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Abstract

Motion planning for Autonomous Ground Vehicles (AGVs) in dynamic environments is an
extensively studied and complex problem. State of the art methods provide approximate
solutions that make conservative assumptions to provide safety and feasibility. We aim to
outperform current methods by following a trajectory optimization-based approach, providing
a Local Model Predictive Contouring Control framework. Our method allows AGVs to execute
reactive motion while tracking a locally parametrized reference path, anticipating on the
predicted evolution of the environment. Given the static environment configuration in an
occupancy grid map and dynamic obstacles represented by ellipses, we formulate explicit
collision avoidance constraints. Well-informed planning decisions are made through a cost
function with trade-offs between competing performance variables such as tracking accuracy,
maintaining the reference velocity, and clearance from obstacles.

An efficient implementation of the method is presented that satisfies the real-time constraint
of online navigation tasks. Furthermore, we present an implementation of a complete navi-
gation system to emphasize our ability to deal with real sensor data and onboard processing.
We show that the general definition of the framework applies to both unicycle and bicycle
kinematic models, commonly used to represent mobile robots and autonomous cars, respec-
tively. Simulation results for a car and experimental results with a mobile robot show that our
method is a feasible and scalable approach. Proposed improvements of the method include 1)
considering obstacle velocities and positioning with respect to the AGV in the penalty term
that creates clearance, 2) incorporating prediction uncertainty of obstacles, and 3) improving
our method that deals with infeasible solutions of the optimal control problem.
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Chapter 1

Introduction

Nowadays, autonomous navigation of numerous types of vehicles is the subject of research
for many companies and research institutions [4]. Driven by safety [5], road infrastructure
efficiency, pollution reduction [6, 7], and connected mobility [8, 9], development of intelligent
road vehicles is progressing at a fast pace [10, 11]. Additionally, autonomous driving can
provide a new transportation system to non-driving demographic groups [12, 13]. Essential
challenges remain yet to be solved [14] and it is not yet clear how autonomous vehicles will
be deployed in the future [15, 16, 17]. On top of that, autonomous systems are increasingly
becoming more complex and vulnerable to system failures that can cause severe accidents,
which is emphasized by Fig. 1-1 [18, 19]. It is, however, widely accepted that autonomous
vehicles have the potential to introduce a new transport paradigm and that their impact will
be significant in our daily lives [20, 21].

Figure 1-1: Complexity of advanced transport systems expressed in lines of code [1].

Concurrently, research on autonomous vehicles has diverged from the well-structured road en-
vironments, considering cluttered, off-road, unknown and unstructured environments [22, 23,
24]. These characteristics do particularly appear in environments that mobile robot platforms
have to operate in. The employment of mobile robots is mainly covered by the class of service
robots of which two examples are given in Fig. 1-2. Service robots cover a wide range of appli-
cation areas such as package delivery, security, agriculture, personal assistance, construction,
health care, entertainment, and cleaning. Being triggered by mobile robot competitions [25]
and industrial applications [26], developments in mobile robot applications enhance the re-
search of required and related research areas. According to a recent market research report,
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2 Introduction

the global market of service robotics was valued at USD 10.36 billion in 2017 is expected to
reach USD 28.65 billion by 2023, at a compound annual growth rate of 17.9% between 2018
and 2023 [27].

1 2

Figure 1-2: Example service robot applications (left) package delivery1 (right) Surveillance2.

In order to be able to perform real-world tasks with mobile robots or autonomous cars,
autonomous navigation is one of the key features that is, throughout all applications, per-
sistently required for them to operate properly. Autonomous Ground Vehicles (AGVs) will
operate in environments where they have to interact intensively with humans and they will
have to deal with an open and uncertain world. Typically, outside of closed and controlled in-
dustrial environments, the online navigation task only has onboard sensor-based information
available, resulting in limited knowledge of the environment [28]. As a result of the limited
view through its sensors, an AGV has to integrate over consecutive sensor measurements to
build a model of its environment [29]. Correct data association is essential, even though the
perception systems through which we receive information about the precarious environment
introduces new uncertainties [30]. Following a modular approach, it is mentioned by [31] that
the autonomous navigation problem can roughly be divided into three main research topics:

• Mapping of the environment and localization within that environment.

• Detection, characterization, and behavior prediction of the potential moving obstacles.

• Online motion planning and behavioral decision making.

Partially due to its complexity and importance within the navigation task, the field of motion
planning has been extensively studied [32, 33]. Moreover, the motion planning problem is
fundamental to the field of robotics and has a long history [34]. The off-line motion planning
problem, which assumes full knowledge of the environment, is generally well understood [35].
In real-world applications of autonomous vehicles, however, these methods are not applicable
due to their incapability of dealing with (partially) unknown environments, uncertainty and
dynamic behavior of obstacles. Many solutions have already been proposed and implemented,
increasingly yielding better performance in real-world applications [36, 37, 38]. The complex
nature of the problem resulted in the development of approximate solutions or solutions that

1https://www.cnet.com/news/startup-bets-its-wheeled-robots-not-airborne-drones-will-deliver
-your-groceries/ (accessed October 28, 2018)

2 https://securitybrief.co.nz/story/advanced-security-brings-autonomous-surveillance-robot
-nz-market (accessed November 11, 2018)
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1-1 Research Aim 3

aim to solve different subsets of the motion planning problem. Successful methods decompose
or discretize the continuous workspace in a smart way to obtain a tractable problem [36, 39].
Often, conservative assumptions have to be made to achieve feasibility and safety guarantees
[10]. Therefore, it is still a challenging problem to plan collision-free, time-efficient and optimal
trajectories for an AGV in unstructured dynamic environments.

To overcome the increasing dimensionality of the planning problem, some real-time approaches
treat dynamic environments as static and use replanning techniques as dynamic obstacles
move [40, 41, 42]. Under the same static assumption, [43] takes motion primitives into ac-
count in the planning stage to obtain smooth and achievable trajectories. However, by not
anticipating on the dynamic behavior of the objects, valuable information about the environ-
ment is lost. Reactive, control-oriented methods such as Artificial Potential Field methods [44]
or the Dynamic Window Approach [45] provide promising solutions for collision avoidance but
lack global convergence guarantees and advanced decision-making capabilities. Model Pre-
dictive Control (MPC) approaches account for the future evolution of the environment and
of the vehicle state to generate anticipatory motions and compute the corresponding optimal
control commands [46, 47]. MPC is a trajectory optimization-based control technique that
allows dealing with dynamic and physical constraints while optimizing a desired performance
index [48, 49]. A MPC strategy known as Model Predictive Contouring Control (MPCC)
[50] allows one to track a reference path (rather than a trajectory parameterized in time) and
explicitly penalize the deviation from it (in terms of contouring and lateral errors). We build
on the concept Model Predictive Contouring Control to produce planning decisions based
on the future evolution of the environment while creating reactive motion plans. Further-
more, this optimization-based approach allows us to explicitly define collision constraints and
trade-offs between competitive performance variables in a cost function. We present a new
planning framework that is generally applicable to any AGV. Simulation results for a car and
experimental results with a mobile robot are presented.

1-1 Research Aim

Motion planning for Autonomous Ground Vehicle is an unresolved problem in general and
a frequently researched topic in both industry and academia. Therefore, this thesis seeks to
improve motion planning techniques in dynamic environments using a trajectory optimization
approach. In particular, we will rely on a Model Predictive Contouring Control approach
to develop a new planning framework. The research will be conducted by a design stage,
implementation work, and experiments in both simulations and on a mobile robot for different
vehicle types. The following research questions are set as guidelines to fulfill this objective.

1. How can the concept of Model Predictive Contouring Control be utilized to navigate
autonomous vehicles, traversing real-world dynamic environments?

2. How can static and dynamic obstacle collision avoidance be incorporated in the motion
planning stage?

3. How can the proposed motion planning framework be implemented and adopted within
an autonomous navigation system such that it satisfies real-time operation?

Master of Science Thesis B.C. Floor



4 Introduction

1-2 Thesis Report Content and Outline

The main results will be covered in Chapter 2 of the thesis, where the main findings and
contribution of the thesis work are presented in a scientific paper format. In Chapter 3, a
more in-depth discussion and conclusion is made and recommendations for future research
work are considered.

Supplementary content to the paper will be discussed in the appendices according to the
following structure:

• Appendix A – Additional experimental results.

• Appendix B – A chapter about the implementation of our planning framework, its
attributes and comments on the utilized software tools.

• Appendix C – The mobile robot and its equipment, simulation environment and ex-
perimental setup will be presented in this chapter.

• Appendix D – An extension to the planning framework to deal with dynamic obstacle
uncertainty.

• Appendix E – The derivation of the Minkowski sum bounding ellipse for obstacle
avoidance.

• Appendix F – Submitted conference paper.

B.C. Floor Master of Science Thesis
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Local Model Predictive Contouring Control for Dynamic Environments

Abstract— We present a local motion planner, namely, a
Local Model Predictive Contouring Control design, for an Au-
tonomous Ground Vehicle (AGV) traversing dynamic environ-
ments. Our design allows the AGV to execute reactive motion
while tracking a global plan, thanks to the local parametrization
of the path. In addition, our framework allows for avoidance of
static obstacles (given in an occupancy grid map) and moving
obstacles represented by ellipses. Furthermore, we provide a
new bound to correct the approximation of the Minkowski sum
of an ellipsoid obstacle and the union of discs representation
of the controlled vehicle to guarantee collision avoidance. We
show that the general definition of the framework applies to
both unicycle and bicycle kinematic models, commonly used to
represent robots and autonomous cars, respectively. Simulation
results for a car and experimental results with a mobile robot
are presented.

I. INTRODUCTION

This paper proposes a general framework to safely navi-
gate Autonomous Ground Vehicles (AGVs), such as mobile
robots and cars (Fig. 1), in dynamic environments. Motion
planning and control for AGVs is usually addressed as two
separate problems (with the planner and controller running
on two different modules) [1], [2]. In particular, the motion
planner generates safe, smooth, and feasible paths, while the
motion controller typically aims to track this planned path
(directly acting on the AGV’s actuator). Motion planning
techniques, however, do not usually take into account that
the path-following controller relies on the smoothness and
kinodynamic feasibility of the reference path. This can
compromise the safety of the vehicle when the controller is
unable to follow the planned trajectory. Commonly, motion
planning procedures rely on graph-search or on randomized
sampling-based techniques [3]. To overcome the increas-
ing dimensionality of the planning problem, some real-
time approaches treat dynamic environments as static and
use replanning techniques as dynamic obstacles move [4],
[5], [6]. Under the same static assumption, [7] considers
incorporating constraints in the planning stage to obtain
smooth and achievable trajectories. By not anticipating on
the dynamic behavior of the objects, valuable information
about the environment is lost.

In order to generate appropriate motion in highly dynamic
and uncertain environments, local and immediate motions
become more important to avoid collisions. Therefore, re-
active, control-oriented methods are often more promising.
However, purely reactive methods such as Artificial Poten-
tial Field methods [8] or the Dynamic Window Approach
[9] often lack global convergence guarantees and advanced
decision-making capabilities. Motion planning techniques
that do consider kinematic constraints as well as a changing
environment such as [10], have to rely on sampling-based
techniques to deal with the complexity of the problem. These

Fig. 1: Example AGVs: A mobile robot and an autonomous
car.

sampling-based approaches result in jerky motion [11].
We use a Model Predictive Control (MPC) approach to the

trajectory planning problem to overcome the disconnection
between the planning and control stage. This method allows
us to compute safe, smooth and kinodynamic feasible tra-
jectories, while simultaneously retrieving the corresponding
optimal control inputs. Whereas path planning only considers
the generation of a consecutive set of geometric specifica-
tions of the positions and orientations of a robot, trajectory
planning parametrizes time in the problem formulation by
including the generation of linear and angular velocities as
well [12]. Furthermore, this controller approach allows us to
explicitly define collision constraints and trade-offs between
competing performance variables in a cost function.

A. Related Work

A method based on Stochastic trajectory optimization for
motion planning (STOMP) [13], updates a candidate solution
by evaluating the simulated cost of sampled trajectories
around an initial guessed trajectory. Although this approach
is successfully implemented, no guarantee is available on
the convergence to a safe solution. FasTrack proposes a
safe controller based on pre-computed safety bounds [14],
[15]. Real-time trajectory planning and tracking is done
using a set of simplified kinematic or dynamic planning
models. The proposed method, however, can only deal with
static obstacles. It is shown by [16] how continuous-time
trajectories can be represented by a small number of states
using sparse Gaussian process models. Next, they solve the
motion planning problem through probabilistic inference on a
factor graph. The downside of this approach is that obstacles
are assumed to be static and that replanning is required when
the environment changes.

A planning paradigm that incorporates the controller stage



into the planning problem relies on Model Predictive Control
(MPC). MPC is an optimization-based control technique that
allows dealing with dynamic and physical constraints, while
optimizing a desired performance index [17], [18]. MPC
approaches allow to account for the future evolution of the
environment and of the vehicle state to generate anticipatory
motions and compute optimal control commands [19], [20].
The authors of [21] rely on a MPC scheme for cruise control
and overtaking maneuvers. The authors of [22] design a
MPC controller to ensure vehicle stability using differential
braking and active steering. The aforementioned approaches,
however, only tackle specific driving situations and do not
consider the link between the global planner and local
controller. Our approach addresses this issue by linking the
global planner and the controller. Similarly to our approach,
the authors of [23] build a clothoidal constrained path from
irregular GPS waypoints and employ MPC to locally track
the generated path. Collision avoidance constraints, however,
are not taken into account.

A MPC strategy known as Model Predictive Contouring
Control (MPCC) [24] allows one to track a reference path
(rather than a trajectory parameterized in time) and explicitly
penalize the deviation from it (in terms of contouring and
lateral errors). Following the MPCC paradigm, the authors
of [25] propose a Nonlinear MPCC (NMPCC) to handle
static and dynamic obstacles for a driving scenario. They
define the static collision constraints as deviation limits
with respect to the reference path and assume constrained
driving scenarios, such as highways. This assumption is
too restrictive for mobile robots that usually navigate in
unconstrained scenarios. [26] proposes to parametrize a ref-
erence path for MPCC using third-order spline polynomials.
Their method, however, requires a full path to be computed
beforehand, making it not applicable to realistic navigation
scenarios. Several approaches have been presented that aim
to incorporate obstacle avoidance into the MPC formulation.
Specifically targeted at traversing unknown environments,
[27] adopts a measure of obstacle thread in the cost function,
using the parallax angle. [28] introduces the use of a repul-
sive potential to avoid obstacles in the environment. Both
methods, however, only penalize being near obstacles and
cannot guarantee obstacle avoidance. To solve this problem,
[29] and [30] incorporate their collision avoidance strategy
as inequality constraints on the AGV states. Both methods
suffer from a limited feasible set of vehicle states since one
local convex description of the collision-free area around the
current vehicle position is used for the complete prediction
horizon.

Efforts have been made to increase the computational
efficiency of solving MPC problems for real-time solutions
on embedded platforms, of which an overview is given by
[31], [32]. One solution is an explicit approach, in which the
solution for all possible problem instances is pre-computed,
requiring a lot of memory. Explicit methods are limited
to small-scale systems since the look-up table of solution
can grow exponentially in the number of states. Contrary
to the explicit approach, Interior-Point methods [33] are

popular for providing solutions to a class of MPC problems
online. Available open-source packages [34], [35] provide
fast solvers for MPC problems, relying on Interior-Point
methods. Another approach that gained attention for the
computation of solutions online are active set methods [36].
[37] implements a fast Quadratic Programming (QP) solver,
based on the online active set strategy [38], specifically
targeted at MPC applications.

B. Contribution

We solve the motion planning and control problem by
combining the strengths of global re-planning techniques
with the reactive behavior of an MPC approach. In particular,
we propose a new formulation, namely, a Local Model
Predictive Contouring Control (LMPCC) approach, building
on MPCC. By relying on [24], [25], this work makes the
following contributions:

1) A local formulation of the contouring control problem.
LMPCC supports global replanning without the need
of creating a new full path parametrization. In contrast
with the original MPCC scheme, LMPCC does not
require an analytical path representation as a reference.

2) A static obstacle avoidance strategy. This strategy
explicitly constrains the AGV’s dynamics at time t
along the prediction horizon to an approximation of the
collision-free area around the robot. The approximation
is obtained by exploiting the predicted behavior of the
vehicle at time t− 1.

3) A bound to define dynamic collision avoidance con-
straints. In particular, we correct the approximation
of the Minkowski sum of the ellipsoid and a circle
(previously used for dynamic collision avoidance) such
that, if the constraints are satisfied, collision avoidance
is guaranteed.

4) Performance results in simulation (using a mobile
robot and an autonomous car) and with real-world ex-
periments (using a mobile robot). Our strategy supports
real sensor data and onboard localization. Furthermore,
we show that our strategy can be fully implemented
onboard the mobile robot in a real navigation scenario,
as our experiments show, and run in real time.

The method relies on an open-source solver [39] and will be
released.

II. PRELIMINARIES

Let B denote an Autonomous Ground Vehicle (AGV) on
the plane W = R2. B can be represented by the following
discrete nonlinear system:

z(t+ 1) = f(z(t),u(t)), (1)

where z(t) and u(t) represent the state and the command
at time t ≥ 0 1, respectively. The configuration of the AGV
is denoted in configuration space C = R2 × S by z(t) ∈ C.
The area occupied by the AGV at state z is B(z). B(z)

1In the remainder of the paper we omit the time dependency when it is
clear from the context.



is approximated by a union of circles, that is, B(z) ⊆⋃
c∈{1,...,nc} Bc(z) ⊂W , where nc is the number of circles.
We consider static and dynamic obstacles. In particular,

the static obstacle environment is assumed to be captured
in an occupancy grid map. The area occupied by the static
obstacles is Ostatic ⊂W . Furthermore, each moving obstacle
Ai is represented by an ellipse of area Ai. Consider a
set of moving obstacles Ai with i ∈ I := {1, . . . , n} in
W , where n can vary over time. The area occupied by
all moving obstacles at time instant t is given by Odyn

t =⋃
i∈{1,...,n}Ai(zAi(t)), where zAi(t) denotes the state of

Ai at time t. The size of an ellipsoid associated with the
obstacle is defined by a and b, the semi-major and semi-
minor axes of the ellipse, respectively.

The objective is to generate collision-free motion for B
through W , from its current state to a desired end config-
uration. After parametrizing a reference path, this can be
formulated as an optimization problem as follows:

J∗ = min
z0:N ,u0:N−1

N−1∑

k=0

J(zk,uk, θk) + J(zN , θN ) (2a)

s.t. zk+1 = f(zk,uk), (2b)

B(zk) ∩
(
Ostatic ∪Odyn

k

)
= ∅, (2c)

uk ∈ U , zk ∈ X , (2d)

where X and U are the set of admissible states and inputs, re-
spectively. z1:N , u0:N−1 are the predicted state and control,
respectively over a prediction horizon Thorizon divided into
N prediction steps. θk denotes the predicted progress along
the reference path. J is a cost function defining the planner
objectives. By solving the optimization problem above, we
can obtain the optimal sequence of commands u∗0:N−1 to
guide the AGV along the reference path.

In the remainder of the paper, we show how to locally
parametrize the reference path, formulate the objectives and
how to define the collision avoidance constraints that together
form our LMPCC framework.

III. METHOD

The goal of the LMPCC is to generate feasible and optimal
motion with respect to the defined cost along the constructed
local reference path. The LMPCC framework contains the
following contributions:

1) A local parametrization of a global reference path
through the environment (Section III-A).

2) A strategy to select the length of the local reference
path representation (Section III-B).

3) The application of a search routine to solve the approx-
imation of the path progress estimation (Section III-C).

4) The use of a transition function between waypoints to
eliminate the non-differentiable representation of the
reference path (Section III-D).

5) Static obstacle avoidance by explicitly constraining the
control problem to an approximation of the collision-
free area as a feasible set. (Sections III-E.1 and III-
E.2).

6) A correcting bound on the Minkowski sum of a circle
and an ellipse for moving obstacles (Section III-E.3).

In Section III-F, we present how the general concept of
MPCC applies to our locally formulated control problem and
we conceptualize the complete planning framework.

A. Global planning / Generation of Reference Path

Given a goal position pgoal, first, we use a global planning
method (such as RRT [40]) to compute a collision-free path
through the static environment representation from an initial
position p0. This global reference path P consists of M
points defined as pm = [xpm, y

p
m] ∈ W with m ∈ M :=

{1, . . . ,M}. Then, we split the path into segments delimited
by [xpm, y

p
m] and [xpm+1, y

p
m+1]. We use cubic spline interpo-

lation to obtain an analytical expression of the reference path
for each segment, connecting each of the global reference
path points with a polynomial of length sm. The efficient
implementation of [41] allows splines to be generated in
O(q) and evaluation of the spline at a single point to be
performed in O(log(q)), where q is the number of input data
points. This efficiency strengthens our choice of local spline
fitting during execution. Hence, we define the piece-wise
spline segments as a function of the traveled distance along
the reference path θ. This path parameter equals zero at the
start of each path segment and continuously increases along
the segment. Fig. 2 shows three reference path segments and
the projected robot position on the reference path. Appendix
B-1-2 elaborates on the method used to fit the local reference
path.

Each path segment Rm is composed of the analytical
spline expression as a function of θ, prm(θ), concatenated
with a corresponding velocity reference, that is, Rm :=
[prm

T, vref,m]T. This velocity reference depends on the en-
vironment and should be provided by the route planning
module. The cubic polynomials that define the reference path
segments are given by

prm(θ)=

[
xrm
yrm

]
=

[
axm,1θ

3 + axm,2θ
2 + axm,3θ + axm,4

aym,1θ
3 + aym,2θ

2 + aym,3θ + aym,4

]
, (3)

where [axm,1, . . . , a
x
m,4] and [aym,1, . . . , a

y
m,4] are the

coefficients of the cubic polynomials at segment m of both
splines. We consider a limited set of path segments Rm ⊂ R

Fig. 2: Reference path representation



of the reference path to form our local representation.
This allows reducing the computational complexity of the
planning problem and segments outside of the local reference
path to change over time. We define the local reference path
Lr at the current time by linking η path segments, starting
from the m-th closest path segment, that is,

Lr = {Ri ∈ R|i = [m, . . . ,m+ η]}. (4)

B. Selecting the Number of Path Segments

We provide a strategy to select η to guarantee that the local
reference path representation captures enough information of
the global path to be tracked by the LMPCC. In particular, we
provide a strategy to select the length of the local reference
path with respect to the prediction horizon. The number of
path segments η to be included in the local reference path
is a function of the prediction horizon length, the individual
path segment lengths, and the speed of the AGV at each time
instance, as described below:

m+η∑

i=m

si

︸ ︷︷ ︸
Local reference path length

≥ τ
N∑

j=0

vj

︸ ︷︷ ︸
Traveled distance in horizon

, (5)

where τ is the length of the discretization steps along the
horizon. We use an upper bound on the condition in Eq. (5)
by considering maximum longitudinal velocity vmax and
select η such that

m+η∑

i=m

si ≥ Thorizon · vmax. (6)

C. Progress on Reference Path

MPCC keeps track of the path progress along the total
reference path using the path parameter θ. Finding the corre-
sponding path parameter, however, involves solving another
optimization problem which would increase the computa-
tional cost of the algorithm [25]. If the distance between
waypoints is small in relation to their curvature, spline
parametrization can be regarded as reasonable approxima-
tions of arc-length parametrizations. Therefore, conventional
MPCC assumes that the evolution of path parameter can be
approximated by the traveled distance of the robot:

θk+1 ≈ θk + vkτ, (7)

where v is the forward velocity of the controlled vehicle. This
estimation of the path parameter, however, has shown to be
quite coarse, especially when the AGV must deviate from
the reference path during an avoidance maneuver. During
such a maneuver, the path parameter starts drifting. LMPCC
resolves the problem of the drifting path parameter by per-
forming line search around the estimated path parameter, as
Algorithm 1 describes, resulting in the refined path variable
estimation θ̃. In particular, note that the evolution of the
path variable in the prediction horizon still matches Eq. (7),
while the initialization of the path parameter is done with
the refined approximation θ̃0 at each iteration.

Algorithm 1 Refined path variable estimation

1: θ0 = θprevious + vkτ
2: window = [θ0 − Lwindow : θ0 + Lwindow]
3: for each θsample in window do
4: Compute distance to θsample
5: if distance < distancemin then
6: distancemin = distance
7: θ̃0 = θsample
8: end if
9: end for

D. Maintaining Continuity Over the Local Reference Path

To concatenate the parametrized reference path segments
and reference velocities of separate segments into the local
reference path that is tracked by the LMPCC, we provide
a differentiable expression of the corresponding parameters
over the prediction horizon. We use a sigmoid activation
function σ to link η path segments Rm as in Eq. (4). In order
to connect the analytical expressions of the reference path
segments (Eq. (3)), we multiply the piece-wise spline sec-
tions by their corresponding activation function σm(θ, sm),
as follows:

L̄
r
(θ) =

m+η∑

i=m

[pr(θ)T, v̄ref ]T · σm(θ, sm), (8)

resulting in L̄
r
(θ), a differentiable replacement for Lr.

E. Collision Avoidance

Our collision avoidance strategy is separated for the
static environment and the dynamic obstacles. The static
environment is taken into account by defining a set of
feasible positions of the AGV within the occupancy grid map
representation as inequality constraints. Dynamic obstacle
avoidance is achieved by introducing inequality constraints
on the position of the AGV with respect to obstacle positions.
Additional clearance from dynamic obstacles is obtained
through a repulsive penalty in the cost function. Figure 3
provides an overview of our collision avoidance strategy that
we discuss in more details below.

The occupied area by the AGV is represented by ndisc discs
centered in pBj , where pBj is the position on the j-th disc in
the AGV body-fixed frame and ndisc is the number of discs
used to bound the AGV, j ∈ J disc := {1, 2, . . . , ndisc}. The
position of disc j in the world fixed frame, pWj , is obtained
through the transformation pWj = TW

B (z)pBj , where the
transformation TW

B (z) consists of a rotation by heading ψ
and a translation by position p of the AGV. An inflated static
obstacle environment is obtained by inflating the obstacles
with rdisc.

First, static environment collision avoidance will be dis-
cussed, where Sections III-E.1 and III-E.2 present two differ-
ent variations of our approach. Next, the position constraints
on the dynamic obstacles are introduced in Section III-E.3.
Finally, the repulsion from dynamic obstacles is described in
Section III-E.4.



Fig. 3: Overview of collision avoidance parameters.

1) Static Obstacle Avoidance Using Circular Feasible
Regions: It is assumed that the reference path is free of
static obstacles. However, it should be guaranteed that static
obstacles are avoided. Fig. 3 shows how we approximate
a circular region free of collisions with static obstacles for
each point in the prediction horizon. We overcome static
environment collisions by defining a feasible set of solutions,
where the approximated collision-free area is introduced as
an inequality constraint on the current AGV position such
that B(zk) ∪Ostatic = ∅ ∀ k ∈ {0, . . . , N}. In particular, we
use the optimal state sequence computed at the previous time
instance t − 1, namely, z∗0:N |t−1. This sequence of states
contains the positions p∗0:N |t−1 which are used to center
the circles depicted in Figure 3. The radii of the collision-
free region are found by expanding squares in the inflated
occupancy grid map of the environment until an occupied cell
is detected, starting from the AGV positions p∗0:N |t−1. The
radius of the collision-free circle at timestep k is denoted by
rk. Fig. 4 describes the method used to find rk of the circle. A
square is expanded in the occupancy grid map, with step size
∆search, to search for the nearest occupied cell. The grid map
is indexed by p̄ = [x̄, ȳ], having its origin at pmap

O inW , and
has a cell size of γ × γ. A more detailed description of this

Fig. 4: Search for the nearest occupied cell by expanding a
square in the occupancy grid map.

procedure and its implementation is presented in Appendix
B-1-3.

Given z∗0:N |t−1, we enforce that the positions of the discs
pWj , may never enter the inflated static obstacle environment
by constraining their translation to rk. This constraint is
given by Eq. (9) for disc j, where the positions pWj,k
are obtained through their corresponding transformations
TW
B,k(zk).

cstat,j
k (zk)= rk − ‖p∗k|t−1 − TW

B,k(zk)pBj ‖22
∣∣∣
k
> 0

∀k ∈ {0, . . . , N}
(9)

Using Eq. (9) to avoid static obstacles will result in
ndisc quadratic inequality constraints in the LMPCC problem
formulation.

2) Static Obstacle Avoidance Using Polygon Feasible Re-
gions: In our second approach of representing the area free
of static environment collisions, we use a polygon repre-
sentation. More specifically, a convex four-sided polygon,
or convex quadrilateral, will represent the feasible region
of solutions such that the AGV will not collide with the
static environment. This representation has as advantage that
it can cover a much larger approximation of the actual
collision-free area compared to the circle. Especially close to
static obstacles, the polygon region provides a safe way out,
whereas the circular area will remain bound by the closest
obstacle as shown in Fig. 5. Furthermore, the constraints on
static obstacle avoidance can now be written in linear form,
in contrast with the quadratic form of Eq. (9). On the other
hand, searching for the convex quadrilateral collision-free
area in the occupancy grid map is more difficult. The feasible
area is again defined as the set of feasible positions of the
AGV, such that the individual positions of the occupied
area representing discs do not collide with the inflated static
obstacle environment. r

The size and position of the quadrilateral is expressed with
the coordinates pqu = [xqu, y

q
u], with u := {1, . . . , 4}, as

shown in Fig. 6. The unit vector along each side of the
quadrilateral is given by ~tu and the normal inward unit

Fig. 5: Comparing the collision-free area representations.



Fig. 6: The collision-free area as a convex quadrilateral
feasible region.

vector by ~nu. The feasible region that is represented by
this particular shape is expressed as a union of four linear
constraints, cstat,j

k (zk) =
⋃4
u=1 c

stat,u,j
k (zk), for each disc j

representing the occupied area of the AGV. Each individual
linear constraint expresses that position pWj should remain
on the inward side of the quadrilateral that is found for each
optimal position in the prediction horizon, obtained at the
previous time instance t − 1. This means that the set of
feasible solution positions with respect to p∗k|t−1 is given
by {pk|~nuk ·

(
p∗k|t−1 − TW

B,k(zk)pBj
)
< auk}, where auk is a

constant. Given pqu, we can compute the corresponding ~nu

through ~tu, after which auk is found by solving ~nuk ·pqu = auk .
The resulting constraint for disc j is given by Eq. (10), where
the positions pWj,k are obtained through their corresponding
transformations TW

B,k(zk).

cstat,u,j
k (zk) = auk −~nuk ·

(
p∗k|t−1 − TW

B,k(zk)pBj
)∣∣∣
k,u

> 0

∀k ∈ {0, . . . , N}, ∀u ∈ {1, . . . , 4}
(10)

In our implemented search routine, we limit the set of
quadrilateral polygons to rectangles. Our search routine
expands the sides of a vehicle aligned rectangle simulta-
neously in the inflated occupancy grid environment with
steps of ∆search, until either an occupied cell is found or

Fig. 7: Vehicle aligned search routine.

Fig. 8: Expressing the feasible region of solutions using
rectangles.

the maximum search distance ∆search
max is reached. Once an

expanding rectangle side is fixed as a result of an occupied
cell, the rest of the rectangle sides are still expanded to
search for the largest possible area. The result of the search
routine are the rectangle dimensions [xmin

k , xmax
k , ymin

k , ymax
k ]

with k := {0, . . . , N}, defined in the AGV coordinate frame,
as visualized by Fig. 7. A more detailed description of
this search routine and its implementation is presented in
Appendix B-1-3. The parametrized dimensions of Fig. 7
express the quadrilateral coordinates pqu,k, originated at the
optimal positions obtained from the solution at the previous
time instance, shown by Fig. 8.

Using the inequality constraint of Eq. (10), the quadri-
lateral constraint to avoid static obstacles will appear as
4 · ndisc linear inequality constraints in the LMPCC problem
formulation.

3) Position Constraints on Dynamic Obstacles: Recall
that each moving obstacle Ai is represented by state zAi(t),
and ellipse dimensions a and b. The collision avoidance
constraints can be defined as an inequality constraint for each
j-th disc bounding the robot with respect to the distance of
each obstacle i ∈ {1, . . . , n} at time k as depicted in Fig. 3.

Omitting i for simplicity, the inequality constraint on each
disc of the AGV with respect to the obstacles is given by

cobst,j
k (zk)=

[
∆xjk
∆yjk

]T

R(ψ)T
[ 1
α2 0
0 1

β2

]
R(ψ)

[
∆xjk
∆yjk

]∣∣∣∣∣
k,j

> 1.

(11)

The distance from disc j to the obstacle is split into its
∆xj and ∆yj components as shown in Fig. 3. R(ψk) is the
rotation matrix corresponding to the heading of the obstacle
and α and β are the resulting axes of the ellipse constraint.

It is important to notice that previous approaches assumed
that the Minkowski sum of an ellipse with a circle is an
ellipsoid with semi-major axis α = a+ rdisc and semi-minor
axis β = b + rdisc, represented by the grey area in Fig. 9
[25]. This assumption, however, is not correct and collision
can still occur [42]. In order to ensure collision-free motions
the radius is enlarged by a factor λ:

[
α
β

]
=

[
a+ λrdisc
b+ λrdisc

]

′
(12)



Fig. 9: True Minkowski sum and the bounding ellipse.

where λ is computed such that the curvature of the
constraint ellipsoid is a lower bound of the curvature of the
Minkowski sum, visualized by Fig. 9, as follows:

λ=min




(a2 + br)(1− 2ab
a2+br +

√
(a−2b)2+br)

a2+br )

2b

(b2 + ar)(1− 2ab
b2+ar +

√
(−2a+b)2+ar

b2+ar )

2a



. (13)

This guarantees that the constraint ellipsoid entirely bounds
the collision space, represented by the red area in Fig. 9. The
derivation of λ is given in Appendix E.

4) Repulsion from Dynamic Obstacles: A penalty in the
cost function that resembles repulsion from dynamic obsta-
cles ensures clearance between the AGV and the dynamic
obstacles [28]. The penalty is defined as follows:

Jrepulsive(zk) = QR

n∑

i=1

(
1

(∆xk)2 + (∆yk)2 + κ

)
, (14)

where QR is the weight on the repulsive forces . The distance
from the AGV to the dynamic obstacles is given in its
separate ∆xk and ∆yk components as in Fig. 3. A small
value κ is introduced to ensure numerical stability of the
solver [39].

F. Local Model Predictive Contouring Control

As introduced in Section III-A, the global reference path
P consists of M segments, resulting in a local reference
trajectory L̄

r
(θ) with η segments, starting from the m-th

closest path segment. The approximated local contour error
ẽc and longitudinal error ẽl are expressed as a function of
θ as visualized in Fig. 10. With p̄r(θk) being the local
reference path evaluated at θk, the tracking error vector
ek := [ε̃c(zk, θk), ε̃l(zk, θk)]T is defined as follows:

ek =

[
sinφ(θk) − cosφ(θk)
− cosφ(θk) − sinφ(θk)

] (
pk − p̄r(θk)

)
. (15)

In order to ensure progress along the reference path, the
conventional MPCC scheme proposes to add a negative cost
term proportional to the traveled distance. In contrast, we
introduce a cost term that penalizes the deviation of the
vehicle velocity vk with respect to a reference velocity vref.
The reference velocity is provided according to Eq. (8),
allowing the vehicle to adapt its speed according to the path

Fig. 10: Approximated contour and lag error on the path
segment.

current segment that it is tracking. Now, the LMPCC tracking
cost is defined as Jtracking(zk, θk) = eTkQεek + Qv(vref −
vk)2, where Qε and Qv are the weights on the tracking
error and the reference velocity, respectively. Additionally,
the cost function also penalizes with weight Qu the inputs,
that is, Jinput(zk, θk) = uTkQuuk. We can now formulate
our LMPCC control problem:

J∗ = min
z0:N ,u0:N−1

N−1∑

k=0

J(zk,uk, θk) + J(zN , θN )

s.t. zk+1 := f(zk,uk),

θk+1 = θk + vkτ,

zmin ≤ zk ≤ zmax,

umin ≤ uk ≤ umax,

cstat,j
k (zk) > 0,

cobst,j
k (zk) > 1, ∀j, ∀obst,

z0 = zinit, θ0 = θ̃,

(16)

where J(zk,uk, θk) := Jtracking(zk, θk) + Jrepulsive(zk) +
Jinput(uk). Algorithm 2 summarizes our design. Each control
iteration, feedback steps are performed until either a Karush-
Kuhn-Tucker (KKT) condition [43] or the maximum number
of iterations is satisfied (line 10).

IV. RESULTS

This section presents the results obtained using the pro-
posed planner. In the following, we provide simulation
results and real-world experiments the mobile robot shown in
Fig. 11 [44]. In our experiments, we show that the LMPCC
framework can be wrapped in an autonomous navigation
system, completely running on the mobile robot using on-
board localization, perception, and processing. These are the
first experiments where a MPCC approach is implemented
completely independent of any external components.

In order to solve the non-linear optimal control problem
(Eq. (16)), highly efficient C-code is exported using ACADO
[39] to provide fast solutions online. Discretization of the
time-continuous differential equations is done via direct



Algorithm 2 Local Model Predictive Control

1: Given z0, zgoal, Ostatic, Odyn
k , and N

2: Initialization: k = 0
3: Build global path P Eqs. (3) and (8)
4: Select η according to Eq. (6)
5: Build L̄

r
(θk) according to Eqs. (3) and (8)

6: while zk 6= zgoal in parallel do
7: Process sensor data
8: Estimate θ̃0 according to Algorithm 1
9: Compute rk along z∗0:N |t−1

10: while iter < itermax ∧ KKT > threshold do
11: Solve Eq. (16)
12: iter = iter + 1
13: end while
14: Apply u∗

0

15: if θk > sk then
16: k = k + 1
17: Re-plan global path P \ pr
18: Build L̄

r
(θk) according to Eqs. (3) and (8)

19: end if
20: end while

multiple shooting techniques. The resulting QP problem is
condensed and solved using qpOASES [37]. We imple-
mented our design in C++ and we will release the code as an
open source Robotic Operating System (ROS) package. More
details on the implementation can be found in Appendix B.

Two types of experiments are performed using the mobile
robot. The first experiment is performed within a closed
environment, where tracking performance and planning be-
havior is inspected in a specific static environment set-up and
interacting pedestrians. The second experiment type brings
the LMPCC to real-world scenarios where the planner is
integrated within a complete autonomous navigation archi-
tecture. A comparison will be made with simulation results
to highlight shortcomings of the total system, where Gazebo
is used as simulation framework [49]. Whereas in the first
experiment a circular approximation of the static obstacle
collision-free environment is used to define the feasible solu-

Fig. 11: Mobile robot used for experiments [44].

tion set (Section III-E.1), we aim to traverse the unstructured
environments of the second experiment using the rectangular
approximation (Section III-E.2). Both approximations will
be compared briefly in Section IV-D and more experimental
results are presented in Appendix A.

A. Experimental Setup

The mobile robot allows inputs to be given in the form
of longitudinal and angular velocities. A non-linear unicycle
kinematic motion model, as given by Eq. (17), was used to
model the robot dynamics within the LMPCC formulation
[45]. 


ẋ
ẏ

ψ̇


 =



v cosψ
v sinψ
ω


 (17)

The computed input velocity commands v and ω are
directly passed to a lower level wheel controller that trans-
lates the longitudinal and angular velocity commands into
wheel velocities of the differentially driven platform. Fig. 12
visualizes the layout of the interacting control scheme. The
lower level wheel controller (called diff-drive controller)
reacts on [ω̄L, ω̄R], representing the measured wheel ve-
locities by the wheel encoder, to accurately control the
desired wheel velocities. The diff-drive controller updates
at a frequency of 50 Hz. Appendix C-1 presents the mobile
robot, including a derivation of the motion model and details
on the aforementioned diff-drive controller.

The presented planner has been adopted within an au-
tonomous navigation system for the mobile robot as a proof
of concept. This means that the mobile robot is extended with
perception and localization capabilities. Fig. 13 visualizes
how the different functional components of the platform
interact to safely navigate through a dynamic real-world
environment. Note that the decomposition of functional sub-
systems satisfies a modular approach to fulfill the require-
ments of autonomous navigation capabilities [46]. Onboard
localization is achieved by fusing measurements from the
Inertial Measurement Unit (IMU), wheel encoders and
Light Detection And Ranging (LiDAR) sensor. A Monte
Carlo localization approach, as described by [47], is used
to match LiDAR scans to the environmental map. The
obtained positions are fused with the wheel odometry and
IMU data through an Extended Kalman Filter (EKF), to
aim for a more accurate measured position of the robot.

LMPCC Diff-drive 
controller 

Robot
platform

Fig. 12: Control scheme of the interacting LMPCC and
differential drive controller.
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Fig. 13: Architecture of the implemented autonomous navigation system.

Additional to the predefined static map of the environment,
updates of the static environment are incorporated within
the computations of the collision-free area. In order to get
a position measurement of the moving obstacles, clustered
LiDAR point clouds, following the method of [48], are
consulted to fit obstacle representing ellipses on the planeW .

In addition, we implemented the global planner using
the RRT-connect implementation from the Open Motion
Planning Library (OMPL) [50]. A smoothened global path
was constructed by building a clothoid, connecting each
waypoint obtained from the RRT [51]. The waypoints of
this global path were used to generate the local reference
paths consisting of 3rd order polynomials as in Eq. (8).
Furthermore, we used the OptiTrack system as ground-truth
for the executed robot trajectories [52].

B. Closed Environment Experiments

For these experiments, the LMPCC was set to run at 20
Hz considering a prediction horizon of 5 sec with N = 25
steps. First, we tested tracking performance without moving
obstacles at a reference velocity of vref = 1 m/s (Fig. 15).
Second, we tested tracking and obstacle avoidance in the
same environment using a reference velocity of vref = 0.7
m/s. The moving obstacles are two pedestrians walking
around in the environment and their position is provided by
the OptiTrack system. An occupancy grid map of the static
environment was built a priori for the robot to localize within.

As shown by Fig. 15, the LMPCC achieved perfect track-

ing in simulation and on the robot by using the OptiTrack
system to provide the robot state. When using onboard
localization, from the perspective of the robot’s believe state
of its position, tracking performance is comparable to the one
obtained with OptiTrack system. By looking at the ground-
truth results obtained by the OptiTrack, however, the robot is
not perfectly following the reference path (red line). This is
mainly due to the uncertainty on the onboard localization
data. It is most likely that this localization error is due
to unmodeled skidding behavior in the odometry data of
the wheels since the error mainly occurs at high speed
turns where lateral skidding is clearly visible. We choose
to analyze a time period of ten minutes of the experiment
where pedestrians are present in the environment as shown
in Fig. 14.a). The time period was chosen such, that most
of the observed characteristic behavior of the planner was
captured. In Fig. 16, we cumulate the clearance distance
between the robot and the obstacles for the observed time
period. In almost all instances, a minimum safe distance of
0.32 m was achieved, which corresponds to the robot radius,
using a single disc. One particular avoidance maneuver
resulted in an overlap between the collision radius of the
robot and the static obstacle, which is most likely due to a
localization error. The few detected collisions with dynamic
obstacles were situations where the pedestrians violated the
collision boundary of the robot and the robot could not avoid
fast enough. This limitation is mainly caused by the non-
holonomic nature of the robot and the acceleration limits

a) Interacting pedestrian. b) Interaction scenario 1. c) Interaction scenario 2.

Fig. 14: Two characteristic collision avoidance scenarios.
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Fig. 15: Traveled path of the AGV compared to the reference.

on the actuating motors. Fig. 14.b)-c) shows two snapshots
of two critical driving situations avoiding moving and static
obstacles. The first scenario emphasizes the ability of the
robot to safely navigate through an environment while mov-
ing persons are close by and are crossing the reference path.
The second scenario shows that the robot is able to maintain
clearance from static obstacles in its effort to avoid the
pedestrian. More results on the robustness of static obstacle
avoidance are presented in Appendix A-2.

It is observed that the repulsive penalty in the cost function
effectively maintains clearance from the pedestrians. In some
cases, however, the repulsive penalty causes the robot to
dodge in a very conservative manner, while a less aggressive
avoidance maneuver would satisfy. We argue that a better
designed repulsive penalty can create a more compliant and
efficient approach in navigating through dynamic environ-
ments. An improved version could for instance have an
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Fig. 16: Sampled clearance from the robot to static and
dynamic obstacles.

TABLE I: Computation times

Mean Minimum Maximum Variance
Tracking experiment 3.2 ms 1.7 ms 15.3 ms 0.0017
Interaction experiment 11.0 ms 3.5 ms 265.2 ms 0.0151

adapting repulsion, considering the positions and velocities
of the obstacle with respect to the robot.

Table I shows the computation times of solving the optimal
control problem for the different experiments presented in
this section. Real-time performance is satisfied for both
cases. The case where the real-time constraint could not be
satisfied during the experiments was caused by a pedestrian
that violated the collision bound of the robot. The optimal
control problem keeps iterating until the maximum number
of iterations is reached, since no feasible solution can be
found. The absence of a feasible solution results in a serious
hazard since we are acting directly on the AGV actuating
wheels. In our mobile robot experiments, it is a safe and
valid solution to stand still when infeasible solutions occur.
This problem does, however, require more research to come
up with a proper method of dealing with infeasibility and
satisfying the real-time constraint for any general AGV
application.

C. Real-world Navigation Experiments

Our planner design has been adopted within the navigation
framework of a mobile robot as presented in Section IV-A.
All experiments in this section are performed on our mobile
robot, completely independent of any external information
or computation sources. For these experiments, the LMPCC
was set to run at 20 Hz considering a prediction horizon of
2.5 sec with N = 25 steps. The reference velocity is set to
vref = 0.8 m/s.

A first example of the working system is given in
Fig. 17. The figure shows the robot in a scenario where a
predefined global plan is used to traverse a corridor of our
faculty back and forth. Different snapshots of separate time
instances are shown in the single image, denoted by the time
instances t0, t1, t2, and t3. On the right-hand side, an online
available visualization of the experiment is shown. Within

Fig. 17: Avoiding an oncoming pedestrian in a corridor.
(left) real-world experiment (right) online visualization.



Fig. 18: Two time instances of an avoidance maneuver in an
unstructured environment. (top) snapshots of the experiment
(bottom) online visualization.

the visualization, we can recognize the local reference path,
Lrt0 , and the collision constraint with respect to the static
environment, cstat

t0 (zt0), at time t0. Furthermore, recall that
the global path is denoted by P and the previously computed
prediction horizon by z∗0:N |t−1. Symbols are added to the
visualization for clarity. It is observed that the mobile robot
avoids a collision with the oncoming pedestrian after which
it returns to the reference path. It is, however, inspected
that the avoidance maneuver is quite tight since no velocity
information about the obstacle is available.

A second experiment emphasizes the applicability of our
framework to navigation tasks in unstructured environments.
Fig. 18 shows an avoidance maneuver of the mobile robot
that puts static environment collision avoidance capabilities
to the test. The interacting pedestrian is headed towards the
robot on the reference path and forces the robot to deviate
from the global plan. Caused by the constraints that express
the area free of static collisions as the feasible set of solu-
tions, LMPCC finds an alternative route around the drawer.
By putting a relatively low weight on the contour error in
the cost function (Eq. (15)), we allow the robot to come up
with this alternative plan to traverse the environment.

In the last example, we discuss an overtaking experiment
that is performed in the same corridor as in Fig. 17. A
pedestrian is walking in the same direction as the robot but
has a slower speed. The overtaking maneuver is invoked
by the penalty devoted to the deviation from the reference
velocity. Fig. 19 shows three time instances of the overtak-
ing maneuver. Although the robot performs the maneuver
without colliding with the pedestrian, the predicted return
position to the reference path at t1 does not match the true
position at t2. Although LMPCC is able to anticipate on the

Fig. 19: Overtaking a pedestrian in a corridor (top) snapshots
of the real-world experiment visualization (bottom)
equivalent experiment in simulation with obstacle prediction.

dynamic behavior of the pedestrian, the perception module
of the mobile robot can not deliver such information in its
current state. In addition to the implemented obstacle detec-
tion capabilities, an obstacle tracking module is required to
make an estimate of the pedestrians’ movement in the future.
For example, an Extended Kalman Filter or a particle filter
could be used for this purpose [53], [54]. Exemplifying this
statement, Fig. 19 shows a simulated experiment, that mimics
the performed real-world experiment. The only addition that
distinguishes this simulation from the real-world experiment
is the provided velocity estimation of the pedestrian that
is overtaken. It is now observed that the actual point in
space where the robot is able to return to the reference path
matches the expectation in the prediction horizon of earlier
time instances.

During the experiments, it is observed that uncertainties on
the measured positions of the detected obstacles can cause
the previously computed control horizon to become infea-
sible. Limited sensor data and uncertainty about obstacle
behavior inevitably introduces prediction uncertainty in real-
world navigation scenarios. We propose an extension to our
framework where we incorporate (prediction) uncertainties
of the moving obstacles to enhance safe operation. The
proposed method follows [25] and will be explained together
with preliminary results in Appendix D.

D. Comparing the Circular and Rectangular Static Environ-
ment Constraints

In terms of behavioral performance, we have experienced
that both variations of the collision-free area constraint
allowed the LMPCC to find safe solutions for traversal of
unstructured static environments. The major difference in
performance was observed close to static obstacles with
dynamic obstacles nearby. In these particular cases, the cir-
cular constraint can be too conservative and trap the feasible
solution set in a very limited space, resulting in an infeasible
problem definition. We exemplify these observations by
a comparing simulated navigation task in Appendix A-1.



Additionally, a computational comparison is made for the
occupancy grid map search routines in a free space for a
maximum search distance of 2 m. A typical search time for
the circular collision-free area is 25µs, whereas the rectangle
expansion needs 360µs. The difference of factor ten can be
explained by the transformation that needs to be performed
to the map fixed coordinate frame of the vehicle aligned
rectangle sides.

V. EXTENSION TO AN AUTONOMOUS CAR

We tested our method in simulation for an autonomous
vehicle, a Toyota Prius. Being able to use our framework
to plan motion and the corresponding control inputs for the
car, emphasizes the applicability of our approach to different
types of vehicle models. The motion model used in the
LMPCC to control the vehicle is the one presented in [55],
that is, a kinematic bicycle model given by
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where x and y are the coordinates of the center of mass in an
inertial frame. ψ is the inertial heading and v is the speed of
the vehicle. lf and lr represent the distance from the center
of the mass of the vehicle to the front and rear axles, respec-
tively. β is the angle of the current velocity of the center of
mass with respect to the longitudinal axis of the car. a is
the acceleration of the center of mass in the same direction
as the velocity. The control inputs are the front and rear
steering angles δf , and a. The LMPCC was set to run at 20Hz
considering a prediction horizon of 5 sec with N = 25 steps.

The occupied area by the car is defined using three discs
in accordance with Section III-E. The velocity reference was
set to 8 m/s (≈ 30 Km/h). We simulate the vehicle following
a reference path, where the cost devoted to maintaining the

Fig. 20: Autonomous vehicle cyclist overtaking scenario.

reference velocity forces the car to overtake a cyclist. While
overtaking the cyclist, the car has to avoid collision with
a pedestrian that crosses the road. Fig. 20 shows that au-
tonomous vehicle successfully avoids collision with the mov-
ing obstacles and stably converges to the reference trajectory
in this particular scenario. An average computation time of
12.7 ms was required to solve the optimal control problem
for the car. A solve time of 4.8 ms and 28.8 ms for the best
and worst case computational scenario respectively indicates
the real-time feasibility during the simulated experiment.

VI. CONCLUSIONS

We proposed a trajectory optimization approach based on
Local Model Predictive Contouring Control (LMPCC)
to safely navigate AGVs in dynamic, unstructured
environments. The LMPCC relies on a robust bound
on the Minkowski sum to safely avoid dynamic obstacles.
Furthermore, our design relies on a technique to compute
a collision-free area to avoid collisions with the static
environment. We showed the applicability of our LMPCC
design in simulations for a mobile robot and an autonomous
vehicle. Finally, we performed experiments using a mobile
robot avoiding pedestrians in real-world environments. We
showed that our motion planner satisfies the real-time con-
straint and can be integrated within a complete autonomous
navigation system, relying on sensor data. Furthermore, the
light implementation of our LMPCC allowed us to run all
the algorithms onboard of the mobile robot. The next step
is to test the proposed algorithm in a real autonomous car
and to expand the current navigation system to incorporate
prediction information about other road users. Improvements
of the framework can be made by investigating a non-
uniform repulsive penalty in the cost function, incorporating
obstacle prediction uncertainty, and improve the method to
deal with infeasible solutions of the optimal control problem.
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Chapter 3

Discussion and Conclusion

In this chapter, we conclude the thesis, starting with a discussion on the findings of the
thesis work in Section 3-1. Subsequently, a conclusion is made in Section 3-2, followed by
recommendations for further work in Section 3-3.

3-1 Discussion

In general, the resulting planning framework has indicated that optimization based trajectory
planning is a feasible approach for Autonomous Ground Vehicle (AGV) operating online in
real-world environments. Although it was mentioned by related research work that the major
drawback of an optimization-based approach is its computational burden, we have shown that
modern tools allow us to satisfy the real-time constraints. To our knowledge, we are the first
to implement a trajectory optimization based approach using Model Predictive Contouring
Control (MPCC) on a mobile robot, relying only on onboard perception and computational
resources. The expressive nature of the optimal control structure is able to incorporate
a detailed description of the planning problem, allowing us to craft appropriate planning
behavior and anticipate on the predicted environment evolution. The optimization based
approach met the expectation that collision avoidance guarantees can be crafted into hard
constraints in the optimization procedure. Through these explicit constraints, safe behavior
is observed for a large variety of chosen weights in the cost function. Through the adopted
cost function, planning behavior can be tuned with intuitive weight parameters.

Our implementation of the planning framework makes use of the ACADO open source library
that allowed us to generate efficient, problem-specific C-code to solve the problem online
in the order of milliseconds. The planning framework and its side-components have been
implemented in c++, relying on the Robotic Operating System (ROS) middleware. The
problem specific generated code has as disadvantage that the structure of the optimal control
problem cannot be changed online, meaning that only a fixed number of constraints and online
parameters can be incorporated. For example, only a fixed number of dynamic obstacles can
be taken into account. We have solved this particular problem by defining multiple obstacles
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22 Discussion and Conclusion

in the framework beforehand, which are being parametrized outside the planning scope when
no obstacles are present during operation. Another issue is that the number of reference
path segments in the local reference path is fixed. Our implementation deals with this by
considering the maximum required length, that is when the vehicles drives at maximum speed
for the current chosen time horizon length.

3-1-1 Local Reference Path Parametrization

The local parametrization of the reference path in our framework resulted in a compact
tracking formulation, without showing any degradation of tracking performance. Compared
to conventional Model Predictive Contouring Control (MPCC), our local parametrization
eliminates the redundant global path parametrization that is currently not being tracked
in the optimal control problem. Furthermore, this allows us to efficiently apply replanning
techniques on the global plan. By obeying the lower bound on the length of the local reference
that we presented, tracking performance has shown to be equal to tracking performance using
a globally parametrized reference path. Switching between local reference paths is designed
to have smooth transition behavior since we have provided a method to maintain continuity
with respect to the global plan. In our experiments, we have shown that choosing to diverge
from the reference path is often a conceivable solution. Using our refined approximation of
the path parameter update during execution, stable tracking behavior is obtained without
being constrained to stay near the path.

3-1-2 Collision Avoidance

We have presented a solution to collision avoidance with respect to the static obstacle envi-
ronment by explicitly defining feasible sets of solutions, introduced as inequality constraints.
An inflated occupancy grid map of the environment is utilized to search for collision-free
areas around the prediction horizon, exploiting previous solutions. The two variations that
we presented as solution to avoid collisions with the static obstacle environment both showed
safe performance. Results have shown that the circular region can be found in the order of
microseconds, whereas our approximation of the quadrilateral, a vehicle aligned rectangle, re-
quires search times of factor ten larger. An observed limitation of this approach, in general, is
that solutions to the optimal control problem can only be found in the proximity of the previ-
ously computed prediction horizon, bounded by the collision-free space. Whereas the circular
approximation has shown to be coarse in some situations, our current implementation of the
polygon search is limited to 3 meter because of its computational cost. In most cases, the
vehicle aligned rectangle provides a less conservative approximation of the collision-free area
than the circle. Depending on the operation environment and available computational pow-
er/time, a choice can be made between both approximations to obtain satisfactory behavior.
The rectangle approximation is a subset of the larger class of possible convex polygons that
can be represented by our collision avoidance strategy, leaving possibilities for creating less
conservative approximations of the collision-free area. The vehicle aligned rectangle search,
where each side expanded equally, is particularly applicable to mobile robots operating in
unstructured environments. For autonomous car applications, a different search routine or
representation presumably results in a more effective feasible solution set.
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3-1 Discussion 23

Dynamic obstacle avoidance is achieved in the form of inequality constraints in the optimal
control problem, by using a disc representation for the ego-vehicle and ellipses for the occupied
area by the dynamic obstacles. We have corrected an approximation of the Minkowski sum
of the ellipsoid and a circle that is used in related research, by defining an ellipse that bounds
the true Minkowski sum. By providing a prediction of the future positions of the dynamic
obstacles in the prediction horizon, our planning framework anticipates on the evolution of
the obstacle environment. It is, however, observed that performance of our optimal controller
degrades when the obstacle predictions do not match their future behavior. Therefore, we
have proposed to extend our method to account for prediction uncertainty regarding the
future obstacle positions within the prediction horizon.

The planning framework employs a cost specifically targeted at maintaining clearance from
moving obstacles in its environment. In practice, it is observed that this penalty effectively
allows us to make a trade-off between a compliant clearance from obstacles and a certain
dedication to keep traversing the environment along the global plan. The current form of
the repulsive penalty is not taking into account the heading and velocity of the vehicle or
obstacle, nor the placement of the obstacle with respect to the robot. We argue that a more
sophisticated designed repulsion can create a more efficient approach in navigating through
dynamic environments.

3-1-3 Experimental results

We have presented performance results in real-world experiments using a mobile robot, show-
ing the applicability to real navigation scenarios and compatibility with the navigation system,
real sensor data, and the hardware setup. A localization system has been build that fuses
LiDAR scan matches, wheel odometry data, and Inertial Measurement Unit (IMU) data to
obtain an accurate position update. Furthermore, the 3D LiDAR point cloud is consulted to
detect moving obstacles, using a clustering technique. Real-world experiments have shown
that our current perception module lacks the ability to provide a velocity prediction to the
planning framework. We have performed the real-world experiments using a static obstacle
assumption since there was no velocity information available of the moving obstacles. Increas-
ing the weight of repulsive penalty in the cost function allowed us to be more conservative and
traverse real-world environments safely. As we have seen in the simulations where a velocity
prediction was available, our planning framework is able to produce much more efficient plans
with sufficient environmental information. The aforementioned limitations of the perception
module of our navigation system can be solved by using, for example, an Extended Kalman
Filter (EKF) for obstacle tracking.

It is observed that the repulsive penalties produced by interacting dynamic obstacles can
cause the optimal control solutions to be trapped in local minima. Although this limits the
AGV in its task to traverse an environment, staying in a local minimum is a rather safe
solution for navigation tasks. Since these local minima are caused by moving obstacles in
the environment, the problem is usually solved when the dynamic obstacles move on. Two
causes are observed that make it more difficult to escape from local minima. The first cause
is the initialization of the optimal control problem. Since we use the previously computed
solution to initialize the optimal control problem, it is more likely that the solver will find a
new solution close the initialized solution. Secondly, the constraint that defines the feasible
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set of solutions can be a very conservative approximation of the actual collision-free area. It
is worth investigating whether a reset of the prediction horizon allows us to escape from these
local minima easier.

Simulation results of an autonomous car have indicated the diverse applicability of the plan-
ning framework. A bicycle model was used for the car, where our optimal control planner
computes the acceleration and steering angle corresponding to the prediction horizon directly.
Our obstacle avoidance strategy also has shown to be effective for the car but requires differ-
ently tuned parameters. Furthermore, it is inspected that the kinematic model used to relate
the inputs and outputs of the mobile robot can produce inaccurate motion in high speed turns
since the skidding behavior is not modeled in the optimal control problem. Considering the
mobile robot, we currently rely on the diff-drive controller that tries to produce our requested
longitudinal and angular velocities. A better approach would be to act on the wheel velocities
directly and account for the wheel slip in the motion model.

During experiments and simulations, we have occasionally experienced that the solver is not
able to find a feasible solution, given the current problem definition. Infeasibility is a serious
hazard for a controller that is directly acting on the actuators of an AGV. Although we can
try to minimize the occurrences of infeasibility, there is no guarantee that an update of the
environment from the perspective of the belief of an AGV satisfies all planning constraints. For
instance, during the real-world experiments, people have been approaching the robot really
fast and stepped in the collision bound of the robot. We have worked around this problem by
inspecting the Karush-Kuhn-Tucker (KKT)-number to detect infeasible solutions. As soon
as an infeasible solution was detected, the robot was controlled to stand still. This has shown
to be a proper way of handling this problem in the mobile robot navigation tasks. Caution
is required in this approach because this is certainly not a good solution for a car driving
on the road. Also, infeasibility of the problem causes the solver to keep iterating until the
maximum number of iterations is found. This could be solved by a detection mechanism that
terminates the solver to still be able to satisfy the real-time constraint. Further research is
needed to explore methods to deal with this problem.

3-1-4 Scalability of the Method

We have shown that the optimal control formulation can be solved in real-time for two non-
linear vehicle models, using up to n = 4 moving obstacles, ndisc = 3 ego-vehicle discs and
considering a prediction horizon up to Thorizon = 5 seconds in N = 25 discretization steps.
Scalability and adaptability of the method depends on the complexity of the optimization
problem. The complexity of the optimization problem is defined by the cost function, the
number of constraints, the prediction horizon length and the number of states in the consid-
ered motion model. The number of Online Data Variables (ODVs) also adds to the compu-
tation time needed to set up the problem. We have inspected how physical design measures
translate in complexity of the optimal control problem in terms of the number of parameters
and constraints to obtain intuition about scalability. Dependent on the environment, an in-
creased prediction horizon length can require more local reference path segments, each being
defined by 10 × N ODVs (8 coefficients, segment length, reference velocity). Each dynamic
obstacle adds 5×N ODVs to the problem (position, heading, dimension). The circular colli-
sion constraint can be expressed by 3×N ODVs, whereas the polygon constraint needs 16×N
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ODV. Each ego-vehicle representing disc adds 1 × N ODV. In terms of constraints of the
optimization problem, the moving obstacles introduce n×ndisc constraints, whereas the static
environment is represented by 4 linear constraints or 1 quadratic constraint for the rectangu-
lar and circular variation respectively. Additionally, each moving obstacles introduces a new
term in the cost function.

There is no information available about how the parametric complexity of the problem trans-
lates in time complexity of solving the problem using ACADO. We have experienced that solve
times grow quite quickly for increasing complexity. For example, the complete framework that
we have used in the real-world experiments is solved in the order of 15 ms on our hardware,
whereas a very basic implementation with no collision avoidance capabilities and only two
local reference path segments has solve times < 1 ms. A frequency of 20 Hz has shown to
produce stable planning results, leaving up to 50 ms to solve the optimal control problem.
It is expected that there is still some slack for more complex environments, but we have no
intuition about how complexity will grow for more advanced motion models.

3-2 Conclusion

The thesis work focussed on contributing to the field of motion planning techniques for au-
tonomous vehicles using a trajectory optimization approach, specifically targeted at dynamic,
unstructured environments. Three coherent research questions have been adopted to fulfill
this aim. The first research questions of the thesis seeks to explore the use of MPCC for
a motion planning framework dedicated to real-world navigation tasks of AGVs. The sec-
ond research question concerns the design of collision avoidance strategies within the optimal
control approach. Finally, the third research question considers the implementation of the
framework and the integration within an autonomous navigation system, given the real-time
constraints of online operation and real sensor measurements. Providing an answer to the
research questions, a new planning framework has been developed that relies on the concept
of MPCC. By defining the motion planning task as an optimal control problem, we have de-
signed explicit collision constraints and trade-offs between competitive performance variables
in a cost function. Following a locally parametrized reference path, our optimal controller
creates anticipatory motion by computing control inputs corresponding to a finite optimal
prediction horizon within the environment. Our implementation of the planning framework
allows performing navigation tasks on a mobile robot, relying on onboard sensor data. It is ex-
pected and shown by simulations that our method will perform much better in the real-world
when better predictions about the pedestrians are available. Furthermore, we have shown
that the method can be used for different vehicle models. Improvements of the framework
can be made by designing a non-uniform repulsive penalty in the cost function, investigating
how to deal with infeasibility and by incorporating obstacle prediction uncertainty.
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3-3 Recommendations for Future Work

Resulting from the thesis work, several recommendations are made concerning the continua-
tion of the project. The implemented planning framework will be published as an open-source
package after submission of the thesis since there is still work to be done. This work mostly
concerns tidying the software. According to the following enumeration, we propose to:

1. Investigate methods to deal with infeasibility of the optimization problem. Infeasibility
of the optimization problem is currently accounted for by inspecting the KKT-number
and breaking the AGV to stand still in case of infeasibility. This approach has shown
to work well in the experiments with the mobile robot, but there are improvements to
be made. How we should control the AGV in case of infeasibility heavily depends on
the vehicle type and navigation scenario. Further research is required that investigates
how to act appropriately and how to satisfy the real-time constraint.

2. Find a way to impose clearance from obstacles in a non-unified manner. Investigate how
we can consider the positions and velocities of the obstacle with respect to the robot
to design a better repulsion penalty. It is worth investigating how this method can
be approved to come up with less aggressive, efficient, and more compliant avoidance
maneuvers.

3. Implement onboard tracking and prediction capabilities for the mobile robot. A sugges-
tion might be to make use of different sensors (in combination with the LiDAR) to
get more obstacle measurements since the LiDAR has a quite low number of detection
points for nearby obstacles. A key advantage of the LiDAR is that we have full visibility
around the robot, which is essential for navigation through unstructured environments.
The LiDAR detections can possibly be fused with a (depth-)camera that can deliver
more obstacle measurements in the forward driving direction.

4. Connect the uncertainty related to the obstacle predictions from the perception module to
the planning framework. Appendix D proposed a valid approach to deal with obstacle
uncertainty, which is already implemented. Once prediction uncertainties are avail-
able from an inference framework, real-world tests can be performed using our optimal
controller.

5. Implement reset capabilities to escape from local minima. It was discussed that being
trapped in local minima was enhanced by the static environment constraints and the
initialization of the optimal control problem at the previously computed solution. A
solution to this might be to reset the prediction horizon to the current position of the
robot. A detection module for being stuck in such local minima should be designed and
implemented to activate the reset.

6. Identify and implement a more complex motion model of the mobile robot. The current
implementation of Local Model Predictive Contouring Control (LMPCC) for the mobile
robot relies on the diff-drive controller that allows us to pass longitudinal and angular
velocities. In contrast with the used kinematic model, a dynamic model can be consid-
ered that aims to model the robot skidding behavior and bypass the diff-drive controller.
This will result in more accurate control commands and predicted state evolutions of
the AGV.

B.C. Floor Master of Science Thesis



3-3 Recommendations for Future Work 27

7. Build a more accessible user interface that allows easier user interaction. The current
implemented navigation system of the robot works as a proof of concept and the different
sub-modules interact appropriately. A next step would be to build a more intuitive user
interface for the system to allow for more flexible navigation tasks.

8. Improve the vehicle aligned search routine for expanding rectangles. The current imple-
mentation that searches for the vehicle aligned rectangles is a factor ten slower than a
non-vehicle aligned search. This is due to the fact that for every accessed grid, a trans-
formation to the world frame is performed, including a multiplication by a rotation
matrix. It is presumable that better solutions exist that allow much faster computation
times. Faster search routines would allow us to increase maximum search distances.

9. Investigate the use of less conservative or more appropriate approximations of the area
free of static environment collisions. The currently discussed variations (circle and
rectangle) have shown to work properly, but better variations are still to be investigated.
A suggestion is to search for convex polygons that are not necessarily rectangular since
these are already compatible with the implemented collision constraint.
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Appendix A

Additional Experimental Results

In this section, we present additional experiments that support the statements made in Chap-
ter 2. First, a behavioral and computational comparison will be made regarding the two vari-
ations presented for the static environment constraint in Appendix A-1. Next, Appendix A-2
aims to observe the robustness of the static environment collision constraint.

A-1 Comparing the Two Variations of Static Obstacle Avoidance

Our collision constraint that considers the static obstacle environment was introduced for two
different variations in Chapter 2. Recall that the first variation represented the collision-free
area as a circular inequality constraint, whereas the second variation formulates a rectangular
area. This section shows the difference in performance of both approaches. A specific sim-
ulation environment is designed that seeks to explore the boundaries of operation. Fig. A-1
compares the two approaches in equal circumstances and shows the planning behavior over
time. The optimal controller was set to run at 20 Hz, with a prediction horizon of 5 seconds
in N = 25 steps. The presented scenario simulates the robot driving in a corridor, while an
oncoming pedestrian is walking towards the robot with a velocity of 0.4 m/s. The reference
velocity of the robot is 0.8 m/s. Below, we interpret the presented simulation results, followed
by a computational comparison.

A-1-1 Interpretation of Planning Behavior

The difficulty of this particular navigation and avoidance task is that the pedestrian is located
slightly above the reference path of the robot, such that the repulsive penalty pushes the robot
towards the wall. A conflict occurs between the cost term that penalizes the progress along
the path and the repulsion from the obstacle. The solution seems to be obvious from a
human’s perspective, but Local Model Predictive Contouring Control (LMPCC) is having
difficulties in both cases to find a good solution. We can observe that the prediction horizon
is bent towards the wall, making it hard for the optimal controller to find the solution that
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Figure A-1: Equivalent simulated navigation scenario for both constraint variations.

passes the obstacle on the left side. The reason why the robot is not able to find this solution
is caused by several artifacts. First, due to the robot being trapped in this local minimum
of the repulsive penalty in conflict with the lag and contour terms of the cost devoted to
tracking, the prediction horizon would have to travel against a repelling force to be able to
escape. Since the cost is minimized over the total horizon, traveling against this repulsive field
can be an optimal solution, but the solver has difficulties finding such solutions since we are
initializing the LMPCC with the previous solution, that is, on the right side of the reference
path. Both constraint variations variants suffer from these complications, but there is a clear
reason why the circular constraint eventually ends up in infeasible solutions and collision, and
the simulation with the rectangular constraint is able to find a safe solution. Whereas the
feasible solution set of the circular constraint remains very tight due to the wall that is close
by, the rectangular constraint covers a large area of the corridor and allows solutions passing
the obstacle on the left side. The figure shows the difference is feasible solutions along the
prediction horizon by the yellow regions. Note that these regions consider the inflated static
obstacle map.
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A-1-2 Comparison of Computational Effort

Fig. A-2 shows the computational difference between the two discussed representations. The
experiment shows the computation times for the worst case scenario: an open environment. In
the case that static obstacles are present, the computation times will be lower. As expected,
the search for the rectangular constraint is much slower, approximately ten times as slow.
Although the search routine for both shapes is similar, the main difference comes from the
fact that the incrementally expanded rectangle shape is aligned with the robot heading. In
order to account for this, each searched point in the local robot frame should be multiplied by
a rotation matrix to get its corresponding position in the map frame. Since a circle cannot be
aligned with the heading, we only have to translate the circle to get the proper transformation.
The use of the rectangular approximation at a maximum search distance of 2 m for each of
the 25 positions resulted in a computation time of 9 ms of total available 50 ms each control
loop.
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Figure A-2: Search times of the two constraint variations as a function of the search distance.

A-2 Robustness of Static Environment Collision Avoidance

In this section, we aim to get insight into the robustness of collision avoidance with respect
to the static environment. We limit our analysis to the rectangular approximation of the
collision-free area. Since tracking performance is defined in the cost function, it is expected
to have a lower priority than the hard constraint devoted to collision avoidance. Fig. A-3
shows a simulation where it is emphasized that the constraint guarantees this safety. The
mobile robot is not able to progress along the reference path since the positions that would
allow the robot to do so are not adopted within the feasible solution set defined by the yellow
area.

In a second experiment that we visualize in Fig. A-4, we address a larger scale simulated
navigation task where the predefined global path is intentionally crossing two static obstacles
of the occupancy grid map. The experiment shows that we are not constrained to the path
in our effort to traverse the environment, which we will discuss according to the encircled
numbers in the figure. At 2 , we observe that LMPCC is able to find a clear path around
the static obstacle, forced by the feasible solution set. A safe maneuver around the wall is
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Figure A-3: Simulation results of traversing an environment with a static barrier on the reference
path.

performed, after which the mobile robot returns to the reference path. The scenario at 3
shows that the reference path is going straight through a pillar. Again, the desired reference
velocity along the reference path in the cost term forces the robot to diverge from the path
and its forward velocity. To allow LMPCC to come up with the solutions that obediently

Figure A-4: Simulation results of traversing an environment with static obstacles on the
reference path.

deviate from the reference path, the weight on the contour error penalty has been decreased
significantly. An artifact of this choice is clearly visible in the turn at 1 . It is observed that
the end part of the prediction horizon is scarcely aligned with the reference path. Resulting
from the low penalty on the contour error, the optimal solution yields higher velocities and
less aggressive turning rather than tracking the path very accurately.

B.C. Floor Master of Science Thesis



Appendix B

Implementation of the Optimal
Controller Framework

Computational complexity is the main drawback of an optimization-based approach for mo-
tion planning. Successful efforts have been made to increase the computational efficiency
of solving Model Predictive Control (MPC) problems for real-time solutions on embedded
platforms, of which an overview is given by [51], [52]. One solution is an explicit approach,
in which the solution for all possible problem instances is pre-computed and requires a lot
of memory. We do, however, employ an approach where online solutions are provided since
the look-up table of solution can grow exponentially in the number of states. The ACADO
library [53] implements a fast Quadratic Programming (QP) solver, based on the online ac-
tive set strategy [54], specifically targeted at MPC applications. In this section, we present
our implementation, utilizing ACADO, that provides solutions to the optimization base motion
planning approach online. The package is implemented in c++ within a ROS environment.
Appendix B-1 explains the architecture of our implementation and its attributes, whereas
Appendix B-2 focusses on solving the MPC problem using ACADO.

B-1 Designing the ROS Package

The implementation of our Local Model Predictive Contouring Control (LMPCC) framework
processes the global reference path, the occupancy grid map of the environment, obstacle
information and vehicle positions into appropriate control commands. It does so, according
to the flow diagram of Appendix B-1. The navigation task is initiated with a global plan that
is used to compute the initial local reference path. In a loop, sensor data is digested to set
up the Optimal Control Problem (OCP) that can be solved by ACADO.

As we can observe from the flow diagram, the local reference path is updated online whenever
required. Furthermore, upon reaching the goal, a particular parametrization of the local
reference path allows us to maintain the current position while avoiding collision with moving
obstacles and the static environment. This approach ensures that the control loop remains
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active and that collision avoidance is still in operation. A feasibility check on the solution of
the OCP is required since we are directly acting on the actuators of the Autonomous Ground
Vehicle (AGV). Currently, our method to deal with infeasibility is to break the AGV.
The problem specification that is passed to the generated OCP-solver is parametrized using
Online Data Variables (ODVs). The ODVs are separately defined for each prediction step in
the horizon, being are stored in one long (N · nODV) × 1 vector, where N is the number of
steps in the prediction horizon and nODV the number of ODVs. Table B-1 elaborates on the
number of required ODVs for an implementation with the unicycle kinematic motion model,
where nsegments is the number of segments in the local reference path and nA the number of
moving obstacles.
The remainder of this section discusses the important components of our implementation
in more detail. The construction of the global plan and the initiation of the navigation
task is discussed in Appendix B-1-1. Given the global plan, our framework computes the
local reference path according to Appendix B-1-2. Appendix B-1-3 explains how we extract
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Table B-1: Number of required Online Data Variables per prediction step.

Online Data Variable Required number of variables

Reference path parameters 10 · nsegments

Cost function weights 4 + nA

Input constraints 4
Ego-vehicle disc radius 1
Dynamic obstacle parameters 5 · nA
Static environment collision constraint 16
Total: 25 + 6 · nA + 10 · nsegments

the collision constraint with respect to the static environment from an occupancy grid map.
Subsequently, Appendix B-1-4 introduces our visualization tool and Appendix B-1-5 explains
how we can interact with the framework during operation.

B-1-1 Linking the MoveIt! Plugin

The link of our optimal controller with a global planning module is made through the interface
of the MoveIt! ROS plugin1. MoveIt! is a tool that allows easy access to motion planners, such
as the motion planners from the Open Motion Planning Library (OMPL). Originally designed
for robotic manipulation, MoveIt! provides solutions for motion planning, manipulation, 3D
perception, kinematics, control, and navigation. The planning target is represented by a
planar virtual joint in W , defined between the map fixed coordinate frame and the coordinate
frame fixed to the AGV. We use a Rapidly-exploring Random Tree (RRT) to sample a global
path with points pm = [xpi , y

p
i ] ∈W through the environment. As we will show in Appendix B-

1-4, the planning request can be initiated through a visual RViz plugin. The generated global
path is forwarded through the MoveIt! action server to our LMPCC framework that computes
the corresponding local reference paths.

B-1-2 Computing the Local Reference Path

The waypoints of the global path are translated into the local reference paths that can be
tracked by the optimal controller online. The local reference path consists of η segments,
built from η + 1 local waypoints, starting from the m-th closest path segment. The x and
y−coordinates of the path segments are separately parametrized by third order polynomials
as a function of the path parameter θ, resulting in pr(θ) = [xr(θ), yr(θ)]T . [55] allows us to fit
a cubic spline and to extract the polynomial coefficients. Below, we explain the method used
to compute the coefficients of the x−coordinates of the local reference path as mentioned by
[55]. The explanation omits the y−coordinates, since the method to obtain the corresponding
coefficients is identical.

1https://moveit.ros.org/ (accessed November 17, 2018)
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Fitting the Cubic Spline

Given the reference path points pm = [xpi , y
p
i ] ∈W and the corresponding individual segment

path lengths si ∈ R with i := {m, . . . ,m+ η}, we define the set

{[θi, xi]} = {[
i∑
m

si, xi]}, with si < si+1 for i := {m, . . . ,m+ η}. (B-1)

The set of local reference path segments is parametrized by θ, the cumulated segment lengths.
By adopting this definition, θ equals zero at the start of each computed local reference path.
Having the polynomial coefficients denoted by [ax1 , ax2 , ax3 , ax4 ], we define the piecewise cubic
polynomials by

xri (θ) := ax1,i(θ − θi)3 + ax2,i(θ − θi)2 + ax3,i(θ − θi) + ax4,i. (B-2)

Note that ax4,i = xi. The derivatives of Eq. (B-2) are given by

ẋri (θ) := 3ax1,i(θ − θi)2 + 2ax2,i(θ − θi) + ax3,i, (B-3)
ẍri (θ) := 6ax1,i(θ − θi) + 2ax2,i. (B-4)

In order to maintain continuity upto the second derivative over the individual piecewise cubic
polynomials, we require that

xri (θi+1) = xi+1 → ax1,ih
3
i + ax2,ih

2
i + ax3,ihi = xi+1 − xi, (B-5a)

ẋri−1(θi) = ẋri (θi) → 3ax1,i−1h
2
i−1 + 2ax2,i−1hi−1 + ax3,i−1 = ax3,i, (B-5b)

ẍri−1(θi) = ẍri (θi) → 6ax1,i−1hi−1 + 2ax2,i−1 = 2ax2,i, (B-5c)

where hi = θi+1− θi. The requirements of Eq. (B-5a) give 3(n− 1) equations that we rewrite
by expressing ax1 and ax3 in terms of ax2 and then solve for ax2 .

ẍri (θi+1) = ẍri+1(θi+1)→ ax1,i =
ax2,i+1 − ax2,i

3hi
, (B-6a)

xri (θi+1) = xi+1 → ax3,i = xi+1 − xi
hi

− 1
3(2ax2,i + ax2,i+1)hi, (B-6b)

ẋri−1(θi) = ẋri (θi)→
1
3hi−1a

x
2,i−1 + 2

3(hi−1 + hi)ax2,i + 1
3hia

x
2,i+1 = xi+1 − xi

hi
− xi − xi−1

hi−1
.

(B-6c)

First, we solve Eq. (B-6c), after which we use Eq. (B-6b) and Eq. (B-6a) to obtain the re-
maining coefficients. To obtain smooth transitions when we switch between the local reference
paths, we consult the element before and after the local reference path (θm−1 and θm+η+1) to
preserve continuity. We have to extrapolate to solve these appended points, resulting in one
requirement less:

xrm−1(θ) := ax2,m−1(θ − θm−1)2 + ax3,m−1(θ − θm−1) + ax4,m−1, θ ≤ θm−1,

(B-7a)
xrm+η+1(θ) := ax2,m+η+1(θ − θm+η+1)2 + ax3,m+η+1(θ − θm+η+1) + ax4,m+η+1, θ ≥ θm+η+1.

(B-7b)

By defining zero curvature at θm−1 and θm+η+1, we require that ax2,m = 0 and ax2,m+η = 0.
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Parametrizing the Local Reference Path Upon Reaching the Goal

In order to keep the control loop active upon reaching the goal, a special parametrization of
the local reference path is required. The segment after the goal position is defined to have a
reference velocity of vref = 0 and polynomial coefficients of

prgoal(θ) =
[
xrgoal(θ)
yrgoal(θ)

]
=
[
0 · (θ − θi)3 + 0 · (θ − θi)2 + 0 · (θ − θi) + ax4,goal
0 · (θ − θi)3 + 0 · (θ − θi)2 + 0 · (θ − θi) + ax4,goal

]
=
[
xgoal
ygoal

]
. (B-8)

B-1-3 Search Routine of the Static Environment Collision Constraint

In the scientific paper (Chapter 2), two different approaches were presented to express feasible
sets of solutions, representing the area free of static obstacle collisions. This section extends
the content presented in the paper and explains how the search routine is designed and
implemented to find these regions in the occupancy grid map. Recall from the scientific
paper that a collision-free area has to be found for each position in the optimal state sequence
computed at the previous time instance t− 1. Therefore, this section generalizes the problem
by defining the method for any AGV position on the plane W . Due to the fact that we
are considering an inflated static obstacle map, all the free cells in the map correspond to
positions where the AGV can be located without being in a collision. Note that this concept
complicates when we use a union of discs to represent the occupied area by AGV. In that
case, the inflated occupancy map is still obtained by inflating the obstacles with the radius
of each disc, but all the disc positions should be located in free cells at all times. This is
explicitly expressed in the collision constraint.

In our search routine, we expand AGV aligned search boundaries to access cells around the
AGV to find the closest static obstacles in different directions. This principle applies to both
the shapes that were presented to approximate the collision-free area. First, we present how
we access the occupancy grid map to check for obstacles. Second, we will show how this can
be used to build our search routine to solve the two different approaches separately.

Accessing the Occupancy Grid Map

Considering the example occupancy grid map of Fig. B-1, the red cell represents the currently
occupied cell by the AGV and the black arrow its heading. A static environment is represented
by the occupied black cells. The blue squares represent how we incrementally expand a search
boundary to find static obstacles in the local AGV coordinate frame. Although the example
shows a very coarse resolution, in reality, the occupancy grid map has a resolution of 0.05 m.

The occupancy grid map is defined on the plane W = R2 having a size of wmap×hmap, where
wmap and hmap are the width and height in number of cells respectively. We define the cell
size of the occupancy grid map as γ × γ. The map is originated in pmap

O = [xmap
O , ymap

O ].
Eq. (B-9) defines a relation between a position p on the plane W and the indices p̄ = [x̄, ȳ]
that can be used to access the occupancy grid map at the corresponding position, given that
the position is within the defined region of the map.
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Figure B-1: Occupancy grid map representation of the environment with incrementally expanded
search boundaries defined in the local frame.

p̄ =
[
x̄
ȳ

]
= round

(
1
γ

(
p− pmap

O
))

(B-9)

Given AGV position pAGV, our search routine accesses cells around this position by expanding
search boundaries in the grid map. The search iterator ∆search ∈ {γ, 2γ, . . . ,∆search

max } defines
the expansion with steps γ of each boundary in the grid map, starting from pAGV.

Determining the Circular Collision Free Area

In case that we use the circular collision free area, the area is parametrized by the radius r.
This means that the size of the circle is defined by the single nearest detected collision on
any of the search boundaries. Fig. B-2 visualizes two scenarios where the collision-free circle
is incrementally found.

Figure B-2: Incremental search for the circular collision free area in an inflated occupancy grid
map with the Autonomous Ground Vehicle heading (left) aligned with the grid and (right) not
aligned with the grid.

Each cell on the current search boundary, defined by ∆search, is checked for occupancy and the
search is stopped when an occupied cell is found or the maximum search distance is reached.
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The search is, however, completed for the current ∆search, as there may be multiple occupied
cells for the current search distance. In the search routine, accessing p̄search of the occupancy
grid map will reveal whether the current investigated cell is being occupied. The distance to
a found occupied cell, having its position defined by ˆ̄psearch, is denoted by r̂, computed as:

r̂ = ||p̄AGV − ˆ̄psearch||2. (B-10)

The closest occupied cell has a distance of r̂min and determines the radius of the collision free
area. Since r̂min expresses the distance to the closest occupied cell, a proportion of one unit
cell size has to be subtracted to obtain the largest collision free circle as in Eq. (B-11). We
subtract the upper bound of this proportion, half the length of the diagonal intersection of a
grid cell.

r = r̂min −
1√
2
γ (B-11)

We present the complete search routine in Algorithm 1.

Algorithm 1 Search routine to find the circular collision free area
1: Compute p̄AGV from pAGV according to Eq. (B-9)
2: Initialize ∆search = γ
3: Initialize r̂min = ∆search

max
4: while No occupied cell is found AND ∆search < ∆search

max do
5: for Each cell on search boundary at ∆search do
6: if Cell is occupied at p̄search then
7: Compute euclidean distance to p̄search according to Eq. (B-10)
8: if r̂ < r then
9: r̂min = r̂

10: end if
11: end if
12: end for
13: ∆search+ = γ
14: end while
15: Compute r from r̂min according to Eq. (B-11)

Determining the Quadrilateral Collision Free Area

We approximate the convex quadrilateral collision free area by an AGV aligned rectangle in
the occupancy grid map. Therefore, contrary to the circular collision free area, the search
boundaries have to be expanded aligned to the AGV heading in the occupancy grid map.
Recall from Chapter 2 that the collision free rectangular area is parametrized for each step in
the previous optimal state sequence with [xmin, xmax, ymin, ymax]. An example parametrized
rectangular collision free area is visualized in Fig. B-3.

During a complete search iteration of a particular ∆search, we iterate over each search boundary
with steps of size γ. The sampled points p search on the boundaries of the current search
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Figure B-3: Parametrization of the rectangular collision free area.

distance are translated from the local frame to grid map access indices according to Eq. (B-
12). We denote the rotation matrix of the heading ψ by R(ψ).

p̄search = round

(
1
γ

(
R(ψ)

(
p search − pAGV

)
+ pAGV − p

map
O

))
(B-12)

In the search routine, accessing p̄search of the occupancy grid map will reveal whether the
current investigated cell is being occupied. Once an occupied cell on one of the search bound-
aries is observed, the distance of that rectangle boundary is fixed. In the following search
iterations, the other search boundaries are still expanded with steps of size γ until an occupied
cell is found in each direction or the maximum search distance ∆search

max is reached. Algorithm 2
presents the complete search routine.

Assumptions on Unknown Occupancy of Grid Cells

Earlier, we assumed that we have full knowledge of the environment in our effort to deter-
mine the nearest occupied grid cells. This does, however, not resemble a practical use case
where parts of the map are not known (yet). Dependent on the application and the desired
mode of operation, we can deal with unknown parts of the map in different ways. Two com-
mon approaches that we will discuss are the free-space assumption and the occupied-space
assumption.
The safest way to navigate through an environment would be to assume unknown grid cells
to be occupied. This approach results in feasible solution sets that always cover a known
area of the map. This approach is currently being implemented in our framework since there
is no guarantee that the unknown grid map cells will be updated in time during real-time
operation. Entering unknown environments of the map can result in collisions if the occupancy
of the cells is not updated appropriately. The free-space assumption is a less conservative
approach, allowing the optimal controller to come up with solutions that are in unknown
areas of the map. An advantage of this approach is that the AGV explores the environment
more thoroughly.
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Algorithm 2 Search routine to find the rectangular collision free area
1: Compute p̄AGV from pAGV according to Eq. (B-9)
2: Initialize ∆search = γ
3: Initialize xmin = ymin = −∆search

max , xmax = ymax = ∆search
max

4: while No occupied cell is found for each rectangle side AND ∆search < ∆search
max do

5: if xmin = −∆search
max then

6: if Occupied cell is found on search boundary xmin at distance −∆search then
7: xmin = −∆search

8: end if
9: end if

10: if ymin = −∆search
max then

11: if Occupied cell is found on search boundary ymin at distance −∆search then
12: ymin = −∆search

13: end if
14: end if
15: if xmax = ∆search

max then
16: if Occupied cell is found on search boundary xmax at distance ∆search then
17: xmax = ∆search

18: end if
19: end if
20: if ymax = ∆search

max then
21: if Occupied cell is found on search boundary ymax at distance ∆search then
22: ymax = s∆search

23: end if
24: end if
25: ∆search+ = γ
26: end while
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B-1-4 RViz Visualization

Our implementation contains particular published messages that we are able to visualize
within RViz. RViz is a 3D visualization tool for robots that make use of Robotic Operating
System (ROS)2. The tool allows us to inspect planning behavior online from any computer
that is linked to the ROS network, as shown by Fig. B-5. Table B-2 explains the interface
windows and the specific visualized message types.

Figure B-4: RViz visualization.

B-1-5 Dynamic Reconfigure Server

We make use of a dynamic reconfigure server3 to be able to interact with the LMPCC online.
Within this user interface, we have implemented useful functionalities that allow us to tune
parameters and inspect solutions during runtime. Fig. B-5 shows the adaptable parameters in
the programmed user interface. One major advantage of the available tools is the possibility
to enable and disable the output. Disabling the output will stop the robot from moving, but
keeps the planner running such that behavior can be inspected in RViz. Other parameters
change weights in the cost function or influence the search routine of the path parameter.

2http://wiki.ros.org/rviz (accessed November 13, 2018)
3http://wiki.ros.org/dynamic_reconfigure (accessed 15 November, 2018)
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Table B-2: Explained aspects of the RViz environment.

Object number Explanation

1 MoveIt! plugin
2 Displays window to inspect available topics
3 Global path points
4 Current closest reference path segment
5 Static environment constraint
6 Mobile robot
7 Ellipsoid obstacle
8 Prediction horizon
9 Predicted obstacle position over the time horizon
10 Remaining segments of the local reference path
11 Occupancy grid map

Figure B-5: Dynamic reconfigure server interface.

B-2 Solving the Optimal Control Problem with ACADO

ACADO allows us to specify the OCP for one particular use case, such that optimized code can
be generated to solve that particular OCP very fast. In this section is discussed how the ACADO
library is used to solve our problem definition of the LMPCC. Our problem definition satisfies
the general form of Non-linear Model Predictive Control (NMPC), as given in Eq. (B-13),
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that ACADO is able to solve.

J∗ = min
z0:N ,u0:N−1

N−1∑
k=0
||h(zk,uk)− ỹk||2Wk

+ ||hN (zN )− ỹN ||2WN
(B-13a)

s.t. zk+1 = F (zk,uk), for k = 0, . . . , N − 1 (B-13b)
zlo
k ≤ zk ≤ z

up
k , for k = 0, . . . , N (B-13c)

ulo
k ≤ uk ≤ u

up
k , for k = 0, . . . , N − 1 (B-13d)

rlo
k ≤ rk(zk, uk) ≤ r

up
k , for k = 0, . . . , N − 1 (B-13e)

rlo
N ≤ rN (zk, uk) ≤ rup

N (B-13f)

In this general description, zk ∈ Rnz denotes the differential state and u ∈ Rnu the control
input. h ∈ Rny and hN ∈ Rny,N are the reference functions and Wk ∈ Rny×ny and WN ∈
Rny,N ×ny,N are the weighting matrices. The (time varying) references are denoted by ỹk ∈
Rny and ỹN ∈ Rny,N . Additional constraints are introduced with the constraint functions
rk ∈ Rnr,k and rN ∈ Rnr,N

The optimized C code that is exported is dedicated to the single OCP that is defined in the
source files of the generated solver. Although the structure of the optimization problem is
very strictly defined, the ACADO library allows us to pass online parameters in the form of ODV
to the OCP. This allows us to have varying measurements and parameters during run-time.
By allocating memory at compile time for hard-coded dimensions, the generated code uses
static memory only. Also, by only allowing a constant step-size, the integrator will have a
deterministic runtime. The differential equations are symbolically simplified with automatic
differentiation tools. Presented details about the procedure of optimizing the code and the
optimized code itself are found in the provided user manual [3]. Table B-3 gives an overview
of the files that are generated by the MPCexport class.

Using the generated files in our ROS package comes down to including the acado_common.h
header file in our project and calling the appropriate functions from acado_solver.c to
initialize and execute the specified optimization procedure. After assigning the online param-
eters and the initialization for the states and control actions to an acadoVariables structure,
feedback steps are performed until either a Karush-Kuhn-Tucker (KKT) condition [56] or the
maximum number of iterations is satisfied. This procedure is clarified in Algorithm 3.

Algorithm 3 Solving the Optimal Control Problem with ACADO
1: acado_initializeSolver();
2: Initialize measured state in acadoVariables.x
3: Initialize last executed control command in acadoVariables.u
4: Assign online parameters in acadoVariables.od
5: while iter < itermax ∧ acado_getKKT() > KKT threshold do
6: acado_preparationStep()
7: acado_feedbackStep()
8: end while
9: Extract prediction horizon states from acadoVariables.x

10: Extract prediction horizon control actions from acadoVariables.u
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Table B-3: Generated C files by ACADO [3].

Filename Functionality

acado_common.h
Contains global variable declarations and
forward declarations of public API functions.

acado_integrator.c
Implements ODE (or DAE) and corresponding derivative
evaluation and the tailored integration routine in the
integrate function.

acado_solver.c
Implements an Gauss-Newton real-time algorithm
and sets up a (condensed) QP.

acado_qpoases_interface.hpp
Declares an interface to call an embedded variant of
qpOASES. Provides an interface to qpOASES that
exploits if QP comprises only box constraints (optional).

acado_auxiliary_functions.c
Implements auxiliary functions for time measurements or
for printing results (optional).

test.c
Provides a main function template to run the generated
MPC or MHE algorithm. This file should serve as template
that the user should modify according to her/his needs.

MakeFile
Provides a basic makefile to facilitate compilation
of the exported code.
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Appendix C

Experimental Setup

The Local Model Predictive Contouring Control (LMPCC) motion controller that has been
developed during the thesis work is tested both in simulation and on a mobile robot (Fig. C-
1). The setup and hardware that allowed us to do so will be presented in this section. First,
Appendix C-1 presents the mobile robot. Second, Appendix C-2 explains how we set up the
environment.

Figure C-1: Jackal robotics platform, designed by ClearpathTM Robotics.

C-1 Mobile Robot

Jackal, a ROS based robotic platform, designed by ClearpathTM Robotics, is the utilized mo-
bile robot for the experiments. Jackal is a four-wheeled differentially driven robotic platform,
making use of skid-steer locomotion. Exact measures and specifications of the robot and its
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internals can be found in the robot datasheet1. Being very flexible and compatible with a
large number of accessories, Jackal is an excellent starting point for academic research on
autonomous navigation.

C-1-1 Skid-Steering Locomotion

Having four powered wheels and no explicit steering mechanism, the skid-steering locomotion
principle of Jackal has its mechanical simplicity as an advantage. The wheels that are mounted
on the same side of the robot are driven by the same motor, mechanically connecting both
wheels on each side. This means that the pairs of wheels on the left and right side always
rotate at the same speed. The robust nature of the mechanical structure allows for rough
terrain driving. Also, skid-steering allows the Autonomous Ground Vehicle (AGV) to rotate
with a zero radius of the turn. Disadvantages of the skid-steer robot type described by
[2, 57, 58] are mainly caused by the skidding principle of motion. Due to skidding, turning
motion of the AGV requires significantly more power than moving straight. Furthermore,
skidding causes inaccuracies in the odometry data, the tires to wear faster and less accurate
motion control.

C-1-2 Equipment of the Mobile Robot

The Jackal platform comes with a dedicated internal controller board as shown in Fig. C-2,
designed by the supplier. This board consists of a Micro Controller Unit (MCU), connections
to the onboard sensors and a power circuit that supplies power to the system. The MCU
interfaces with the Robotic Operating System (ROS) computer, the motor drivers and the
available sensors. Additionally, a blue-tooth joystick controller can be used to drive the mobile
robot.

Figure C-2: Snapshot of the onboard controller board.

A Human Machine Interface (HMI) panel is available on exterior of the platform, shown by
Fig. C-3. This panel allows the user to boot and shut down the robot and inspect wireless
connection and battery statuses.

1https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ (accessed November
14, 2018)
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M

Figure C-3: Human Machine Interface panel.

Table C-1: Computer specifications.

Computer Processor RAM Hard Drive

On-board computer Celeron J1800 2.4 Ghz 2 GB 32 GB
Intel NUC i7 7567U 4.0 GHz 32 GB 250 GB

Computational resources Jackal comes with an on-board Linux computer. Additionally, the
platform has been equipped with an Intel NUC computer. Specifications of both computer
are given in the table below.

Sensors The platform is equipped with several onboard sensors including Inertial Measure-
ment Unit (IMU), Global Positioning System (GPS) and wheel encoders. On top of that, the
robotic platform has been extended with exteroceptive sensors. The selected sensors are a
combination of Light Detection And Ranging (LiDAR) and camera technologies, as specified
in Table C-2. The available sensors can directly be integrated within the ROS framework
since open-source packages are compatible with the specific sensor types. The implemented
navigation system only makes use of the 3D LiDAR.

Sensor Mount We have designed and manufactured a mount to properly attach the available
sensors to the robot platform. The 3D LiDAR is mounted on top to achieve full visibility
with its available field of view. The 2D LiDAR is mounted in front directly on the baseplate,
to perceive close range obstacles in the blind spot of the 3D LiDAR. The stereo camera is
mounted just below the 3D LiDAR and allows for vertical tilting. The tilt angle of the camera
can be adjusted according to the specific purpose it is to be used for. Our manufactured sensor
mount is shown in the CAD model of Fig. C-4. Carefully chosen dimensions result in a sensor
mount that does not limit the field of view of any of the sensors.

Power circuit The power circuit of the platform is fed by an All-Cell 26 V HE-2410 Lithium
Ion battery of 27 Watt hours 5. An internal power circuit distributes the power to the motors,
the internal controller board, and the user power supply board. The user power supply board
is used to power the computers and external sensors as shown in the schematic diagram of
Fig. C-5.

Joystick controller The teleop_twist_joy 6 ROS package is used to translate the com-
mands from the Bluetooth joystick to control commands for the mobile robot. Besides the

5https://www.allcelltech.com/testing/images/datasheets/naked/AllCell_Naked_24V.pdf (accessed
October 31, 2018)

6http://wiki.ros.org/teleop_twist_joy (accessed November 15, 2018)
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Table C-2: Sensor specifications.

Sensor technology Sensor type Specifications

2D LiDAR
Hokuyo scanning
laser range finder

URG-04LX2

Field of view (horizontal): 240◦

Detection distance: 20− 5.600mm
Update rate: 10 Hz
Accuracy: 0.06− 1m: ±30mm

1− 4m: 3% of the detected distance
Angular resolution (horizontal): 0.36◦

3D LiDAR Velodyne VLP-16
3D LiDAR3

Field of view (horizontal): 360◦

Detection distance: 100m
Update rate: 5− 20 Hz
Accuracy: ±3cm
Angular resolution (horizontal): 0.1− 0.4◦

Field of view (vertical): +15.0◦to −15.0◦(30◦)
Angular resolution (vertical): 2.0◦(16 channels)

Stereo camera ZED stereo
camera4

Field of view: 110◦

Depth range: 0.5− 20m
Update rate: up to 100 Hz
Accuracy: ±1mm (position), 0.1◦(orientation)
Resolution: up to 4416× 1242

standard functionalities in this package, we have implemented several new features as shown
by Fig. C-6. These features include abilities to adapt the driving speed and commands to the
motion planner. Source code of our implementation is available online7.

7https://github.com/bfloor/teleop_twist_joy
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Figure C-4: CAD drawing of the designed sensor mount

User power supply
board

NUC power  
converter board

Velodyne VLP16

On-board ROS
computer

Battery Internal power
circuit

Motors 

Intel NUC

Figure C-5: Schematic of the onboard power distribution circuit.

Deadman switch [L1] Turbo [R1]

Enable motion controller/ 
Disable joystick control 

Enable joystick control/ 
Disable motion controller 

Drive commands

Increase drive speed 

Decrease drive speed 

Reset to default 
drive speed 

Figure C-6: Joystick controls layout.
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C-1-3 Kinematic Motion Model

A mathematical model of the non-holonomic skid steering robot including the kinematics,
dynamics and drive subsystems is presented in [2]. Guided by this derivation, we will derive
the kinematic relations relevant to our mobile robot and controller design. A free body
diagram is shown in Fig. C-7 to give an overview of the parameters used in the kinematic
model.

Figure C-7: Free body diagram of a four-wheeled skid-steering Autonomous Ground Vehicle with
generalized planar velocities [2].

Assuming that the AGV moves on the x−y plane W = R2, we can define the state z of the
AGV, describing the generalized coordinates in a three dimensional configuration space. The
individual states are z = [x, y, ψ]T , where x and y correspond to the position on the plane
and ψ corresponds to the heading of the AGV. In the local coordinate frame of the AGV,
planar movement can be described by a vector of generalized velocities ż = [ẋ, ẏ, ψ̇]T , or
in terms of the local velocity vector v = [vx, vy, ω]. The mapping between the generalized
velocities and the local velocity vector is given by

ẋẏ
ψ̇


︸︷︷ ︸
ż

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


vxvy
ω


︸ ︷︷ ︸
v

. (C-1)

Each wheel i rotates with an angular velocity ωi, resulting in a velocity in longitudinal direc-
tion of each wheel of vix = riωi, neglecting longitudinal slip. vix is the longitudinal component
of the total velocity vi and ri is the effective rolling radius.
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Now, we define the Instantaneous Center of Rotation (ICR), which is the point in the AGV
coordinate frame that has no planar movement at the given instant. Thus, all points defined
within the AGV frame rotate around this point. The position of the ICR in the local frame
is denoted by ICR = [xICR, yICR]. The distance from each wheel i to the ICR is measured by
di = [dix, diy]T . Note that [xICR, yICR] = [−dxC , −dyC ], where dC is the distance between
the Center Of Mass (COM) and the ICR Eq. (C-2) shows how the rotational velocity around
the ICR, ω, is obtained from a velocity vector perpendicular to its corresponding distance
vector to the ICR. Through this relation, the separate wheel velocities can be related to each
other and the COM.

||vi||
di

= ||v||
dC

= |ω| (C-2)

The relation of Eq. (C-2) also applies to the separate components of the total velocity and
distance vectors as given in Eq. (C-3).

vix
−diy

= vx
−dCy

= viy
dix

= vy
dCx

= vx
yICR

= − vy
xICR

= ω (C-3)

Taking a closer look at the geometric relations of the individual components of the distance
vectors from the wheels to the ICR in Fig. C-7, we inspect that:

d1y = d2y = dCy + c, (C-4a)
d3y = d4y = dCy − c, (C-4b)
d1x = d4x = dCx − a, (C-4c)
d2x = d3x = dCx + b. (C-4d)

Resulting from the symmetrically geometric proportions in Eq. (C-4) and the relations in
Eq. (C-3), it is found that

vL = v1x = v2x, (C-5a)
vR = v3x = v4x, (C-5b)
vF = v2y = v3y, (C-5c)
vB = v1y = v4y, (C-5d)

(C-5e)

where vL and vR are longitudinal components of the left and right wheel velocities, vF and
vB are the lateral components of the front and rear wheel velocities. Substituting Eqs. (C-4)
to (C-5) into Eq. (C-3) results in Eq. (C-6), a model that maps the COM longitudinal and
rotational velocity to the longitudinal and lateral wheel velocities.


vL
vR
vF
vB

 =


1 −c
1 c
0 −xICR + b
0 −xICR − a


[
vx
ω

]
(C-6)
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By making the assumption that the effective rolling radius of each wheel ri is given by r,
we can rewrite this into Eq. (C-7). The longitudinal and rotational velocity of the COM is
expressed in terms of ωL and ωR, the left and right wheel velocities, respectively. u = [vx, ω]
are considered to be the inputs of the system at kinematic level.

[
vx
ω

]
︸ ︷︷ ︸
u

= r

 ωL + ωR
2−ωL + ωR
2c

 (C-7)

In order to include the non-holonomic property of the vehicle as a constraint in the kinematic
motion model, the following equality is adopted in the model:

vy + xICRψ̇ = 0 (C-8)

By assuming xICR = 0 (COM in center of AGV), this constraint reduces to vy = 0.

C-1-4 Motor Control Scheme

The robot platform is able to follow longitudinal and rotational velocity setpoints through the
use of its internal differential drive controller. Having these velocities as input, the control
scheme that produces the regulated wheel velocities is shown in Fig. C-8. The internal
controller can be split up into a feedforward forward kinematic translation and a motor
controller. The motor controller computes the input voltage signal to the motors to achieve
the desired wheel velocity. The controller is now discussed in more detail.

Figure C-8: Control scheme of the actuating motors.

By rewriting Eq. (C-7) in Eq. (C-9), a forward gain Kω is obtained that directly translates
the velocity setpoints v and ω into their corresponding wheel velocities ωL and ωR for the left
and right wheel pairs, respectively. Note that this is a pure static feedforward translation and
that no precautions are taken to compensate for unmodeled skidding or a kinematic model
mismatch.

[
ωL
ωR

]
= 1
r

[
v − cω
v + cω

]
= 1
r

[
1 −c
1 c

]
︸ ︷︷ ︸

Kω

[
v
ω

]
(C-9)

The rotational velocities of the motors that drive the left and right wheel pairs are regulated
by the motor controller. A measured velocity of the left and right wheel, [ω̄L, ω̄R]T , is provided
by the wheel encoders as a feedback signal. The controller regulates the input voltage of the
motors through a Pulse-Width Modulation (PWM) signal.
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C-2 Setting up the Experiment

Two types of experiments using the mobile robot are performed. Fig. C-9 shows the com-
munication diagram of the devices used for both experiments. The first type, represented by
1 , relies on external measured positions from a motion capture OptiTrack system [59], the
second type, indicated by 2 , is performed using onboard measurements and processing only.

Figure C-9: Communication diagram of the two experimental setups.

For the first type of experiments, static obstacles have been constructed within the OptiTrack
environment. Rectangular obstacles have been build from PVC tubes wrapped in black foil
as shown in Fig. C-10. Furthermore, the interacting pedestrians are wearing helmets with
markers to be detectable for the OptiTrack system.

Figure C-10: Constructed navigation scenario in the OptiTrack environment.
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Appendix D

Dealing with Obstacle Prediction
Uncertainty

This chapter presents a method to incorporate obstacle movement prediction uncertainty in
the prediction horizon of our planning framework. The method is growing the occupied area
of obstacles according to their prediction uncertainty over time, implemented according to
[60]. Preliminary results of the implementation are presented in a simulation.

D-1 Method

The method used by [60] tries to incorporate a time-varying uncertainty related to predictions
of dynamic obstacles in the optimal control problem. It is assumed that for this approach,
an external inference framework is able to deliver a mean trajectory zAi

0:N−1 of obstacle Ai
with its corresponding (time varying) uncertainty σ0:N−1. Given the position uncertainty at
step k, σk = [σak , σbk]T , and the growth of uncertainty, σ = [σa, σb]T , a linear growth model
for the uncertainty, σk+1 = σk +σ∆tk, expresses the uncertainty over the prediction horizon
of the obstacle position. Given the uncertainty model, pε denotes the probability that the
position of obstacle Ai at time step k lies outside an ellipse origined at zAi

k with semi-major
and semi-minor axes aσk

and bσk
respectively. The axes of the ellipse are computed as in

Eq. (D-1), describing the level-set lines of the Gaussian N (0,diag(σk)) at level pε.[
aσk

bσk

]
=
[
σak
σbk

]√(
− 2 log(pε2πσakσbk)

)
(D-1)

Now, the axes of the new constraint ellipse can be found as in Eq. (D-2), adding up the
inflated disc radius, the obstacle ellipse axes and the axes of the uncertainty growth. Fig. D-1
visualizes the aforementioned components of the resulting constraint ellipse.

[
α̂

β̂

]
=
[
a+ λrdisc + aσk

b+ λrdisc + bσk

]
(D-2)

Master of Science Thesis B.C. Floor



58 Dealing with Obstacle Prediction Uncertainty

Figure D-1: Visualization of the resulting constraint-ellipse.

Adopting the new constraint axes α̂ and β̂, recall from Chapter 2 that the resulting collision
constraint is given by:

cobst,j
k (zk) =

[
∆xjk
∆yjk

]T

R(ψ)T
[ 1
α̂2 0
0 1

β̂2

]
R(ψ)

[
∆xjk
∆yjk

]∣∣∣∣∣
k,j

> 1. (D-3)

D-2 Preliminary Results

The position uncertainty has been implemented in our Local Model Predictive Contouring
Control (LMPCC) framework according to the method explained in the section above. The
evolution of the uncertainty over time does not need to be represented by a state within the
optimal control formulation, the fixed prediction horizon time steps allow us to compute the
evolution in advance for each control iteration. The resulting ellipse dimensions can be passed
to the generated code through Online Data Variable (ODV) to solve the problem, resulting
in negligible extra computation time.
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Figure D-2: Uncertainty growth of the obstacle position for different pε.
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We consider an example where the uncertainty growth is given by σ = [0.02, 0.03]T over a
time horizon of 5 seconds in N = 25 steps. We want to represent the ellipsoid area occupied
by obstacle A1 with probability 1 − pε using Eq. (D-1). Fig. D-2 shows the growth of the
ellipsoid axes over the time horizon for several pε.

In Fig. D-3, we show a snapshot of a particular simulated overtaking maneuver of the sim-
ulated robot, considering uncertainty on the constant velocity prediction. We expand the
ellipsoid obstacle according to Eq. (D-2), using pε = 0.05. The robot collision space is repre-
sented by one disc, of which the evolution is given over the time horizon by the blue circles.
The current obstacle position is visualized by the green ellipse and its constant velocity pre-
diction by the green line. The red ellipses represent the growing ellipses with dimension α̂
and β̂ over the time horizon. For clarity, the constraint on the static environment is not
visualized. The snapshot visualizes how the optimal controller plans to pass the obstacle with
more clearance because of the uncertainty growth on the ellipse. Note that the blue circles
and red ellipses show to overlap between different time instances of the prediction horizon,
but that this never occurs at the same time step.

Figure D-3: Simulated overtaking scenario with prediction uncertainty on the obstacle position.

In a second scenario, shown in Fig. D-4, we simulate an oncoming pedestrian on the reference
path of the mobile robot. Concurrently, a second pedestrian walking through the corridor is
overtaken. In the case where no prediction uncertainty is present, the robot would be able to
pass the oncoming pedestrian while simultaneously overtaking the second pedestrian. Due to
the prediction uncertainty, the growing ellipses do not allow the robot to pass and LMPCC
chooses to pass in a conservative manner.
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Figure D-4: Simulated pedestrian avoidance scenario with prediction uncertainty on the obstacle
positions.

D-3 Conclusion

Limited sensor data and uncertainty about obstacle behavior inevitably introduces prediction
uncertainty in real-world navigation scenarios. The way to deal with this uncertainty in the
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planning stage is to be more conservative about the places where we can safely drive. The
proposed method allows us to express a time-dependent uncertainty on predicted obstacle
position over the time horizon. By evaluating the uncertain position at a certain collision
probability, an ellipsoid area is obtained that is adopted in our collision constraint. Simula-
tions results have shown that our framework can deal with the implementation of prediction
uncertainty, resulting in negligible additional computation time.
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Appendix E

Derivation of the Minkowski Sum
Bounding Ellipse

We express a closed loop form of the Minkowski sum of a circle and an ellipse, by using
a bounding ellipse1. Our derivation of the bounding ellipse is based on the principle of
curvature. More specifically, we search for an ellipse whose maximum curvature is smaller
than the minimum curvature of the Minkowski sum. We start by deriving the curvature
equation for the Minkowski sum.

Let us define the parametric form of the Minkowski sum of a circle with radius r and en
ellipse with semi-major and semi-minor axes axis a and b, respectively as a function of τ , the
angle subtended by the point at the center.

xm = cos(τ)
(
a+ br√

b2 cos(τ)2 + a2 sin(τ)2

)
(E-1a)

ym = sin(τ)
(
b+ ar√

b2 cos(τ)2 + a2 sin(τ)2

)
(E-1b)

By defining the first derivatives with respect to τ ,

∂xm
∂τ

= a sin(τ)
(
−1− 2

√
2abr(

a2 + b2 + (b2 − a2) cos(2τ)
)3/2

)
, (E-2a)

∂ym
∂τ

= b cos(τ)
(

1 + 2
√

2abr(
a2 + b2 + (b2 − a2) cos(2τ)

)3/2 ,

)
, (E-2b)

1Hereafter, we denote the Minkowski sum of a circle and an ellipse by ’Minkowski sum’
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64 Derivation of the Minkowski Sum Bounding Ellipse

and the second derivatives with respect to τ ,

∂2xm
∂τ2 =

a cos(τ)
(
− 2ab3r + ab3r cos(2τ) + 2a3br sin(τ)2 −

(
b2 cos(τ)2 + a2 sin(τ)2)5/2)

(
b2 cos(τ)2 + a2 sin(τ)2)5/2 ,

(E-3a)

∂2xm
∂τ2 =

b
(
2ab3r cos(τ)2 sin(τ)− 1

2a
3br(3 sin(τ) + sin(3τ))(

b2 cos(τ)2 + a2 sin(τ)2)5/2

−

(
b4 cos(τ)4 sin(τ) + 2a2b2 cos(τ) sin(τ)3 + a4 sin(τ)5)√b2 cos(τ)2 + a2 sin(τ)2

)
(
b2 cos(τ)2 + a2 sin(τ)2)5/2 ,

(E-3b)

we can derive the curvature κm of the Minkowski sum:

κm =

(
∂xm
∂τ

)(
∂2ym
∂τ2

)
−
(
∂ym
∂τ

)(
∂2xm
∂τ2

)
√√√√√(∂xm

∂τ

)2

+
(
∂ym
∂τ

)2
3

= ab√√√√(1 + 2
√

2abr(
a2 + b2 + (b2 − a2) cos(2τ)

)3/2

)2

·
(
b2 cos(τ)2 + a2 sin(τ)2)3

.

(E-4)

The maxima of the curvature can be found for the minimal radii of the Minkowski sum.
Defined by the characteristic shape of the Minkowski sum, the minimal radii can be found at
τ = 0 and τ = π/2. Evaluating κm for these τ results in

κm|τ=0 = b(
a2 + br

) , (E-5a)

κm|τ=π/2 = a(
b2 + ar

)
.

(E-5b)

Next, we search for the value λ that results in a lower bound on the curvature of the Minkowski
sum for an ellipse whos axes are defined by α = a+ λ and β = b+ λ, solving at τ = 0

b(
a2 + br

) − b+ λ

(a+ λ)2 = 0, (E-6)

and at τ = π/2,
a(

b2 + ar
) − a+ λ

(b+ λ)2 = 0. (E-7)
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Resulting in

λ|τ=0 =
{
a2 − 2ab+ br −

√
(a2 + br)

(
(a− 2b)2 + br

)
2b ,

a2 − 2ab+ br +
√

(a2 + br)
(
(a− 2b)2 + br

)
2b

} (E-8a)

λ|τ=π/2 =
{
b2 − 2ab+ ar −

√
(b2 + ar)

(
(b− 2a)2 + ar

)
2a , (E-8b)

b2 − 2ab+ ar +
√

(b2 + ar)
(
(b− 2a)2 + ar

)
2a

}
.

(E-8c)

And thus, the factor λ that guarantees that the ellipse with axes α = a+λ and β = b+λ has
a maximum curvature smaller than the minimum curvature of the Minkowski sum is given by

λ = min


a2 − 2ab+ br +

√
(a2 + br)

(
(a− 2b)2 + br

)
2b

b2 − 2ab+ ar +
√

(b2 + ar)
(
(b− 2a)2 + ar

)
2a


.

(E-9)
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Appendix F

Submitted Conference Paper

A conference paper has been submitted to International Conference on Robotics and Automa-
tion (ICRA) 20191 on September 15th 2018, containing scientific contributions that were made
during the thesis work. The paper will be presented in this appendix. The video that was
submitted to complement the paper can be accessed via https://youtu.be/eYHPdnKaOxg.

A substantial amount of the contribution of the thesis work is already adopted within the
submitted conference paper. For the thesis, extended research is performed after submission,
consisting of the following major contributions with respect to the conference paper:

• Design and implement the polygon variation of the static environment collision con-
straint.

• Implement the autonomous navigation system to adopt our method in real navigation
tasks.

• Extended simulation work for behavioral and robustness analysis.

• Perform experiments in real-world scenarios.

1ICRA 2019. "Call for Papers." https://www.icra2019.org/contribute/call-for-papers (accessed Oc-
tober 2 2018)

Master of Science Thesis B.C. Floor

https://youtu.be/eYHPdnKaOxg
https://www.icra2019.org/contribute/call-for-papers


Local Model Predictive Contouring Control for Dynamic Environments

Boaz Floor∗, Bruno Brito∗, Laura Ferranti∗ and Javier Alonso-Mora∗

Abstract— We present a local motion planner, namely, a
Local Model Predictive Contouring Control design, for an
Autonomous Ground Vehicle (AGV) traversing a dynamic envi-
ronment. Our design allows the AGV to execute reactive motion
while tracking a global plan, thanks to local parametrization of
the path. In addition, our framework allows for avoidance of
static obstacles (given in an occupancy grid map) and moving
obstacles represented by ellipses. Furthermore, we provide a
new bound to correct the approximation of the Minkowski sum
of an ellipsoid obstacle and the union of discs representation
of the controlled vehicle to guarantee collision avoidance. We
show that the general definition of the framework applies to
both unicycle and bicycle kinematic models, commonly used to
represent robots and autonomous cars, respectively. Simulation
results for a car and experimental results with a mobile robot
are presented.

I. INTRODUCTION

This paper proposes a general framework to safely navi-
gate Autonomous Ground Vehicles (AGVs), such as mobile
robots and cars, in dynamic environments. Motion planning
and control for AGVs is usually addressed as two separate
problems (with the planner and controller running on two
different modules) [1], [2]. In particular, the motion planner
generates safe, smooth, and feasible paths, while the motion
controller typically aims to track this planned path (directly
acting on the AGV’s actuator). Commonly, motion planning
procedures rely on graph-search or on randomized sampling
based techniques [3]. Motion planning techniques, however,
do not usually take into account that the path-following con-
troller relies on the smoothness and kinodynamic feasibility
of the reference path. This can compromise the safety of the
vehicle when the controller is unable to follow the planner
trajectory. FasTrack proposes a safe controller based on pre-
computed safety bounds [4], [5]. The proposed method,
however, can only deal with static obstacles. Reactive proper-
ties would be required in the planner to react appropriately
in constantly changing and uncertain environments. Purely
reactive methods, however, often lack global convergence
guarantees and advanced decision making capabilities. Other
approaches consider incorporating constraints in the planning
stage to obtain smooth and achievable trajectories [6]. A
planning paradigm that completely embraces the controller
stage relies on Model Predictive Control (MPC). MPC is
an optimization based technique that allows to deal with

This work was supported by NOW-TTW
B. Floor and B. Brito contributed equally
∗The authors are with Cognitive Robotics (CoR), depart-

ment of the Faculty of Mechanical, Maritime and Materials
Engineering, Delft University of Technology, 2628 CD Delft,
The Netherlands {bruno.debrito,l.ferranti,
j.alonsomora}@tudelft.nl

dynamic and physical constraints, while optimizing a de-
sired performance index [7], [8]. MPC approaches allow to
account for the future evolution of the environment and of
the vehicle to generate anticipatory motions and compute
an optimal control command [9], [10]. The authors of [11]
rely on an MPC scheme for cruise control and overtaking
maneuvers. The authors of [12] design an MPC controller
to ensure vehicle stability using differential braking and
active steering. The aforementioned approaches, however,
only tackle specific driving situations and do not consider
the link between the global planner and local controller. Our
approach address this issue by linking the global planner and
the controller. Similarly to our approach, the authors of [13]
build a clothoidal constrained path from irregular GPS way-
points and employ MPC to locally track the generated path.
Collision avoidance constraints, however, are not taken into
account. An MPC strategy known as Model Predictive Con-
touring Control (MPCC) [14] allows one to track a reference
path (rather than a trajectory parameterized in time) and ex-
plicitly penalize the deviation from it (in terms of contouring
and lateral errors). Following the MPCC paradigm, the au-
thors of [15] propose a Nonlinear MPCC (NMPCC) to handle
static and dynamic obstacles for a driving scenario. They
define the static collision constraints as limits on the refer-
ence path and assume constrained driving scenarios, such as
highways. This assumption can be too restrictive for mobile
robots that usually navigate in unconstrained scenarios.

We solve the motion planning and control problem by
combining the strengths of global re-planning techniques
with the reactive behavior of a MPC approach. In particular,
we propose a reformulation of the MPCC approach, namely,
a Local Model Predictive Contouring Control (LMPCC)
approach. By relying on [14], [15], this work makes the
following contributions:

1) A local formulation of the contouring control problem.
LMPCC supports global replanning without the need
of creating a new full path parametrization. In contrast
with the original MPCC scheme, LMPCC does not
require an analytical path representation as a reference.
Similar to [16], we parameterize a reference path using
third order spline polynomials. Compared to [16],
our LMPCC requires only a local parametrization of
the path making it applicable to realistic navigation
scenarios.

2) A static obstacle avoidance strategy. This strategy
explicitly constrains the AGV’s dynamics at time t
along the prediction horizon to an approximation of the
collision-free area around the robot. The approximation



is obtained by exploiting the predicted behavior of the
vehicle at time t− 1.

3) A bound to define dynamic collision avoidance con-
straints. In particular, we correct the approximation
of the Minkowski sum of the ellipsoid and a circle
(previously used for dynamic collision avoidance) such
that, if the constraints are satisfied, collision avoidance
is guaranteed.

4) Performance results in simulation (using a mobile
robot and an autonomous car) and with real-world
experiments (using a mobile robot). Our strategy sup-
ports real-sensor data and on-board localization. Fur-
thermore, we show that our strategy can be fully imple-
mented on-board the mobile robot in a real navigation
scenario, as our experiments show, and run in real time.

The method relies on an open-source solver [17] and will be
released.

II. PRELIMINARIES

Let B denote an AGV on the plane W = R2. B can be
represented by the following discrete nonlinear system:

z(t+ 1) = f(z(t),u(t)), (1)

where z(t) and u(t) represent the state and the command
at time t ≥ 0 1, respectively. The configuration of the AGV
is denoted in configuration space C = R2 × S by z(t) ∈ C.
The area occupied by the AGV at state z is B(z). B(z)
is approximated by a union of circles, that is, B(z) ⊆⋃
c∈{1,...,nc} Bc(z) ⊂W , where nc is the number of circles.
We consider static and dynamic obstacles. In particular,

the static obstacle environment is assumed to be captured
in an occupancy grid map. The area occupied by the static
obstacles is Ostatic ⊂W . Furthermore, each moving obstacle
Ai is represented by an ellipse of area Ai. Consider a
set of moving obstacles Ai with i ∈ I := {1, . . . , n} in
W , where n can vary over time. The area occupied by
all moving obstacles at time instant t is given by Odyn

t =⋃
i∈{1,...,n}Ai(zi(t)), where zi(t) denotes the state of Ai

at time t. The size of an ellipsoid associated with the obstacle
is defined by a and b, the semi-major and semi-minor axes
of the ellipse, respectively.

The objective is to generate collision free motion for
B through W , from its current state to a desired end
configuration. This can be formulated as an optimization
problem as follows:

J∗ = min
z0:N ,u0:N−1

N−1∑

k=0

J(zk,uk, θk) + J(zN , θN ) (2a)

s.t. zk+1 = f(zk,uk), (2b)

B(zk) ∩
(
Ostatic ∪Odyn

k

)
= ∅, (2c)

uk ∈ U , zk ∈ X . (2d)

where X and U are the set of admissible states and inputs, re-
spectively. z1:N , u0:N−1 are the predicted state and control,

1In the remainder of the paper we omit the time dependency when it is
clear from the context.

respectively over a prediction horizon Thorizon divided into
N prediction steps. θk denotes the predicted progress along
the reference path. J is a cost function defining the planner
objectives. By solving the optimization problem above, we
can obtain the optimal sequence of commands u∗0:N−1 to
guide the AGV along the reference path.

In the remainder of the paper, we show how to formulate
the objectives and how to define the collision avoidance
constraints to track a local (generated) reference path in our
LMPCC framework.

III. METHOD
The goal of the LMPCC is to generate feasible and optimal

motion with respect to the defined cost along the constructed
local reference path. The LMPCC framework contains the
following contributions:

1) The use of a transition function between waypoints to
eliminate the non-differentiable representation of the
reference path (Section III-A).

2) The application of a search routine to solve the approx-
imation of the path progress estimation (Section III-C).

3) Static obstacle avoidance by explicitly constraining the
control problem to an approximation of the collision-
free area (Section III-E.1).

4) A bound on the Minkowski sum of a circle and an
ellipse for moving obstacles (Section III-E.2).

A. Global planning / Generation of reference path

Given a goal position pgoal, first, we use a global planning
method (such as RRT [18]) to compute a collision-free path
through the static environment representation from an initial
position p0. This global reference path P consists of M
points defined as pm = [xpm, y

p
m] ∈ W with m ∈ M :=

{1, . . . ,M}. Then, we split the path into segments delimited
by [xpm, y

p
m] and [xpm+1, y

p
m+1]. We use cubic spline interpo-

lation to obtain an analytical expression of the reference path
for each segment, connecting each of the global reference
path points with a polynomial of length sm. The efficient
implementation of [19] allows splines to be generated in
O(q) and evaluation of the spline at a single point to be
performed in O(log(q)), where q is the number of input data
points. This efficiency motivates our choice of local spline
fitting during execution. Hence, we define the piece-wise
spline segments as a function of the traveled distance along
the reference path θ. This path parameter equals zero at the
start of each path segment and continuously increases along
the segment. Fig. 1 shows three reference path segments and
the projected robot position on the reference path. Each path
segment is composed of the interpolated reference trajectory
points concatenated with a corresponding velocity reference,
that is, Rm := [prm

T , vref,m]T. This velocity reference
depends on the environment and should be provided by the
route planning module. The cubic polynomials that define
the local reference points pr are a function of θ and are
given by:

prm(θ)=

[
xrm
yrm

]
=

[
axm,1θ

3 + axm,2θ
2 + axm,3θ + axm,4

aym,1θ
3 + aym,2θ

2 + aym,3θ + aym,4

]
(3)



Fig. 1: Reference path representation

where [axm,1, . . . , a
x
m,4] and [aym,1, . . . , a

y
m,4] are the coeffi-

cients of the cubic polynomials at segment m of both splines.
We consider a limited set of path segments Rm ⊂ R of

the reference path. This allows to reduce the computational
complexity of the planning problem and allows segments
outside of the local reference path to change over time. We
define the local reference path Lr at current time by linking
η path segments, starting from the m-th closest path segment,
that is,

Lr = {Ri ∈ R|i = [m, . . . ,m+ η]} (4)

B. Selecting the number of path segments

We provide a strategy to select η to guarantee that the local
reference path representation captures enough information of
the global path to be tracked by the LMPCC. In particular, we
provide a strategy to select the length of the local reference
path with respect to the prediction horizon. The number of
path segments η to be included in the local reference path
is a function of the prediction horizon length, the individual
path segment lengths, and the speed of the AGV at each time
instance, as described below:

m+η∑

i=m

si

︸ ︷︷ ︸
Local reference path length

≥ τ
N∑

j=0

vj

︸ ︷︷ ︸
Traveled distance in horizon

, (5)

where τ is the length of the discretization steps along the
horizon. We use an upper bound on (5) by considering
maximum longitudinal velocity vmax and select η such that

m+η∑

i=m

si ≥ Thorizon · vmax (6)

C. Progress on reference path

MPCC keeps track of the path progress along the total
reference path using the path parameter θ. Finding the corre-
sponding path parameter, however, involves solving another
optimization problem which would increase the computa-
tional cost of the algorithm [15]. If the distance between
waypoints is small in relation to their curvature, spline
parametrization can be regarded as reasonable approxima-
tions of arc-length parametrizations. Therefore, conventional

MPCC assumes that the evolution of path parameter can be
approximated by the traveled distance of the robot:

θk+1 ≈ θk + vkτ (7)

where v is the forward velocity of the controlled vehicle. The
estimation of the path parameter, however, has shown to be
quite coarse, especially when the AGV must deviate from
the reference path during an avoidance maneuver. During
such a maneuver, the path parameter starts drifting. LMPCC
resolves the problem of the drifting path parameter by per-
forming line search around the estimated path parameter, as
Algorithm 1 describes, resulting in the refined path variable
estimation θ̃. In particular, note that the evolution of the
path variable in the prediction horizon still matches Eq. (7),
while the initialization of the path parameter is done with
the refined approximation θ̃0 at each iteration.

Algorithm 1 Refined path variable estimation

1: θ0 = θprevious + vkτ
2: window = [θ0 − Lwindow : θ0 + Lwindow]
3: for each θsample in window do
4: Compute distance to θsample
5: if distance < distancemin then
6: distancemin = distance
7: θ̃0 = θsample
8: end if
9: end for

D. Maintaining continuity over the local reference path

To concatenate the properties of separate reference path
segments into the local reference path Lr that is tracked
by the LMPCC, we provide a differentiable expression of
the corresponding parameters over the prediction horizon.
We use a sigmoid activation function σ to link η path
segments Rm as in Eq. (4). In order to connect the analytical
expressions of the reference path segments (Eq. (3)), we mul-
tiply the piece-wise spline sections by their corresponding
activation function σm(θ, sm), as follows:

L̄
r
(θ) =

m+η∑

i=m

[p̄r(θk)T, v̄ref ]T · σm(θ, sm) (8)

E. Collision avoidance

Figure 2 provides and overview of our collision avoidance
strategy that we discuss in more details below. The AGV is
represented by ndisc discs centered in pBj , where pBj is the
position on the j-th disc in the AGV body-frame and ndisc
is the number of discs used to bound the AGV, j ∈ J disc :=
{1, 2, . . . , ndisc}.

1) Position constraints on static obstacles: It is assumed
that the reference path is free of static obstacles. When
the AGV deviates from the reference path, it should be
guaranteed that static obstacles are avoided. Figure 2 shows
how we approximate a collision-free region along the pre-
diction horizon. In particular, we use the shifted optimal
state sequence computed at the previous time instance t− 1,



Fig. 2: Overview of our collision avoidance strategy.

namely, z∗1:N |t−1. Then, the N -th element to append to
z∗1:N |t−1 is obtained by extrapolating from the last element
of z∗1:N |t−1. The resulting vector is z̄∗1:N |t−1. This sequence
of states z̄∗1:N |t−1 is used to center the circles depicted
in Figure 2. The collision-free region is then computed as
follows. The radii are found by expanding each circle in the
occupancy grid map of the environment until an occupied cell
is detected. The radius of the collision free circle is denoted
by rk. The approximated collision free area is introduced as
an inequality constraint on the current AGV position such
that B(zk) ∪Ostatic = ∅ ∀ k ∈ {0, . . . , N}.

Given z̄∗1:N |t−1, we enforce that the distance of the AGV
with respect to these positions must be smaller than a circle
with radius r̄k,j := rk − rdisc − ‖pBj ‖22 ∀k ∈ {0, . . . , N}:

cenv,j
k (zk)= r̄k,j − ‖p̄∗k|t−1 − pk‖22

∣∣∣
k,j

> 0 (9)

2) Position constraints on dynamic obstacles: Each mov-
ing obstacle Ai is represented by zk

i , a, and b. The collision
avoidance constraints can now be defined as an inequality
constraint for each j-th disc bounding the robot with respect
to the distance of each obstacle i ∈ {1, . . . , n} at time k as
depicted in Fig. 2.

Omitting i for simplicity, the inequality constraint on each
disc of the AGV with respect to the obstacles is given by:

cobst,j
k (zk)=

[
∆xjk
∆yjk

]T

R(ψ)T
[ 1
α2 0
0 1

β2

]
R(ψ)

[
∆xjk
∆yjk

]∣∣∣∣∣
k,j

> 1 (10)

The distance from disc j to the obstacle is split into its
∆xj and ∆yj components as shown in Fig. 2. R(ψk) is the
rotation matrix corresponding to the heading of the obstacle
and α and β are the resulting axes of the ellipse constraint.

It is important to notice that previous approaches assumed
that the Minkowski sum of an ellipse with a circle is an
ellipsoid with semi-major α = a+ rdisc and semi-minor axis
β = b+ rdisc [15]. This assumption, however, is not correct
and collision can still occur [20]. In order to ensure collision-
free motions the radius is enlarged by a factor λ:

[
α
β

]
=

[
a+ λrdisc
b+ λrdisc

]

′
(11)

where λ is computed such that the curvature of the constraint
ellipsoid is a lower bound of the curvature of the Minkowski

Fig. 3: Approximated contour and lag error on the path
segment.

sum, as follows:

λ = min




(a2 + br)(1− 2ab
a2+br +

√
(a−2b)2+br)

a2+br )

2b

(b2 + ar)(1− 2ab
b2+ar +

√
(−2a+b)2+ar

b2+ar )

2a




(12)

This guarantees that the constraint ellipsoid entirely bounds
the collision space.

3) Repulsion from dynamic obstacles: A penalty in the
cost function that resembles repulsion from dynamic obsta-
cles ensures clearance between the AGV and the obstacles.
The penalty is defined as follows:

Jrepulsive(zk) = QR

n∑

i=1

(
1

(∆xk)2 + (∆yk)2 + γ

)
, (13)

where QR is the weight on the repulsive forces [21]. The
distance from the AGV to the dynamic obstacles is given
in its separate ∆xk and ∆yk components as in Fig. 2. A
small value γ is introduced to avoid a division by zero, for
numerical stability of the solver [17].

F. Local Model Predictive Contouring Control

As introduced in Section III-A, the global reference path
P consists of M segments, resulting in a local reference
trajectory L̄

r
(θk) with η segments, starting from the m-th

closest path segment. The local contour error εc and the
longitudinal error εl are expressed as a function of θ as
visualized in Fig. 3. With p̄r(θk) being the local reference
path points, the contouring and longitudinal error vector
ek := [ε̃c(zk, θk), ε̃l(zk, θk)]T is defined as follows:

ek =

[
sinφ(θk) − cosφ(θk)
− cosφ(θk) − sinφ(θk)

] (
pk − p̄r(θk)

)
. (14)

In order to ensure progress along the reference path, the
conventional MPCC scheme proposes to add a negative cost
term proportional to the travelled distance. In contrast, we
introduce a cost term that penalizes the deviation of the
vehicle velocity vk with respect to a reference velocity vref.



The reference velocity is provided according to Eq. (8),
allowing the vehicle to adapt its speed according to the path
segment that it is tracking. Now, the LMPCC tracking cost
is defined as Jtracking(zk, θk) = eTkQεek + Qv(vref − vk)2,
Additionally, the cost function also penalizes with weight Qu
the inputs, that is, Jinput(zk, θk) = uTkQuuk. We can now
formulate our LMPCC control problem:

J∗ = min
z0:N ,u0:N−1

N−1∑

k=0

J(zk,uk, θk) + J(zN , θN )

s.t. zk+1 := f(zk,uk),

θk+1 = θk + vkτ,

zmin ≤ zk ≤ zmax,

umin ≤ uk ≤ umax,

cenv
k (zk) > 0,

cobst,j
k (zk) > 1, ∀j, ∀obst

z0 = zinit, θ0 = θ̃

(15)

where J(zk,uk, θk) := Jtracking(zk, θk) + Jrepulsive(zk) +
Jinput(uk). Algorithm 2 summarizes our design. Each control
iteration, feedback steps are performed until either a Karush-
Kuhn-Tucker (KKT) condition [22] or the maximum number
of iterations is satisfied (line 10).

Algorithm 2 Local Model Predictive Control

1: Given z0, zgoal, Ostatic, Odyn
k , and N

2: Initialization: k = 0
3: Build global path P Eqs. (3) and (8)
4: Select η according to Eq. (6)
5: Build L̄

r
(θk) according to Eqs. (3) and (8)

6: while zk 6= zgoal in parallel do
7: Process sensor data
8: Estimate θ̃0 according to Algorithm 1
9: Compute rk along z̄∗1:N |t−1

10: while iter < itermax ∧ KKT > threshold do
11: Solve Eq. (15)
12: iter = iter + 1
13: end while
14: Apply u∗

0

15: if θk > sk then
16: k = k + 1
17: Re-plan global path P \ pr
18: Build L̄

r
(θk) according to Eqs. (3) and (8)

19: end if
20: end while

IV. RESULTS

This section presents the results obtained using the pro-
posed planner. In the following, we provide simulation
results for a mobile robot and autonomous car. Furthermore,
we present real-world experiments on the mobile robot [23].

TABLE I: Computation times

Mean Minimum Maximum Variance
Autonomous car 12.7 ms 4.8 ms 28.8 ms 0.0367
Robot 3.2 ms 1.7 ms 15.3 ms 0.0017
Robot and obstacles 11.0 ms 3.5 ms 265.2 ms 0.0151

A. Experiment and Simulation Setup

We relied on ACADO [17] to solve the proposed LMPCC
and Gazebo [24] as simulation environment. In addition,
we implemented the global planner using the RRT-connect
from the Open Motion Planning Library (OMPL) [25].
A smoothened global path was constructed by building
a clothoid [26], connecting each waypoint obtained from
the RRT. The waypoints of this global path were used to
generate the local reference paths consisting of 3rd order
polynomials as in Eq. (8).

The experiments on the mobile robot were performed
using the on-board localization and all algorithms were run-
ning on-board. Furthermore, we used the OptiTrack system
[27] as ground-truth for the executed robot trajectories. We
implemented our design in C++ and we will release the code
as an open source ROS package. A video demonstrating the
results accompanies this paper. Finally, the LMPCC was set
to run at 20Hz considering a prediction horizon of 5 sec with
N = 25 steps. Table I shows the computation times for the
simulated car and the robot platform. Real-time performance
is satisfied for the both cases. The only situation where the
computation times exceeded the real-time constraint during
the experiment was when interacting obstacles (pedestrians)
violated the collision bound of the mobile robot.

B. Mobile robot

Two experiments are performed using a mobile robot
platform. These are the first experiment a motion controller is
implemented with only on-board perception and processing.
A unicycle kinematic motion model was used to model the
robot dynamics [28]. First, we tested tracking performance
without obstacles at a reference velocity of vref = 1 m/s
(Figure 5). Second, we tested tracking and obstacle avoidance
in the same environment using a reference velocity of vref =
0.7 m/s. The obstacles are two pedestrians walking around
(Figure 4.a)-b)). An occupancy map of the static environment
was built a priori and only the position of the pedestrians is
provided by the OptiTrack system.

As the Figure 5, the LMPCC achieved perfect tracking
in simulation and on the robot by using the OptiTrack
system to provide the robot state. From the perspective of the
robot’s believe state of its position, tracking performance is
comparable to the one obtained with OptiTrack system. By
looking at the ground-truth results obtained by the OptiTrack,
however, the robot is not perfectly following the reference
path (red line). This is mainly due to the uncertainty on the
on-board localization data.

In Fig. 6, we cumulate the clearance distance between the
robot and the obstacles for a characteristic time period of the
second experiment. In almost all instances a minimum safe



a) Robot scenario 1 b) Robot scenario 2 c) Autonomous vehicle scenario

Fig. 4: Three characteristic collision avoidance scenarios
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Fig. 5: Traveled path of the AGV compared to the reference.

distance of 0.32 m was achieved, which corresponds to the
robot radius, using a single disc. One particular avoidance
manoeuvre resulted in an overlap between the collision
radius of the robot and the static obstacle, which is most
likely due to a localization error. The few dynamic collision
detected were situations where the pedestrians violated the
collision boundary of the robot and the robot could not avoid
fast enough. Fig. 4.a)-b) shows two snapshots of two critical
driving situations avoiding moving and static obstacles.

C. Autonomous vehicle

We tested our algorithm in simulation results for an
autonomous vehicle, a Toyota Prius. The motion model used
in the LMPCC to control the vehicle is the one presented
in [29], that is, a kinematic bicycle model. We simulate the
vehicle following the same reference path used for the mobile
robot scaled by a factor of 10. In addition, a dynamic obstacle
moving at 0.5 m/s was simulated to cross the vehicle path, as
presented in Fig. 4.c). The vehicle boundaries were defined
using three discs in accordance to Section III-E. The velocity
reference was set to 8 m/s (≈ 30 Km/h). The autonomous
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Fig. 6: Sampled clearance from the robot to static and
dynamic obstacles

vehicle successfully avoids collision with the obstacle and
stably converges to the reference trajectory.

V. CONCLUSIONS

We proposed a local planning approach based on Local
Model Predictive Contouring Control (LMPCC) to safely
navigate AGVs in dynamic, unstructured environments. The
LMPCC relies on a robust bound on the Minkowski sum
to safely avoid dynamic obstacles. Furthermore, our design
relies on a technique to compute a collision-free area to
avoid static obstacles. We showed the applicability of our
LMPCC design in simulations for a mobile robot and an
autonomous vehicle. Finally, we performed real experiments
using a mobile robot avoiding pedestrians and static obsta-
cles. We showed that our motion planner satisfies the real-
time constraint. Furthermore, the light implementation of
our LMPCC allowed us to run all the algorithms on-board
of the mobile robot. The next step is to test the proposed
algorithm in a real autonomous car and to expand the current
algorithm to incorporate prediction information about others
road users.
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List of Acronyms

AGV Autonomous Ground Vehicle

COM Center Of Mass

CoR Cognitive Robotics

EKF Extended Kalman Filter

GPS Global Positioning System

HMI Human Machine Interface

ICRA International Conference on Robotics and Automation

ICR Instantaneous Center of Rotation

IMU Inertial Measurement Unit

KKT Karush-Kuhn-Tucker

LiDAR Light Detection And Ranging

LMPCC Local Model Predictive Contouring Control

MCU Micro Controller Unit

MPC Model Predictive Control

MPCC Model Predictive Contouring Control

NMPC Non-linear Model Predictive Control

OCP Optimal Control Problem

ODV Online Data Variable

OMPL Open Motion Planning Library
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82 Glossary

PWM Pulse-Width Modulation

QP Quadratic Programming

RRT Rapidly-exploring Random Tree

ROS Robotic Operating System
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