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Abstract

This thesis explores the application of neural networks for forecasting order volumes. Additionally, this
thesis presents a framework for integrating these forecasts into the route planning strategy of B2B
wholesale distributors. The routing strategy involves a two-stage optimization process: provisional
routes are generated by assuming the forecasts are correct, and final routes are generated using the
provisional routes and actual orders after all orders are revealed.

During the week before delivery, customer orders are sorted at a cross-dock corresponding to the
vehicle that will deliver to that customer. If the provisional route plan differs from the final route plan,
customer orders that were already sorted need to be relocated. We want to minimize these relocations.
Since actual relocations are not measurable through simulations, we define a swap as the event where
a customer is scheduled on a different route than originally planned. The main goal of this study is
to minimize the number of swaps between forecasted and actual routes for B2B food delivery while
maintaining both feasibility and route efficiency. This is accomplished by improving forecasting and
designing a framework to integrate forecasts into the route optimization process.

For route planning, we use the B2BDelivery software by ORTEC [37]. This optimizer allows you to input
preplanned routes, but it is not yet able to include uncertainty. In this research, we investigate the effect
of different optimizer configurations on the number of swaps and route efficiency. For implementation,
we propose a two-stage optimization strategy, which, due to limitations of the optimizer, includes two
rounds in the second stage. First, a full optimization is performed where customers from the provisional
plan are fixed in their preplanned routes. This is followed by a light optimization round that encompasses
all customers. In the light optimizer, raising the minimum estimated gain before attempting swaps had
a more significant effect on reducing the number of swaps compared to increasing the number of swap
attempts. Tests on forecasting qualities highlighted the importance of global metrics, such as the total
number of customers and forecasted volume, on swap reduction and route efficiency.

Prior to this research, a proof of concept was conducted to forecast thousands of time series using
traditional forecasting methods, which revealed two significant flaws. Firstly, the necessity to train
separate forecasting models for individual time series resulted in the training of tens of thousands of
models. Secondly, forecasting for new customers with limited historical data proved challenging. This
motivated the adoption of neural network models as a unified solution, also capable of learning from
similar patterns across multiple time series. This research tests three state-of-the-art neural network
models: DeepAR from Amazon [44], Temporal Fusion Transformer (TFT) fromGoogle [22], and N-HiTS
from Nixtla [6].

All models struggled with forecasting the raw time series due to the zero-inflated nature of order data.
Using a separate model to predict the occurrence of an order and another model to predict the ordered
volume gave comparable or better results than the proof of concept. The neural network models also
show improvements in terms of forecasting for new customers. However, the main advantage lies in the
ability to maintain just two models that function across all customers, eliminating the need for separate
models for each customer.

Forecasts from DeepAR gave superior results in route planning regarding consistency and efficiency,
despite having the highest mean absolute error, likely due to better performance on global metrics. TFT,
while achieving the highest accuracy, incurred more swaps due to volume underestimation. N-HiTS
performed worst in forecasting and route planning but required significantly less training time.

Further research should focus on refining loss functions to potentially forecast zero-inflated data using a
singlemodel. Within the current framework, hierarchical forecasting should be further explored because
of the importance of correctly forecasting the total number of customers and ordered volumes. The
framework could be further improved by incorporating stochastic optimization elements, optimizing the
initial routing decisions based on forecast uncertainties.
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1
Introduction

1.1. Background on Case Study

1.1.1. Introduction to ORTEC
ORTEC, founded in the 1980s, is a leading provider of optimization solutions, including route planning
optimization, workforce scheduling, and supply chain design. With over 1,000 employees across 13
countries, ORTEC assists more than 1,200 clients in making data-driven decisions in a constantly
changing landscape [36].

1.1.2. Project Context
This thesis is conducted in collaboration with ORTEC and contributes to a project for one of their clients,
a wholesale food distributor. The main objective of the project is to improve route planning for business-
to-business (B2B) food deliveries from cross-docking transport centers (TC). The distributor serves a
wide variety of customers, including restaurants, hotels, and healthcare institutions.

Cross-docking facilities typically have limited storage capacity. Customer orders are collected and
prepared throughout the week, after which they are temporarily stored at the cross-docking terminal
associated with the delivery truck assigned to that customer. A schematic overview of this process is
shown in Figure 1.1.

Figure 1.1: Illustrative example of a cross-docking terminal [23]. Incoming orders are sorted at the cross-dock corresponding
to the vehicle that will deliver the products.

Customers of the distributor can place orders up to a certain cut-off time. This cut-off time can differ
from customer to customer or even from product to product.

ORTEC already provides route planning solutions for this distributor. However, the distributor requested

1



1.1. Background on Case Study 2

to prepare delivery routes one week in advance. This requires forecasting customer orders and a
framework for integrating them into the routes. To investigate the feasibility, ORTEC performed a proof
of concept (PoC).

This thesis builds on that initiative by developing forecasting models for customer orders and proposing
a framework for integrating these forecasts into the route planning process. It is important to note that
this research focuses exclusively on outbound delivery optimization and does not address the planning
of inbound shipments to the cross-docking centers.

This master’s thesis has been written as part of the master Applied Mathematics at Delft University of
Technology.

1.1.3. Current Route Planning Strategy
For quite a few years, the wholesale distributor has used the concept of ”master routes”. The planner
of the TC pins down a set of routes for every day of the week that serve all customers. These master
routes are determined based on the current customer base, historical order data from the last few
weeks, and the experience of the planner. The routes are planned with a capacity of 130% as not
every customer on the route places an order for each delivery. Depending on the size of the TC, the
master routes are determined 1 to 4 times a year. Special weeks, such as Christmas, have different
routes that are primarily based on the planner’s experience.

”Currently, we look back 4 weeks in history to predict 40 weeks into the future.”
- Employee at wholesale distributor

Only the evening before delivery, all orders are definite. The planner of the TC will then make the
actual routes for delivery. First, the planner uses ORTEC software to project the received orders on
the predetermined master routes. However, several potential issues may arise:

1. Some routes could exceed the capacity of 100%, which means that not all orders will fit in the
truck;

2. Companies that became customer after the master routes are determined can not be projected
onto any of the master routes;

3. Customers that usually order on a different day are not included in the master routes for this
specific day and, therefore, cannot be projected on the any of the routes as well.

Now, the planner can solve these issues by hand or use an optimizer designed by ORTEC. This op-
timizer uses simple local search methods to make sure all orders are on a route and that no route
exceeds the capacity. With both methods it is possible that customers end up on a different route than
was predetermined by the master route. When these orders have already been sorted and prepared
on the cross-dock of the initial route, they now need to be relocated to the cross-dock of the new route.

The current route planning strategy is summarised in the Figure 1.2.

Figure 1.2: Current route planning strategy using master routes. In the current route planning strategy, more than 20% of the
incoming orders that are sorted need to be relocated from one cross-dock to another due to a different final route plan.
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Definition 1.1. A relocation refers to the event in which a customer’s order needs to be moved from
one cross-dock to another due to its scheduling on a different route than the predetermined one.

Such relocations are undesirable as they cause additional work just before the orders are packed into
the trucks. Since there is also limited time for these relocations, it may not be possible to perform
all relocations and thus drive less efficient routes. Therefore, we want to minimize the number of
relocations. In the current route planning strategy, more than 20% of the incoming orders that are
sorted need to be relocated from one cross-dock to another due to a different final route plan.

1.1.4. Dynamic Route Planning Strategy
With the current route planning strategy, the master routes are fixed for a relatively long time. One can
imagine that these routes will work well in the first few weeks after the master routes are determined.
However, as time passes, the customer base changes, and customer needs may have shifted due to
a number of reasons. This results in the need for more and more swaps before loading the trucks, and
it occurs that quite a few vehicles have to operate at only 60% capacity. Therefore, a more dynamic
approach for the routing problem is desired.

The goal is to forecast the customer orders a week in advance and to compute optimal routes based
on these forecasts. The routing software from ORTEC cannot yet handle stochastic data. It therefore
just assumes the order forecasts to be true. Each customer predicted to place an order is assigned a
route and, consequently, a specific cross-dock. If customers place their order for the predicted delivery
day during the week before delivery, their orders can be prepared and sorted at the correct cross-dock.
When the actual routes are computed on the day of delivery, it is still possible that some orders may
need to be relocated. However, it is assumed that predicting routes a week in advance will result in
fewer relocations than setting up master routes for a longer period of time.

The dynamic route planning strategy is summarised in Figure 1.3.

Figure 1.3: Desired dynamic route planning strategy that uses historic orders and exogenous variables to predict customer
orders. These forecasts are used to generate a provisional route plan, which is handled in the same way as master routes. The
goal is that, by employing a more adaptive provisional planning approach, the number of relocations can be reduced to below

20%.

There are, however, a few problems with this dynamic strategy, one of which is dealing with driver
familiarity. Each customer has different instructions for delivery; for example, orders may need to be
placed at back doors, in the kitchen, or in other specific locations. Not every driver can be expected
to know the instructions for all customers. Additionally, customers also prefer to see a familiar face
when receiving their orders. As a result, reduced driver familiarity increases delivery time and reduces
customer satisfaction. With the concept of master routes, a driver responsible for a specific route is
familiar with all the customers on that route. When one driver replaces another, they only need to learn
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instructions for the customer on that particular master route. However, with dynamic route planning,
where there are no fixed routes, it becomes challenging to ensure that drivers know the instructions for
the customers they will be delivering to.

One idea would be to forecast customer orders several weeks in advance, such as six weeks prior to
delivery, to allow for earlier anticipation and planning. However, it is not clear what the effect of different
forecasting time frames might be on the overall efficiency of the delivery process. Given the challenging
nature of this problem, particularly regarding driver familiarity, and the main goal of this project being
to minimize the number of relocations of orders, the issue of driver familiarity will be excluded from the
scope of this study. Additionally, the impact of different forecasting intervals will not be investigated.
For the sake of simplicity, we will only consider forecasting a week before delivery.

1.1.5. Previous Work done by ORTEC
Prior to the start of this thesis, ORTEC conducted two initial proof of concept (PoC) studies to explore
opportunities for improving the current forecasting and route planning processes. These PoCs were
conducted separately: one focused on order forecasting, and the other on route optimization. The
integration of both components into a single framework has not yet been realized.

Proof of Concept: Forecasting
In the forecasting PoC, individual product orders were aggregated into three main product streams:
fresh goods, frozen products, and dry groceries. This resulted in three distinct time series per customer,
each representing the volume of a specific product stream ordered on a given date. Forecasting was
conducted independently for each of these time series.

The forecasting was approached using two separate models. A first model, called the delivery model,
predicts whether a customer would place an order on a particular day, which is a binary classification
task. A second model, called the volume model, forecasts the total order volume for the week, which
is a regression task. These models are then combined: the volume forecast is only considered if the
delivery model predicts that an order would occur on that day.

For predicting deliveries, logistic regression and random forest classifiers were used. For volume pre-
diction, several regression models were evaluated, including linear regression, Prophet, Holt-Winters,
and SARIMAX. The models are compared to a baseline forecast that simply copies the orders from
the last week. The dataset was divided into training, validation, and test sets. All models were trained
on the training set, and the optimal model combination was selected based on validation performance.
Delivery models were evaluated using accuracy, defined as the percentage of correctly predicted de-
livery days. Volume models were assessed using Mean Absolute Error (MAE), which measures the
average absolute deviation from the actual order volume.

The best-performing model combination was then evaluated on the test set and compared against the
baseline approach. This naive baseline already provides a reasonable benchmark, given that many
order patterns exhibit gradual changes driven by seasonality or business growth. In the PoC, the
classification model obtained a 92% accuracy (baseline: 89%) and the combined model forecasted
order volumes with an MAE of 43 liters (baseline: 51).

The most challenging customers to forecast were those with unpredictable ordering behavior or limited
historical data. Additionally, having thousands of time series and multiple models to train per time
series, the proof of concept involved training tens of thousands of time series models. This highlights
the need for a unified forecasting model that can learn from the collective data of all customers. Using
a single model potentially enables learning similar patterns across customers, while also providing a
solution that is easier to maintain and manage.

Proof of Concept: Route Planning Optimizer
The route planning optimizer currently used by the client, as described in Section 1.1.3, is no longer
actively maintained. In recent years, ORTEC has developed a new software solution for solving routing
problems. This new optimizer, which will be discussed in more detail in Chapter 7, is capable of applying
more advanced optimization algorithms. It is also more customizable in configuring optimization steps
and incorporating the client’s needs.
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As part of the proof of concept (PoC), the performance of this new software was compared to the old
system still in use by the wholesale distributor. Even without tailoring the new system to the client, it
already demonstrated improved route efficiency and lower operational costs. However, it is important
to note that this initial evaluation did not yet account for certain business rules, such as driver familiarity
with specific routes, because these had not been implemented in the new system’s configuration. In
this thesis, no data or route plans from the old routing strategy, nor results of the PoC route planning,
are available.

1.2. Problem Description

1.2.1. Research Objective
The main goal for ORTEC is to compute optimal1 B2B delivery routes for a wholesale distributor. Be-
cause of the cross-docking system with limited storage, it is desired to know the routes in advance.
The current strategy is to pin down a set of master routes only a few times a year. This thesis explores
a more dynamic route planning strategy.

Demand forecasting will be used to generate routes a week in advance. After the cut-off time, when all
orders are received, the actual optimal routes are computed. If customers are on different routes than
the forecasted ones, it is still necessary to relocate the orders between docking stations. It is currently
unknown if this dynamic strategy is better than the current situation, where more than 20% of the orders
require a relocation.

For the case study of this thesis, no data is available on the actual number of relocations. Moreover,
it is unclear how the wholesale distributor manages relocations. For example, if it is already known
before the order cut-off time that a route is full, it is uncertain whether incoming orders are still directed
to that route’s corresponding cross-dock. Therefore, we need an alternative metric for the number of
relocations that can be estimated through simulations.

Definition 1.2. A swap refers to the event in which a customer is scheduled on a different route than
the originally predetermined route that customer was on.

It is important to note that swapping a customer from one route to another does not always result in a
relocation of their order. For instance, if the order arrives at the transport center after the actual routes
have already been generated, it can be sorted directly at the appropriate cross-dock without needing
to be moved from the initial cross-dock. This is stated in Proposition 1.1.

Proposition 1.1. The number of relocations is bounded from above by the number of swaps, i.e.,

#relocations ≤ #swaps.

However, the tightness of the bound is unknown due to insufficient knowledge on the daily operations.

The goal of this research is to evaluate the impact of the proposed framework by ORTEC on the swaps
and to investigate new forecasting and route planning strategies to improve the impact, while main-
taining the efficiency of routes. We will later see that there is a tradeoff to be made between route
consistency and route efficiency.

One of the key challenges in forecasting is accurately predicting orders for customers with limited order
history. Therefore, this research aims to improve forecasting for these customers by identifying trends
and patterns that can be learned from similar customers. For route planning strategies, this research
will explore different configurations of the route optimizer and their effects on both swaps and route
efficiency.

1Of course, since the problem is NP-hard, finding the true optimal solution is not feasible. ORTEC aims to find a solution as
good as possible.
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1.2.2. Research Question
The central research question is formulated as follows:

How can the number of swaps between forecasted and actual routes in the cross-docking
warehouse system for B2B food delivery be minimized whilemaintaining both feasibility
and route efficiency?

To answer this overarching question, the following subquestions are addressed:

• What is the impact of using ORTEC’s existing order forecasts, in combination with the new B2B
route planning software, on the number of swaps between forecasted and actual routes?

• How do changes in the input parameters of the B2B route optimizer affect the number of swaps
and the overall efficiency of the resulting routes?

• What forecasting methods can be applied to multiple customers to learn patterns from similar
customers and therefore improve the accuracy of the forecast?

Together, these questions guide the development and evaluation of a forecast-driven route planning
approach.

1.2.3. Method
This section provides a high-level overview of the research method to answer the research question.
A full description of the experimental setup can be found in Part II.

This thesis is structured into two main research parts, just as the two different PoC’s by ORTEC. First,
we will investigate the route optimizer with the integration of order forecasts. Second, we try to improve
the initial order forecasts provided by ORTEC.

The main goal is to help the wholesale distributor optimize its routing. We will do this by evaluating two
key metrics: the route consistency, measured in a number of swaps between a provisional route and
a final route plan, and the route efficiency, measured in terms of plan costs. A schematic overview of
investigating the route consistency is illustrated in Figure 1.4. First, we run the optimizer on forecasted
orders to produce a provisional route plan. Then, using that provisional plan and the actual orders,
we run the optimizer again to obtain a final route plan. Since the outcome of the optimizer is highly
dependent on the configuration being used, we will test different configurations of this second optimizer
round. The number of swaps will be determined by investigating the difference in customer allocation
in the two route plans.

Figure 1.4: Forecasted orders are used to generate a provisional route plan using the route optimizer. Using the actual orders,
along with the provisional route plan, the route optimizer generates a final route. We are interested in the difference between
the provisional route plan and the final route plan in terms of customer allocations. Differences in these plans are referred to as

swaps.

To investigate the route efficiency, we compare the cost of the forecast-based final plan with the cost of a
plan generated solely from actual orders (no forecast input). Although this approach neither guarantees
the true global optimum nor operates in a fully deterministic manner, it provides the most practical
reference for assessing the additional cost from incorporating forecasts. A schematic overview of this
reference for route efficiency is provided in Figure 1.5. We will repeat both these steps from Figures 1.4
and 1.5 for every optimizer configuration and forecasting method we want to test on the optimizer. More
information on the workings of the route optimizer, and the configurations that are tested, can be found
in Chapter 7.
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Figure 1.5: To assess the impact of using a provisional route, we also generate a final route plan based solely on actual orders.
The difference in efficiency is then measured by comparing the plan costs of final route plans that either incorporate forecasted

orders or rely exclusively on actual orders.

This research investigates thousands of time series2 from the wholesale distributor over the period from
2022-03-21 to 2023-06-24. Raw orders per customer are provided at the product level and aggregated
into three product groups, resulting in three distinct time series per customer. Every vehicle used for
route planning has a capacity in terms of volume and weight. The focus of this research is on the
volume of the orders, but can be repeated similarly on the weight. More information on the available
data, filtering of the data and feature engineering can be found in Chapter 5.

Contrary to the PoC, which trained a different model per individual time series, this research employs
three state-of-the-art neural network models capable of jointly forecasting all series. All models are
implemented using the neuralforecast package from Nixtla, providing a uniform syntax for training the
different models. To be able to equally compare results with PoC, we adopt the same train-validation-
test split as done by ORTEC. More information on the implementation of the tested models, including
tested hyperparameter spaces and used Python packages, can be found in Chapter 6.

Finally, we integrate the improved forecasts into the route optimizer and evaluate their impact on both
swap count and route cost. Our aim of using improved forecasts is to minimize route reassignments
while preserving or improving overall efficiency compared to the PoC results.

1.3. Thesis Outline
This thesis is structured as follows. In Part I, the relevant theory for the study is presented. This includes
an introduction to the Vehicle Routing Problem in Chapter 2, an overview of time series analysis and
traditional forecasting methods in Chapter 3, and an introduction to machine learning techniques for
time series forecasting in Chapter 4.

Part II outlines the research methodology and experimental setup. It includes a description of the
available data in Chapter 5, the implementation of forecasting models in Chapter 6, and a detailed
explanation of the route optimization software and used configurations in Chapter 7.

The results are presented in Part III. We will start by evaluating the forecasts from ORTEC in Chapter 8,
followed by assessing the impact of different optimizer configurations Chapter 9 using these forecasts.
Chapter 10 presents the results of forecasting the customer orders using neural networks, and Chap-
ter 11 examines the effect of integrating these neural network forecasts into the route planning process.

Finally, the findings are summarized and recommendations are provided in Part IV.

2For confidentiality reasons, the exact number of customers has been omitted. The number is available in the confidential
version of this thesis within Appendix E.
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Theoretical Background
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2
The Vehicle Routing Problem and its

Variants

The problem ORTEC solves for the wholesale distributor is known as the Vehicle Routing Problem
(VRP). The VRP is one of the most studied problems in combinatorial optimization [13]. There are
many different variants of the VRP. In this section, we will formalize the VRP. First, we will start with a
general formulation and then discuss some variants that are relevant for this research.

The Vehicle Routing Problem is a generalization of the Traveling Salesman Problem (TSP). Instead of
one salesman who has to serve every customer, the VRP considers a fleet of vehicles that can leave
from one or more depots. The goal of the VRP is to determine a set of routes that meet all client
requirements and operational constraints. The objective function typically aims to minimize operational
costs or total distance traveled. A schematic overview of the VRP is provided in Figure 2.1.

Figure 2.1: Illustrative example of a VRP with a single depot. In this scenario, three routes depart from the depot, which can be
serviced by either a single vehicle or three separate vehicles.

The formulation of the VRP, as will be described in this section, is used a lot in literature. However,
it is important to note that this formulation is a simplified version compared to a real-world scenario.
The mathematical formulation outlined below will not be used explicitly in later chapters; it is included
solely to provide background on the underlying mathematical problem being solved. More practical
information on how ORTEC solves the VRP will be discussed in Chapter 7.

2.1. Two-index vehicle flow formulation
We will start with the vehicle flow formulation of the capacitated Vehicle Routing Problem (CVRP),
as presented by Toth and Vigo [49]. In this formulation, all customers represent deliveries, and the
demands are deterministic and known in advance. We consider one depot and assume the vehicles
are identical, with only constraints imposed on the capacity. The objective is to determine a set of
minimal-cost routes that satisfy all the requirements.

9
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Let C = {1, . . . , n} represent the set of customers. Each customer must be served, meaning they must
be visited exactly once. Each customer i has a demand di with di > 0 for i ∈ C. The objective is
to design routes for a fleet of K vehicles available at a single depot. Each vehicle has a maximum
capacity C, and every route must start and end at the depot. To ensure feasibility, we assume di ≤ C
for all i ∈ C. Given a set S ⊆ C, let d(S) =

∑
i∈S di.

The problem can be modeled on a graph G = (V,A). The set of vertices V is defined as V = C ∪ 0,
where vertex 0 is the depot. Consequently, all routes start and end at vertex 0. The set of arcs, A,
contains arcs (i, j) for each pair i, j ∈ V . The cost of traversing arc (i, j) ∈ A is denoted by cij . If
cij = cji, the problem is called the symmetric CVRP, and the set of arcs A may be replaced by a set of
undirected edges E. Given a set S ⊆ C, we denote by r(S) the minimum number of vehicles required
to serve all customers in S. Note that this is equal to the optimal solution of the Bin Packing Problem
with item set S. A trivial lower bound for this problem would be ⌈d(S)/C⌉.

We introduce the following decision variable:

xij =

{
1, if a vehicle travels from vertex i to vertex j directly,
0, otherwise. (2.1)

Then, the optimization problem for the VRP, as described above, can be formulated as

min
∑
i∈N

∑
j∈N

cijxij (2.2)

s.t.
∑
i∈V

xij = 1 ∀j ∈ V \ {0} (2.3)∑
j∈V

xij = 1 ∀i ∈ V \ {0} (2.4)

∑
i∈V

xi0 = K (2.5)∑
i∈V

x0j = K (2.6)∑
i ̸∈S

∑
j∈S

xij ≥ r(S) ∀S ⊆ V \ {0}, S ̸= ∅ (2.7)

xij ∈ {0, 1} ∀i, j ∈ V (2.8)

Here, constraints (2.3) and (2.4) ensure that exactly one route enters and leaves the vertex associated
with a customer. Constrains (2.5) and (2.6) make sure that all vehicles enter and leave the depot.

Constraints (2.7), called the capacity-cut constraints, guarantees both the connectivity of the solution
and the vehicle capacity requirements. An alternative formulation of the capacity-cut constraints can
be obtained through subtour elimination, analogous to the subtour elimination constraints used in the
Traveling Salesman Problem. The generalized subtour elimination constraints makes sure that at least
r(s) arcs leave each customer set S, and is given by∑

i∈S

∑
j∈S

xij ≤ |S| − r(s) ∀S ⊆ V \ {0}, S ̸= ∅. (2.9)

Both sets of constraints (2.7) and (2.9) have a cardinality that grows exponentially with n. Consequently,
directly solving the linear programming relaxation of this problem becomes practically infeasible. This
highlights the need for relaxation techniques and heuristic approaches to obtain feasible solutions in a
reasonable timeframe.

It is not hard to show that solving the VRP is NP-hard. Since the TSP is NP-hard [11], and the VRP
strictly generalizes it, the VRP is NP-hard as well. Simply allow only one vehicle, and ignore capacities,
to reduce the VRP to the TSP.
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2.2. Extensions of the Vehicle Routing Problem
ORTEC must accommodate various extensions to the routing problem, which can vary per client. This
section presents the extensions involving a heterogeneous fleet, time-constrained routes, and time
windows, as these are common across nearly all clients. We will continue with the formulation from Toth
and Vigo [49]. Additional extensions to the VRP include multiple depots, pickup-and-delivery requests,
driver work-hour restrictions, driver familiarity, and more. While each of these variants introduces its
own unique modeling and computational challenges, we will not explore them further in this thesis.

2.2.1. Heterogeneous and Excess Vehicles
First, consider the scenario when the number of available vehicles, K, is greater than the minimal
amount of vehicles required, Kmin = r(C). Then, it may be possible to leave some vehicles unused.
In this case, some sort of minimization of used vehicles/routes is often added to the objective function,
like fixed costs for the use of a vehicle or an additional objective requiring the minimization of used
vehicles. Also, the constraints (2.5) and (2.6) need to be replaced by∑

i∈V
xi0 ≤ K,

and ∑
j∈V

x0j =
∑
i∈V

xi0.

Instead of changing the constraints it is also possible to first computeKmin, by solving the Bin Packing
Problem, and then define K = Kmin.

Another frequently considered extension of the VRP is the case where the available vehicles are differ-
ent. For example, the vehicles could have different capacities Ck, for k = 1, . . . ,K.

With the model becoming more complex, the two-index may not be as suitable anymore. For example,
a solution (xij)i,j∈V to problem (2.2)-(2.8) only tells you if arc (i, j) ∈ A is included in a route. It does
not directly tell you which vehicle travels which route. A possible way to overcome this is by explicitly
indicating which vehicles traverse which arcs. We introduce the following decision variables:

xijk =

{
1, if vehicle k traverses arc (i, j) ∈ A,
0, otherwise, (2.10)

yik =

{
1, if customer i is served by vehicle k,
0, otherwise. (2.11)
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Now, the three-index vehicle flow formulation of the CVRP, with heterogeneous fleet, is given by

min
∑
i∈V

∑
j∈V

cij

K∑
k=1

xijk, (2.12)

s.t.

K∑
k=1

yik = 1 ∀i ∈ V \ {0}, (2.13)

K∑
k=1

y0k = K, (2.14)∑
j∈V

xijk =
∑
j∈V

xjik = yik ∀i ∈ V, k = 1, . . . ,K, (2.15)

∑
i∈V

diyik ≤ Ck ∀k = 1, . . . ,K, (2.16)∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀S ⊆ V \ {0}, |S| ≥ 2, k = 1, . . . ,K, (2.17)

yik ∈ {0, 1} ∀i ∈ V, k = 1, . . . ,K, (2.18)
xijk ∈ {0, 1} ∀i, j ∈ V, k = 1, . . . ,K. (2.19)

(2.20)

Here, constraints (2.13)-(2.15) ensure that each customer is visited exactly once, thatK vehicles leave
the depot, and that the same vehicle enters and leaves a given vertex, respectively. Constraints (2.16)
are the capacity restrictions for each vehicle. The connectivity is guaranteed by the subtour elimination
constraints (2.17), which impose that for each vehicle k at least 1 arc leaves each vertex set S visited
by k. Note that this three-index formulation is a generalization of the two-index formulation as we can
always take xij =

∑
k xijk and yi =

∑
k yik.

In this case study, the wholesale distributor delivers products that require transportation in a refrigerated
compartment (freezer), while other products do not. This requires yet another generalization to the
problem where we now need to manage a multi-compartment fleet. Ostermeier et al. [39] introduced a
formulation to this problem, and will be presented here with some slight variations. First, we introduce
a set of product types p ∈ P . Now, we can specify the capacity of each vehicle per compartment, so
every vehicle k has capacity Ckp for every p ∈ P . Also the demand per customer can be specified
per product type, dip. We can use the same decision variable for xijk as in (2.10), and change (2.11)
slightly to

yikp =

{
1, if product type p is delivered to customer i by vehicle k,
0, otherwise. (2.21)
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Now, with the included index for product type formulation (2.12)-(2.19) becomes

min
∑
i∈V

∑
j∈V

cij

K∑
k=1

xijk, (2.22)

s.t.

K∑
k=1

yikp = 1 ∀i ∈ V \ {0}, p ∈ P, (2.23)

K∑
k=1

y0kp = K ∀p ∈ P, (2.24)∑
j∈V

xijk =
∑
j∈V

xjik = yikp ∀i ∈ V, k = 1, . . . ,K, p ∈ P, (2.25)

∑
i

dipyikp ≤ Ckp ∀k = 1, . . . ,K, p ∈ P, (2.26)∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀S ⊆ V \ {0}, |S| ≥ 2, k = 1, . . . ,K, (2.27)

yik ∈ {0, 1} ∀i ∈ V, k = 1, . . . ,K, (2.28)
xijk ∈ {0, 1} ∀i, j ∈ V, k = 1, . . . ,K. (2.29)

(2.30)

The above assumes that the capacities of vehicles per product type, Ckp, are known. If the compart-
ments are adjustable and only the total capacity of a vehicle is given we may introduce the constraint∑

p

Ckp ≤ Ck ∀k.

2.2.2. Time-Constrained Routes
Companies often require conditions on the total time of a route, such as maximum driving or working
times for a driver. To include this into the model, we need to assign non-negative times tij to each
arc (i, j) ∈ A. Then, the total time of a route cannot exceed the maximum time T . If the fleet is
heterogeneous, then the maximum route lengths are Tk, k = 1, ...,K. This can be implemented in the
three-index formulation using the constraint∑

i∈V

∑
j∈V

tijxijk ≤ Tk ∀k = 1, . . . ,K. (2.31)

Additionally, a service time si may be associated with each customer, or depot, i, denoting a time period
for which a vehicle must stop at a vertex. These service times may also be integrated into the travel
times of the arcs

t′ij =
si
2
+ tij +

sj
2
,

where tij is the travel time of arc (i, j) ∈ A without the service times and si, sj are the service times of
i, j ∈ V respectively.

This extension is called the Time-Constrained VRP, sometimes also called the Distance-Constrained
VRP with analogous conditions on the total length of a route. Note that often the cost of traversing
an arc corresponds more or less to the time it takes to traverse that arc. Hence, the driving time may
already be, though indirectly, minimized through the objective function.
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2.2.3. VRP with Time Windows
Often, customers want to specify a time window in which they want their order to be delivered. A
restaurant, for example, may want to have the orders delivered at the start of the day before its own
customers arrive.

The VRP with Time Windows (VRPTW) is the extension of the CVRP in which each customer i is
associated with a time window [ai, bi] in which it needs to be serviced. To accommodate for this, we
add time variables wik for i ∈ V and k ∈ K, specifying the start of service at customer i when serviced
by vehicle k. To ensure feasibility, the start of service time for subsequent customers i and j in a vehicle
must include at least the service time si and travel time tij between them, i.e.,

xijk(wik + si + tij − wjk) ≤ 0 ∀i, j ∈ V, k = 1, . . . ,K. (2.32)

Then, for customer i to be serviced within the time window [ai, bi], we require that

ai
∑
j∈V

xijk ≤ wik ≤ bi
∑
j∈V

xijk ∀i ∈ V, k = 1, . . . ,K. (2.33)

Since xijk is binary, Equation (2.32) can be linearized as

wik + si + tij − wjk ≤ (1− xijk)Mij ∀i, j ∈ V, k = 1, . . . ,K,

whereMij are large constants. Toth and Vigo takeMij = max{bi + si + tij , 0} [49].

If the vehicles have an earliest possible departure time E and latest possible arrival time L at the depot,
then we can add the constraint:

E ≤ wik ≤ L ∀i ∈ V, k = 1, . . . ,K. (2.34)

2.3. VRP with Uncertain Customers and Demand
In this research, we have to deal with uncertain customers and demand. The challenge lies in the fact
that ORTEC employs a deterministic solver, which complicates managing uncertainty. Managing de-
mand uncertainty is crucial, as it directly impacts the capacity constraints of vehicles and the efficiency
of routing decisions. Vehicles can, for example, become overloaded or underutilized. In literature, this
problem is known as the Vehicle Routing Problem with Stochastic Customers and Demands (VRP-
SCD). Gendreau, Laporte, and Séguin (1995) described this problem as ”exceedingly difficult.” We
assume that customers place an order with probability pi and that their demand, di, is uncertain under
an unknown distribution.

There are two main solution approaches from stochastic programming that address this problem [7].
Chance Constrained Programming tackles the problem by ensuring constraints are satisfied with a
certain probability. For instance, a failure threshold α can be set, such that routes fail with a probability
no more than α. For the capacity constraints, one might use:

P

(∑
i

diyik ≤ Ck

)
> 1− α ∀k = 1, . . . ,K. (2.35)

Alternatively, the problem can be addressed as a two-stage problem. In this framework, the process
is not as straightforward as making decisions first, then observing the uncertainty and computing the
costs: [41]

x
decision

→ z
uncertain parameter observed

.

Instead, once the uncertainty is observed, we can change some of the routing decisions. The simplest
case is a two-stage sequence is given by:

x
decision

→ z
uncertain parameter observed

→ y
decision

.
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Ideally, x is optimized by considering all possible outcomes of z and the corresponding optimal decisions
y that would respond to z. Again, optimizing this is difficult given the deterministic solver. Cordeau et al.
[7] refers to this approach as Stochastic Programming with Recourse. The recourse policy, decision y,
is a modeling choice that depends on the client’s preferences and requirements.

Stochastic programming often requires some knowledge of the probability distributions, while robust
optimization focuses on extreme scenarios using uncertainty sets. In practice, this information is often
unavailable. Additionally, stochastic optimization can face practical challenges due to its complexity and
computational demands. Despite being extensively researched in the literature, stochastic optimization
is frequently not implemented in the industry [42].

Given these challenges, parametric optimization emerges as a viable alternative [42]. Parametric opti-
mization involves adjusting parameters in the optimization model to account for uncertainties indirectly.
A deterministic solver is sufficient for simulating and solving problems under this approach. For uncer-
tain demand, a parameterized capacity constraint might be introduced, such as:∑

i

diyik ≤ Ck − θk ∀k = 1, . . . ,K, (2.36)

where θk is a parameter to plan empty space for each vehicle k. We could also impose an uncertainty
factor θi per customer i: ∑

i

(di + θi)yik ≤ Ck ∀k = 1, . . . ,K. (2.37)

There is extensive literature on stochastic optimization, offering numerous ideas to enhance route plan-
ning in this case study. However, the goal of this thesis is to utilize ORTEC’s solver and explore its
effectiveness in handling uncertainty. We will therefore mainly focus on simulating various scenarios
using a two-stage solution approach, as we have seen in Figure 1.4. Different configurations of the
route optimizer define the recourse strategies.



3
Time Series and Traditional

Forecasting Methods

In this chapter, we will define the concept of time series and outline the general framework for forecast-
ing them. Understanding this foundation is also essential when applying more advanced forecasting
methods later. Therefore, it is particularly recommended that the reader pays close attention to Sec-
tion 3.2. Additionally, we will introduce some traditional statistical methods for forecasting time series.
As ORTEC has already implemented these methods to this customer case, this research will not focus
on them. However, they will still be presented here for context.

3.1. Time Series and its Characteristics
Time series analysis is the area of statistics and data science that focuses on analyzing data points
indexed by time. Examples of time series are daily stockmarket prices, hourly weather data, and annual
sales figures. Observing and analyzing these series helps to understand the underlying processes that
generated the data. This section is mostly based on [46].

3.1.1. Definition and Decomposition of Time Series
A time series is essentially a sequence of random variables indexed by time. Each data point has a
distribution function associated with it. This probability distribution may depend on previous values of
the series, seasonal effects, or external influences, but more on that later. The stochastic process can
be described by the joint distribution function of all random variables in the stochastic process.
Definition 3.1. A time series is a double infinite sequence {. . . , x−2, x−1, x0, x1, x2, . . .} of random
variables indexed by time. A finite collection of observed values from the stochastic process is called
a realization.
Definition 3.2. A time series is called causal if it only depends on past values.

The behavior of a time series can often be characterized by a trend, seasonality, and an error term.
The trend component represents the long-term progression of the series, which does not have to be
linear. The seasonal component captures periodic changes that occur at regular intervals, such as
daily, monthly, or yearly cycles. Finally, the error term accounts for the random noise in the data that
cannot be explained by the trend or seasonal patterns.
Definition 3.3. A time series xt can be decomposed additively as follows:

xt = Tt + St + εt,

where Tt represents the trend component, St denotes the seasonal component, and εt is the error term.
Likewise, the time series xt can also be expressed multiplicatively as:

xt = Tt · St · (1 + εt),

16
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where Tt, St, and εt still represent the trend, seasonality, and error, but their interaction in the multi-
plicative model defines the components differently than in the additive model.

3.1.2. Measures of Dependence in Time Series
For a time series, we can analyze the relationships between observations at different time points. The
following statistical measures are often used to quantify these relationships. Firstly, the mean process
captures changes in the average value of the time series over time. If, for example, a time series has
a trend component, it will be reflected in the mean process.

Definition 3.4. Themean process of time series xt is defined by expected value over the time series

µx(t) = E[xt], (3.1)

provided it exists.

The auto-correlation measures the degree to which current values of the series are related to past
values, indicating the presence of dependencies over time.

Definition 3.5. The auto-correlation of time series xt between times t and s is defined by1

γx(t, s) = E[xtxs], (3.2)

which is the correlation between the values of the series at different times.

Finally, the auto-covariance measures how deviations from the mean at one time point relate to devia-
tions at another time point.

Definition 3.6. The auto-covariance of time series xt, with mean process µx(t), is defined by1

cx(t, s) = E[(xt − µx(t))(xs − µx(s))]. (3.3)

3.1.3. Stationarity of Time Series
For some time series models, it is required for the time series to be independent of time. Here, inde-
pendence of time means that if we observe a time series now, we would observe the same statistical
properties if we started the observations one hour later. For stochastic processes, we refer to time
invariance as stationarity.

Definition 3.7. A time series xt is strictly stationary if the distribution vector (xt1 , xt2 , . . . , xtk) is equal
to (xt1+h, xt2+h, . . . , xtk+h) for every h, t1, . . . , tk ∈ R and every k ∈ N.

Since strict stationarity is quite a hard requirement and often unnecessary for practical applications, it
is typically sufficient to consider weak stationarity.

Definition 3.8. A time series xt is weakly stationary (or wide sense stationary) if the following condi-
tions hold:

1. The mean process µx(t) is finite and constant over time.
2. The auto-correlation function γ(t, s) only depends on the time difference (lag) between the two

points, i.e. γ(t, s) = γ(t− s, 0).
3. The variance cx(t, t) is finite for all t.

For a weakly stationary process, we often write the autocorrelation function only as a function of the
lag τ , so γx(t, t+ τ) = γx(τ). Then condition (3) is equivalent to cx(0) <∞.

If a time series has trend or seasonal components, it is obviously not weakly stationary. This issue of
non-stationarity can be solved by differencing. If a time series, for example, has a linear trend, it can
be removed by taking the difference between observations at consecutive time points.

1To be precise, the second term in the expectation should be the complex conjugate. However, this can be omitted for
real-valued processes.
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Definition 3.9. The difference operator on a time series xt, denoted by ∆, is defined by

∆xt = xt − xt−1. (3.4)

For ease of use, we also introduce an operator that allows us to reference previous time points directly.

Definition 3.10. The backshift operator on a time series xt, denoted by B, is defined by

Bxt = xt−1. (3.5)

We can now also write the difference operator as ∆ = (1−B). The backshift operator also extends to
higher powers, e.g. B2xt = B(Bxt) = Bxt−1 = xt−2.

Sometimes, a first-order difference on the time series is insufficient to make it stationary. It may be
necessary to take a second or even higher order difference.

Definition 3.11. The difference of order d on time series xt is defined as

∆dxt = (1−B)dxt. (3.6)

If a time series contains seasonal patterns, it is also possible to take the difference between observa-
tions corresponding to the same time in a season. This helps to remove the seasonal component from
the time series.

Definition 3.12. The seasonal difference with seasonality m on time series xt is defined as

∆mxt = (1−Bm)xt = xt − xt−m. (3.7)

Determining which differences to apply for achieving stationarity is not always straightforward and can
involve a degree of subjectivity.

3.2. Forecasting of Time Series

3.2.1. Types of Input Data
When forecasting time series, we are interested in predicting how the sequence of observed values
will continue in the future. The easiest way to predict the future is to simply extrapolate the trend and
seasonal patterns based on only the historical values of the variable of interest. Examples of such
methods are exponential smoothening and ARIMA models, which will be discussed in Sections 3.4
and 3.5.

It is also possible to enhance time series models by incorporating additional exogenous information,
often referred to as covariates or features. The aim is not only to learn from the historical data of the
target variable but also to include relevant external factors such as the day of the week, holidays, or
temperature data, which may also influence the target variable. Examples of such approaches include
regression models, introduced in Section 3.3.1, and the SARIMAX extension of ARIMA models.

In this thesis, we will consider three types of covariates: static, future, and past covariates.

Definition 3.13. Static covariates are variables that do not change over time. Examples are product
information or geographical features.

Definition 3.14. Past covariates are variables that have been observed in the past and are yet un-
known for future time periods. Examples are temperature readings or historical sales data.

Definition 3.15. Future covariates are variables that are known for the future time periods. Examples
are days of the week, holidays, or upcoming promotional events.

Different forecasting models handle covariates differently, and not all models can handle every type of
covariate.
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3.2.2. Training and Validation of Time Series Model
Training a time series model is done by fitting the model to the time series of interest. This can be
achieved by estimating the model parameters such that a predefined error function is minimized. Alter-
natively, one could maximize the likelihood function of a parameter.

Some frequently used error functions are the mean squared error, mean absolute error, and mean error.
Given target variable y, with true values yi and predicted values ŷi for i = 1, . . . , n, we define the error
functions below.

Definition 3.16. The mean squared error (MSE) is defined as the average of squared errors, i.e.

MSE(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi)
2. (3.8)

Definition 3.17. The mean absolute error (MAE) is defined as the average of absolute errors, i.e.

MAE(y, ŷ) = 1

n

n∑
i=1

|yi − ŷi|. (3.9)

Definition 3.18. The mean error (ME) is defined as the average of errors, i.e.

ME(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi). (3.10)

These error functions can be used in different situations. The MSE and MAE both minimize all errors,
whether positive or negative. However, the MSE emphasizes larger deviations due to squaring the
errors. The ME can be used in cases where negative errors may cancel out positive errors.

When predicting binary variables, we can use different loss functions designed for binary classification.
If the predictions are also binary, we will use the accuracy to measure the model’s performance.

Definition 3.19. The accuracy of a binary forecast ŷ for binary variable y is given by

acc(y, ŷ) = #correct predictions
#total number of predictions

= 1−MAE(y, ŷ). (3.11)

To evaluate the performance of a time series model, we want to know how it will perform on future,
unseen data. Not on historic data. Testing on data that is unknown to the model is referred to as out-
of-sample testing. This is typically achieved by splitting the available dataset into a training set and a
testing set, as illustrated in Figure 3.1. The parameters of the model are then selected such that the
chosen error function is minimized over the training data. Subsequently, the model’s performance is
assessed based on the prediction errors in the testing set.

Figure 3.1: Train-test split of the available time series dataset. The train set is used to configure the model parameters such
that the model best fits the training data. The test set is used to evaluate the model’s performance on out-of-sample data.
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3.2.3. Cross-validation on Time Series Models
Cross-validation is a well-known technique used in machine learning. The idea is to better capture the
model’s out-of-sample performance by applying the train-test split principle multiple times on the same
dataset. The dataset is divided into K randomly generated folds. Then, for every fold, the model is
trained on all data except the fold and tested on the fold. The final metric of the model is the average
value of the metrics over all folds.

However, one can easily see that it is not possible to generate random folds for time series data because
of its sequential nature. It makes no sense to use future observations to predict the past. What can be
used for time series data is a rolling window of test folds. For the first iteration, the model is trained on a
small part of the available data. Using this model, the next few time steps are predicted and compared
to the test set, the first fold. For the next iteration, this first fold is included in the training set on which
the model updates its parameters. Using the updated model, the next time steps are predicted and
compared to the second fold. This continues as long as there is available data left. The process of
cross-validation on time series is illustrated in Figure 3.2.

Figure 3.2: Cross-validation for time series using a rolling window of test folds. The model is trained for each fold on an
increasing size of training dataset. The performance of the model is based on the average performance over all test folds.

3.2.4. Hyperparameter Tuning and Model Selection
During training, we aim to find the optimal parameters such that the model best fits the data. However,
there are also parameters we can tune before the training of a model. These parameters are called
hyperparameters. Examples of hyperparameters can be the dimensions of the model, the number of
features to include, or the number of time steps to look back when making a prediction.

Definition 3.20. Hyperparameters are parameters of a model to be set prior to the training process,
in contrast to parameters that the model learns from data.

The hyperparameter settings of a model can have a significant impact on its forecasting quality. There-
fore, it is often necessary to tune the hyperparameters as well. This can be achieved by training the
model with different hyperparameter settings, resulting in distinct forecasts for every configuration. The
best setting can be chosen based on an out-of-sample set. We call this set the validation set. Finally,
we want to test the best settings on another out-of-sample set, called the test set. This additional out-
of-sample step is necessary to ensure the chosen configuration still works well on unseen data and not
just the validation dataset. The train-validation-test split of available data is visualized in Figure 3.3.

The train-validation-test split can also be used for model selection. Then, all models are tested and
compared using the validation set. The model that scores the best is chosen as the final model. This
model can then be tested again on a new out-of-sample test set.
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Figure 3.3: Train-validation-test split of available time series dataset. The train set is used to configure the model parameters
for multiple models or hyperparameter settings. The validation set is used to find the best model or hyperparameter settings.

The test set is used to evaluate the final model’s performance on out-of-sample data.

In classical statistics, model complexity is often considered as well in choosing the best model. One
would prefer a model with fewer parameters over a more complex model if they hold almost similar
results. To quantify the model fit, we could use the likelihood function, which determines the probability
of observing the given data under the specified model.

Definition 3.21. Given the density function f(x | θ) for x given a model with parameters θ, the likeli-
hood of this model is defined as

L(θ) = L(θ | x1, . . . , xn) = f(x1, . . . , xn | θ). (3.12)

It is crucial to understand that the likelihood does not give the probability of the data itself, but rather
the probability of observing data x under the assumption that the model with parameters θ is accurate.

Two often used criteria that balance model fit and complexity are the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC).

Definition 3.22. The Akaike’s Information Criterion (AIC) for a model with k parameters is given by

AIC = 2k − 2 lnL, (3.13)

where L is the maximum likelihood of the model.

Definition 3.23. The Bayesian Information Criterion (BIC) for a model with k parameters is given by

BIC = k lnn− 2 lnL, (3.14)

where L is the maximum likelihood of the model.

These criteria generally favor models with fewer parameters and less complexity, helping to prevent
overfitting. In more advanced neural network models, which we will see in Chapter 4, these criterions
are not used as models often have thousands or milions of parameters.

3.3. Regression Models

3.3.1. Linear Regression
In the simplest case, we may say that the time series of interest, yt, is linearly dependent on another
known time series xt, called the predictor variable. The time series yt is then given by

yt = β0 + β1xt + εt, (3.15)

where parameters β0, β1 denote the intercept and the slope of the linear line, and εt is the error or noise
process.

Now, to forecast the series yt, we may generate a linear fit to the past data.

An often used method for estimating these parameters is the least squares method. This method
provides a way of finding the parameters in such a way that the sum of squared errors is minimized.
Given a training set with data points indexed by times t ∈ T , the parameters are given by

min
β̂0,β̂1

T∑
t=1

ε2t = min
β̂0,β̂1

T∑
t=1

(yt − ŷt)
2
= min
β̂0,β̂1

T∑
t=1

(
yt − β̂0 + β̂1xt

)2
.
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The parameters can be found using simple calculus, i.e., solving ∂
∑
t ε

2
t/∂βi = 0 for i = 0, 1. We can

use these parameters to make predictions about future values of yt based on new observations of xt.
Specifically, for a new value xt+h (where h represents the forecast horizon), the forecasted value of y
can be computed as

ŷt+h = β̂0 + β̂1xt+h.

To use linear regression for forecasting a time series, we, of course, assume that the time series of
interest is linearly dependent on the predictor variable. Additionally, we require errors to be independent
and identically distributed normal random variables with zero mean and constant variance.

We can extend this idea of linear regression tomultiple predictor variables. Now, assume the time series
of interest, yt, is being influenced by a collection of possible independent series, say x1,t, x2,t, . . . , xk,t.

Definition 3.24. The linear regression model with k regressors is defined by

yt = β0 + β1xt + β2x2,t + · · ·+ βkxk,t + εt (3.16)

where β0, β1, . . . , βk are unknown fixed regression parameters.

The coefficients can be estimated in a similar manner as before, by minimizing the sum of squared
errors:

min
β̂0,β̂1,...,β̂k

T∑
t=1

ε2t = min
β̂0,β̂1,...,β̂k

T∑
t=1

(yt − ŷt)
2
.

3.3.2. Logistic Regression
Linear regression is very versatile for forecasting time series but may not be suitable when the time
series has nonlinear relationships. The simplest way to then model these nonlinear relationships is to
transform the variable of interest y, or the predictor variables x, before estimating the model parameters.
Common transformations include logarithmic transformations. However, we will not discuss these types
of nonlinear regression any further.

A commonly used method to forecast binary observations is logistic regression. This model estimates
the log-odds of one of two possible events occurring. It employs the logit model, which is represented
by the sigmoid function

σ(x) =
1

1 + e−x
.

Assume the variable of interest is a Bernoulli random variable with probability p of taking the value 1
and probability q = 1− p of taking the value 0. In the logit model, ex can be seen as the odds for value
1. Therefore, the probabilities can be expressed as

p =
ex

1 + ex
=

1

1 + e−x
, and q =

1

1 + ex
.

In the logistic regression model, the log-odds, x, are determined using a linear combination of the
predictor variables, similar to linear regression. We end up with the following model.

Definition 3.25. The logistic regression model with k regressors is defined by

yt =
1

1 + e−(β0 + β1xt + β2x2,t + · · ·+ βkxk,t)
.

While linear regression predicts continuous outcomes, logistic regression predicts binary outcomes
because the sigmoid function maps the predicted values to probabilities.
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3.4. Exponential Smoothening Models

3.4.1. Simple Smoothening
The idea of smootheningmethods is to use aweighted average of past observations tomake predictions
about the future. This can be seen as linear regression, where the predictor variables are solely past
data points. Naively, we can say the next observation will just be the same as the previous data point,
i.e.

yt+1|t = yt.

However, older data points also contain information that we may want to use. Another straightforward
approach would be to say the next observation will be the average of all previous observations, i.e.

yt+1|t =
1

t

t∑
i=1

yi.

Exponential smoothening serves as a middle ground between these naive methods. It incorporates all
previous data points but places greater emphasis on more recent observations. This is implemented
by a weighted average, where weights decay exponentially as observations get older. So, more re-
cent observations are considered more important. The most simple exponential smoothening model is
defined below.

Definition 3.26. The simple exponential smoothening model with parameter α is defined by

yt = αyt−1 + α(1− α)yt−2 + α(1− α)2yt−3 + · · · ,

where 0 ≤ α ≤ 1. Note that for α = 1, we have the naive case.

Note, however, that this model only works if the time series has no clear trend or seasonal patterns.
Predictions for the next observations can be made using a weighted average of past observations.
Given observations up to time t, the one-step-ahead prediction of the time series is given by

ŷt+1|t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · ·
= αyt + (1− α)ŷt|t−1.

Note that if we make a multi-step prediction of horizon h, where the observations are known until time
t, the forecast simply projects a constant line. This can be explained by the fact that instead of the
observation yt, we use the forecast ŷt for the unobserved time points. Since both terms in the forecast
are now the same, we can simply add them. This happens for every forecast where we do not have
the actual observation to adjust the weighted average. So,

ŷt+h|t = αŷt+h−1|t + (1− α)ŷt+h−1|t = ŷt+h−1|t = · · · = ŷt+1|t.

Similar to linear regression, the optimal parameter α over a training set t ∈ T can be determined using
the least squares method:

min
α

T∑
t=1

(yt − ŷt)
2.

For convenience, we will write the forecasting equation in the following form:

ŷt+h|t = ℓt, (3.17)
ℓt = αyt + (1− α)ℓt−1, (3.18)

where we call Equation (3.17) the forecasting equation and Equation (3.18) the smoothening equation.

For the exponential smoothening model, there are two options for the error term. The error of the
model can be assumed to be additive or multiplicative. For an additive error term, the error and simple
exponential smoothening model are defined to be

εt = yt − ŷt|t−1 = yt − ℓt−1,
yt = ℓt−1 + εt,

ℓt = ℓt−1 + αεt.
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For a multiplicative error, the error and simple exponential smoothening model are defined to be

εt =
yt − ŷt|t−1

ŷt|t−1
=
yt − ℓt−1

ℓt−1
,

yt = ℓt−1(1 + εt),

ℓt = ℓt−1(1 + αεt).

3.4.2. Holt-Winters
Holt expanded the simple exponential smoothing model in 1957 to allow time series data with a trend.
This method extends the framework of Equations (3.17) and (3.18) to a model with a forecast equation
and two smoothening equations, one for the level and one for the trend. The trend component is based
on the difference between the two adjacent level values, i.e., ℓt − ℓt−1. Similarly, as for the level, the
smoothening principle can be applied to all past observations of the trend. Assuming a constant linear
trend, we can again make a multi-step prediction of horizon h.

Definition 3.27. Holt’s linear trend method [15], with smoothening parameters α and β, for forecast-
ing time series with a trend, is given by the equations

ŷt+h|t = ℓt + hbt,

ℓt = αyt + (1− α)(ℓt−1 + bt−1),

bt = β(ℓt − ℓt−1) + (1− β)bt−1.

Here, ℓ denotes the estimated level, and bt denotes the estimated trend of the time series at time t.
The parameter α is the smoothening coefficient for the level and β the smoothening coefficient for the
trend. Both parameters are required to be in the range α, β ∈ [0, 1].

Holt’s linear trend method assumes a constant linear trend. However, many real-world time series
do not show a trend that keeps increasing or decreasing indefinitely. Assuming a constant increase
or decrease, therefore, often overestimates the real observations for predictions over longer horizons.
Gardner and Mckenzie (1985) extended the linear trend model with a dampening parameter.

Definition 3.28. The damped trend method [10], with smoothening parameters α, β, and damping
parameter ϕ, for forecasting time series with a trend, is given by the equations

ŷt+h|t = ℓt +

h∑
i=1

ϕibt,

ℓt = αyt + (1− α)(ℓt−1 + ϕbt−1),

bt = β(ℓt − ℓt−1) + (1− β)ϕbt−1.

Here, ℓt and bt represent the level and trend components, with smoothening parameters α and β,
respectively. The damping parameter ϕ satisfies 0 ≤ ϕ ≤ 1. When ϕ = 0, there is no trend. A ϕ value
between 0 and 1 indicates a damped trend. For ϕ = 1, the model exhibits a linear trend, similar to
Holt’s method.

Holt andWinters further expandedHolt’s trendmethod to also include seasonality. This method extends
the framework of Equations (3.17) and (3.18) to amodel with a forecast equation and three smoothening
equations: one for the level, one for the trend component, and one for the seasonal component. The
corresponding smoothening parameters are α, β and γ.

There are two types of Holt-Winters models, distinguished by the way they deal with the seasonal
component. First, the additive model defines the seasonal component in absolute terms in the scale
of the observed series. In the level equation, the seasonal component is subtracted to account for
the seasonal patterns. The seasonal equation st calculates a weighted average between the current
seasonal value and the seasonal value m time periods ago, representing a full cycle.
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Definition 3.29. Holt-Winters’ additive model [15, 52], with smoothening parameters α, β and γ, for
forecasting time series with trend and seasonality with period m, is given by the equations

ŷt+h|t = ℓt + hbt + st−m+T ,

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1),

bt = β(ℓt − ℓt−1) + (1− β)bt−1,

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m,

where T = [(h− 1) mod m] + 1 is the specific period in the season. Here, ℓt, bt, and st represent the
level, trend, and seasonal components, with smoothening parameters α, β, and γ, respectively.

In the multiplicative model, the seasonal component is represented as a relative measure. To account
for the seasonal effect, the series is divided by the seasonal component.

Definition 3.30. Holt-Winters’ multiplicative model [15, 52], with smoothening parameters α, β and
γ, for forecasting time series with trend and seasonality with period m, is given by the equations

ŷt+h|t = (ℓt + hbt)st−m+T ,

ℓt = α
yt

st−m
+ (1− α)(ℓt−1 + bt−1),

bt = β(ℓt − ℓt−1) + (1− β)bt−1,

st = γ
yt

(ℓt + bt−1)
+ (1− γ)st−m,

where T = [(h− 1) mod m] + 1 is the specific period in the season. Here, ℓt, bt, and st represent the
level, trend, and seasonal components, with smoothening parameters α, β, and γ, respectively.

The models discussed above, along with combinations of them, form the basis of the ETS model,
which stands for Error, Trend, and Seasonality. The error component can be either additive (A) or
multiplicative (M). For the trend component, the options include none (N), additive (A), and additive
damped (Ad). It is also possible for the trend to be multiplicative (M) or multiplicative damped (Md). For
seasonality, the choices are none (N), additive (A), and multiplicative (M). For example, the models
introduced in Definitions 3.26 to 3.30 can be classified under the ETS framework as follows:

• Simple exponential smoothing: ETS(A,N,N)
• Holt’s linear trend method: ETS(A,A,N)
• Damped trend method: ETS(A,Ad,N)
• Holt-Winters additive method: ETS(A,A,A)
• Holt-Winters multiplicative method: ETS(A,A,M)

Wewill not delve further into thesemodels, as only the Holt-Winters model is considered in this research.
The interested reader can readmore on the classification of exponential smoothing methods in the book
by Hyndman et al. [17].

3.5. ARIMA Models

3.5.1. ARMA models for Stationary Time Series
The general ARMA model, which stands for Autoregressive Moving Average, was popularized by Box
and Jenkins [5]. This model combines both autoregressive andmoving average components to analyse
a time series. An important assumption of the ARMA model is that the time series being analyzed must
be stationary. We will start by introducing the autoregressive model.

Autoregression of a time series means that regression is used on its own past values. So, an autore-
gressive model is essentially a linear combination of previous observations. The order of the model
specifies how many time steps back are considered in the regression.
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Definition 3.31. The autoregressive model [5], of order p, is defined by

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt =

p∑
i=1

ϕiB
iyt + εt,

where εt is white noise and ϕi, i = 1, . . . , p, are the model weights. For convenience, we define the
autoregressive operator of order p

ϕ(B) = (1−
p∑
i=1

ϕiB
i)

Then, the autoregressive model can be written as ϕ(B)yt = εt.

Instead of past observations, the moving average model uses past forecast errors in a regression
model.

Definition 3.32. The moving average model [5], of order q, is defined by

yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q = εt +

q∑
i=1

θiB
iεt,

where εt is white noise and θi, i = 1, . . . , q, are the model weights. For convenience, we define the
moving average operator of order q

θ(B) = (1 +

q∑
i=1

θiB
i).

Then, the autoregressive model can be written as yt = θ(B)εt.

We can combine the autoregressive and moving average model to obtain the ARMA model or order p
and q.

Definition 3.33. The ARMA model [5], with autoregressive order p and moving average order q, is
given by

yt =

p∑
i=1

ϕiB
iyt +

q∑
i=1

θiB
iεt + εt, (3.19)

where εt is white noise and ϕi, i = 1, . . . , p, and θi, i = 1, . . . , q, are the weights of the model. In
shorthand notation, we can write ϕ(B)yt = θ(B)εt.

To fit an ARMA(p, q) model to a time series, we have to find the optimal parameters ϕi, i = 1, . . . , p,
and θi, i = 1, . . . , q, such that the error between the observed values and the model’s predicted values
is minimized. Selecting the right parameters for an ARMA model is essential to ensure optimal per-
formance. However, multiple parameter sets might provide satisfactory outcomes. While higher-order
ARMA models, which incorporate more past observations, may improve model accuracy, they also
have a higher risk of overfitting. To ensure a balance between model fit and model complexity, the AIC
and BIC from Definitions 3.22 and 3.23 are commonly used to select the best parameters.

Various packages in Python and R offer implementations that automatically select the optimal model
parameters. This automation simplifies the model selection process and reduces the manual effort
involved. However, potential drawbacks are the reduced control over the modeling process and a lack
of transparency. While estimating the parameters for an AR model can be simply done, for example,
using least squares. This is, however, not possible for the moving average model as the errors cannot
be observed. This makes estimating the parameters more complicated. The auto.arima from R uses
maximum likelihood estimation [16].

After fitting the ARMAmodel, we can use the model to forecast future data points. Given data up to time
t, and Equation (3.19), we can produce the point forecast t+ h by stating with h = 1 and repeating for
2, 3, . . . . iteratively. For any known time point, we directly use the observed value yt−i or the observed
error value εt−i for any i ≥ 0. For future time points, we assume εt+h = 0 for h > 0. For intermediate
future values yt+j where 0 < j < h, we can utilize the forecasts from previous iterations.



3.5. ARIMA Models 27

3.5.2. ARIMA models for Nonstationary Time Series
ARMA models require the assumption of stationarity of the data. As discussed in Section 3.1.3, we
can try to make a time series stationary through differencing. This idea is incorporated in the ARIMA
model, which stands for Autoregressive Integrated Moving Average. It extends the ARMA model by
first applying differencing on the time series.

Definition 3.34. The ARIMA models [5], with autoregressive order p, moving average order q and
differencing of order d, is given by

(1−
p∑
i=1

ϕiB
i)(1−B)dyt = (1 +

q∑
i=1

ϕiB
i)εt, (3.20)

where εt is white noise and ϕi, i = 1, . . . , p, and θi, i = 1, . . . , q, are the weights of the model. In
shorthand notation, we can write ϕ(B)∆dyt = θ(B)εt.

It is important to note that for an ARIMA model with parameters (p, d, q), the parameter count k, as
used in Definitions 3.22 and 3.23, is given by k = p + q + 1. This count includes the orders of the
autoregressive and moving average components. The additional one in the equation accounts for the
variance of the error term. The differencing order is not directly included in k, although it is implicitly
reflected in the likelihood calculation.

3.5.3. Seasonal ARIMA Models
A further extension of ARIMA model is the Seasonal ARIMA, or SARIMA, which includes seasonality.
The model is denoted by parameters (p, d, q)(P,D,Q)m, where the lowercase notation is for the non-
seasonal part and the uppercase notation is for the seasonal part of the model. The length of the
seasonal cycle is denoted by m. The seasonal part works similarly to the non-seasonal part already
present in the ARIMA model, except for the seasonal part, we use the seasonal backshift parameter
Bm instead of B.

Definition 3.35. The Seasonal ARIMA non seasonal part (p, d, q) and seasonal part (P,D,Q)m where
m is the seasonal period

(1−
p∑
i=1

ϕiB
i)(1−

P∑
i=1

ΦiB
im)(1−B)d(1−Bm)Dyt = (1 +

q∑
i=1

θiB
i)(1 +

Q∑
i=1

ΘiB
im)εt, (3.21)

where εt is white noise and ϕi, i = 1, . . . , p, θi, i = 1, . . . , q, Φi, i = 1, . . . , P , and Θi, i = 1, . . . , Q, are
the weights of the model. In shorthand notation, we have

ϕ(B)Φ(Bm)∆d∆D
myt = θ(B)Θ(Bm)εt.

3.5.4. ARIMA Models with Exogenous Variables
Another extension is the ARMAX model, which stands for Autoregressive Moving Average with eXoge-
nous variables. This model incorporates exogenous variables into the ARIMA framework. This model
is particularly useful when the time series is thought to be influenced by external factors that cannot
be explained solely by its past values. The covarites, denoted by x, are added to the model similar to
linear regression.

Definition 3.36. The ARMAX model [5] for forecasting time series with exogenous variables xi, i =
1, . . . , r, is given by

ϕ(B)yt = θ(B)εt +

r∑
i=1

βix
i
t, (3.22)

where ϕ and θ are the autoregressive and moving average operator of orders p and q respectively.

Similar to the extension to the ARMA model, we can also include exogenous variables in the ARIMA
or SARIMA model. The SARIMAX model, for example, would be defined by

ϕ(B)Φ(Bm)∆d∆D
myt = θ(B)Θ(Bm)εt +

r∑
i=1

βix
i
t.
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3.6. Prophet
Prophet [48] is a forecastingmodel developed by Taylor and Letham from Facebook in 2017. Themodel
is engineered to handle various time series data characteristics with ease. It employs an additive model
where time series data is decomposed into three main components: trend, seasonality, and holidays.
The Prophet model is defined by

y(t) = gt + st + ht + εt. (3.23)
Here, gt represents the trend function, st represents the periodic changes such as daily, weekly, or
yearly seasonality, and ht accounts for the influence of holidays. The error term εt is assumed to be
normally distributed.

Unlike traditional time series models that focus on the temporal dependencies in the data, Prophet
frames forecasting as a curve-fitting problem. This results in faster training and allows for measure-
ments that are not equally spaced.

To fit themodel, Prophet makes use of Stan’s L-BFGS optimization algorithm, which facilitates Bayesian
forecasting by finding a maximum a posterior estimate. In Bayesian inference, we aim to maximize a
posterior distribution f(θ | x), a combination of the likelihood f(x | θ) and the prior distribution f(θ).2
Here, we need to assume a prior distribution for the parameters.

3.6.1. Trend Model
Prophet models the trend as linear, logistic, or flat growth. A linear growth model is given by

gt = kt+m,

where k represents the growth rate and m is an offset parameter. Facebook also implemented a
logistic growth model, since it often characterizes population growth, reflecting the most prominent
data-generating processes found in Facebook data. A logistic growth model is given by

gt =
C

1 + exp(−k(t−m))
.

Here, C is the carrying capacity, k represents the growth rate, andm is an offset parameter. Facebook
refined this model by introducing a time-varying capacity Ct.

For both linear and logistic growth, Prothet allows for changes in the growth rate over time. These
changes are incorporated by defining changepoints at which the growth rate k can shift. Suppose there
are S changepoints at times tj , j = 1, . . . , S. Then define a vector of rate adjustments δ ∈ RS , where δj
is the change that occurs at time tj . The rate at time t is a base rate k plus all the adjustments up to that
point, i.e., k +

∑
j : t>tj

δj . For the rate adjustments, Taylor and Letham use a prior δj ∼ Laplace(0, τ),
where τ controls the flexibility in altering the rate. If τ → 0, the model reduces back to a standard linear
or logistic growth model.

3.6.2. Seasonal Model
Seasonal effects in Prophet are captured using Fourier series, i.e.,

st =

N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
.

This approach estimates the parameter vector β = [a1, b1, . . . , aN , bN ]T with 2N parameters. By con-
structing a matrix of seasonality vectorsXt for each t, the seasonality can be expressed as st =Xtβ.
For example,Xt for yearly seasonality with N = 10 is given by

Xt =

[
cos

(
2π(1)t

365.25

)
, . . . , sin

(
2π(10)t

365.25

)]
.

For the seasonality parameters, the prior β ∼ N (0, σ) is used. The authors found that N = 10 works
well for yearly seasonality and N = 3 works well for weekly seasonality.

2Using Bayes’ rule, we find f(θ | x) =
f(x | θ)f(θ)

f(x)
∝ f(x | θ)p(θ), which is the likelihood times the prior.



3.7. Hierarchical Forecasting 29

3.6.3. Holidays and Events
Holidays and events introduce significant, yet somewhat predictable, disruptions to business time series
that do not conform to regular periodic cycles covered in the seasonal part. Prophet allows for the input
of a list of past and future events, identifiable via unique names, into the forecasting model.

For each holiday i, let Di be the set of dates corresponding to that event. An indicator function is
implemented to determine whether time t falls within holiday i, and each holiday is assigned a parameter
κi reflecting its specific impact on the forecast. The holiday part of the forecast, ht, is modeled as
ht = Ztκ, with

Zt = [1(t ∈ D1), . . . ,1(t ∈ D1)] .

Similar to the seasonal part, κ ∼ N (0, ν2) is used as prior distribution.

The model also enables taking into account a window of days surrounding holidays by treating each
day in the window as a holiday itself. Note that for the model to learn the effect of certain holidays, it
needs to have multiple data points in the set Di. For the specific case study addressed in this thesis,
which involves only one year of data, this condition does not hold true.

3.7. Hierarchical Forecasting

3.7.1. Hierarchical Time Series
Hierarchical time series are structured in a tree-like manner, featuring various levels of aggregation.
At the lowest level, there are numerous individual time series. Going up in the hierarchy, each series
represents the summation of the series directly beneath it. For example, as illustrated in Figure 3.4, at
the top level, we have y0, which is the sum of series y1 and y2 below it. Going down to the bottom level,
we have y1 = y1,1 + y1,2 and y2 = y2,1 + y2,2 + y2,3.

Figure 3.4: Example of a hierarchical structure in time series. Here, y0 = y1 + y2, y1 = y1,1 + y1,2, and
y2 = y2,1 + y2,2 + y2,3.

Forecasting hierarchical time series is essential for decision-makers who require consistency across
different levels of data aggregation. Consider a scenario where a retailer needs to decide how much
stock to purchase based on customer demand forecasts. If forecasts are generated for individual
customer segments and then summed, the total may not align with a forecast generated directly from
the total demand. This difference poses a dilemma: Should the purchasing decision be based on the
sum of individual forecasts or the forecast of the total series? Hierarchical forecasting addresses this
issue by ensuring consistent forecasts at different hierarchical levels.

3.7.2. Single-Level Approaches
Hierarchical forecasting can be approached in several ways: bottom-up, top-down, or middle-out.

The bottom-up approach is the most straightforward method. It starts by forecasting the series at the
bottom level of the hierarchy. The individual forecasts are then summed to generate predictions for
higher levels. This method ensures consistency but does not use the forecasts of higher levels.
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In contrast, the top-down approach begins with forecasting the top level of the hierarchy. These fore-
casts are then proportionally allocated to lower levels based on one of the following criteria: average
historical proportion, proportions of the historical averages, or forecast proportions. This method is
useful when high-level data is more reliable or when lower-level data is noisy.

The middle-out approach combines elements of both previous methods. It starts by forecasting at a
middle level of the hierarchy. Forecasts for higher levels are generated by aggregating these middle-
level forecasts, while forecasts for lower levels are derived by disaggregating the middle-level forecasts.
This approach can be effective when the middle level represents a significant segmentation of the data.

3.7.3. Forecast Reconciliation
In hierarchical forecasting, it is also possible to combine the forecasts of all series to ensure coherence.
This process, proposed by Hyndman et al. (2011), is called forecast reconciliation. To understand this
method, first define the summing matrix S such that

yt = Sbt

where bt are the time series at the lowest level and yt are all time series across all hierarchies. For
example, the summing equation for the structure of Figure 3.4 is given by

(y0)t
(y1)t
(y2)t
(y1,1)t
(y1,2)t
(y2,1)t
(y2,2)t
(y2,3)t


=



1 1 1 1 1
1 1 0 0 0
0 0 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




(y1,1)t
(y1,2)t
(y2,1)t
(y2,2)t
(y2,3)t

 .

Now, forecast reconciliation is defined by a transformation matrix P that maps the forecasts of all levels
into the bottom layer. Then, using the summing matrix S, we can obtain the coherent forecast of all
levels. So, given the forecasts of all levels ŷt, the reconciled forecast is given by

ỹt = SP ŷt.

For example, the bottom-up approach on Figure 3.4, is given by

P =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Similarly, the top-down approach on Figure 3.4, is given by

P =


p1 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0


where pi are the estimated proportions for disaggregation.

A commonly used reconciliation method is the min-trace method by Wickramasuriya, Athanasopoulos,
and Hyndman (2015). They derive the mapping matrix P by minimizing the sum of variances of the
reconciled forecast errors.

P = (STW−1
h S)

−1STW−1
h

whereW h is the covariance matrix matrix of the h-step-ahead forecast errors. Specifically,
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W h = E[êt(h)êTt (h)|It],

where
êt = yt+h − ŷt(h).

Now, since the trace of the covariance matrix is the sum of variances, minimizing the sum of variances
of the reconciled forecast errors is equal to

min tr[SPWhP
TST ].



4
Machine Learning Methods for Time

Series Forecasting

The previously introduced methods for time series forecasting, like ARIMA and regression, rely on a
predefined mathematical model that has to be able to represent the patterns in the data. In contrast, in
machine learning we often want to learn these, sometimes complex, patterns without explicitly defining
a mathematical formula for the structure of the series.

In this chapter, we will discuss various machine learning techniques, starting with the random forest
algorithm. This chapter also presents three state-of-the-art deep learning models for time series fore-
casting, which are central to this research. To understand these advanced models, we will start with an
introduction to the fundamental concepts of neural networks and we will explore some of the building
blocks that constitute each model.

4.1. Decision Trees and Random Forest
A random forest is a popular ensemble learning technique that combines the output of multiple decision
trees. One big advantage of the random forest is its ability to provide insights into the feature importance,
adding a level of explainability to the predictions. We will first introduce the concept of tree-based
models to later present the algorithm that generates the random forest. This section is mostly based
on the book by Hastie, Tibshirani, and Friedman [14].

4.1.1. Decision Trees
Given a target variable y and p input features x = (x1, x2, . . . , xp), a decision tree aims to predict
the target by recursively partitioning the input feature space into distinct regions. The partitioning is
based on tests performed on the feature values. This creates a tree-like structure of decisions and
their possible outcomes that result in a final decision or value.

Definition 4.1. The structure of a decision tree is defined by the following elements:

• An internal node represents a test on a feature. This node often makes a binary or multi-way
decision, based on the value of the feature. This leads to a further split in the tree. It is also
possible to have an internal node with a probabilistic outcome.

• Branches are the outcomes of the test of an internal node. Each branch corresponds to a specific
value or range of values of the feature being tested.

• A leaf node represents the final decision taken after completing all the tests along a path from
the root to that leaf.

An example of a simple decision tree is given in Figure 4.1. Using a very simplified model, we want
to determine whether a customer will place an order for today. This example has two internal decision

32
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nodes and three leaf nodes. The branches here are the answers to the yes/no questions in the nodes.
Using this decision tree we can follow a path from the root node to a leaf node to answer our question.

Figure 4.1: Example of a simple decision tree to answer the question: Does customer X place an order for today? Answers to
the questions on the internal nodes lead to an answer to the top question in the leaf nodes.

There are two types of decision trees. A regression tree is a type of decision tree used for predicting
continuous numerical outcomes. Each leaf node represents a predicted value for the target variable.
A classification tree is a type of decision tree used for predicting categorical outcomes. Each leaf node
of the tree corresponds to a predicted class label for the target variable.

Although decision trees are not designed for forecasting time series, they can still be adapted for this
purpose. By including lagged values of the variable of interest, yt, as features, the tree can make a
decision based on previous observation.

There are multiple ways to grow a decision tree, which we will not discuss in detail here. In general,
the aim of a tree building algorithm is to find the best partitions that divide the feature space. Often, a
greedy algorithm1 is applied to find the best split at the current node, as it is computationally very hard
to find the optimal partitions. This is achieved by minimizing the node impurity, which is a measure
of how well a node splits the data into homogeneous sets. Essentially, this process measures the
informational gain provided by each split. For regression trees, we can use the mean square error
as impurity measure. For classicification, the Gini index or Entropy can be used utilized as impurity
measure [14].

To prevent overfitting, one could tune the following hyperparameters: the minimum number of samples
required for splitting, the maximum tree size, the maximum tree depth, and the minimum number of
samples for each leaf node. If a decision tree has the same number of leaf nodes as training data
points, it will perform perfectly on the training data but will likely fail to generalize to new data. There-
fore, it is crucial to find a good balance between model complexity and generalization. The optimal
hyperparameters may vary for each dataset.

4.1.2. Ensemble Methods
Suppose we have observed some data set x = (x1, x2, . . . , xN ) with N observations and assume it
is independent and identically distributed according to an unknown distribution F . When we cannot
repeat the experiment anymore, we are not able generate more samples as F is unknown. The idea
of the bootstrap method is to generate more samples by replacing the distribution F with the empirical
distribution function F̂ . Since we know this empirical distribution function, it is possible to sample from
this distribution as often as desired.

Definition 4.2. A bootstrap sample is defined to be

x∗ = (x∗1, x
∗
2, . . . , x

∗
N ),

where each x∗i is drawn randomly from the original sample (x1, x2, . . . , xN ), with replacement.
1A greedy algorithm makes the locally optimal choice at each step of the algorithm, in the hope of finding a global optimial

solution.
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We can also use the concept of bootstrapping to obtain multiple predictions from a single dataset. Say
we have a training data set Z =

{
(x1, y1), (x2, y2), . . . , (xN , yN )

}
where xi are the p feature variables

and yi is the variable of interest. Using a forecasting method, like regression, we can find a prediction
f̂(x) for y at input x. Bootstrap aggregation, or bagging, averages the prediction over a collection of
bootstrap samples.

Definition 4.3. The bagging estimate for training data set Z, using B bootstrap samples Z∗b for
b = 1, . . . , B, is given by2

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x), (4.1)

where f̂∗b(x) is the prediction determined from a bootstrap sample Z∗b.

Say we are using a decision tree for forecasting, where f̂(x) denotes the prediction of the tree for input
x. Each bootstrap tree will typically have different features than the original, and might have a different
number of leaf nodes. The bagged estimate is the average prediction at x from these B trees.

Since each tree generated in bagging is identically distributed, we have that the expected value of an
average of B trees is the same as the expected value of any individual tree. Therefore, the bias of
bagged trees is also the same as for one tree. The variance of the average of B trees can be obtained
using the following theorem.

Theorem 4.1. The variance of an average of n independent and identically distributed random vari-
ables Xi, i = 1, . . . , n, is given by

var

(
1

n

n∑
i=1

Xi

)
= ρσ2 +

1− ρ

n
σ2,

where ρ is the pairwise correlation, ρXY = cov(X,Y )
σXσY

, and σ2 is the variance of random variable Xi.

Proof.

var

(
1

n

n∑
i=1

Xi

)
=

1

n2
cov

(
n∑
i=1

Xi,

n∑
i=1

Xi

)
=

1

n2

 n∑
i=1

var(Xi) +
∑
i ̸=j

cov(Xi, Xj)


=

1

n2
(
nσ2 + n(n− 1)ρσ2

)
= ρσ2 +

1− ρ

n
σ2.

Note that as the number of trees increases, the second term in Theorem 4.1 disappears. The first term
stays. So the variance of the average of B trees is determined by the correlation of pairs of bagged
trees. This is where random forest comes into play.

4.1.3. The Random Forest Algorithm
The idea of a random forest is to improve the variance of a bagged collection of decision trees by reduc-
ing the correlation between trees. This is done by randomly selecting a subset of m feature variables
at each step in the tree-growing process. This feature randomness ensures a low correlation between
different decision trees. The inventors recommend a value of m =

√
p for classification problems and

m = p/3 for regression problems [14]. However, the best value form ≤ p can differ case-by-case. The
algorithm for generating a random forest is described in Algorithm 4.1.

2To be precise, Equation (4.1) represents a Monte Carlo estimate of the true bagging estimate, which converges to it as
B → ∞. For more details, see page 282 [14] .
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Algorithm 4.1 Random Forest for Regression or Classification [14]
for b = 1 to B do
1. Draw a bootstrap sample Z∗ of size N from the training data.
2. Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the follow-

ing steps for each terminal node of the tree, until the stopping criterion (maximum tree size,
minimum node size, . . .):
(a) Select m variables at random from the p feature variables.
(b) Pick the best variable and split-point among the m variables.
(c) Split the node into two daughter nodes.

Output the ensemble of trees {Tb}Bb=1.

Making decisions using a random forest is done by taking the average of the outcomes of all decision
trees in the forest. For regression trees with prediction T̂b(x) of tree b, the final prediction of a random
forest with B trees is given by

f̂Brf (x) =
1

B

B∑
b=1

T̂b(x).

For classification trees with class prediction Ĉb(x) of tree b, the final prediction of a random forest with
B trees is given by the majority vote of all trees in the forest, i.e.

ĈBrf (x) = majority vote
{
Ĉb(x)

}B
1
.

4.1.4. Advantages of Random Forests
The random forest algorithm is a popular machine learning technique because of its ability to learn
nonlinear relationships between features and the target variable. Because of the aggregation of many
random trees, the outcome of the random forest is quite robust. This reduces the risk of overfitting but
also helps against outliers. Moreover, because of its rule based structure, random forests are flexible
at handling various data types. For the same reason, the algorithm does not require normalization or
scaling of data, unlike many other algorithms.

A major advantage of using random forests is their capability to provide insights into the importance of
each feature in making predictions. The importance of a feature is determined based on how frequently
it is used to split nodes across all trees and howmuch information those splits gave (amount of decrease
in impurity).

While there exist other decision tree algorithms, like gradient boosting, that powerful as well, this re-
search only focuses on random forests.

4.2. Introduction to Neural Networks
Decision trees remain popular due to their ability to learn complex patterns from data. However, with
recent advancements in computational power, more advanced models, particularly neural networks,
have gained popularity. These deep learning methods are capable of learning patterns from even
larger and more complex datasets. In this research, we will focus on three neural network models
designed for time series forecasting.

Neural networks are inspired by the structure of the human brain. They consist of connected layers
of artificial neurons that each learns from data through training. The idea is that neural networks au-
tomatically learn complex patterns, without giving too much structure to the model beforehand. In this
section, we will explore the fundamental concepts of neural networks, based on elements from [1].
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4.2.1. Neurons and Learning
The most basic building blocks of a neural network are artificial neurons. Each neuron receives input
signals, processes them, and produces an output signal that is passed on to other neurons in the
network. It does this by applying an activation function on a weighted sum of the input. The output of
a neuron with weights w, bias b and activation function g is given by

ŷ = g(w · x+ b). (4.2)

A schematic overview of an artificial neuron is given in Figure 4.2.

Figure 4.2: Schematic overview of a neuron in a neural network. A neuron takes a weighted sum of inputs x1, . . . , xn and adds
a bias b. It then performs an activation function on this value. The output of a neuron is therefore given by ŷ = g(w · x+ b).

In a neural network, neurons are organized into layers: an input layer, one or more hidden layers and
an output layer. The input layer receives the raw data, the hidden layers perform transformations based
on what is learned from previous data and finally, the output layer produces a final prediction.

The most simple type of a neural network architecture is a Feedforward Neural Network (FNN), shown
in Figure 4.3. Information flows in one direction from the input layer, through the hidden layers, and
finally to the output later without any cycles or loops. Each layer consists of a set of neurons that are
connected to every other neuron in the next layer. FNNs can be particularly effective for tasks such as
regression or classification problems. However, they may struggle with time series data as they lack
the mechanisms to capture dependencies across time steps. Still, as we will see later, FNNs serve as
building blocks for more advanced architectures.

Figure 4.3: Example of a Feedforward Neural Network (FNN). A FNN is defined by an input layer, one or more hidden layers,
and an output layer. Information always flows in a forward direction. In this example, the input size is 3, there are two hidden

layers of size 4, and the output size is 2. This FNN is fully connected.

Learning in neural networks happens by training the network, where the network adjusts its weights
and biases based on training data. A training data set contains input and target data. Through forward
propagation, the network can generate some predicted output based on the input data.

Definition 4.4. Forward propagation is the process where input data is passed through the network’s
layers, according to its learned weights and biases, to generate an output.
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Now, we want to choose the weights and biases that minimize the difference between the predicted
outputs and the actual target values. This is typically done by using optimization algorithms like gradient
descent. The process of computing the gradients of the loss function with respect to the weights and
biases is called backpropagation.

Definition 4.5. Backpropagation is an algorithm to compute the gradient, used to determine the up-
dates of the weights and biases. It works by applying the chain rule to propagate the error backwards
from the output layer back through the hidden layers to the input layer.

The training of a neural network on a training set consists of multiple iterations of forward and back-
propagation. An epoch is defined as one complete pass through the entire training dataset. If the
data set is divided in multiple batches, one epoch involves multiple iterations of both forward and back-
propagation. After each epoch, the model parameters are updated. A network is commonly trained
using multiple epochs. After training, new predictions can be made by applying forward propagation to
new input data.

4.2.2. Activation functions
Every neuron in a neural network has its own activation function. An activation function is a mathemat-
ical function that determines whether a neuron should contribute to the network’s output or not. The
activation function is a crucial component of the neural network component, allowing it to learn complex
patterns. A few commonly used activation functions will be discussed here.

The most trivial activation function would be the linear, or identity, activation function.

Definition 4.6. The linear activation function is defined by

g(x) = x (4.3)

However, only using linear functions would restrict the network’s capacity to learn from data, limiting
it to linear mappings. So, the network must have non-linear activation functions to actually learn com-
plex patterns and make non-linear decisions. Additionally, many activation functions are piecewise
continuously differentiable, as this is necessary for optimization algorithms like gradient descent.

In the early days of neural networks, it was common to use the sigmoid function to incorporate non-
linearity [1]. It simulates biological neurons, i.e., firing when the input exceeds a certain threshold. The
sign function also has this behaviour, but is non-differentiable.

Definition 4.7. Sigmoid
σ(x) =

1

1 + e−x
(4.4)

The hyperbolic tangent (tanh) function also became popular as an activation function. Since the tanh
outputs values in the range of [−1, 1], it is prefered over the sigmoid when the desired outputs are both
positive and negative.

Definition 4.8. The tanh activation function is defined by

g(x) =
ex − e−x

ex + e−x
. (4.5)

One problem of the sigmoid and tanh function is the vanishing gradient problem. When the input
becomes too high or too low, the gradients become very small, resulting in slow learning or stopping
altogether.

One of the most popular activation functions in neural networks is the rectified linear unit (ReLU) ac-
tivation function. It is popular as it is computationally efficient, allowing for faster convergence during
training.

Definition 4.9. The rectified linear unit activation function (ReLU) is defined by

g(x) = max(0, x) =

{
0 if x ≤ 0,
x if x > 0.

(4.6)
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However, the ReLU can lead to the ”dying ReLU” problem, where neurons become inactive and stop
learning if they consistently output zero.

To address the dying ReLU problem, the Leaky ReLU activation function introduces a small slope for
negative input values.

Definition 4.10. The leaky rectified linear unit activation function (Leaky ReLU), with slope parameter
0 < α≪ 1, is defined by

g(x) =

{
αx if x ≤ 0,
x if x > 0.

(4.7)

Note that the slope parameter α is determined before training. By allowing this small, non-zero gradient,
the Leaky ReLU helps to maintain the learning capability of neurons that might otherwise become
inactive.

Another parametric alternative to the ReLU is the Exponential Linear Unit (ELU), which also aims to
solve the dying ReLU problem.

Definition 4.11. The exponential linear unit activation function (ELU), with parameter α > 0, is defined
by

g(x) =

{
α(exp(x)− 1)x if x ≤ 0,

x if x > 0.
(4.8)

The activation functions introduced above are applied on the weighted sum of inputs, as defined in
Equation (4.2). It is also possible to apply an activation function on the inputs directly. One often used
function to downsample the feature space, called pooling, is the Maxout function.

Definition 4.12. The Maxout activation function simply outputs the maximum of the input values with-
out computing a weighted average,

g(x) = max
i
xi. (4.9)

The Softmax function converts the output values of the previous neurons into probabilities that sum to
one. It is typically used in the output layer of a neural network for multi-class classification problems,
where the goal is to assign an input to one of several possible classes. The class with the highest
probability outputted by the Softmax function is usually considered the predicted class.

Definition 4.13. The Softmax activation function is defined by

σ(xi) =
exi∑N
j=1 e

xj

, (4.10)

where N is the number of classes and xi is the value for class i.

There are many more possible activation functions, which will not be further discussed in this paper.
The graphs of some of the activation functions discussed above are shown in Figure 4.4.
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Figure 4.4: Plots of six commonly used activation functions in neural networks. Top row: ReLU, Leaky ReLU, and ELU.
Bottom row: Sigmoid, Tanh, and Softmax.

4.3. Building Blocks of Neural Network
In this section, we will introduce several standard neural network architectures that may be used for
time series forecasting but can also serve as building blocks for more complex architectures later.

4.3.1. Multilayer perceptron (MLP)
In deep learning, a multilayer perceptron (MLP) refers to a fully connected feedforward neural network.
A neural network may only consist of an MLP, but the MLP can also be part of a larger network architec-
ture. For example, the MLP can serve as the final classification layer or as a component that processes
features extracted by other layers.

Definition 4.14. The output of a linear multilayer perceptron (MLP) layer with input vector x is given
by

MLP(x) =Wx+ b

whereW and b are the weights and biases of the nodes in the MLP.

Even though MLP’s are often nonlinear, making it hard to express them in a simple form, we can still
describe the network by its weightsW and biases b. We will also refer to the output by MLP(x).

4.3.2. Normalization
Normalization is a crucial preprocessing step in neural network modeling, especially for time series
forecasting. It serves to stabilize learning and accelerate convergence by making sure that the input
features to the network are on a similar scale.

A common technique in deep learning is batch normalization [19]. In the context of neural networks, a
batch refers to a group of data samples that are processed together during a single training iteration. So,
when forecasting time series, this form of normalization operates over all time series that are grouped
in a batch. Here, each batch has its own statistics for normalization.

Another form of normalization is layer normalization [2], which normalizes the input features within each
individual layer of the neural network. It calculates normalization statistics based on the summed inputs
to the neurons within a hidden layer. Under layer normalization, all the hidden units in a layer share the
same normalization terms, but different training batches can have different normalization terms.
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Unlike the other two methods, temporal normalization [33] specifically targets the temporal dimensions
of the data. This means that each time series will be scaled individually with its own normalization
statistics. This allows for focusing on time-dependent fluctuations unique to each series.

The dimensions targeted by the normalization techniques are visually demonstrated in Figure 4.5.

Figure 4.5: From left to right: temporal normalization, layer normalization, and batch normalization. The highlighted entries
indicate the normalization statistics [33].

Somemodels, like TFT [22] and DeepAR [44], already implement scale-robust learning, meaning these
models have strategies within their architectures that automatically manage variations in the scale of
the data. Other models might need additional normalization.

Below, we will define some common normalization functions. Consider the following notation. Say we
have data x, then x[i][:t][c] represents that data for feature/variable c with batch index i, up till time t.

Standard normalization standardizes the data by subtracting the mean and scaling by the variance.

Definition 4.15. Standard normalization [33] adjusts the data to have a mean of zero and a standard
deviation of one, transforming x[i][:t][c] using:

z =
(x[i][:t][c] − x[i][c])

σ̂[i][c]
, (4.11)

where x[i][c] and σ̂[i][c] are the mean value and standard deviation of x for batch i and feature c.

Minmax normalization scales the data to a specified range, typically between 0 and 1.

Definition 4.16. Minmax Normalization [33] scales the input x[i][:t][c] to the range [0, 1] using:

z =
(x[i][:t][c] −min(x[i][:t][c])[i][c])

(max(x[i][:t][c])[i][c] −min(x[i][:t][c])[i][c])
. (4.12)

Similarly, we can scale the input to the range [−1, 1] using:

z = 2
(x[i][:t][c] −min(x[i][:t][c])[i][c])

(max(x[i][:t][c])[i][c] −min(x[i][:t][c])[i][c])
− 1 (4.13)

Robust normalization scales the data similarly to the standard normalization, but using the median and
mean absolute deviation instead of the mean and standard deviation. This method is particularly useful
when outliers negatively influence the mean and/or variance. In this case study, however, due to the
zero-inflated nature of the data, the median will be zero for most customers, which complicates the
scaling process.

Definition 4.17. Robust normalization [33] transforms x[i][:t][c] using:

z =
(x[i][:t][c] −median(x[i][:t][c]))

mad(x)[i][:t][c]
(4.14)

where mad is the median absolute deviation mad(x) = median(|x−median(x)|).
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4.3.3. Pooling layers
Pooling layers are used in neural networks to reduce the dimension of feature maps. It does this by
sliding a filter over the input data and summarizing the features lying within the region covered by the
filter. It has two purposes. First, it reduces the number of parameters or weights, thereby lowering the
required computational cost. Second, it helps to control overfitting in the network. An effective pooling
method should extract only the relevant information while discarding unnecessary details.

First, we introduce the parameters stride and padding that, together with the filter size, control the size
of the output map of the pooling layer.

Definition 4.18. Stride refers to the number of pixels/data points by which the filter moves across the
input feature map during the pooling operation. A stride of s = 1 means that the filter shifts one pixel
at a time, while a stride of 2 means it moves two pixels at a time.

Definition 4.19. Padding is the process of adding extra pixels/data around the border of the input
feature map before applying the pooling operation. A padding of p = 1 add a layer of 1 pixel/data point
around the border.

Given an input feature map of size I and a filter of size f with stride s and padding p. The size of the
output map, O, is then given by

O = (I − f + 2p)/s+ 1.

There are multiple ways to implement a pooling layer in a neural network. Here, we will only discuss
two examples to sketch the general idea.

Definition 4.20. A max pooling layer takes the maximum value from each patch of the feature map
that the filter overlaps.

Assume a 2D input matrixX, a filter size of f × f and stride s, The output of the MaxPool layer is given
by

MaxPool(X | f, s)i,j = max(Xis:is+f−1,js:js+f−1).

Definition 4.21. An average pooling layers takes the average value from each patch of the feature
map that the filter overlaps.

Assume a 2D input matrixX, a filter size of f × f and stride s, The output of the AvgPool layer is given
by

AvgPool(X | f, s)i,j =
1

f2

is+f−1∑
k=is

js+f−1∑
k=js

Xk,l.

4.3.4. Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNNs) are a class of neural networks designed to process structured
grid-like data, such as images. They leverage the spatial hierarchies in the data to learn patterns at
various levels of abstraction.

A convolutional neural network typically consists of a combination of convolutional layers, pooling lay-
ers, and fully connected layers. A convolutional layer operates similarly to a pooling layer but does not
necessarily reduce the dimensions of a feature map. Instead, a convolutional layer applies the convo-
lution operation on the input feature map using a filter (or kernel) to extract relevant features. The filter
scans the input and produces a corresponding feature map, highlighting specific patterns.

CNNs are primarily designed for processing spatial data, but may be applied to time series data. It is
important to note two limitation. First, CNNs require inputs of the same size due to the use of fixed
filter sizes, limiting the ability to analyse time series of different lengths. Also, they have limitations
when it comes to capturing long-term dependencies. The filters focus on a small, localized portion of
the input data. While this is effective for capturing local patterns and features, it limits the network’s
ability to consider long-term dependencies across the entire sequence. CNNs also do not have a built-
in mechanism for maintaining a memory of previous inputs, so they cannot learn from any sequential
patterns.
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4.3.5. Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNNs) are a class of neural networks specifically designed to handle
sequential data by maintaining a form of memory across time steps. Unlike feedforward networks,
RNNs have connections that loop back on themselves, allowing them to retain information from previous
inputs. This makes RNNs particularly suitable for applications where the order of the input data is
crucial, like time series or natural language processing.

The architecture of an RNN consists of a series of recurrent layers, where each layer processes an input
sequence one time step at a time. At each time step, the RNN takes the current input and combines it
with the hidden state from the previous time step, allowing the network to incorporate information from
earlier inputs sequentially. A schematic overview of an RNN is given in Figure 4.6.

Definition 4.22. The output ht of a Recurrent Neural Network (RNN) at time step t is given by

ht = A(xt,ht−1),

where ht−1 is the hidden state at time t− 1 and xt is the input vector at time t. In the RNN, A(.) can be
a single node with activation function or a more complex network.

Figure 4.6: Schematic overview of a Recurrent Neural Network (RNN). An RNN is composed of multiple recurrent hidden
layers, where the output of each hidden layer serves as the input to the next. Here, A(.) can be a single neuron or a more

complex neural network itself.

When the RNN has too many layers, training of the network may become impossible. During back-
propagation, the gradients of the earlier layers are calculated by multiplying the gradients of the later
layers. If the gradients of these later layers are less than one, their multiplication can lead to a gradient
approaching zero. Conversely, if the gradients are greater than one, they can grow excessively large,
resulting in exploding gradients. This phenomenon is known as the vanishing or exploding gradient
problem.

4.3.6. Long Short-Term Memory (LSTM)
The LSTM is a type of recurrent neural network model that is designed to solve the vanishing or ex-
ploding gradient problem. In a LSTM, the recurring cell A(.) has two hidden states instead of one. As
the name of the model suggests, one is for keeping track of a short term memory and the other is for
keeping track of a long term memory. The architecture is summarized in Figure 4.7.

As mentioned, the LSTM network has a long term memory, called the cell state ct, and short term
memory, called the hidden state ht. An LSTM cell A(.) starts by deciding whether to keep or throw
away the cell state. This is decided by a ”forget gate layer”, consisting of an MLP(.) together with a
sigmoid function on the hidden state ht−1 and new information xt. The forget parameter ft ∈ [0, 1]
defining how much information to keep is given by

ft = σ(Wf · [ht−1, xt] + bf ).

The next step is to decide what new information to store in the cell state. An MLP(.) layer with tanh
function first creates a candidate vector c̃t from the hidden state ht−1 and xt. Then, similar to the forget
parameter, we can define the input parameter it ∈ [0, 1], that defines how much information of c̃t we
want to keep. The input parameter and new candidate vector are given by

it = σ(Wi · [ht−1, xt] + bi),

c̃t = tanh(Wc · [ht−1, xt] + bC).
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Figure 4.7: Architecture of an LSTM neural network, based on [31]. An LSTM extends a standard RNN by introducing two
hidden states: ct (long-term memory) and ht (short-term memory). Here, pink circles represent pointwise operations, and

yellow squares represent MLP layers.

Combining the forget layer and the input layer, we can update the long term memory in the following
way

ct = ft ⊙ ct−1 + it ⊙ c̃t.

where ⊙ is the Hadamard product. The LSTM cell outputs the hidden state ht. In the last step, the
output is updated using a combination of the previous hidden state ht−1, the new information xt and
the updated cell state ct in the following way

ot = σ(Wo · [ht−1, xt] + bo),

ht = ot ⊙ tanh(Ct).

The LSTM is already quite capable of forecasting time series data. However, training an LSTM network
still requires to to train the network on individual series. We will see how the LSTM can be used as a
building block for more complex architectures later on.

4.3.7. Sequence to Sequence (Seq2Seq)
Sequence to sequence (Seq2Seq) models are a neural network architecture used for tasks that involve
transforming one sequence into another. This approach allows for handling input and output sequences
of variable-length, The original Seq2Seq model was introduced by Google in 2014 [47] and was applied
to translate English text to French.

The Seq2Seq architecture uses a series of RNN layers to encode the input sequence into a context
vector. Another series of RNN layers is then used to decode this vector into the target sequence. Often,
the LSTM is used as both encoder and decoder. A schematic overview of an Seq2Seq is illustrated in
Figure 4.8.

Figure 4.8: Seq2Seq architecture, with the encoder shown on the left and the decoder on the right. Here, the encoder
processes the input sequence and compresses it into a fixed-length context vector, which is then used by the decoder to

generate the output sequence.

The Seq2Seq architecture is popular for several reasons. First, it enables the model to handle se-
quences of varying lengths. Second, by separating the encoding and decoding processes, the model
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can learn to represent the input sequence effectively while generating the output sequence in a flexible
manner. This architecture has become foundational in natural language processing, and we will see it
later in neural networks for time series.

In the context of time series forecasting, the number of encoder layers, encode length, defines the
lookback window and the number of decoder layers, decoder length, defines the forecasting horizon.
So, this strucutre can be used to predict time series for a given horizon H. However, since the forecast
of the previous time point is fed back as input, it may be possible that errors propagate though the
forecast.

4.3.8. Attention Mechanisms
Google improved on the Seq2Seq model for natural language processing even further. In 2017, they
introduced attention mechanisms in the paper ”Attention is all you need” [50]. The problem was that
in a Seq2Seq model, the encoder only outputs the final hidden state to the decoder. Therefore, the
model has trouble decoding longer sequences. They extended the Seq2Seq architecture to output
the hidden state of every RNN layer in the encoder to the decoder. Then, at every decoding step, the
attention mechanism tells the decoder which part of the encoded sequence to focus on. They called
this architecture a ”Transformer”.

The idea behind the attention mechanism is that it scales values V based on the similarities between
keys K and queries Q. In the Transformer model, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every position in
the decoder to attend over all positions in the input sequence.

Definition 4.23. The output of a single-head attention mechanism is given by

Attention(Q,K,V ) = f(Q,K) · V

where f(.) is a normalization function, e.g. the Softmax function.

To further enhance the learning capacity of this mechanism, a multi-head attention mechanism was
also proposed in [50]. This combines the output of multiple single-head attentions mechanisms.

Definition 4.24. The output of a multi-head attention mechanism is given by

MultiHead(Q,K,V ) =
[
H1 . . . HmH

]
WH ,

with
Hh = Attention(QW (h)

Q ,KW
(h)
K ,VW

(h)
V )

where W (h)
Q ,W

(h)
K ,W

(h)
V are head-specific weights for keys, queries and values and W (h)

H linearly
combines the outputs from all headsHh.

Both the single head and multi-head attention mechanisms are illustrated in Figure 4.9.

Figure 4.9: Visualization of attention mechanisms as introduced in [50]. (left) The standard attention mechanism,
Attention(Q,K,V ), computes weighted combinations of value vectors based on similarity between queries and keys. (right)

The multi-head attention mechanism, MultiHead(Q,K,V ), applies several attention layers in parallel.
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4.4. State-of-the-Art Neural Network Models for Time Series Fore-
casting

Building upon the foundational architectures discussed in the previous section, we will now focus on
more advanced neural network models. These state-of-the-art approaches have complex mechanisms
designed to improve the predictive performance by training on multiple time series simultaneously.
Notably, we will explore Amazon’s DeepAR (2019), a global forecasting model using autoregressive
recurrent networks which provides probabilistic forecasts. We will also examine Google’s Temporal
Fusion Transformer (2020), a model that provides interpretable forecasts using attention mechanisms.
Lastly, we will discuss N-HiTS (2022), a model designed by Nixtla that uses hierarchical interpolation
and promises improvements in accuracy and computation time over the transformer models.

4.4.1. DeepAR
DeepAR is an autoregressive recurrent neural network architecture introduced by Amazon in 2019 [44].
The network is able to produce probabilistic forecasts by training an autoregressive recurrent network
on a large number of related time series. An important feature of DeepAR is that it is a global model.
So, the network learns seasonal patterns and dependencies based on given covariates across multiple
time series. As a result, by learning from similar items, DeepAR is able to provide forecasts for time
series with little history, which would not be possible for single-time series models. Also, DeepAR is
able to make probabilistic forecasts by using Monte Carlo samples [44].

Say we have N time series yi,t, i = 1, . . . , N . Denote vector yt =
(
y1,t · · · yn,t

)T . Let x(s) be the
static exogenous variable and x(f)

t be the future exogenous variables available at the time of prediction.
Given the ”past” time series y[1:t] = [y1, . . . ,yt], we are interested in the ”future” time series y[t+1:t+H] =
[yt, . . . ,yt+H ] with forecasting horizon H. DeepAR aims to model the conditional distribution

P(y[t+1:t+H] | y[1:t],x
(f)
[1:t+H],x

(s)).

The Architecture
The DeepAR model uses the encoder-decoder structure described in Section 4.3.7, making it a recur-
rent neural network. The model is autoregressive since it takes yt−1 as input for the next time step. At
every time step, the RNN has output

ht = A(ht−1,yt−1,xt),

where xt = (x
(f)
t ,x(s)) and A is an LSTM layer. The output of the LSTM layer at every time step is used

as input for a fully connected layer. This MLP estimates the distribution parameters θt of a distribution
function that is chosen before training. Then, the likelihood function ℓ(y | θ) can be used to generate
Monte Carlo samples. This likelihood function is chosen before training and can be for example a
Gaussian likelihood for real-valued data or a negative-binomial likelihood for positive count data.

For example, for a Gaussian distribution with parameters θ = (µ, σ), the likelihood is given by

ℓG(y | µ, σ) = (2πσ2)−
1
2 exp(−(y − µ)2/(2σ2)),

where
µ(ht) = w

T
µht + bµ and σ(ht) = log(1 + exp(wT

σht + bσ)).

The architecture model is illustrated in Figure 4.10.

Training
During training, DeepAR generates multiple instances from each time series by selecting windows with
different starting points. The encoder and decoder length are kept fixed across training.

All parameters of the model, both for the RNN A(.) and the MLP, are learned by maximizing the log-
likelihood

L =

N∑
i=1

t0+H∑
t=t0

log ℓ(zi,t | θ(hi,t)), (4.15)
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Figure 4.10: DeepAR architechture, adapted from [44]. Here, the variable z from the original paper has been replaced with y
for consistency. The left side illustrates the encoder structure, while the right side shows the decoder structure. The output of

the RNN is fitted to a distribution function to enable probabilistic forecasting.

via stochastic gradient descent. Here, t0 is the first time of the decoded sequence.

The DeepAR model is proven to work well on a wide range of data sets, starting from a few hundred
series, with little to no hyper parameter tuning [44].

4.4.2. Temporal Fusion Transformer
The Temporal Fusion Transformer (TFT) is an advanced neural network architecture designed for multi-
horizon forecasting, introduced by Google in 2020 [22]. This section is based on the original paper by
Google. The TFT is able to learn patterns from multiple time series, including static covariates, known
future inputs, and exogenous time series. Unlike traditional deep learningmodels that function as ”black
boxes”, the TFT provides interpretable insights into how these various inputs interact with the target
variable. The output prediction is, just like DeepAR, a probabilistic forecast with quantile predictions.
The estimated conditional distribution is given by

P(y[t+1:t+H] | y[1:t],x
(h)
[1:t],x

(f)
[1:t+H],x

(s)),

where y[t+1:t+H] is the predicted variable of interest for horizonH, y[1:t] is the known past of the variable
of interest, x(h)

[1:t] are past covariates known until time t, x
(f)
[1:t+H] are future covariates that are also known

for the forecasting horizon and x(s) are the static covariates.

Because of its complex architecture, the TFT can, just like a random forest, identify which inputs are
most significant for the predictions, giving insights into the model’s decision-making process. Addition-
ally, it can recognize and visualize temporal patterns and significant periods on a global level.

The Architecture
The architecture includes specialized components for feature selection and gating layers to filter out
irrelevant inputs. We will briefly explain them here.

• Gating Mechanisms: The TFT uses so called Gated
Residual Networks (GRNs), as shown in Figure 4.11, to
determine the relationship between exogenous inputs x
and targets y. These mechanisms enable the model to
skip over unnecessary features or parts of the network
that are not required for a given dataset. The GRN net-
work is defined by

GRNω(a, c) = LayerNorm(a+ GLUω(η1))

η1 =W 1,ωη2 + b1,ω

η2 = ELU(W 2,ωa+W 3,ωc+ b2,ω), Figure 4.11: Gating mechanism used in the TFT
architecture [22].
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where a is the primary input and c is an optional context vector. W ω and bω are the weights and
biases of the dense MLP layers. η1,2 are results of intermediate layers. ELU(.) is the Exponential
Linear Unit activation function and LayerNorm(.) is a standard layer normalization.
GLU(.) is a Gating Linear Unit [9], defined by

GLUω(γ) = σ(W 4,ωγ + b4,ω)⊙ (W 5,ωγ + b5,ω)

where σ(.) is the sigmoid activation function and ⊙ is the element-wise Hadamard product.

During training, dropout is applied before the gating layer. Dropout means randomly setting a
fraction of the neurons to zero. This means that during each training iteration, a subset of neurons
is ”dropped out” or ignored, which prevents the network from becoming overly reliant on any
particular features.

• Static Covariate Encoders: The TFT integrates static metadata by using seperate GRN encoders
that create four different context vectors, cs, ce, cc and ch. These context vectors are used as input
at different locations of the temporal fusion decoder. Specifically, for temporal variable selection
(cs), local processing of temporal features (cc, ch) and enriching of temporal features with static
information (ce).

• Variable Selection Networks: To determine the relevance of the many input variables on the tar-
get y, variable selection is performed on both static and time-dependent covariates. These input
covariates are transformed by the TFT itself. For the categorical variables, entity embeddings are
used to map them on dense vectors and continuous variables undergo a linear transformation.

W.l.o.g. consider the variable selection network for past inputs. Let ξ(j)t denote the transformed

input of the j-th variable at time t, with Ξt =
[
ξ
(1)T

t . . . ξ
(2)T

t

]T
being the flattened vector of all

past inputs at time t. The weights of variable selection are generated by using a GRN with Ξt and
context vector cs as input. So,

vχt = Softmax(GRNνχ(Ξt, cs))

where vχt
is the vector variable selection and cs is ob-

tained from a static variable encoder. At each time step,
an additional GRN is applied on every ξ(j)t

ξ̃
(j)

= GRNξ̃(j)
(
ξ(j)

)
where ξ̃

(j)

t is the processed feature vector for variable j.
Processed features are then weighted by their variable
selection weights,

ξ̃ =

mχ∑
j=1

v(j)χt
ξ̃
(j)

where v(j)χt is the j-th element of vector vχt
. Figure 4.12: Variable selection method used in

TFT architecture [22].

• Seq2Seq layer: Similar to DeepAR, the TFT uses an encoder-decoder structure. Here, ξ̃t−k:t
are feeded into the encoder and ξ̃t+1:t+H is used in the decoder, where k is the encoder length
and H is the forecasting horizon. The context vectors cc and ch are used in the first LSTM to
initialize the cell state and the hidden state resp.

The output of the decoder layer, denoted by ϕ(t, n) with n ∈ [−k,H] being a position index. This
output is used as input into the temporal fusion decoder.
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Additionally, the output ϕ(t, n) is combined with features ξ̃t+n using a gated skip layer

ϕ̃(t, n) = LayerNorm
(
ξ̃t+n + GLUϕ̃(ϕ(t, n))

)
.

• Temporal Fusion Decoder: This part can be seen as the brain of the network, and is mostly
what makes the TFT special over the DeepAR model.

First, the output from the Seq2Seq layer is further enriched using static covariates,

θ(t, n) = GRNθ
(
ϕ̃(t, n), ce

)
where weights of GRNθ are shared across entire layer, and ce is a context vector from the static
covariate encoder. Then all static-enriched temporal features are grouped into a single matrix
Θ(t) =

[
θ(t,−k) . . . θ(t,H)

]T .
Next, the TFT applies a self-attention mechanism to learn long-term relationships across different
time steps. This is a modified version from the multi-head attention introduced in Section 4.3.8 to
improve explainability. The idea is to make sure each head has the same values such that each
can learn different temporal patterns, but still contribute to the same set of input features.

Definition 4.25. The interpretable multi-head attention is given by

InterpretableMultiHead(Q,K,V ) = H̃WH

H̃ =
1

H

mH∑
h=1

Attention(QW (h)
Q ,KW

(h)
K ,VW V )

whereW V are value weights shared across all heads.

The interpretable multi-head attention is applied at each forecast time

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t)),

where B(t) = [β(t,−k), . . . ,β(t,H)]. Following the self-attention layer, an additional skip gating
layer is applied,

δ(t, n) = LayerNorm(θ(t, n) + GLUδ(β(t, n)))

An additional non-linear processing layer is applied to the outputs of the self-attention layer.

ψ(t, n) = GRNψ(δ(t, n))

where the weights of GRNψ are shared across the whole layer. Finally, a gated residual connec-
tion which skips the entire temporal fusion decoder block is applied. This gives the model the
possibility to skip the complexity if it is not necessary. The output is given by

ψ̃(t, n) = LayerNorm
(
ϕ̃(t, n) + GLUψ̃(ψ(t, n))

)
.

• Quantile predictions: The quantile predictions of the TFT are generated by using a linear trans-
formation of the output from the temporal fusion decoder

ŷ(q, t, τ) =W qψ̃(t, τ) + bq,

whereW q, bq are the weights and bias for the specified quantile q. The forecasts are only gener-
ated for the decoder sequence.

The components described above combine into the full TFT neural network, as presented in Figure 4.13.
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Figure 4.13: TFT architecture from [22]. TFT inputs static, time past, and future covariates. It applies variable selection to
identify relevant features at each time step. Gating mechanisms and skip connections allow efficient information flow through
the network. Time-dependent relationships are captured using LSTM layers for local processing, while a multi-head attention

mechanism integrates information across all time steps.

Training
The TFT is trained by minimizing the quantile loss, summed across all quantile outputs

L =
∑
yt∈Ω

∑
q∈Q

H∑
τ=1

QL(yt, ŷ(q, t− τ, τ), q)

M ·H
, (4.16)

where Ω is the domain of the training data containingM samples and Q is set of output quantiles. The
quantile loss QL for a quantile q, for example 80% or 90%, is given by

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+,

where (.)+ denotes max(0, .).

Note that because of the complexity of the network, it is computationally more expensive to train than
the other networks presented in this research.

4.4.3. N-HiTS
N-HiTS is a more recent neural network model for long-horizon forecasting designed by Nixtla in 2022
[6]. The architecture is based on the Neural Basis Expansion Analysis (N-BEATS) model [35], which
utilizes a stack of fully connected feedforward networks organized into blocks. N-HiTS applies this same
principle in a hierarchical way to focus on different parts of the time series. The developers of the model
promise a more efficient approximation of long horizon forecasts. Experiments show that N-HiTS can
outperform state-of-the-art Transformer architectures, while significantly reducing computational time
by up to 50 times [6].
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Architecture
The workings of N-HiTS can, in some way, be compared to a Fourier decomposition where each fre-
quency (basis function) is predicted locally by its own neural network, called a stack. Each stack s
is build from a grouped number of B blocks and each block consists of an MLP, which learns to pro-
duce coefficients for the backcast and forecast outputs of its basis. The full architecture is presented
in Figure 4.14.

Figure 4.14: N-HiTS architecture from [6]. The model is composed of several stacks, each containing multiple MLP blocks.
Each block generates both a backcast and a forecast, where the backcast is subtracted from the input for the next block.
Hierarchical interpolation, with varying expressiveness ratios across blocks, allows the model to specialize in different

frequencies of the time series.

The model starts with an input of the historic data of the target time series, yt−L:t, in the first block of the
first stack. We denote this a block by [s, l] for its stack s ∈ {1, . . . S} and block in the stack l ∈ {1, . . . B}.
For simplicity, we will for now focus on a single stack and only denote the block number l.

Given block l, it starts with a MaxPool layer with kernel kl. Here, a larger kernel cutsmore high-frequency
input, so forces the block to focus on lower frequencies. One can already see here that if each block
has a different kernel size, every block focuses on a different frequency of the time series. Challu et al.
calls this multi-rate signal sampling. The operation is given by

y
(p)
t−L:t,l = MaxPool(yt−L:t,l, kl).

After the pooling layer, an MLP layer performs non-linear regression to produce interpolation coeffi-
cients. Both the forward interpolation coefficients θfl and backward interpolation coefficients θbl are
derived from a hidden state hl, which is linearly projected. We have

hl = MLPl
(
y
(p)
t−L:t,l

)
,

θfl = Linearf (hl),

θbl = Linearb(hl).

These coefficients are used to create a backcast ỹt−L:t,l and forecast a ŷt+1:t+H,l. The size dimensions
of the coefficients are determined by the expressiveness ratio rl of that block. It controls the number
of parameters per unit of output time, i.e., |θfl | = ⌈rlH⌉. Now, the fore- and backcast are determined
using temporal interpolation with a predefined interpolation function g(.),

ŷτ,l = g(τ,θfl ), ∀τ ∈ {t+ 1, . . . , t+H},
ỹτ,l = g(τ, θbl ), ∀τ ∈ {t− L, . . . , t}.
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The time partition for the interpolation is given by T = {t+ 1, t+ 1 + 1/rl, . . . , t+H − 1/rl, tH}.

The default setting of N-HiTS uses linear interpolation, which fits a straight line between the two nearest
time points t1, t2 ∈ T surrounding τ . The interpolation function is then given by

g(τ, θ) =

(
θ[t1] +

θ[t2]− θ[t1]

t2 − t1

)
(τ − t1) with t1 = arg min

t∈T :t≤τ
{τ − t}, t2 = t1 + 1/rl.

The resulting forecast and backcast of each block are output to the next parts. The backcast is sub-
tracted from the input of the block, such that the next block can forecast another part of the time series

yt−L:t,l+1 = yt−L:t,l − ỹt−L:t,l.

The subtracted part of the last block, the stack residual, is used as input for the next stack.

The forecasts of all blocks in the stack summed together to create the stack forecast.

ŷt+1:t+H =

L∑
l=1

ŷt+1:t+H,l.

The summed total of all stack forecasts form the global hierarchical forecast.

Each block specializes on its own scale of input and output signal, because of the different rl and
kl. This clearly illustrates the hierarchical nature of the architecture. Blocks closer to the input have
smaller rl and larger kl to first focus on the larger changes in the time series. Each stack can specialize
in modeling a different known cycle of the time-series (weekly, daily etc.) using a matching rl.

Training
The N-HiTS model does not have a specific loss function. Challu et al. (2022) tested the model using
a simple MAE loss, however the model is also able to produce probabilistic forecasts when using a
distribution loss (Equation (4.15)) or multi-quantile loss (Equation (4.16)).

Since different blocks focus on different frequencies of the time series, it is important that the hyperpa-
rameters rl and kl align with the frequencies or seasonality in the data.
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5
Data Availability and Exploration

In this chapter, we explore the data provided by the wholesale distributor. Specifically, order data,
vehicle data, and customer data. The available data also later determines the features we can use in
training the time series models. Furthermore, we will investigate the customer behavior surrounding
holidays. Due to the distributor not delivering on most holidays, customers often choose a substitute
delivery a day before or after the holiday. Finally, we address the conversion from ordered volumes to
roll containers. While the time series data is expressed in volumetric terms, orders are transported to
the customer per roll container. So, the ordered volumes per customer need to be discretized to the
volume of a roll container.

5.1. Available Data and Preprocessing

5.1.1. Order Data
In this case study, we are originally provided with order data from customers served by two transport
centers situated in different cities across the Netherlands. However, for the purposes of this research,
we focus on one transport center, the larger of the two.

Daily orders are specified at the product level. As requested by the client, these orders are aggregated
by product stream, resulting in three distinct streams: frozen goods (FRZ), fresh products (FRSH), and
dry groceries (DRY). Consequently, we end up with three time series for each customer.

Each order comes with a time window requested by the customer, as introduced in Section 2.2.3. For
some, this window is restricted to 2 hours, while others may have a flexible time window that can span
the entire day. Furthermore, each customer is linked to a specific address, which is essential for route
planning.

5.1.2. Vehicle Data
At the transport centre of interest, various vehicles from different categories, such as B, C, and CE, are
available. Within these categories, there are still some slight variations. Every vehicle is defined by
capacity in terms of weight and volume. Each vehicle has a freezer and a non-freezer section, both
with its own capacities. The available vehicles with their capacities are detailed in Appendix E.

Additionally, every truck has associated costs for operation. These costs include a constant base cost,
variable costs per kilometer and per hour, and additional charges for overtime hours. The exact costs
are detailed in Table B.1. Themaximumworking time of a truck is 8 hours per day, with normal operating
hours scheduled between 04:30 and 18:00. Additional work-time regulations, as outlined by the client
and Dutch law, including maximum working duration before a break and break duration, are specified
in Table B.2.
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5.1.3. Available Features
As explained in Section 3.2, it is possible to enhance the training of time series models by incorporating
additional features. As discussed, features can be categorized into past, future, and static covariates.
This section covers the covariates that are available in this research.

Past covariates are time-dependent features that are available only for previous time steps. In this
research, we utilize daily temperature data from the KNMI [21] as a past covariate. Specifically, the
measuring station closest to the transport center is selected.

Future covariates include information that can be predicted or is planned. For example, we can use
seasonal variables, such as the day of the week, month, or year. Information on holidays is not provided
by the client, so we consider Dutch national holidays obtained from the Python library workalendar.

Static covariates are attributes that remain constant over time for each time series. For this research, we
have the customer ID, product type, market segment, and address. Customers are categorized into 18
distinct market segments, including restaurants, hotels, hospitals, events, and others. For geographic
analysis, we can leverage the first four digits of the postal code to assess regional patterns within the
city or the full six-digit postal code for patterns within an even smaller region.

5.1.4. Data Filtering
The available customer order data ranges from 2018-06-25 to 2023-06-24. It is important to acknowl-
edge that a large portion of this dataset was significantly impacted by the COVID-19 pandemic, as
can be seen in Figure 5.1. For instance, numerous restaurants were forced to close during this time,
eliminating the necessity for them to place orders. Because the orders during the pandemic period
cannot be compared to the post-COVID period in terms of ordered volume but also in terms of order
consistency, it was decided to only use data from after 2022-03-21 for this research. At this date, all
COVID measures had expired, and customer orders are considered to be back to normal [43].

C
Figure 5.1: [This figure contains confidential information and is therefore only available in the confidential appendix.]

Aggregated ordered volume per day, normalized by the maximum volume. The effect on the ordered volumes during the
COVID period is clearly visible. The red line presents the cutoff date, 2022-03-21, used for training data.

It should be noted that the new dataset encompasses only about a year of data. This makes it harder to
learn seasonal patterns over different years. Although the pre-COVID data might offer some insights,
it was decided not to include it because it could be too outdated.

Outliers due to typos, such as 100 mL in the data being listed as 100 L, are removed by ORTEC. This
research only considered the data that was filtered by ORTEC in the proof of concept.
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5.2. Customer Behaviour around Holidays
Each customer has specific designated order days, outlined in a contract with the wholesale distribu-
tor. These order days are determined during the sales process. However, unfortunately, the planning
department does not have access to this information. As a result, we must infer these patterns from
customers’ historical orders. It’s important to note that customers do not place orders every designated
day. For example, if a customer can order on Mondays, Wednesdays, and Fridays, they might order
on Monday and Wednesday one week, and on Monday and Friday another week.

The exact business rules for each holiday are unknown in this research, but typically, the wholesale
distributor does not deliver on national holidays. If a customer’s designated order day coincides with a
holiday, they are provided with a substitute day. During the week before or after the holiday, they can
place orders on a day that is not their usual order day. This substitute day varies by customer and is
not standardized. Customers with enough order days are less likely to utilize the substitute day, while
those with fewer order days are more likely to use it.

A small exploratory study is conducted to examine customer behavior surrounding holidays. Here, it
is assumed that a customer is a regular customer on a specific weekday if it has an order consistency
higher than 90%. The goal is to identify which days customers prefer as substitutes for their designated
order days when those coincide with holidays. An alternative day was counted only if it did not already
qualify as a designated order day, specifically, if the customer’s order consistency on that weekday was
under 10%. Figure 5.2 shows the number of orders by customers that normally order on the weekday
of the holiday and usually do not order on other weekdays. In this figure, all non-Sunday Dutch national
holidays between 2022-03-21 and 2023-06-24 are considered, as the wholesale distributor does not
deliver on Sundays.

Figure 5.2: Number of orders 3 days before and after the holidays between 2022-03-21 and 2023-06-24 (13 in total) by
customers that usually order on the weekday of the holiday (threshold of > 90%) and not on the other weekdays (threshold of

< 10%). Most popular substitute day is the day before or the day after the holiday.

The frequency of substitutions on the day before the holiday is lower than the day after due to the fact
that four out of thirteen holidays occur on Mondays, meaning the previous day (Sunday) is unavailable
for deliveries. For holidays that are not on Monday, the day before the holiday is the preferred substitute.
An example of the substitute days for Easter Monday and King’s Day is presented in the Appendix,
Figures A.1a and A.1b. It can be concluded that the most popular substitute day is either the day
before or the day after the holiday.

In addition, it can be found from the data that the volume of orders increases around holidays. This can
be explained because often holidays are busier days for customers, depending on the market segment.
This will be reflected in the ordered volume before and after the holiday. It is found that the volume
increases 1 or 2 days before and after the holiday.
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5.3. Volume Conversion
The volume of orders is measured in liters. However, orders are transported to customers using roll
containers. We are therefore interested in the number of roll containers required for transportation
rather than the transported volume itself. It is assumed that a roll container can only be used for one
customer, meaning that all customer orders need to be discretized to the volume of one or multiple roll
containers.

When packing products into a roll container, it is often impossible to utilize the container’s entire volume
efficiently. For instance, packing circular objects typically results in unused space. To address this
inefficiency, the client has provided volume conversion ratios, ρ, for each product group to convert
product volume to effective volume. These ratios convert the product volume into the effective volume
it occupies within a roll container. Due to different ways of packing or a different product mix, it might
be possible for these conversion rates to differ across different depots. The exact conversion rates for
each product group for the transport centre of interest are detailed in Appendix E. It is reasonable to
expect that the conversion ratio of FRZ is the lowest as freezer products are often packed in boxes. In
contrast, products from the FRSH group have the highest conversion ratio. This is primarily because
items like fresh vegetables often can’t be easily stacked and require additional space due to their
irregular shapes. The volume conversion from product volumes to the effective volume is then given
by the following equation:

veffective = ρproduct · vproduct. (5.1)

The wholesale distributor has two types of roll containers: one designed for transportation in the freezer
compartment and another for the non-freezer section. Consequently, products from the DRY and FRSH
groups can be transported on the same roll container. The volume of a roll container is denoted by V .
The exact sizes of both types of roll containers are given in Appendix E.

Now, the number of roll containers required for a customer’s freezer products, denoted as #RCFRZ, is
computed by

#RCFRZ =

⌈
ρFRZ · vFRZ
VFRZ

⌉
,

where ρFRZ represents the volume conversion rate for the FRZ group, vFRZ is the volume of the ordered
products, and VFRZ is the size of a roll container for freezer items. Since products from the FRSH and
DRY groups can be transported on the same roll container, the number of roll containers needed to
transport a customer’s non-frozen goods is calculated as

#RCDRY+FRSH =

⌈
ρDRY · vDRY + ρFRSH · vFRSH

VDRY+FRSH

⌉
,

where ρDRY and ρFRSH are the conversion rates of the DRY and FRSH products respectively, vDRY and vDRY
denote the respective volumes of the ordered products, and VDRY+FRSH represents the capacity of a roll
container for transporting DRY and FRSH products.
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Forecasting Approach

6.1. Forecasting Approach using Traditional Methods
This section outlines the decisions ORTEC made during the initial proof of concept for forecasting
customer orders using traditional forecasting methods. It is essential to note that these decisions are
not part of this research; they are provided here solely for reference. We begin by discussing the
general concept of forecasting customer order data using a two-step approach. Next, we will specify the
models utilized and the Python packages from which they originate. We will also address the features
considered and the approach for hyperparameter tuning. Finally, we outline the criteria for selecting
the optimal models. The end of this section includes a part on the implementation of hierarchical
forecasting, which was not part of the initial proof of concept.

6.1.1. Two-Step Approach for Intermittent Time Series Forecasting
Forecasting intermittent order data can be challenging due to its highly non-linear and sporadic nature,
which often makes traditional linear methods less effective. Croston’s method [8] provides a solution to
intermittent demand data by estimating the time intervals between demand and the average demand
over the interval. While this may work for inventory scheduling, it does not give any information on the
estimated day of delivery. Our objective is to forecast precise volumes for days when orders are placed
and zero for days with no orders.

ORTEC addresses this by splitting the forecasting process into two distinct steps. First, we determine
whether a customer will place an order on a specific day using a binary classification model. Then,
if an order is to be placed, we predict the volume of that order using a regression model. For the
first question, 2 models are tested: logistic regression and a random forest classifier model. For the
second question, 4 models are tested: linear regression, Holt-Winters, SARIMAX, and Prophet. The
final forecast is given by combining the result of the best classifier model with the result of the best
regression model. This combined forecast is labeled ”BestCombined” by ORTEC.

It is noteworthy that the 6 models are trained for each time series individually. Given thousands of time
series, the proof of concept involves training tens of thousands of different models separately.

6.1.2. Implementation of the Models
For forecasting whether a delivery is placed, logistic regression and a random forest classifier are em-
ployed. The models are implemented using the LogisticRegression and RandomForestClassifier
classes from the scikit-learn library [40].

To predict the volume of orders, the process begins with forward filling zeros, ensuring every day
is assigned a volume. This step creates an overestimated time series on which the following mod-
els are trained: linear regression, Holt-Winters, SARIMAX, and Prophet. For implementation, the
LinearRegression class from scikit-learn [40] is used, while ExponentialSmoothing for Holt-Winters
and sm for SARIMAX are used from the statsmodels library [45]. The prophet class is utilized from the
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Prophet library [48]. Note that this method of filling zeros makes some assumptions. The idea is that if
a customer does not order today, it will probably order a similar amount tomorrow. While this approach
captures seasonal patterns over the year, it may be less accurate in reflecting daily fluctuations.

It can be easily understood that this two-step approach heavily relies on the classifier forecast being
accurate. Otherwise, the combination of both methods can easily over- or underestimate the final
forecast.

6.1.3. Features
Features enrich time series data by providing additional information that can improve model predictions.
In the proof of concept, a few straightforward features are explored.

Since holidays have a big impact on the order patterns and the volumes ordered, a holiday flag is
implemented. This feature uses one-hot encoding to indicate whether a given day is a holiday, the day
before a holiday, or the day after a holiday. In addition, weather conditions can influence the volume
of orders as well. For instance, inclement weather over consecutive days might lead to reduced traffic
in restaurants, consequently decreasing the amount of products they need to order. To explore this
effect, ORTEC introduced a temperature feature to assess if the model can learn from these variations.
It should be noted that the temperature primarily reflects a yearly seasonal effect, which might already
be learned by the models. It remains uncertain how daily temperature fluctuations specifically affect
order patterns.

Most time series models inherently integrate some level of time indexing or seasonality. However, mod-
els such as linear regression, logistic regression, and random forest do not have a built-in mechanism
for keeping track of time. To address this, weekday features are used, represented through one-hot
encoded columns for each day of the week. Additionally, to improve the classification models (logistic
regression and random forest), features incorporating lagged information about deliveries are included.
Specifically, lags of 7, 14, 21, and 28 days. The lagged values enable the models to capture patterns
such as weekly, biweekly, and monthly ordering behavior by asking if the customer placed an order
one week prior, two weeks prior, and so forth.

6.1.4. Model Selection and Validation
As previously mentioned, the final model per customer is a combination of two models: a classification
model and a regressionmodel. The outputs from thesemodels are combined to produce a final forecast.
Specifically, if the classification model predicts that an order will occur, the regression model is used to
determine the order’s volume. The best classification model is selected based on accuracy, as defined
in Definition 3.19. The best regression model is selected based on the Mean Absolute Error (MAE), as
defined in Definition 3.17.

The best combination of models is selected based on the performance during a 6-week validation
period. Following this, the chosen combination is tested over an additional 6 weeks. Thus, the entire
process involves cross-validation using a train-test split over a span of 12 weeks. For each fold, the
model predicts the next two weeks, but only the results for the second week are kept. Then, themodel is
updated by training on the following week’s data, and the cycle continues accordingly. One can imagine
that this process, when repeated individually for each customer, is computationally quite demanding.

The final model is compared to a baseline model called ”CopyLastWeek”, which operates by simply
copying the results from the previous week to forecast the next horizon. It should be noted that this
baseline model is also part of the model selection. So, if the baseline method works better than the
other options for a specific time series, the BestCombined method chooses the baseline. This, of
course, makes it easy for the BestCombined method to improve over the baseline method.

6.1.5. Hyperparameter Tuning
Each of the six models has specific hyperparameters that can be optimized. For instance, the ran-
dom forest model incorporates hyperparameters such as maximum tree depth and minimum samples
per node split, while the SARIMAX model is characterized by parameters p, d, q and P,D,Q. More-
over, determining the optimal set of features is also considered part of hyperparameter tuning. Ideally,
only the most informative features would be included. However, identifying these beforehand can be
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challenging.

Due to the computational expense associated with tuning hyperparameters for every model across all
customers, hyperparameter tuning is only done over a subset of 3 customers. The best parameter set
for every model is then applied to all customers. While this approach may not guarantee optimal param-
eters for each individual dataset, it aims to achieve a good enough solution that balances performance
and resources. This method showed satisfactory results for the proof of concept.

Grid search is used to systematically explore all possible combinations of the specified hyperparameter
values and identify the best combination. The specified grids for each regression and classification
model can be found in Tables C.1 and C.2, respectively.

6.1.6. Hierarchical Forecasting
Hierarchical forecasting, as introduced in Section 3.7, is implemented using the hierarchicalforecast
library from Nixtla [32]. We use HierarchicalReconciliation class alongside reconciliation methods
such as TopDown, MiddleOut, and MinTrace. These methods are tested on a subset of all customers.

The standard implementation does not allow zeros in the dataset. Consequently, we test hierarchical
reconciliation on the extended volume series, which contains no zeros.

For the hierarchical structure, we employ four levels: the top level, which reflects the sum of all series;
the market segment level; the customer level; and the product level. Each level above is the aggregate
of all series beneath it. In the MiddleOut approach, we set the market segment as the middle level.

6.2. Forecasting Approach using Neural Networks
Since neural networks are, by design, non-linear and have the ability to learn complex patterns, the
potential exists for using a single model in place of the two-step approach discussed in Section 6.1.1.
The models described in Section 4.4 are also designed to handle multiple customers in a single model.
In total, this would reduce the amount of models to train from roughly 20,000 to a single model. The aim
is for this approach to achieve comparable or superior results to that of two separate models applied
to individual customers.

This section outlines the implementation of the tested neural network models. Additionally, the explored
features and their embeddings are presented. Finally, it explains how the hyperparameters of the
models are tuned.

6.2.1. Implementation of the Models
The models evaluated in this study include DeepAR, TFT, and N-HiTS, all of which are implemented
using Nixtla’s Neuralforecast package [34]. Nixtla is a company focused on time series research and
deployment. They provide a platform that integrates various forecasting packages, which allows us to
use different models within a unified environment using consistent syntax. The models are trained and
used for prediction using functions like fit(), predict(), and cross_validation(). A comprehen-
sive explanation of the code implementation for training, predicting, and cross-validation is provided
in Appendix D. To evaluate the models’ ability to learn the non-linear behavior, we train them on the
original time series data without replacing zeros.

A non-trivial step of the implementation is the two-week forecasting approach, where we are only inter-
ested in the second week predicted. This is accomplished by setting a forecasting horizon of 14 days
and adjusting the window step size to 7 days (by default equal to the horizon length). To resolve the
overlapping forecasts, we only keep the second week from each prediction. To make sure the loss
function is only minimized over the predictions of the second week, a horizon weight of 0 is assigned
to the first week and 1 to the second week.

Nixtla uses a collection of PyTorch loss functions. We specifically apply the DistributionLoss and
MQLoss from the module neuralforecast.losses.pytorch. For TFT and N-HiTS we use the Multi-
Quantile loss, as introduced in Section 4.4.2. For DeepAR, we can only use a distribution loss due to
its design. The distribution loss can take different distributions. This research explores the normal and
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Tweedie distributions, where the latter is tested because of the zero-inflated nature of the data (days
without customer orders have zero volume). The Tweedie loss function was notably employed in theM5
forecasting competition [24], highlighting its effectiveness in handling similar intermittent demand data.
PyTorch implements the Tweedie distribution with a variance power 1 < p < 2, yielding a compound
Poisson Gamma distribution. A variance power close to 2 reflects a Gamma distribution, and a variance
power near 1 reflects a Poisson distribution, thus giving greater weight to zeros [20]. Figure 6.1 shows
examples of the Tweedie distribution with varying variance powers.

(a) p = 1.1 (b) p = 1.5 (c) p = 1.9

Figure 6.1: Histograms of Tweedie distributions with µ = 1 and ϕ = 1 for different variance powers p. Each
histogram is generated from 10,000 samples.

6.2.2. Features and Embeddings
With the neural network models, we conduct two tests: one using the same features as the proof
of concept and another incorporating additional features. The goal is to compare the performance
of traditional methods with neural network models while also enhancing the model’s capabilities by
leveraging additional data.

In the proof of concept, weekdays were represented using one-hot encoding for each day of the week.
For neural networks, we evaluate both one-hot encoding and a categorical encoding, which utilizes
a single feature column with integers ranging from 0 to 6 for weekdays rather than seven separate
columns. In addition, a feature is added for the yearday to capture yearly seasonality, enhancing the
model’s ability to recognize annual patterns. Holidays are one-hot encoded to represent the holiday
itself, along with 1 or 2 days immediately before or after them, creating a total of five feature columns.
Finally, a trend feature is added to keep track of time.

The models aim to handle all time series at the same time, so we need a method to differentiate each
series. To achieve this, we include static information such as customer ID and product type. We can
also use the static information to enrich the data even further. The market segment is incorporated to
capture segment-specific patterns. The postal code, using both 4 and 6 digits of precision, is included
to capture local patterns related to neighborhoods and street-level variations within a city.

The models require static information to be formatted as either one-hot or integer embeddings. To
limit the number of feature columns, the latter is used in this research. Thus, each static feature is
represented using integers corresponding to the total number of options available for that feature. For
instance, the customer ID is embedded as an integer within the range 0, . . . ,#customers.

For numerical data, we apply temporal normalization as discussed in Section 4.3.2. Themethods tested
include Identity, Standard, Robust, and Minmax scaling. Identity leaves data unchanged and preserves
original values. Standard scaling removes the mean and scales data to unit variance. Robust scaling
uses the median and mean absolute deviation for standardization, offering better handling of noisy data
with outliers. Minmax Scaling resizes features to a specified range, often [0, 1] or [-1, 1], enhancing
convergence during model training. For instance, temperature data is normalized using a minmax
scaler with the range [-1, 1].

The used features in the neural network models, with their embeddings, are summarized in Table 6.1.
1if this day is a holiday as well, this feature is considered 0
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Feature Description Embedding
Temporal, past

Volume target variable, ordered volume float, scaled
Delivery 1 if there is a delivery on that day, 0 else one hot
Weather temperature (min, max, mean) of that day minmax scaled [-1,1]

Temporal, future
Date the date of delivery Pandas datetime
Weekday the weekday of the delivery one hot & categorical
Yearday yearday, for seasonality cyclic & categorical
Trend timeseries to keep track of time int ∈ {0, . . . , # time steps}
Holiday 1 if day is holiday, 0 else one hot
Holiday ±1, 2 1 if 1/2 days before/after holiday1, 0 else one hot per {−2,−1,+1,+2}

Static
Customer ID unique ID for every customer int ∈ {0, . . . , # customers}
Product type DRY, FRSH, FRZ int ∈ {0, 1, 2}
Market segment market segment of customer int ∈ {0, . . . , # segments}
Postal code number first 4 digits of postal code int ∈ {0, . . . , # 4 digit codes}
Postal code full full 6 digit postal code int ∈ {0, . . . , # 6 digit codes}

Table 6.1: Overview of static, past, and future exogenous variables used in this research for training the neural network
models, along with a description and the embedding applied for each feature.

6.2.3. Hyperparameter Tuning
Hyperparameter tuning is crucial in deep learning, as models are highly sensitive to the choice of
hyperparameters. Nixtla provides a built-in implementation for hyperparameter tuning [25], utilizing the
hyperopt library [3]. Each model features an Auto variant, e.g., the Temporal Fusion Transformer (TFT)
becomes AutoTFT. These Auto models operate in the same way as the standard models. The fit()
and cross_validation() functions perform hyperparameter optimization, and predict() forecasts
the time series using only the optimal hyperparameter settings.

Defining an Auto model requires specifying a loss function, a configuration with the search space, a
search algorithm, the backend (Ray Tune or Optuna), and the number of configurations to test. A
detailed explanation of the code implementation for hyperparameter tuning is provided in Appendix D.

For the backend, we use Ray’s Tune library. Each Auto model includes a default search space, tested
across several datasets. Search spaces are defined using dictionaries where keys correspond to the
model’s hyperparameters and values use Tune functions to determine how these hyperparameters are
sampled. Examples of tune functions are tune.choice(), tune.loguniform(), and tune.randint().
We customize the search grid by defining a hyperparameter search space dictionary. The search
spaces for each model employed in this research can be found in Table C.3.

For the search algorithm, we employ the HyperOptSearch function, which uses the Tree-structured
Parzen Estimators (TPE) algorithm. TPE is, like Bayesian Optimization, a sequential model-based
optimization method, meaning it approximates the performance of hyperparameters based on previous
results and selects new hyperparameters for testing based on this approximation. The key difference
lies in TPE estimating p(x | y) and p(y), whereas Bayesian optimization estimates p(y | x) directly, the
probability of a loss y given a hyperparameter setting x. Given observations x(1), . . . , x(k), p(x | y) is
defined using two densities:

p(x | y) =
{
l(x) y < y∗,
g(x) y ≥ y∗.

Here, l(x) represents the density of the ’good observations’, i.e., the observations with a loss function
lower than a threshold y∗. Conversely, g(x) denotes the density of ’bad observations’, i.e., the obser-
vations with a loss function higher than y∗. Note that y∗ has to be larger than the best observed loss to
include some observations within l(x). The TPE algorithm selects the threshold y∗ to be some quantile
of the observed y values. For the next hyperparameter setting, the algorithm chooses a candidate x
with a high probability under l(x) and a low probability under g(x). The tree-structured form of l and g
makes it easy to draw many samples from l(x) and return the x∗ that maximizes l(x)/g(x) [4].
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Route Planning Software

This chapter delves into the route optimization software, the B2B Delivery Product Suite [37], developed
by ORTEC, which is used in this research. A schematic representation of the route optimizer is given
in Figure 7.1. The focus of this chapter will be on the general solution approach of the optimizer and
the specific configurations applied throughout this thesis. We will start by discussing the format of an
optimization request. Then, we will explain the heuristic and meta-heuristic algorithms employed by
the software to generate routes. We will also briefly state the specific configurations that are used in
this research. Lastly, we will explain how the optimizer’s responses are analyzed.

Figure 7.1: Schematic representation of optimizer. The route optimizer takes customer orders as input and outputs a route
plan.

The content of this chapter is based on internal documentation by ORTEC [38] and meetings with
routing experts at ORTEC.

7.1. Optimization Requests
An optimization request begins with a properly structured input, which is formatted as a JSON file. This
input consists of lists with the following elements:

• Depots: Locations from which the vehicles can depart, in latitude and longitude coordinates.
• Routes: Available vehicles along with their relevant details, such as start and end depot, time
constraints, preparation and completion times, capacities and break regulations.

• Customers: A list of customers along with their respective locations and handling durations.
• Tasks: The actual tasks that must be executed. Information on the tasks include the customer,
depot to deliver from, required quantities (f.e. kg or volume), handling duration, time windows for
service, and any restrictions on vehicle usage.

Additionally, the software allows the input of preplanned routes. Although this feature has not been
tested yet for the client of this research, we will use this to give a forecasted route planning to the opti-
mizer. A schematic overview of the used method is given in Figure 7.2. Specifically, a provisional route
plan is generated using forecasted orders with the route optimizer. Then, given the actual customer

62



7.2. Solution Approach of the Optimizer 63

Figure 7.2: Schematic representation of optimizer, with input planning. The input planning is filtered based on the customers
who actually placed an order.

orders, the provisional route plan is filtered such that it only contains the correctly forecasted customers.
Note here that the customers in the filtered route plan may have ordered different volumes than were
predicted in the provisional route plan. Finally, with this input plan and the additional customers that
were not forecasted, the route optimizer can generate a final route plan.

For the input route plan, it is possible to fix certain tasks in a route or not. This gives us the possibility
to, for example, optimize the tasks that were not included in the forecasted orders while maintaining
the planning of the correctly forecasted ones.

Optimization requests are sent to the optimizer together with a specific configuration of the optimizer.
This configuration determines the objective function and specifies which (meta-) heuristics to employ in
order to find a solution to the routing problem. In other words, the configuration acts as a recipe book,
instructing the optimizer on what algorithms to apply. One can easily understand that the output route
of the optimizer is highly dependent on the configuration that is sent together with the request.

To better understand the possibilities of the optimizer and what configurations might be interesting to
test, we will first explore its individual building blocks.

7.2. Solution Approach of the Optimizer
The optimizer solves the vehicle routing problem in three steps, summarized in Figure 7.3:

1. Construct a feasible solution by one-by-one insertion of tasks. The objective is to plan as many
orders as possible (or the ones with the most profit).

2. Improve the current solution using heuristics that locally search for improvements of the objective
function.

3. Try to find a better solution using metaheuristics that locally and globally search for improvements.

Figure 7.3: Solution approach followed by the optimizer, consisting of three main stages: initial construction, local
improvements, and global improvements.
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To determine whether one solution is better than another solution, we compare them based on a hier-
archical objective function.

7.2.1. Hierarchical Objective Function
The optimizer evaluates solutions according to a hierarchical set of objectives. This hierarchical objec-
tive function first compares solutions based on the first objective. If two solutions are found to be equal
in this regard, the optimizer then assesses them according to the second objective, and so on. Objec-
tives that are lower in the hierarchy will be used less frequently as they serve to refine the evaluation
process only when higher-priority objectives yield equivalent results.

The total plan cost is, besides the number of planned tasks, the main objective to be optimized. This
metric consists of a weighted average of multiple operational costs like cost per vehicle, cost per kilo-
meter, cost per hour, and cost per stop. The components of the objective function and the weights
in the plan costs are determined during the PoC route planning in consultation with the client. These
weights can be found in Table B.1. The weights for the constraints are presented in Table B.3.

The objectives, in hierarchical order, used in the configurations of this research are as follows:

1. Number of planned tasks: max
2. Plan cost: min
3. Route duration: min
4. Distance: min
5. Number of used routes: min
6. Driving time: min
7. Wait time: min

Note that objectives 3-7 are indirectly included in the plan costs as well.

Constraints like a time window constraint or a capacity constraint were not initially included in the
objective function. The reason for this is that the construction phase will not propose infeasible solutions.
However, in this research, we will make use of an input planning that is based on forecasted orders.
If the actual ordered volumes are higher than the forecasted volumes, this may result in a violation of
the capacity constraint. The improvement phase will only propose new solutions if they improve the
objective function. Therefore, to resolve possible capacity violations, we need to include the capacity
constraint somewhere in the objective function. More on this in Section 7.4.

7.2.2. Construction
The initial feasible solution to the VRP is constructed using a greedy heuristic. It starts with the pre-
planned tasks and fill the unplanned tasks one-by-one based on sequential or parallel insertion. The
difference between two methods lies in how the routes are filled: one route at a time or multiple routes
simultaneously. Given that the pre-planned route is feasible, the use of both the sequential and parallel
insertion will result in a feasible solution.

Definition 7.1. Sequential insertion methods construct a feasible solution to the Vehicle Routing
Problem (VRP), one route at a time. This is illustrated in Figure 7.4.

Definition 7.2. Parallel insertionmethods construct a feasible solution to the Vehicle Routing Problem
(VRP) for a number of routes simultaneously. This is illustrated in Figure 7.5.

When planning a new task in a route, the task that is cheapest to insert is selected, based on a pre-
defined metric like distance. It is also possible for the optimizer to focus on the difficult-to-plan orders
first.
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Figure 7.4: Sequential Insertion [38]. Tasks are assigned
sequentially to each route. When a route reaches its capacity,

the next route is started.

Figure 7.5: Parallel Insertion [38]. Tasks are assigned to
multiple routes simultaneously, with routes being filled in

parallel.

7.2.3. Local Search Methods
Given a feasible solution from the construction phase, we want to use local search methods to improve
the solution. Local search methods are algorithms that move from one solution to a better one, defined
by a space of possible candidates or a set of operations to perform on a solution. Since we are search-
ing for improvements of the objective function, we will keep the outcome of an operation if it actually
improves the objective function. We will disregard it if it doesn’t improve the objective function.

The most simple example of an operation we can perform on a solution is to simply move a task from
one route to another, as illustrated by Figure 7.6. This principle is exploited in Algorithm 7.1.

Figure 7.6: Move operation [38]. A task is moved to another route.

One can imagine that the number of moves to try will explode with the problem size. For this reason,
ORTEC implemented a mechanism to only try operations with a minimum estimated gain for a specified
metric (e.g. distance of travel time). Therefore, all algorithms have the attributes estimateWith and
minimumEstimatedGain to control this mechanism.

To control whether local search methods are applied within the same route or over the whole solution,
most algorithms also have the attribute onlyWithinRoute that can be true or false. This attribute deter-
mines whether the operations of that algorithm can only be applied within a route or can also be applied
between multiple routes routes.

Algorithm 7.1 Move Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value),

onlyAllowChangesWithinSameRoute (true/false)
1: Create all combinations of groups of tasks in the current solution.
2: for every group do
3: if the estimated gain of the operation, in terms of estimateWith, is larger than minimumEstimatedGain

then
4: Move the group to a different location in the solution (only on same route or on a different route, depend-

ing on onlyAllowChangesWithinSameRoute).
5: Compute the new objective value of the resulting solution.
6: Keep a new solution if it is better than the current one.
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Instead of moving a task (or group of tasks), we can also exchange it with another task (or group of
tasks), as illustrated in Figure 7.7. Note that this type of swap differs from the one defined and investi-
gated in this research. However, since this terminology is used in ORTEC’s internal documentation, we
retain the name here for consistency. This operation can be implemented as an algorithm in a similar
fashion as Algorithm 7.1.

Figure 7.7: Swap operation [38]. Here, a group of tasks is exchanged with another group of tasks between routes.

Algorithm 7.2 Swap Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value),

onlyAllowChangesWithinSameRoute (true/false)
1: Create all combinations of groups of tasks in the current solution.
2: for every pair of groups (within the same route or also between different routes, depending on

onlyAllowChangesWithinSameRoute) do
3: if the estimated gain of the operation, in terms of estimateWith, is larger than minimumEstimatedGain

then
4: Swap the location of the groups in the solution.
5: Compute the new objective value of the resulting solution.
6: Keep a new solution if it is better than the current one.

Now, let us define the 2-opt operation on a pair of edges. In the form of an algorithm, this operation can
also be applied on all pairs of edges within the same route or on pairs of routes depending on whether
the attribute onlyAllowChangesWithinSameRoute is true or false.

Definition 7.3. Given a pair of non-contiguous edges, a 2-opt operation rearranges the connections
between the four nodes such that it doesn’t create subtours, as illustrated in Figure 7.8.

Figure 7.8: 2-opt operation [38]. Two connections between tasks are swapped to remove route crossings.

Algorithm 7.3 TwoOpt Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value),

onlyAllowChangesWithinSameRoute (true/false)
1: for every pair of edges (within the same route or also between different routes, depending on

onlyAllowChangesWithinSameRoute) do
2: if the estimated gain of the operation, in terms of estimateWith, is larger than minimumEstimatedGain

then
3: Apply the 2-opt operation on the pair of edges.
4: Compute the new objective value of the resulting solution.
5: Keep a new solution if it is better than the current one.

Similar to a 2-opt swap, we can do the same operation on three edges. Where in a 2-opt there is
only one way to reconnect the nodes, there are multiple ways to perform a 3-opt move. This makes
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the implementation computationally more expensive. Due to this increase in complexity, Algorithm 7.4
only performs this operation on edges within the same route.

Definition 7.4. Given three non-contiguous edges, a 3-opt operation rearranges the connections be-
tween the six nodes. A 3-opt move can always be written as 1,2 or 3 subsequent 2-opt moves.

Algorithm 7.4 ThreeOpt Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value)
1: for every triplet of edges within the same route do
2: if the estimated gain of the operation is larger than minimumEstimatedGain then
3: Apply the 3-opt operation on the triplet of edges.
4: Compute the new objective value of the resulting solution.
5: Keep a new solution if it is better than the current one.

The operations defined above can also be utilized in algorithms that exploit them in different ways to
find improved solutions. Algorithm 7.5, for example, tries to resolve all overlapping route parts between
routes, as illustrated in Figure 7.9. This can be seen as a swaps operation with specific groups. How-
ever, this algorithm is still capable of new improvements, because of a different way of looking at the
solution.

Figure 7.9: Cross Exchange operation [38]. Segments of tasks are exchanged between two different routes

Algorithm 7.5 CROSSExchange Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value)
1: for every pair of overlapping route segments between routes do
2: if the estimated gain of the operation is larger than minimumEstimatedGain then
3: Apply a swap operation on the overlapping segments.
4: Compute the new objective value of the resulting solution.
5: Keep the new solution if it is better than the current one.

Algorithm 7.6 aims to insert tasks in routes that are already near full capacity. To facilitate this insertion,
it unplans certain tasks to create the necessary space. The unplanned tasks are reallocated to other
routes. This algorithm is computationally expensive.

Algorithm 7.6 EjectionChain Algorithm
Attributes: estimateWith (e.g., distance, driving time), minimumEstimatedGain (value)
1: for each task in a route that is near capacity do
2: Unplan the task to create space for insertion.
3: for each candidate task to insert do
4: if the estimated gain from the insertion is larger than minimumEstimatedGain then
5: Insert the candidate task into the route.
6: Plan the unplanned task in another route.
7: Compute the new objective value of the resulting solution.
8: Keep the new solution if it is better than the current one.

Finally, the Algorithm 7.7 tries to move all tasks in a route to a different route to reduce costs.
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Algorithm 7.7 MoveTasksToBetterRoute Algorithm
Attributes: estimateWith (e.g., costs), minimumEstimatedGain (value)
1: for every route with planned tasks, and a destination route do
2: if the estimated gain of the operation is larger than minimumEstimatedGain then
3: Move all tasks in the route to the destination route.
4: Compute the new objective value of the resulting solution.
5: Keep the new solution if it is better than the current one.

Table 7.1 provides an overview of the available algorithms, indicating whether each algorithm can be
applied within a single route or across multiple routes.

Algorithm Only within route Over different routes
Move v v
swap v v

MoveAndswap v v
TwoOpt v v
ThreeOpt v x

CROSSExchange x v
EjectionChain x v

MoveTaskToBetterRoute x v

Table 7.1: Overview of the available local search algorithms, indicating their applicability within a single route or across multiple
routes.

7.2.4. Meta-Heuristics
The algorithms discussed in Section 7.2.3 only accept new solutions if they yield an improved objective
function value over the current one. Consequently, these algorithms can become trapped in local
minima, which means the algorithms will never find a better solution, even though better ones may
exist. Meta-heuristics aim to solve this problem by exploring a larger solution space. This idea is
illustrated in Figure 7.10. A common approach within meta-heuristics is the temporary acceptance of
worse solutions, with the hope of eventually finding a better solution.

Figure 7.10: Illustration of the concept behind meta-heuristics. By exploring a larger solution space, we hope to escape local
minima and find improved global solutions [38].

ORTEC has implemented meta-heuristics using the principle of ruin and recreate, which can be ex-
plained through Figure 7.11. Initially, the solution is intentionally ruined by removing customers from
routes. Subsequently, the solution is reconstructed by reinserting customers back into routes. After
performing several local search iterations on this new solution, a decision is made on whether to accept
it. This process can be repeated as many times as desired.
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Figure 7.11: Overview ruin and recreate process [38]. Starting from an initial solution, it is ’ruined’ by removing part of it, after
which a solution is ’recreated’ using a reconstruction method. Optionally, local search is applied before deciding whether to

accept the new solution.

An example of ruin and recreate is given in Figure 7.12. First, a number of random tasks are removed
from the route. Then, these tasks are inserted into a route where they fit best.

Figure 7.12: Example of ruin and recreate with random removal [38].

Possible removal methods to ruin a solution include the removal of random customers, the removal
of the worst tasks in a route, the removal of random clusters, or the removal of a whole trip. These
methods are summarized in Figure 7.13.

(a)Random removal. (b)Worst removal.

(c)Random cluster removal. (d) Trip removal.

Figure 7.13: Examples of removal methods used in the ruin phase of the ruin and recreate process [38].

To recreate a solution, tasks need to be reinserted. This can be based on cheapest insertion or largest
’regret’. In the regret-based approach, for all removed tasks, the additional costs incurred when insert-
ing a task into its second-best position compared to its best position are calculated. The task with the
highest ’regret’ is prioritized for insertion. Cheapest insertion can be performed in parallel or based on
a predefined order of tasks.

The ruin and recreate algorithm includes attributes like PercentageOfTasksToRemove and
NumberOfTasksToRemove, which specify the amount of tasks to remove. Additionally, it can be specified
whether local search should only be performed on the new solution if it is worse than the current one.
For this, an allowable threshold can be specified to govern whether local search is applied. Similar to
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local search heuristics, the algorithm allows selection of an objective EstimateWith (such as distance,
driving time, plan cost, etc.) for comparing solutions.

The selection of methods is implemented by using a so-called roulette wheel. After a method is applied,
the probabilities for each method are adjusted based on if the new objective value is better than the
current one (a better value increases the probability of the selected method, a worse value decreases
the probability of the selected method). This process of selecting a method using the roulette wheel,
finding a new solution, and adjusting the probabilities is repeated for a predefined number of iterations.

7.3. Tested Configurations
As said before, the configuration is an ordered lists of algorithms to apply in finding a solution to the VRP.
It is beyond the scope of this research to build a configuration from scratch or to design new algorithms
that solve the objective of this research. In this thesis, we will work with a configuration from ORTEC
that is used in the PoC for route planning and is optimized to return efficient routes (not considering
the amount of swaps). This configuration includes a set of heuristics that are applied within routes, a
set of heuristics that are applied across routes and a set of ruin and recreate methods. Each set has
multiple recursions. We will tweak some parameters in this configuration to investigate the effect of
certain changes.

In this research, we want to investigate the tradeoff between keeping the pre-planned routes as much
as possible and planning the most efficient routes. We try to find the right balance by tweaking the
following parameters. First, we can decide to fix the input planning or not. This means the input
planning will not change for sure, therefore also making it impossible for the optimizer to swap a task
if it is planned really poorly in the forecasted planning. Furthermore, we can choose which (meta-)
heuristics to use. For simplicity, they are grouped into Ruin & Recreate, Local Search outside route,
and Local Search within route. Finally, we can tweak the minimum estimated gain and the number of
recursions to control the amount of operations that are performed on a solution.

The tested configurations are summarized in Table 7.2. The configurations are named full optimizer,
light optimizer, and minimum optimizer, indicating the size of the search space. The full optimizer is the
configuration constructed by ORTEC. Since the set of ruin & recreate methods has too big of an impact
on the number of swaps, it is turned off for the light optimizers. As a results, swaps will only occur from
local search outside the route. The aim of the different ”light optimizers” is to compare the effect of the
higher estimated gain with a lower number of recursions. The minimum optimizer only applies local
search within the same route. A configuration is added with only the construction phase as a baseline
to compare.

Input Ruin & LS outside route LS within
Configuration orders planning Recreate minEstGain maxNofRec route
Full opt, forecast orders forecast x v -1000 3 v
Full opt, actual orders actual x v -1000 3 v
Full opt, fixed input actual v, fixed v -1000 3 v
Full opt, with input actual v v -1000 3 v
Light optimizer 0 actual v x 1000 3 v
Light optimizer 1 actual v x 5000 3 v
Light optimizer 2 actual v x 1000 1 v
Minimum optimizer actual v x x v
Construction only actual v x x x

Table 7.2: Overview of used optimizer configurations, detailing input types, use of ruin and recreate, and local search
parameters. Minimum estimated gain is determined in terms of distance.

Note that according to the table above, we can either keep the input planning fixed and fully optimize the
planning of all other tasks or optimize all tasks while making no difference between pre-planned tasks
and non-forecasted tasks. Ideally, we would like to have the flexibility to only allow adjustments to the
input planning if it gives a certain gain in efficiency and fully optimizes the other tasks. Unfortunately,
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this is not possible with the current software. To work around this limitation, we employ a double
optimization approach:

1. In the first optimization round, we keep the input route plan fixed and use the full optimizer to
optimize the tasks that were not forecasted.

2. In the second optimization round, we allow the optimizer to make adjustments to all tasks.

This approach is illustrated in Figure 7.14.

Figure 7.14: Schematic overview of the double optimization method applied in the second stage of route optimization. In the
first round, optimization is performed using a fixed input route plan, so optimization is only limited to customers who were not

predicted to place an order. In the second round, changes can be made to all tasks for further optimization.

7.4. Addressing the Capacity Constraint
The original ORTEC configuration was not specifically designed to integrate an input planning. While
technically feasible to include an input planning, the configuration lacked methods dedicated to resolv-
ing capacity violations. During testing with forecasts from ORTEC’s BestCombined method, which
slightly underestimated volumes, we found that most route plans had high capacity overloads. To re-
solve this, it is important to include the capacity constraint in the objective function, so that the optimizer
recognizes a reduction in the capacity constraint as an improvement. Then, we need to actively try to
resolve the capacity constraint using local search methods.

In this research, it is chosen to implement the capacity constraint as a weighted sum with the plan
cost. The weight of the constraint is chosen such that, roughly, planning one roll container too many
equals the cost of using an additional truck to deliver that roll container. Planning more roll containers
above the capacity yields a quadratic increase in the penalty value. We also tried to implement the
capacity constraint as a separate objective above the plan cost in the hierarchy. In preliminary tests, the
weighted-sum approach delivered the best results, most consistently satisfying the capacity constraint
and providing efficient routes.

When the constraint is added to the objective function, the optimizer would accept a new solution if it
reduced capacity violations. However, the optimizer did not actively seek to decrease these violations,
as all algorithms used distance as the metric for estimateWith. To improve the handling of capacity
constraints, we added two heuristics to the local search outside the route phase: MoveAndswap and
MoveTasksToBetterRoute. These heuristics were implemented using a metric for estimateWith that
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includes penalties (PenaltiesAndCost), with a minimum estimated gain set to match the capacity viola-
tion of one roll container. The aim is to relocate a customer to a different vehicle if the current vehicle
exceeds its capacity. This improvement successfully addressed capacity issues for most days. Further
optimization is necessary to focus more thoroughly on capacity constraints.

7.5. Evaluation of the Optimization Responses
Upon completing the optimization process, the software outputs another JSON file with information on
the generated solution. The main result is, of course, a list of tasks assigned to each vehicle, outlining
the execution sequence. In addition to the output routes, various Key Performance Indicators (KPIs)
are given to evaluate the performance and efficiency of a solution. Keymetrics include total optimization
costs, number of vehicles utilized, total distance traveled by each vehicle, and driving duration.

The number of swaps is determined by comparing the output routes of the provisional plan to the
final route plan. Since tasks are planned per vehicle, each customer’s assignment can be checked to
see if they remain on the same vehicle in both the provisional and final route plans. The pseudo-code
provided in Algorithm 7.8 outlines this process. The algorithm calculates the swap percentage, allowing
for comparisons between different days.

If we compare route plans from different forecasts, it may be an unfair comparison to simply count
the number of swaps. If one forecasting method predicts that none of the actual customers will place
an order, it will have no swaps in the current definition. We therefore extend the definition of a swap
to include non-forecasted orders. Algorithm 7.8 includes the calculation of the percentage of swaps+
relative to the total actual customers for a specific day.

Definition 7.5. The number of swaps+ is defined as the number of swaps between the provisional
and final route, plus the number of customers that were not forecasted.

Algorithm 7.8 Compute swaps
Input: provisional_route_plan, final_route_plan
1: customers_forecast = set of customers in provisional_route_plan
2: customers_actual = set of customers in final_route_plan

3: customers_correctly_forecasted = customers_actual.intersection(customers_forecast)
4: customers_not_forecasted = customers_actual.difference(customers_forecast)

5: same_route_count = 0
6: different_route_count = 0
7: for customers in customers_correctly_forecasted do
8: route_prov = route customer is planned on in provisional_route_plan
9: route_act = route customer is planned on in final_route_plan
10: if route_prov == route_act then
11: same_route_count += 1
12: else
13: different_route_count += 1
14: swap_percentage = different_route_count / customers_correctly_forecasted * 100
15: swap+_percentage = (different_route_count + customers_not_forecasted) / customers_actual * 100
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8
Forecasting with Traditional Methods

This chapter presents the results of the proof of concept on forecasting from ORTEC, specifically the
predictions derived from the BestCombined method compared to a baseline approach. These predic-
tions will be used in Chapter 9 as input for the route planning software. Later in Chapter 10, we will
explore the use of neural networks to potentially achieve even better forecasting results. The primary
focus of this chapter is to establish a baseline for evaluating the future improvements of this study. Sub-
sequently, we highlight some improvements attempted on the traditional forecasting method through
modifying holiday features and exploring hierarchical forecasting methods.

8.1. BestCombined method from ORTEC
We begin by examining the baseline method used by ORTEC in the proof of concept, which serves as
a benchmark for evaluating the new forecasting approach. Specifically, this baseline is a copy of the
data from the most recent week available. Figure 8.1 shows the total predicted volume by the baseline
method, where we can clearly see a two-week shift. This can be explained by the fact that we forecast
two weeks ahead. Clearly, this approach fails to accurately predict volumes during holidays, as these
days do not follow the typical weekly pattern. Moreover, copying holiday order volumes to regular days
two weeks later also results in incorrect forecasts. It can be concluded that, while this method may be
adequate when order patterns remain constant from week to week, it becomes ineffective when there
are large fluctuations in order volumes.

C
Figure 8.1: [This figure contains confidential information and is therefore only available in the confidential appendix.]

Aggregated volume forecast using the baseline method. Both actual and predicted volumes are normalized by dividing by the
maximum observed actual volume.
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Figure 8.2 presents the forecast results from ORTEC’s BestCombined method, which is the best com-
bination, per customer, of a classification model and a volume model. While this approach seems to
align well with the actual volume, we can see that it slightly underpredicts the overall volume.

Examining the holidays, the BestCombined method produces forecasts closer to the actual volume
compared to the baseline method, though some discrepancies remain. The challenge of accurately
predicting holiday volumes in this scenario is caused by the absence of explicit information concerning
the distributor’s business rules during holidays, which could provide valuable insights into these varia-
tions. On certain holidays, all customer orders are restricted, while on others, select customers seem
to be able to still place orders. It can also be that, on certain holidays, the distributor may operate as
usual, but customer closures prevent orders from being placed.

Additionally, the actual volume data shows notable peaks one to two days before and after holidays such
as Easter, King’s Day, and Pentecost. These peaks are not captured by the BestCombined method,
probably because the days before and after a holiday are not explicitly included in the features.

C
Figure 8.2: [This figure contains confidential information and is therefore only available in the confidential appendix.]

Aggregated volume forecast using ORTEC’s BestCombined method. Both actual and predicted volumes are normalized by
dividing by the maximum observed actual volume.

The accuracy, mean absolute error (MAE), and mean error (ME) of the CopyLastWeek baseline and
ORTEC’s BestCombined method are detailed in Table 8.1. These metrics are averaged over all predic-
tions within the test window. In this table, we observe a 16% improvement in MAE and a 1% increase
in accuracy with the BestCombined method compared to the baseline. However, it is noteworthy that
the mean error is higher for the BestCombined approach, indicating a tendency to underpredict the
total volume on average.

The most significant difference in accuracy between the two methods can be attributed to the forecasts
on holidays. Both methods exhibit a peak of false positives1 on holidays, although this peak is higher
with the CopyLastWeekmethod. Furthermore, the CopyLastWeek approach also shows a notable peak
of false negatives two weeks after holidays, because it copied the lower number of orders that was on
the holiday.

Method Accuracy MAE ME
CopyLastWeek (BaseLine) 0.914201 50.952548 0.601498
BestCombined (ORTEC) 0.924149 42.648651 4.402192

Table 8.1: MAE and accuracy of baseline method and ORTEC’s BestCombined method over test window.

1A false positive occurs when the model predicts that a customer will place an order, when they do not. Conversely, a false
negative occurs when the model fails to predict an order that a customer actually places.
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8.2. Improvements on Holidays
To enhance forecasting accuracy during holiday periods, several tests were conducted to evaluate
the holiday feature and its influence on prediction results. The proof of concept initially incorporated a
single feature column indicating whether a day was a holiday or adjacent to one. However, as observed,
order patterns significantly differ between actual holidays and the surrounding days. To address this,
we employed a random forest model with different sets of feature columns to investigate their effect.

In one test scenario, we isolated true holidays from adjacent days by using a column specific to the
actual holiday, which resulted in no significant change in accuracy for non-holidays but about a 1%
increase in accuracy for both true holidays and the surrounding days. Further refinement involved
creating separate feature columns for each specific holiday, improving accuracy for true holidays by
approximately 2% and for adjacent days by about 1%.

Despite these minor improvements in holiday-specific forecasting accuracy, this research will continue
to use the original BestCombined forecast from ORTEC as reference.

8.3. Limitations of Hierarchical forecasting
Hierarchical forecasting was initially expected to improve the predictions by utilizing aggregated data
across different hierarchical levels. However, its application revealed two limitations.

Firstly, hierarchical forecasting was applicable solely to the volume series without the zeros, providing
no insights into whether individual customers would place orders. The Nixtla implementation only sup-
ported this limited scope. A potential improvement could be to develop smarter methods to decompose
higher-level data, perhaps on a per-weekday basis. For instance, one approachmight be to forecast the
number of customers per day and subsequently employ a top-down method to predict which customers
will place orders based on probabilities derived from predictions at the lowest hierarchical level.

Secondly, the reconciliation process, intended to ensure consistency across hierarchy levels, inadver-
tently introduced higher forecasting errors at the lowest levels. This approach failed to offer actionable
insights regarding specific market segment orders. While it was hoped that this technique would en-
hance predictions at lower levels, its effectiveness was limited. An alternative application of hierarchical
forecasting could involve predicting customer orders on a vehicle basis. This approach is beneficial
because, ultimately, it may not matter which individual customer places larger orders as long as collec-
tively they fit within the vehicle’s capacity. However, implementing this strategy is challenging without
established master routes.

Despite its potential, it has been chosen not to explore hierarchical forecasting further in this study.



9
Evaluating Different Configurations of

Route Optimizer

In this chapter, we evaluate various configurations of the route optimizer developed by ORTEC, with a
focus on understanding how these configurations affect route planning when incorporating forecasted
orders. We will first asses the configurations based on the number of swaps and optimization costs
over a three-week test period, using ORTEC’s BestCombined method for forecasting. Additionally, we
simulate different forecasting qualities using three dimensions: the percentage of correct customers,
the number of forecasted customers, and the accuracy of the volume forecast. The goal is to explore
how varying these forecasting qualities affects the optimizer’s output. Ultimately, we aim to find a
configuration or set of configurations that minimize both swaps and optimization costs.

9.1. Performance of Different Configurations
We begin this analysis by testing various configurations of the route optimizer, as introduced in Sec-
tion 7.3, using the forecasts fromORTEC’s BestCombinedmethod. These configurations aim to assess
how different settings influence the route planning outcomes. Our primary focus is on two metrics: the
number of swaps and the optimization costs. Swaps are expressed as the proportion of customers
assigned to a different route of all customers who were correctly forecasted to place an order, repre-
sented as a percentage, as explained in Algorithm 7.8. Optimization costs are derived by comparing the
costs of the route plan based on forecasted orders against those using actual orders without forecasts,
illustrating the additional costs incurred from relying on forecasts. The route optimizer is executed with
various configurations for the first three weeks of the test window.

The percentage of swaps over the three weeks of forecasted orders is illustrated as a boxplot, per
configuration, in Figure 9.1. First, consider the configurations with zero swaps. The forecasted orders
naturally have zero swaps since it is compared to its own output. The fixed input configuration yields
zero swaps by preserving the input planning, preventing the tasks from being reassigned to other routes.
Similarly, the minimum optimization results in zero swaps, as it focuses solely on optimizing tasks within
routes. The construction-only approach skips optimization entirely, resulting in no swaps as well.

Then, for the full optimizer, it is expected that the full optimization using actual orders, not relying on
forecasts, displays nearly 100% swaps compared to forecasted planning, as it does not take the fore-
casted planning as input. Interestingly, the full optimizer, even with input planning, swaps almost every
customer due to the included ruin and recreate method, which is absent in light optimizer configurations.
Of the three light optimizer configurations, light optimizers 0 and 2 show similar outcomes, indicating
that the number of recursions in the local search phase has minimal impact. Light optimizer 1, however,
shows significantly reduced swap numbers.
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Further comparison of the light optimizer configurations reveals a substantial improvement with the two-
step approach from Figure 7.14, compared to the single-step optimization approach from Figure 7.2.
The two-step optimization noticeably decreases the number of swaps. Here, we observe that light
optimizer 1 consistently maintains a swap percentage below 20% over the three weeks, excluding the
two outliers, which satisfies the distributor’s preference.

The outliers observed in some of the boxplots correspond to the two holidays occurring within the test
window.

Figure 9.1: Boxplots showing the percentage of swaps from the provisional route plan to the final route plan per optimizer
configuration, evaluated over the first three weeks of the test window.

We now focus on the optimization costs, presented relative to actual costs, as a boxplot per configura-
tion in Figure 9.2. Actual costs here are defined as those incurred when forecasts are excluded, and
the optimizer derives a heuristic solution to the VRP using only actual orders. Because these actual
costs are used as a reference, the boxplot for the full optimizer using actual orders consistently displays
a value of zero.

In the leftmost boxplot, we observe that the costs of the provisional route plans are mostly below zero.
This indicates an underestimation of actual orders, as also previously noted in Table 8.1. This makes
sense because transporting less volume typically requires fewer vehicles, resulting in lower costs.1
Notably, two outliers, both holidays, have high plan costs. This is because the forecast method predicts
too much volume on those holidays, as we have seen in Figure 8.2, resulting in higher plan cost. The
bottom outlier is the day after Pentecost, where the forecast heavily underpredicted the volume and
the number of customers that placed an order.

It is interesting to see that the full optimizer with fixed input, displayed in green, seems to work quite
well. For most days, it has a lower plan cost than the light optimizers for the first optimization round,
shown in orange. This indicates that the full optimizer, applied to a subset of customers (those not
forecasted), achieves greater efficiency than a light optimizer working across all customers. It also
maintains route assignments for correctly forecasted customers without swapping. However, the fixed
input approach encounters two notable issues. Firstly, during holidays, the forecast over-predicts the
number of customers, resulting in excess vehicle usage. With correctly forecasted customers fixed in
their respective vehicles, the optimizer is unable to reduce the number of vehicles involved in the route
plan. Secondly, the fixed input approach often violates the capacity constraint when fixed customers

1Note that this relationship does not always hold true. In instances where the model predicts too many customers with
insufficient volume, route planning costs might actually increase, even if the total volume remains an underestimation.
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order more volume than anticipated, as the optimizer cannot resolve the issue by swapping customers.
This capacity constraint violation is also a problem for the minimum optimizer and construction-only
configurations for the same reason.

For the light optimizers used in the first optimization round, depicted in orange, we observe that light
optimizers 0 and 2 produce similar results, consistent with findings in Figure 9.1. Light optimizer 1,
however, has slightly higher optimization costs. This is likely due to this configuration making fewer
swaps, which reduces opportunities to improve route efficiency.

All configurations in the two-step optimization approach, illustrated in purple, result in lower costs com-
pared to the fixed method. This is because they use the route plan from the fixed approach as their
starting point, allowing them to enhance the fixed solution. The minimum optimizer, however, makes
no changes, suggesting that the route plan is already optimal within individual routes. Notably, the
other configurations minimize or eliminate holiday-related outliers. Additionally, most capacity viola-
tions found in the full optimizer with fixed input are solved during this second optimization round.

Figure 9.2: Boxplots showing the difference in plan costs for the final route plan when using a provisional input planning versus
no input planning, presented for each optimizer configuration and evaluated over the first three weeks of the test window.

One can already see that there is a trade-off to be made between route efficiency and route consistency.
If maintaining forecasted routes is not a priority, a single round of optimization with the full optimizer
without an input plan would suffice. However, this research specifically focuses on integrating fore-
casted routes into the route planning process. Therefore, we aim to accept slightly higher plan costs
to achieve greater route consistency. To provide a better insight into this trade-off, we visualize the
results in a single graph, displaying swaps on the y-axis and plan costs on the x-axis.

Figure 9.3 illustrates this trade-off using mean values for each configuration, rather than the boxplots
in Figures 9.1 and 9.2. From this graph, we identify that the light optimizers, when used as a second
optimization round, are most interesting. Accordingly, our subsequent research will focus on these
three configurations.

This type of graph can also serve as a tool for decision-makers looking to assess configuration perfor-
mance on specific dates, rather than just the average over the test period. By plotting individual results
for particular days, the decision-makers can select the preferred configuration by weighing optimization
costs against the number of swaps based on real-time operational needs.
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Figure 9.3: Mean percentage of swaps versus mean difference in plan cost for configurations using either a single or double
optimization round in the second stage of route planning. This figure illustrates the trade-off between these two key

performance indicators.

9.2. Comparison with Baseline Forecast
For reference, we compare the results from the route optimizer using forecasts from the BestCombined
method against its baseline, CopyLastWeek, across the three best configurations from the previous
section. As shown in Figure 9.4, the BestCombined method yields modest improvements in both the
number of swaps+ and plan costs. Considering the improvements in MAE and the accuracy provided by
BestCombined, one might have expected a greater impact on the number of swaps and plan costs. In
the following section, we further explore how different forecasting qualities influence the routing metrics.

Figure 9.4: Comparison of route optimizer results using BestCombined forecasts and the CopyLastWeek baseline for the three
light optimizer configurations within the double optimization framework.
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9.3. Effect of Different Forecast Qualities
In this section, we investigate how varying forecasting qualities impact the output of the route optimizer.
Here, we want to determine the extent to which optimization results can be enhanced through improve-
ments in forecasting quality. We consider three dimensions of forecasting quality: the percentage of
correctly forecasted customers, the ratio of forecasted customers to actual customers, and the quality
of volume predictions. These dimensions are tested for the three configurations found in the previous
section, specifically the light optimizer settings implemented as a second optimization round following
a full optimization with fixed input. We use the same test weeks as the previous section.

Since this section compares different forecasting qualities, we will now use swap+ from Definition 7.5 as
a metric. This definition accounts for non-forecasted customers, ensuring an equal comparison across
varying forecasting qualities.

We begin by analyzing the first dimension of forecasting quality. In this simulation, we keep the number
of forecasted customers equal to the actual number of customers. The simulated forecasts for a specific
day are generated by randomly selecting a percentage of customers from the actual orders, while the
remaining customers and their ordered volumes are sampled from orders on other days. It is important
to ensure that these new, intentionally incorrect, customers are not present in the set of actual orders.
Given that the number of forecasted customers matches the actual customer count, each simulated
forecast has an equal number of false positives and false negatives. Such balance is not typically found
in real-world forecasts.

Figure 9.5 shows the mean swaps+ over mean plan costs across different percentages of correctly
forecasted customers. The endpoints of the graph, with forecasting qualities of 0% and 100%, are
intuitive. At 0% quality, no customers are correctly forecasted, resulting in 100% swaps+ by definition.
The plan cost should be almost zero because the optimizer runs the full optimization with fixed input
without any correctly forecasted data. Conversely, at 100% quality, the provisional route plan in the first
optimization step already includes all correct customers, thereby establishing an optimal route plan that
requires no swaps and no additional costs. The slight deviation to the left side indicates that subsequent
optimization steps after the provisional plan still achieved minor improvements. It is also intuitive for
the graph to exhibit a parabola-like shape between the endpoints, as we know that a forecasting quality
between 0 and 100 encounters additional plan costs, as observed with the BestCombined method.

Figure 9.5: Mean percentage of swaps+ and difference in plan cost for different forecasting qualities x ∈ [0, 10, 20, . . . , 90, 100],
where x denotes the percentage of correctly forecasted customers (with the total number of customers fixed to the actual

value). Evaluated for the three light optimizer configurations within the double optimization framework.
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It is interesting to see that the graph exhibits a skewed, non-symmetric shape, likely attributable to the
implementation design of the forecasted orders (Figure 7.2) and the used configurations. First, a full
optimizer is applied to the forecasted orders, followed by a two-step optimization process using actual
orders. These steps effectively function as one optimization step with some restrictions: first, a full
optimizer with fixed input, then a light optimizer. This restricted optimization on the actual orders results
in a non-symmetric optimization process. As a result, the peak of the parabola occurs at 30% rather
than the midpoint of 50%. Furthermore, the graph reveals that the most significant improvement in
optimization costs occurs between forecasting qualities of 80% and 100%, emphasizing the importance
of high forecasting accuracy.

Additionally, it is noteworthy that for light optimizer 1, nearly all swaps+ originate from non-forecasted
customers rather than customers that were correctly forecasted to place an order. This observation
is evident as the swaps+ values closely correspond to the percentage of customers that were not
forecasted.

Continuing to the second dimension of forecast quality, we analyze the impact of the number of cus-
tomers forecasted. In this setup, forecasting is set to correctly predict 80% of the customers that actually
placed an order. These customers are sampled randomly from the actual customers. The forecasts
are filled up to a specified percentage of the actual customer count. For example, if there are 100 actual
customers, a forecast quality of 120% would include 80 correctly forecasted customers alongside 40
incorrectly forecasted ones. Note that the 100% point in this simulation corresponds to the 80% point
on Figure 9.5.

Figure 9.6 shows the mean swaps+ over mean plan costs across different amounts of forecasted cus-
tomers. The swaps+ stay relatively constant but seem to decrease slightly as the number of forecasted
customers decreases. Notably, the light optimizer 1 configuration again shows that swaps+ are mainly
originating from non-forecasted customers (20%) rather than from the correctly forecasted ones. In
terms of optimization costs, we observe a zigzag pattern around 100%, indicating no clear trend. How-
ever, it is apparent that once the forecast exceeds 110%, optimization costs begin to rise consistently.
While this zigzag behavior makes it hard to draw definitive conclusions, the overall result suggests that
a more careful and conservative approach to forecasting customer numbers is beneficial.

Figure 9.6: Mean percentage of swaps+ and difference in plan cost for different forecasting qualities x ∈ [80, 85, . . . , 115, 120],
where x denotes the number of forecasted customers (with the number of correct customers fixed to 80% of actual customers).

Evaluated for the three light optimizer configurations within the double optimization framework.
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Lastly, we explore the third dimension of forecasting quality, concentrating on the accuracy of volume
predictions. Simulated forecasts are obtained by taking all customers from the actual orders and ad-
justing their ordered volumes. Specifically, the volume for each customer is modified by multiplying it
by a percentage to decrease or increase it.

Figure 9.7 presents the results for varying forecasting qualities in terms of volume accuracy. When the
forecasted volume underestimates the actual demand, it directly leads to swaps and higher optimiza-
tion costs. The swaps occur because customers no longer fit within the provisional route’s vehicles,
requiring swaps to avoid breaching the capacity constraint. The increase in optimization costs is likely
due to inefficient routing adjustments. On the other hand, forecasting excessive volume leads to in-
creased optimization costs without significantly affecting swaps. This occurs because the provisional
route plan already allocates enough vehicles to accommodate actual orders. Only when the excess
space from overestimated forecasts becomes too high does the optimizer seem to address this by
swapping customers to enhance route efficiency. For light optimizers 0 and 2 (represented in red and
blue), it is interesting to see that the results start to diverge when forecasting quality deteriorates. So,
a reduced number of recursions leads to slightly fewer swaps but higher plan costs.

Figure 9.7: Mean percentage of swaps and difference in plan cost for different forecasting qualities x ∈ [50, 60, . . . , 140, 150],
where x denotes the percentage of actual volume ordered per customer (with accuracy fixed at 100%). Evaluated for the three

light optimizer configurations within the double optimization framework.

This analysis of volume accuracy highlights the importance of precise volume predictions to minimize
swaps and unnecessary plan costs. Both underestimating and overestimating forecast volumes can
lead to suboptimal planning outcomes, with underestimation primarily affecting swaps and overestima-
tion primarily affecting plan costs.
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9.4. Discussion
This study used a standard configuration from ORTEC, designed to find the most efficient route plan.
Although the optimizer allows for inputting a route, ORTEC had not tested it with forecasted routes.
Given the scope limitations, designing a configuration from scratch was not pursued. Instead, we
modified the standard setup to explore its effectiveness in managing forecasted orders. While these
adjustments provided valuable insights, there is potential for further optimization with more time and
resources, specifically regarding the optimizer’s approach to integrating input planning and determining
when to swap customers to another route.

Within the configuration, tuning hyperparameters can improve the optimizer’s output. Currently, only
the minimum estimated gain and recursion count parameters for the local search method have been
explored to a limited extent. These parameters, particularly the minimum estimated gain, could be
refined further. It is also possible to determine the minimum estimated gain based on other metrics,
such as optimization costs or driving time. Furthermore, the parameters can be individually tailored for
each heuristic algorithm to enhance performance.

To evaluate swaps, we calculated the number of customers planned in different vehicles when compar-
ing the provisional route plan to the final route plan. Thus, our analysis focused primarily on swaps at
a per-vehicle level. However, it did not account for scenarios where groups of customers are swapped
collectively to a new vehicle. If, for example, all customers in a vehicle are swapped to another vehicle,
the wholesale distributor can simply move the new vehicle to the cross-dock instead of reallocating all
individual orders to a different cross-dock. It is, however, hard to define a good metric for swaps that
effectively tracks customer groups rather than individual vehicle assignments. Nonetheless, such an
approach could potentially reduce the number of observed swaps.

A major challenge for route planning is managing vehicle capacity. In this case study, violations of
the capacity constraint arose when customers fixed to a particular route ordered more volume than
was originally forecasted. Resolving violations of the capacity constraint proved to be difficult using
the standard configuration provided by ORTEC. This research introduced several improvements to
the standard configuration to better handle potential violations, as previously described in Section 7.4.
These measures appeared to be effective. However, a more detailed assessment of capacity constraint
violations should be conducted before proceeding with implementation.



10
Forecasting using Neural Networks

In this chapter, we explore the application of the neural network models introduced in Section 4.4 for
forecasting customer orders. We will follow the methodologies as described in Section 6.2. The aim
is to assess whether neural networks can achieve similar or superior forecasting results compared to
traditional methods.

10.1. Initial Forecasting Results
In this section, we present the results from training the neural network models across all time series and
features outlined in Table 6.1. Despite extensive testing, the DeepAR model did not yield reasonable
results, and hence it has been excluded from consideration here. A more detailed explanation can be
found in Section 10.3.The raw forecasts from TFT and N-HiTS already demonstrated some improve-
ments in terms of the Mean Absolute Error (MAE). Something interesting to note is that the TFT shows
significantly higher MAE in the validation period, but improved results in the test window.

Figure 10.1: MAE of filtered forecasts from TFT and N-HiTS models compared to the MAE of the BestCombined method from
ORTEC and the CopyLastWeek baseline. Neural network forecasts are filtered by setting forecasts below the series-specific

minimum volume to zero.

Upon further inspection, it became evident that the outputs from the neural network models contained
noise, including small positive and negative volumes. This can be observed, for example, in the fore-
casts for Sundays, which are incorrectly predicted as non-zero. To address this issue, we implemented
a straightforward postprocessing step to eliminate the noise. For each individual forecast, we deter-
mined the minimum ordered volume based on historical data before the validation window. If a forecast
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fell below this minimum volume, it was set to zero.

The post-processed results, includingMAE and Accuracy, are presented in Table 10.1. Additionally, two
dimensions of forecasting quality from Section 9.3 are given, as they significantly impact route planning.
Note that the values here are averaged, whereas in section Section 9.3, the same quality was applied to
each day and every customer. Although theMAE shows improvements over the traditional methods, we
can see that on the other metrics, the neural network models perform poorly. The reason the accuracy
is lower can already be seen in the forecasting quality regarding the number of customers. Despite
removing small positive orders during postprocessing, we continue to predict an excessive number of
customers. Specifically, the neural network models do predict fewer false positives but many more
false negatives, which gives this imbalance. To address this, we will try to enhance the postprocessing
step in Section 10.2, aiming to reduce the number of false negatives and thereby improve the accuracy.

forecast quality (%)
Method MAE Accuracy # customers Volume
CopyLastWeek (Baseline) 50.952548 0.914201 101.917882 102.677288
BestCombined (ORTEC) 42.648651 0.924149 98.812771 96.244327
TFT 41.724360 0.873693 117.795832 74.494962
N-HiTS 42.024162 0.828477 131.948974 76.587383

Table 10.1: MAE and accuracy over the test period for all methods. Neural network forecasts are filtered by setting forecasts
below the series-specific minimum volume to zero.

In Table 10.1, it is evident that the neural network models significantly underpredict the total ordered
volume, indicating their poor performance in forecasting these volumes. This issue is likely attributable
to the loss function, which only looks at differences in the volume and thus struggles with predictions
involving numerous zeros. For the loss function, a minor deviation above zero is considered equivalent
to a small deviation above a peak, which might work well for the MAE but undermines accuracy. Addi-
tionally, these models tend to predict the volumes with caution when uncertainty is high. An example
of a forecasted time series is given in Figure 10.2, which illustrates that both models underpredict the
actual volumes. We will tackle this underestimation of the volume in Section 10.4.

Figure 10.2: Example time series with forecasts from TFT, N-HiTS, and the BestCombined method.

Table 10.2 presents the running times required for validation and testing.

Method Validation time (s) Test time (s)
TFT 23466 448
N-HiTS 3548 90

Table 10.2: Running times for predicting the validation window (including hyperparameter tuning) and test window for TFT and
N-HiTS. N-HiTS shows significantly lower training times compared to TFT.
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10.2. Postprocessing
The previous section implemented a straightforward postprocessing step. This section aims to en-
hance the accuracy of the neural network forecasts by implementing more sophisticated postprocess-
ing techniques. The Mean Absolute Error (MAE) and accuracy of the different postprocessing steps
are summarized in Table 10.3.

To begin, let’s revisit the concept of setting a forecast to zero if it was predicted below a certain threshold.
In the previous section, we used the minimum volume from historical data as the threshold. Here, we
consider using higher threshold values based on quantiles of historical orders. This threshold can be
applied to individual time series, but since each customer has three time series (one for each product
group), we determined the quantiles based on the customer’s total daily volume. Therefore, if the
cumulative volume of the three product types is below the customer-specific threshold, all three values
are set to zero. A common quantile value could be applied across all customers, but we decided
to determine a distinct quantile value for each customer. The optimal quantile value is selected to
maximize accuracy during the validation period, with quantiles ranging from 90% to 95%.

This approach of using quantile thresholds showed improvements in terms of accuracy compared to
using the minimum volume (equivalent to the 100% quantile). However, it still underperformed when
compared to ORTEC’s BestCombined method. While higher thresholds effectively reduced the number
of false positives, they eventually led to an increase in false negatives. Therefore, it appears that further
refinement of quantile thresholds is unlikely to yield significant gains in accuracy.

Finally, we attempted to improve the accuracy by separately forecasting whether a delivery would oc-
cur, using binary 0/1 values instead of volume series. The neural network models were trained using
the same hyperparameter space as used for the volume forecast. For the loss function, we used a dis-
tribution loss with a Bernoulli distribution to account for the binary values. Additionally, lagged values
for 7, 14, 21, and 28 days were introduced as features, similar to the approach taken in the proof of
concept. The results of this binary forecast are then multiplied by the volumes obtained in Section 10.1.
Note, however, that this postprocessing strategy closely aligns with the two-step approach detailed in
Section 6.1.1. Notably, the training durations are significantly lower than those of the volume models.
Detailed information on running times and the accuracy of these models can be found in the Appendix,
Tables A.1 and A.2.

Method Postprocessing MAE Accuracy # customers (%)
min_volume 42.516238 0.924310 98.812771

BestCombined quantile 42.505094 0.923666 95.917864
nn_delivery x x x
min_volume 41.724360 0.873693 117.795832

TFT quantile 41.786533 0.880345 100.747083
nn_delivery 40.784442 0.934939 94.108934
min_volume 42.024162 0.828477 131.948974

N-HiTS quantile 41.849958 0.872752 105.984739
nn_delivery 42.067071 0.917918 87.302258

Table 10.3: MAE, accuracy, and number of forecasted customers over the test period for each method after different
post-processing steps. The min_volume sets forecasts below the series-specific minimum volume to zero; quantile determines
an optimal customer-specific threshold below which forecasts are set to zero; and nn_delivery refers to an additional neural

network-based delivery filtering step.

Table 10.3 shows that the third postprocessing step achieves significantly higher accuracy than other
postprocessing steps and even surpasses the BestCombined approach. This already suggests that
training a separate model for the delivery series could be crucial for enhancing forecasting outcomes.
It is important to note that these postprocessed results lead to further underestimation of total volumes
compared to Table 10.1 because the postprocessing only focuses on excluding additional customers.
This motivates training the neural network models solely on volume data without zeros as well, which
will be discussed in Section 10.4.
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10.3. Limitations of DeepAR
DeepAR promises to leverage hundreds to thousands of similar time series, by effectively fitting the
outcomes of LSTMs to a distribution. However, despite testing various hyperparameters, the results
obtained were disappointing. The generated forecasts failed to align with the actual orders meaning-
fully.

When using the normal distribution, the results seemed tomimic Croston’s method, producing averaged
outcomes rather than capturing the true nature of zero and large orders. The Tweedie distribution, which
is zero-inflated, initially seemed promising but ultimately fell short. This limitation is likely attributable to
the varied distribution patterns among different customers, as can be seen in Figure 10.3. For instance,
some customers have almost no orders (Figure 10.3a), some have biweekly orders, and some order
every weekday (Figure 10.3c). Although the neural network model is capable of fitting the mean and
standard deviation per time series, the power variance, which determines the weight of zeros, must be
set consistently for the entire model. Consequently, fitting a singular distribution to accommodate all
customers proved unfeasible.

(a) (b) (c)

Figure 10.3: Example volume distributions for different customers, illustrating the variation in zero-inflation across
customer profiles. The x-axis represents volume, and the y-axis represents frequency.

The issue seems to lie in the dissimilarity of the time series data, which makes it difficult to fit a suitable
distribution to these diverse series. However, it’s important to note that we cannot definitively conclude
that this is the sole reason for the poor results. There is a possibility that untested hyperparameters
may yield satisfactory outcomes.

10.4. Two-step Approach with Neural Network Models
The neural network models presented a challenge in accurately predicting the total volume, particularly
due to their tendency to heavily underpredict it. An ideal resolution would be a more sophisticated loss
function, that combines a binary loss with one for the volume series, such as MAE. However, such a
function was not available, and the scope of this research did not accommodate the development and
testing of a new loss function. Consequently, we tested a strategy similar to ORTEC’s BestCombined
method, separating volume and delivery series.

Using linear interpolation from Python’s pandas library, we constructed the volume series. The neural
networks are trained using this interpolated series as the target variable. The resulting forecast is
then multiplied by the delivery forecast from the last postprossessing step presented above. Since this
separation in volume and delivery series resolved the problem with different zero-inflated series, we
revisited the DeepAR model. This model is tested using a Bernoulli distribution for the delivery series
and a Normal distribution for the volume series.

The results of the two-step approach for the three neural network models are presented in Table 10.4.
The training times for the separate models are listed in the Appendix, Table A.2. The accuracy and
predicted number of customers for TFT and N-HiTS are consistent with the results from the final post-
processing step, showing only slight improvements, as expected. The MAE seems to be slightly higher
than was observed when training a single model. However, more importantly, the volume continues
to be underpredicted, although to a lesser extent than previously observed. This indicates that even
without zeros in the volume data, the models still underpredict the total volume. It is difficult to say
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whether this issue is attributed to the model design, the chosen hyperparameters, or the loss function,
although the latter is the most likely factor.

forecast quality (%)
Method MAE Accuracy # customers Volume
CopyLastWeek (Baseline) 50.952548 0.914201 101.917882 102.677288
BestCombined (ORTEC) 42.648651 0.924149 98.812771 96.244327
TFT 42.699000 0.935979 94.108934 87.832563
N-HiTS 42.693970 0.921225 87.302258 89.701742
DeepAR 43.943460 0.933898 95.779833 102.738534

Table 10.4: MAE, accuracy, number of customers, and quality of total volume prediction over the test period for each method.
Here, the neural network forecasts use a two-step approach, similar to BestCombined, separating the prediction of delivery

occurrence and the delivery volume series.

Surprisingly, the DeepAR method performs remarkably well in terms of accuracy. While the MAE is
slightly higher compared to other models, DeepAR exceeds the other neural network models in pre-
dicting both the number of customers and the total volume. This is also visible in Figure 10.4, where
the total forecasted volume is presented. Additionally, DeepAR provides the most accurate predic-
tions among all methods for holidays that do not fall on a Monday (King’s Day and Ascension Day).
However, it tends to over-predict more than some other methods on Easter Monday and Whit Monday.
N-HiTS, on the other hand, displays the most unusual behavior in total volume, appearing to mimic the
CopyLastWeek method by repeating the effect of holidays one week later.

C
Figure 10.4: [This figure contains confidential information and is therefore only available in the confidential appendix.]

Aggregated volume forecast using two-stage forecasting models: BestCombined, TFT, N-HiTS, and DeepAR. Both actual and
predicted volumes are normalized by dividing by the maximum observed actual volume.

In Chapter 11, we will examine how these metrics ultimately impact route planning.
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10.5. Additional Insights
Finally, we share some additional insights gained during the testing of neural networks, including various
configurations and methodologies.

10.5.1. Forecasting New Customers
The hope of using a global model, which uses data from all time series in one model, is that it can
learn patterns from similar customers. This allows the model to leverage these learned patterns for
new customers who have limited historical data.

We define a new customer as one who has placed their first order after the cut-off date from the valida-
tion window. Applying this criteria yields 92 individual time series, corresponding to approximately 30
customers.

Table 10.5 presents the accuracy and mean absolute error (MAE) for the models applied to these new
customers. We observe that all neural network models show improved performance in both accuracy
and MAE.

Method MAE Accuracy
CopyLastWeek (Baseline) 17.727565 0.937371
BestCombined (ORTEC) 15.621669 0.940994
TFT 11.736780 0.960404
N-HiTS 13.710071 0.941770
DeepAR 14.511910 0.956522

Table 10.5: MAE and accuracy of new customers with their first order after the validation cut-off date. Here, the neural network
forecasts use a two-step approach, similar to BestCombined, separating the prediction of delivery occurrence and the volume.

Upon examining the forecasts for new customers, we find that the BestCombined approach struggles
with these predictions, often defaulting to forecasting zeros or merely replicating the previous week’s
orders. This pattern suggests that the models integrated within the BestCombined method struggle to
forecast new customer behaviors accurately.

An example illustrating a new customer is shown in Figure 10.2, where its first non-zero value is after
the cut-off date. We can see that the BestCombined approach chooses the CopyLastWeek forecast,
meaning its first prediction is two weeks after the first order. By simply copying orders, the method
visually makes some mistakes in prediction. Meanwhile, the neural network models take longer in their
predictions, indicating a need for higher confidence that the customer will continue ordering. Further-
more, the neural network models fail to capture peaks in ordered volume on days near holidays, despite
having these days included as features.

Figure 10.5: Example time series of a new customer with forecasts from BestCombined, TFT, N-HiTS, and DeepAR.
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10.5.2. Feature Importance TFT
Understanding feature importance in machine learning models can provide valuable insights into the
factors influencing predictions. For the traditional models, random forests are able to provide feature
importances. The TFT model offers a sophisticated mechanism for assessing feature importance in
a similar manner. The features are split into three categories: static, historical, and future covariates.
The feature importance distributions for the features are presented in Figure 10.6.

Among the static features, full postal code and market segment emerge as the most significant con-
tributors to the model’s predictions. Conversely, the customer feature shows the least importance,
likely due to its applicability being restricted to only a limited number of series (maximum of three) per
value, which constrains its impact across broader datasets. For the past covariates, the observed tar-
get, which is the volume, along with delivery information (’levering’), is considered most important, as
would be expected. Following these, the weekday and holiday features also hold notable importance.
Surprisingly, all features with some information on the yearly seasonality, like yearday or temperature,
have a low feature importance. For future data, the weekday stands out as the most important feature.

(a) Static covariates. (b) Past covariates. (c) Future covariates.

Figure 10.6: Feature importances of the TFT trained on raw time series data without splitting into delivery and
volume components.

Figure 10.7 shows the attention distribution over time. The time axis shows the lookback window used
by the model, which is 28 days. In this figure, we can see clear peaks of attention at 7-day intervals,
underscoring a weekly periodic pattern. Additionally, the model also places high attention on the day
before the forecast window starts.

Figure 10.7: Attention over a look-back window of 28 for the TFT trained on raw time series data without splitting into delivery
and volume components.

The feature importance allows for a more transparent understanding of model behavior, providing
clients with insights beyond the standard output of a blackbox model. This transparency can help
validate the model’s reliability and build trust. However, it is important to weigh the benefits against
the increased computational costs, as training time is considerably longer for the TFT compared to the
other models.
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10.5.3. Different Embeddings
This section explores different embedding strategies for temporal features such as weekdays and year-
days in neural network models. This investigation was conducted on a subset of 20% of the customers
using a single product type per customer.

Two embedding approaches were tested. First, a one-hot encoding for weekdays and a cyclic encod-
ing for yeardays, resulting in 7+2 feature columns, similar the temporal features in the PoC. Second,
a categorical encoding for both weekdays and yeardays with a single feature column that is scaled
between 0 and 1, resulting in 1+1 feature columns.1

Results indicated that the first embedding slightly underperformed compared to the second. Moreover,
the first embedding required twice the amount of training and prediction time for the Temporal Fusion
Transformer. This is probably due to the complex mechanisms used for feature selection. In conclusion,
while traditional forecasting techniques often benefit from one-hot encoding, this approach may not be
as effective for neural network models.

10.6. Discussion
At the beginning of this research, the primary focus was on improving the MAE and accuracy. However,
as research progressed in route planning, it became clear that other metrics, particularly the number of
customers and volume deviations, can be more important. If these factors had been identified earlier,
more attention would have been paid to evaluating models and postprocessing steps based on these
metrics. For instance, hierarchical forecasting was initially set aside due to its negative impact on
predictions at the lowest hierarchy level. Nonetheless, later it showed that sacrificing precision at
lower levels could be advantageous if it leads to improved forecasting accuracy at higher hierarchical
levels. Additionally, postprocessing on quantiles is now performed by finding the best quantile based
on accuracy. However, integrating additional dimensions could provide better results.

As explained, one potential improvement lies in the application of hierarchical forecasting. Since there
are no hierarchical forecasting implementations for the purpose of this study, we would require amanual
implementation. One idea would be to predict the number of customers per day and then refine the
customer selection by sampling using a weight based on forecasted probabilities.

Furthermore, there remains potential for further research into the impact of varied loss functions on
model performance. While N-HiTS and TFT employed a multiquantile loss for volume predictions,
DeepAR utilized a distribution loss. The superior performance of DeepAR may be attributed not only
to its distinct model architecture but also to this choice of loss function. Similarly, while successful
outcomes have been achieved by separating delivery and volume forecasts, there remains the potential
for unified forecasting using a single model with a combined loss function to produce equally promising
results.

Regarding holidays, true holiday adjustments have been implemented as an improvement, but the
variability per holiday still gives some complexities. Given the substantial increase in training time as-
sociated with additional features, it is not recommended to create separate feature columns for each
distinct holiday. Grouping holidays with similar characteristics could be an effective strategy for ad-
dressing these disparities. Having business rules specified for each holiday by the distributor would
have made the process of integrating holiday features easier.

1The weekday column has values from 1 to 7 and the yearday column has values from 1 to 365, both scaled to the range
[0,1].
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Combining Forecasts from Neural

Networks with Route Optimizer

In this final results chapter, we evaluate the performance of various forecasting models within the con-
text of a route optimization process. Specifically, we compare the BestCombined method from ORTEC
with the forecasts from the neural network models. Using the same three-week test period and con-
figurations outlined in Chapter 9, we examine how each forecast impacts the routing consistency and
efficiency. The results of this evaluation are illustrated in Figure 11.1.

Figure 11.1: Comparison of route optimizer results using forecasts from neural network models, ORTEC’s BestCombined
method, and the CopyLastWeek baseline for the three light optimizer configurations within the double optimization framework.

We can see that the DeepAR model provides the best results in terms of both swaps+ and route plan
costs. Despite having a higher MAE in forecast prediction compared to other models, DeepAR strictly
outperforms the BestCombined method from ORTEC. Conversely, the TFT achieves similar route plan
costs but exhibits higher swap+ rates, even though it has the highest accuracy. This increase in swap+
rates may be attributed to systematic underestimations in volume predictions, as we have seen in
Section 9.3, where it was noted that such volume underestimations contribute to a higher number of
swaps. This highlights the importance of accurate forecasting on a global scale rather than for individual
forecasts.

Comparing the improvement from CopyLastWeek to BestCombined with the improvement from Best-
Combined to DeepAR, we observe that the results in this thesis show a significantly larger improvement
than what was achieved in the proof of concept.
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A noteworthy finding is that all forecasts and configurations exceeded the 20% swap+ threshold. While
this exceeds the client’s specified limit, it is crucial to consider that the client’s exact objectives may
not be fully understood, particularly in terms of handling unforecasted customers. When evaluating the
swap percentages while excluding non-forecasted orders, as shown in the Appendix, Figure A.2, the
forecasts indicate a potential for achieving swap percentages of around 10%. So, if there is an efficient
way to handle incoming orders that were not forecasted, it is feasible to accomplish a swap percentage
below the threshold. From Figure 11.1, but more clearly from Figure A.2, we can also conclude that the
number of swaps primarily depends on the optimizer configuration used. Improvements in forecasting
lead to more efficient routings, probably because accurate demand predictions enable better route
planning in the first stage.



Part IV

Conclusion and Recommendations
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Conclusion

The goal of this research was to evaluate the impact of the proposed framework by ORTEC on the
swaps and to investigate new forecasting and route planning strategies to improve the impact while
maintaining the efficiency of routes.

The examination of the optimizer revealed several insights into the effectiveness of different configura-
tions. The ruin and recreate method in the full optimizer proved to play a major role in finding optimal
routes, albeit without maintaining the customer assignments of the input routes. On the other hand,
employing fixed input routes yielded promising results, though it led to capacity violations. This can
be attributed to the forecasts from ORTEC underpredicting the volume of customers. These violations
were be addressed by applying a secondary optimization phase after executing the full optimizer with
fixed input routes. Within the light optimizers, we found that increasing the minimum estimated gain, in
local search methods that look outside the routes, has a bigger impact on the swaps than reducing the
number of recursions. However, fewer swaps do come with a higher plan cost. A trade-off has to be
made by the decision maker, possibly on a daily basis, between the number of swaps and plan costs.

Additionally, simulating different forecast qualities highlighted the importance of evaluating forecasting
performance on a global level beyond the MAE and accuracy. Specifically, overpredicting the number
of customers by more than 10% notably increases planning costs, leading to inefficient resource allo-
cation. Furthermore, the tendency to overpredict the total volume similarly increases plan costs, while
underpredicting the total volume significantly increases the number of swaps required.

Turning to the forecasting results, we assessed three models: DeepAR, TFT, and N-HiTS. All mod-
els demonstrated their capability to operate effectively on a global dataset consisting of thousands of
time series. The models provide comparable or even superior outcomes to ORTEC’s BestCombined
method, which is trained on individual customers. This demonstrates the feasibility of using neural net-
work models for supply chain forecasting at ORTEC, suggesting the potential for a more streamlined
and concise forecasting workflow.

Predicting zero-inflated data using a single model proved challenging for all the neural network models.
DeepAR seemed unable to fit a singular zero-inflated distribution across diverse series due to their in-
herent differences in weight on zeros. Although TFT and N-HiTS showed improvements in MAE, they
did not achieve good accuracy. They both overpredicted the number of customers, where every cus-
tomer was forecasted to have low order volumes. Postprocessing failed to rectify this issue. Moreover,
total volume predictions were significantly underpredicted. A potential solution could involve a loss
function that balances both binary loss and volume loss. Such an implementation was not explored in
this study. Notably, the neural network models showed improvements in predicting new customers.

Finally, despite its higher training costs, the TFT offers valuable insights by providing feature impor-
tances within its forecasts, enhancing model interpretability.
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When combining the forecasting and optimization processes, DeepAR provided the best results in
terms of swaps and plan costs, despite having the highest MAE among the forecasting models. TFT
achieved similar route efficiency, yet resulted in more swaps, possibly attributable to the underestima-
tion of volume. The number of swaps primarily depends on the optimizer configuration, where route
efficiency is improved with better forecasts. Depending on how swaps are defined, a reduction to less
than 20% swaps is feasible with all forecasting methods. The definition of swaps ultimately depends on
the client’s preferences and how they manage orders coming from customers that were not initially fore-
casted, which remains unknown. Nonetheless, developing a strategy to accommodate such incoming
orders is necessary.

In conclusion, this research demonstrated the feasibility of ORTEC’s proposed framework and showed
improvements in both forecasting and route planning. A key achievement in forecasting is the ability
to predict a large number of time series effectively using a single model. However, further refinement
of the loss function offers a possibility for future research. In terms of route planning, it is crucial to
prioritize not only metrics that assess individual predictions but also those that evaluate the aggregate
forecasted outcomes, ensuring more efficient and cost-effective strategies.
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Recommendations

The wholesale distributor can begin by implementing the selected configurations for the route optimizer,
specifically the light optimizers employed after a full optimization cycle using fixed input. These con-
figurations can be tailored and selected on a daily basis to meet operational needs best. Additionally,
several improvements could be made beyond this thesis that could be adopted to achieve better out-
comes.

This research utilized order data spanning approximately one year. Expanding this dataset for training
purposes should be considered, as a broader data range has the potential to increase model reliability
and effectiveness. The limited timeframe prevented the model from learning yearly seasonality, and
with most holidays appearing only once in the dataset, it was impossible for the model to accurately
learn their impact. Testing the TFT model during the COVID period is also recommended, as Lim et al.
[22] suggests it can effectively understand crisis situations.

Forecasts could further be improved by integrating client-specific business rules for holidays and spe-
cific customers. The current method flags all holidays similarly, as using a different feature for every
holiday leads to unnecessarily high training times. It may therefore be beneficial to categorize holidays
into distinct groups based on their varying effects on operations. Specifically, understanding which days
the distributor continues to deliver, which holidays result in fewer customer orders, and which holidays
have no impact at all. In this research, all customers are treated equally regarding how they are fixed
into routes, when the optimizer considers swaps, and in counting the number of swaps. However, the
wholesale distributor may wish to prioritize reducing swaps for regular or larger customers over others.
To achieve this, additional business rules concerning customer prioritization should be provided.

In the early stages of this research, we discontinued our exploration of hierarchical forecasting due to
its negative impact on forecasting quality at the lowest hierarchy level, which was initially considered
critical. However, later findings in route planning revealed that accurate global forecasting holds greater
significance. Thus, hierarchical forecasting should be reconsidered. Although Nixtla’s implementation
is unsuitable for zero-inflated data, an alternative approach could involve manually forecasting the daily
number of customers and sampling customers based on probabilities predicted by the neural network.

Moreover, the wholesale distributor might explore a multi-stage approach to route planning. We now
use a two-stage strategy, where decisions are made and then adjusted based on final order confirma-
tions. It is also possible to revise routing decisions dynamically each time a customer places a new
order. Although the effects of this multi-step approach are currently unknown, and the optimal planning
strategies at each stage remain unclear, investigating this adaptive method could potentially lead to a
more flexible and responsive solution.
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In the short term, ORTEC should integrate the double optimization approach from Figure 7.14 efficiently
into its current system. A refined strategy for handling customers can be developed by implementing
a flexible system for flagging customers, rather than simply fixing a customer in a route. Introducing
a variable minimum estimated gain per customer can provide nuanced control over route adjustments.
For instance, customer A could be swapped if it improves routing, whereas customer B would require
a minimum estimated gain before being considered for swapping. Additionally, there should be the
ability to selectively fix certain customers during specific optimization phases, such as during the ruin
and recreate process. Moreover, including a penalty for swaps, possibly depending on the customer,
into the objective function could help the optimizer to balance between minimizing swaps and route
efficiency.

For neural networks, it is recommended to conduct further investigations into alternative loss functions.
Observations indicate that the TFT and N-HiTS models continue to underpredict total volume, poten-
tially due to the chosen loss function. Additionally, it may still be possible to forecast zero-inflated data
in a single model if the loss function accommodates it. One approach could be using a combined loss
function that balances binary and volume losses. Alternatively, the model could be designed to output
two data points: a binary value indicating delivery and a separate volume prediction. It is then important
to ensure that both points have different loss functions.

Another unexplored area in this research is parametric optimization, which offers potential benefits,
especially when forecasts tend to underpredict total volume. A whole different route planning strategy
could involve focusing solely on forecasting predictable customers. For unpredictable customers, one
could either allocate empty space within provisional routes or deploy additional vehicles to handle them.
The former strategy might lead to more efficient routing. By using forecasts of the total ordered volume
and subtracting the predicted volume for predictable customers, an estimate can bemade of the amount
of empty space (or θk in Equation (2.36)) required to accommodate unpredictable customers.

In the long term, ORTEC should explore the integration of stochastic optimization elements into its route
optimizer, motivated by an increasing demand from the business sector. In the current framework, the
provisional routes are generated using a full optimizer, assuming the forecasts are true. This research
investigated some recourse strategies when the uncertainty is disclosed. ORTEC should explore ways
to incorporate uncertainty into the first provisional route plan. For instance, by using confidence inter-
vals generated by neural network models or the probability of a customer placing an order, ORTEC can
develop robust routes that adeptly manage uncertainty. It is essential to determine which aspects of
these uncertainties should be leveraged and how the optimizer can best interpret and respond to them.
Furthermore, it could be interesting to explore reinforcement learning. In this framework, an agent can
learn to adjust the inputs and forecasts using a reward structure tied to the optimizer’s outcomes. Re-
inforcement learning can potentially lead to improved adaptability and more effective decision-making
processes in dynamic environments.
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A
Additional Results

A.1. Substitute Order Day
In Section 5.2, we examined customer behavior surrounding holidays, focusing on their choice of sub-
stitute days for placing orders when they are unable to order on their regular days. We defined regular
customers for a weekday as those with an order consistency of over 90%. We then counted how many
of these regular customers placed orders on alternative days, provided they were not already regular
customers for those specific weekdays. While this analysis does not capture the full spectrum of cus-
tomer behavior during holidays, it offers insights into preferred alternative order days. Here, we present
the effect on two specific holidays, instead of aggregated data for all holidays. Figure A.1 illustrates
the preferred substitute days for Easter Monday and King’s Day. For Easter Monday, the most popular
substitute is the day after the holiday, as the wholesale distributor does not deliver on Sundays. For
King’s Day, which fell on a Wednesday, both the preceding and following days were popular substitutes,
with the day before being slightly more favored.

(a) Holiday: Easter Monday (2022-04-18). The most popular substitute
day is the day after Easter Monday. Sum of bars is 74.5%.

(b) Holiday: King’s Day (Wednesday 2022-04-27). The most popular
substitute day is the day after the King’s Day. Sum of bars is 88.2%

Figure A.1: Number of orders 3 days before and after a holiday by customers that usually order on the weekday of the holiday
(threshold of > 90%) and not on the other weekdays (threshold of < 10%). Presented as a proportion to the number of regular

customers for that weekday.

A.2. Neural Network results on Two-Stage Forecast
In this section, we present the results of training neural networks using delivery data and volume data
separately. Rather than using the complete time series of ordered volume, TFT and N-HiTS are trained
explicitly on delivery data as part of the postprocessing step in Section 10.2. The delivery time series is
characterized as a binary series: 0 when the ordered volume is zero and 1 when the volume is greater
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than zero. The accuracy of these models is given in Table A.1, which is slightly higher than the result
from using these forecasts as a postprocessing step.

Method Accuracy
CopyLastWeek (baseline) 0.914201
BestCombined (ORTEC) 0.924149
TFT 0.935979
N-HiTS 0.921225
DeepAR 0.933898

Table A.1: Accuracy of neural network models on delivery data (binary classification) compared to baseline and ORTEC’s
BestCombined method, evaluated on the test period.

Additionally, in Section 10.4, we presented the results of training DeepAR, TFT, and N-HiTS using a
two-stage forecast. The volume series is generated by interpolating the zeros linearly and filling the
zeros at the beginning and end using forward and backward fill. The final forecasting results can be
found in the results section. Table A.2 presents the training times of all models.

Delivery Volume
Method Validation time (s) Test time (s) Validation time (s) Test time (s)
DeepAR 17434 350 18089 414
TFT 18509 298 24934 207
N-HiTS 2026 90 3050 64

Table A.2: Running times for predicting the validation window (including hyperparameter tuning) and the test window on
delivery and volume series.

Figure A.2 shows the percentage of swaps per forecasting method, excluding the non-forecasted or-
ders. It is important to note that this may not be an entirely fair comparison, since different methods
might have varying amounts of non-forecasted orders. Nevertheless, the figure demonstrates that, if
there is an efficient way to handle incoming orders that were not forecasted, it is feasible to achieve
a swap percentage of approximately 10% among customers whose orders were correctly predicted.
We can also observe that the number of swaps is primarily determined by the configuration applied,
while the plan cost varies more depending on the forecasting method used, with improved forecasting
leading to more efficient routes.

Figure A.2: Mean percentage of swaps and difference in plan cost using forecasts from neural network models, ORTEC’s
BestCombined method, and the CopyLastWeek baseline.
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Feature Importances TFT
Figure A.3 shows the feature importances for static, past, and future covariates of the TFTmodel trained
on the delivery data (binary classification).

(a) Static covariates. (b) Past covariates. (c) Future covariates.

Figure A.3: Feature importances of the TFT trained on delivery data series (binary classification).

Figure A.4 shows the feature importances for static, past, and future covariates of the TFTmodel trained
on the volume data linearly interpolated to remove zeros.

(a) Static covariates. (b) Past covariates. (c) Future covariates.

Figure A.4: Feature importances of TFT trained on volume data series (interpolated using linear interpolation).



B
Optimizer Settings

As discussed in Section 7.2.1, the plan cost encompasses a weighted average of various factors. This
includes expenses associated with vehicle usage, the distance to be traveled, working hours, and
overtime. The specific weights assigned to each of these components are outlined in Table B.1.

Type Cost
per vehicle 200
per kilometer 2.14
per hour 60
per hour overtime 6.14

Table B.1: Components of plan costs with their respective weights.

In addition to minimizing plan costs, the route optimizer must consider specific restrictions such as
maximum working time per day, allowable overtime, minimum break duration, and maximum working
time before a break is required. These values are detailed in Table B.2.

Type Value
maximumDuration 8 hr
maximumOverTime 1.5 hr
maximumNumberOfTrips 5
breakDuration 0.5 hr
maximumWorkingTimeBeforeBreak 5.25 hr
maximumDrivingTimeBeforeBreak 4.5 hr

Table B.2: Constraints for feasible routes.

Constraints within the route optimizer are treated as soft constraints, meaning violations incur specific
penalties. Each constraint is composed of a constant term, a linear term, and a quadratic term. The
constant term is applied for every violation, while the linear and quadratic terms depend on the mag-
nitude of the violation. The coefficients for the constant, linear, and quadratic terms associated with
violations are provided in Table B.3.

Type Constant (c) Linear (b) Quadratic (a)
Capacity 200 0 100
MaxWorkTime 50 0 0.001
RequiredCapabilities 100 0 0
RouteFinishTime 50 0 0.001
TaskTimeWindow 50 0 0.001

Table B.3: Coefficients of the penalty per constraint. A violation of x incurs penalty = ax2 + bx+ c.
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C
Hyperparameters Forecasting

C.1. PoC
Table C.1 shows the tested hyperparameter grid for the traditional forecasting methods used on the
volume series.

Parameter Values
Linear Regression

fit_intercept True, False

features
holiday_flag,
holiday_flag + weekday_cols,
holiday_flag + weekday_cols + temp_mean
Holt-Winters

trend additive, multiplicative
seasonal additive, multiplicative
damped_trend True
use_boxcox True, False

SARIMAX
order_pdq [0,0,0], [1,1,1], [1,0,0], [0,0,1], [1,0,1], [0,1,1]
seasonal_pdq [0,0,0], [1,1,1], [1,0,0], [0,0,1], [1,0,1], [0,1,1]

features holiday_flag,
holiday_flag + temp_mean

Prophet
growth linear, flat
yearly_seasonality False
weekly_seasonality True
daily_seasonality False
seasonality_mode additive, multiplicative
seasonality_prior_scale 10
holidays_prior_scale 10
changepoint_prior_scale 0.05

features holiday_flag,
holiday_flag + temp_mean

Table C.1: Hyperparameter grid per regression model used in the PoC by ORTEC.
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Table C.2 shows the tested hyperparameter grid for the classification methods used on the delivery
series.

Parameter Values
Logistic Regression

fit_intercept True, False
class_weight None, balanced

features
holiday_flag, weekday_cols
holiday_flag + weekday_cols + temp_mean,
holiday_flag + weekday_cols + delivery_lags

Random Forest
max_depth None, 5
min_samples_split 2, 10

features
holiday_flag, weekday_cols
holiday_flag + weekday_cols + temp_mean,
holiday_flag + weekday_cols + delivery_lags

Table C.2: Hyperparameter grid per classification model used in the PoC by ORTEC.
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C.2. Neural Networks
Table C.2 shows the tested hyperparameter grid for the classification methods used on the delivery
series. All models used a batch size, the number of time series trained on simulataneously, of 32 and a
window batch size, the number of forecasting windows trained simultaneously, of 1024 (both standard
configurations). Increasing these numbers caused the used GPU to crash. A more powerful GPU could
probably handle larger batch sizes, decreasing the training time.

Parameter Values
DeepAR

input_size 14, 28
learning_rate tune.loguniform(1e-4, 1e-1)
max_steps 1000, 1500, 2000
scalar_type None, standard, minmax, robust
lstm_n_layers 2, 3
lstm_hidden_size 32, 64, 128
lstm_dropout 0.1
decoder_hidden_layers 1, 2, 3
decoder_hidden_size 32, 64, 128
random_seed tune.randint(1, 10)

stat_exog_list customer_id + product_type + market_segment +
postalcode_num + postalcode_full

futr_exog_list weekday + yearday + trend + holiday_flag_true + holiday_flag_pre +
holiday_flag_pre2 + holiday_flag_post + holiday_flag_post2

TFT
input_size 14, 28
learning_rate tune.loguniform(1e-4, 1e-1)
max_steps 1000, 1500, 2000
scalar_type None, standard, minmax, robust
n_head 4, 8
hidden_size 32, 64, 128
lstm_dropout tune.uniform(0,0.5)
random_seed tune.randint(1, 10)

stat_exog_list customer_id + product_type + market_segment +
postalcode_num + postalcode_full

futr_exog_list weekday + yearday + trend + holiday_flag_true + holiday_flag_pre +
holiday_flag_pre2 + holiday_flag_post + holiday_flag_post2

past_exog_list Levering + temp_mean + temp_max + temp_min
N-HiTS

stack_types 3*[’identity’]
n_blocks [1, 1, 1]
mlp_units [[512, 512], [512, 512],[512, 512]]
input_size 14, 28
learning_rate tune.loguniform(1e-4, 1e-1)
max_steps 1000, 1500, 2000
scalar_type None, standard, minmax, robust
n_pool_kernel_size [7, 3, 1], [7, 2, 1], [1,1,1]
n_freq_downsample [28, 7, 1], [14, 7, 1], [7, 3, 1], [1,1,1]
random_seed tune.randint(1, 10)

stat_exog_list customer_id + product_type + market_segment +
postalcode_num + postalcode_full

futr_exog_list weekday + yearday + trend + holiday_flag_true + holiday_flag_pre +
holiday_flag_pre2 + holiday_flag_post + holiday_flag_post2

Table C.3: Hyperparameter grid per neural network model used in this research.



D
Implementation of Neural Networks

The models for this research were implemented using the NeuralForecast class from Nixtla. This
section outlines the general process for training and predicting with neural networks, as well as some
best practices. Note that this is a general description of the implementation; the actual code used is
more detailed.

The guidelines presented here are drawn fromNixtla’s tutorial [30], alongside documentation for specific
classes [26, 27, 29, 28]. Additionally, this section presents some techniques relevant to this case
study that are not easily found in the documentation. These include employing cross-validation with
an overlapping window, focusing the loss function exclusively on the second week of predictions, and
after hyperparameter tuning with an AutoModel, using solely the best configuration for training on new
data.

D.1. Training a Model and making Predictions
To train a model and make predictions, we need a dataframe, Y_df, containing time series data. This
dataframe should be formatted as a pandas dataframe andmust include at least three columns: unique_id,
ds, and y. The unique_id represents the unique identifier for each time series, ds denotes the date
and must be formatted as pandas datetime, and y indicates the value of interest, such as volume or a
binary 0/1 value. An example is provided in Figure D.1.

Figure D.1: Example of dataframe Y_df with time series data of all customers and 3 product types. y represents the ordered
volume for the date given in ds. Here, weekday and yearday are future covariates.

Additionally, we require a dataframe containing static features. This static_df should include unique_id
and all static features applicable to the task, such as customer ID, market segment, and product type.
An example is provided in Figure D.2.
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Figure D.2: Example of dataframe static_df with static features representing the customer, product type, and market
segment corresponding to the time series.

To proceed, we can import the desired models and loss functions. The DistributionLoss is used for
DeepAR and delivery forecasts utilizing Bernoulli loss, whereas MQLoss is used for the volume forecasts
with TFT and N-HiTS models.

We can also define a train-test split and set a forecasting horizon of two weeks:
1 from neuralforecast import NeuralForecast
2 from neuralforecast.models import DeepAR, NHITS, TFT
3 from neuralforecast.losses.pytorch import DistributionLoss, MQLoss
4

5 horizon = 14
6 split_date = Y_df['ds'].max() - pd.DateOffset(days=horizon)
7 Y_train_df = Y_df[Y_df.ds <= split_date]
8 Y_test_df = Y_df[Y_df.ds > split_date]

Next, we specify the model configuration for training. In this example, the N-HiTS model is initialized
with some hyperparameters and a daily data frequency:

9 models = [NHITS(h = horizon,
10 input_size = 2 * horizon,
11 max_steps = 1000,
12 loss = MQLoss(level=[80, 90]),
13 stat_exog_list = ['customer', 'product_type', 'market_segment'],
14 futr_exog_list = ['weekday', 'yearday'],
15 hist_exog_list = [])]
16 nn_model = NeuralForecast(models=models, freq='D')

After setting up the model, we use the following functions to fit the model to the training data and predict
the forecast horizon:

17 nn_model.fit(df=Y_train_df, static_df=static_info, val_size=horizon)
18 Y_hat_df = nn_model.predict(futr_df=Y_test_df)

Note that for training the model, we use the training dataframe and the static dataframe. The test
dataframe can include future exogenous variables, but will not use it for predictions.

In this case study, we make predictions for two weeks, but we are specifically interested in the second
week. To ensure the loss function only considers the second week, we introduce a horizon weight and
adjust the loss function accordingly during model initialization:
horizon_weight = torch.tensor([0.0] * 7 + [1.0] * 7)

loss = MQLoss(level=[80, 90], horizon_weight=horizon_weight))

D.2. Hyperparameter Tuning
Hyperparameter tuning in NeuralForecast is streamlined through the use of Auto models. Each model
within the library has an Auto version, such as AutoNHITS and AutoTFT, which enables automatic
hyperparameter selection across either a default or a user-defined search space.

To initiate hyperparameter tuning, we import the necessary Auto models, along with a backend (Ray
Tune) and search algorithm:

1 from neuralforecast.auto import AutoDeepAR, AutoTFT, AutoNHITS
2 from ray import tune
3 from ray.tune.search.hyperopt import HyperOptSearch
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Next, we define the configuration settings. A standard configuration, tested across numerous datasets,
is available. In this research, we chose to vary certain parameters using tune or set specific values to
remain constant. Below is an example configuration for N-HiTS:

4 config_nhits = {
5 "input_size": tune.choice([7,14,21,28]),
6 "learning_rate": tune.loguniform(1e-5, 1e-1),
7 "max_steps": 1500,
8 "scaler_type": tune.choice([None, "standard", "robust"]),
9 "n_pool_kernel_size": tune.choice([[7, 3, 1], [7, 2, 1], [1,1,1]]),
10 "n_freq_downsample": tune.choice([[28, 7, 1], [14, 7, 1], [7, 3, 1], [1,1,1]]),
11 "early_stop_patience_steps": 2,
12 "stat_exog_list": stat_exog,
13 "futr_exog_list": futr_exog,
14 "hist_exog_list": hist_exog,
15 }

The setup of a model now includes the hyperparameter space and a search algorithm. The number of
samples represents the number of hyperparameter configurations to be tested.

16 nn_auto = NeuralForecast(
17 models=[AutoNHITS(h = horizon,
18 loss = MQLoss(level=[80, 90]),
19 config = config_nhits,
20 search_alg = HyperOptSearch(),
21 backend = 'ray',
22 num_samples = 20)],
23 freq='D')

The tuning of the Auto model involves using the same functions for fitting and predicting as standard
models. Fitting tests a number of configurations specified in the model. Then, the prediction is based
on the configuration that performed best on the training set, according to the loss function.

24 nn_auto.fit(df=Y_train_df, static_df=static_info, val_size=forecast_length)
25 nn_auto.predict(futr_df=Y_test_df)

It is important to note that the Auto models are saved as their base counterparts, using the best hyper-
parameters identified during tuning. So, an AutoNHITS will be stored as an NHITS model:

26 nn_auto.save(path='neural_nets/nhits_model/',
27 model_index=[0],
28 overwrite=True,
29 save_dataset=True)

To access the results or the best configuration, we can use the following:
30 results = nn_auto.models[0].results.get_dataframe()
31 best_result = results.loc[results['loss'].idxmin()]

D.3. Cross-validation
For cross-validation, we want to repeatedly train and predict on larger datasets through a series of vali-
dation folds. This process can be implementedmanually by sequentially using .fit() on Y_train, then
.predict() on Y_test, updating Y_train with Y_test, and repeating the sequence for the required
number of folds.

In this research, we used 6 validation folds and 6 test folds. The folds are defined in the following way:
1 window_step_size = 7
2 forecast_length = 14
3

4 num_val_folds = 6
5 num_test_folds = 6
6 num_folds = num_val_folds + num_test_folds
7 unique_dates = pd.to_datetime(Y_df['ds'].unique())
8
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9 folds = [(d, d+pd.DateOffset(days=window_step_size+1), d + pd.DateOffset(days=
forecast_length)) for d in unique_dates[unique_dates.dayofweek == 5][-(num_folds+2):-2]]

10

11 list_validation_limits = folds[:num_val_folds]
12 list_test_limits = folds[num_val_folds:]
13

14 split_date = list_validation_limits[-1][-1]
15 Y_train_df = Y_df[Y_df['ds'] <= split_date].reset_index(drop=True)
16

17 Y_test_df = []
18 for i in range(num_folds):
19 Y_test_fold = Y_df[(Y_df['ds'] > list_validation_limits[i][0]) & (Y_df['ds'] <=

list_validation_limits[i][1])].reset_index(drop=True)
20 Y_test_df.append(Y_test_fold)

Instead of manually fitting and predicting in a loop, Nixtla offers an implementation that simplifies
this sequence. For this, we can use the .cross_validation() function. Remember that, since we
want to predict the next two weeks for every week, we have overlapping forecasting windows. The
.cross_validation() method automatically uses a window step size equal to the forecast length,
starting the new prediction right after the other one. We can achieve the overlapping window by setting
the step size to 7 and the forecast horizon to 14 days. Note that we no longer need to define the test
set over multiple folds.

1 cv_valildation_auto = nn_auto.cross_validation(Y_train_df, static_df=static_info, val_size=
forecast_length, n_windows=num_val_folds, step_size=window_step_size, refit=True)

2 nn_auto.save(path='neural_nets/nhits_val/',
3 model_index=[0],
4 overwrite=True,
5 save_dataset=True)

A challenge with overlapping windows is having multiple predictions for a single date. The cross-
validation function addresses this by adding a ”cutoff” column, indicating the used training set. We
implemented the following function to use this information and extract the desired week:

1 def remove_overlap(df, list_limits):
2 """
3 df should be from NeuralForecast and have columns: unique_id, ds, cutoff
4 list_limits should have tuple (cutoff, d1, d2)
5 cutoff: cutoff date for trainingset
6 d1: first date of forecast period of interest
7 d2: last date of forecast period of interest
8 """
9 for cutoff, d1, d2 in list_limits:
10 df = df[~((df['cutoff'] == cutoff) & (df['ds'] < d1))]
11 df = df[~((df['cutoff'] == cutoff) & (df['ds'] > d2))]
12 return df.drop(columns=['cutoff'])
13

14 Y_hat_val = remove_overlap(cv_valildation_auto, list_validation_limits)

Using the cross-validation function on an Auto model enables hyperparameter tuning through cross-
validation, which identifies the best configuration across all folds. Saving the model at the validation
period, and subsequently loading it, ensures that only the optimal configuration from the validation
window is applied to the test window, preventing further hyperparameter tuning of the Auto model.

1 nn_model = NeuralForecast.load(path='neural_nets/nhits_val/')
2 cv_test = nn_model.cross_validation(Y_df, static_df=static_info, val_size=forecast_length,

n_windows=num_test_folds, step_size=window_step_size, refit=True)
3 Y_hat_test = remove_overlap(cv_test, list_test_limits)

D.4. TFT Feature importance
As outlined in Section 4.4.2, the TFT provides insights into feature importance, enhancing the inter-
pretability of the model. The feature importance can be obtained using:

1 feature_importances = nn_model.models[0].feature_importances()
2 feature_importances.keys()
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This information can be visualized using the following approach. We obtain plots for static, past, and
future covariates using:

1 feature_importances['Static covariates'].sort_values(by='importance').plot(kind='barh')
2 feature_importances['Past variable importance over time'].mean().sort_values().plot(kind='

barh')
3 feature_importances['Future variable importance over time'].mean().sort_values().plot(kind='

barh')

Feature importance over time for the lookback window, like in Figure 10.7, can be obtained through the
following code:

1 df= feature_importances['Past variable importance over time']
2 mean_attention = nn_model.models[0].attention_weights()[nn_model.models[0].input_size:,:].

mean(axis=0)[:nn_model.models[0].input_size]
3 df = df.multiply(mean_attention, axis=0)
4

5 fig, ax = plt.subplots(figsize=(20, 10))
6 bottom = np.zeros(len(df.index))
7

8 for col in df.columns:
9 p = ax.bar(np.arange(-len(df),0), df[col].values, 0.6, label=col, bottom=bottom)
10 bottom += df[col]
11 ax.set_title('Past variable importance over time ponderated by attention')
12 ax.set_ylabel("Importance")
13 ax.set_xlabel("Time")
14 ax.legend()
15 ax.grid(True)
16 plt.plot(np.arange(-len(df),0), mean_attention, color='black', marker='o', linestyle='-',

linewidth=2, label='mean_attention')
17 plt.legend()
18 plt.show()



E
Client Specific Information

The contents of this appendix have been removed to protect company information and maintain confi-
dentiality.
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