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Abstract

Accurate measurement of blood flow in deep tissue is essential for diagnosing and monitoring a wide
range of clinical conditions, yet current imaging methods are often invasive, limited to snapshots, or im-
practical for continuous bedside use. Diffuse correlation spectroscopy (DCS) offers a non-invasive
optical alternative, measuring blood flow dynamics through temporal fluctuations in scattered light.
However, modelling DCS signals remains computationally challenging, particularly when accounting
for structured flow and tissue complexity.

This thesis investigates a coupled simulation framework that integrates particle dynamics from COM-
SOL with optical propagation computed via a modified Born series solver (WaveSim). The framework
was used to test three validation cases: temperature-dependent Brownian motion, laminar flow, and
parameter extraction through exponential fitting of the autocorrelation function.

The results demonstrate that the framework captures the qualitative behaviour of DCS. Brownian mo-
tion produced linear mean squared displacement (MSD) curves, with faster optical decorrelation at
higher temperatures, while laminar flow introduced quadratic MSD growth and accelerated decay. How-
ever, quantitative agreement with theoretical scaling was not achieved. A key limitation was identified
as a pixel-quantisation effect: particle displacements per frame were typically far smaller than the 0.2
um WaveSim pixel size, rendering most motion invisible to the solver. This suppressed decorrela-
tion, distorted temperature and flow scaling, and prevented unbiased parameter extraction. Additional
constraints included limited statistical averaging, absence of phase tracking, reliance on decay rates
without correlation diffusion equation (CDE) modelling, and high computational costs.

The findings confirm that the COMSOL-Born framework provides proof of concept for simulating DCS
but requires significant refinement for quantitative accuracy. Future work should focus on subpixel ren-
dering, improved temporal sampling, integration of CDE solutions, and domain decomposition. With
these improvements, the framework has the potential to advance real-time, non-invasive monitoring of
blood flow in clinical settings.
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Introduction

Accurate blood flow measurement is essential for understanding and monitoring various physiological
and pathological states, particularly within complex biological tissues such as the brain and muscle.
Real-time blood flow monitoring is critical for diagnosing medical conditions such as stroke, neurologi-
cal disorders, cardio-cerebral diseases, brain health, wound healing, and skeletal diseases. Currently,
available tools for blood flow measurements are mostly Doppler ultrasound-based, requiring a highly
Skilled operator to operate and monitor. Medical imaging scanners such as xenon-enhanced computed
tomography (XeCT), dynamic susceptibility contrast magnetic resonance imaging (DSC-MR)I), arterial
spin labelling MRI (ASL-MRI), positron emission tomography (PET) and single photon emission com-
puted tomography (SPECT) can map cerebral perfusion. However, these scanners are limited, as they
can only provide a snapshot observation and require moving patients to imaging suites. These scan-
ners are impractical and inappropriate for continuous monitoring. Additionally, techniques such as MR,
PET and CT require a supine scan and PET, SPECT and CT have a risk of radiation exposure. Another
perfusion technique is Laser Doppler Flowmetry, however, this technique is limited to only superficial
tissue blood flow [1]. A technique needs to be developed that is free from these limitations and can
non-invasively monitor microvascular bloodflow in deep tissue.

Diffuse Correlation Spectroscopy (DCS) is a non-invasive optical technique that measures blood flow
in deep tissues by capturing fluctuations in light intensity as red blood cells (RBCs) scatter light, pro-
ducing a characteristic autocorrelation decay signal that reflects blood flow dynamics [2]. The real-time
nature of DCS and its portability makes it an appealing alternative to traditional imaging techniques
like MRI and CT., especially for bedside or resource-limited settings [3]. Despite its promise, DCS
faces challenges in computational modelling, particularly when dealing with complex, structured flow
regimes such as laminar flow in large blood vessels, where current models fall short in both accuracy
and efficiency [4].

In DCS modelling, Monte Carlo (MC) simulations have long been the gold standard for accurately cap-
turing photon transport within biological tissue due to their stochastic nature, which closely simulates
the random scattering of photons by RBCs [5]. MC'’s strength lies in its ability to handle complex tis-
sue geometries, making it suitable for layered or heterogeneous tissue where photon scattering varies
significantly [2]. However, the main limitation of MC in DCS applications is its computational intensity.
Running MC simulation in real-time is challenging due to the high computational demand, especially
as tissue complexity increases [6](Yuan and Fang, 2020). Despite advances in GPU acceleration and
hybrid MC models that combine mesh- and voxel-based methods to improve computational efficiency,
MC methods remain largely impractical for real-time clinical monitoring [7].

Similarly, the Finite Element Method (FEM) has been applied to DCS modelling for its ability to solve
partial differential equations governing photon diffusion, making it particularly useful for simulating light
propagation in media with defined boundaries, such as layered tissue [8]. FEM offers flexibility and
can handle boundary conditions well, which is advantageous in heterogeneous media where struc-



tural differences impact light transport. However, FEM struggles with convergence and accuracy in
large-scale simulations, particularly in highly scattering or absorbing media like biological tissue. Addi-
tionally, FEM’s computational demands still hinder real-time application in DCS, limiting its feasibility for
dynamic blood flow measurement in clinical settings. In response to these limitations, hybrid methods
that combine elements of MC and FEM have been developed, aiming to leverage the strength of each
while mitigating their weaknesses [6]. These methods offer improved efficiency in photon transport
simulations; however, they still lack specific adaptions for structured flow environments, like laminar
flow, which are critical for accurate DCS signal modelling in certain clinical applications. The modified
Born series, as introduced by Osnabrugge et al (2016) [9], offers a promising alternative to MC and
FEM for light propagation in complex, inhomogeneous media. By building on the foundational Born
series approximation for scattering, the modified version incorporated additional convergence factors
that enhance computational efficiency without sacrificing accuracy. Mathematically, the modified Born
series introduced a correction term to the initial Born approximation, which accelerates convergence in
media with high scattering coefficients by selectively refining the scattering events that contribute most
to the overall signal. This modification allows the Born series to account for variations in scattering
intensity across large, layered tissue structures, significantly improving convergence where MC and
FEM might diverge or require excessive computations. For DCS applications, the modified Born series
holds particular relevance, as it allows for accurate blood flow modelling in homogeneous tissue with
computationally efficient convergence even in high-scattering environments. This improvement is criti-
cal for achieving real-time DCS flow modelling, as the modified Born series reduces the computational
resources required, enabling DCS to become more practical in clinical environments.

The aim of this thesis is to evaluate whether a coupled COMSOL—Born series framework can repro-
duce the characteristic autocorrelation dynamics of Diffuse Correlation Spectroscopy and, in particular,
whether it can separate Brownian and flow contributions to blood-flow—related motion. To address this,
the thesis proceeds as follows. Chapter 2 reviews the theoretical background of DCS, including light
transport in tissue, analytical models, and computational approaches such as Monte Carlo, FEM, and
the Born series. Chapter 3 describes the methodology of the coupled COMSOL—-Born framework, in-
cluding the simulation of particle trajectories, wave propagation, and autocorrelation fitting. Chapter 4
presents the results of Brownian motion and laminar flow tests, comparing them with theoretical pre-
dictions. Chapter 5 discusses the key findings, limitations, and implications for DCS modelling. Finally,
Chapter 6 concludes the thesis by summarising the main contributions and outlining directions for future
research.



Theory

This chapter reviews the theoretical foundations and recent advancements in Diffuse Correlation Spec-
troscopy (DCS) and related optical modelling techniques. The aim is to establish the current state of
knowledge in diffuse optics, highlight methodological developments in modelling light transport and
particle dynamics, and identify the limitations that remain unresolved. By systematically reviewing
analytical models, numerical methods such as Monte Carlo and finite element approaches, and the
recently introduced modified Born series, the chapter provides the context needed to assess existing
challenges in accurately simulating DCS signals. This review forms the basis for a gap analysis, which
in turn motivates the research question addressed in this thesis.

2.1. Diffuse Optics

Diffuse optics is a promising field that utilises light to measure tissue properties non-invasively. One
technique for spatially mapping tissue characteristics is Near-Infrared Spectroscopy (NIRS), which mea-
sures optical properties such as scattering and absorption. Scattering occurs when a photon’s energy
is insufficient to excite an electron to a higher energy state. Instead, the atom’s electron cloud os-
cillates and re-radiates the photon in a random direction. Scattering can be classified into three main
types: Rayleigh scattering (for particles smaller than the wavelength), Mie scattering (for particles larger
than the wavelength), and inelastic scattering, where the photon’s wavelength changes due to energy
transfer. NIRS typically uses coherent light in the near-infrared range because this wavelength region
exhibits the lowest absorption in biological tissues. This allows for deeper light penetration, enabling
the measurement of tissue properties. An example of tissue absorption spectra is shown in Figure 2.1.
A complementary technique to NIRS is Diffuse Correlation Spectroscopy (DCS), which provides ad-
ditional insights into tissue dynamics, such as blood flow. Together, these methods form a powerful
toolbox for investigating tissue characteristics and functionality. While powerful in conjunction, they
require separate instrumentation, adding difficulty in bedside monitoring and portability [5].
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Figure 2.1: Absorption spectra of various biological chromophores at concentrations typically seen in tissue. [10]

2.2. Diffusion Correlation Spectroscopy

Diffuse Correlation Spectroscopy (DCS) is a non-invasive optical technique used to measure blood
flow in biological tissues. It relies on the interaction of coherent near-infrared (NIR) light with moving
red blood cells (RBCs) within a highly scattering medium. When NIR light is introduced into a tissue, it
undergoes multiple scattering events before being detected. The motion of RBCs causes temporal fluc-
tuations in the scattered light intensity, which can be quantified using an autocorrelation decay function.
A schematic of this process can be seen in Figure 2.2. By analysing the decay rate of this autocorre-
lation, DCS can estimate the blood flow index, providing valuable information on microvascular blood
flow in real-time [2].
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Figure 2.2: (a) The schematic of DCS measurements for semi-infinite geometry. A highly coherent laser is used as a source at
a separation distance p from the detector. The detector measures the backscattered light; (b) Light intensity fluctuation
measured over time due to photons having a longer time-of-flight before arriving at the detector caused by the moving

scatterers; (c) The autocorrelation diagram showing the different decay rates between a fast and slow blood flow.[1]
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In 2001, Yodh’s research team was the first to formally introduce the term "Diffuse Correlation Spec-
troscopy” to describe a technique for analysing light scattering in biological tissues [11]. Since then,
the term DCS has become widely used because it offers a mathematical framework that explains how
light interacts with moving particles, like red blood cells, within the tissue. This framework relies on a
simplified version of the radiative transfer equation known as the diffuse approximation. The diffusion
approximation is a popular method in biomedical optics because it effectively models light transport
in highly scattering media, making it suitable for estimating blood flow in tissues through DCS mea-
surements. The development of the diffuse correlation theory by Boas and Yodh was an important
milestone in DCS theory. This theory provided the first comprehensive model to predict particle move-
ment in highly scattered media by analysing the behaviour of diffuse speckle fields [12] [13]. This theory
became the foundation for the DCS model that is now used to estimate the blood flow index (BFi), a key
parameter to measure in vivo microvascular blood flow [14]. Over the last two decades, DCS technol-
ogy has seen significant advancement and validation. Today, it is used to perform non-invasive blood
flow (BF) measurements in deep tissues. The technology has been used in areas such as the skin,
muscle [15], breast tumour [16], and brain [17] [18] [19]. A schematic for the approaches is shown in
Figure 2.3.

The deepest recorded measurements were 2 centimetres below the surface with a source-detector
separation of 4 cm [20]. This capability has led to the widespread application of DCS in clinical and
research settings, including cerebral blood flow monitoring, muscle perfusion, and tumour evaluation
[21]1[22] [23]. Furthermore, the integration of DCS with Near-Infrared Spectroscopy (NIRS) and Diffuse
Optical Spectroscopy (DOS) has expanded its potential by enabling simultaneous monitoring of blood
flow and tissue oxygenation. Initially demonstrated in rat brains [11], this combined approach has since
been applied to adult humans [24], further enhancing the versatility of DCS.

2.2.1. Analytical models

The development of analytical models in Diffuse Correlation Spectroscopy has evolved significantly,
enabling more precise and adaptable blood flow measurements within biological tissues. DCS origi-
nated with models based on the assumption of a semi-infinite homogeneous medium, which treated
biological tissues as boundless structures with uniform optical properties. These early models utilised
the diffusion approximation to the radiative transfer equation to describe photon propagation in tissue.
This approximation simplifies photon transport by assuming isotropic scattering and a direct, uniform
decay in photon density with distance, allowing for basic blood flow quantification [12]. However, while
efficient, this approach was limited in its ability to capture the complexities of biological tissues, which
often exhibit layered structures and boundaries that significantly impact photon scattering [25].

Researchers developed layered tissue models that account for distinct optical properties across tissue
layers to address these limitations, enhancing DCS’s sensitivity to blood flow in structured tissues. Two-
layer models were introduced for applications where tissue structures, such as scalp and brain layers,
could be differentiated, particularly in neonatal brain monitoring. Subsequently, three-layer models
were created to accommodate additional structures, such as the skull, thereby improving the accuracy
of cerebral blood flow measurements in adults. These layered models allow DCS to produce more
accurate blood flow measurements by incorporating more realistic representations of tissue structure
[17] [26]. A representation of layered models is shown in Figure 2.4, and the resulting temporal field
autocorrelation plot is shown in Figure 2.5 using Continuous Wave-DCS.
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Figure 2.3: (a) Schematic of an optical-MRI measurement. The calf (with the optical probe) was then placed into the MRI knee
coil. The optical probe in the MRI room was connected to the DCS instrument in the control room by 12-meter-length fibres
through a port in a magnetic-field-shielded wall [15].; (b) Diagram of DCS working on a breast [16]; (c) DCS sensor was
attached to the infant’s head for blood flow monitoring [18].
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Figure 2.5: Representation of temporal field autocorrelation g, (7) for a medium with source-detector separation of p = 10mm
and p = 30mm and a source of A = 785nm. (a) Semi-infinite medium, where the D} is varied between 1E-6 to 1E-8 mm?/s;
(b) 2-layer medium, with D} = 1E-6 mm? /s and varying DZ; (c) 3-three layer model, with D} and DZ = 1E-6 mm? /s and
varying D} between 1E-6 to 1E-8 mm?/s. [1]

Building upon these static models, DCS techniques were advanced to include time-dependent or time-
domain models. Time-domain DCS (TD-DCS) captures the arrival times of photons scattered through
tissue, providing additional depth sensitivity by reducing contamination from superficial layers and iso-
lating signals from deeper tissues. This is achieved by selecting photons with longer path lengths, which
are more likely to penetrate the tissue deeper, thus enhancing the measurement accuracy [25]. In their
work, Sutin et al. introduced this novel method by utilising the time domain to simultaneously obtain the
temporal point spread function to quantify tissue properties and the autocorrelation function to deter-
mine BFi. The arrival times of photons are used to differentiate between short and long photon paths,
to be able to determine BFi at different depths. The research derived a path length-dependent nor-
malised field temporal autocorrelation function, showing that the autocorrelation decay rate increases
linearly with photon path length. The authors showed that narrowing the time gate width increases the
correlation amplitude, improving the signal-to-noise ratio (SNR) of the blood flow measurement. They
also confirmed the linear relationship between the decay rate of the autocorrelation function and pho-
ton path length, validating the theoretical predictions. The TD-DCS system demonstrated the ability
to distinguish between blood flow in the scalp and brain by analysing early and late-arriving photons.
During hypercapnic challenges, the system detected a 55% increase in cerebral blood flow, consistent
with expected physiological responses. While this method is promising, TD-DCS requires advanced
instrumentation, such as single-photon avalanche diodes (SPADs) and time-correlated single-photon
counting (TCSPC) systems, making it a technically demanding and more expensive approach, often
limiting its clinical accessibility. The recent introduction of Frequency-Domain DCS (FD-DCS) by Moka
et al. (2022) represents a further evolution in DCS technology [26]. FD-DCS utilises light sources mod-
ulated at specific frequencies, allowing simultaneous assessment of both dynamic (blood flow) and
static (tissue absorption and scattering) optical properties. By extending and generalising conventional
DCS into the frequency domain, this novel approach measures a frequency-dependent intensity au-
tocorrelation function, which is then fitted to a frequency-domain solution of the correlation diffusion
equation to estimate tissue optical parameters. To verify the functionality of FD-DCS, measurements
were performed on two tissue-simulating phantoms; the results are shown in Figure 2.6. The results
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demonstrated that FD-DCS successfully retrieved the static and dynamic optical properties with errors
comparable to or lower than those of Fast DCS and FD-DOS. Specifically, for the first phantom, the
estimated static optical properties deviated by less than 9%, while the dynamic flow index was found
to be on the order of 1e-8 cm? /s, consistent with expected values. For the second phantom, FD-DCS
retrieved the static optical properties with a higher error of up to 29%, which was attributed to volu-
metric uncertainties in phantom preparation rather than limitations of the method itself. This approach
provides a comprehensive picture of tissue hemodynamics by capturing blood flow indices alongside
information about tissue composition. FD-DCS is especially valuable for applications requiring contin-
uous monitoring, as it enhances DCS’s ability to differentiate between static and dynamic scatterers
within the tissue. Despite these advantages, FD-DCS introduces additional complexity to DCS systems,
as it requires high-speed detectors and carefully modulated light sources, which can pose challenges
for portable and cost-effective deployment.
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Figure 2.6: Experimental results: Frequency dependent DCS intensity auto-correlation functions (circles) fit to a Frequency
dependent DCS model at multiple modulation frequencies. Optical properties are retrieved with ~ 20% error [26]

Other developments in DCS have involved combining it with Near-Infrared Spectroscopy and Diffuse
Optical Spectroscopy, creating hybrid systems capable of simultaneously monitoring tissue blood flow
and oxygenation. This combination was first applied in animal studies [11] and later adapted for human
brain monitoring [24], enabling more comprehensive monitoring of tissue perfusion and oxygenation
in clinical settings like neurosurgery and intensive care. Additionally, deep-learning algorithms have
been explored to enhance DCS data interpretation, aiming to improve the accuracy and speed of blood
flow measurements in real time. These computational methods are particularly promising for adapting
DCS to more complex flow environments, making DCS a more versatile and accessible tool in clinical
settings [26].

2.2.2. Blood flow

A primary application of diffuse correlation spectroscopy lies in measuring blood flow, achieved specif-
ically by estimating the blood flow index (BFi). Derived from DCS, the BFi is a critical parameter that
reflects microvascular blood flow within biological tissues, calculated by analysing the temporal fluctua-
tions in scattered light caused by the movement of red blood cells (RBCs) within tissue. This approach
builds upon diffusing-wave spectroscopy principles, where light scattering patterns reveal the dynamics
of scatterers [3]. By quantifying these dynamics, the BFi enables DCS to assess blood flow in real-time,
a capability of significant value in both research and clinical settings [14].

The study by Boas et al is a seminal contribution to the field, providing both theoretical and practical in-
sights into DCS measurements. This work establishes a critical link between the DCS signal and blood
flow, providing a robust theoretical foundation and practical tools for advancing noninvasive tissue per-
fusion measurement [14]. By elucidating the dominance of diffusive RBC dynamics and validating the
linearity of BFi with absolute blood flow, the study paves the way for more accurate and reliable clinical
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applications of DCSs for RBCs, accounting for both convective motion and shear-induced diffusion.
The study captures the complex interplay of photon migration and RBC dynamics by simulating scat-
tering events across varying vessel densities and geometries. The authors derive and validate explicit
relationships between the RBC diffusion coefficient and absolute tissue blood flow, linking these to the
widely used correlation diffusion equation (CDE). They also test the impact of factors such as vessel
diameter, hematocrit, and scattering properties on the BFi. The findings reveal that shear-induced
diffusion of RBCs overwhelmingly dominates the autocorrelation decay observed in typical DCS mea-
surements, contrary to earlier assumptions favouring convective dynamics. This insight has significant
implications for interpreting BFi in clinical applications. The study demonstrates that BFi is linearly pro-
portional to absolute blood flow under standard experimental conditions. However, the proportionality
is modulated by factors such as vessel diameter and hematocrit, underscoring the importance of these
variables in accurate flow estimation.

Recent studies, such as that by Zhu et al. (2020) [27], have further validated the complexity of RBC
motion by conducting phantom experiments simulating microvascular blood flow environments. Their
work explored the influence of both Brownian motion and random ballistic flow on the DCS signal, es-
tablishing a hybrid model that incorporates these two types of RBC movement. The results can be
seen in Figure 2.7. The results highlighted that without applied pressure, the Brownian motion fits
the curve perfectly, and the random ballistic flow model underestimates the decay. The results also
showed that, under increased hydraulic pressure, RBC motion becomes more complex, with both flow
types underestimating the decay rate. The proposed hybrid model fits the correlation curve perfectly,
having both flow types contributing to the DCS signal. The proposed hybrid model offers a more re-
alistic framework for interpreting DCS data under dynamic conditions, emphasising the importance of
adapting DCS models to various flow regimes.
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The theoretical model proposed by Sakadzi¢, Boas, and Carp (2017) refines Diffuse Correlation Spec-
troscopy (DCS) by incorporating both diffusive and advective red blood cell (RBC) motions, offering a
more precise interpretation of blood flow measurements [3]. Using a combination of Monte Carlo (MC)
simulations and theoretical derivations, the study demonstrates that shear-induced RBC diffusion is
the dominant contributor to the DCS autocorrelation decay, particularly in small and medium-sized ves-
sels where random motion exceeds the influence of structured, advective flow. The authors derived a
correlation diffusion equation (CDE) and a correlation transfer equation (CTE) to model light transport
through heterogeneous vascular networks, accounting for variations in vessel size, flow velocity, and
RBC displacement. Their simulations confirmed that, for typical source-detector separations (1-3 cm),
the observed DCS signal decay is primarily driven by diffusion, aligning with previous experimental
findings. The advective motion was found to play a minor role in capillaries and smaller arterioles,
but its influence increased in larger vessels, where laminar flow effects became more pronounced.
However, as Zhu et al. demonstrated, introducing hydraulic pressure into the microvasculature can
significantly increase the contribution of ballistic flow, necessitating hybrid modelling approaches to
represent real-world conditions accurately. Moreover, traditional assumptions in DCS modelling, such
as the cumulant approximation, often fall short when attempting to capture the full complexity of RBC
motion in biological tissues. The cumulant approximation simplifies the DCS autocorrelation function by
assuming RBC motion is purely Brownian, thus failing to account adequately for structured, advective
flows typical in larger vessels and under varied physiological conditions. Du Le and Srinivasan (2020)
argue that the interference between the first and second cumulant terms can complicate interpretations,
especially in dynamic or heterogeneous flow environments, leading to inaccuracies in BFi estimations
[28]. This highlights the need for hybrid motion models capable of accurately representing both random
and directed flow dynamics within tissues, thereby offering a more robust framework for a wide range of
clinical applications. Alongside these limitations in motion assumptions, Irwin et al. (2011) emphasise
the significant impact of tissue optical properties on BFi accuracy [29]. Through experiments using
liquid phantoms, they demonstrated that variations in the reduced scattering coefficient (us’) and ab-
sorption coefficient (ua) can lead to notable errors in BFi calculations, particularly in tissues with high
optical variability, such as tumours or layered structures like the brain. Specifically, inaccuracies in
ps’ have been shown to result in BFi errors as high as 280% in some clinical settings, underscoring
the need to account for optical properties when interpreting DCS signals. These findings suggest that
incorporating concurrent measurements or making precise assumptions regarding optical properties
is crucial for achieving reliable blood flow assessments across different tissue types and experimental
conditions.

2.3. Modelling Methods

This section will explore modelling methods for light propagation with a focus on DCS. In this section,
two main methods will be reviewed, Monte Carlo and Finite Element methods, which are well-known
and used. A third potential method will be explored that has been used for modelling light propagation,
called the Born series.

2.3.1. Monte Carlo

Monte Carlo (MC) simulations are regarded as the gold standard in photon transport modelling due to
their stochastic nature, which enables them to simulate light scattering with high accuracy. The core
principle of MC simulations is probabilistic modelling, simulating the random paths taken by photons
as they scatter and are absorbed within a medium. This method models each photon as it moves
through the tissue, interacting with particles and following a randomised trajectory based on predefined
probabilities for scattering and absorption events. The motion of the photons is governed by the mean
free path (I) and the scattering angle (#), which are expressed as a probability distribution [30]. The
probability distribution is expressed in Equation 2.1 and Equation 2.2

P(s1) = P(%isl) = fip exp(—pupS1) — [ = % (2.1)
1-— g2
P(cos(0)) (2.2)

T 2(1+ g2 — 2gcos(0)3/2)
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Figure 2.8: lllustration of Monte Carlo simulation. (a) Photon propagation through a medium. [31] (b) Deflection of a photon by
a scattering event. The angle of deflection, 6 and the azimuthal angle, « [30]

In MC simulations, photons undergo various interactions such as reflection, refraction, absorption and
scattering, all of which are dictated by the optical properties of the medium. These properties include
the refractive index (n), absorption coefficient (1), scattering coefficient (1), and scattering anisotropy
(9). The absorption coefficient quantifies the likelihood of photon absorption per unit path length, while
the scattering coefficient measures the probability of photon scattering. Scattering anisotropy, defined
as the mean cosine of the scattering angle, indicates the directionality of scattering, with biological
tissues typically exhibiting g=0.9, signifying strongly forward-directed scattering [32] [31]. The relation
between free path, scattering and absorption coefficient is expressed in Equation 2.3. By tracing a
large number of photons, MC simulations produce statistical representations of light transport, which
can then be analysed to generate autocorrelation functions for DCS blood flow measurements. The
generated autocorrelation function is fitted into a theoretical model, obtained by solving the correlation
diffusion equation for the given case.

it = s + Ha (2.3)

Over the past decade, significant efforts have focused on addressing the primary limitations of MC simu-
lations: low computational efficiency and difficulties in modelling complex anatomical structures. Tradi-
tional MC simulations, which require tracing millions of photons, have historically demanded extensive
computational time, often taking hours on single-core central processing units (CPUs). To overcome
this, researchers have adopted massively parallel computing architectures, including graphic process-
ing units (GPUs) and field-programmable gate arrays (FPGAs), dramatically reducing simulation times
to minutes or even seconds. In 2009 a GPU-based MC framework was introduced that leverages the
parallel processing capabilities of graphics hardware [33]. This approach allowed for large amounts of
photons to be simulated simultaneously, significantly improving the computational efficiency compared
to traditional CPU-based Monte Carlo. Their model was validated against analytical results from diffu-
sion theory for a homogeneous semi-infinite medium, showing good agreement. The model was also
tested with an MRI scan of a human head, and it was found to be capable of handling arbitrary complex
media.

Modelling complex anatomical structures has been another issue for the MC method. Significant
progress has been made in recent years, permitting simulations in simple layered domains and com-
plex heterogeneous tissues. Recent research conducted on the accuracy of multi-layered tissue mod-
els highlighted that two-layered models are limited in separating extracerebral signals, such as scalp
and skull blood flow, from brain-derived signals in cerebral blood flow index (CBFi) measurements [34].
Traditional DCS techniques rely heavily on single-layer analytical models that assume homogeneous
tissues, often failing to differentiate between cerebral blood flow and extracerebral contributions, such
as scalp blood flow (SBF). This limitation is particularly pronounced in adult brain monitoring, where
thicker extracerebral layers diminish brain sensitivity and amplify systemic interference. These con-
straints have hindered the clinical applicability of DCS for accurate and noninvasive CBF monitoring.
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The multi-layer MC method overcomes these challenges by incorporating anatomically realistic, hetero-
geneous geometries into photon transport simulations. Using both slab and head-like models derived
from MRI scans, the algorithm allows for tunable adjustments to layer thicknesses representing scalp,
skull, cerebrospinal fluid (CSF), and brain. A representation of this can be seen in Figure 2.9. By
simulating photon paths and momentum transfer through these layers, the method produces precise
time-resolved autocorrelation functions, enabling differentiation between superficial and deep tissue
blood flow. This approach is a marked improvement over analytical models, achieving greater accu-
racy in scenarios with significant SBF interference, such as during hypercapnia. The study validates
the MC-based models against transcranial Doppler ultrasound (TCD), a gold standard for CBF mea-
surement. The results shown in Figure 2.10, demonstrate that three-layer MC models, particularly
those incorporating curved head geometries, closely align with TCD-derived middle cerebral artery ve-
locity (MCAV) timecourses. Compared to analytical models, MC-based methods significantly reduce
systemic contamination, accurately capturing the rapid dynamics of CBF changes during hypercapnia
and achieving near-complete recovery to baseline after systemic interference subsides.

21-layer slab 3-layer slab

Segmented MRI 22-layer head 3-layer head

Figure 2.9: Top row: the 21-layer slab is concatenated into a 2-, 3-, or 4-layer volume in post-processing (3-layer is shown).
Bottom row: the segmented MR is iteratively image-eroded to make a 22-layer head volume and is analogously
post-processed into a 2-, 3-, or 4-layer volume. [34]

40 . . : — 40 T " T T Monte Carlo 3-layer

+10 mmHg CO, I [ curved CBF

eTCD

1 %1078 mm?%/s

+10 mmHg CO,

—*—5 41078 mm?/s
——6 x10™ mm?/s
—0—7 %1078 mm%ss

8 x1078 mm?/s

0 50 100 150 200 250 0 50 100 150 200 250
Seconds Seconds

(a) (b) —A—9 %107 mm?/s

Figure 2.10: MC curved, four-layer fits with various diffusion coefficients used for the CSF layer for subject 1. A 1-mm CSF
thickness was used for (a) and a 2-mm thickness was used for (b). [34]

The paper by Tran and Jacques introduces a significant improvement in Monte Carlo (MC) light trans-
port simulations, addressing a major limitation of voxel-based MC methods: their inability to accurately
model curved and oblique boundaries [8]. Traditional MC techniques use discrete Cartesian grids,
where curved surfaces are approximated by a series of flat voxel facets. This simplification leads to
inaccuracies in Fresnel-based calculations of reflection and transmission at boundary interfaces, which
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are critical for simulating light transport in biological tissues. The methodology proposed involves the
preprocessing of voxel boundaries to calculate a gradient map of refractive index mismatches, smooth-
ing this gradient to mitigate discretisation errors, and employing trilinear interpolation to estimate grad-
ual changes in normal vectors across curved surfaces. A representation of the algorithm can be seen
in Figure 2.11. These innovations allow for significantly improved boundary representation without the
need for higher voxel density, which traditionally incurs steep computational and memory costs. By
focusing on efficient implementations—such as the use of Sobel filters and interpolation schemes—the
authors strike an effective balance between computational efficiency and accuracy. Results from sim-
ulations involving spheres and lenses demonstrate that the new algorithm closely aligns with analytical
solutions, with less than 5-degree errors in reflectance and transmittance angles. This is a substantial
improvement over the traditional voxel-based facet-normal method, which can exhibit errors of up to
180 degrees under certain conditions. Moreover, the method is designed to integrate seamlessly with
GPU acceleration, enabling scalability for large simulations.
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Figure 2.11: Proposed algorithm to handle curvature and oblique angles in MC light simulations. illustration of the method for
specifying the boundaries and the unit vectors that are normal to that surface in each voxel containing the surface [8].

These advancements have been particularly beneficial in photon transport simulations across com-
plex curved geometries, such as layered brain tissue and vascular networks. Recent advancements
in hybrid Monte Carlo (MC) methods have addressed limitations in voxel-based and mesh-based ap-
proaches, particularly for modelling complex tissue geometries. The Split-Voxel Monte Carlo (SVMC)
algorithm introduced by Yan and Fang (2020) combines the computational efficiency of voxel-based
methods with the accuracy of mesh-based approaches [7]. This paper presents the Split-Voxel Monte
Carlo (SVMC) algorithm, which offers a novel hybrid approach combining the benefits of voxel-based
and mesh-based Monte Carlo (MC) methods for modelling light transport in complex bio-tissues. An
illustration can be seen in Figure 2.12. Traditional voxel-based MC methods excel in simplicity and
computational efficiency, especially on GPUs, but suffer from inaccuracies due to rasterisation errors at
curved or oblique boundaries (Type | errors) and inherent surface discretisation artefacts (Type Il errors).
Mesh-based methods, while accurate in representing complex geometries, are resource-intensive and
less efficient on memory-sensitive platforms. SVMC bridges this gap by employing a marching-cubes
algorithm to preprocess voxelized domains, extracting and embedding sub-voxel boundary informa-
tion directly into the voxel structure. The SVMC methodology introduces several critical innovations.
First, the marching-cubes algorithm generates triangular boundary patches within boundary voxels,
which are further processed to compute surface normals and positions. These refined boundaries are
encoded as additional geometric information in an extended voxel data structure, allowing the simu-
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lation to incorporate intra-voxel boundary interactions during photon transport. Non-boundary voxels
are treated as in standard voxel-based MC, preserving computational simplicity. The hybrid approach
significantly reduces Type | and Type Il errors without the overhead of generating and managing com-
plex tetrahedral meshes. Validation across multiple benchmarks demonstrates the efficacy of SVMC.
In simple domains, such as concentric spheres, SVMC with Gaussian smoothing achieves near-parity
accuracy with Dual-Grid Mesh-Based Monte Carlo (DMMC), significantly outperforming conventional
voxel-based MC methods. Realistic domains, including a segmented brain model, further highlight
SVMC’s ability to handle complex geometries with reduced error margins, particularly at curved tissue-
air interfaces. Cross-sectional contour plots to compare light fluence distributions between three MC
algorithms for all benchmarks can be seen in Figure 2.13. In (a) and (b), it can be seen that for bench-
marks B1 and B2, the SVMC with and without smoothing has improved accuracy compared to VMC. In
(c), an excellent agreement between SVMC and DMMC solutions is observed for benchmark B3 along
the scalp-air surface, suggesting that the Type Il error was largely removed. However, the discrepan-
cies in the CSF layer under detectors 7-9, a result of Type | error, were reduced but not eliminated.
Simulation results show that SVMC is 2x to 6x faster than DMMC and requires lightweight preprocess-
ing, with a trade-off of approximately 50% slower runtime compared to conventional voxel-based MC
due to additional boundary handling.
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Figure 2.12: lllustrations of boundaries of a spherical domain extracted using (a) voxel representation, and marching-cubes (b)
without and (c¢) with smoothing by a Gaussian-filter. Zoom-in views of the surfaces in (b) and (c) can be found in (d) and (e),
respectively. We also show diagrams explaining (f) ray-tracing computation and (g) our extended voxel data memory layout

that encodes additional shape information [7].
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Figure 2.13: Fluence (mm—2, in log-10 scale) contour plots of dual-grid MMC (DMMC), MCX (conventional VMC mode) and
MCX (SVMC mode with and without volume smoothing) in a set of benchmarks: (a) B1, (b) B2 and (c) B3. The red arrow
represents an inward-pointing pencil beam source. Grey-dashed lines mark media boundaries. [7]

A key development was later made by Yuan et al., introducing the implicit mesh-based Monte Carlo
(iMMC) algorithm [6]. Traditional methods, such as voxel-based Monte Carlo (MC) and mesh-based
MC (MMC), while foundational, suffer from critical limitations. Voxel-based methods rely on dense vol-
umetric grids to approximate complex geometries, which leads to excessive memory requirements and
computational inefficiencies. Similarly, MMC improves geometric representation by employing tetrahe-
dral meshes but still struggles with high memory consumption and reduced scalability in anatomically
intricate domains. These constraints have historically impeded progress in simulating light transport
within large, detailed, and heterogeneous biological tissues, where geometric accuracy is paramount.
The iIMMC algorithm addresses these challenges by introducing a hybrid approach that leverages the
strengths of both voxel- and mesh-based methodologies while circumventing their weaknesses. The
different meshes can be seen in Figure 2.14. At its core, IMMC employs coarse skeletal tetrahedral
meshes to represent key structural elements, such as vessel centrelines, and implicitly defines shapes,
such as cylinders or spheres, to represent surrounding fine details. This implicit modelling paradigm
is revolutionary, as it decouples the computational burden of explicitly meshing intricate features from
the need to accurately simulate photon interactions. By relying on parameterised shapes instead of
high-density mesh elements, iMMC achieves memory savings exceeding 100-fold compared to tradi-
tional methods. Furthermore, the methodology integrates computationally efficient intersection tests
for implicit shapes, such as ray-cylinder or ray-sphere calculations. While these approximations intro-
duce minor errors, they have been benchmarked against standard MMC and Dual-Grid MMC (DMMC)
methods, showing less than 1% deviation in accuracy. In Figure 2.15, cross-sectional plots of log-
scaled fluence along the source planes are shown to compare solutions derived from MMC, DMMC,
and iIMMC for B1, B2, and B3 benchmark domains. This figure shows an excellent match between
IMMC and DMMC for all benchmarks. The MMC results show minor mismatches when compared to
those of IMMC and DMMC, especially near the light source. These results show that IMMC is capable
of achieving a similar level of accuracy to DMMC and MMC, despite only using a fraction of the memory
for the mesh data. The algorithm’s ability to maintain geometric fidelity without resorting to dense mesh
discretisation represents a pivotal advancement in balancing accuracy and efficiency. This capability
is particularly critical for simulating light transport in multi-scale biological tissues, where features such
as microvascular networks, porous media, and thin membranes coexist and require representation at
varying resolutions.
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Figure 2.14: The meshes generated for three benchmarks and three Monte Carlo methods. Benchmarks (a-c) B1, (d-f) B2 and
(g-i) B3 are built to validate the edge-based, node-based and face-based iIMMC algorithms, respectively. Each column, from
left to right, shows the meshes created for standard mesh-based Monte Carlo (MMC), dual-grid mesh-based Monte Carlo
(DMMC) and iMMC, respectively. [6]
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Figure 2.15: Log-scaled fluence (J - mm-2) cross-sectional plots along the source planes to compare solutions derived from
MMC, DMMC, and iMMC for (a) B1, (b) B2, and (c) B3 benchmark domains [6].

2.3.2. Finite Element

The Finite Element Method (FEM) is a deterministic computational technique widely used for solving
partial differential equations (PDEs) in complex geometries. In the field of photon transport modelling,
FEM is typically employed to solve the diffusion approximation of the radiative transfer equation (RTE),
which provides a simplified framework for understanding light propagation in highly scattering media.
By discretising the computational domain into finite elements, FEM enables efficient modelling of light
transport across tissues with complex structures and varying optical properties. FEM operates by divid-
ing the domain into smaller subregions or "elements,” typically in the form of triangles (2D) or tetrahedra
(3D). Within each element, the photon density or light fluence is represented as a polynomial function.
The PDE governing photon transport is then solved iteratively, with boundary conditions applied to ac-
count for reflections and refractions at tissue interfaces. Optical properties, including the absorption
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coefficient, scattering coefficient, and anisotropy factor, are assigned to each element, dictating how
photons interact with the medium. FEM’s strength lies in its ability to adapt to irregular geometries and
varying material properties, making it well-suited for modelling multi-layered or heterogeneous biolog-
ical tissues. For example, FEM has been widely applied to simulate light propagation in tissues such
as the brain, skin, and muscle, where layers of differing optical properties and curvatures significantly
influence photon transport.

Recent advancements have focused on enhancing FEM’s computational efficiency and accuracy to
better meet the demands of modern optical imaging and therapeutic applications. The studies by Va-
sudevan and Narayanan Unni (2022, 2023) present a comprehensive framework for assessing skin
blood flow using finite element methods integrated with diffuse correlation spectroscopy [35] [36]. In
their 2022 work, the authors developed a 3D FEM model of a bilayer skin structure with embedded
microcapillaries to simulate light-tissue interactions and blood flow. By solving the correlation diffu-
sion equation (CDE), they derived the blood flow index and demonstrated its sensitivity to flow velocity
while remaining consistent across capillary depths. In Figure 2.16, the FEM model and the results
are shown. The resulting autocorrelation plot shows the sensitivity for different flow speeds, validating
that a higher flow speed correlates to a faster decay rate. The results for the calculated BFi can be
seen in Figure 2.17. The results show that the BFi changed proportionally to the inlet blood velocities
through the capillaries for different surrounding static tissue scattering. The determined BFi does not
vary significantly with capillary depth. This in-silico model provided detailed insights into microvascular
dynamics but lacked direct experimental validation.
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Figure 2.16: Model and simulated results (a) 3D geometry model of dermal skin tissue with embedded capillary. (b)
Autocorrelation plot for varying inflow velocities through the designed capillary from FEM simulations [35].
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Figure 2.17: Calculated BFI from the developed algorithm for varying input velocities at varying static property conditions of
surrounding tissues, and 3b illustrates the calculated BFI with varying depth of capillary vessel from the tissue surface [35]

To build upon their previous work, the 2023 study expanded the investigation by conducting in vitro
experiments using capillary-mimicking microchannels embedded in skin phantoms. The experimental
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setup combined a short source-detector separation (SDS) DCS system with finite element method
(FEM)-based simulations to quantify blood flow dynamics. The results, presented in Figure 2.18,
demonstrated a strong correlation between the simulated and experimental Blood Flow Index (BFI)
values, validating the model’s accuracy. The FEM simulations provided a detailed representation of
light propagation and RBC dynamics, effectively capturing the underlying physics of photon scattering
and diffusion. However, their high computational cost and dependence on idealised tissue properties
posed challenges for broader applicability. Conversely, the in vitro experiments served as practical vali-
dation tools, offering real-world insight into flow variations and system performance. Nonetheless, they
introduced potential variability due to phantom fabrication inconsistencies and flow control limitations.
While this hybrid approach presents a promising direction for microvascular blood flow assessment,
its validation remains limited to short-range applications. Future research is needed to adapt and opti-
mise this methodology for deeper or more heterogeneous tissue structures, ensuring its scalability and
clinical viability.
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Figure 2.18: Results from short-range DCS. (a) Simulated bfi with bmf as the flow medium and its variation with changes in
input flow velocity. (b) Determined bfi from the in-vitro studies with bfi as the flow medium [36]

The study by Ao Teng et al. (2020) investigates the interaction of pulsed laser light with brain tissue
using a two-dimensional finite element model developed in COMSOL Multiphysics [37]. The model
consists of a simplified brain structure, including a water layer, grey matter, and embedded blood ves-
sels, irradiated by a short-pulse laser source with a wavelength of 840 nm. A representation of the
model can be seen in Figure 2.19. Light propagation was modelled using the diffusion equation, while
temperature changes were computed with the biological heat transfer equation. The results reveal that
light energy decreases exponentially with penetration depth, with blood vessels absorbing significantly
more light than surrounding grey matter, retaining approximately 85.8% of the light energy absorbed by
the grey matter. The higher absorption in blood vessels results in a localised temperature increase of
0.15 K compared to the grey matter, which exhibits minimal temperature changes. This study highlights
the strengths of finite element modelling in capturing the optical and thermal dynamics of laser-tissue
interactions. However, its simplified two-dimensional geometry limits its applicability to the intricacies of
real brain structures, and experimental validation remains necessary to confirm the model’s predictive
accuracy.
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Figure 2.19: Model geometry; The diameter of the blood vessel is 60 um and its length is 5 mm. The pulsed laser point source
is placed in the middle of the water layer to irradiate the brain tissue [37].

The study by Shimaa Mahdy et al. (2022) presents a non-invasive method for detecting brain tumours,
specifically gliomas and meningiomas, by numerically analysing the optical fluence rate at the scalp.
Using a five-layer human head model developed in COMSOL Multiphysics, the researchers simulated
light propagation through tissue using the steady-state diffusion equation modelled by the Helmholtz
equation [38]. This model incorporates key tissue layers such as the scalp, skull, cerebrospinal fluid
(CSF), grey matter, and white matter, each with unique optical properties. The simulation investigates
the spatial fluence rate distribution for two infrared laser wavelengths (1000 and 1100 nm). An illustra-
tion for the model can be seen in Figure 2.20. Results show that the presence of tumours significantly
alters the minimum fluence rate values on the scalp due to differences in absorption and scattering prop-
erties between normal and tumour tissues. Gliomas and meningiomas exhibited distinct fluence rate
profiles, enabling differentiation from normal brain tissue. While this approach provides a promising
theoretical framework for early tumour detection, it is constrained by its dependence on simulation-
based results and requires experimental validation for clinical application. Additionally, the reliance on
predefined optical properties may limit its adaptability to inter-patient variability. Nonetheless, this work
offers valuable insights for improving non-invasive brain tumour diagnostic techniques.
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Figure 2.20: Geometry of the proposed model: (a) 3D model layers of the human head with tumour, (b) the implemented mesh,
and (c) dimensions of the model layers [38].

The study by Doulgerakis et al. (2017) focuses on accelerating light propagation modelling in diffuse
optical tomography (DOT) using parallel computing on both GPU and CPU platforms [39]. This work
addresses the computational bottleneck posed by the forward problem in DOT, particularly when em-
ploying high-resolution finite element models with up to 600,000 nodes for realistic adult head imag-
ing. By leveraging GPU-based parallelisation and implementing advanced iterative solvers such as
BiCGStab with preconditioners, the study achieved a tenfold speed increase compared to traditional
CPU methods, with computational times as low as 0.25 seconds per excitation source. This innovation
enables near-real-time light propagation calculations while maintaining high numerical accuracy, mak-
ing it suitable for functional brain imaging and high-density DOT systems. Despite these advances, the
approach faces limitations in handling even larger-scale models due to hardware memory constraints
and remains dependent on achieving an optimal balance between computational speed and termina-
tion criteria to minimise errors. The study offers a significant step toward real-time DOT applications,
but further optimisation for more extensive models and diverse tissue structures remains a challenge.

2.3.3. The Born Series

The Born series offers a fundamentally different approach to modelling light propagation in scattering
media compared to methods like Monte Carlo (MC) and Finite Element Method (FEM). Instead of re-
lying on probabilistic distributions or directly solving the correlation diffusion equation, the Born series
addresses the problem by solving the inhomogeneous Helmholtz equation using integral methods and
Green’s functions. The Helmholtz equation governs wave propagation and, when applied to electro-
magnetic waves, provides a scalar approximation of light behaviour in three-dimensional scattering
media [40].

Early approaches to solving the Helmholtz equation in scattering media involved discretisation tech-
niques, such as finite element [41] and finite difference methods [42]. These methods transform the
continuous equation into a system of linear equations, which can then be solved using direct matrix
inversion or iterative solvers. However, these approaches suffer from high computational costs, par-
ticularly in large or highly inhomogeneous domains. More advanced numerical techniques, such as
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Krylov subspace methods [43] extended with multigrid solvers [44], have improved efficiency but re-
main computationally demanding for large-scale problems [45].

A more efficient alternative to these methods is the Born series, derived from Green'’s function theorem.
The Born series expresses the scattered field as a series of successive perturbations, where each term
represents an increasing order of scattering interaction. This framework has been extensively studied
and applied to wave scattering problems, including photon propagation in biological tissues [46]. The
first-order Born approximation assumes a single scattering event and neglects higher-order interac-
tions, making it computationally efficient but limited to weakly scattering media. Early studies, such as
those by Sevick-Muraca et al. (1997), criticised the use of first-order Born and Rytov approximations,
particularly in optical imaging [47]. They demonstrated that these approximations underestimate the
scattering and absorption properties when multiple scattering events dominate. By extending the Born
series to second and higher-order perturbations, they showed significant improvements in accuracy for
optical imaging. However, this approach still struggled with convergence in media with high scattering
contrast. The work by Rossum et al. (1999) further explored the application of the second-order Born
approximation in random media, focusing on light scattering in highly diffusive environments [40]. Their
study highlighted a critical limitation: the divergence of Green’s function in three-dimensional media with
point scatterers. To manage this divergence, they introduced a regularisation technique, ensuring the
stability of the series for small scatterers. While this approach allowed for more accurate modelling in
weak scattering environments, it remained impractical for strongly scattering biological tissues.

A significant contribution to understanding the limitations of the Born series was made by Capoglu et
al. (2009), who conducted an error analysis of the Born approximation applied to biological tissues
[48]. Using a finite-difference time-domain (FDTD) simulation as a benchmark, they demonstrated that
the Born approximation is valid only for weak refractive index fluctuations. For stronger fluctuations,
the approximation becomes unreliable as wave localisation effects become significant, leading to a
breakdown of the scattering coefficient’s definition. This work underscored the need for alternative
methods or modifications to the Born series to handle highly scattering media effectively.

Further exploration of the Born approximation was carried out by Joonoh Lim et al. (2011), who ap-
plied the first-order Born approximation to model light scattering by red blood cells (RBCs). Their study
focused on deriving RBC parameters, such as diameter and dimple size, by solving the inhomoge-
neous Helmholtz equation under the Born approximation [49]. Although this method proved effective
for analysing blood samples and provided a fast, cost-effective solution, it was limited to scenarios with
weak scattering contrast.

In 2014, Rogers et al. introduced a versatile correlation function for the refractive index of tissues,
offering a new way to model how refractive index fluctuations influence light scattering in complex bio-
logical tissues [50]. Instead of treating tissues as discrete scatterers, they modelled them as continuous
random media. This approach, while more accurate for representing real biological tissues, relied on
the Rayleigh-Gans-Debye (RGD) approximation, a variant of the first-order Born approximation, which
assumes weak scattering. Although effective for weak scattering environments, it struggled in the pres-
ence of large refractive index fluctuations or multiple scattering effects.

The inherent limitations of the Born series in strongly scattering media were addressed by Osnabrugge
et al. (2016), who introduced the Modified Born Series (MBS) [9]. By incorporating a pre-conditioner,
the MBS ensured convergence even in media with high scattering potential. This innovation allowed
the series to be applied to large, strongly scattering systems, making it a viable alternative to Monte
Carlo and FEM-based methods for photon transport modelling. The MBS was tested against PSTD
and FDTD methods and was shown to be several orders of magnitude faster in finding a steady-state
solution to the inhomogeneous wave equation. In their research, the MBS was demonstrated for 1,
2 and 3-dimensional media, in Figure 2.21 the results for a 2D inhomogeneous medium with random
complex potential and a 3D disordered medium. The method was extended to handle vector fields [51]
and birefringent media [52], demonstrating its versatility in various optical applications. The research
by Kruger et al. (2017) extended the MBS to handle the full vectorial Maxwell’'s equation by deriving
a vectorial Green'’s function and adapting the preconditioning strategy. This enabled the MBS to accu-
rately simulate the polarisation effects and the coupling between different components of the electrical
field. These effects are crucial when the reflective index varies spatially or when the medium induces
strong polarisation-dependent phenomena. Their work demonstrated that with the extension, the MBS
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can compute solutions for complex vector fields orders of magnitude faster than conventional methods
like FDTD. Further expanding on this work, Vettenburg et al (2019) generalised the MBS to handle
arbitrarily complex electromagnetic media. In their work, they developed a more sophisticated precon-
ditioning approach that ensured convergence even when the medium’s response is non-Hermiation and
when strong electric-magnetic coupling is present. With this extension, MBS can simulate birefringent
materials as well as chiral and magnetic materials.

Building on the foundation and the extensions, Osnabrugge et al. (2021) further refined the MBS by
focusing on reducing boundary-related errors and improving computational efficiency. Their work intro-
duced ultra-thin boundary layers and a pipelined acyclic convolution scheme to minimise wrap-around
errors and reflection artefacts at domain boundaries [53]. The padding-free acyclic convolution is a
new convolution method introduced in this research which eliminates the need for padding, improving
the computational efficiency. These enhancements resulted in up to 80% reduction in simulation size
and a fivefold decrease in computational time, making MBS highly suitable for large-scale simulations
in biomedical optics.
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Figure 2.21: lllustrating results of the MBS. (a) Numerical experiment simulating an oscillating point source at the center of an
inhomogeneous medium with a random potential distribution. The steady-state solution is found using our modified Born
approach. The field amplitude is represented on a logarithmic scale. (b) Simulation results for a point source atx =y =z =0Ain
a 3-D disordered medium of 128 x 128 x 128 pixels. The 3D-solution is represented by three cross-sectional slices at x = OA, x
= 8A, and x = 16A, where the field amplitude is shown on a logarithmic scale. The interference fringes at the boundaries of the
slices are the result of the periodic boundary conditions. [9]
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2.4. Research Question and Objectives

The literature reviewed in this chapter highlights the significant progress in modelling light transport for
Diffuse Correlation Spectroscopy (DCS), particularly through Monte Carlo and Finite Element methods.
While these approaches are well-validated and widely used, they are computationally expensive and
limited in their ability to directly incorporate time-resolved particle dynamics. The modified Born series
(MBS) has recently emerged as a highly efficient solver for the inhomogeneous Helmholtz equation,
capable of handling large and strongly scattering systems. However, its potential for simulating DCS
has not yet been systematically explored.

This leads to the central research question of this thesis:

Can a coupled COMSOL—modified Born series framework reproduce the expected Brown-
ian and flow-induced decorrelation in DCS, and allow separate estimation of diffusion and
flow contributions?

To address this, the following objectives are defined:
1. Simulate Brownian and flow-driven particle trajectories in COMSOL under varying physical pa-
rameters.
2. Use the modified Born series to compute the resulting speckle fields from these trajectories.

3. Derive temporal autocorrelation functions of the simulated speckle fields and compare the decay
characteristics with DCS theory.

4. Assess whether Brownian diffusion and flow parameters can be independently extracted from
exponential fits to the autocorrelation decay.

Having established the research question and objectives, the following chapter outlines the method-
ology developed to address them, detailing the coupled COMSOL-Born series simulation framework

and analysis pipeline.



24

2.4. Research Question and Objectives

[1] ‘jopow [eonAjeue Jakel-aal1y} (2) ‘|opow |ednAjeue Jakel-om] (q) ‘|opow ajuluI-lwas snousbowoy (B) SO 40} J10}0918p ay} pue 921nos 8y} Buipnioul sjopow [eonfjeuy :p'g ainbi4

|[opow Jakel-eaiy| [opow Jakel-om | [9poW 8)ulUI-IWSS




Simulation

This chapter presents the simulation framework developed to evaluate the modified Born series as a
solver for the Helmholtz equation in the context of diffuse correlation spectroscopy. The objective is to
determine whether Brownian motion can be extracted from simulated optical signals and to assess the
ability of the model to separate Brownian motion from laminar flow effects.

The framework combines two components: (i) Brownian motion trajectories generated in COMSOL by
solving the overdamped Langevin equation, and (ii) electric field distributions solved using the modified
Born series. The simulated fields are used to interpolate temporal autocorrelation functions, which are
then fitted to theoretical models based on the correlation diffusion equation.

The chapter is organized as follows: the medium and source setup are introduced first, followed by
the Born series solver and the integration of dynamic scatterers. The calculation of autocorrelation
functions and the fitting procedure for Brownian motion and laminar flow are then described. Finally,
the framework is scaled to larger domains to reach the diffusive regime and a test plan is outlined.

3.1. Medium setup
The simulated domain consists of a homogeneous tissue-like slab, representing a cross-sectional slice
with dynamically moving scatterers. To capture fine wave-propagation details at a resolution of four
points per wavelength (PPW) for a vacuum wavelength of 0.8um, the resolution for the discretisation of
the grid was set at %, yielding a pixel size of 0.2um. A single—pixel-thick air layer (n = 1.0) is appended
above and below the slab. To simulate the static properties of the medium, the complex refractive index
is defined as:

Nslab = n(/') + 177/6/ (31)

Here, n{, models the background medium, while the imaginary part n{ ensures uniform absorption
throughout the slab. In terms of the absorption coefficient p,, one has p, = 47n{ /Ao, Which controls
the exponential attenuation of intensity within the slab [54].

The source illuminating the medium is defined as a narrow Gaussian beam with a waist wy. To mimic
the behaviour of a point source autocorrelation placed at a distance equal to the mean free transport
path, the beamwidth of the source needs to be much less than the thickness of the sample (L), i.e.,
d = 4 <0.1[4]. Afigure of the simulated source profile can be seen in Figure 3.1.

The source is placed at the bottom of the grid inside the air layer and propagates in the y-direction
through the medium and is detected at the top inside the air layer. This methodology simulates the
transmission geometry, which gives the ability to measure particle movements much smaller than the
wavelength of the source. The transmission geometry is also more accurately described within the
photon diffusion approximation because all the paths that light can take through the medium are long
compared to the mean free transport path. A concept of the domain and the propagation of the source
through the domain can be seen in Figure 3.3.

25
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Figure 3.1: Gaussian source profile used in the WaveSim simulations. (a) Amplitude distribution along the x-axis of the
medium in pixel units, showing a Gaussian window of 51 pixels centred at the grid midpoint. (b) Amplitude profile, with the
51-pixel beam width mapped to micrometres.
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Figure 3.2: lllustration of the simulated domain without scatterers, with physical dimensions of 100um x 600um. The real part
of the refractive index distribution is plotted (n = 1.0 + ¢ x 0.001). The red box indicates the source location, while the black
box marks the detector position.
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3: Field distribution of the Gaussian input beam in the simulated domain. (a) Absolute electric field amplitude | E|,

showing the beam propagation profile. (b) Logarithmic scale of the absolute electric field, log(| E|), highlighting weaker field

regions and the full dynamic range of the propagation.
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3.1.1. Born Series Solver

The optical propagation through the medium was solved using the modified Born series method pro-
posed by Osnabrugge et al. [9]. This solver provides an iterative scheme for the inhomogeneous
Helmholtz equation that is unconditionally convergent due to the inclusion of a preconditioner. At each
iteration, the wave field is updated using the scattering potential of the medium and the Green'’s function
of the background. The update rule can be written as:

Ery1 = MEy +1GS, (3.2)

where M is a preconditioned operator containing the scattering potential V(r), G is the Green’s func-
tion operator, and y is a stabilisation factor chosen such that convergence is guaranteed. Full defini-
tions of these terms are given in [9]. Physically, each iteration of the solver corresponds to a pseudo-
propagation step: the wave packet is displaced forward by a distance proportional to 2ky/e. While
the method is time-independent, this iterative scheme allows us to sample scattered paths until the
wave has effectively reached the detector. In the present implementation, independent realisations
of the medium were generated for each timestep of the COMSOL Brownian motion simulation. This
allowed the temporal autocorrelation function to be reconstructed from a sequence of steady-state field
solutions.

3.1.2. Dynamic Scatterers
Embedded within the medium are scatters, modelled as circular disks (in 2-D) of radius r.,. = 4um.
Each scatterer is assigned a refractive index to simulate static properties:

o . "
Nscat = Mscat,real Tk Moy (33)

The contrast between n’,_,, and n;, generates scattering, while the imaginary term »!.,, accounts for
weak absorption within the cells. These scatterers follow dynamic trajectories extracted from Brownian
motion simulations. At each timestep, their 2-D positions are mapped onto the computational grid
and the local portion of the dielectric map is updated accordingly. In Figure 3.4, the refractive index
mapping and the resulting electric field mapping are plotted for a small medium. Comparing the electric
field mapping with and without scatters, it can be seen that the scatterers have created more scattered
light paths within the medium, confirming that the model behaves as expected. To obtain a temporal
field autocorrelation graph, the scatterers need to move inside the medium, causing the path lengths
of the scattered light that reach the detector to change over time, resulting in a fluctuating measured
intensity plot over time.

In this study, the motion of each scatterer was simulated by solving the overdamped Langevin equation
within COMSOL’s Particle Tracing for Fluid Flow interface:

—67T’I77“p1)i(t) + FB;i(t) =0, (3.4)

where the drag force follows Stokes’ law and the Brownian force Fz ;(¢) has zero mean and Gaussian
statistics. The simulation domain was defined as a 6000 pm x 1000 um rectangular chamber filled with
quiescent fluid (velocity set to zero), in which scatterers were released at ¢ = 0 from a uniform grid
of initial positions. The computational mesh employed free triangular elements with a maximum edge
length of 0.05, um, ensuring accurate resolution of the 8, um-diameter particles as they experienced
Brownian and drag forces. Drag was modelled according to Stokes’ law,

Fp = —6mnryv, (3.5)

while the Brownian force was generated using a reproducible random seed (ds = 3112) and satisfied
the relation:

_ 2kpT
~ 6mry,

B (3.6)
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Figure 3.4: Refractive index distribution and resulting field map in the scattering domain. (a) Real part of the refractive index,
showing scatterers with n = 1.5 4 ¢ x 0.0001 embedded in the background medium. (b) Logarithmic mapping of the absolute

electric field, log(| E|), illustrating the scattering pattern generated by the Gaussian input beam.
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In these equations, kg is the Boltzmann constant, 7" is the temperature, 7 is the fluid viscosity, r, is the
particle radius and v is the particle velocity. The boundary interactions were governed by no-slip, diffuse-
scattering conditions. The transient problem was solved in uniform time-steps using the Generalised-«
method.

In diffuse optics, the Brownian motion has a linear relation to the mean-squared displacement of the
particles.

(r(r)?) = 4Dyt (3.7)

As a sanity check, the simulated positions obtained from the COMSOL simulation are checked to see
if this linearity holds. The mean-squared displacement (msd) is obtained by:

dy(r) =y(r+1) —y(1)
de(t) =2(t+1) — 2(1)
dr®(t) = da* (1) + dy*(7)
dr?(7)

N

The resulting mean-squared displacement plot can be seen in Figure 3.5. In this figure, the linear
relation between the msd and tirrzle can be seen. For this case, the simulated Brownian motion within
COMSOL is D, = 6.782 x 10—8% and fitting the msd data from Equation 3.8 into Equation 3.7 gives a

Brownian motion of D, = 6.6115 x 10*8%2.

msd(T) = (3.8)
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Figure 3.5: Mean squared displacement (MSD) of COMSOL-simulated particle trajectories (blue) compared with the
theoretical fit 4D g7 (red). The agreement confirms Brownian motion behaviour and validates the trajectory generation.

Another sanity check is a parameter sweep, checking that increasing the temperature increases the
Brownian motion. Starting with a base temperature of 25 K, and increasing the temperature to 300
K results in Figure 3.6. In this figure, the linear increase in temperature shows a linear increase in
Brownian motion. This confirms that the COMSOL model performs as expected. With the COMSOL
model, a simulation can be done on moving scatterers to check if the moving scatterers cause a mea-
sured intensity fluctuation. In Figure 3.7, an intensity plot can be seen for a small domain where the
scatterers started at a grid position and their positions on the grid were updated for each next time-step.
The resulting plot shows that the model correctly shows that moving the scatterers on the grid results
in a fluctuating measured intensity.
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Figure 3.6: Mean squared displacement (MSD) plots computed from COMSOL particle trajectories at different temperatures.
The increasing slope with temperature reflects the linear dependence of the Brownian diffusion coefficient on T, with higher
temperatures producing faster particle dispersion.
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Figure 3.7: Simulated detector intensity signals for different particle configurations. The red line shows the baseline case with
particles placed on a fixed grid, the yellow line corresponds to particles at randomized fixed positions, and the blue plot
represents particles undergoing Brownian motion. The temporal fluctuations in the moving-particle case reflect the speckle
dynamics that underpin DCS measurements.
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Figure 3.8: Normalized temporal autocorrelation functions computed from WaveSim outputs under different averaging
schemes. The blue curve shows the autocorrelation from a single pixel, while the red curve represents the mean over 500
pixels. The yellow curve applies a weighted mean across the same 500 pixels. Averaging across pixels substantially reduces
noise compared to the single-pixel trace, and the weighted mean further improves stability of the correlation decay.

3.2. Autocorrelation

The autocorrelation of the fluctuating field is needed to obtain information on the moving particles. The
autocorrelation measures the degree of similarity between a time series and its lagged version. In
optics, the field autocorrelation function of the complex field E(t) is given by:

A(T) = = E(t)B(t — 7)dt (3.9)

In the NIRS spectral window, the field autocorrelation is defined as the correlation between the elec-

tric field E(¢) and its delayed replica E(t — 7). For the case of diffuse optics, the unnormalized field
autocorrelation G (7) can be expressed as:

GlT(r,Q,T) = (E(T,Q,T) ~E*(T,Q,7)> (3.10)

In this equation, E(r, Q, 7) is the electric field at position r and time 7 propagating in the ) direction,
inside the domain and (... ) denotes the time average of the product of the electric field and its delayed
replica [1]. In this research, the autocorrelation is obtained by measuring the complex electric field
at the opposite end from the source at a separation distance of p = 0 for each time-step. As shown
in Figure 3.8, the autocorrelation from a single pixel exhibits oscillations and noise. This behaviour
arises because a single speckle provides only one independent observable (NIO), and the number of
sampled decorrelation events is not statistically sufficient to represent the entire decorrelation process.
In other words, each speckle fluctuates randomly; with only one speckle, these random fluctuations
dominate, leading to a jagged autocorrelation curve. To improve the signal-to-noise ratio (SNR), auto-
correlation functions from neighbouring pixels are included and averaged. Since neighbouring pixels
correspond to slightly different source—detector separations, a weighted mean is applied to reduce their
influence. This procedure effectively increases the number of independent observables, as the SNR
of decorrelation time measurements scales with vNIO. The approach is consistent with the framework
of Xu et al. [55], who demonstrated that temporal sampling and speckle-ensemble averaging provide
equivalent descriptions of field autocorrelation in diffusing wave spectroscopy. Accordingly, the use of
neighbouring pixels can be interpreted as an ensemble averaging strategy that increases NIO, aver-
ages out random intensity fluctuations, and yields a smoother and more statistically robust estimate of

g1(7).
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3.2.1. Exponential fitting

In Diffusion correlation spectroscopy, the autocorrelation data is fitted to the solution of the correla-
tion diffusion equation. For example, in the case of a semi-infinite homogeneous medium with the
backscattering geometry, the solution to the CDE would be [56]:

3ul exp (—kpr exp (—kpr
G1(/)7t)=ﬂ[ (7“1 D _ (7“2 2)]

(3.11)
where,
kD = 3papl + pkga(Ar?(r)) (3.12)

By fitting the correlation data onto the solution for the CDE, the mean squared displacement can be
determined, which is linear to the Brownian coefficient. In this case, the optical properties, such as the
absorption and scattering coefficients, are unknown. Without accurate measurements of these param-
eters, the Brownian motion coefficient will be inaccurate. For the transmission geometry, it is known
that all autocorrelation functions decay with a characteristic decay time of approximately (I*/L)?r. The
average decay of the autocorrelation can be described with exp (—2t/7) [4]. The numerical values of
the autocorrelation are insensitive to the exact choice of i*, since [* << L. The choice of [*, would only
affect the first few scattering interactions of a large number of scattering. Thus, the autocorrelation for
a transmission geometry with point illumination can be described with:

g1(7) = exp (—t/7) (3.13)

with,
T=r(*/L), r=(Daks)"" (3.14)

With this, the autocorrelation is going to be fitted onto an exponential function:
g1(1) = Bxexp (—VAT)+C (3.15)

where A describes the decay rate of the exponential decay, and B and C are for normalisation and
correct placement. The decay rate from the exponential function contains the Brownian coefficient,
and its relation to A can be described with:

1 1L
= (F

== = 2(2)* = (L/I") k3 Dai = 4(L/1")*k¢ D (3.16)

T
Laminar flow

The influence of laminar flow on the autocorrelation decay has been studied before; in this study, the
born series will be tested to see if it is possible to separate the autocorrelation influenced by flow from

the autocorrelation signal influenced by Brownian motion. With a flow speed, the particles have an
additional velocity vector that influences the MSD. In this case, the MSD is given by:

(r(7)2> = 4Dy + vfthQ (3.17)

With the additional velocity term within the msd, the theoretical autocorrelation becomes:

91(t) = Bxexp(—V AT+ D72)+C (3.18)
where D describes the influence of the flow velocity on the decay rate. D can be described with:

D = (L/I*)*k3v? (3.19)

3.3. Full Scale Medium

In the previous subsections, a simplified example medium was used to verify the fundamental working
principles of the simulation. However, in order to apply the diffusion approximation, it is essential
that the detected light lies within the diffusive regime. As shown in Figure 3.4, the light reaching the
detectorin the smaller domain has not undergone sufficient scattering to be considered diffused. Initially,
the light is anisotropic, meaning it predominantly propagates in the forward direction. As scattering
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events accumulate, the propagation direction becomes increasingly randomised. When the angular
distribution of photons becomes approximately uniform, the light is considered isotropic and can be
described using the diffusion approximation.

To reach this regime, photons must undergo multiple scattering events, which requires a longer prop-
agation path within the medium. This can be achieved by increasing the size of the computational
domain. In Figure 3.9, the magnitude of the electric field, | E|, is shown across the larger domain for
cases without scatterers (a) and with scatterers (b). In the presence of scattering particles, the field
exhibits a more spatially spread and smoother distribution, indicating that the light has experienced
sufficient scattering and can be considered to be in the diffusive regime.

As a validation step, the corresponding autocorrelation function was computed. Figure 3.10 shows that
the autocorrelation decays as expected from DCS theory.
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Figure 3.10: Normalized temporal autocorrelation functions from WaveSim for the full-scale simulation domain. The blue curve
corresponds to the autocorrelation from a single pixel, while the red and yellow curves show the mean and weighted mean over
500 pixels, respectively. As in the smaller domain, ensemble averaging across many pixels improves the smoothness and
reliability of the correlation decay.

3.4. Test plan

With the full-scale medium established in the diffusive regime, a series of tests were designed to ver-
ify the simulation framework and assess its ability to recover particle dynamics. Three categories of
validation were performed:

1. Temperature dependence of Brownian motion; The first test examines whether increasing tem-
perature leads to a corresponding increase in the autocorrelation decay rate, as predicted by
the relation between mean squared displacement and the Brownian coefficient (Equation 3.7).
Successful reproduction of this trend confirms that the model captures thermal diffusion.

2. Laminar flow contribution; In the second test, a uniform flow velocity is added to the particle trajec-
tories in COMSOL. The expectation is that laminar flow introduces an additional quadratic term
in the mean squared displacement (Equation 3.18), resulting in faster decorrelation. Simulations
at multiple flow speeds test whether this contribution can be distinguished from purely Brownian
motion.

3. Extraction of decay rates; Fitting the data from the first and the second test onto the exponential
models. The expectation is that the decay rates will have a linear relation with temperature for
Brownian motion and a non-linear relation for laminar flow.

Together, these tests establish whether the combined COMSOL-Born series framework can reliably



3.4. Test plan 35

0 Electric field mapping log(|E|)
100
200
300
400
€
S 500
>
600
700
800
900
1000
0 1000 2000 3000 4000 5000
X [pm]
(a)
0 Electric field mapping log(|E|)
100 2
<25
200
-3
300
35
400
'E' -4
S 500
= 4.5
600 .
700 -5.5
800 6
900 6.5
1000 - -7
0 1000 2000 3000 4000 5000
X [pm]

(b)

Figure 3.9: Mapping of the logarithmic absolute electric field distribution in the full-scale simulation domain. (a) Domain without
scatterers, where the Gaussian source propagates smoothly through the medium. (b) Domain with scatterers
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extract both Brownian and flow dynamics from simulated autocorrelation data. A schematic overview
is shown in Figure 3.11.
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Figure 3.11: Schematic overview of the simulation workflow. Brownian motion trajectories are generated in COMSOL and
mapped onto the optical grid of the modified Born series solver to compute the scattered field. Temporal fluctuations at the
detector are converted into field autocorrelation functions and fitted to exponential models inspired by the correlation diffusion
equation to extract Brownian and flow parameters.



Results

This chapter presents the results obtained from the coupled COMSOL—-Born series simulation frame-
work described in chapter 3. The aim is to evaluate whether the model reproduces the expected be-
haviour of diffusing correlation spectroscopy (DCS) and can separate Brownian and flow contributions
to the autocorrelation decay. The results are organised according to the validation tests outlined in
the methodology. Each section first presents the particle trajectories from COMSOL as mean squared
displacement (MSD) plots, followed by the corresponding autocorrelation functions from WaveSim and
their exponential fits.

4.1. Brownian Motion

4.1.1. Main case

The first validation case considered a viscosity of 1.0 x 10~° Pa-s, with the temperature varied from 300K
to 1800K in steps of 300 K. The particle trajectories generated in COMSOL show a linear mean squared
displacement (MSD) as a function of time across all temperatures, confirming Brownian behaviour
consistent with Equation 3.7. The MSD results across all temperatures are shown in Figure 4.1. The
results show that the MSD slopes increase linearly with temperature as expected. These trajectories
were then used, in the WaveSim model to compute the corresponding electric field for each frame
and then formed the corresponding temporal autocorrelation functions. The resulting autocorrelation
curves, shown in Figure 4.2, show a clear trend of faster decay at higher temperatures, reflecting shorter
decorrelation times as particle motion increases. However, the increase in decay rate is not uniform
across the entire temperature range.
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Figure 4.1: Mean squared displacement for T' = 300-2400 K at viscosity 1.0 x 10~5Pa-s. The MSD shows a linear relation
with time across all cases.
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Figure 4.2: Normalized temporal autocorrelation functions using a 500-pixel weighted mean, shown for increasing
temperatures between 300 K and 2400 K. Higher temperatures lead to faster decorrelation, consistent with the expected
acceleration of Brownian dynamics.

To quantify this effect, the autocorrelation curves were fitted to the exponential model in Equation 3.15.
The extracted decay coefficients are plotted in Figure 4.3. The results show a clear non-linear de-
pendence on temperature, with the growth of the decay rate coefficient increasing at higher 7. At low
temperatures (300—600 K), the decay rate increased gradually, whereas at higher temperatures (1200—
1800 K) the increments became much larger. This behaviour suggests that, although the MSD scales
linearly with temperature as expected, the mapping between MSD and autocorrelation decay becomes
increasingly inconsistent as temperature rises.
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Figure 4.3: Extracted decay rates from exponential fits using Equation 3.15, plotted as a function of temperature.

4.1.2. Supporting Case 1

A second set of simulations was performed with viscosity increased to 1.0 x 10~* Pa-s, and temperature
varied between 280 K and 400 K. The MSDs remained linear with time, confirming Brownian motion.
However, the corresponding autocorrelation functions (Figure 4.4) showed significant overlap between
curves, with crossovers obscuring any clear separation by temperature.
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Figure 4.4: Normalized temporal autocorrelation functions using a 500-pixel weighted mean, shown for increasing

temperatures between 280 K and 400 K.

When fitted to the exponential model, the extracted decay coefficients initially followed a weak linear
increase between 280 K and 320 K. Beyond this range, however, the results became inconsistent: a
sharp increase at 340 K, decreases at 360 K and 380 K, and another increase at 400 K. This irregular
behaviour reflects the poor separation between autocorrelation curves and highlights the strong influ-
ence of noise at these parameters. As a result, no reliable linear relation with temperature could be

established in this case.
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Figure 4.5: Extracted decay coefficients as a function of temperature.

4.1.3. Supporting Case 2

In the third set of simulations, the viscosity was reduced to 1.8 x 10~8 Pa-s, and temperatures between
25 K and 200 K were tested. Unlike the previous cases, the MSDs showed a non-linear increase with
time, deviating from the expected linear Brownian behaviour. This nonlinearity carried through to the
autocorrelation functions (Figure 4.7), which exhibited increasingly rapid decay with temperature but
with a non-linear scaling pattern.
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Figure 4.6: Mean squared displacement for T = 25-200 K at viscosity 1.8 x 10~8Pa-s. The MSD shows a non-linear relation
with time across all cases.
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Figure 4.7: Normalized temporal autocorrelation functions using a 500-pixel weighted mean, shown for increasing
temperatures between 25 K and 200 K (150 K missing due to corrupted data).

The extracted decay coefficients (Figure 4.8) confirmed this trend, displaying a non-linear dependence
on temperature consistent with the underlying particle motion. This case demonstrates that when the
fundamental dynamics deviate from Brownian theory, the optical signal reflects this departure directly.
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Figure 4.8: Extracted decay coefficients as a function of temperature.

4.2. Laminar Flow

To investigate whether the simulation can distinguish between Brownian motion and directed flow, a
constant external force was added to each particle in COMSOL to generate a laminar flow profile. The
particle parameters were kept identical to the Brownian motion case, with temperature fixed at 25 K
and viscosity at n = 1.8 x 10~8. The flow speeds were simulated between 8 x 1073 m/s to 1.8 x 1072
m/s. The resulting MSD curves are shown in Figure 4.9. The addition of flow introduces a quadratic
component that dominates at higher velocities. This behaviour is consistent with the theoretical MSD
expression in Equation 3.7, extended with a flow term. At low flow speeds, the Brownian contribution
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remains visible, but at higher speeds the quadratic growth becomes dominant.
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Figure 4.9: Mean squared displacement for v = 8 x 1073 — 1.8 x 102 m/s at viscosity 1.8 x 10~8Pa-s and T' = 25 K. The
MSD shows a non-linear relation with time across all cases.

The particle trajectories were supplied to WaveSim to calculate optical fields and temporal autocor-
relation functions. The results in Figure 4.10 show that increasing flow speed produces faster auto-
correlation decay, as expected. However, the increments are not uniform; higher flow speeds cause
disproportionate shifts, and some curves partially overlap. This indicates that while flow influences the
decay, the scaling with velocity is not showing a clear non-linear pattern. To extract quantitative flow
parameters, the autocorrelation data were fitted to the extended exponential model in Equation 3.18.
The extracted flow-related coefficients are shown in Figure 4.11. As expected, D increases with flow
speed, confirming sensitivity to directed motion. However, the scaling was not strictly proportional to
velocity, and noise in the higher-speed cases limited the precision of the fitted values. The results show
a monotonic increase, confirming that higher flow speeds produce faster decorrelation. However, the
scaling is not showing a clear non-linear relation: the increments were modest at intermediate speeds,
followed by a large jump at the highest flow setting. This deviation from proportional scaling is consis-
tent with the overlapping autocorrelation curves and reflects the difficulty of extracting flow parameters
with quantitative precision.
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Figure 4.10: Normalized temporal autocorrelation functions using a 500-pixel weighted mean, shown for increasing flow speed
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Figure 4.11: Extracted decay coefficients as a function of flow speed.



Discussion

The aim of this study was to evaluate whether a coupled COMSOL—-Born series simulation frame-
work can reproduce the expected behaviour of diffusing correlation spectroscopy (DCS). Specifically,
the model was designed to capture particle dynamics through COMSOL-generated trajectories and to
translate these into optical field fluctuations via the Born series solver, enabling direct calculation of
autocorrelation functions. The central questions were whether the model reproduces Brownian mo-
tion scaling with temperature, whether flow contributions can be detected and separated, and whether
exponential fitting allows quantitative extraction of diffusion and flow parameters.

The results showed that the model captures the essential qualitative features of DCS. In the Brownian
motion tests, COMSOL simulations consistently produced linear mean squared displacement (MSD)
curves, confirming that particle dynamics followed Brownian behaviour under appropriate viscosity and
temperature conditions. The corresponding autocorrelation functions from WaveSim exhibited faster
decay at higher temperatures, in agreement with the theoretical expectation that diffusion accelerates
decorrelation. However, the scaling of the extracted decay rates with temperature was not strictly linear:
in the main case (300-1800 K, low viscosity) the growth was non-linear, with diminishing increments
at higher temperatures, while in other regimes noise or non-linear MSD behaviour limited agreement
with theory.

For the laminar flow tests, adding a constant external force produced the expected quadratic growth
in the MSD and resulted in accelerated autocorrelation decay. Exponential fits using an extended
decay model confirmed sensitivity to both Brownian and flow terms. Nevertheless, the extracted flow
coefficients did not scale proportionally with velocity, and overlapping decay curves at higher speeds
limited quantitative precision.

Taken together, these findings indicate that the simulation framework qualitatively reproduces the mech-
anisms underlying DCS: Brownian motion leads to linear MSD growth and temperature-dependent
decorrelation, while flow introduces an additional quadratic term that accelerates decay. At the same
time, the deviations from linear scaling and the influence of noise demonstrate practical limitations in
recovering parameters quantitatively.

The observed mismatch between COMSOL motion and WaveSim dynamics is explained by the discreti-
sation of the dielectric map. Sub-pixel particle movements do not alter the refractive index distribution
until a boundary is crossed, so most of the physical motion is invisible to the optical solver. The average
per-frame particle displacement is 0.001-0.003 pm, which is far smaller than the WaveSim pixel size
of 0.2 ym. As a consequence, only a small fraction of particles crossed the pixel boundaries between
frames (e.g. 1/15,352 at 300 K, rising to =236/15,352 at 1800 K). This quantisation effect suppresses
decorrelation and leads to overlapping decay curves at different temperatures. A simple resolution
metric can be defined,

4DpAt
x =

pizel size

(5.1)
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where Dg is the Brownian diffusion coefficient and At is the frame interval. In all cases, y <« 0.2,
explaining the underestimation of decorrelation and the irregular scaling of decay rate with temperature.

In addition to these round-off effects, the present work did not explicitly track the phase shifts driving
speckle decorrelation. In DCS, the speckle pattern arises from interference of many scattered photon
paths, and each particle displacement alters optical path lengths and thus the phase of the electric
field. Even sub-nanometre displacements contribute to decorrelation, provided they induce a phase
shift on the order of the optical wavelength. In this framework, however, most small displacements
remain invisible, and the corresponding phase increments between frames are effectively quantised
away. The result is an underestimation of decorrelation, since much of the phase dynamics is not
represented in the current pixel-based rendering.

Another factor influencing the results is the number of independent observables (NIO) available in the
simulation. In DCS, the statistical reliability of the autocorrelation function depends on averaging over
many speckles and time samples. Here, the number of pixels (spatial samples) and frames (temporal
samples) directly sets the effective NIO. A limited pixel count or too few frames increases the statis-
tical variance of the autocorrelation function. This effect is especially visible in the high-temperature
runs, where the expected monotonic scaling of decay rate becomes obscured by fluctuations. Xu et al.
emphasise that insufficient NIO leads to “shape deviation” in the autocorrelation function, as random
speckle fluctuations dominate the statistics [55]. Our results are consistent with this limitation.

A further complication arises from the use of COMSOL-generated particle trajectories as input to
WaveSim. While COMSOL provides continuous trajectories with sub-nanometre resolution, WaveSim
requires discretisation of these trajectories onto a pixel grid at each frame. This translation introduces
an additional layer of complexity, because small but physically meaningful displacements in COMSOL
may not map to a detectable pixel shift in WaveSim. As a result, the true underlying Brownian motion is
partially obscured, and the apparent dynamics captured in the autocorrelation function differ from theo-
retical expectations. This highlights the challenge of coupling two models with very different resolution
scales and numerical formalisms.

The aim of this work was to test whether the COMSOL-Born framework could reproduce DCS auto-
correlation scaling and ultimately separate the Brownian and flow contributions. The present results
indicate that, under the current rendering resolution, the framework cannot yet provide unbiased scaling
of blood-flow-related motion. The sublinear temperature dependence and mismatched decorrelation
rates highlight the need to address pixel-level quantisation before the framework can meet its intended
goal. The expectation was that increasing temperature would linearly accelerate decorrelation, consis-
tent with theory where Dy o« T'. This expectation was met in the MSD data from COMSOL, but not in
the WaveSim autocorrelations, where the decay rate grew sublinearly and irregularly with temperature.
Similarly, laminar flow simulations did show faster decay, but the results were distorted by the same
quantisation limit. Thus, our theoretical expectations were only partially met.

The main implication is that parameter extraction from sub-pixel-limited simulations is biased. Fitting
exponential models to autocorrelations in this regime underestimates diffusion and flow coefficients,
and produces nonlinear trends even when the physics is linear. For practice, this means that simulation
parameters (At, grid size, pixel resolution) must be chosen such that motion becomes visible above
the quantisation threshold. More broadly, this work highlights a methodological limitation relevant to
all pixel-based DCS models: accurate inference requires matching spatial resolution to the expected
motion scale.

Methodologically, the study was constrained by the choice of a 0.2 um pixel grid in WaveSim, which is
too coarse relative to the COMSOL-predicted Brownian displacements. The approach also relied on
binary occupancy maps, which do not capture subpixel shifts. These choices reduce the validity of the
results and explain the mismatch between theory and simulation. Reliability is further affected by noise
in the exponential fitting, which amplifies the quantisation artefact.

Another key limitation of this study is that only the autocorrelation decay rate could be extracted. We
could not reliably determine absolute Brownian diffusion coefficients or flow velocities, because this
would require solving the correlation diffusion equation (CDE) with knowledge of the medium’s optical
properties specifically, the absorption coefficient (u,,), scattering coefficient (1), anisotropy factor (g),
and transport mean free path (I*). These parameters were not characterised in the present work,
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meaning the link between decay rate and absolute motion parameters remains incomplete. As such, the
current framework is best suited for studying relative scaling trends, such as temperature dependence
of Brownian motion or the presence of flow contributions, rather than providing quantitative flow indices
comparable to in vivo DCS measurements.

A further limitation of the present framework is computational cost. The WaveSim solver required
approximately 300 seconds to compute each frame, and each autocorrelation function was generated
from 1000 frames. This results in runtimes on the order of days for a single condition, which severely
restricts the range of parameters that can be explored and precludes any real-time applications. The
high computational demand limits scalability and makes systematic parameter sweeps impractical.

Looking ahead, several directions emerge for extending and strengthening this framework. The most
immediate priority is to overcome the pixel-quantisation limit that currently suppresses decorrelation.
This could be achieved either by adopting finer spatial grids in WaveSim or by matching the frame-
by-frame motion within WaveSim with the time-step motion in COMSOL. In parallel, optimisation of
temporal sampling is needed. Choosing frame intervals that balance physical motion with computa-
tional feasibility would ensure that displacements become visible at the lags used for autocorrelation
fitting, while still keeping runtimes manageable.

Another important step is to incorporate phase dynamics explicitly. Since speckle decorrelation is driven
by cumulative phase shifts from particle motion, methods that track or approximate phase evolution
between frames could help capture motion on scales smaller than the current pixel size. This would
bring the simulation closer to the physical basis of DCS and reduce the underestimation of decorrelation.

To enable quantitative parameter extraction, future work must also integrate a correlation diffusion
equation (CDE) framework. This requires specifying the medium’s optical absorption and scattering
coefficients, the anisotropy factor, and the transport mean free path. With these parameters in place,
the simulated decay rates could be mapped onto absolute diffusion coefficients and flow velocities,
allowing direct comparison to experimental DCS data.

Finally, computational performance remains a major barrier. Each autocorrelation function currently
requires several days of computation, which limits systematic testing across parameters. Future work
should therefore explore domain decomposition, and Python-based solver implementations that can
reduce runtimes substantially. Such improvements would open the door to larger parameter sweeps,
sensitivity analyses, and eventually, real-time modelling capabilities.



Conclusion

The aim of this thesis was to evaluate whether a coupled COMSOL-Born series simulation framework
can reproduce the expected behaviour of diffusing correlation spectroscopy (DCS). The framework
was designed to link particle dynamics, modelled in COMSOL, with optical field fluctuations, calculated
using a modified Born series solver, to generate autocorrelation functions characteristic of DCS. The
central objective was to determine whether such a framework could qualitatively and quantitatively
capture Brownian diffusion and laminar flow contributions to the autocorrelation decay.

The results demonstrated that the framework successfully reproduces the qualitative behaviour ex-
pected from DCS. In the Brownian motion simulations, COMSOL generated linear mean squared dis-
placement (MSD) curves, and WaveSim translated these into autocorrelation functions with faster de-
cay at higher temperatures. In the flow simulations, externally imposed velocities produced quadratic
MSD growth and correspondingly faster decorrelation, consistent with theoretical expectations. These
findings confirm that the framework captures the essential physical mechanisms underlying DCS.

However, the model did not reproduce the expected quantitative scaling of DCS parameters. The
extracted decay rates grew sublinearly with temperature in the Brownian case and failed to scale pro-
portionally with velocity in the flow case. Detailed analysis identified the source of this mismatch as
a resolution gap between COMSOL and WaveSim: particle displacements per frame were typically
two orders of magnitude smaller than the 0.2 ym pixel size, meaning most motion was invisible to
the optical solver. This pixel quantisation effect suppressed decorrelation and distorted scaling, pre-
venting reliable recovery of diffusion or flow parameters. Additional limitations include the absence
of phase-resolved modelling, restricted number of independent observables due to finite pixels and
frames, reliance on decay rates alone without a correlation diffusion equation (CDE) solution, and long
computational runtimes.

The central conclusion of this work is that the COMSOL-Born series framework provides a promising
basis for DCS simulation but, in its current form, cannot deliver unbiased parameter estimates. The
qualitative agreement with DCS physics demonstrates proof of concept, but accurate inference of dif-
fusion coefficients or flow velocities requires resolving subpixel motion, incorporating phase dynamics,
and linking decay rates to optical transport parameters through the CDE.

Looking forward, methodological refinements offer a clear path toward quantitative capability. Subpixel
rendering, adaptive temporal sampling, and improved statistical averaging would address the quanti-
sation limit. Integration of optical properties and CDE solutions would enable mapping decay rates
onto absolute motion parameters. Finally, advances in computational efficiency through domain de-
composition could make large-scale parameter sweeps and real-time modelling feasible. With these
improvements, the framework could become a powerful tool for understanding DCS signals and sup-
porting the development of bedside, non-invasive blood flow monitoring technologies.
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Source Code

A.1. COMSOL Code for Brownian motion and Laminar flow

Wl hBDBID DI R hI AR DD DD Db %% %h%h% COMOSL Initialization UhAAAAAAAALALGLS LGNS

import com.comsol
import com.comsol

outcham_1 =
outcham_w =

model
model.
model
model
model
model
model

= ModelUtil

6000;
1000;

.model. *
.model.util.*

.create('Model');

label('brownian_motion.mph');
'1.5E-7[m]"', 'Particle_radius');
'2400[K] "', 'Temperature'); %%hhthh%h T
, "1E-5[Paxs]', 'Fluid,viscosity');
'(k_B_const*T)/(6*pi*eta*xrp)', 'Diffusivity');

.param
.param.
.param.
.param.
.param.
%model .param.set ('Uin',

.set('rp',
set('T',
set('eta’
set('D',
set('ds"',

13112,

'Input,to,random number generator');

'0.6E-2[m/s]', 'Inlet,velocity'); %%% flow speed

model.modelNode.create('compl', true);

model.geom.create('geoml', 2);

model.

model.

model.
model.
model.
model.
model.

model.
model.
model.
model.
model.
model.
model.

geom('geoml') .model('compl');

mesh.create('meshl',

geom (
geom (
geom (
geom (
geom (

variable.create('varl');
variable('varl').
variable('varil').
variable('varil').
variable('varil').
variable('varl').
variable('varl').

'geoml');

'geoml') .lengthUnit ([native2unicode (hex2dec({'00' 'b5'}), 'unicode') 'm'l); %%% um
'geoml') .create('rl', 'Rectangle');

'geoml') .feature('rl').set('base', 'center');

'geoml') .feature('rl').set('size', [outcham_1 outcham_w]);

'geoml') .run;

concentration');

model .material.create('matl',

model.physics.create('fpt',

model ('compl');

set ('smooth', '2E-7', 'Smoothing distance');

set('xd', 'x[1/m]', 'x_coordinate');

set('yd', 'y[1/m]', 'y,coordinate');

set('cO', '1', 'Peakyinitial_concentration');

set('c_init', '2*%cO*x(1-flc2hs(xd"2+yd~2-smooth”2,5e-11))"', 'Initialy,

'Common', 'compl');

'FluidParticleTracing', 'geoml');

model.physics('fpt') .model('compl');

model.physics('fpt').create('dfl', 'DragForce', 2);

model.physics('fpt').feature('dfl').selection.all;

%model.physics('fpt').feature('forcel').label('Force 1');

%model.physics('fpt').feature('forcel').selection.all;

%model.physics ('fpt').feature('forcel').set('F', { '6*pixeta*rpxUin'; '0' ; '0'}); %%% Flow
force
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A.l. COMSOL Code for Brownian motion and Laminar flow

model
model
model
model
model

model
model
model

model
model
model
model

model

model
model
model
model
model
model
model
model
model
model
model
model
model
model

I

model
model
model

model
model
model
model
model
model

model.
model.

model

model

model.
.sol('soll').create('tl', 'Time');
.s0l('soll').feature('tl').create('fcl', 'FullyCoupled');
.s01('soll').feature('tl1').create('il', 'Iterative');
sol('soll').feature('tl').feature('il').create('jal"',

model
model
model

model.
model.

model
model
model
model
model

model.

model

model.

.physics('fpt').create('bfl',
.physics('fpt').feature('bf1")
.physics('fpt').create('relgl"
.physics('fpt').create('pcntl’
.physics('fpt').feature('pcntl').selection.set ([1]);

.mesh('meshl').create('scal',
.mesh('meshl').create('ftril"',
.mesh('meshl').feature('scal')

.view('viewl').axis.set ('xmin'
.view('viewl').axis.set ('xmax'
.view('viewl').axis.set('ymin'
.view('viewl').axis.set('ymax'

.mesh('meshl').feature('size"')
.mesh('meshl').feature('scal')
.mesh('meshl') .run;
.mesh('meshl').feature('size"')
.mesh('meshl').feature('size')
.mesh('meshl') .run;

study.create('stdl');
study ('stdl') .create('time"',

.sol.create('soll');
model.
model.
.sol('soll').create('stl', 'StudyStep');

sol('soll').study('stdl');
sol('soll').attach('stdl');

'BrownianForce', 2);
.selection.all;

, 'ReleaseGrid', -1);

, 'ParticleCounter', 2);

'Scale');
'FreeTri');
.selection.geom('geoml', 0);

, —158.11143493652344) ;
, 158.11143493652344) ;
, —-137.5);

, 137.5);

.material ('matl').propertyGroup('def').set('density', '1000');

.set('dp', '2*rp');
.set('rhop_mat', 'userdef');
.set ('rhop', '1090[kg/m"~3]1');
.set('mu_mat', 'userdef');
.set('mu', 'eta');
.set('mu_mat', 'userdef');
.set('mu', 'eta');

.set('i', 'ds');
.set('minput_temperature', 'T');

.set ('hauto', 2);
.set('scale', 0.05);

.set('table', 'cfd');
.set('hauto', 4);

'Transient');

sol('soll').create('vl', 'Variables');

sol('soll').feature('tl').feature.remove('fcDef');

.result.dataset.create('partl’
.result.create('pgl', 'PlotGroup2D');
.result('pgl').set('data', 'partl');
.result('pgl').create('trajl',
.result('pgl').feature('trajl').create('coll', 'Color');

result('pgl').feature('trajl').feature('coll').set('expr',
.result.export.create('animl',

study('stdl').feature('time')

unicode') 's'l); %h%% us

model.

sol('soll').attach('stdl');

, 'Particle');

'ParticleTrajectories');

'Animation');

{'range (-3000,20,3000) ';

'Jacobi');

.physics('fpt').prop('WallAccuracyOrder').set('WallAccuracyOrder', 1);
.physics('fpt') .prop('RandomNumberArgs').set('RandomNumberArgs',
.physics('fpt').feature('walll').set('WallCondition',
.physics('fpt').feature('walll').set('i', 1000);
.physics('fpt').feature('ppl")
.physics('fpt').feature('ppl')
.physics('fpt').feature('ppl')
.physics('fpt').feature('df1')
.physics('fpt').feature('df1')
.physics('fpt').feature('bf1"')
.physics('fpt').feature('bf1l"')
.physics('fpt').feature('bf1l"')
.physics('fpt').feature('bf1l"')
.physics('fpt').feature('relgl').set('x0"',
%hhhhhrelease grid of particles
.physics('fpt').feature('relgl').set('Us', 0);
.physics('fpt').feature('relgl').set('Nvel', 5000) ;
.physics('fpt').feature('pcntl').set('ReleaseFeature', 'relgl');

'UserDefined');

'DiffuseScattering');

'fpt.V');

.set('tunit', [native2unicode (hex2dec({'00' 'b5'}),

model.sol('soll').feature('stl').label('Compile Equations: Time Dependent');
model.sol('soll').feature('vl').label('Dependent Variables;1.1');

'range (-500,20,500) '
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model.sol('soll').feature('vl').set('clist', {'range(0,0.1,60)' ['1.0000000000000002["
native2unicode (hex2dec ({'00' 'b5'}), 'unicode') 's]'l});

model.sol('soll').feature('tl1').

model.sol('soll').feature('tl').set('tlist', ...
'range (0,5,5000) yrange (5000,0.1,5200) ") ; %hhhbhhhhhhhhhhhhhh% simulation time

model.
model.
model.
.s80l1('soll').feature('t1').set('estrat', 'exclude');
model.
model.
model.
model.
model.
model.

model

model
model
model
model
model

model
model

model.

model

model.

model

model.

model

model.
model.

model

model.

model

model.

model

model.

sol('soll').feature('tl').set('rtol', 1.0E-5);
sol('soll').feature('tl').set('ewtrescale', false);
sol('soll').feature('tl').set('timemethod', 'genalpha');

sol('soll').feature('tl').set('tstepsgenalpha', 'strict');
sol('soll').feature('tl').feature('dDef').label('Direct 1');

sol('soll').feature('tl').feature('aDef').label('Advanced 1');
sol('soll').feature('tl').feature('fcl').label('Fully Coupled, 1.1"');
sol('soll').feature('tl').feature('fcl').set('ntolfact', 0.1);
sol('soll').feature('tl').feature('il').label('Iterative 1.1"');
.s0l('soll').feature('tl').feature('il').feature('ilDef').label('Incomplete LU,1");
model.

label('Time-DependentSolver 1.1"');
model.sol('soll').feature('tl1').set('tunit', [native2unicode (hex2dec({'00'
's'1);

'b5'}),

sol('soll').feature('tl').feature('il').feature('jal').label('Jacobij1.1");

.s801('soll').runAll;

.result('pgl').label('Particle Trajectories, (fpt)');
model.

result('pgl').feature('trajl').set('linetype', 'none');

.result('pgl').feature('trajl').set('pointtype', 'point');
.result('pgl').feature('trajl').set('sphereradiusscale', 349.99999999999994) ;

.result('pgl').feature('trajl').set('sphereradiusscaleactive', false);
.result.numerical.create('parl', 'Particle');
result.numerical('parl').set('expr', 'gqx');
.result.numerical.create('par2', 'Particle');
result.numerical ('par2').set('expr', 'qy');
.result.table.create('tbll', 'Table');
result.table('tbll').comments('Particle_ Evaluation 1');
.result.numerical('parl').set('table', 'tbll');
result.numerical('parl').setResult;
result.table('tbll').save('posx.csv');
.result.table.create('tbl2', 'Table');
result.table('tbl2').comments('Particle_ Evaluation 2');
.result.numerical('par2').set('table', 'tbl2');
result.numerical ('par2').setResult;
.result.table('tbl2').save('posy.csv');
label('brownian_motion.mph');

A.2. MATLAB Code for WaveSim

clear all; close all;

addpath('..")

%% Simulation Options

PPW = 4; % Points per wavelength

opt.lambda = 0.8; % Wavelength in vacuum (um)
opt.energy_threshold = 1E-10; % Energy threshold for convergence

opt.pixel_size = opt.lambda / PPW; % Pixel size (um)
opt.boundary_widths = [2, 2]; % Periodic boundaries

opt.usemex

false;

if (opt.usemex)
addpath('../MexBin');

end

%% Grid and Refractive Index Setup

S = 10;

s2p = 1/0.2;
p2s = 0.2;

N = [5000,
DS =

DE

300007 ;
(30000/2) - 2500;
(30000/2) + 2500;

% Time steps and storage for scattering field

time_steps

1001:1200;

'unicode')
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%% Tissue Parameters

n0 = 1.00;
a0 = 0.001;
u_sl = 1;

%% Red Blood Cells Parameters

num_RBCs = 15352; % Number of RBCs

rbc_radius = (8/2)*s2p; % Radius of each RBC in pixels
n0r = 1.5;

a0r = 0.0001;

rbc_index = nOr + 1.0i*(alr); % Refractive index of RBCs

%% Simulation loop

n_sample = 1.0%(n0) + 1.0i*(a0)*ones(N);
air_layer = omnes(1l, N(2));

bottom_layer = ones (1, N(2));
n_sample_org = n_sample;

%Extracting RBC motion data

posx = readmatrix('posx.csv');
posy = readmatrix('posy.csv');
hh

% Precompute the grid and source
[x, y] = ndgrid(1:N(1), 1:N(2)); % Precompute grid coordinates
%% define pencil beam source (5 pixels wide) placed in the middle of the x-axis using

gausswin

beam_width = 51; % number of pixels for the beam width

center_idx = round(N(2)/2); % center position along the x-axis

beam_profile = gausswin(beam_width, 3); % create a Gaussian window of length 5

source_amplitude = zeros(1l, N(2)); % initialize the source array for the full x-axis

source_amplitude (center_idx-25:center_idx+25) = beam_profile; J insert the Gaussian pencil
beam at the center

source = Source(source_amplitude, [N(1)+2,1,1,1]1); % create a normally incident source (no
angle)

for t=time_steps
% Update refractive index map with new RBC positions
n_sample = n_sample_org;

% Update only a local region around each RBC

for i = 2:num_RBCs

% Get the current RBC position in grid coordinates
rbc_x = round(posy(t, i) * s2p + N(1) / 2);

rbc_y = round(posx(t, i) * s2p + N(2) / 2);

% Ensure the RBC positions are within the grid bounds
rbc_x = max(min(rbc_x, N(1)), 1);

rbc_y = max(min(rbc_y, N(2)), 1);

% Define the bounding box around the RBC

x_min = max(rbc_x - rbc_radius, 1);
x_max = min(rbc_x + rbc_radius, N(1));
y_min = max(rbc_y - rbc_radius, 1);
y_max = min(rbc_y + rbc_radius, N(2));

% Create a mask for the local region (bounding box) around the RBC

x_local = x(x_min:x_max, y_min:y_max); % Extract local x grid coordinates
y_local = y(x_min:x_max, y_min:y_max); % Extract local y grid coordinates
rbc_mask = sqrt((x_local - rbc_x)."2 + (y_local - rbc_y)."2) <= rbc_radius;

% Update the refractive index map within the bounding box

n_sample(x_min:x_max, y_min:y_max) = rbc_index * rbc_mask +
n_sample(x_min:x_max, y_min:y_max) .* ~rbc_mask;

end

disp('updated grid, forgnew location')
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end

% Run the wave simulation for the current refractive index

n_sample = [air_layer; n_sample; bottom_layer];
sim = WaveSim(n_sample, opt);
[E, ~] = exec(sim, source); % Run simulation

disp('Wavesim done')

% Store the scattered field for the current time step
scattered_fields(1,:, t) = E(1,DS:DE);

% Save the first row of scattered fields
first_row_fields = scattered_fields;

%% Save the entire workspace
save('scatteredfields.mat', 'first_row_fields', '-v7.3');



Additional figures

Autocorrelation fitting
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Figure B.1: Normalized temporal autocorrelation function at T = 300 K. The red dots shows the result obtained using a
500-pixel weighted mean, while the blue curve represents the fitted exponential model (A = 1.0088 x 106, B = 1.4523 and
C = —0.0184).
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Autocorrelation fitting
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Figure B.3: Normalized temporal autocorrelation function at T=25 K with a flow speed of v=8.0 x 10~2 m/s. The green stars
represent the simulated autocorrelation data, the red line shows the fitted exponential model (A = 3.49 x 105, B = 1.044, C =
-0.0034, D = 1.32 x 1019), and the striped red line indicates the 95% confidence interval.

g X 1018 MSD at different temperatures
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Figure B.2: Mean squared displacement for T = 280-400 K at viscosity 1.0 x 10~%Pa-s. The MSD shows a linear relation with
time across all cases.
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