2008

]
TUDelft
BSc THESIS

Interconnect estimation from C-code

Michel Vos (1267825), Rick van Akkeren (1157493) and Silvian
Bensdorp

Abstract

FPGAs are easy and cheap to produce, a world of new possibilities is
opened. One of those is in the area of reconfigurable computing. It
is possible to extend normal CPUs with FPGAs for specific tasks, es-

‘ -y pecially for those tasks which requires a lot of computational power.
o - The Delft WorkBench is such a project.. In this project, C-code is
— / —— directly rewritten into a new piece of software and a set of hard-

{ ware descriptions, suitable to program on a FPGA. In the rewritten
f(My part of the software, the computational parts are replaced by simple
C instructions to control the FPGA. The FPGA will run in parallel
with the software and in this way, software can work up to 100 times
faster. This thesis focus on the estimation of the required area of
interconnect on a FPGA, depending on a given set of software met-
rics. These metrics are found by a special compiler, based on ELSA,
and are specific for each part of C-code. With this estimation, it is
possible to say, in an early stage of the whole process, if a certain
part of software will fit on the FPGA. The developed model is based
on a dataset from 127 kernels and is suitable for the Virtex2 and the
Virtex4 platforms.

EE-BS-2008-01

Faculty of Electrical Engineering, Mathematics and Computer Science

Interconnect estimation from C-code

THESIS

submitted in partial fulfillment of the
requirements for the degree of

BACHELOR OF SCIENCE
in
ELECTRICAL ENGINEERING

by

Michel Vos (1267825), Rick van Akkeren (1157493) and Silvian Bensdorp

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Interconnect estimation from C-code

by Michel Vos (1267825), Rick van Akkeren (1157493) and Silvian Bensdorp

Abstract

those is in the area of reconfigurable computing. It is possible to extend normal CPUs with

FPGAs for specific tasks, especially for those tasks which requires a lot of computational
power. The Delft WorkBench is such a project. In this project, C-code is directly rewritten into
a new piece of software and a set of hardware descriptions, suitable to program on a FPGA. In
the rewritten part of the software, the computational parts are replaced by simple instructions
to control the FPGA. The FPGA will run in parallel with the software and in this way, software
can work up to 100 times faster. This thesis focus on the estimation of the required area of
interconnect on a FPGA, depending on a given set of software metrics. These metrics are found
by a special compiler, based on ELSA, and are specific for each part of C-code. With this
estimation, it is possible to say, in an early stage of the whole process, if a certain part of
software will fit on the FPGA. The developed model is based on a dataset from 127 kernels and
is suitable for the Virtex2 and the Virtex4 platforms.

S ince FPGAs are easy and cheap to produce, a world of new possibilities is opened. One of

Bachelor in : Electrical Engineering
Codenumber : EE-BS-2008-01

Committee Members

Advisor: R.J. Meeuws M.Sc., CE, TU Delft
Chairperson: Dr. K.L.M. Bertels, CE, TU Delft
Member: Dr. ir. A.J. van Genderen, CE, TU Delft

Member: L. Mhamdi, CE, TU Delft

ii

Contents

List of Figures

List of Tables

List of Listings

Acknowledgements

1 Introduction

1.1
1.2

Problem description
Structure

2 Backgrounds

2.1 Reconfigurable computing oo
2.1.1 Principles
2.1.2 Advantages
2.1.3 Disadvantages
2.2 Examples of RCsystems o
2.2.1 Field Programmable Gate Arrays
2.2.2 PipeRench
2.3 FPGAs e
2.3.1 Interconnect on a FPGA
2.3.2 Xilinx: Profile and design flow
2.4 MOLEN: A reconfigurable computing system
241 Overview e
2.4.2 Components
2.4.3 Programming paradigm
2.5 The Delft WorkBench toolchain
2.5.1 Overviewo
2.5.2 Designflow
3 Interconnect estimation from C-code
3.1 Operational requirements
3.1.1 Operational requirements for the prediction model
3.1.2 Operational requirements for the accompanying tool
3.2 Related research oo
3.3 QUuUipu . .. e
3.4 Related theory
3.4.1 Statistical Modeling o oL
3.4.2 Linear regressiono oo e e

iii

vii

ix

xi

3.4.3 OLS and PLS models

3.4.4 Validation of statistical models

4 Methodology
4.1 Generating VHDL code from the kernels
4.2 Synthesizing & Implementing the VHDL code
4.3 Extracting necessary data from the log files
4.4 Building up the statistical estimation model
4.4.1 Transformations on the data
4.5 Analyzing the model
4.5.1 Elimination of data outliers
4.6 Making predictions using the prediction tool
5 Experimental setup and results
5.1 Experimental setup
5.1.1 Used Software
5.1.2 Used hardware
5.2 Experimental results
5.2.1 Prediction Model for the Virtex-II Pro design
5.2.2 Prediction Model for the Virtex-4 design
6 Conclusions and recommendations
6.1 Conclusions
6.2 Further recommendations on the model
Bibliography
A Xilinx ISE Tool
A.1 Work flow
B Logfiles Tool
B.1 Work flow
C Prediction Tool
C.1 Work flow
C.2 Classdiagram i e
D Extracted data from log files
D.1 Virtex2P e
D.2 Virtex4
E Software Complexity Metrics
F Contents of CD-ROM

F.1 compiled tools/
F.2 source code tools/
F.3 vhdl files/

v

27
27
27
27
27
28
28
29
30

31
31
31
31
31
31
39

45
45
46

49

51
51

55
95

57
o7
61

63
65
69

73

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

5.1

5.2
5.3

5.4

5.5

5.6
0.7
5.8

5.9
5.10

Al
B.1

C.1
C.2

The design space between flexibility and performance. 6
FPGA internal structure based on the Xilinx architecture style. 10
Internal structure of a CLB. 10
Wire segments in an interconnect structure 11
A typical interconnect structure with wires and switch points 12
Xilinx design flow L 13
Overview of the MOLEN platform 14
Medium intermediate representation code 16
Overview of the Delft WorkBench tool chain. 17
Three criterion statistics for the number of predictors to include in the

OLSR model,Virtex-II Pro 32
Standard R test statistics plots for the OLSR model, Virtex-II Pro 34
Measured values plotted against the predicted values of the OLSR model,

Virtex-IL Pro e 35
RSMD for number of components in model for different validation meth-

ods, Virtex-IT Pro. 37
Relative error of the PLSR model for different number of prediction pa-

rameters, Virtex-IT Pro. o oo 38
RMSD for transformed and non-transformed predictors, Virtex-1I Pro . . 38
The OLSR model vs. the PLSR model when fitted,Virtex-II Pro 39
Three criterion statistics for the number of predictors to include in the

OLSR model,Virtex-4 e 40
Some standard R test statistics for the linear model, Virtex-4 41
Fitted values vs. the measured values of the OLSR model, Virtex-4 43
Global overview of the Xilinx ISE Tool 51
Global overview of the Logfiles Tool 55
Global overview of the Prediction Tool 58
Class diagram of the Prediction Tool 61

vi

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7

C.1

R results for the linear fit of the OLSR model, Virtex-Il Pro
Statistics of the OLSR model, Virtex-Il Pro
Best predictor set for Virtex-1I Pro OLS given the number of parameters

Statistics of the PLSR model, Virtex-I Pro
R results for the linear fit of the OLSR model, Virtex-4
Statistics of the transformed OLSR model, Virtex-4
Best predictor set for OLSR given the number of parameters, Virtex-4 . .

Overview of the command and arguments options

vii

viii

Listings

Al
A2
A3
A4
A5
A6
AT
A8
C.1
C.2

projectfile.prj L 52
projectfilework.prj 52
synthesize.cmd L L 52
ngdbuild.emd Lo oL 52
map.cmd ... e e e e 52
par.emd L e e 52
trce.emd ... L 53
xdl.emd ... 53
model.xmlo 59
measurements.xml L Lo 59

X

Acknowledgements

This report is written as part of the course 'Bachelor afstudeerproject’, ET3905. With
this report we hope to fulfill part of our obligations in attaining the degree of Bachelor of
Science in Electrical Engineering. After this we hope to proceed with the Master phase.

Readers who are interested or not familiar with the background of this project are
referred to Chapter 2 of this report. The readers who are already familiar with the
background and are interested in more specific information on the project can go di-
rectly to Chapter 3 and 4. Results can be found in Chapter 5 and conclusions and
recommendations are given in Chapter 6.

We would like to thank the following people: Koen Bertels (CE, TU Delft), for
guiding us in the beginning of the project, Yi Lu (CE, TU Delft), for helping us with the
Xilinx ISE, Yana Yankova (CE, TU Delft), for providing us with the VHDL code of the
software kernels and all the other people who did something for us, but kept unnoticed

Our special thanks goes out to Roel Meeuws (CE, TU Delft) for supervising us during
the whole project. He gave us great support and advice. Also he read the concept versions
of our report, providing us with useful comments on how to improve certain things.

Michel Vos (1267825), Rick van Akkeren (1157493) and Silvian Bensdorp
Delft, The Netherlands
July 3, 2008

X1

xii

Introduction

Since the beginning of the computer era many different types of computer systems have
been developed. Early computer systems were based on the fixed program architecture.
These systems could only do simple mathematics, but not such things like word pro-
cessing or running video games. To change a program the whole architecture had to be
re-wired, re-structured or even completely redesigned, often a laborious task.

The idea of a stored program architecture, also called the Von-Neumann architecture
[1],[2], changed that. This architecture was divided into several units. A processing
unit, a combined data and program memory, and data and control elements between the
processing unit and the memory. By creating an instruction set for the processing unit
it could fetch data from the memory, making a calculation and storing it back into the
memory. Executing instructions sequentially allows a next instruction to use the result
of a previous instruction in its calculation. This made the implementation of algorithms
much simpler and therefore the variety of programs for this architecture much larger.

However this idea also showed a bottleneck, known as the Von-Neumann
bottleneck[2]. Division between the processing unit and the memory, caused that in-
structions and data continually had to be moved between them, also called the through-
put. Because the processing unit could work at a much faster speed than the rate of
throughput, the processing unit had to wait continuously for data to be fetched from
memory, what lead to longer execution times. Every increase in the amount of data
transferred would increase the execution time. To reduce this performance problem,
caches were placed between the CPU and the main memory. Despite this bottleneck this
architecture is still the dominating architecture in conventional computing, because it
offers a lot of flexibility.

Although the computer systems based on the Von-Neumann architecture are dom-
inating conventional computing, other systems are used in specific areas. Application
Specific Integrated Circuits (ASICs) for example. ASICs are designed to execute specific
applications in hard-wired technology. Though this is a very fast technology for executing
applications, it has the same lack of flexibility as the fixed program architecture.

In recent years the amount of data processed in computer systems has increased
rapidly. For computer machines based on the Von-Neumann architecture this is becoming
a problem. The earlier mentioned bottleneck causes these machines to be insufficient due
the increasing execution time by large amounts of data. Therefore, designers increasingly
use ASICs to execute applications with large amount of data. Though this is a good
solution for speeding up the execution time, the lack of flexibility still remains.

To solve this problem researchers came up with a technology called reconfigurable
computing (RC). It combines the flexibility of the Von-Neumann architecture with the
speed of ASICs. RC systems consist of software programmable processing units and
programmable hardware components, like a Field Programmable Gate Arrays (FPGAs).

2 CHAPTER 1. INTRODUCTION

These systems provide new possibilities to speed up compute-intensive calculations multi-
ple times. However, the design and applications for RC systems demand a new approach
for hardware and software design. This new approach requires knowledge of hardware
and software. Current application designers for conventional computing do not have this
knowledge. To prevent application designers from ignoring this new technology, because
it does not integrate with their systems, a comprehensive high-level development plat-
form is required. This platform should give the application designer an easy way to
implement their applications on a reconfigurable computing system.

The DelftWorkBench (DWB) tool chain, in development at the Delft University [3],
is such a software design platform. It provides the application designer with an easy
way to implement their application. Going through several phases in the tool chain the
application will be implemented on the reconfigurable platform. These phases are: Code
profiling and cost modeling, code transformations and optimizations, retargetable com-
piler, retargetable processor and (exchange) registers; all of which are further discussed
in section 2.5.

1.1 Problem description

This report will focus on the first phase of the DWB: Code profiling and cost modeling.
As part of the Hardware /Software Partitioning process this phase is an important step in
the development of reconfigurable systems. Hardware/Software Partitioning is nothing
more then identifying those parts of an application that should be executed in hardware
and those parts that should be executed in software. The goal of Hardware/Software
Partitioning is to divide an application (the hardware part and the software part) in such
a way that it can offer the optimal performance when implemented on a reconfigurable
system. To achieve this goal, parts of the application have to be analyzed and profiled on
certain aspects, like area metrics and time delay. To get the best results it is important
to know in an early stage some of these aspects, so the process of partitioning becomes
easier and better. Therefore one possibility would be to build up a statistical estimation
model, that can predict these aspects in an early stage. In addition to this statistical
estimation model, a tool should be written that is able to make predictions with the
prediction model and earlier determined Software Complexity Metrics (SCMs), see [4]
for more details on SCMs.

The original idea of this project was to build up a statistical estimation model to
estimate the area used by the inter-modular interconnect between two or more kernels
on an FPGA, based on the size of the kernels, the amount of data exchanged between
kernels and the amount of kernels on a chip. Unfortunately, the Xilinx ISE [5] was not
capable to place multiple kernels on a FPGA in an easy and useful way. Besides that,
the necessity of this model was also questionable. At this moment, it is still not possible
to use the Delft WorkBench to place multiple kernels on the FPGA. Therefore, such a
statistical estimation model of the interconnect is not applicable in the current situation.

Therefore, the assignment was revised. Still, a statistical estimation model for inter-
connects was required, but now focusing on the intra-modular interconnect of a kernel.

1.2. STRUCTURE 3

Using a special C-compiler!, based on ELSA [6], some SCMs become available. These
SCMs are used as input for the prediction model. As output will be the probable amount
of interconnect needed by the specific piece of C-code. Using this model is important to
predict if a kernel will fit on a FPGA and so whether the Hardware /Software Partitioning
is successful or not.

To achieve this, many different software kernels written in C-code will be compiled
to VHSIC Hardware Description Language (VHDL) using DWARV [7]. Mapping the
VHDL from each software kernel onto the FPGA will provide data about the interconnect
resources. This data, combined with the SCMs will form the basis for the model.

1.2 Structure

This report consists of six chapters. The next chapter provides information about the
background of this project. Detailed are reconfigurable computing, MOLEN: A recon-
figurable computing system [8], [9], [10], [11] and the Delft WorkBench tool chain. Sub-
sequently, chapter 3 translates the problem into a set of operational requirements and
discusses some related research and related theory. Chapter 4 describes the methodology
of the project and shows the experimental setup. In chapter 5 the experimental results
are provided. Finally, conclusions and further recommendations are given in chapter 6.
In addition, the tools developed during this project are discussed in the appendices.

1C is a general-purpose, block structured, procedural, imperative computer programming language.
Although C was designed as a system implementation language, it is also widely used for applications.

CHAPTER 1. INTRODUCTION

Backgrounds

In the previous chapter conventional computing was described and what kind of problem is
occurring at the moment. We briefly mentioned reconfigurable computing as a solution
to this problem. Also the Delft WorkBench was mentioned, which is a comprehensive
high-level development platform for reconfigurable computing. In this chapter more in-
formation is given on the background studies of this project. In section 2.1 we discuss
about reconfigurable computing in more detail. Section 2.3 provides some information
about FPGAs, used in reconfigurable computing systems. Subsequently, section 2.4 intro-
duces and explains MOLEN, a reconfigurable computing system. Finally, in section 2.5
the Delft WorkBench is discussed in more detail.

2.1 Reconfigurable computing

Reconfigurable computing (RC) has become an important subject in research. This is
due to the fact that it allows executing computationally intense parts of an application
in hardware to increase the performance significantly compared to software execution
while the flexibility of a software solution still remains [12].

Before the rise of RC there were two main approaches in conventional computing. The
first approach was to use hard-wired technology such as Application Specific Integration
Circuits (ASICs). This approach has the advantage that it is much faster than software
implementation, but the disadvantage is its lack of flexibility. Every time an application
changes the ASIC should be redesigned and re fabricated, which is an intensive and
expensive task.

The second approach was to use a software programmable processing unit such as
an Intel processor. This is already a far more flexible solution than using hard-wired
technology. An application written in a high-level programming language, for example
C, is compiled to lower-level instructions and executed by the processor. Now if the
application changes, only part of the application code has to be rewritten and recompiled.
However, the disadvantage of this approach is that it is limited by the capabilities of
the processor and by the sequential execution of instructions, leading back to the Von-
Neumann bottleneck. This causes poor performance when applications become more
computationally intensive.

RC combines aspects of both of these approaches and it aims to fill the gap between
software and hardware[12], depicted in Figure 2.1. It has some of the speed of hardware
and some of the flexibility of software.

6 CHAPTER 2. BACKGROUNDS

Reconfigu-
rable

Speed ——

Flexibility ——>

Figure 2.1: The design space between flexibility and performance. Reconfigurable filling
the gap between software and hardware

2.1.1 Principles

The basic idea of reconfigurable computing is to combine a General Purpose Processor
(GPP) with reconfigurable hardware [13]. An application normally executed on a pro-
cessor should then be divided into compute-intensive parts and less compute-intensive
parts. Executing the compute-intensive parts on the reconfigurable hardware and the
other parts on the GPP, should provide significantly better performance.

The early RC systems consisted of two important main components. A GPP and a
reconfigurable hardware component, for example a FPGA. These kinds of systems could
implement specific functionality on FPGAs rather than on the GPP. The GPP in such a
system no longer provided the major computational power, instead the FPGA took over
this task. Because the major computations were now done in hardware on the FPGA,
it could provide a significantly better performance. These early systems are known as
static RC systems [13]. They carry the name static, because only one configuration was
loaded onto the FPGA and could not be changed during run-time.

Today, most of the RC systems are run-time RC systems [13]. They have the pos-
sibility to reconfigure the FPGA during run-time. Therefore these systems consists of
three important main components, the GPP, the reconfigurable part and the Arbiter.

The GPP is a normal processor also used in conventional computing. It executes
those parts of the application that are less compute-intensive.

The second component is the reconfigurable part, also called the reconfigurable unit
(RU). This component actually consists of two subcomponents. The FPGA and the
reconfigurable processor (RP). The logic of the compute-intensive parts of the application
are mapped onto the FPGA, while the task of the RP is to control the logic that is
mapped onto the FPGA. Therefore, the RP is extended with an additional instruction
set. This instruction set has instructions to set and execute the logic mapped on the
FPGA. In section 2.4.3 such an instruction set, used for the MOLEN platform, will be
further discussed.

2.1. RECONFIGURABLE COMPUTING 7

The third component is the so called arbiter. The task of the arbiter is to decide,
during run-time, whether the application code should be executed by the GPP or by the
RU. The arbiter recognizes these additional instructions in the application code and then
decides whether it should be executed by the RU or by the GPP. How these additional
instructions appear in the application code will be further discussed in section 2.5 on the
Delft WorkBench tool chain.

2.1.2 Advantages

RC offers several advantages above conventional computing methods. Combining the
speed of hardware execution and the flexibility of software execution the following ad-
vantages can be identified.

o Flexibility
Because the FPGA can be reconfigured many times, different configurations can
be loaded. Therefore making it unnecessary to change the physical hardware ev-
ery time an application is updated. This saves a lot of time in redesigning and
refabricating of hardware.

o (Cost efficiency
Using only one FPGA which can be reconfigured with different configurations, saves
a lot of money on purchasing multiple FPGAs for each different configuration.

e Speed
Due to the fact that the computationally intense parts of an application can be
done in hardware, rather than on a GPP, the execution time of an application
reduces significantly. Due to the reduced execution time the amount of computing
power over time increases.

o Power efficiency
Having less execution time for an application, reducing the time the RC system is
consuming power. This is making these systems more power efficient.

2.1.3 Disadvantages

Though RC offers several advantages above conventional computing methods, there are
also several disadvantages to be mentioned.

e Application design

As mentioned earlier in the introduction, designing an application for RC systems
requires a different approach than designing an application for the current conven-
tional computing technology. In such an approach, hardware and software knowl-
edge are required. Because of this, there is a risk that current application designers
will ignore reconfigurable technology. In order to prevent this from happening, a
comprehensive high-level development platform should be developed. This plat-
form should provide an easy way for the application designer to implement their
application. The Delft WorkBench is such a platform and will be further discussed
in section 2.5.

8 CHAPTER 2. BACKGROUNDS

e Speed
Although executing an application on a RC system is faster than executing it only
on a GPP, the use of ASICs still remains the fastest solution for executing an
application in hardware.

e Reconfiguration delay
By requiring multiple reconfigurations to complete a computation, the time it takes
to reconfigure the FPGA becomes a significant concern. The systems should be idle
during this reconfiguration time, wasting a lot of processing cycles that otherwise
could be used for useful work.

2.2 Examples of RC systems

RC systems come in various shapes and sizes. These systems can be classified by four
distinctive properties: reconfigurability, granularity, coupling and reconfiguration time.
More information about these properties can be found in [14]. In this section we will
only focus on three of them. Below are some examples of RC systems given.

2.2.1 Field Programmable Gate Arrays

FPGAs are reconfigurable Very Large Scale Integration! (VLSI) components that al-
low for the implementation of arbitrary sequential and combinatorial circuits which are
described in a hardware description language. Therefore, they can be seen as a re-
configurable computing system. The simplest form of an FPGA consists of an array
of Configurable Logic Blocks (CLBs), a set of input and output blocks (IOBs) and a
programmable interconnect architecture, see also section 2.3.

e Reconfigurability
FPGAs are widely used as an alternative for ASICs, because they are repro-
grammable. Therefore, allowing to implement different applications just by re-
programming the FPGA. Examples of applications that can be implemented on an
FPGA are real-time digital signal processing and data encryption.

e Granularity
FPGAs can be considered as fine-grained computing systems. The CLBs on a
FPGA are fine-grained components. They can be used as a replacement for two to
six simple logic gates or a single flip flop in a gate level circuit design. Most of the
commercially available FPGAs also contain larger, coarse-grained blocks, such as
ALUs, which provide commonly used functionality.

e Reconfiguration time
The reconfiguration time of an FPGA is specific to each FPGA series. FPGAs
require a complete reset before a new application can be programmed. The reset
is done by an external bit stream, which can take several seconds to perform. This

1VLSI is the process of creating integrated circuits by combining thousands of transistor-based circuits
into a single chip

2.3. FPGAS 9

makes them statically reconfigurable only, because a delay of several seconds is too
long for reconfiguring it during run time. At present, some FPGA series support
limited runtime reconfiguration, for example the Xilinx Virtex4 series.

o Coupling
Because an FPGA is a single VLSI component, it cannot be used as a generic
computing platform. In order to make it suitable as a generic computing platform,
it should be mounted on a printed circuit board that provides I/O facilities. An
FPGA mounted on such a board is an example of a fully reconfigurable architecture.

2.2.2 PipeRench

PipeRench is Carnegie Mellon University’s answer to the reconfigurable computing chal-
lenge. The system, which is particularly suitable for stream based media processing
applications, was designed with the benefit of hindsight on FPGA based reconfigurable
computing systems. The PipeRench fabrics aims to beat FPGA based computing ma-
chines on five points, as described in [14].

o Reconfigurability
The PipeRench design consists of pure reconfigurable fabrics and thus in itself
is a fully reprogrammable system. However, unlike FPGAs, the PipeRench is not
suitable for complete System-on-Chip (SoC) implementations. The designers of the
system envisioned PipeRench as a co processor. It requires an additional computing
system in order to be used as a full computing platform.

o Granularity
The configurable logic units in PipeRench are designed for computation purposes.
The PipeRench chip consists of so called stripes which represent pipeline stages
in a computation. A stripe contains a number of configurable processing elements
such as ALUs. Therefore, PipeRench can be seen as a coarse-grained fabric.

e Reconfiguration time
A powerful feature of the PipeRench is its extremely short configuration time. Its
short reconfiguration time enables the PipeRench architecture to simulate long
virtual pipelines on hardware with minimal overhead.

o Coupling
PipeRench was designed to function as an attached co processor in a general pur-
pose computing system. The co processor is intended to be used as a loosely coupled
system, which processes longer instruction sequences with relative autonomy.

2.3 FPGAs

There are several manufacturers that produce FPGAs based on static memory (SRAM).
A couple of these are Xilinx [15], Altera [16] and Atmel [17]. Each of these manufacturers
have their own architectural implementation, but the basics are the same. This report

10 CHAPTER 2. BACKGROUNDS

will refer to the architectural implementation of Xilinx, because the Xilinx ISE, discussed
in Section 2.2.3, is used to synthesize the software kernels.
The basics of an FPGA architecture are depicted in Figure 2.2 [18].

Figure 2.2: FPGA internal structure based on the Xilinx architecture style.

A FPGA is a semiconductor device consisting of configurable logic blocks (CLBs), in-
terconnects, and input/output blocks (IOBs) that allow implementing complex digital
circuits. On the outside of the FPGA the IOBs form a ring for connection I/O pins that
are situated on the exterior of the FPGA. Inside this ring lies a rectangular array of logic
blocks. A typical FPGA logic block consists of a four-input lookup table (LUT) and a
flip-flop. Modern FPGA devices also include higher-level functionality such as Digital
Signal Processing (DSP), high-speed I0Bs, embedded memories (BRAM) and embedded
processors. The programmable interconnect wires are required to connect CLBs to other
CLBs and CLBs to IOBs.

A slice (Xilinx terminology) contains a small set of building blocks (LUTs, flip-flops
and control elements). This is the basic unit area when determining the FPGA-based
design size. CLBs consists of several number of slices. Modern FPGAs consists of tens
of thousands of CLBs and a large programmable interconnection network. In Figure 2.3
a CLB is depicted.

Qut

¥
-n
-

™ LuT

Figure 2.3: Internal structure of a CLB.

Unlike ASICs which perform only one specific function, FPGAs can be reprogrammed
many times to perform a different function. For programming the FPGA, code written

2.3. FPGAS 11

in a Hardware Description Language (HDL) is used, for example VHDL.

Since their introduction in 1985, FPGAs [19] have been used in various systems
implementing a broad range of applications. In most of these systems, they are used to
implement certain logic, providing high-level integrated circuits without the expenses
and risks that are involved with using ASICs.

Where the performance of FPGAs increased rapidly, their use in RC systems payed
considerable attention [19]. With the inheritance of speed and parallelism from a hard-
ware solution, FPGA-based co-processors are used to execute compute-intensive tasks
while maintaining the flexibility of a software programmable solution. Due to this fact,
the first systems with FPGA-based co-processors that compete with parallel computers
and even supercomputers have started to emerge.

2.3.1 Interconnect on a FPGA

As described above, there is a huge amount of logical blocks on a FPGA. In order to
realize a working system, it is necessary to connect those blocks to each other. The whole
process of creating and programming this interconnect structure is called routing. This
process is very important for the speed of the design, because the wiring is responsible
for a big part of the delays on a FPGA. This is due to the capacitors between the wiring
and the ground.

On a FPGA, a reprogrammable interconnect system is available to take care of this.
About 80% of the FPGA area is reserved for this system [20].

The system exists of metal wires, laying on the chip. All inputs and outputs of
the logical blocks on the chip are connected to one of those wire segments. Those wire
segments are one or more logical blocks wide. At last, the wires segments are connected
to each other with so called configuration interconnect points (CIPs). This is shown in
Figure 2.4.

Segment of length 1
Segment of length 2

Logic block
Segment of length 3

Switch

Staggered tracks

Figure 2.4: Wire segments in an interconnect structure

There are several types of CIPs, but a basic structure consists of a transistor which
couples two wire segments. The gate of this transistor is controlled by configuration
memory bits. The different types of CIPs can be found in [21]. There are multiple layers
of wires present on the chip. The amount of layers can be more than eight. In one of
the layers, wires will run from up to down, while in one other layer, the wires will run
from left to right. Where the wires cross each other, there’ll be a switch point (i.e. CIP).

12 CHAPTER 2. BACKGROUNDS

Figure 2.5 [22] shows how CIPs will connect all wire segments from multiple, individual
layers. Also, you can see a extensive version of a CIP, using six transistors to be able to
connect every wire segment to another.

Switchpoint Switchpoint
Interconnects Transistors

=

] S B
AP e
i) === Bl

Figure 2.5: A typical interconnect structure with wires and switch points

In this thesis you will read more about nets. It can be that only two logic blocks are
connected, but mostly, the output from one block is used as input for several others.
One complete connection from one logic block to one, or multiple others, is called a net.

2.3.2 Xilinx: Profile and design flow

Xilinx leads the Programmable Logic Device (PLD) market - one of the fastest growing
segments of the semiconductor industry [15]. This market features a technology called
FPGAs. Xilinx offers a lot of different FPGA series and design environments for these
series. Omne of these environments is the Xilinx ISE. This design environment provides
the designer with easy-to-use built-in tools for synthesizing and implementing HDL for
all leading FPGA series. The design flow for synthesizing and implementing HDL is
depicted in Figure 2.6 [5].

The scope of this project will mainly focus on the synthesis and implementation stage,
because these parts provide the necessary data for the statistical estimation model.

e Synthesis

The input of the synthesis stage is a HDL design file, for example VHDL source
code. During this stage, behavioral information in the HDL design file is translated
into a structural netlist and optimized for the selected FPGA series. The output, a
netlist (NGC) file, is then translated into a Xilinx Native Generic Database (NGD)
file. This file contains a logical description of the design in terms of logic elements,
such as AND gates, OR gates, decoders, flip-flops, and RAMs. This file is further
used in the Mapping stage.

e Mapping
The input file is the NGD file created in the synthesis process. During the mapping
stage a logical design is mapped to the selected FPGA series. First it performs

2.4. MOLEN: A RECONFIGURABLE COMPUTING SYSTEM 13

Design e D5 Verification
Entry
Simulation
Design []

Synthesis

i

esign
Implemeantation

Static Timing
Analysls

Optimization

FPGAS

Mapping
+ Placement

- Routing

Back Timiny
CPLDs _[Annotation }-_[Simulation l
+Fitting

Bitstream
Generation

Down o| In-Circuit
Kilinx Device Veritication

gl

g
a
g
o

iy

Figure 2.6: Xilinx design flow

a logical Design Rule Check (DSC) on the design in the NGD file. After that, it
maps the design logic to the components (CLBs, IOBs and other components) on
the selected FPGA series. The output of this stage is a Native Circuit Description
(NCD) file. A NCD file is a physical representation of the design mapped to the
components in the selected FPGA series. This file is further used in the Place and
Route stage.

e Place and Route
The input file of the Place and Route stage is the NCD file created in the mapping
process. The Place and Route stage places all components and routes the inter-
connect on certain constraints (timing, costs). The output file is another NCD
file, but a little more optimized due to the constraints. This file can then be put
through a Timing Reporter And Circuit Evaluator (TRACE) to verify if the timing
constraints were met.

2.4 MOLEN: A reconfigurable computing system

As discussed in the previous chapter, reconfigurable computing bears great promises
for the future. Therefore it is necessary to do research in what kind of configuration
reconfigurable computing systems perform best. Different kinds of proposals have been
done, but all with shortcomings, mentioned in [8, 9]. These shortcomings are listed
below.

e Opcode space explosion
Every time a new application is mapped on an FPGA, new instructions are re-
quired. Each new instruction requires a new opcode. Therefore if a wide variety of

14 CHAPTER 2. BACKGROUNDS

applications will be mapped on an FPGA, a large amount of opcodes are needed.
However, every proposed architecture has only a limited amount of space for op-
codes available.

o Limitation of the number of parameters
In a number of proposals the applications mapped on an FPGA could only have a
limited number of in and output parameters. Therefore the amount of parallelism
is limited to a certain level.

o No modularity
In each proposal the configuration is bounded to one specific reconfigurable tech-
nology or design. Therefore, the applications designed for this configuration could
not be easily ported to another configuration. Also there is a lack of mechanisms
that allows designers to design applications independent of the reconfigurable tech-
nology used.

e Support for parallel execution
Many of the proposed architectures do not support executing sequential data-
independent operations or configurations in parallel.

2.4.1 Overview

At the Delft University of Technology, some members of the Computer Engineering group
have developed a reconfigurable computing paradigm together with an accompanying
platform, called the MOLEN platform. This platform aims to overcome the shortcomings
mentioned above. An overview of the MOLEN platform is depicted in Figure 2.7 below.

Main memory

(3)
(1)
| Arbiter& | | pu-code
Memory MUX unit
L 4
2
()General :
Purpose * I
Processor
t CCU
¥ (Memory & FPGA)
. Exchange
Registers (4) registers
Reconfigurable Processor

Figure 2.7: Overview of the MOLEN platform with four main components.

2.4. MOLEN: A RECONFIGURABLE COMPUTING SYSTEM 15

As can be seen in Figure 2.7 the MOLEN platform exists of four main components.
First the instructions are fetched from the memory. The arbiter then decides whether the
instruction should be send to the general purpose processor (GPP) or to the reconfigurable
processor (RP). If sent to the RP, the microcode? unit (pu-code unit) interprets and
executes the instruction. The actual configuration is mapped on the FPGA. When done
executing, the results can be stored in the exchange registers making them available for
the GPP to use.

2.4.2 Components

o The arbiter

The MOLEN platform is extended with an additional limited instruction set of
eight instructions, called the polymorphic Instruction Set Architecture (7ISA) [8].
This extension provides instructions for setting and executing configurations, pass-
ing results and parameters to the exchange registers, and the possibility to execute
different configurations in parallel. When an instruction is fetched from the mem-
ory, it is the task of the arbiter to decide, by distinguishing one of these eight
additional instructions, if the instruction must be sent to the GPP or to the RU.
The eight additional instructions are discussed in section 2.4.3.

e The general purpose processor
The general purpose processor is a normal processor also used in conventional
computing systems. It executes the instructions that are not send to the RP. For
the MOLEN platform a PowerPC 405 processor is used [11].

e The reconfigurable processor

The reconfigurable processor (RP) consists of two main parts. The CCU, a combi-
nation of memory and an FPGA, where the actual configuration is mapped, and the
pp-code unit, which interprets and executes the incoming instructions. In section
2.4.3, a set of eight additional instructions for the RP is described. These instruc-
tions are implemented in microcode. The pu-code unit interprets the incoming
microcode and depending on what kind of instruction it receives, it communicates
with the CCU, the Arbiter and/or the Registers and Exchange registers.

o Normal registers and exchange registers
Two kinds of registers or register files are used in the MOLEN platform to store
and exchange data. The GPP stores its data in the registers. To exchange data
between the GPP and the RU the exchange registers are used. For this purpose
the additional instructions movfx and movtx, as mentioned in the section 2.4.3, can
be used.

2Microcode is used in microprogramming that can be employed to implement machine instructions in
a CPU relatively easily.

16 CHAPTER 2. BACKGROUNDS

2.4.3 Programming paradigm

The arbiter uses a special instruction set, called the polymorphic Instruction Set Ar-
chitecture (wISA), to control the FPGA. This set contains eight instructions; six to
control the hardware and two instructions are used to control the registers. Below, these
instructions are listed [23].

e p-set - controls the setting of those configurations that cover common parts of
multiple functions and/or frequently used functions.

e c-set - controls the setting of configurations of the remaining blocks on the FPGA
(not covered by the p-set) to complete the FPGA functionality

e execute - controls the execution of the operations implemented on the FPGA.
These implementations are configured onto the FPGA by the set instructions.

e set prefetch - prefetches the needed microcode responsible for FPGA reconfigu-
rations into a local on-chip storage facility in order to possibly diminish microcode
loading times.

e cxecute prefetch - The same reasoning as for the set prefetch instruction holds,
but now relating to microcode responsible for FPGA executions

e break - Used for synchronization between the GPP and the RU, when executing
in parallel. It halts the execution of instructions following the break statement,
allowing the execution of instructions in parallel.

e movtx - Moving content from a GPP register to an exchange register

e movfx - Moving content from an exchange register to a GPP register

Figure 2.8 shows how a normal compiler handles a certain part of C-code and how the
special MOLEN compiler does this. As you can see the call in the normal code is replaced
by set and execute instructions.

#pragma call_fpga op1 main: mrk 2, 14
int f(int a, int b){ mrk 2,13 mov $vr2.s32 < main.z
int @, i3 1ldc Svr0.$32 < movtx $vrl.s32(XR) < $vr2.s32
c=0; mov main.z < $vr0.s32 ldc SV .s32 <
for(i=0; i<b; i++) movtx $vr3.s32(XR) < S$vr4.s32
c =c + a<<i + 1i; wrk 2, 14 t dd 1_SET
c = c>5b; ldc $vr2.832 < se address_opl_.
return c; cal $vr1..s32 < f(main.z, $vr2.s32) lde $vr6.532(XR) <0
mov main.x < $vrl.s32 movtx $vr7.s32(XR) < vr6.s32
void main(){
int x,z; ‘l"?c(% $‘1”5T3 e exec address_opl_EXEC
z=5; ret $vr3.s32 movix $vr8.s32 < $vr5.s32(XR)
x=f(z,7) ; _text end main mov main.x < $vrs.s32
C code Original medium intermediate Medium intermediate repr ion
representation code code extended with instructions for
FPGA

Figure 2.8: Medium intermediate representation code [§]

2.5. THE DELFT WORKBENCH TOOLCHAIN 17

2.5 The Delft WorkBench toolchain

As mentioned earlier in the introduction, designing an application for RC systems re-
quires a different approach than designing applications for conventional computing sys-
tems [24]. In such an approach, the required knowledge from hardware forms an obstacle
for current application designers to use RC. Therefore, the need for a comprehensive high-
level development platform that supports application development is essential in order
to prevent designers from ignoring the reconfigurable technology.

2.5.1 Overview

At the Delft University of Technology a part of the Computer Engineering group has
developed a tool chain, called the Delft WorkBench (DWB) [3]. The DWB covers the
entire design cycle for designing an application for a RC system. An overview of the
DWB is depicted in Figure 2.9 below.

C cod :
oo S o= Retargetable Binary
Functions Compiler Candidate | | Compiler inary
Functions | |
(2) .
———Critical? —{ Synthesis
| !
!
Automatic
Genaao (Hiirg:;re O B Harware
Generator Image FPGA GPP
| ‘ HDL of
candidate | ||
functions
(4)

Figure 2.9: Overview of the Delft WorkBench tool chain which covers the whole design
process.

As can be seen in Figure 2.9 the DWB exists of several phases. In phase 1 candidate
functions are selected and transformations and optimizations are performed on them.
Subsueqently, in phase 2, the candidate functions are translated to VHDL code. This
can be done in three ways which are further discussed in 2.5.2 item VHDL generation.
In phase 3 the Retargetable Compiler translates the C-Code to the right instructions for

18 CHAPTER 2. BACKGROUNDS

the reconfigurable platform. Finally in phase 4, everything will be integrated and the
results will be validated. The DWB mainly focuses on the MOLEN platform.

2.5.2 Design flow

Within the DWB, applications written in C-code have to go through several phases
before they can be executed on the MOLEN platform. These phases are listed below [3].

e Code profiling and cost modeling

An application often consists of several functions. By characterizing each func-
tion on performance and area metrics, this phase aims to find a set of candidate
functions that offers the optimal increase of performance when implemented in
hardware. To support this phase a profiler is offered that collects and analyzes the
data to predict the area and performance. This information can then be used for
characterizing each function. At the end of this phase a set of candidate functions
is determined for implementation in hardware.

e (Code transformations and optimizations
In this phase, the candidate functions are optimized and eventually transformed.
The compiler will focus on two main optimizations, namely graph restructuring
and loops parallelization. Loops can be seen as an important candidate for code
optimization. Loops parallelization and optimization searches inside loops (f.e. for
and while statements) for which parts can be executed parallel. More information
about loop transformation, parallelization and optimization is in [25] and [26].

e Retargetable compiler

The DWB tool chain provides a compiler to compile the application to the MOLEN
platform. Each function in the optimal set will be translated to the correct instruc-
tions for the FPGA. These instructions are mentioned earlier in subsection 2.4.3.
Then, the compiler retargets these instructions in the original compiled code. The
compiler also has to deal with the scheduling problems that arise when executing
the functions in parallel with the GPP. A set instruction causes the FPGA to
reconfigure itself. This will introduce some reconfiguration latency that has to be
taken into account while scheduling the instructions.

e VHDL generation

When the optimal set of functions is determined, they have to be translated to
VHDL. The DWB tool chain offers three methods for translating the C-code to
VHDL. The first method for the designer would be to translate the C-code to
VHDL manually. This requires knowledge of hardware, but it offers the best quality
designs. The second method is to use existing VHDL from a hardware library. Such
an hardware library consists of VHDL segments, IP-cores and design patterns, from
often used algorithms. The third method is to automatically generate VHDL with
the DWARV? compiler. This is the easiest and fastest method. However, it lacks
good optimization of the VHDL code.

3DelftWorkbench Automated Reconfigurable VHDL Generator, an automated VHDL generator de-
signed for the DWB tool chain [7]

2.5. THE DELFT WORKBENCH TOOLCHAIN 19

o [Integration and validation
After the optimal set of functions is compiled and re targeted by the Retargetable
Compiler it is ready to be integrated on the MOLEN platform. Running it on the
MOLEN platform will provide statistics about the performance. These statistics
are used to validate the process and refine the code profiling and cost modeling
stage. This can be iterated many times until the designer is satisfied with the
results.

20

CHAPTER 2. BACKGROUNDS

Interconnect estimation from

C-code

In the previous chapter we described the background of the project. In this chapter we
discuss some more details about the problem, described in the introduction. In section
3.1 we discuss the operational requirements of the statistical estimation model and the
Prediction Tool. Section 3.2 presents some related research, followed by section 3.3 where
the Quipu model is described. Finally, in the last section some related theory is provided.

3.1 Operational requirements

To find a suitable solution for the problem as discussed in Section 1.1, a set of operational
requirements were formulated. This set describes what the prediction model and the
Prediction Tool should do and how it should be made. This set of requirements follows
from the way how our model will be used in the DWB tool chain.

3.1.1 Operational requirements for the prediction model

e Given a predefined set of software metrics, the prediction model should be able
to predict the amount of interconnect resources (nets) on the FPGA, used by this
piece of software. This model should be accurate enough to use in the DWB tool
chain.

e The model should be based on partial least squares regression.

e The model should be generated in R, a programming language specialized in sta-
tistical problems.

e The model should be represented in an XML-format file.

e The model should be able to make predictions for the Virtex2 platform as well as
for the Virtex4 platform.

3.1.2 Operational requirements for the accompanying tool

e Given the specification of the model and a set of software complexity metrics and
FPGA specifications, the accompanying tool should be able to make predictions of
the interconnect resources needed.

e The accompanying tool should come along with a built-in help function or a
readme.txt

e The accompanying tool should work cross-platform.

21

22 CHAPTER 3. INTERCONNECT ESTIMATION FROM C-CODE

e The accompanying tool should be command line based.

e The accompanying tool should run standalone as well as in an automated tool
chain.

e The source code of this tool should be commented as much as possible, in the
English language.

e The input and output files of the accompanying tool should be in an XML-format.

e The accompanying tool should be able to calculate the utilization for different
FPGA devices which are described in an XML-format file.

3.2 Related research

Many approaches in prediction of interconnect resources have been presented in the past.
Most of these approaches are based on a lower level than C-code.

Many prediction models were initially based on Rent’s rule [27]. Rent’s rule was first
described by Russo and Landman in 1971. Rent’s rule describes the relation between the
number of pins at the boundaries of integrated circuits and the number of components
(e.g. logical blocks).

That interconnect problems shows up in other subjects, is made clear in [28]. The
authors presented a new method of high-level synthesis for devices that accomplish com-
putationally dense operations, like complex ASIC systems. In order to make that work,
they tried to allocate and optimize the interconnections on the chip.

In [29], several methods for wire length estimation are discussed. Those methods
are based on Rents exponents of partitioning or placement. Wire length estimation is
difficult for large circuits and depends on several factors, such as the placement algorithm
in the design flow and the parameters of the global router. The authors encountered that
extensive data is required to make precise wire length estimations.

In [30], an early estimation scheme from C-code is presented. The authors are present-
ing a custom-built model for execution time based on the SPARK C-to-VHDL compiler.
Using a set of 9 kernels from 2 applications they end up with an error of 39.3% and
44.4% compared to the actual execution time.

In [31], the authors propose an a priori interconnect and wire length estimation
methodology for producing half perimeter wire length estimates for every single net in
the circuit. A priori techniques estimate these parameters without actually performing
circuit placement. Using properties of the circuits together with the FPGA limitations
the authors derive important parameters about the wire length. Their method has an
average error of 11.6% in wirelength compared to the actual measurements.

In [32], a multi-dimensional quantitative prediction model for hardware-software par-
titioning (Quipu) is presented. Quipu offers a prediction model based on linear regression
between software metrics, from a set of 127 software kernels written in C-code, and hard-
ware measures from their corresponding design. Currently Quipu still has a large error
compared to lower level prediction models, but it offers fast and early predictions and

3.3. QUIPU 23

supports a wide variety of applications. At the moment Quipu only takes area measures
like Slices, Flip-Flops, or LUTSs into account.

Interestingly, the authors in [33] investigated the statement that the industries do
not make use of interconnect prediction models. Existing models are too inaccurate to
be useful for industry. They give four main reasons for that inaccuracy. At last they put
forward, that it would be very useful if a tool was designed that could predict routing
requirements directly from HDLs or higher level languages. Due to the absence of the
use of wires in HDLs, designers do not have much notion of this routing requirements.
If those requirements does not fit the available amount of wiring on the FPGA, it will
reveal in a late stage in the design process (after synthesis and mapping, see section
2.3.2).

So that means that our project is relevant to the industries. In our project we will
try to extend the Quipu model with the area measures for the interconnect. The area
measures for the interconnect are quiet important, because the available wires on an
FPGA is limited. Kernels with a huge amount of interconnect can inhibit the use of
other kernels, despite the sufficient amount of computational elements that might be
available.

3.3 Quipu

Quipu is a quantitative prediction model based on Multi Dimensional Linear Regression
using Software Complexity Metrics. This model provides estimates of certain resources
for implementing applications on hardware from a high-level programming language like
C. The model is based on the hypothesis that software and hardware complexity are
related. In [4] is shown that for area measures, like slices and flip flops, this hypothesis
is true. For other resources this hypothesis has not been profen yet.

The earlier mentioned Software Complexity Metrics (SCMs) represent different as-
pects of the complexity from computer programs and functions. SCMs are not a new
concept, they already have been used in software development processes to predict devel-
opment time or the number of errors. Therefore, the advantage of using SCMs in Quipu,
is that some SCMs are already available. Those which are not already available are often
quiet easily to determine in a relatively short time. For the Quipu model 24 SCMs are
gathered. A detailed description of these SCMs can be found in [4]. These SCMs cover
a wide range of applications from encryption to multimedia purposes. As shown in [4]
some of these metrics correlate with hardware, but some of these metrics also correlate
with other metrics. For example the Average Path Length, Maximum Path Length and
Statements are all a measure for the length of an application. This correlation among the
SCMs is called linear interdependence or multicollinearity. Because for classical linear
regression independent variables are required, the set of metrics are transformed using
Principal Component Analysis (PCA). More details about PCA can be found in [4].

Quipu focuses on the MOLEN platform. Because MOLEN is a reconfigurable com-
puting platform, Quipu should not only predict area measures, it should also cover delays,
such as reconfiguration delay. At the moment Quipu only covers area measures. There-
fore, extending the Quipu model with delay estimation could be an improvement. This
is not the only improvement that can be made for Quipu. A list of other improvements

24 CHAPTER 3. INTERCONNECT ESTIMATION FROM C-CODE

can be found in [4]. As mentioned earlier this report focuses on the estimation of the
interconnect resources, one of the improvements mentioned in [4].

3.4 Related theory

3.4.1 Statistical Modeling

The results obtained from the interconnect modeling should somehow give insight in how
many nets a kernel will approximately contain once it is mapped to an FPGA. A common
approach to problems such as finding the interconnect from certain C-code is statistical
modeling. Statistical modelling is widely applied throughout a diverse set of problems
including those that arise from social sciences, environmental sciences and economical
sciences. Statistical modelling allows us to find any kind of empirical relation between
causes, or predictors, and effect, or response.

The drawback of modelling is that the mathematics behind the modeling theory will
always fit the predictors to the response. It does not matter whether a relation between
predictor and response actually exists, or is just mere coincidence. There is also a risk of
overfitting, which happens when there are to many predictors compared to the number of
responses. If the number of predictors is large enough, there will be a linear combination
of the predictors that suit the response well with an acceptable small error.

Fortunately, there are a number of tests to check to which degree a model is useful.
A well-known method to check the goodness-of-fit of a linear model is the Aikike In-
formation Criterium (AIC) [34]. Other uses are Mallows’ C,, [35] and the adjusted R2.
These functions calculate a number based on the residuals and the number of parameters.
Their formulas are:

AIC = 2k+N <ln 2nR5S | 1) (3.1)
N

1 Y; - Y;, re

C, = 2%k—N+ 2z S) (3.2)
RS
RSS)\ N -1
Adj R = 1-(1- Yl :

G- R (var(Ypreq)) N —k—1 (3:3)

where k is the number of parameters, N the number of observations, RSS the residual
sum of squares, Y the response, Y),..q the predicted response and RS the residuals mean,
which, when unbiased, is the same as the squared Root Mean Square Deviance (RMSD,
see formula (3.4)), for all number of model components.

n L 2
RMSD — Zi:i (xtrue,z xpred,l) (34)

n

We can also see that all the criteria are based on the number of parameters and the total
error (the structure of the adjusted R? is comparable).

A model can be selected using one of the variables stated above. These parameters
are important to select a best model, since they take the number of parameters into

3.4. RELATED THEORY 25

account. A bigger model will always fit at least as good compared to a smaller model,
since the additional parameter does not have to be used. However, if it can gain even
the slightest increment in the quality of the fit, an exhaustive algorhitm will include it
in a model.

The reason that the goodness of fit calculations punish the inclusion of extra model
predictors is twofold. First, each extra predictor adds extra noise to the model, so too
many predictors will render a model useless, despite excellent fitting. The other reason is
simplicity. A model is used to get insight in a relation between response and predictors.
Too many parameters will diminish the understandability of the model. If a model is
not well understood, it is hard to tell whether it makes any sense.

3.4.2 Linear regression

A common way tot fit data is the use of linear regression. A linear regression algorithm
will try to fit data by minimizing the residual squares of sums. A linear model will have
the general form of

Yi = 01f(X1y) + Bof(Xog) + ..o+ Bnf(Xny) + € (3.5)

where 3 are the parameters of the regression model, X; the model predictor and f(X})
are predictor transformations. Any model that can not be written in the form of (3.5) is
not a linear model. Transformations are useful when e.g. a linear predictor results in an
exponential response. There is no easy way to choose which transformation to use on the
data. Usually a visual analysis of the data helps to decide if a transformation is useful.
The least squares method used by the R glm function. It assumes the error ¢; is normally
distributed, which is a good assumption when there is no thorough understanding of
the underlying relations in the data set. We have chosen to use R 2.7.0 for statistical
calculations. R [36] has a very good support for statistical graphics output and statistical
testing on data.

3.4.3 OLS and PLS models

There a several types of models. We have chosen to make an OLS and a PLS model.
OLS stands for Ordinary Least Squares where PLS stands for Partial Least Squares. In
an OLS model, it is tried to minimize the total sum of squared errors. By squaring the
errors, they will add up instead of compensate each other (in the case of positive and
negative errors). Also, by squaring the errors, big errors will have more influence in the
model rather than small errors.

A PLS model model relies on the theory of principal components. These are found
by taken the orthogonal eigenvalues of the covariance matrix of the predictor set. The
benefit of these principal components is that the try to descripe the data with only the
important predictors. PLSR modelling is better suited towards prediction then OLSR
modelling. Since OLSR is the de facto standard way of elementary modelling, but PLSR
will theorethically perform better, both methods will be worked out in the results chapter.

26 CHAPTER 3. INTERCONNECT ESTIMATION FROM C-CODE

3.4.4 Validation of statistical models

The art of fitting is not to let a computer do a number crunching job. The art is to find
models that do actually make sense for the purpose they are needed and designed for.
Therefore, the model needs to be validated in some way. There are a number of ways to
do this.

The Root mean square deviance (RMSD) is a tool which is often used as a measure
comparable to the standard deviance of the model, which gives in indication of how well
the model fits.

Since the model is used for predicting, this also must be measured. The RMSD can
also be used for checking the cross-validated models. This makes the OLS and the PLSR
models directly comparable in the field of predictablilty. The downside of this approach
is that the RMSD for cross validation for different models is calculated by two different
packages, so there could be differences in calculations.

Methodology

Chapter 3 presented more details about the problem. In this chapter, we describe the
different steps that need to be taken to eventually build up the statistical estimation model.

4.1 Generating VHDL code from the kernels

The first step in this process is to generate VHDL from the kernels written in C-code.
This is done by a compiler in the Delft Workbench tool chain. The compiler is called
DWARY and is developed by the Computer Engineering group at Delft University [7].
Due to some complications, we were not able to compile the kernels ourselves, so we were
provided with a set of already compiled versions of the kernels. This set existed of 127
kernels.

4.2 Synthesizing & Implementing the VHDL code

The second step in the process is to synthesize and implement the VHDL code from
each kernel. This is done with the Xilinx ISE, a design environment that provides the
designer with easy-to-use built-in tools for synthesizing and implementing VHDL, see
section 2.3.2. With the Xilinx ISE, it is only possible to synthesize and implement the
kernels one by one. Because of the large number of kernels, it is a time consuming
process doing this for each kernel manually. Therefore, a tool has been written that
automates the whole Xilinx ISE process of synthesizing and implementing. This tool is
called the Xilinx ISE Tool, discussed in Appendix A. During the Xilinx ISE process the
tool produces several log files containing data necessary for building up the statistical
estimation model.

4.3 Extracting necessary data from the log files

From the log files, created during the Xilinx ISE process, the necessary data needs to be
extracted. Doing this manually for each log file is a time consuming process. Therefore,
another tool has been written called the log files tool, discussed in Appendix B, that
extracts all data from the log files. The data extracted from the log files is written to an
output file.

4.4 Building up the statistical estimation model

Since modeling takes a lot of computations, this task has to be done with mathematical
software. We choose to make exclusive use of the R programming environment for this

27

28 CHAPTER 4. METHODOLOGY

task due to its flexibility and powerful statistics engine.

To build the model, two types of regression analysis have been considered, namely
ordinary least squares (OLS) and partial least squares (PLS) ([37], chapter 9.2 and section
3.4.3 of this report). To build a model with OLS we have used the regsubsets package
to select which parameters to include in the model. To build and analyze the PLS model
we have made extensive use of the pls library, which automatically fits a PLS model
and calculates the RMSD.

The purpose of the model is to find a relation between certain c-code parameters and
the number of nets in the FPGA design for a specific FPGA architecture, in this thesis
the Xilinx Virtex-II Pro and the Virtex-4. Since the goal of the modeling is to find a
model that makes good predictions over physical understanding of the relation between
C-code and interconnection, we will focus on the PLS modeling technique ([37], chapter
9.2). A PLS model can be generated in R as follows with the so-called leave one out
cross validation:

library(pls)
model <- plsr(response

predictors, validation= "L0OO")

With the validationplot the relation between RMSD model parameters can be visu-
alized to select the PLS model with the smallest error.

4.4.1 Transformations on the data

Although the technique of linear modeling assumes that there are linear relations in the
form of y = BX, this is not a general principle in the relation between predictors and
response. Some relations take a form which closer resembles an exponential, logarithmic
or polynomial relation.

There is no way to obtain these relations in a structured manner, so they have to be
found by inspection. This can be done by plotting a predictor against the response. If
there is a visible relation between the two, but not a linear one, a transformation can be
tried. Testing whether a predictor is effectively linearized against the response can be
done by checking for normality when the response is divided by the appropriate 3 for the
predictor it is tested against. There are a number of tests to check for normality, each
having their own application. Easier would be to verify by inspection that the relation
is linear, since there is no guaranty whatsoever that the model residuals are normally
distributed.

4.5 Analyzing the model

Fitting a model is relatively easy, since calculations can be performed by software. More
difficult is understanding and correctly interpreting the steps involved in verifying the
models.

Unfortunately, there is no single strategy or methodology for generating a linear
model. Each situation requires an application specific approach to the problem. A
computer makes every predictor fit to a response with a least squares method, even

4.5. ANALYZING THE MODEL 29

when no such relation exists at all. There are, however, dozens of tests to see how
models compare to each other. For the OLS case, several plots for criterion based model
selection (i.e. the best predictors for a predefined number of parameters) have been
included in the figures section, such as selection on the Bayesian information criterion,
Mallows’ C}, and the adjusted R? (see [37] chapter 8). Testing tools in the pls package
lack these criteria, making them somewhat hard to directly compare.

One way to select which model works best is to look at the confidence intervals of
the reported error. Since the sample contains only 118 units Uy, Us, ..., U1 over a the-
oretically infinite sized population U, we need some method to enlarge our sample space
Uy,Us,...,U1s. The general way to do this is by applying resampling methods. The
bootstrap method (see [38] for a thorough explanation) is a general applicable method
for resampling. The R programming environment offers a good library routine for boot-
strapping. For this particular case, we are interested in the model with the smallest
error and confidence interval for those errors. A good hands-on introductory tutorial on
bootstrapping and permutation tests, another resampling method, can be found in [39].

Another way to make good use of the bootstrapping package is exploiting its capa-
bilities for cross validation for generalized linear models , using the cv.glm function:

library(boot)
cv.err <- cv.glm(data, linear.model)

Nowadays computer power is not a big problem any more, so both modeling techniques
OLS and PLS can be validated by the leave-one-out algorithm.

The confidence interval will be calculated on the standard deviation of the errors of
the PLS and OLS model. There are no hard rules for selection either model based on the
confidence interval and cross-validation information, but the one with the lowest cross
validation error will presumably do.

4.5.1 Elimination of data outliers

As with almost any data set, there are values which in some way do not seem to fit in
the model. There can be two reasons. First, a measurement or data collection error
could have been made. Second, some kernels might exhibit some anomalous behavior,
translating into deviating SCM measurements. We examined some outliers, namely that
ones that appear on the Virtex2 platform as well as on the Virtex4 platform. These
outliers are havalTransform3, intfdct, g721_body, gost_encrypt, cast128_decrypt
and cast128_encrypt. Because we want to figure out what types of C-code causes these
types of outliers, it is necessary to know which metrics are responsible for those kernels
being outlied. Therefore we investigated the total amount of nets divided by the value of
one of the metrics and compared them to the normal kernels. Unfortunately, there was
not a clear metric which we could depict as being the cause. The only two metrics which
show some bit of exceptions were the AICC and the Oviedo.DU.pairs. All the outliers
have relatively high nets per AICC or per Oviedo.DU.pairs. Nevertheless, we could not
find something specific in the C-code. Extensive analysis on this outliers is one of our
recommendations (see chapter 6).

30 CHAPTER 4. METHODOLOGY

4.6 Making predictions using the prediction tool

With the parameters of the build up model stored in a .xml file and the earlier determined
SCMs, also stored in a .xml file, we can now make predictions with the prediction tool.
Details on the working of the prediction tool can be found in Appendix C.

Experimental setup and results

5.1 Experimental setup

5.1.1 Used Software

For synthesizing the VHDL code the application Xilinx ISE: Release version 9i, Appli-
cation version J.30 has been used. This application offers to synthesize VHDL code for
different FPGA series. In this experiment the VHDL code is synthesized for two different
FPGA series. The Virtex-II Pro, device type XC2VP30, and the Virtex-4, device type
XC4VFX60. The statistical estimation model is produced with the R 2.7.0 programming
environment

5.1.2 Used hardware

The synthesizing of the VHDL code with Xilinx ISE was executed on a Sony Vaio laptop.
The laptop specifications are listed below.

e Processor: Intel Core 2 Duo-processor T5500 running at 1.66 Ghz
e Memory: 2x1024 Mb of DDR2 SDRAM
e Harddisk: SATA 120 Gb, 5400 rpm

e Operating System: Windows Vista Home Premium

5.2 Experimental results

The MOLEN platform is currently designed to work with the Xilinx Virtex-II Pro plat-
form. As technology strides on, the upcoming versions will work with the newer Virtex-4
platform. To give our research relevance now and in the future, interconnect models for
both architectures are included in this report.

5.2.1 Prediction Model for the Virtex-II Pro design
5.2.1.1 Ordinary Least Squares Model

The results for the linear model were obtained using the regsubsets function in the R
leaps library. The algorithm tries to find the best combinations for a predefined number
of parameters from 1 to 9. The working of these algorithms are thoroughly explained in
[40]. The significance results for the Virtex-II Pro are plotted in Table 5.3. This provides
no information on how well these predictors actually perform in the model. To check
whether the extra parameters actually help to improve the model instead of just adding

31

32 CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

o
R © o
o S o ° S _|©
o N
lo) |
o
o
2 ° .
< o I _|
o - N
=] o !
c
Q k)
o — =
o £ 3
) s 9
a ~ S - c
) x ° 2
] 1= ° g o o
s 2] 2 E ®
S a 5 &1
[+ (o] = o = |
= 2 9 A £
© <
Q =]
& & a2 |
g 7
& o
o]
S S S °
S o ™ o
o ! o
o
° g
o [o) : o
. o © Jo 5
= ¢
T T T T T T T T T T T
2 4 6 8 2 4 6 8 2 4 6
Index Index Index

Figure 5.1: Three criterion statistics for the number of predictors to include in the OLSR
model, Virtex-II Pro

noise and provoke overfitting, some useful test statistics, mentioned in Chapter 4, are
used. Figure 5.1 gives some insight in how many model parameters to use based on these
statistics. The plots indicate that the full 9 predictors calculated in regsubsets must be
used. To get this information we actually need to make the fit with the given parameters,
which gives us the following results, which already excludes some parameters who turn
out to have no good significance levels when actually fitted:

The t value is the number of times the standard error fits into the estimate, the Pr(>t|)
is the chance that the predictor does not explain any relation between response and
predictor. In this case, we will leave the intercept in because of the physical nature of
the DWARYV compiler which always generates some amount of wiring even if there is no
program attached.

To improve results, two data outliers have been removed from the regression set in
order to make a better fit. In Figure 5.2 no values show extreme deviance from the
model. The problematic units fit poorly in all four plots for the linear model. Note
that with the exclusion of two non conforming units causes the favorable subset selection
to change with some two to three predictors, depending on the number of prediction
parameters.

5.2. EXPERIMENTAL RESULTS 33

Table 5.1: R results for the linear fit of the OLSR model, Virtex-II Pro

Metric Estimate Std. Error t value Pr(>|tl)
(Intercept) -3223.474 2226.267 -1.448 0.15053
AICC 1704.188 749.096 2.275 0.02488
BBcurMaxExpression 3.253 1.390 2.340 0.02112
BBnumBIlocks 135.272 52.231 2.590 0.01092
BBtotalExpressions 3.225 1.369 2.356 0.02027
BINMultiplications -632.168 203.621 -3.105 0.00243
BINMultiplyBits 29.594 4.955 5.973 3.03e-08
Oviedo.DU.pairs 15.584 1.749 8.910 1.39e-14

The statistics of this fit are shown in Table 5.2. An average error of 47 % is not all that
bad, but the next section shows that the partial least squares method will perform a bit
better. Figure 5.3 plots the actual number of nets against the predicted number of nets.
The OLSR modelling technique tries to reduce the total amount of error, not taking in
account relative errors, which could be a good subject for further research. Figure 5.3
gives a graphical notion of how well the fitted values compare to the observed values, i.e.
the closer a point is to the diagonal line, the better it fits in the model. Table 5.2 gives
some of the basic statistics of the OLSR model. The error percentage is calculated by:

err. — (|yi,pred - yi,mes‘) (51)

Yimes

This gives a general view of the relative overall fitting error of the model. RMSD and
bootstrap! intervals are explained in Chapter 4. The RMSD values are useful to compare
different models, they contain no information when used without context.

Table 5.2: Statistics of the OLSR model, Virtex-1I Pro

No. of components 7
Error percentage 46.7 %
Root mean square deviation 4326.362
Cross-validation RMSD 5714.076
Bootstrapped 95 % BC,, conf. interval 3254 — 5693
Bootstrapped conf. interval length 2439

L All bootstrap simulations are based on 10000 bootstrapped samples

34 CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS
3 Residuals vs Fitted Normal Q-Q
S 4
8processBu9§\%tlzs=aecwpt ® I “Stlzs—er(‘)%“%?el%ééuﬂﬁ Typt
o N (o) ° ‘_:65 [e]
S - o he: ®
o @
n 9 5] -
g L
s 1.8, g
7 o ® N
v o - o 5 _|
x OQTQ\-“‘4;*41-\750 5
_ g © ° 2
g] ° g
] -
8 ° 5 o
- o
T T T T T T T T T T
0 20000 60000 -2 -1 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
2prﬁessBu 1128_dscrypt | \\ N
i) o n 8 ointhgt
i g g o T
=B o 3 o o Tl el
a D — TR
o o o RN
b= - o T ~|os
I 8 ®0°
B <] T
(]) o
-c% % @go ° havaITr’an’sfgrm/ 2 2'5
7] n] o e LT
= TP
- -- CodRi e

0 20000 60000

Fitted values

I I I I
0.0 0.2 0.4 0.6

Leverage

Figure 5.2: Standard R test statistics plots for the OLSR model, Virtex-II Pro

5.2.1.2 Partial Least Squares

Partial least squares regression is a somewhat different approach to the fitting problem
then the Ordinary Least squares, as it is based on so called principal components. Prin-
cipal components are predictors who are selected to be the most suitable predictors for

a fitting set. They are found by covariance analysis .

PLS regression in R can be done

with the pls library. The plsr function natively supports cross-validation, which is the
only good way to compare the PLS and the OLS. Figure 5.4 shows the RMSD for models
with different validation methods (no validation, leave one out validation and multiple

5.2. EXPERIMENTAL RESULTS 35

40000 60000 80000

Actual amount of nets

20000

I I I I I
0 20000 40000 60000 80000

Predicted amount of nets

Figure 5.3: Measured values plotted against the predicted values of the OLSR model,
Virtex-IT Pro

K cross validation).

Again some extreme values are eliminated from the model to make a better fitting.
It is interesting that the first plot in Figure 5.4 shows lower values for higher component
numbers, since the lack of predictability testing makes it more likely that overfitting will
occur, since the predictors will adept to the data. This is the mayor advantage over
OLS, where models are not generated with testing for predictability in mind. Also the
number of components needed for a good model is lower for, thereby including less noise
into the model.

The statistics of the PLSR model are shown in table 5.4. The PLSR model gives two
indications on what amount of parameters to use. Figure 5.4 hints the use of only four
predictors, while Figure 5.5 indicates to use nine predictors. This is probably due to the
fact that error percentages allow easier over fitting, and that the RMSD more heavily
penalizes extreme outliers because of its mean square nature.

Based on the data from table 5.4, it is hard to say which model performs best.
The model with 9 parameters clearly performs better on all fronts except on the cross
validation, which gives the important quantification of predictability. This problem could
be resolved by bootstrapping cross validation (see [38] chapter 17), more on this is in
the recommendations section in chapter 6. The error percentage of the nine predictor

36 CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Table 5.3: Best predictor set for Virtex-II Pro OLS given the number of parameters

Metric 1 2 3 4 5 6 7 8 9
AICC X
BBavgExpPerBlock X X X
BBavgExpPerStatement X X
BBcurMaxExpression X X X
BBmaxExpPerStatement X
BBnumBlocks X
BBtotalExpressions X
BINMultiplications X X
BINMultiplyBits X X X X X X X X
Loads X X
Maximum.Nesting.Depth X
Maximum.Path.Length X X
Oviedo.DU.pairs X X X X X X
Statements X X
UNYBitNot x
nOperands X X

nOperator X X

nUOperands X X X X X

Table 5.4: Statistics of the PLSR model, Virtex-1I Pro

No. of components 4 9
Error percentage 60.3 % 31.6 %
Root mean square deviation 4726 4157
Cross-validation RMSD 5593 6247
Bootstrapped 95 % BC,, conf. interval 3722 — 6037 3358 — 5255
Bootstrapped conf. interval length 2325 1897

model is clearly better, but is performs worse on predictability. The bootstrapped 95
% interval for the errors also looks better for the nine pridictor model, since the upper
bound of the confidence interval is better.

The results for the PLS regression methods, such as the used empirical transforma-

tions and the coefficients can be found in the appendix. Figure 5.7 shows the difference
in fitting between the PLS and the OLS model, whereas the OLSR data is represented

5.2. EXPERIMENTAL RESULTS 37

No validation Leave on out Cross validation

20000
I
20000
I

15000
I
18000
I
20000
I

16000
I

14000
I

15000
I

RMSEP
RMSEP
RMSEP

10000
I
12000
I

10000
I

10000
L

5000
L

8000
I

6000

T T T T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

number of components number of components number of components

Figure 5.4: RSMD for number of components in model for different validation methods,
Virtex-II Pro

by the o and the PLSR data by the x.

5.2.1.3 Data transformation

To build a linear model, one needs in some way linear relations between the response
y and the predictors X. When relations are not linear, they can be made by applying
a function to the data to fit better. We have chosen to use polynomial transforms on
the data sets, and only when there was a visible kind of relation between predictor and
response.

The data transforms result in a prediction quality which is, as expected, better than
the quality of the non-transformed model. Figure 5.6 visualizes the difference in pre-
dicting quality of the transformed and the non-transformed data set, where the RMSD
is used as test statistic. All the calculations in the PLSR section were done using the
transformed data.

38 CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

o
o
S
-
o
o
< 4
—
<
=
5 g |
8 g
c
@
O
<
@
o
.
o
S @
=
i}
o
© OO
oo
0o 0o o
o o,0 © o o 000%00%,0
=) ©76 04500
I o oCoo
000 °
oo
T T T T T
0 10 20 30 40

Number of included components

Figure 5.5: Relative error of the PLSR model for different number of prediction param-
eters, Virtex-II Pro

Transformations applied No transformations applied
o
S - 8
o o
S g
o o
g - o 8
o R <
h - h -
= =
o o
8 g
o — o
‘9' —
]
o
o o
S T \ \ \ \ © \ \ \ \
0 10 20 30 40 0 10 20 30 40
number of components number of components

Figure 5.6: RMSD for transformed and non-transformed predictors, Virtex-I1 Pro

5.2. EXPERIMENTAL RESULTS 39

PLSRvs. LM

predicted
60000 80000
! !

40000
1

20000
1

0 20000 40000 60000 80000

measured

Figure 5.7: The OLSR model vs. the PLSR model when fitted,Virtex-1I Pro

5.2.2 Prediction Model for the Virtex-4 design

To cope with the upcoming Xilinx Virtex-4 Architecture for the MOLEN Platform fits
for this architecture have also been made. Since the methodology is the same, this section
omits most of the comments in the previous section.

When fitted with R, the transformed model for the Virtex-4 OLS gives the following
result:

The results of the linear fit, with transformed, i.e. linearized data, data is shown in
table 5.5 The criterion plots for the transformed data with removed outliers are in Figure
5.8. The main statistics of the transformed model without outliers are in table 5.6. Table
5.7 gives an indication of which parameters to include in the model for a given number
of model predictors. A performance indication of the linear model is given in Figure 5.9.

Due to the architectural differences separated models for the Virtex-II Pro and the
Virtex-4 have to be developed. The number of nets differ considerably in the two different

40 CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Table 5.5: R results for the linear fit of the OLSR model, Virtex-4

Metric Estimate Std. Error t value Pr(>|tl)
(Intercept) -1489.0434 531.3429 -2.802 0.00604
BBavgExpPerStatement 223.5130 26.0995 8.564 9.99e-14
BBcurMaxStatement -50.9074 6.0973 -8.349 2.98e-13
BBtotalStatements 24.1130 3.7276 6.469 3.20e-09
BINMultiplyBits 3.7384 1.5406 2.427 0.01695
Oviedo.DU.pairs 7.6370 1.3582 5.623 1.56e-07
PlusMinus 15.2837 0.9212 16.592 < 2e-16
Statements 62.3702 5.5913 11.155 < 2e-16
Tai.DU.pairs -12.3500 1.8704 -6.603 1.69¢-09
VSArgVarCount 631.7507 188.1093 3.358 0.00109
o § B o © o § —o
8 & °
o . g % |
o £ °
a O - o~ O
o ¥ o 5
é o g § 1 ° g °
g 84 2 g
gi & o
o ° g |
& T o i o
o ° °
T T T T ° ° L T T T T I T T T T °
2 4 6 8 2 4 6 8 2 4 6 8
Index Index Index

Figure 5.8: Three criterion statistics for the number of predictors to include in the OLSR
model,Virtex-4

architectures, despite that the VHDL code is the same. This is most likely to be caused
by different futures of the FPGA’s, where the number of multiplexers, memory cells and
physical layout can differ sub sequentially.

5.2. EXPERIMENTAL RESULTS

41

Residuals

JIStd. deviance resid.|

Residuals vs Fitted

15000
|

g s
[¢]

[¢]
° [e]
[¢]
o ® o

0 5000

—-10000

0 20000 40000

Predicted values

Scale—Location

I
60000

nRERSH128_GRERpL

2.0
|

0 20000

40000

Predicted values

Figure 5.9: Some standard R test statistics for the linear model, Virtex-4

60000

Std. deviance resid.

Std. deviance resid.

Normal Q-Q

Theoretical Quantiles

Residuals vs Leverage

- 8 ointfdct
_] @5 o
S g

o
P havalTransform

o
- - - Cooisndistance

I I I I
0.0 0.2 0.4 0.6

Leverage

CaSIlZBien%llzsidecrypt

_ S

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Table 5.6: Statistics of the transformed OLSR model, Virtex-4

No. of components 9
Error percentage 36.02 %
Root mean square deviation 2720.3
Cross-validation RMSD 3465.3
Bootstrapped 95 % BC,, conf. interval 2041 — 3788
Bootstrapped conf. interval length 1747

Table 5.7: Best predictor set for OLSR given the number of parameters, Virtex-4

Metric 1 2 3 4 5 6 7 8 9
BBavgExpPerStatement X X X X X
BBcurMaxStatement X X X X
BBtotalExpressions X

BBtotalstatements X X
BINMultiplyBits X
BINShift X X

Basili.Hutchens X X
Oviedo.DU.pairs X X X X X
PlusMinus X X X X X X X
Statements X X X X X
Stores X X X
Tai.DU.pairs X X X
UNYBitNot X

VSArgVarCount X X
nOperator X

nOperands X

5.2. EXPERIMENTAL RESULTS

43

o
o
O_
o
Lo
o
o
O_
o
<

0

g

T 3

>o_

T O

[I e)]

-

>

]

©

= 3
O_
o
AN
o
o
O_
o
—
O_

I I I I I I
0 10000 20000 30000 40000 50000

Predicted values

Figure 5.10: Fitted values vs. the measured values of the OLSR model, Virtex-4

44

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Conclusions and
recommendations

The results section shows that the model we have built can make predictions with ac-
ceptable error. These results can help to make early decisions in the entire design from
C-code to FPGA layouts regarding the placement of the design in hardware.

6.1 Conclusions

As reconfigurable computing is likely to become the next big revolution in the field of
computing, more and more research is done towards all facets of the problem. The
department of Computer Engineering at the TU Delft has several research programs
related to reconfigurable computing research. Our thesis is part of the software traject
for the TU Delft reconfigurable computing platform, the Delft WorkBench.

A chain of tools is required to change C-code into a design that can be programmed
onto an FPGA and work in a coherent way with a general purpose processor. The tool
made for this thesis handles an early estimation of the number of interconnects that is
needed in the final FPGA design layout. To make these predictions, statistical models
in the R programming environment are built. These models give no exact answers, but
rather approximations with confidence intervals for the errors. Our model is built for the
amount of nets. It shows that there is a linear relation between the software complexity
metrics and the interconnect.

The results obtained from our research give some decent approximation of about
35%. Although not very accurate, this result can be very helpful in the early stages of
design to decide whether a design will fit in an FPGA architecture or not. Due to the
way the model is built, the results for the larger kernels are generally more reliable than
the results for small kernels (see Further recommendations on the model bullet number
1). Since research on multiple kernels on one design was dropped in an early phase of
the project, this is no problem for the scope of our project.

For the building of the model, two types of modeling have been studied. The first is
the ordinary least squares method (OLSR), with first users such as Gauss, the second
is the partial least squares (PLSR), a method which is around for about only thirty
years. The OLSR method is well suited to explore the relation between predictors and
responses, but it does not evaluate the models prediction quality. Therefore, we have
also used the PLSR model, which has built in support for cross-validation.

The only way to compare the two models is by their cross-validation. The predicting
quality for the Virtex-II Pro design is better with the PLSR model than with the OLSR
technique, which is no surprise since the former was designed to optimize predictability.

The models for the Virtex-4 are harder to compare. An unresolved problem caused
the RMSD of the cross-validated model not to reach sufficient values, so no motivated
models could be selected from these values. Since the linear model works comparably

45

46 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

well, also on predictability, compared with the Virtex-II Pro data, this model can be
recommended for use in the developed tool.

6.2 Further recommendations on the model

The models we viewed in this thesis were standard models using Partial or Ordinary
Least Squares. Although results were fairly acceptable with an average error of 35 %,
there are ways to improve the models. The presented models in this thesis are known to
have some flaws. Possible solutions for these flaws are stated below.

e The least squares algorithm tries to minimize the total squared errors. This is a
method which is widely used. In the case of the interconnection estimation, it is
questionable if this is the right way to fit a model. Misfits for kernels with small
interconnections are absolutely equally penalized as misfits for kernels with large
interconnections. This diminishes the usefulness of the relative prediction error.
The model will generate fits which have big relative errors in small kernels, ranging
easily towards 50% - 100%, where large kernels will have errors of around 10%. A
way to deal with this is the introduction of heteroscedastic modeling, i.e. models
where the variance is a function of some parameter, in our case the number of nets.
An example of how to build such models can be found in [41]. This should give
a more balanced view on the error of the model, since a fit to a heteroscedastic
model will try to keep the error percentage independent of the amount of nets.

e The goal of the thesis is to create a tool set which can process metrics data from C-
code and predict, based on those metrics, the number of nets that the final design
will contain. The algorithm for OLS tries to fit the predictors best suited to the
data. The drawback is that this technique gives no information how well the model
can actually predict a value. Cross validation is used to verify the predictability.
In our models cross validation, especially for the OLS models, is only briefly used.
The correct way find the best model is to use bootstrapped cross validation (see
[38] chapter 17) for all possible models. A model has the best prediction quality if
the model that suits the desired task the best

e As with all sample sets, the kernels that were used the fit the model on contains
outliers who do not seem to fit in the model. Since the number of nets is a direct
function from C-code ! other metrics, or more detailed metrics could build a model
with a much improved quality, and give a better explanation and approximation to
outliers, to make the model more accurate. The presented model can make good
predictions in most cases, but in some occasions the model is wrong by some 30.000
nets. If the prediction tool is used to check beforehand if a design will fit on an
FPGA, results could be disappointing.

!The C-code is mapped to an FPCGA design with a number of nets in a fixed a consistent matter (i.e.
the mapping results are always the same), so a function which describes this relation must exist. This
function would by far be to complicated to find, so statistical modeling is used instead

Bibliography

[1]

J. Backus. Can programming be liberated from the von neumann style?: a functional
style and its algebra of programs. Commmun. ACM 21 (1978) no.8, pages 613-641,
1978.

Wikipedia. Von neumann architecture. http://en.wikipedia.org/wiki/Von_Neumann
_architecture, unspecified.

The Delft Workbench. The delft workbench. http://ce.et.tudelft.nl/DWB/, unspec-
ified.

R.J. Meeuws; Y.D. Yankova; K.L.M. Bertels; G.N. Gaydadjiev; S. Vassiliadis. A
quantitative prediction model for hardware/software partitioning. In In Proceedings
of the 17th International Conference on Field Programmable Logic and Applications
(FPL0O7), pages 735-739, August 2007.

Xilinx. Development system reference guide.
http:/ /www.zilinz. com/support /sw_manuals /zilinz92/download/dev.zip, unspeci-
fied.

S. McPeak. Elkhound: A glr parser generator and elsa: An elkhound-based c++
parser. http://www.cs.berkeley.edu/ smepeak/elkhound/, unspecified.

Y.D. Yankova; G.K. Kuzmanov; K.L.M. Bertels; G. N. Gaydadjiev; Y. Lu; S. Vas-
siliadis. Dwarv: Delft workbench automated reconfigurable vhdl generator. In In
Proceedings of the 17th International Conference on Field Programmable Logic and
Applications (FPLO7), pages 697-701, August 2007.

S. Vassiliadis; S. Wong; G.N. Gaydadjiev; K.L.M. Bertels; G.K. Kuzmanov;
E. Moscu Panainte. The molen polymorphic processor. IEEE Transactions on
Computers, pages 1363-1375, November 2004.

G.K. Kuzmanov; G.N. Gaydadjiev; S. Vassiliadis. The molen media processor:
Design and evaluation. In Proceedings of the International Workshop on Application
Specific Processors, pages 26—33, September 2005.

E. Moscu Panainte; K.L.M. Bertels; S. Vassiliadis. The molen compiler for recon-
figurable processors. ACM Transactions in Embedded Computing Systems (TECS),
page 18, February 2007.

MOLEN. Molen platform. http://ce.et.tudelft.nl/MOLEN /, unspecified.

K. Compton; S. Hauck. Reconfigurable computing: A survey of systems and soft-
ware. ACM Computing Survey, pages 171-210, June 2002.

L. Zhiyuan. Configuration Management Techniques for Reconfigurable Computing.
PhD thesis, Northwestern University, June 2002. A dissertation submitted to the
graduate school in partial filfullment of the requirements.

47

48

BIBLIOGRAPHY

[14]

[21]
[22]
[23]

[24]

[25]

D. de Leeuw Duarte. Reconfigurable computing: A survey of architectures and
synthesis tools. October 2005.

Xilinx. Xilinx. http://www.zilinx.com/company/about.htm, unspecified.
Altera. Altera. http://www.altera.com, unspecified.
Atmel. Atmel. http://www.altmel.com, unspecified.

D. Buell; T. El-Ghazawi; K. Gai; V. Kindratenko. High-performance reconfigurable
computing. IEEE Computer society, Computer: innovative technology for computer
proffesionals, vol. 40 nr 3, page 25, March 2007.

B.K. Fawcett and J. Watson. Reconfigurable processing with field programmable
gate arrays. In Application Specific Systems, Architectures and Processors, 1996.
ASAP 96. Proceedings of International Conference on 19-21 Aug., pages 293-302,
August 1996.

Mehdi Baradaran Tahoori. Application-dependent testing of fpga interconnects.
18th IEEFE International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT’03), page 403, 2003.

C. Stroud; S. Wijesuriya; C. Hamilton; M. Abramovici. Built-in self-test of fpga
interconnect. pages 404-411, Oct. 1998.

H. Schmit; V. Chandra. Fpga switch block layout and evaluation. pages 11-18,
2002.

E. Moscu Panainte. The molen compiler for reconfigurable architectures. 2007.

K.L.M. Bertels; S. Vassiliadis; E. Moscu Panainte; Y.D. Yankova; C. Galuzzi; R.
Chaves; G.K. Kuzmanov. Developing applications for polymorphic processors: the
delft workbench. page 7, January 2006.

0.S. Dragomir; E. Moscu Panainte; K.L.M. Bertels. Loop parallelization for re-
configurable architectures. Proceedings of the 18th Annual Workshop on Circuits,
Systems and Signal Processing (ProRISCO07), November 2007.

Z. Nawaz; O.S. Dragomir; T. Marconi; E. Moscu Panainte; K.L.M. Bertels; S. Vas-
siliadis. Recursive variable expansion: A loop transformation for reconfigurable
systems. In proceedings of International Conference on Field-Programmable Tech-
nology 2007, December 2007.

R.L. Russo; B.S. Landman. On a pin versus block relationship for partitions of logic
graphs. IEEFE transactions on computers, pages 1469-1479, 1971.

C.A. Papachristou; H. Konuk. A linear program driven scheduling and allocation
method followed by an interconnect optimization algorithm. Proceedings of the 27th
ACM/IEEE conference on Design automation, pages 77-83, 1991.

BIBLIOGRAPHY 49

[29]

[30]

[31]

X. Yang; E. Bozorgzadeh; M. Sarrafzedeh. Wirelength estimation based on rent
exponents of partitioning and placement. Proceedings of the 2001 international
workshop on System-level interconnect prediction, pages 25-31, 2001.

M. Holzer; M. Rupp. Static estimation of execution times for hardware accelera-
tors in system-on-chips. In System-on-Chip, 2005. Proceedings. 2005 International
Symposium on, pages 6265, 2005.

S. Balachandran; D. Bhatia. A priori wirelength and interconnect estimation based
on circuit characteristics. IEEE Transactions on computer-aided design of integrated
circuits and systems, vol. 24 no. 7, July 2005.

R.J. Meeuws; K. Sigdel; Y.D. Yankova; K.L.M. Bertels. Quantitative prediction for
early design space exploration in delft workbench: An outlook. In proceedings of
ProRisc 2007, November 2007.

L. Scheffer; E. Nequist. Why interconnect prediction doesn’t work. Proceedings
of the 2000 international workshop on System-level interconnect prediction, pages
139-144, 2000.

H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19, 6:716-723, 1974.

C.L. Mallows. Some comments on cp. Technometrics, 15:661-675, 1973.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, 2008. ISBN 3-900051-07-0.

J.L. Faraway. Linear Models with R. Texts in Statistical Science Series. Chapman
& Hall/CRC, 2005.

B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap, volume 57 of Mono-
graphs on Statistics and Applied Probability. Chapman & Hall/CRC, 1993.

P.I. Good. Resampling Methods. Birkh&user, 3rd edition, 2006.

A. Miller. Subset Selection in Regression Analysis. Chapman & Hall/CRC, 2nd
edition, 2002.

J. S. Long; L. H. Ervin. Correcting for heteroscedasticity with heteroscedasticity
consistent standard errors in the linear regression model: Small sample considera-
tions. American Statistician, 54, 2000.

Appendices

50

Xilinx ISE Tool

The Xilinx ISE Tool, written in Java, is a tool that helps to automate the whole Xilinx
process of synthesizing, mapping and place and routing. Provided with the VHDL files,
it creates the necessary directories, copies the necessary files to each directory and runs
the whole xilinx process for each VHDL file. A global overview of the Xilinx ISE Tool
is depicted in Figure A.1. The source code of this tool can be found on the CD-ROM
provided with this document.

Creating data Creating Create main Launch main
ReadL_niIi:HDL » direciory and » Creatlga:mjam #| command prompt » command prompt #| command prompt
subfolders files file: file
i i
Y Y
G d G i L
c QpYy COMMEn Oy main
m;;‘r)nlmﬂles prompt files to command prompt
folders file to folder
WHDL Files Logfiles
Y
Data directories an
Xilinx ISE Tool

Figure A.1: Global overview of the Xilinx ISE Tool.

A.1 Work flow

First, the Xilinx ISE Tool reads in all the VHDL files and creates a data directory with
for each VHDL file a separate folder and the necessary sub folders: script, log and vhdl.
When finished creating all the directories it copies each VHDL file to its own directory
into the sub folder vhdl. For each VHDL file two project files are created and copied
into the sub folder script. These project files are required for the Xilinx process. Then
it creates, for each VHDL file, six command prompt files, that will run each part of the
Xilinx process. These files are copied into the folder that belongs to the VHDL file.
Finally, it creates and launches a main command prompt file. This command prompt
file will run, for every VHDL file, each of the six command prompt files. During each
part of the process, log files, containing specific data, are created and placed into the sub

o1

52 APPENDIX A. XILINX ISE TOOL

folder log. These log files will be used by the Logfiles Tool, discussed in Appendix B, to
extract the necessarry data required to build up a statistical estimation model. Below,
examples of the project files and command prompt files are shown.

Listing A.1: projectfile.prj

#example of one of the kernels: adpcm_coder

set —xsthdpdir adpcm-_coder/xst

run

—ifn adpcm_coder/script/adpcm_coder_work. prj
—ifmt VHDL

—ofn adpcm_coder/adpcm_coder_CCU . ngc
—ofmt NGC

—p xc2vp30—-7—ff896

—opt_mode Speed

—opt_level 1

—top CCU

—iobuf YES

Listing A.2: projectfilework.prj

#example of one of the kernels: adpcm_coder

vhdl work ../vhdl/adpcm_coder.vhd
vhdl work ../vhdl/synth_param_pckg.vhd

Listing A.3: synthesize.cmd

#example of one of the kernels: adpcm_coder

xst —intstyle silent —ifn adpcm_coder/script/adpcm_coder.prj —ofn
adpcm_coder/logs /synth_adpcm_coder. log

Listing A.4: ngdbuild.cmd

#example of one of the kernels: adpcm_coder

ngdbuild —active CCU adpcm-_coder/adpcm_coder_CCU.ngc adpcm_coder/
adpcm_coder_CCU .ngd > adpcm_coder/logs/ngdbuild.log

Listing A.5: map.cmd

#example of one of the kernels: adpcm_coder

map /adpcm_coder_.CCU.ngd adpcm_coder/adpcm_coder_ CCU_map.pcf —o adpcm_coder
/adpcm_coder_CCU_map.ncd > adpcm_coder/logs/map.log

Listing A.6: par.cmd

#example of one of the kernels: adpcm_coder

par —w adpcm_coder/adpcm_coder_CCU_map.ncd adpcm-_coder/
adpcm_coder_CCU_routed .ncd > adpcm_coder/logs/routed.log

A.1. WORK FLOW 53

Listing A.7: trce.cmd

#example of one of the kernels: adpcm_coder

trce adpcm_coder/adpcm_coder_CCU_routed.ncd > adpcm_coder/logs/trace.log

Listing A.8: xdl.cmd

#example of one of the kernels: adpcm_coder

xdl —ncd2xdl adpcm_coder/adpcm_coder_CCU_map.ncd adpcm_coder/
adpcm_coder_xdl.xdl > adpcm_coder/logs/xdl.log

54

APPENDIX A. XILINX ISE TOOL

Logfiles Tool

The Logfiles Tool, written in Java, is a tool to extract the necessary data from the log
files that were created using the Xilinx ISE Tool, see Appendix A. A global overview of
the Logfile Tool is depicted in Figure B.1

7 Exfract nassacary
#{ Reading logfiles »] data

Logfiles

h J

. I | Wirite data ™ Datacsy f
data.xml
| Logfiles Tool e

Data direclories

Figure B.1: Global overview of the Logfiles Tool.

B.1 Work flow

The Logfiles Tool reads in all the log files in the data directories created with the Xilinx
ISE Tool. These log files contain specific information necessary for building up a statis-
tical estimation model. With the help of regular expressions!, the Logfiles Tool, extracts
the necessary data from the log files and writes it to an output file.

'Regular expressions provide a concise and flexible means for identifying strings of text of interest,
such as particular characters, words, or patterns of characters

95

56

APPENDIX B. LOGFILES TOOL

Prediction Tool

The Prediction Tool, written in Java, is a tool to predict certain aspects of a software
kernel and based on this predictions calculate the utilization for a specified FPGA series.
To predict these aspects and to calculate the utilization, the Prediction Tool is provided
with three files in XML-format. The first file contains a list of software complexity
metrics. The second file contains a list of models that correspond with a certain aspect
and finally, the third file contains a list of FPGA descriptions and their resources. Further
on in this report they will be referred as measurments.zml, model.zml and fpga.zml
respectively. A global overview of the Prediction Tool is depicted in Figure C.1. The
source code of this tool can be found on the CD-ROM provided with this document.

C.1 Work flow

The Prediction Tool should be executed through the command line. The user has two
options for executing the tool. These options are listed below.

1. java -jar Prediction_tool.jar help

2. java -jar Prediction_tool.jar run -commandl argumentl -command?2 argument2...

Option one will read in the readme.txt, provided with the tool, and prints the context
in the command line. Option two will start calculating the predictions and based on
the predictions calculate the utilization for the specified FPGA series. The user has
a number of command and argument options available. Three command options are
obligatory, for the tool to run, and the others are optional. In table C.1 an overview of
the command and argument options is depicted.

Table C.1: Overview of the command and arguments options

Command Argument

-model path to your model.xml file obligatory

-measurement path to your measurement.xml file obligatory

-output path where you want the output.xml file to be placed | obligatory

-device device type of the FPGA series you are using optional

-xsdmodel path to your own xsd schema file for model.xml optional

-xsdmeasurement | path to your own xsd schema file for measure- | optional
ment.xml

-negval specifies if negative predictions must be set to zero, | optional
the standard value is off, it can be changed to on

o7

APPENDIX C. PREDICTION TOOL

58

L ndyn o)

"[00T, UOIIDIPALJ) JO MIIAIOAO [R(O[Y) (1)) 2INJIg

san|ea
uopezynn | [+
p.0uo3

UONEZINN
8)enaen

A

suonaipalg

Y

N

uchenba
8n0g

sSaanosal

YO
401517

Ele
Bunoajion

&

EJEP
S8|gELEA

|00] uoIdIpald

pue ejep
soa

Eleq
Buposliod

Sy9dd Jo

N

sa|qeLen
10

A

eleq
Bunosiod

1S78poN |

| ebdy
pesy

&

L

sI19poN

i

F Y

sigaw o
1SIT9PON

|LLX [Bpo
peay

L

N

F Y

P
alwpeay
p.oyo3

L
JUusBINSEIN
peay

<

i

Jwx ebdy

(

WX’ [Bpoy

:

Jusju
asuunseay

@) swpesal
uadg

:

Xy
alipeay

&

<)

- djay Jelooy uonoipaud Jel- eael ndul Jasn

:

s puawnbie | puBwiwng-
uni Jel oo} uonopald Jef- eael gndu) 1esn

C.1. WORK FLOW 99

When the user has specified the obligatory commands and executes the Prediction Tool,
it reads in the model.xml and the measurements.xml file. The model.xml file exists of
a list of models that correspond with a certain aspect. A model also has a name and a
target attribute that corresponds with a resource of an FPGA and a device type of one
of the FPGAs described in fpga.xml respectively. Each model can exist of an intercept
with a numeric value and a list with n-number of variables. A variable has a name
that should correspond with one of the specific names of a metric. Each variable can exist
of a transformation, with a string value, and a coefficient with a numeric value.
An example of this file is listed in Listening C.1.

Listing C.1: model.xml

<model name="modelName” target="deviceType”>
<intercept>numeric value</intercept>
<variables>
<variable name="variableName (1)”>
<transformation>string (1)</transformation>
<coefficient>numeric value(l)</coefficient>
</variable>
<variable name="variableName (2)”>
<coefficient>numeric value(2)</coefficient>
</variable>

<variable name="variableName (n)”>
<coefficient>numeric value(n)</coefficient>
</variable>
</variables>
</model>

The measurements.xml file exists of a list with n-number of software metrics from a
certain software kernel. Each metric has a specific name and a numeric value. An
example of this file is listed in Listening C.2. More detailed versions of both of these files
can be found on the CD-ROM provided with this document.

Listing C.2: measurements.xml

<metric name="metricName (1) ”>numeric value (1)</metric>
<metric name="metricName (2)”>numeric value(2)</metric>

<metric name="metricName (n)”>numeric value(n)</metric>

Before proceeding, the Prediction Tool first checks if both, model.zml and measure-
ment.zml, files are valid XML and meet the constraints in the default xsd schema’s
which are described in default_model.zsd and default_measurements.xzsd. These files can
be overwritten by specifying the -xsdmodel and -xsdmeasurement command. If both

60 APPENDIX C. PREDICTION TOOL

files are valid and met the constraints, it collects a list of models from model.zml and
list of metrics from measurements.zml. For each metric in the list of metrics it collects
the specific names and numeric values. For each model in the model list it collects a list
of variables and checks if each variable corresponds with one of the collected metrics. If
0, it then collects, for each variable, the string values of the transformations and the
numeric values of the coefficients. With all the collected data it then predicts the aspects,
that correspond with the models in model.xml, by solving the following equation.

e prediction = intercept + (coefficient(1) * transformation(1)(metric value(1))) +
(coefficient(2) * transformation(2)(metric value(2)).......... (coefficient(n) * trans-
formation(n)(metric value(n))

The prediction for each model is written to an output file. If the command option
-negval is specified, negative predictions will be set to zero in the output file. If the
command option device is specified the Prediction tool then starts with calculating
the utilizations. It reads in the fpga.xml file. The fpga.xml file exists of a list with n-
number of FPGAs with a device name and a device type. Each FPGA has a list with
n-number of resources. These resources can correspond with the name of a model in
model.xml. For each model, where the target attribute corresponds with the specified
device and the name of the model corresponds with one of the resources of the FPGA,
the Prediction Tool calculates the utilization and prints it in the command line.

C.2. CLASS DIAGRAM

61

C.2 C(Class diagram

CommandLineOptions XMLProcess
-model - siring
measurement : siring FealculateLltlization]) usesn
-output ; string +oheckVariablesAndhetrics()
-device gtrlng_ prediction])
FsdModel @ string USRED ransformation()
-nsdMeasurement | string rwriteOutputModel]) B
Fregiel - string
Hget methodes() HUSESD
Hset methodes()
L4]
AV
Fpga Model Measurement
CommandLineOptionsHandler
+FPGADeviceExists() +oethodels() +getMetrics()
- +getFPGA() H+gethModelMNamed)
screaleCommandLineOptionsArrayl) +oetDeviceMame() +oeltTarpetMame)
+isSetObligatoryOptions() +oetDevicaTypa() HaoethodelVariables()
+oetFPGAResources() +getintercept()
+getTransformation()
aUSEEn +oetCoefficient])
XMLErrorHandler XMLFile PTE==T
P HLsESN -(MLFile : object <|'
Hwarning() +XMLFileExists()
Harron) +is\alid XMLFile() ““Sﬁ'ﬁ”
Hfatalarror) +validateXMLFile() <|[

+oetXMLFila()

Figure C.2: Class diagram of the Prediction Tool.

62

APPENDIX C. PREDICTION TOOL

Extracted data from log files

This appendix contains two tables with data extracted from the log files that were created
during the process of synthesizing, translating, mapping and place and routing of the
software kernels. The data is used to build up the statistical estimation model. The
first section contains a table with data from the Virtex2P architecture and the second
sections contains a table with data from the Virtex4 architecture.

63

64

APPENDIX D. EXTRACTED DATA FROM LOG FILES

D.1.

VIRTEX2P

65

D.1 Virtex2P

Kernel name Category Slices Slice Flip Flops LUTs MULTs Nets
adpcm_coder Multimedia 1514 1934 2411 4656
adpcm_decoder Multimedia 1356 1685 2035 4015
apply_butterflies ECC 14633 16962 20000 38886
arcfour_encrypt Cryptography 783 669 1262 2312
bdist1 Multimedia 1775 2330 2014 8 5172
bdist2 Multimedia 1414 1784 1773 5 4148
binarySearch Other 674 849 991 2060
bitreversall DSP 829 886 1409 2635
bitreversal2 DSP 194 277 199 516
blowfish_decrypt Cryptography 1026 1288 1285 2880
blowfish_encrypt Cryptography 1008 1280 1311 2913
BubbleSort Other 607 677 828 1835
bytesum Mathematics 67 116 45 284
calcL.CS Other 1180 1359 1707 6 3753
cast128_decrypt Cryptography 13898 8031 24890 29424
cast128_encrypt Cryptography 14585 8077 25955 29630
compress_image Compression 1142 1482 1476 3290
decompress_image Compression 795 1137 822 2226
delta_forward Multimedia 357 443 440 1143
delta_inverse Multimedia 327 409 407 1156
dist1 Multimedia 5155 6221 6850 14424
dist2 Multimedia 2933 3718 3592 10 8044
divisiblebythree Mathematics 691 934 890 1844
DotProduct Mathematics 518 575 573 4 1559
enblf_noswap Cryptography 821 955 1299 2576
enigma_encrypt Cryptography 2161 2375 2858 2 5473
f Cryptography 902 766 1327 2446
factorial Mathematics 250 310 268 3 755
FIR DSP 982 1054 1381 20 3700
fix_fft DSP 2914 3168 4202 4 7791
floyd_warshall Mathematics 1698 2048 2218 12 4992
form_component_prediction Multimedia 6602 7878 7509 8 16146
g721_body Multimedia 15033 12236 27181 18 38653
ged Other 1102 1165 1698 2662
generate_set Mathematics 2124 2378 2171 39 6022
gosthash_compress Cryptography 11940 13751 17467 32235
gost_decrypt Cryptography 8616 8875 10568 21082
gost_encrypt Cryptography 8616 8875 10568 21082
haar_predict Multimedia 647 799 862 2098
haar_update Multimedia 651 800 864 2099
Hamming1 ECC 166 263 183 502
Hamming?2 ECC 264 377 284 753
havalTransform3 Cryptography 26598 44550 42001 90043
hw_boyer_moore_search Other 2893 3339 3961 7670
hw_derrivative_x_y Multimedia 2025 2065 2851 3 b34v
hw_encode ECC 1887 2489 2181 4725
hw_md2_transform Cryptography 838 888 1304 2617
hw_mdct_bitreverse Multimedia 2533 2496 3616 32 7881
hw_non_max_supp Multimedia 20753 9773 36657 132 65832

66

APPENDIX D. EXTRACTED DATA FROM LOG FILES

Kernel name Category Slices Slice Flip Flops LUTs MULTs Nets
hw_ripemd128_transform Cryptography 16029 27932 21852 53171
hw_ripemd160_transform Cryptography 25670 45513 32672 83903
hw_ripemd256_transform Cryptography 16289 28113 22246 53766
hw_ripemd320_transform Cryptography 25934 45687 33135 84489
hw_sobel Multimedia 1863 2519 1867 10 4894
hw_viterbi ECC 8667 7902 15465 23389
idct Multimedia 4455 4052 6507 26 12320
intersect_triangle Mathematics 5539 3702 9738 96 16858
intfdct Multimedia 12616 5980 24344 48 32692
intmatmult Mathematics 2279 2892 2420 4 5557
intmatmult3x3 Mathematics 3318 2474 5223 108 12485
iquant1_intra Multimedia 714 749 1045 5 2312
iquant1_non_intra Multimedia 614 752 745 6 2066
iquant_intra Multimedia 670 671 1123 5 2299
iquant_non_intra Multimedia 626 659 835 6 2037
line_predict Multimedia 927 1283 1357 3187
line_update Multimedia 955 1312 1345 3221
matrixTranspose Mathematics 723 974 636 6 2059
MDA4Transform Cryptography 7262 12013 10277 23675
MD5Transform Cryptography 9689 16743 16047 36515
mdct_butterfly_16 Multimedia 2338 2405 4105 8 7630
mdct_butterfly_32 Multimedia 6683 6933 10907 56 21324
mdct_butterfly_8 Multimedia 734 835 1423 2901
mdct_butterfly_generic Multimedia 3421 3050 4849 64 10965
merge Other 1680 1887 2287 4450
mhash_adler32 Cryptography 683 951 875 2122
mhash_crc32 Cryptography 559 721 664 1643
mhash_cre32b Cryptography 559 721 664 1643
movingfilter DSP 1003 1209 1713 3349
multiply Mathematics 2555 2647 3521 3 6764
Parity ECC 399 238 718 900
permute_fp Cryptography 1440 866 2585 3901
polygonArea Mathematics 1119 1226 1561 12 3635
polynomial Mathematics 778 576 1274 19 2875
power Mathematics 288 374 277 3 811
powerefficient Mathematics 367 472 368 6 1061
pred_comp Multimedia 6596 7677 7685 8 16133
processBuffer Cryptography 14389 17774 18613 36087
PseudoPolarize Mathematics 1380 1549 2448 4386
PseudoRotate Mathematics 1672 1778 2954 4995
QuickSort Other 1329 1533 1869 3735
radixsort Other 1612 1673 2366 4497
rc2_decrypt Cryptography 1228 1454 2129 4065
rc2_encrypt Cryptography 1239 1482 2061 3982
rijndael128_decrypt Cryptography 5192 3902 8784 12954
rijndael128_encrypt Cryptography 4907 3851 8553 12629
safer128_decrypt Cryptography 2172 2256 3652 6392
safer128_encrypt Cryptography 2184 2273 3776 6496
safer64_decrypt Cryptography 2498 2069 4195 7055

D.1.

VIRTEX2P

67

Kernel name Category Slices Slice Flip Flops LUTs MULTs Nets
safer64_encrypt Cryptography 2703 2345 4607 7802
saferplus_decrypt ~ Cryptography 15475 14274 21934 39788
saferplus_encrypt Cryptography 10147 6549 16000 25967
serpent_decrypt Cryptography 25999 39809 36284 76097
serpent_encrypt Cryptography 26069 39888 35750 75505
sha_transform Cryptography 17213 29391 25802 60015
shellsort Other 990 1123 1309 2730
snefru Cryptography 2249 1949 3833 5898
Sqrt Mathematics 579 890 863 1977
threeway_decrypt Cryptography 2872 4221 4252 8779
threeway_encrypt Cryptography 2013 3073 2699 6053
twofish_decrypt Cryptography 11179 12821 15387 30531
variance Multimedia 921 1217 1070 4 2573
VectorSum Mathematics 336 475 348 1120
vorbis_coslook_i Multimedia 290 381 338 2 1088
vorbis_invsqlook i Multimedia 592 583 832 4 1798
wake_decrypt Cryptography 1844 2257 2772 5277
wake_encrypt Cryptography 1881 2269 2827 5312
xtea_decrypt Cryptography 1013 1465 1161 2961
xtea_encrypt Cryptography 1014 1465 1161 2960

68

APPENDIX D. EXTRACTED DATA FROM LOG FILES

D.2. VIRTEX4 69
D.2 Virtex4
Kernel name Category Slices Slice Flip Flops LUTs DSP48s Nets
adpcm_coder Multimedia 1501 1943 2383 3497
adpcm_decoder Multimedia 1336 1693 2022 3066
apply_butterflies ECC 14586 16951 19983 29915
arcfour_encrypt Cryptography 784 669 1279 2082
bdist1 Multimedia 1646 2266 1792 8 4206
bdist2 Multimedia 1410 1736 1744 5 3455
binarySearch Other 674 848 987 1592
bitreversall DSP 837 895 1432 2257
bitreversal2 DSP 194 277 199 415
blowfish_decrypt Cryptography 997 1288 1288 2361
blowfish_encrypt Cryptography 982 1287 1282 2339
BubbleSort Other 587 677 826 1523
bytesum Mathematics 67 116 45 256
calcLL.CS Other 1124 1327 1629 6 3292
cast128_decrypt Cryptography 13950 8033 24916 25261
cast128_encrypt Cryptography 14585 8057 25962 25693
compress_image Compression 1146 1484 1478 2659
decompress_image Compression 826 1137 823 1877
delta_forward Multimedia 359 443 440 968
delta_inverse Multimedia 328 409 408 987
dist1 Multimedia 5168 6233 6850 10959
dist2 Multimedia 2845 3615 3468 10 6528
divisiblebythree Mathematics 690 934 884 1390
DotProduct Mathematics 433 543 462 4 1331
enblf_noswap Cryptography 794 962 1270 2007
enigma_encrypt Cryptography 2171 2390 2921 4537
f Cryptography 904 766 1307 2073
factorial Mathematics 224 310 240 3 761
FIR DSP 636 894 826 20 2951
fix_fft DSP 2862 3102 4175 4 6417
floyd_warshall Mathematics 1679 2014 2114 12 4496
form_component_prediction Multimedia 6495 7846 7311 8 13251
g721_body Multimedia 14953 11941 27068 18 31032
ged Other 1130 1172 1825 2222
generate_set Mathematics 1491 2249 1143 39 5076
gosthash_compress Cryptography 11959 13814 17469 23720
gost_decrypt Cryptography 8640 8912 10570 17867
gost_encrypt Cryptography 8640 8912 10570 17867
haar_predict Multimedia 633 799 862 1728
haar_update Multimedia 636 800 864 1727
Hamming1 ECC 167 266 183 384
Hamming?2 ECC 264 377 281 609
havalTransform3 Cryptography 26489 44574 41917 53141
hw_boyer_moore_search Other 2880 3341 3961 6236
hw_derrivative_x_y Multimedia 1999 2065 2820 3 4453
hw_encode ECC 1873 2489 2139 3722
hw_md2_transform Cryptography 839 897 1304 2312
hw_mdct_bitreverse Multimedia 1975 2240 2728 32 6221
hw_non_max_supp Multimedia 19138 8841 34263 124 58319

70

APPENDIX D. EXTRACTED DATA FROM LOG FILES

Kernel name Category Slices Slice Flip Flops LUTs DSP48s Nets
hw_ripemd128_transform Cryptography 15951 27936 21865 34103
hw_ripemd160_transform Cryptography 25579 45525 32673 55347
hw_ripemd256_transform Cryptography 16214 28116 22247 34631
hw_ripemd320_transform Cryptography 25893 45701 33165 56046
hw_sobel Multimedia 1816 2447 1830 8 4116
hw_viterbi ECC 8857 8093 15802 17944
idct Multimedia 4303 3824 6276 26 10329
intersect_triangle Mathematics 4258 3174 7284 96 14174
intfdct Multimedia 12306 6230 23669 48 29377
intmatmult Mathematics 2194 2860 2307 4 4628
intmatmult3x3 Mathematics 1851 2154 2226 108 10059
iquant1_intra Multimedia 651 701 952 5 1904
iquant1_non_intra Multimedia 503 663 610 6 1691
iquant_intra Multimedia 619 623 1018 5 1950
iquant_non_intra Multimedia 516 570 701 6 1680
line_predict Multimedia 926 1284 1328 2467
line_update Multimedia 956 1312 1377 2563
matrixTranspose Mathematics 679 940 584 6 1910
MDA4Transform Cryptography 7206 12017 10283 15481
MD5Transform Cryptography 9606 16738 16047 22606
mdct_butterfly_16 Multimedia 2242 2289 3991 8 5885
mdct_butterfly_32 Multimedia 6133 6309 10092 56 16902
mdct_butterfly_8 Multimedia 743 838 1435 2243
mdct_butterfly_generic Multimedia 2342 2521 3074 64 8751
merge Other 1681 1894 2276 3753
mhash_adler32 Cryptography 679 951 872 1669
mhash_crc32 Cryptography 559 723 659 1409
mhash_crc32b Cryptography 559 723 659 1409
movingfilter DSP 1030 1210 1744 2586
multiply Mathematics 2536 2606 3515 3 5626
Parity ECC 427 265 745 819
permute_fp Cryptography 1448 877 2582 3513
polygonArea Mathematics 865 1034 1229 12 2875
polynomial Mathematics 432 496 831 19 2389
power Mathematics 244 342 249 3 752
powerefficient Mathematics 315 472 310 6 1073
pred_comp Multimedia 6493 7645 7486 8 13254
processBuffer Cryptography 14380 17741 18594 26369
PseudoPolarize Mathematics 1396 1551 2455 3446
PseudoRotate Mathematics 1653 1778 2924 3821
QuickSort Other 1278 1542 1850 3156
radixsort Other 1624 1680 2389 3773
rc2_decrypt Cryptography 1216 1456 2118 3175
rc2_encrypt Cryptography 1230 1484 2050 3138
rijndael128_decrypt Cryptography 5393 3933 8897 11087
rijndael128_encrypt Cryptography 5073 3874 8657 10763
safer128_decrypt Cryptography 2165 2268 3750 4929
safer128_encrypt Cryptography 2236 2302 3858 4961
safer64_decrypt Cryptography 2522 2092 4195 5748

D.2. VIRTEX4 71
Kernel name Category Slices Slice Flip Flops LUTs DSP48s Nets
safer64_encrypt Cryptography 2664 2347 4543 6115
saferplus_decrypt Cryptography 15522 14329 21857 34423
saferplus_encrypt Cryptography 10162 6567 15978 22177
serpent_decrypt Cryptography 26021 39826 36269 47950
serpent_encrypt Cryptography 26098 39908 35769 48077
sha_transform Cryptography 17050 29391 25808 36893
shellsort Other 980 1125 1278 2241
snefru Cryptography 2294 1977 3858 4953
Sqrt Mathematics 579 890 863 1437
threeway_decrypt Cryptography 2847 4222 4219 6286
threeway_encrypt Cryptography 2001 3074 2698 4619
twofish_decrypt Cryptography 11212 12872 15400 24312
variance Multimedia 912 1217 1040 4 2142
VectorSum Mathematics 336 475 345 943
vorbis_coslook_i Multimedia 265 340 313 2 936
vorbis_invsqlook i Multimedia 534 542 769 4 1551
wake_decrypt Cryptography 1852 2261 2813 4338
wake_encrypt Cryptography 1866 2274 2839 4398
xtea_decrypt Cryptography 1044 1467 1190 2358
xtea_encrypt Cryptography 1045 1467 1190 2357

72

APPENDIX D. EXTRACTED DATA FROM LOG FILES

Software Complexity Metrics

This appendix contains a list of Software Complexity Metrics with their description. In
our thesis we did not use the whole list of Software Complexity Metrics for our model,

but only a subset.

73

74

APPENDIX E. SOFTWARE COMPLEXITY METRICS

75

Metricname

Description

Slices
Related.Slices

Unrelated.Slices
Slice.Flip.Flops

Total. LUTs
Logic.LUTs
Route.LUTs
Multipliers

AICC
Average.Nesting.Depth
Average.Path.Length

BBavgExpPerBlock
BBavgExpPerStatement
BbavgStaPerBlock
BBcurMaxExpression
BBcurMaxStatement
BBmaxExpPerStatement
BBnumBlocks
BBtotalExpressions
BBtotalStatements
BINBitLogic
BINDivisions

BINLogic

BINMod
BINMultiplications
BINMultiplyBits
BINShift

Cumulative.Nesting.Depth

Cyclomatic

Loads
Maximum.Nesting.Depth
Maximum.Path.Length
NPATH

Oviedo.DU.pairs

Number of CLBs on a Xilinx FPGA (hardware measure)

Number of CLBs on a Xilinx FPGA which contain only related
logic(hardware measure)

Number of CLBs on a Xilinx FPGA which contain also unrelated
logic(hardware measure)

Number of slice flip-flops in use (there are 2 flip-flops per slice in Vir-
tex2pro) (hardware measure)

Number of Look-up Tables in use (there are 2 4-input LUTS per slice
in Virtex2pro)(hardware measure)

Number of Look-up Tables in use for logic (there are 2 4-input LUTS
per slice in Virtex2pro)(hardware measure)

Number of Look-up Tables in use for routing purposes (there are 2
4-input LUTS per slice in Virtex2pro)(hardware measure)

Number of Multipliers used (There are 136 multipliers in our Vir-
tex2pro’s)(hardware measure)

Average Information Content Complexity a measure capturing the In-
formation entropy expressed by the kernel

considering the nesting depth of all statements, calculate the average
depth of the kernel

Of all paths through the code, calculate the average length of those
paths

Average number of expressions per basic block

Average number of expressions per statement

Average number of statements per block

Maximum number of expressions in any block

Maximum number of statements in any block

Maximum number of expressions in any statement

Number of Basic Blocks

Total number of expressions (subexpressions DO NOT count)

Total number of statements

Number of Binary bit logic operations

Number of divisions

Number of Binary Logic operations

Number of Modulo operations

Number of multiplications

Number of multiplications considering datawidth of operands
Number of shifts

The nesting depth of each statement added to eachother

The number of decisions in the code (if statement, loop, or logical
statement(lazy evaluation))

The number of memory loads

The maximum nesting depth in the kernel

The length of the longest path among all possible paths

The number of possible paths through the code (assuming loops run
only one time)

The number of data-use pairs in the code

76 APPENDIX E. SOFTWARE COMPLEXITY METRICS
Metricname Description
Piwowarski Based on cyclomatic complexity adjusted with nesting depth
PlusMinus The number of ALU operations
Prather.s.mu A measure capturing the number of required tests to validate code
Statements The Number of Statements in the code
Stores The number of memory stores in the code

Tai.DU.pairs

UNYBitNot
UNYNot
VSArgMemCount
VSArgVarCount
VSAvgMemPerVar
VSMemCount
VSVarCount
Variable.Declarations
nOperands
nOperator
nUOperands
nUOperator
MultsCSE

The number of data-use pairs, based on a control flow abstraction of
the code

Number of unary bit level Not operations

Number of unary logical Not operations

Number of Function Argument bytes

Number of Function arguments

Average number of bytes per variable

Number of bytes in variables

Number of variables

Number of variable declarations

Number of operands

Number of operators

Number of unique operands

Number of unique operators

Number of multipliers used, counted after common subexpression elim-
ination

Contents of CD-ROM

This appendix contains an overview of the contents on the CD-ROM provided with this
document. The following sections represent the different directories on the CD-ROM

F.1 compiled tools/

This directory contains the compiled versions of the Logfiles Tool, the Prediction tool
and the Xilinx ISE Tool.

e Logfiles Tool/
This directory contains the compiled version of the Logfiles Tool and the other
required files the tool uses.

e Prediction Tool/
This directory contains the compiled version of the Prediction Tool and the other
required files the tool uses

e Xilinx Tool/
This directory contains the compiled version of the Prediction Tool, a sub folder
vhdls for the vhdl files and the other required files the tool uses

F.2 source code tools/

This directory contains the source code of the Logfiles Tool, the Prediction Tool and the
Xilinx ISE Tool.

e Logfiles Tool/
This directory contains the java files with the source code of the Logfiles Tool

e Prediction Tool/
This directory contains the java files with the source code of the Prediction Tool

e Xilinx Tool/
This directory contains the java files with the source code of the Xilinx ISE Tool

F.3 wvhdl files/

This directory contains the original vhdl files. These files can be placed in the sub folder
vhdls of the Xilinx Tool. When running the Xilinx Tool, the files in this sub folder will
be synthesized and implemented.

7

	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Introduction
	Problem description
	Structure

	Backgrounds
	Reconfigurable computing
	Principles
	Advantages
	Disadvantages

	Examples of RC systems
	Field Programmable Gate Arrays
	PipeRench

	FPGAs
	Interconnect on a FPGA
	Xilinx: Profile and design flow

	MOLEN: A reconfigurable computing system
	Overview
	Components
	Programming paradigm

	The Delft WorkBench toolchain
	Overview
	Design flow

	Interconnect estimation from C-code
	Operational requirements
	Operational requirements for the prediction model
	Operational requirements for the accompanying tool

	Related research
	Quipu
	Related theory
	Statistical Modeling
	Linear regression
	OLS and PLS models
	Validation of statistical models

	Methodology
	Generating VHDL code from the kernels
	Synthesizing & Implementing the VHDL code
	Extracting necessary data from the log files
	Building up the statistical estimation model
	Transformations on the data

	Analyzing the model
	Elimination of data outliers

	Making predictions using the prediction tool

	Experimental setup and results
	Experimental setup
	Used Software
	Used hardware

	Experimental results
	Prediction Model for the Virtex-II Pro design
	Prediction Model for the Virtex-4 design

	Conclusions and recommendations
	Conclusions
	Further recommendations on the model

	Bibliography
	Xilinx ISE Tool
	Work flow

	Logfiles Tool
	Work flow

	Prediction Tool
	Work flow
	Class diagram

	Extracted data from log files
	Virtex2P
	Virtex4

	Software Complexity Metrics
	Contents of CD-ROM
	compiled tools/
	source code tools/
	vhdl files/

