 0.09 0.09 0.08 3.14 5.46 1.74 2.10 3.04 

I ulysses16 6.14 0.14 0.02 0.11 1054.08 eil51 0.83 2.58 0.50 17.94 164.84 

II 0.08 0.09 0.04 0.17 0.24 0.79 0.95 0.30 2.86 1.70 

III 0.06 0.23 0.07 0.27 0.30 2.27 2.03 0.63 6.36 2.04 

I gr17 0.16 0.13 0.21 0.03 0.12 berlin52 1.70 3.96 3.41 2.09 1013.67 

II 0.25 0.25 0.30 0.05 0.07 1.48 1.61 3.19 2.79 4.77 

III 0.79 0.39 0.37 0.12 0.16 13.82 2.04 8.20 3.48 14.19 

I br17 0.30 0.07 0.11 0.03 0.27 ft53 6739.40 – 20.23 133.20 16.10 

II 0.52 0.07 0.13 0.04 0.11 6.66 65.09 55.45 9.69 21.73 

( continued on next page ) 

Please cite this article as: M. Burger et al., A node current-based 2-index formulation for the fixed-destination multi-depot travelling 

salesman problem, European Journal of Operational Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.07.056 

http://dx.doi.org/10.1016/j.ejor.2017.07.056


14 M. Burger et al. / European Journal of Operational Research 0 0 0 (2017) 1–15 

ARTICLE IN PRESS 

JID: EOR [m5G; August 4, 2017;3:49 ] 

Table B.11 ( continued ) 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

III 1.20 0.11 0.17 0.10 0.26 3.40 33.89 106.06 64.09 16.45 

I gr21 0.12 0.36 105.00 0.18 1.38 ftv55 6.28 – 3558.18 – 5136.91 

II 0.22 0.31 0.17 0.11 0.07 1.04 3.00 6.88 32.69 5.11 

III 0.35 0.36 0.14 0.22 0.17 1.88 3.56 2.48 6.14 2.65 

I ulysses22 0.26 0.13 0.33 0.34 3.75 ftv64 0.31 1.59 67.29 3.23 –

II 0.14 0.08 0.65 0.35 0.29 0.26 0.68 1.10 2.24 5.07 

III 0.20 0.12 0.83 0.55 0.51 0.79 1.35 1.89 1.27 6.26 

I fri26 0.31 1.55 0.72 0.48 0.35 st70 – – 97.57 – 878.29 

II 0.43 0.63 0.56 0.78 0.91 56.77 16.84 223.73 29.98 2060.49 

III 0.41 1.00 0.68 0.65 0.51 54.24 45.69 161.56 135.73 1274.02 

I bayg29 0.07 0.21 0.45 0.57 0.77 eil76 1.82 50.45 7.30 – –

II 0.11 0.22 0.90 0.49 1.23 2.82 1.30 1.68 2.06 1.40 

III 0.21 0.39 1.45 0.81 0.91 5.60 0.79 6.57 5.28 2.98 

I bays29 0.14 0.24 0.60 1.67 1.35 gr96 266.89 – – – –

II 0.13 0.35 1.01 0.71 1.01 560.08 32.93 – 1685.22 344.50 

III 0.29 0.43 1.15 0.68 0.92 277.99 50.03 658.95 1055.28 –

I ftv33 3.85 0.57 0.57 0.11 0.99 kroB100 40.80 68.72 – 546.46 –

II 0.65 0.87 0.46 0.19 1.08 17.19 147.15 805.84 1425.71 –

III 1.51 1.37 0.75 0.29 0.69 39.94 256.84 – – –

I ftv35 0.52 0.74 0.68 1.86 0.30 kroC100 141.21 – – – –

II 0.65 0.49 0.47 0.25 0.23 46.60 675.18 697.69 245.39 2182.16 

III 0.39 0.58 0.83 0.50 0.33 103.36 933.91 848.71 – –

I ftv38 89.25 1.20 11.33 0.57 3.15 kroD100 – – 57.62 – –

II 0.59 0.66 1.43 0.26 1.01 125.71 1042.29 33.18 – 262.00 

III 0.66 0.81 1.14 0.46 0.66 388.16 903.60 67.51 – –

I dantzig42 0.33 0.25 1.03 1.62 1.38 kroE100 810.50 – – – –

II 0.39 0.68 1.68 0.90 1.94 322.32 373.75 732.20 – 84.27 

III 0.64 0.89 1.06 1.44 1.40 526.81 421.44 387.38 – –

I swiss42 1.00 750.93 2.02 17.79 15.17 eil101 – – 19.28 – –

II 0.40 3.11 2.93 0.78 3.01 31.80 13.56 3.77 48.96 11.67 

III 1.15 9.78 4.58 2.55 4.63 41.80 66.04 5.72 – –

I ftv44 2981.10 3.50 2019.71 1.48 3.72 kro124p 10.60 11.34 – – 192.54 

II 0.34 0.84 1.86 1.21 0.47 9.69 10.08 81.48 – –

III 0.91 0.61 1.05 0.93 0.55 9.73 10.02 81.07 – –

I ry48p 1.85 3081.24 22.57 112.09 – ftv170 – – – – –

II 3.87 2.89 3.07 1.71 1.08 – – – – –

III 2.57 3.14 4.28 2.26 1.80 – – – – –

Table B.12 

Mean CPU time (in seconds) obtained from the CBC solver, for the scenario multiple-salesmen-at-each-depot. As the largest test case 

that CBC can solve for this scenario is swiss42 , we have truncated the table to make it more concise. 

Type Test case D = 2 D = 3 D = 4 D = 5 D = 6 Test case D = 2 D = 3 D = 4 D = 5 D = 6 

I burma14 0.40 0.42 0.40 2.45 15.72 bayg29 0.60 1.03 5.67 76.38 26.24 

II 0.37 0.45 0.53 0.52 0.43 0.70 1.29 7.53 2.39 10.80 

III 0.80 0.48 0.95 0.54 0.71 5.24 8.82 8.73 19.08 22.07 

I ulysses16 96.08 0.64 0.32 0.46 – bays29 0.64 1.89 3.03 66.69 12.45 

II 0.71 0.80 0.44 0.60 1.62 1.58 1.42 6.97 1.70 3.29 

III 0.92 1.38 0.48 0.74 0.93 4.26 2.09 10.62 11.07 17.07 

I gr17 1.63 0.82 6.61 0.33 0.50 ftv33 121.84 3.58 8.75 1.61 39.19 

II 2.60 0.93 2.42 0.54 0.86 2.57 5.49 3.86 2.17 7.21 

III 13.86 2.66 1.29 1.28 1.30 17.29 16.61 9.76 1.39 29.50 

I br17 4.84 0.79 0.53 0.33 6.96 ftv35 1.97 67.43 8.85 86.78 1.45 

II 5.41 0.68 1.31 0.50 0.75 3.51 4.45 6.10 4.80 2.28 

III 39.25 1.35 1.62 0.50 1.83 3.03 20.41 26.28 52.22 1.21 

I gr21 0.87 2.79 2147.21 1.95 50.15 ftv38 2896.58 15.63 277.51 3.42 439.83 

II 1.07 1.35 1.30 0.92 0.76 5.05 18.83 12.75 4.86 6.74 

III 3.46 1.18 1.19 2.35 0.49 9.85 25.90 62.36 2.68 25.37 

I ulysses22 1.26 1.18 4.80 1.47 96.28 dantzig42 3.84 6.43 20.49 44.62 15.31 

II 1.00 1.71 3.96 1.51 6.83 7.19 5.12 24.19 13.97 18.96 

III 6.85 3.00 6.94 2.65 12.51 17.89 5.83 54.73 120.24 82.66 

I fri26 3.18 17.85 11.20 5.32 5.82 swiss42 35.59 – 73.03 765.07 305.13 

II 1.88 5.37 11.99 6.44 2.94 6.65 78.95 37.61 8.37 239.81 

III 37.25 18.56 8.25 8.83 11.83 30.72 96.86 85.50 10.98 98.13 
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