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ABSTRACT  

Here we report on a study of a rheological behavior of sodium alginate and montmorillonite 

suspension. We find that viscoelastic behavior of this suspension is dramatically affected with 

increasing volume fraction of montmorillonite platelets. Addition of montmorillonite generally 

leads to gel formation, which is attributed to interactions of montmorillonite and alginate via H-

bonding and attraction between the positive edges of the platelets and the anionic backbone of 

the biopolymer. A critical concentration for the measured system was observed at 20 wt.% 

montmorillonite, where a crossover to a gel-like structure was detected. The observed gel has a 

rubber plateau, which develops further with higher montmorillonite concentration. In this 

physical gel the relaxation maximum was detected, which is associated with the breaking and 

reformation of the bonds between the platelets and the biopolymer. For this transient behavior, 

we find that a Maxwell type viscoelasticity quite well describes the relaxation time and the 

observed G’-G’’ crossover. We believe that this gel-like behavior plays an important role in 

formation of highly ordered nanostructures that develop during the drying of these bio-

nanocomposite suspensions. 

KEYWORDS physical gel, rheology, alginate, montmorillonite, suspension 
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1 INTRODUCTION 

The addition of clay platelets to polymers is a way to improve the properties of the unfilled 

material, lead to a significant increase in stiffness (Young’s modulus), a decreased permeability 

and reduced flammability1-4. The reason for such material property enhancement comes from the 

nature of the filler, i.e. its high aspect ratio, which imposes a tortuous path to the diffusing 

molecules and the good interaction between the filler and the polymer5. A variety of polymers 

have been used to produce such polymer clay nanocomposites (PCNs). In many systems the 

concentration of layered silicates rarely exceeds 5-10 wt.%, due to phase separation and loss of 

exfoliation. Recently, clay bio-nanocomposites have been made using biopolymers, such as 

chitosan, carboxymethyl cellulose, and xylogulcan. Using these biopolymers the concentration 

range of clay that can be successfully incorporated increases dramatically, with materials 

displaying unique properties, such as high level of alignment, and high volume fraction of the 

filler, which may result from favorable interaction between the biopolymer and the clay. All of 

the mentioned bio-nanocomposites have been produced via water casting of the biopolymer clay 

suspension6,7,8,9. Due to the nanostructure and the high volume fraction of the clay, these 

materials display superior mechanical and transport properties, when compared to conventional 

PCNs. 

The present work is motivated by a high order parameter achieved in Na Alginate/MMT bio-

nanocomposite system. Investigating the rheological behavior of the initial suspensions of the 

biopolymers (anionic and cationic) and clay platelets may give some answers in understanding 

how these nanostructures are formed. The interaction between the clay platelets and positively 

charged polyelectrolyte, e.g. chitosan, is likely to occur due to the electrostatic interactions 

between –NH3
+ groups and the negatively charged sites on the clay surface, leading to a dynamic 
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gel formation of the resulting suspension10,11. Subsequently, alignment of the montmorillonite 

platelets results in a nacre-like, highly ordered, microstructure that is proposed to occur via water 

evaporation induced self-assembly6. 

Miano et al. studied the influence of polyelectrolytes on the rheological behavior of 

montmorillonite suspension and found that face-edge interaction between montmorillonite 

platelets is inhibited by the presence of sodium polyacrylate, which is adsorbed on the edges of 

the clay particles12. Jaber et al. measured the adsorption of negatively charged molecules on the 

montmorillonite platelets, where the interaction was hypothesized to occur on edges of the 

montmorillonite platelets via hydrogen bonding13. 

Physical gelation occurs as a result of intermolecular association, leading to network 

formation. Unlike chemical bonding, where covalent attachments are typically permanent, these 

intermolecular associations are weak, reversible bonds or clusters produced by Van der Waals 

forces, electrostatic attractions, and/or hydrogen bonding14. 

The present work is intended to study the effect of the addition of montmorillonite platelets on 

the structure and rheology of Na-alginate solutions. Na-alginate is a negatively charged 

polyelectrolyte copolymer composed from mannuronic (M) and guluronic (G) acid. The 

functional properties of alginate are related to the ratio of the copolymers (M/G) and the level of 

block formation. Alginate can be derived from brown algae, which is the main source for 

industrial use, and is also found in metabolic products of some bacteria, e.g. pseudomonas and 

azotobacter15-16. Commonly, alginates are used as food additives (E400-405), gelling agents, 

wound dressings, membranes for curing cement-based materials, and potentially for drug 

delivery17,18,19. 
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Na-alginate suspensions with a wide range of montmorillonite concentrations were 

characterized, in which a critical concentration for a gel-like behavior was measured. The 

intermolecular associations are hypothesized to occur between the positively charged 

montmorillonite edges and the negatively charged alginate backbone and/or via H-bonding. The 

transient behavior of the obtained bio-nanocomposite suspensions is described well by the 

Maxwell type viscoelasticity. The results from this study suggest that the gel-like behavior of the 

suspensions causes a strain-induced orientation, during drying. This leads to a formation of a 

highly ordered structure. 

 

2 MATERIALS AND METHODS 

Na-alginate (Na-Alg) suspensions with various concentrations of Na-montmorillonite (Na-

MMT) were prepared according to the following procedure. Commercially available MMT, the 

aspect ratio (width/thickness) of the Cloisite is roughly 250:1, (Cloisite Na+ (MMT), Southern 

Clay Products Inc., Rockwood) was disperesed in deionized water under vigorous stirring for 24 

hours to achieve 3 wt.% exfoliated dispersion. During that time all of the Na-MMT got 

dispersed, without any remaining visual agglomerates. Na-Alg, (M/G=1.56, Mw=150 kg/mol) 

purchased from Sigma Aldrich was used as received. Na-Alg was dissolved using deionized 

water to form a 3 wt.% solution. The Na-MMT suspension was subsequently mixed with Na-Alg 

solution and was further mixed for 24 hours. The total solid content was kept at 3 wt.% but with 

different MMT concentrations, 0, 1, 5, 20, 40, 50, 60, 70, 75, 80, 90, 95, 98 and 99 wt.% with 

respect to Na-Alg + Na-MMT.  

The Na-Alg MMT suspensions were examined by small amplitude oscillatory shear (SAOS) 

experiments on a TA Instruments AR-G2 Rheometer, using parallel plate geometry with 
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diameter of 40 mm. For each suspension, a strain sweep was performed, at the oscillatory 

frequency of 10 rad/s to determine the linear viscoelastic region. Frequency sweeps were 

performed in the linear viscoelastic region between 0.1 and 100 rad/s.  

For time sweep experiment and for the dynamic oscillatory measurement at longer time scales 

(lower frequencies) we used a Couette geometry with stator radius 15.18 mm, rotor radius 14 

mm and cylinder height 42.07 mm. The time sweep experiments were performed such that after 

sample loading, the samples underwent a pre-shear treatment at a shear rate of 100 s-1 for 120 s. 

All measurements were performed at 25 °C, using a solvent trap to avoid evaporation of water. 

 

3 RESULTS AND DISCUSSION 

For the Na-Alg solution and all the prepared suspensions, a strain sweep was performed at an 

oscillatory frequency of 10 rad/s to determine the linear viscoelastic region. The results are 

shown in figure 1, the dashed vertical lines indicate the strain used for the subsequent frequency 

sweeps. For Na-Alg suspension with Na-MMT concentrations higher than 40 wt.% we find that 

G’ is higher than G’’, which is indicative of an elastic behavior rather than a viscous one, as is 

observed for the neat polymer solution and the pure Na-MMT suspension. A noticeable increase 

in G’ is found upon the addition of Na-MMT platelets that at higher strains exhibits a sharp 

decrease, suggesting a critical strain for structure breakdown that imposes a limit of the linear 

regime21. For the Na-Alg with 99% wt.% Na-MMT we observe a similar behavior as is found for 

the pure Na-MMT suspension.  
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Figure 1 Storage (G’) and loss (G’’) moduli, as a function of applied strain amplitude for Na-

Alg solution, Na-MMT and Na-Alg Na-MMT suspension at different clay concentrations to 

investigate the strain independence (linear viscoelastic regime). Total solid concentration of 

suspensions was fixed at 3 wt.%. The measurements were performed at a frequency of 10 rad/s. 

The vertical lines indicate the strain used for the frequency sweep measurement. Note the 

different scale-bars for G’ and G’’ in some of the figures. 
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Figure 2 shows the storage and loss modulus, G’ and G’’, of a 3 wt.% Na MMT suspension 

(open circles) and a 3 wt.% Na-Alg (open squares) solution as a function of angular frequency 

measured by parallel plate geometry. The Na-Alg solution primarily liquid-like behavior, 

G’’>G’, showing scaling properties of approximately G’∝ω1.5 and G’’∝ω. The deviation from 

the behavior of a fully relaxed homopolymer (G’∝ω2 and G’’∝ω) might be attributed to 

polydispersity22. The aqueous dispersion of MMT exhibits a liquid-like behavior where the 

storage modulus scales with frequency as G’∝ω2 and the loss modulus is linear in frequency G’’

∝ω. The 3 wt.% MMT suspension behaves as a solid at very short time scale of 0.025 s (40 

rad/s crossover). This can be attributed to face-edge interaction and a formation of a transient 

network. Abend and Lagaly reported similar behavior of Na-MMT in this concentration range23. 

 

Figure 2 Storage (G’) and loss (G’’) moduli of Na-Alg solution and Na-MMT suspension as a 

function of angular frequency. Total solid concentration of both suspension and solutions is 3 

wt.%. The vertical line at 40 rad/s indicates the G’-G’’ crossover.  
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The storage and loss modulus for the systems with 1 and 5 wt.% Na-MMT platelets are shown 

as a function of angular frequency in Figure 3. The addition of Na-MMT platelets up to 5 wt.% 

has little influence on the storage moduli. We still observe a liquid-like behavior of the 

suspension with G’’ values higher than the G’ values at the studied frequency range. A decrease 

in the terminal slope was noticed for the 5 wt.% Na-MMT compared to 1 wt.% Na-MMT that 

could be a result of interaction between the Na-MMT and alginate that can cause reduced 

mobility. We also notice that the extrapolated high frequency crossover relaxation time remains 

unaffected (roughly at 300 rad/s) and the high frequency regimes overlap. 

 

 

Figure 3 Storage (G’) and loss (G’’) moduli of Na-Alg suspension with 1 and 5 wt.% Na-MMT 

as a function of angular frequency. We observe a liquid-like behavior over the investigated 

timescales. Total solid content of the mixed suspension was 3 wt.%.  
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With further addition of Na-MMT, at 20 wt.%, a crossover appears and at lower frequencies 

with G’ > G’’ and frequency independence of G’, presented in Figure 4. The corresponding 

frequency of the cross-over is 0.1673 rad/s. G’ dominance falls in the region at large time-scales, 

which suggests that over longer timescales the suspension behaves like a viscoelastic soft solid 

as the long-range rearrangements are very slow. Above the G’-G’’ crossover point, we have a 

dominant viscous behavior, which implies that short-range rearrangements occur rapidly24. The 

reason for the crossover could be a result of an interaction between the edges of the Na-MMT 

platelets, which can be positively charged, and the negatively charged alginate backbone25. The 

Na-MMT platelets are linked to form a network structure, which can be disrupted by the flow. It 

is important to note that the formed cross-links appear to be transient that at rest allows the gel 

structure to rebuild to its initial structure. This is also characterized, as will be shown below, by a 

weak frequency dependence of the storage modulus and G’ > G’’ over the measured frequency 

range, indicating that the material behaves solid-like on the investigated time-scales. We also 

note that in broader terms the high frequency crossover seems to be independent of the MMT 

concentration up to 20 wt.%. 
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Figure 4 Storage (G’) and loss (G’’) moduli as a function of angular frequency for Na-Alg 

suspension with 20 wt.% Na-MMT. The measured G’-G’’ crossover frequency is at 0.1673 rad/s. 

The frequency dependence of the storage modulus for suspensions with Na-MMT 

concentration above 40 wt.% up to 98 wt.% can be seen in Figure 5. The storage modulus is 

greater than the loss modulus, compare figures 5 and 6, over the entire frequency range which 

corresponds to a solid-like behavior, and G’ is nearly frequency independent, i.e. we detect a 

plateau modulus. This plateau implies that for these time scales the suspension behaves as an 

elastic body. Aforementioned suggests the formation of an associative network, which could be 

attributed to the large number of connections between the polymer and the Na-MMT platelets. 

With further addition of the Na-MMT platelets to the suspension a substantial increase in the 
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Figure 5. Storage moduli of Na-Alg with 40, 50, 60, 75, 80, 90, 95, and 98 wt.% Na-MMT as a 

function of angular frequency. The total solid concentration is 3 wt.%. 
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behavior is, as mentioned, characteristic for physical gels where the continuous network is 

portrayed by reversible links formed from temporary associations between the chains.  

 

Figure 6. Loss moduli of Na-Alg with 40, 50, 60, 75, 80, 90, 95, and 98 wt.% Na-MMT as a 

function of angular frequency. The total solid concentration is 3 wt.%. 
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Figure 7. Plateau modulus G0 of Na-Alg/MMT gels measured at 0.1259 rad/s as a function of 

Na-MMT concentration. The figure shows that above 20 wt.% Na-MMT we see an increase in 

plateau modulus with addition of Na-MMT until 80 wt.% Na-MMT, followed by a rapid decline. 

At the top left corner Na-Alg/MMT interaction is illustrated and the line connecting the points is 

a guide to the eye.  

 

In figure 8 we see that the Na-Alg with 99 wt. % Na-MMT behaves similarly to pure Na-MMT 

suspension, as seen in figure 2. We observe that a small addition of Na-Alg increases the viscous 

component of the Na-MMT suspension. Such behavior might be explained by the alginate 

adsorption around the edges of the MMT platelets, which inhibits the face-edge interactions 

between the platelets. Also, as a result of the low alginate concentration no entanglement and 

bridging occurs that could give rise to an elastic component is the rheology of the system.  
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Figure 8. Storage (G’) and loss (G’’) moduli for Na-Alg with 99 wt.% Na-MMT as a function of 

angular frequency. The vertical line indicates a G’-G’’ crossover. 
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crossover point to be 43 and 49 seconds for the first and the second run, respectively. We also 

note that there is an orientation induced reduction in the viscous component, G’’, which has a 

fast recovery, while intriguingly the network recovery of the elastic component, G’, seems to be 

much slower.  

 

Figure 9. Evolution of storage (G’) and loss (G’’) moduli over time for Na-Alg with 70 wt.% 

Na-MMT suspension measured at 10 rad/s. Before each time sweep measurement a pre-shear of 

100 s-1 for 120 s was performed on the suspension. Total solid concentration is 3 wt.%. 
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finite relaxation time. The structural implications of the relaxation observed at very low 

frequency (G’’ maximum) is that the MMT platelets are not permanently attached to the 

polymer, but rather that there is a very slow dynamic (transient) cross-link.  

To investigate the long relaxation times associated with interaction of the MMT platelets with 

the alginate backbone the frequency sweep results, of Na-Alg 70 wt.% Na-MMT, were fitted to a 

2-mode Maxwell model28, see Eq 1 and 2:  

𝐺!(ω) =
!!!!

!!!!
!

!!!!!!!
! +

!!!!
!!!!
!

!!!!!!!
!         (1) 

 

𝐺!!(ω) = !!!!!!!
!!!!!!!

! + !!!!!!!
!!!!!!!

!         (2) 

where, GP1 and GP2 are the shear moduli, τR1 and τR2 the specific times of the relaxations and ω 

is the angular frequency. This Maxwell-like viscoelastic model with two relaxation times fits the 

experimental results reasonably well.  
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Figure 10. Storage (G’) and loss (G’’) moduli as a function of angular frequency for Na-Alg 

system with 70 wt.% Na-MMT over a longer timescale. The solid lines show the results of a 

dual-τ Maxwell model, see equations 1 and 2. 
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terms, this is in agreement with the observed low frequency network dynamics at about 5E-3 

rad/s, shown in figure 10. 

 

Figure 11. Stress-strain curves of a startup at various shear rates from 0.005 to 1 s-1 for Na-Alg 

with 70 wt.% Na-MMT, at 3 wt.% total solids. The stress overshoot varies with applied shear 

rate. 
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4 CONCLUSIONS 

The viscoelastic properties of Na-Alg/MMT suspensions have been studied using dynamic and 

steady shear rheology to investigate specific interactions between the MMT platelets and the 

alginate polymer. The systems were observed to form a physical gel above a critical Na-MMT 

concentration, which in this study was 20 wt.%. The results indicate that alginate and MMT 

platelets form a three dimensional structure as a result of specific interactions. These interactions 

are a result of attraction between the negatively charged alginate backbone with the positively 

charged MMT edges, possibly assisted by hydrogen bonding. We find an increase in the 

elasticity of the gel structure by addition of the Na-MMT platelets up to 80 wt.% Na-MMT, 

which we believe to be due to an increased level of interaction in the gel network. This gel 

formation, we propose, is responsible for the later development of the highly ordered 

nanostructure, which is achieved during water evaporation, as reported previously9. 

We also observed that the Na-Alg with 99 wt.% Na-MMT behaves similarly to the pure Na-

MMT system, were we find an increase in the viscous component for the 99 wt.% Na-MMT. 

This suggests that the alginate decorates the MMT platelets and thus reduces the face-edge 

interactions. A dynamic oscillatory measurement was performed for Na-Alg suspension with 70 

wt.% Na-MMT over longer time scales, and a relaxation time associated with the transient bonds 

of the physical gel occurs after which the suspension started to flow. The dual-mode Maxwell 

model that could be fitted to the experimental results seems to describe the relaxation of the 

MMT-alginate bond reasonably well. 

A time sweep at fixed frequency was performed to investigate the microstructure recovery 

after breakdown due to high shear. We find that the structure reforms quite quickly (gel time 
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around 40 s) indicating a transient bonding of the suspension, in agreement with the SAOS 

results.  
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Highlights  

• Alginate and montmorillonite form a dynamic physical gel with a randomly dispersed 

montmorillonite platelets interacting with the polymer. 

• The associative network starts to be formed at 20 wt.% montmorillonite with a peak level 

of association at a concentration of around 80 wt.%. 

• The gel formation is a crucial factor to explain the observed highly organised structure 

during film formation. 

 

 

 


