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Abstract. In this paper, we show that the deflation method can be viewed as a possible
implementation of the CG method with multilevel preconditioner. Further, we demonstrate
efficiency and robustness of different implementations of multilevel preconditioners with
different ”coarse grid” spaces by solving a simple model problem.

1 INTRODUCTION

This paper concerns the solution of linear systems

Au = b, u, b ∈ Rn, A ∈ Rn×n, (1)

which arise e.g. from the finite element analysis of stationary potential flow, porous media
flow or elasticity problems in a finite element space Vh isomorphic with Rn. In this paper,
we shall assume that A is a symmetric positive definite (SPD) matrix. The system (1)
is typically large and ill-conditioned, so that an iterative solution method with suitable
preconditioner will be a proper choice of solver.

The construction of efficient preconditioners frequently requires separate handling of
local and global phenomena, like smoothing and coarse grid correction in the multigrid
methods and two-level Schwarz preconditioners.

There are different possible combinations of a local preconditioner M and a global
preconditioner B involving additive, multiplicative and symmetric multiplicative combi-
nation techniques. In the context of Schwarz preconditioners, we speak also about hybrid
preconditioners when a local additive one-level Schwarz preconditioner M is combined
multiplicatively with the coarse grid correction.

The described preconditioners are introduced in Sections 2 and 3. We shall show that
all these preconditioners including their inexact variants arising from an inexact solution
of the subproblems can be implemented in either preconditioned conjugate gradient (CG)
or generalized preconditioned conjugate gradient (GPCG) methods. More detail can be
found in [4, 6].
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A special implementation of the symmetric multiplicative preconditioner with exact
solution of the coarse grid subproblem and projection of the solution to the coarse grid
space as an initial guess was introduced in [10], see also [15]. This implementation,
described in Section 4, allows to save substantially the computational work and provide
us a bridge to the idea of deflation.

The deflation idea, cf. [13, 8, 2, 9] and others, is described in Section 5, where we also
show equivalence of the algorithm from the previous section with an implementation of
the deflation method.

In the last section, we present numerical results concerning application of the described
preconditioners and different choices of the coarse grid space. We compare both efficiency
of the described methods and their robustness with respect to the inexact solution of
the coarse grid problem. This comparison complements the results from recent papers
[11, 12]. More details will be provided in a future paper.

The notation 〈u, v〉 = uT v for u, v,∈ Rn is used throughout the paper.

2 MULTILEVEL PRECONDITIONERS

Frequently, we are interested in a combination of preconditioners with different features,
e.g. a local preconditioner M and a global preconditioner B with properties specified in
Lemma 1. This combination can be done additively or multiplicatively, see the following
definitions:

additive preconditioner GA : r 7−→ g

(i) g = Br + Mr,

multiplicative preconditioner GM1 : r 7−→ g

(i) g1 = Br,

(ii) g = g1 + M(r − Ag1),

symmetric multiplicative preconditioner GSM : r 7−→ g

(i) g1 = Br,

(ii) g2 = g1 + M(r − Ag1),

(iii) g = g2 + B(r − Ag2).

These preconditioners can be written in a matrix form as:

GA = B + M, (2)

GM1 = B + M(I − AB), (3)

GSM = (I −BA)M(I − AB) + 2B −BAB. (4)

It is easy to show the following properties of the introduced preconditioners.
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Lemma 1 If M is symmetric positive definite and B is symmetric positive semidefinite,
then GA and GSM are symmetric positive definite. On the other hand, GM1 is nonsym-
metric.

Proof It is obvious that GA is SPD, GM1 is nonsymmetric and GSM is symmetric positive
semidefinite. If 〈GSMv, v〉 = 0 then simultaneously

〈M(I − AB)v, (I − AB)v〉 = 0 (5)

and
〈(2B −BAB)v, v〉 = 0 . (6)

The first identity implies (I − AB)v = 0 and consequently

(B −BAB)v = 0, 〈(I − AB)v, A−1v〉 = 0, i.e. 〈Bv, v〉 = 〈A−1v, v〉 .
Thus, if (5) and (6) hold, then

〈(2B −BAB)v, v〉 = 〈Bv, v〉 = 〈A−1v, v〉
which implies v = 0.

2

Note that the symmetry and positive definiteness are arguments for using GA and
GSM preconditioners. On the other hand, there is different computational work involved
in the preconditioners, for example zero, one and two matrix-vector multiplications with
matrix A are involved in GA, GM1 and GSM , respectively. From the point of view of a
compromise between the amount of labour and efficiency, preconditioner with one matrix-
vector multiplication with A could be most favourable.

Frequently, the global preconditioner is constructed with the aid of a coarse grid finite
element space VH ⊂ Vh and prolongation restriction operators. This construction can be
also generalized and rewritten into an algebraic form as follows. Let

V0 = span {z1, . . . , zr} , zi ∈ Rn

i.e.
V0 = {v = Zw,w ∈ Rr}, (7)

where Z ∈ Rn×r is a full rank matrix with columns z1, . . . , zr , r ¿ n . Then

B = ZA−1
0 ZT , A0 = ZT AZ. (8)

Note that in this case,

BAB = ZA−1
0 ZT AZA−1

0 ZT = ZA−1
0 ZT = B, (9)

therefore
GSM = (I − P0)M(I − P T

0 ) + B (10)

where P0 = BA is an A−orthogonal projection operator V → V0.
In the sequel, we will assume that B possess the properties (8)–(10).

3



Radim Blaheta

3 IMPLEMENTATION OF THE PRECONDITIONERS

Symmetric positive definite preconditioners GSM and GA can be implemented into the
standard PCG algorithm cf. [1].

Further, we also consider the case of inaccurate implementation of B = ZA−1
0 ZT , which

means that we use B̃ instead of B, where

B̃w = v

is computed in the following steps

1. w1 = ZT w,

2. w2 is obtained by solving A0w2 = w1 by an inner CG method with the accuracy
‖A0w2 − w1‖ ≤ ε0‖w1‖,

3. v = Zw2.

given u0

r0 = b− Au0

g0 = Gr0

v0 = g0

for i = 0, 1, . . . until ‖ri‖ ≤ ε ‖ b ‖
ui+1 = ui + αiv

i

ri+1 = ri − αiAvi

gi+1 = Gri+1

vi+1 = gi+1 +
∑min(i,k)

k=1 β
(k)
i+1 vi+1−k

end

Figure 1: GPCG[m] algorithm with a preconditioner G.

In this case, it is possible to apply the CG method without a guarantee of convergence
or a generalized CG methods [1], [14], [4], which guarantees the convergence. In this

paper, we shall use the GPCG[m] algorithm, see Fig. 1, where αi and β
(k)
i are defined as

follows

αi = 〈ri, gi〉/〈Avi, vi〉 , (11)

β
(k)
i+1 = (〈gi+1, ri+2−k〉 − 〈gi+1, ri+1−k〉)/(〈gi+1−k, ri+1−k〉) . (12)

The GPCG[m] method is described and investigated e.g. in [4]. In this paper, we shall
use the simplest case m=1. For an SPD preconditioner, GPCG[m] is equivalent to the
CG method.
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When using the GPCG method, the local preconditioner M can also involve inexactly
solved subproblems, but this issue will not be discussed here.

On the other hand, we shall utilize the fact that the GPCG method allows to apply also
nonsymmetric preconditioner GM1 and its inexact version. It can be useful to mention
the spectral relation between the spectrum σ(GSMA) and σ(GM1A).

Lemma 2 σ(GSMA) = σ(GM1A)

Proof

I −GM1A = I − P0 −MA(I − P0) = (I −MA)(I − P0)

I −GSMA = I − P0 − (I − P0)MA(I − P0)

= (I − P0)(I −MA)(I − P0)

Thus (see Lemma 3), σ(I −GSMA) = σ(I −GM1A) and σ(GSMA) = σ(GM1A).
2

Lemma 3 For any two n× n matrices X, Y, it holds σ(XY ) = σ(Y X).

Proof Let λ ∈ σ(XY ), then there is u 6= 0, XY u = λu. Therefore, Y XY u = λY u.
Now, if Y u 6= 0 then Y u is an eigenvector of Y X and λ ∈ σ(Y X). If Y u = 0 then
0 = XY u = λu, which implies λ = 0. But then also 0 ∈ σ(Y X) with the corresponding
eigenvector v = X−1u for X regular or v 6= 0, Xv = 0 for X singular. In the same way,
we can prove the opposite inclusion σ(Y X) ⊂ σ(XY ).

2

4 A NONSYMMETRIC IMPLEMENTATION OF GSM

In the case of exact computation of subproblems, the computational work of GSM can
be substantially reduced if we start from a special initial guess

u0 = Bb + v, where v ∈ range(I − P0).

The idea of reduction, introduced in [10], uses the following properties.

Lemma 4 Consider the PCG method with the preconditioner GSM . If
u0 = Bb + (I − P0)w, where w ∈ Rn, then for i = 0, 1, . . . we get

Bri = 0 , P0g
i = 0 , P0v

i = 0.

Proof Let i = 0, then
Br0 = B(b− ABb− A(I − P0)w) = 0,
g0 = GSMr0 = (I −BA)M(I − AB)r0, i.e P0g

0 = 0,
v0 = g0 ⇒ P0v

0 = 0.
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u0 = Bb
r0 = b− Au0

g0 = GM2r
0

v0 = g0

for i = 0, 1, . . . until ‖ri‖ ≤ ε ‖ b ‖
ui+1 = ui + αiv

i

ri+1 = ri − αiAvi

gi+1 = GM2r
i+1

vi+1 = gi+1 + βiv
i

end

Figure 2: Special implementation of PCG with GSM ≡ GM2.

Now we can continue by induction.

Bri+1 = B(ri − αAvi) = Bri − αP0v
i = 0,

gi+1 = GSMri+1 = (I −BA)M(I − AB)ri+1, i.e P0g
i+1 = 0,

vi+1 = gi+1 + βiv
i ⇒ P0v

i+1 = 0.
2

If Br = 0 then application of the preconditioner GSM is realized essentially in two
steps like a multiplicative preconditioner GM2

multiplicative preconditioner GM2 : r 7−→ g

(i) g2 = Mr

(ii) g = (I −BA)g2

i.e.
GM2 = (I −BA)M = (I − P0)M. (13)

The whole implementation gives the algorithm shown in Fig. 2, where
αi = 〈ri, gi〉/〈Avi, vi〉 and βi = 〈gi+1, ri+1〉/〈gi, ri〉.

5 DEFLATION METHOD

We shall show that the algorithm presented in the previous section, represents an
implementation of the deflation method, which can be described as follows.

Let us split the exact solution u∗ = A−1b of (1) into two components

u∗ = u0 + ū, u0 = P0u
∗, ū = (I − P0)u

∗ (14)

Then the first component is directly computable because

u0 = P0A
−1b = BAA−1b = Bb . (15)
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For the second component, we have

Aū = A(I − P0)A
−1b = (I − P T

0 )b = b− Au0 = bD . (16)

As AP0 = ABA = P T
0 A and PD = I−P T

0 is again a projection, a multiplication of (16) by
P 2

D and equality PDA = A(I−P0) shows that ū is a solution of the following transformed
system

Ãū = bD, Ã = (I − P0)
T A(I − P0). (17)

The matrix Ã is symmetric and positive semidefinite with a ”large” nullspace null(Ã) =
range(P0), the dimension of null(Ã) is equal to r. The system (17) is consistent and the

effective condition number effcond(Ã), which is defined as a ratio of largest and smallest
positive eigenvalue, is expected to be less than cond(A). Therefore, the system (17) can
be solved again by the CG method and the convergence of CG is expected to be faster
than for the original system. Owing these properties, it may be convenient to solve (1)
by the following three step deflation procedure:

(i) compute u0 = Bb,

(ii) solve Ãū = b− Au0,

(iii) get the solution of (1) in the form u = u0 + (I − P0)ū.

If M = EET is a SPD preconditioner than a transformed solution û = E−1ū can found
by application of the standard CG procedure to the transformed system

Âû = b̂D, (18)

Â = ET (I − P0)
T A(I − P0)E,

b̂D = ET bD = ET (b− Au0)

ū = (I − P0)Eû.

It leads to an implementation of the deflation method, which can be seen in Fig. 3 (left).
Note that accuracy of solving (18) can be controlled by the following overall condition.

‖b− Au‖ = ‖b− Au0 − A(I − P0)Eû‖ ≤ ε ‖ b ‖. (19)

A transformation of variables

u = (I − P0)Eû

v = (I − P0)Ev̂

r̂ = ET r

ŵ = ET w

with the following relations then makes it possible to transform the implementation of
the deflation method to an algorithm, which can be seen in Fig. 3 (right).
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u0 = Bb u0 = Bb
solve (17) by CG with transformed CG with
accuracy condition (19) accuracy condition (20)

û = 0 u = 0

r̂ = b̂D = ET (b− Au0) r = b− Au0

v̂ = r̂ g = (I − P0)Mr
v = (I − P0)EET r = g

ρ = 〈r̂, r̂〉 ρ = 〈r, g〉
for i = 0, 1, . . . for i = 0, 1, . . .

ŵ = Âv̂ w =Av
α = ρ/〈ŵ, v̂〉 α = ρ/〈w, v〉
û← û + αv̂ u← u + αv
r̂ ← r̂ − αŵ r ← r − αw

g = (I − P0)Mr
β = 1/ρ β = 1/ρ
ρ = 〈r̂, r̂〉 ρ = 〈r, g〉
β = ρβ β = ρβ
v̂ ← r̂ + βv̂ v ← g + βv

end end

u = u0 + (I − P0)û u = u0 + u

Figure 3: Deflation methods: basic (left) and transformed (right).

1. By induction, we can show that the identity BE−T r̂ = 0, and consequently
(I − P T

0 )E−T r̂ = E−T r̂, holds for the residuals r̂ of the algorithm in Fig. 3 - left.

i = 0 ⇒ BE−T r̂0 = B(b− ABb) = 0

i ≥ 0 ⇒ BE−T r̂i+1 = BE−T r̂i − αBE−T Âv̂ = −αP0(I − P0)Ev̂ = 0.

2. ρ = 〈r̂, r̂〉 = 〈ET r, ET r〉 = 〈r, EET r〉 = 〈r,Mr〉 = 〈(I − P T
0 )E−T r̂, Mr〉

= 〈r, (I − P0)Mr〉 = 〈r, g〉
3. w = E−T ŵ = E−T ET A(I − P0)

2Ev̂ = Av

4. 〈ŵ, v̂〉 = 〈ET (I − P0)
T A(I − P0)Ev̂, v̂〉 = 〈Av, (I − P0)Ev̂〉 = 〈w, v〉

5. (I − P0)Ev̂i+1 = (I − P0)Er̂i + β(I − P0)Ev̂i

⇒ vi+1 = (I − P0)EET ri + βvi, i.e. v ← g + βv
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The accuracy of in the transformed algorithm is controlled by the following overall
condition, which is equivalent to (19),

‖b− A(u0 + u)‖ ≤ ε ‖ b ‖. (20)

Note that in the transformed algorithm, we add u0 to u in the end, but we can do
this addition also in the beginning. Then our algorithm will be exactly the same as the
algorithm from Section 4 (Fig. 2), which is a special implementation of GSM .

Note that another transformation

r = ET (I − P0)
T r̂

w = ET (I − P0)
T ŵ

û = Eu

v̂ = Ev

leads to another transformed algorithm with the preconditioner GD, which is defined as
follows (cf. [9], [11] and [12]):

deflation preconditioner GD : r 7−→ g

(i) w = (I − AB)ri,

(ii) g = Mw,

i.e.
GD = M(I − AB) = GT

M2. (21)

The global and local preconditioners are in GD and GM2 applied in a reverse order. It
seems that the arrangement from GM2 has some benefits, at least it does not require
additional projections.

For the relations among spectral properties of the introduced preconditioners, we refer
to the papers [9], [11] and [12].

The main result from [12] states that

if σ(GDA) = {0, . . . 0, µr+1, . . . , µn} then σ(GSMA) = {1, . . . 1, µr+1, . . . , µn} .

6 NUMERICAL EXPERIMENTS

The efficiency of various preconditioners described in this paper can be compared by
solving a simple model problem

∂2u

∂x2
1

+
∂2u

∂x2
2

= f in Ω = 〈0, 2〉×〈0, 3〉 ,
u = 0 on ∂Ω ,
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where f = 7.5 + 2.5x1 + 1.1x2.
The problem is discretized by the linear triangular finite elements on a uniform grid

with the mesh size h = 1/30.
The preconditioner M is defined as one-level additive Schwarz preconditioner defined

by decomposiion of Ω into eight subdomains Ωk = 〈0, 2〉×〈xk, xk+1〉 of the same size xk+1−
xk = 13h with the overlap δ = 2h. The subproblems corresponding to the subdomains
are solved exactly.

The preconditioner B is defined by the subspace V0 ⊂ Vh, which is defined either by
discretization of the boundary value problem on coarser grid with mesh size H = 6h or
by regular aggregation of clusters of 6× 6 nodes. The corresponding subproblem is either
solved by a direct method (MATLAB backslash procedure) or by inner CG with relative
accuracy ε0 as described in Section 3. Note that ε0 = 0 indicates exact solution.

The required numbers of iterations for the accuracy ε = 10−4 and various precondi-
tioners can be seen in Tables 1 and 2. The preconditioners are used within the GPCG[1]
method.

ε0 u0 GA GSM GM1 GM2 GD

0 0 11 8 8 – –

0 Bb 9 8 8 8 8

10−1 0 11 8 8 – –

10−1 B̃b 9 8 8 div div

10−1 Bb 9 8 8 div div
...

10−4 B̃b 9 8 8 div div

10−4 Bb 9 8 8 8 8

10−5 B̃b 9 8 8 8 8

10−5 Bb 9 8 8 8 8

Table 1: Numbers of iterations for GPCG[1] and various preconditioners.
The preconditioner B is constructed via coarse grid H = 3h. div > 199.

7 CONCLUDING REMARKS

The aim of this paper is to clear up relations among various multilevel and deflation
preconditioners and show their efficiency. The latter issue still needs more work to be
done. The present conclusions from the numerical experiments are the following.

• The deflation method can be viewed as an implementation of the CG with GSM

preconditioning. This implementation requires a special initial guess and provides
a decrease of the computational work.
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ε0 u0 GA GSM GM1 GM2 GD

0 0 23 16 16 – –

0 Bb 22 16 17 16 17

10−1 0 24 16 17 – –

10−1 B̃b 24 16 17 div div

10−1 Bb 25 16 17 div div
...

10−4 B̃b 22 16 17 div div

10−4 Bb 22 16 17 div div

10−5 B̃b 22 16 17 16 18

10−5 Bb 22 16 17 16 17

Table 2: Numbers of iterations for GPCG[1] and various preconditioners.
The preconditioner B is constructed via aggregation 3× 3. div > 199.

• Another cheaper modification of GSM is the GM1 preconditioner. According to
the presented numerical experiments, GM1 seems to be much more robust with
respect to the inexact solution of the coarse grid problem. On the other hand, it is
known that efficiency of GM1 decreases in the case of less regular problems, as e.g.
problems with discontinuous coefficients, see [5]. A comparison of preconditioners
in such cases has to be done.

• The second coarse grid space, which was considered in the numerical experiments,
use the aggregation technique. It was first introduced in the multigrid context, see
e.g. [3] and [7], but it was also intensively studied in the context of deflation, see
[13] and [9].
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